REQUEST FOR REDESIGNATION AND MAINTENANCE PLAN FOR OZONE ATTAINMENT IN THE EIGHT-HOUR OZONE BASIC NONATTAINMENT AREA

Youngstown-Warren-Sharon, PA-OH

(Columbiana, Mahoning and Trumbull Counties, OH) (Mercer County, PA)

Prepared By:

Ohio Environmental Protection Agency Division of Air Pollution Control in collaboration with Pennsylvania Department of Environmental Protection

November 2006

This page left intentionally blank

TABLE OF CONTENTS

Chapter One Introduction Background Geographical description Status of air quality	1 2
Chapter Two Requirements for redesignation	3
Chapter Three Ozone monitoring Ambient data quality assured Three complete years of data Commitment to continue monitoring	7 7
Chapter Four Emission Inventory Base Year Inventory Emission Projections Demonstration of Maintenance Permanent and Enforceable Emissions Reductions Provisions for Future Updates	10 11 17 25
Chapter Five Control measures and regulations Implementation of Past SIP Revisions New Source Review Provisions Assurance of continued controls.	27 29
Chapter Six Contingency measures Commitment to revise plan Commitment for contingency measures Potential contingency measures List of VOC and NO _x sources	31 31 32
Chapter Seven Public participation	35
Chapter Eight Conclusions	35

FIGURES

	Youngstown-Warren-Sharon, PA-OH Basic Nonattainment Area
Figure 1	Youngstown-warren-Snaron, PA-OH Basic Nonattainment Area

TABLES

Table 1	Monitoring Data for Youngstown-Warren-Sharon, PA-OH 2004 – 2006	8
Table 2	Emission Estimations for On-road Mobile Sources for Columbiana County	14
Table 3	Emission Estimations for On-road Mobile Sources for Mahoning County	14
Table 4	Emission Estimations for On-road Mobile Sources for Trumbull County	15
Table 5	Emission Estimations for On-road Mobile Sources for Mercer County, PA	15
Table 6	Combined Emission Estimations for On-road Mobile Sources	15
Table 7	Mobile Vehicle Emission Budget	16
Table 8	VOC Emission Inventory Columbiana County	18
Table 9	VOC Emission Inventory Mahoning County	18
Table 10	VOC Emission Inventory Trumbull County	19
Table 11	VOC Emission Inventory Mercer County, PA	19
Table 12	VOC Emission Inventory Youngstown-Warren-Sharon, PA-OH Totals	20
Table 13	NO _x Emission Inventory Columbiana County	20
Table 14	NO _x Emission Inventory Mahoning County	21
Table 15	NO _x Emission Inventory Trumbull County	21
Table 16	NO _x Emission Inventory Mercer County, PA	22
Table 17	NO _x Emission Inventory Youngstown-Warren-Sharon, PA-OH Totals	22
Table 18	Projected emission estimates 2004-2018 Columbiana County	23
Table 19	Projected emission estimates 2004-2018 Mahoning County	23
Table 20	Projected emission estimates 2004-2018 Trumbull County	23
Table 21	Projected emission estimates 2004-2018 Mercer County, PA	24
Table 22	Projected emission estimates 2004-2018 Combined VOC/NOx Totals	24
Table 23	Combined comparison of 2002 and 2004 On-road and EGU Totals	25

APPENDICES

- Air Quality System (AQS) Data Emission Inventories А
- В
- C D
- Emissions Analysis Method Public Participation Documentation

This page left intentionally blank

REQUEST FOR REDESIGNATION AND MAINTENANCE PLAN FOR OZONE ATTAINMENT IN THE EIGHT-HOUR OZONE BASIC NONATTAINMENT AREA

Youngstown-Warren-Sharon, PA-OH

CHAPTER ONE

Introduction

The Clean Air Act (CAA) requires areas failing to meet the National Ambient Air Quality Standard (NAAQS) for ozone to develop State Implementation Plans (SIP's) to expeditiously attain and maintain the standard. In 1997, the United States Environmental Protection Agency (U.S. EPA) revised the air quality standards for ozone replacing the 1979 one-hour standard with an eight-hour ozone standard set at 0.08 parts per million (ppm). The standard was challenged legally and upheld by the U.S. Supreme Court in February of 2001.

On April 30, 2004, U.S. EPA designated 134 nonattainment areas for the eight-hour ozone standard effective June 15, 2004. Since that time, U.S. EPA has reclassified nine of the 134 original nonattainment areas to the next lower classification. Section 107(d)(3)(E) of the CAA allows states to request nonattainment areas be redesignated to attainment providing certain criteria are met. The following are the criteria that must be met in order for an area to be redesignated from nonattainment to attainment:

- *i*) A determination that the area has attained the eight-hour ozone standard.
- *ii)* An approved State Implementation Plan (SIP) for the area under Section 110(k).
- *iii)* A determination that the improvement in air quality is due to permanent and enforceable reductions in emissions resulting from implementation of the SIP and other federal requirements.
- iv) A fully approved maintenance plan under Section 175(A).
- v) A determination that all Section 110 and Part D requirements have been met.

Background

Columbiana, Mahoning and Trumbull Counties, Ohio (OH), and Mercer County, Pennsylvania (PA) form the Youngstown-Warren-Sharon, PA-OH interstate nonattainment area. As part of the 1990 CAA Amendments re-evaluation, the Youngstown-Warren-Sharon, PA-OH area was designated as Marginal Nonattainment for the one-hour ozone standard pursuant to the CAA and therefore, has been subject to nonattainment area rule-makings. Mahoning and Trumbull counties were redesignated to attainment with respect to the one-hour ozone standard on January 31, 1996 (61FR3319) and Columbiana County on February 8, 1995 (60FR7453). Maintenance plans were approved at that time as well. Mercer County, PA has not yet been redesignated for the one-hour ozone standard. As a

result of the 2004 ozone designations, U.S. EPA designated the Youngstown-Warren-Sharon, PA-OH area basic nonattainment and subject to the eight-hour ozone requirements, including development of a plan to reduce volatile organic compounds (VOCs) and oxides of nitrogen (NO_x) emissions and a demonstration that the area will meet the federal eight-hour air quality standard for ozone by June 2009.

This document is intended to support Ohio's request that the Youngstown-Warren-Sharon, PA-OH area be redesignated from nonattainment to attainment for the eight-hour ozone standard. Youngstown-Warren-Sharon, PA-OH has recorded three (3) years of complete, quality-assured ambient air quality monitoring data for the years 2004 – 2006 demonstrating attainment of the eight-hour ozone standard.

Geographical Description

The Youngstown-Warren-Sharon, PA-OH area includes Columbiana, Mahoning and Trumbull counties in Ohio and Mercer County in PA. This area is located in northeastern Ohio and northwestern Pennsylvania. This area is shown in Figure 1.

Status of Air Quality

Ozone monitoring data for the most recent three (3) years, 2004 through 2006, demonstrates that the air quality has met the NAAQS for ozone in this basic nonattainment area. The NAAQS attainment, accompanied by decreases in emission levels discussed in Chapter four, supports a redesignation to attainment for the Youngstown-Warren-Sharon, PA-OH area based on requirements in Section 107(d)(3)(E) of the CAA.

CHAPTER TWO

Requirements for Redesignation

U.S. EPA has published detailed guidance in a document entitled *Procedures for Processing Requests to Redesignate Areas to Attainment* (redesignation guidance), issued September 4, 1992, to Regional Air Directors. This request for redesignation and maintenance plan is based on the redesignation guidance, supplemented with additional guidance received from staff of U.S. EPA Region V.

Below is a summary of each redesignation criterion as it applies to Youngstown-Warren-Sharon, PA-OH.

1) <u>Attainment of the standard:</u>

There are two components involved in making this demonstration. The first component relies on ambient air quality data. The data that are used to demonstrate attainment should be the product of ambient monitoring that is representative of the area of highest concentration. The data should be collected and quality-assured in accordance with 40 CFR 58 and recorded in the Air Quality System (AQS) in order for it to be available to the public for review.

The second component relies upon supplemental U.S. EPA-approved air quality modeling. The supplemental modeling is not required for ozone nonattainment areas seeking redesignation. Therefore, this ozone redesignation request for Youngstown-Warren-Sharon, PA-OH does not include modeling data. However, in Appendix C the most recent modeling results showing future attainment and maintenance are provided. Chapter three discusses this requirement in more detail and provides the attainment demonstration.

2) <u>SIP approval:</u>

The SIP for the area must be fully approved under Section 110(k) and must satisfy all requirements that apply to the area. Ohio's SIP was approved on May 9, 1994 (59FR23799) March 23, 1995 (60FR15235) January 31, 1996 (61FR3319) and includes Youngstown-Warren-Sharon, PA-OH. Chapter five discusses this requirement in more detail and provides the attainment demonstration.

3) <u>Permanent and enforceable improvement in air quality;</u>

The state must be able to reasonably attribute the improvement in air quality to emission reductions which are permanent and enforceable. The state should estimate the percent reduction achieved from federal measures as well as control measures that have been adopted and implemented by the state. 4) <u>Section 110 and Part D requirements</u>:

For purposes of redesignation, a state must meet all requirements of Section 110 and part D that were applicable prior to submittal of the complete redesignation request.

Part D consists of general requirements applicable to all areas which are designated nonattainment based on a violation of the NAAQS.

i.) Section 172(c) requirements

This section contains general requirements for nonattainment plans. The requirements for reasonable further progress, identification of certain emissions increases, and other measures needed for attainment will not apply for redesignations because they only have meaning for areas not attaining the standard. The requirements for an emission inventory will be satisfied by the inventory requirements of the maintenance plan.

ii.) Conformity

The state must work with U.S. EPA to show that its SIP provisions are consistent with section 176(c)(4) conformity requirements. The redesignation request should include conformity procedures, if the state already has these procedures in place. If a state does not have conformity procedures in place at the time that it submits a redesignation request, the state must commit to follow U.S. EPA's conformity regulation upon issuance, as applicable. Chapter five discusses this requirement in more detail and provides the attainment demonstration.

5) <u>Maintenance plans</u>.

Section 107(d)(3)(E) stipulates that for an area to be redesignated, U.S. EPA must fully approve a maintenance plan which meets the requirements of Section 175(A). The maintenance plan will constitute a SIP revision and must provide for maintenance of the relevant NAAQS in the area for at least 10 years after redesignation. Section 175 (A) further states that the plan shall contain such additional measures, if any, as may be necessary to ensure such maintenance.

In addition, the maintenance plan shall contain such contingency measures as the Administrator deems necessary to ensure prompt correction of any violation of the NAAQS. At a minimum, the contingency measures must include a requirement that the state will implement all measures contained in the nonattainment SIP prior to redesignation.

States seeking redesignation of a nonattainment area should consider the following provisions:

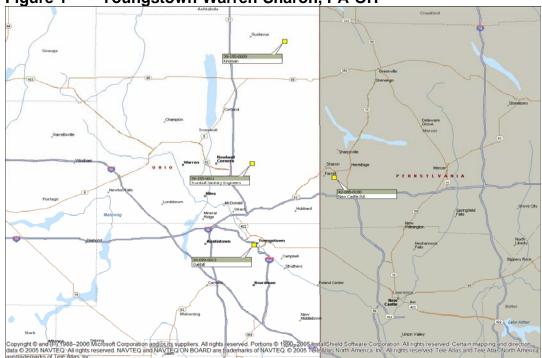
- a.) attainment inventory;
- b.) maintenance demonstration;
- c.) monitoring network;
- d.) verification of continued attainment; and
- e.) contingency plan.

Chapter six discusses this requirement in more detail and provides the attainment demonstration.

CHAPTER THREE

OZONE MONITORING

CAA Section107 (d)(3)(E)(i)


Requirement 1 of 4:

A demonstration that the NAAQS for ozone, as published in 40 CFR 50.4, has been attained. Ozone monitoring data must show that violations of the ambient standard are no longer occurring.

Background:

There are four monitors measuring ozone concentrations in this nonattainment area. The monitors located in Mahoning and Trumbull counties are operated by the Mahoning-Trumbull Air Pollution Control Agency. Data from the monitor located in PA are also included for the eighthour ozone attainment demonstration. The PA monitor is operated by the PA Department of Environmental Protection (PA DEP), Bureau of Air Quality, Harrisburg Central Office. A listing of the four (4) highest readings from 2004 through 2006 is shown in Table 1. These readings were retrieved from the U.S. EPA Air Quality System (AQS). The locations of the monitoring sites for this nonattainment area are shown on Figure 1.

Demonstration:

Figure 1 Youngstown-Warren-Sharon, PA-OH

Requirement 2 of 4:

Ambient monitoring data quality assured in accordance with 40 CFR 58.10, recorded in the U.S. EPA ,AQS database, and available for public view.

Demonstration:

Ohio EPA and PA DEP have quality assured all data shown in Appendix A in accordance with 40 CFR 58.10 and all other federal requirements. Ohio EPA and PA DEP have recorded the data in the AQS database and therefore data are available to the public.

Requirement 3 of 4:

A showing that the three-year average of the fourth highest values, based on data from all monitoring sites in the area or its affected downwind environs, are below 85 parts per billion (ppb). This showing must rely on three (3) complete, consecutive calendar years of quality assured data.

Background:

The following information is taken from U.S. EPA's "Guideline on Data Handling Conventions for the eight-hour Ozone National Ambient Air Quality Standard (NAAQS)," U.S. EPA-454/R-98-017, December 1998.

Three (3) complete years of ozone monitoring data are required to demonstrate attainment at a monitoring site. The eight-hour primary and secondary ozone ambient air quality standards are met at an ambient air quality monitoring site when the three-year average of the annual fourthhighest daily maximum eight-hour average ozone concentration is less than or equal to 0.08 ppm. When this occurs, the site is said to be in attainment. Three (3) significant digits must be carried in the computations. Because the third decimal digit, in ppm, is rounded, 0.084 ppm is the largest concentration that is less than or equal to 0.08 ppm. Therefore, for the purposes of this request, the eight-hour standard is considered to be 0.085 ppm. Values below 0.085 ppm meet the standard, values equal to or greater than 0.085 ppm exceed the standard. These data handling procedures are applied on an individual basis at each monitor in the area. An area is in compliance with the eight-hour ozone NAAQS if, and only if, every monitoring site in the area meets the NAAQS. An individual site's three (3) year average of the annual fourth highest daily maximum eight-hour average ozone concentration is also called the site's design value. Table 1 shows the monitoring data for 2004 -2006 at the nonattainment area sites and was retrieved from the U.S. EPA AQS. The air quality design value for the area is the highest design value among all sites in the area. Please note that the standard is measured in ppm while the commonly used unit is ppb. For the remainder of this document, ppb will be used.

Demonstration:

Table 1 Monitoring Data for Youngstown-Warren-Sharon, PA-OH 2004 - 2006

	nttp://www.epa.gov/ttn/airs/airsaqs/index.ntm								
	Please note: 2006 data is not yet certified.								
					1 st	2 nd	3 rd	4 th	2004-2006
SITE ID	COUNTY	ADDRESS	YEAR	%OBS	8-HR	8-HR	8-HR	8-HR	AVERAGE
39-099-0013	Mahoning	Oakhill	2004	100	86	79	74	74	
39-099-0013	Mahoning	Oakhill	2005	100	95	89	84	83	
39-099-0013	Mahoning	Oakhill	2006	57	81	80	76	76	77
39-155-0009	Trumbull	Kinsman-Bloomfield	2004	100	82	80	78	78	
39-155-0009	Trumbull	Kinsman-Bloomfield	2005	100	88	85	84	83	
39-155-0009	Trumbull	Kinsman-Bloomfield	2006	57	89	86	75	74	78
39-155-0011	Trumbull	Youngstown-Kingsville	2004	100	89	86	80	80	
39-155-0011	Trumbull	Youngstown-Kingsville	2005	100	95	88	87	87	Ī
39-155-0011	Trumbull	Youngstown-Kingsville	2006	57	83	82	82	78	79
42-085-0100	Mercer	New Castle Rd	2004	100	86	82	76	76	
42-085-0100	Mercer	New Castle Rd	2005	96	96	90	90	87	
42-085-0100	Mercer	New Castle Rd	2006	70	93	86	86	79	79
Highest Average						79 ppb			

Data source: U.S. EPA Air Quality System (AQS) http://www.ena.gov/ttp/airs/airsags/index.htm

A comprehensive list of the site's design values during the 2004-2006 time period is in Appendix A. The area's design value has trended downward as emissions have declined due to such factors as cleaner automobiles and fuels both regionally and locally. U.S. EPA's rule to control nitrogen oxides from specific source categories (40 CFR Parts 51, 72, 75 and 96, published on October 17, 1998 and referred to as the NO_x SIP Call) has significantly reduced emissions from large electric generating units (EGUs), industrial boilers, and cement kilns. Ohio's NO_x Budget Trading Program Rule was approved on May 25, 2004 Ohio Administrative Code (OAC) Chapter 3745-It is expected that this downward trend will continue as the above 14. programs continue and some form of the U.S. EPA Clean Air Interstate Rule (CAIR) is implemented.

Requirement 4 of 4:

A commitment that once redesignated, the state will continue to operate an appropriate monitoring network to verify the maintenance of the attainment status.

Demonstration:

Ohio EPA and PA DEP commit to continue monitoring ozone levels at the sites indicated in Figure 1. Ohio EPA and PA DEP will consult with U.S. EPA Region 5 and Region 3 prior to making changes to the existing monitoring network, should changes become necessary in the future. Ohio EPA and PA DEP will continue to quality assure the monitoring data to meet the requirements of 40 CFR 58 and all other federal requirements. Connection to a central station and updates to the Ohio EPA Web site¹ will provide real time availability of the data and knowledge of any exceedances. Ohio EPA and PA DEP will enter all data into AQS on a timely basis in accordance with federal guidelines.

CHAPTER FOUR

¹ <u>www.epa.state.oh.us/dapc/</u>

EMISSION INVENTORY

CAA Section107 (d)(3)(E)(iii)

U.S. EPA's redesignation guidance requires the submittal of a comprehensive inventory of ozone precursor emissions (VOC and NO_x) representative of the year when the area achieves attainment of the ozone air quality standard. Ohio also must demonstrate that the improvement in air quality between the year that violations occurred and the year that attainment was achieved is based on permanent and enforceable emission reductions. Other emissions inventory related requirements include a projection of the emission inventory to a year at least 10 years following redesignation; a demonstration that the projected level of emissions is sufficient to maintain the ozone standard; and a commitment to provide future updates of the inventory to enable tracking of emission levels during the 10 year maintenance period.

Requirement 1 of 5:

A comprehensive emission inventory of the precursors of ozone completed for the base year.

Background:

The point source data are taken from Ohio's annual emissions reporting program. The 2002 periodic inventory has been identified as the preferred data base for SIP development and does coincide with nonattainment air quality in the Youngstown-Warren-Sharon, PA-OH area.

As part of the NO_x SIP Call, the states were required to adopt into their rules a budget for all large EGUs. Ohio's budget is adopted at OAC Chapter 3745-14. The budget represents a statewide cap on NO_x emissions. These emissions, capped by the state rule, should remain at least this low through the maintenance period covered by this request.

Periodic inventories, which include emissions from all sectors - mobile, area, non-road, and point sources - are prepared every three (3) years.

Demonstration:

While ozone and its precursors are transported into this region from outside areas, this information does provide some indication of the impact from Ohio sources near the nonattainment area. The emissions are decreasing substantially in response to regional and national programs affecting many EGUs such as the Acid Rain program and the NO_x SIP Call. Other sectors of the inventory also impact ozone formation, but large regional sources such as EGUs have a substantial impact on the formation of ozone.

Requirement 2 of 5:

A projection of the emission inventory to a year at least 10 years following redesignation.

Background:

Ohio EPA prepared a comprehensive inventory for Youngstown-Warren-Sharon, PA-OH, including area, mobile, and point sources for precursors of ozone (VOCs and NO_x) for base year 2002. The information below describes the procedures Ohio EPA used to generate the 2002 base inventories. These inventories were provided to Lake Michigan Air Directors Consortium (LADCO) and have been processed to develop summer day emissions for use in the air quality analyses. These processed modeling inventories have been identified as the correct iteration of the inventory for use in the redesignation. In this document, references to LADCO include the Midwest Regional Planning Organization.

- Area sources were taken from the Ohio 2002 periodic inventory submitted to U.S. EPA. These projections were made from the U.S. Department of Commerce Bureau of Economic Analysis (BEA) growth factors, with some updated local information.
- Mobile source emissions were calculated from MOBILE6.2 produced emission factors.
- Point source information was compiled from Ohio EPA's 2002 annual emissions inventory database and the 2002 U.S. EPA Air Markets acid rain database².
- Biogenic emissions are not included in these summaries.
- Non-road emissions were generated using U.S. EPA's National Mobile Inventory Model (NMIM) 2002 application. To address concerns about the accuracy of some of the categories in U.S. EPA's non-road emissions model, LADCO contracted with two (2) companies to review the base data and make recommendations. One of the contractors also estimated emissions for three (3) non-road categories not included in U.S. EPA's non-road model. Emissions were estimated for aircraft, commercial marine vessels and railroads. Recreational motorboat population and spatial surrogates (used to assign emissions to each county) were significantly updated. The populations for the construction equipment category were reviewed and updated based upon surveys completed in the Midwest and the temporal allocation for agricultural sources also was updated.

Demonstration:

² http://www.epa.gov/airmarkets/acidrain

On-Road Emission Estimations

In coordination with the Eastgate Regional Council of Governments (Eastgate), the Ohio Department of Transportation (Ohio DOT) utilizes a regional travel demand forecast model to simulate traffic in the area and to forecast traffic flows for given growth expectations. The model is primarily used as a long range planning tool to evaluate the transportation system including determination of locations where additional travel capacity may be needed and to determine the infrastructure requirements necessary to meet that need. It is also used as a tool for air quality purposes to estimate the total emissions of pollution caused by vehicles in the area. The travel demand forecasting model is used to predict the total daily vehicle miles traveled (VMT) and a U.S. EPA computer program called MOBILE6.2 is used to calculate emissions per mile. The product of these is the total amount of pollution emitted by the on-road vehicles for the particular analyzed area. In areas outside the regional travel demand model, traffic counts and statewide traffic growth rates are used for the VMT estimates.

Overview

Broadly described, MOBILE6.2 is used to generate "emission factors", which are the average emissions per mile (grams/mile) for ozone precursors, NO_x and VOC. The MOBILE6.2 model includes a number of variables that affect the emission factors. These variables have national default values, some of which require modification to reasonably reflect local conditions. Some of these variables are discussed here. The vehicle fleet (vehicles on the road) age and the vehicle type have a major effect on the emission factors. The vehicle types are traveling on facility types (MOBILE6.2 facility types are Freeway, Arterial, Local and Ramp) and the vehicle speeds also affect the emission factor values. Meteorological conditions such as air temperature and humidity has a significant affect on emission factors. Emission factors produced by MOBILE6.2 can also include the effect of emission reduction strategies such as vehicle inspection and maintenance programs, regulation of fuels, etc. These MOBILE6.2 inputs are estimated using the best available data.

These inputs are reviewed and agreed to by U.S. EPA and transportation agencies in a formal interagency consultation process. Emission factors are multiplied by VMT from the travel demand model to estimate the total vehicle emissions.

There are a number of ways emission factors from MOBILE6.2 can be used with the travel demand model information. One of the simplest methods is to input extensive vehicle fleet, area-specific speed and facility type information MOBILE6.2 to generate a single emission factor that represents the average for all vehicles and facility types in the modeled area. This only requires

multiplying this emission factor by the total VMT of the analyzed area to get the total emissions for the area. Another method is to create multidimensional emission factor "look-up" tables that describe the emission factors by speed, temperature, and facility type. This requires more extensive processing, but the resulting total emissions of this method are more sensitive to even minor changes in the roadway system. Tables of emission factors are created using MOBILE6.2 for each facility type, temperature, and speed given the vehicle fleet on that facility. Then, the travel model provides information on each segment of road (or "link") regarding speed and facility type which is then "looked-up" in the appropriate emission factor table. It should be noted that speed is estimated as a post process to the travel demand model. Speeds are not taken directly from the travel demand model. The post process for emissions analysis by Ohio DOT is by hour of day. This emission factor is multiplied by the link's trafficvolume and length or VMT to get the emissions from that link for that hour. There are other methods as well, each with its advantages and disadvantages. The Ohio portion of the Youngstown-Warren-Sharon, PA-OH area analysis uses the latter more complex method, a table of emission factors.

It should be noted that each year analyzed will have different emission factors, volumes, speeds and roadway networks.

Some of the assumptions built into MOBILE6.2 are: older vehicles have much higher emission factors than newer vehicles, diesel vehicles have much higher NO_x emission factors and lower VOC emission factors than gasoline vehicles, and higher average speeds have lower emission factors except for diesel vehicles which have higher NO_x at higher speeds. MOBILE6.2 input and output files are provided in Appendix C.

Best Available Data

Most current vehicle age distribution data, temperature data, and fuel properties data provided by Ohio EPA was used by the Ohio DOT for generating emission factors. Likewise, the most current transportation planning data available from Eastgate and most current Ohio DOT count data was used by the Ohio DOT for the emissions estimates. Details about each data set and how it was used is documented in Ohio DOT's "Eastgate 8-Hour Ozone Redesignation Analysis Technical Memo" dated 10/25/2006.

Analysis Years

Analysis years for this re-designation request include 2002, 2004, 2009, and 2018 to meet the requirements specified by the CAA and U.S. EPA. The travel demand model presents the transportation system conditions for each of these years. Model runs for each future analysis year contain the road network Eastgate and Ohio DOT expects to exist at the beginning of that

year with corresponding socioeconomic forecasts for that year.

Local Road VMT

Most local roads such as subdivision streets are not explicitly modeled in a travel demand model. These local roads are represented as fictitious roadways called centroid connectors. Local road VMT is included in the Ohio DOT post process by including the traffic loaded on centroid connectors. In addition, some local road traffic is captured as intra-zonal trips which travel demand models usually do not assign to roadway segments. Ohio DOT post process includes these trips as local road VMT.

Emission Estimations

Tables 2 through 5 contain the results of the emissions analysis for the appropriate years.

Table 2 - Emission Estimations for On-Road Mobile Sources for Columbiana County

Columbiana County	2002	2004	2009	2018
VMT (miles/day)	2,626,480	2,488,690	2,640,212	2,912,957
VOC (tons/day)	5.71	4.70	3.21	1.82
NOx (tons/day)	8.08	6.62	4.67	2.02

Data source: Ohio DOT Modeling and Forecasting Section.

Table 3 - Emission Estimations for On-Road Mobile Sources for Mahoning County

Data source: Ohio DOT Modeling and Forecasting Section.

Mahoning County	2002	2004	2009	2018
VMT (miles/day)	6,568,396	6,645,020	6,784,173	6,909,858
VOC (tons/day)	14.84	12.58	8.10	4.25
NOx (tons/day)	24.97	21.78	14.51	5.65

Table 4 - Emission Estimations for On-Road Mobile Sources for Trumbull

County

Trumbull County	2002	2004	2009	2018
VMT (miles/day)	5,798,659	5,869,666	6,045,277	6,182,401
VOC (tons/day)	10.53	8.93	5.72	2.94
NOx (tons/day)	17.32	15.10	10.13	3.89

Data source: Ohio DOT Modeling and Forecasting Section.

Table 5 - Emission Estimations for On-Road Mobile Sources for Mercer County, PA

|--|

Mercer County, PA	2002	2004	2009	2018
VMT (miles/day)	4,100,871	4,231,275	4,590,506	5,257,156
VOC (tons/day)	6.95	5.93	4.2	2.7
NOx (tons/day)	17.87	15.83	11.2	5.0

Table 6Combined VOC and NOx Emission Estimations for On-Road
Mobile Sources for Youngstown-Warren-Sharon, PA-OH.

County	VOC	2009	2018
Columbiana County, OH	VOC	3.21	1.82
Mahoning County, OH	VOC	8.10	3.81
Trumbull County, OH	VOC	5.72	3.38
Mercer County, PA	VOC	4.2	2.7
TOTAL VOC		21.23	11.71
County	NOx	2009	2018
Columbiana County, OH	NO _x	4.67	2.02
Mahoning County, OH	NO _x	14.51	5.14
Trumbull County, OH	NO _x	10.13	4.40
Mercer County, PA	NO _x	11.2	5.0
TOTAL NO _x		40.51	16.56

Motor Vehicle Emission Budget

Table 7 contains the motor vehicle emissions budget for Columbiana, Mahoning and Trumbull Counties.

Table 7	Mobile Vehicle Emissions Budget for Columbiana, Mahoning
	and Trumbull Counties, Ohio

Columbiana, Mahoning and Trumbull Counties	2009	2018
VOC (tons/day)	19.58	10.36
NO _x (tons/day)	33.71	13.29

This budget includes the emission estimates calculated for 2009 and 2018 with an additional margin of safety. The emission estimates are derived from the Tranplan travel demand model and MOBILE6.2 as described above under the expected Eastgate 2030 Long Range Plan. The 2009 mobile source budget includes19.58 tons/day for VOC and 33.71 tons/day for NOx and the 2018 mobile source budget includes 10.36 tons/day for VOC and 13.29 tons/day for NO_x. These correspond to a 15 percent increase from the 2009 and 2018 on-road emissions for both VOC and NO_x. Appendix C contains data tables and graphs of these emissions.

All methodologies, latest planning assumptions and the safety margins were determined through the interagency consultation process described in the Transportation Conformity Memorandum of Understanding (MOU) for Eastgate.

The current 1-hour budgets will no longer be applicable either after the effective date of the approved redesignation or after the effective date of any U.S. EPA action approving a finding that the eight-hour conformity budget included in this submittal adequate for transportation conformity purposes whichever date comes first.

Requirement 3 of 5:

A demonstration that the projected level of emissions is sufficient to maintain the ozone standard.

Background:

In consultation with U.S. EPA, Ohio EPA selected the year 2018 as the maintenance year for this redesignation request. This document contains projected emissions inventories for 2009 and 2018.

Ohio DOT performed emission projections for the Ohio portion of the Youngstown-Warren-Sharon, PA-OH area using the following approaches:

- Mobile source emission projections are based on the U.S. EPA MOBILE6.2 model. The analysis is described in more detail in Appendix C. All projections were made in accordance with "Procedures for Preparing Emissions Projections" U.S. EPA-45/4-91-019.
- Emissions inventories are required to be projected to future dates to assess the influence growth and future controls will have. LADCO has developed growth and control files for point, area, and non-road categories. These files were used to develop the future year emissions estimates used in this document. This was done so the inventories used for redesignation are consistent with modeling performed in the future.

The detailed inventory information for Columbiana, Mahoning and Trumbull Counties for 2002, 2004, 2009 and 2018 is in Appendix B. Emission trends are an important gauge for continued compliance with the ozone standard. Therefore, Ohio EPA performed an initial comparison of the inventories for the base year and maintenance years. Mobile source emission inventories are described in Appendix B. In addition to the LADCO estimates, point source emissions were projected based upon the statewide EGU NO_x budgets from the Ohio NO_x rule. Emission Inventories for Mercer County in PA used for this request were developed by the PA DEP staff with the support of the contractors for Visibility Improvement State and Tribal Association of the Southeast (VISTAS) and Mid-Atlantic/Northeast Visibility Union (MANE-VU), federally recognized regional planning organizations.

The following tables include sectors Electrical Generating Unit (EGU-Point), Non-Electrical Generating Unit (Non-EGU), Non-road Mobile (Non-road), Other Area (Other), Marine, Aircraft, Rail (MAR), On-road Mobile (On-road). **Please note that PA EGU-Point and Non-EGU are combined and nonroad sector includes MAR**.

Demonstration:

Table 8Columbiana County VOC Emission Inventory Totals for Base
Year 2002, Estimated 2004 and Projected 2009 and 2018 (tons
per day)

Data source: Midwest Regional Planning Organization (MRPO) and Lake Michigan Air Directors Consortium (LADCO) Web site: <u>http://www.ladco.org/tech/emis/basek/BaseK_Reports.htm</u>.

Sector	2002 Base	2004 Attainment	2009 Interim	2018 Maintenance	Safety Margin
EGU Point	n/a	n/a	n/a	n/a	
Non-EGU	0.02	0.02	0.02	0.03	
Non-road	1.75	1.72	1.65	1.09	
Other	4.42	4.36	4.23	4.35	
MAR	0.11	0.11	0.10	0.10	
On-road	5.71	4.70	3.21	1.82	
TOTAL	12.01	10.91	9.21	7.39	3.52

Data source: **On-road only**, Ohio DOT Modeling and Forecasting Section.

Table 9Mahoning County VOC Emission Inventory Totals for Base
Year 2002, Estimated 2004 and Projected 2009 and 2018 (tons
per day)

- Data source: Midwest Regional Planning Organization (MRPO) and Lake Michigan Air Directors Consortium (LADCO) Web site: <u>http://www.ladco.org/tech/emis/basek/BaseK_Reports.htm</u>.
- Data source: **On-road only**, Ohio DOT Modeling and Forecasting Section.

Sector	2002 Base	2004 Attainment	2009 Interim	2018 Maintenance	Safety Margin
EGU Point	n/a	n/a	n/a	n/a	
Non-EGU	0.16	0.15	0.12	0.14	
Non-road	3.50	3.20	2.44	2.04	
Other	9.46	9.28	8.83	8.96	
MAR	0.08	0.08	0.07	0.07	
On-road	13.54	11.46	7.34	3.81	
TOTAL	26.74	24.17	18.80	15.02	9.15

Table 10Trumbull County VOC Emission Inventory Totals for Base
Year 2002, Estimated 2004 and Projected 2009 and 2018 (tons
per day)

Data source: Midwest Regional Planning Organization (MRPO) and Lake Michigan Air Directors Consortium (LADCO) Web site: <u>http://www.ladco.org/tech/emis/basek/BaseK_Reports.htm</u>.

Sector	2002	2004	2009	2018	Safety
	Base	Attainment	Interim	Maintenance	Margin
EGU Point	0.09	0.07	0.04	0.07	
Non-EGU	5.61	5.78	6.21	7.51	
Non-road	3.39	3.03	2.15	1.77	
Other	10.72	10.46	9.80	9.72	
MAR	0.13	0.13	0.12	0.12	
On-road	11.82	10.05	6.48	3.38	
TOTAL	31.76	29.52	24.80	22.57	6.95

Data source: **On-road only,** Ohio DOT Modeling and Forecasting Section.

Table 11Mercer County VOC Emission Inventory Totals for Base
Year 2002, Estimated 2004 and Projected 2009 and 2018 (tons
per summer day)

Data source: PA DEP Division of Air Resources Management.

Data source: Mid-Atlantic Regional Air Management Association (MARMA).

Sector	2002	2004	2009	2018	Safety
	Base	Attainment	Interim	Maintenance	Margin
EGU Point *includes non-EGU	2.40	1.73	2.73	3.66	
Non-road *includes MAR	3.75	3.78	3.41	2.59	
Other	7.70	7.61	7.36	7.83	
On-road	6.95	5.93	4.23	2.63	
TOTAL	20.80	19.05	17.73	16.71	2.34

Data source: PA emission inventory, Mid-Atlantic/Northeast Visibility Union (MANE-VU) <u>http://www.manevu.org/</u>.

Table 12Youngstown-Warren-Sharon, PA-OH VOC Emission Inventory
Totals for Base Year 2002, Estimated 2004 and Projected 2009
and 2018 (tons per day)

	2002 Base	2004 Attainment	2009 Interim	2018 Maintenance	Safety Margin
Columbiana, Mahoning, Trumbull Co. OH Total	70.51	64.60	52.81	44.98	
Mercer Co. PA Total	20.80	19.05	17.73	16.71	
COMBINED <u>VOC</u> TOTAL	91.31	83.65	70.54	61.69	21.96

Table 13Columbiana County NOxEmission Inventory Totals for Base
Year 2002, Estimated 2004 and Projected 2009 and 2018
(tons per day)

Data source: Midwest Regional Planning Organization (MRPO) and Lake Michigan Air Directors Consortium (LADCO) Web site: <u>http://www.ladco.org/tech/emis/basek/BaseK_Reports.htm</u>.

Data source:	On-road only, Ohio DOT Modeling and Forecastin	g Section.
--------------	--	------------

Sector	2002 Base	2004 Attainment	2009 Interim	2018 Maintenance	Safety Margin
EGU Point	n/a	n/a	n/a	n/a	
Non-EGU	0.47	0.48	0.52	0.65	
Non-road	1.81	1.68	1.36	0.75	
Other	0.58	0.60	0.67	0.72	
MAR	2.54	2.28	1.63	1.53	
On-road	8.08	6.62	4.67	2.02	
TOTAL	13.48	11.66	8.85	5.67	5.99

Table 14Mahoning County NOxEmission Inventory Totals for Base
Year 2002, Estimated 2004 and Projected 2009 and 2018
(tons per day)

Data source: **On-road only,** Ohio DOT Modeling and Forecasting Section.

Sector	2002 Base	2004 Attainment	2009 Interim	2018 Maintenance	Safety Margin
EGU Point	n/a	n/a	n/a	n/a	
Non-EGU	1.43	1.40	1.32	1.38	
Non-road	3.72	3.48	2.88	1.56	
Other	1.12	1.18	1.32	1.41	
MAR	1.85	1.65	1.16	1.08	
On-road	23.00	20.05	13.31	5.14	
TOTAL	31.12	27.76	19.99	10.57	17.09

Table 15Trumbull County NOx Emission Inventory Totals for Base
Year 2002, Estimated 2004 and Projected 2009 and 2018
(tons per day)

- Data source: Midwest Regional Planning Organization (MRPO) and Lake Michigan Air Directors Consortium (LADCO) Web site: <u>http://www.ladco.org/tech/emis/basek/BaseK_Reports.htm</u>.
- Data source: **On-road only**, Ohio DOT Modeling and Forecasting Section.

Sector	2002	2004	2009	2018	Safety
	Base	Attainment	Interim	Maintenance	Margin
EGU Point	19.54	15.00	3.66	7.75	
Non-EGU	3.59	3.37	2.82	2.91	
Non-road	5.55	5.10	3.99	1.90	
Other	0.67	0.71	0.80	0.83	
MAR	2.29	2.07	1.51	1.40	
On-road	19.29	16.83	11.34	4.40	
TOTAL	50.93	43.08	24.12	19.19	23.89

Data source: Midwest Regional Planning Organization (MRPO) and Lake Michigan Air Directors Consortium (LADCO) Web site: <u>http://www.ladco.org/tech/emis/basek/BaseK_Reports.htm</u>.

Table 16 Mercer County NO_x Emission Inventory Totals for Base Year 2002, Estimated 2004 and Projected 2009 and 2018 (tons per summer day)

Data source: PA DEP Division of Air Resources Management. PA emission inventory, Mid-Atlantic/Northeast Visibility Union (MANE-VU) Data source: http://www.manevu.org/.

Data source: Mid-Atlantic Regional Air Management Association (MARMA)

Sector	2002	2004	2009	2018	Safety
	Base	Attainment	Interim	Maintenance	Margin
EGU Point *includes non-EGU	3.82	2.93	4.30	5.52	
Non-road *includes MAR	2.92	2.82	2.35	1.44	
Other	0.83	0.85	0.88	0.89	
On-road	17.87	15.83	11.22	4.89	
TOTAL	25.44	22.43	18.75	12.74	9.69

Youngstown-Warren-Sharon, PA-OH NO_x Emission Table 17 Inventory Totals for Base Year 2002, Estimated 2004 and Projected 2009 and 2018 (tons per day)

	2002 Base	2004 Attainment	2009 Interim	2018 Maintenance	Safety Margin
Columbiana, Mahoning, Trumbull Co. OH Total	95.53	82.50	52.96	35.43	
Mercer Co. PA Total	25.44	22.43	18.75	12.74	
COMBINED NO _x TOTAL	120.97	104.93	71.71	48.17	56.76

Table 18Columbiana County Comparison of 2004 attainment year and
2018 projected emission estimates (tons per day, summer)

Data source: Midwest Regional Planning Organization (MRPO) and Lake Michigan Air Directors Consortium (LADCO) Web site: <u>http://www.ladco.org/tech/emis/basek/BaseK_Reports.htm</u>.

Data source: **On-road only,** Ohio DOT Modeling and Forecasting Section.

	2004	2018	Projected Decrease
VOC	10.91	7.39	3.52
NOx	11.66	5.67	5.99

Table 19Mahoning County Comparison of 2004 attainment year and
2018 projected emission estimates (tons per day, summer)

 Data source:
 Midwest Regional Planning Organization (MRPO) and Lake Michigan Air

 Directors Consortium (LADCO) Web site:
 <a href="http://www.ladco.org/tech/emis/basek/Bas

	2004	2018	Projected Decrease
VOC	24.17	15.02	9.15
NOx	27.76	10.57	17.19

Table 20Trumbull County Comparison of 2004 attainment year and
2018 projected emission estimates (tons per day, summer)

- Data source: Midwest Regional Planning Organization (MRPO) and Lake Michigan Air Directors Consortium (LADCO) Web site: <u>http://www.ladco.org/tech/emis/basek/BaseK_Reports.htm</u>.
- Data source: **On-road only,** Ohio DOT Modeling and Forecasting Section.

	2004	2018	Projected Decrease
VOC	29.52	22.57	6.95
NOx	43.08	19.19	23.89

Table 21 Mercer County Comparison of 2004 attainment year and 2018 projected emission estimates (tons per day, summer)

Data source:	PA DEP Division of Air Resources Management.
Data source:	PA emission inventory, Mid-Atlantic/Northeast Visibility Union (MANE-VU)
	http://www.manevu.org/
Data source:	Mid-Atlantic Regional Air Management Association (MARMA)

Mid-Atlantic Regional Air Management Association (MARMA)

	2004	2018	Projected Decrease
VOC	19.05	16.71	2.34
NOx	22.43	12.74	9.69

Table 22 Youngstown-Warren-Sharon, PA-OH Combined Comparison of 2004 attainment year and 2018 projected emission estimates (tons per day, summer)

	2004	2018	Projected Decrease
Combined VOC Total	83.65	61.69	21.96
Combined NOx Total	104.93	48.17	56.76

VOC emissions in the non-attainment area are projected to decrease by 21.96 tons. Area source emissions and, to a lesser extent, point sources, show an increase due to expectations that the population will grow in this area. However, cleaner vehicles and fuels are expected to be in place in 2009 and 2018 and result in an overall drop in VOC emissions.

NO_x emissions in the nonattainment area are projected to decrease by 56.76 Decreases from U.S. EPA rules covering Tier 2 Motor Vehicle tons. Emissions Standards and Gasoline Sulfur Control Requirements³, Highway Heavy-Duty Engine Rule⁴ and Non-Road Diesel Engine Rule⁵ also are factored into the changes. Further, due to implementation of the NO_x SIP Call across the eastern United States, NO_x and ozone levels entering this area also will be decreased.

³ http://www.epa.gov/fedrgstr/EPA-AIR/2000/February/Day-10/a19a.htm

⁴ http://www.epa.gov/fedrgstr/EPA-AIR/1997/October/Day-21/a27494.htm

⁵ http://www.epa.gov/fedrgstr/EPA-AIR/1998/October/Day-23/a24836.htm

Requirement 4 of 5:

A demonstration that improvement in air quality between the year violations occurred and attainment was achieved is based on permanent and enforceable emission reductions and not on temporary adverse economic conditions or unusually favorable meteorology.

Background:

Ambient air quality data from all monitoring sites indicate that air quality met the NAAQS for ozone in 2004. U.S. EPA's redesignation guidance (p 9) states, "A state may generally demonstrate maintenance of the NAAQS by either showing that future emissions of a pollutant or its precursors will not exceed the level of the attainment inventory, or by modeling to show that the future mix of sources and emissions rates will not cause a violation of the NAAQS."

In Ohio, major point sources in all counties are required to submit air emissions information once every three (3) years or annually if VOC potential to emit is greater than 250 tons or NO_x potential to emit is greater than 2500 tons, in accordance with U.S. EPA's Consolidated Emissions Reporting Rule (CERR). Ohio EPA prepares a new periodic inventory for all ozone precursor emission sectors every three (3) years. These ozone precursor inventories will be prepared for 2005, 2008, and 2011 as necessary to comply with the inventory reporting requirements established in the CFR. Emissions information will be compared to the 2002 base year and the 2018 projected maintenance year inventories to assess emission trends, as necessary, to assure continued compliance with the ozone standard.

Demonstration:

Permanent and enforceable reductions of volatile organic compounds and oxides of nitrogen have contributed to the attainment of the eight-hour ozone standard. Some of these reductions were due to the application of tighter federal standards on new vehicles. Also, Title IV of the CAA and the NO_x SIP Call required the reduction of oxides of nitrogen from utility sources.

Table 23Youngstown-Warren-Sharon, PA-OH Combined Comparison of
2002 base year and 2004 attainment year on-road and EGU
reductions

	2002	2004
On-road VOC	38.03	32.14
On-road NO _x	68.24	59.33
EGU NO _x	23.36	17.93

Requirement 5 of 5:

Provisions for future annual updates of the inventory to enable tracking of the emission levels including an annual emission statement from major sources.

Demonstration:

As required by Section 175A(b) of the CAA, Ohio commits to submit to the Administrator, eight (8) years after redesignation, an additional revision of this SIP. The revision will contain Ohio's plan for maintaining the national primary ozone air quality standard for 10 years beyond the first 10 year period after redesignation.

CHAPTER FIVE

CONTROL MEASURES AND REGULATIONS

CAA Section107 d)(3)(E)(ii), 107(d)(3)(iv) & 107(d)(3)(E)(v)

Requirement 1 of 4:

A U.S. EPA approved SIP control strategy that includes Reasonably Available Control Technology (RACT) requirements for existing stationary sources covered by Control Technology Guidelines (CTG) as applied in Ohio's rural counties.

Background:

As required by Section 172 of the 1990 CAA Amendments, in the mid-1990's Ohio promulgated rule requiring RACT for emissions of VOCs. There were no specific rules required by the CAA such as RACT for existing sources beyond statewide rules.

Demonstration:

Statewide RACT rules have been applied to all new sources locating in Ohio since that time. The Ohio rules are found in OAC Chapter 3745-21.

Requirement 2 of 4:

Evidence that control measures required in past ozone SIP revisions have been fully implemented.

Background:

The U.S. EPA NO_x SIP Call required 22 states to pass rules that would result in significant emission reductions from large EGUs, industrial boilers, and cement kilns in the eastern United States. Ohio passed this rule in 2001. Beginning in 2004, this rule accounts for a reduction of approximately 31 percent of all NO_x emissions state-wide compared to previous uncontrolled years. The other 21 states also have adopted these rules.

Demonstration:

U.S. EPA and Ohio EPA performed modeling that indicated this area would attain the eight-hour ozone standard with the implementation of the NO_x SIP Call. Controls for EGUs formally commenced May 31, 2004. Emissions covered by this program have been generally trending downward since 1998 with larger reductions occurring in 2002 and 2003. Data taken from U.S. EPA Clean Air Markets Web site, quantifies the gradual NO_x reductions that have occurred in Ohio as a result of Title IV of the 1990 CAA Amendments and the beginning of the NO_x SIP Call Rule. Ohio developed the NO_x Budget Trading Program rules in OAC Chapter 3745-14 in response to the SIP Call. OAC chapter 3745-14 regulated EGUs and certain non-EGUs under a cap and trade program based on an 85 percent reduction of NOx emissions from

EGUs and a 60 percent reduction of NO_x emissions from non-EGUs, compared to historical levels. This cap will stay in place through 2008, at which time the CAIR program will supersede it.

U.S. EPA has recently published Phase II of the NO_x SIP Call that establishes a budget for large (greater than 1 ton per day emissions) stationary internal combustion engines. Ohio EPA's proposed rule OAC 3745-14-12 addresses stationary internal combustion engines, all used in natural gas pipeline transmissions. An 82 percent NO_x reduction from 1995 levels is anticipated. Completion of the compliance plan is expected by May 1, 2006 and the compliance demonstration will begin May 1, 2007. The 2007 controlled NO_x emissions will be 599 tons per day.

Tier II Emission Standards for Vehicles and Gasoline Sulfur Standards

In February 2000, U.S. EPA finalized a federal rule to significantly reduce emissions from cars and light trucks, including sport utility vehicles (SUVs). Under this proposal, automakers will be required to sell cleaner cars, and refineries will be required to make cleaner, lower sulfur gasoline. This rule will apply nationwide. The federal rules will phase in between 2004 and 2009. U.S. EPA has estimated that NO_x emission reductions will be approximately 77 percent for passenger cars, 86 percent for smaller SUVs, light trucks, and minivans, and 65 to 95 percent reductions for larger SUVs, vans, and heavier trucks. VOC emission reductions will be approximately 12 percent for passenger cars, 18 percent for smaller SUVs, light trucks, and minivans, and 15 percent for larger SUVs, vans, and heavier trucks.

Heavy-Duty Diesel Engines

In July 2000, U.S. EPA issued a final rule for Highway Heavy Duty Engines, a program which includes low-sulfur diesel fuel standards, which will be phased in from 2004 through 2007. This rule applies to heavy-duty gasoline and diesel trucks and buses. This rule will result in a 40 percent reduction in NO_x from diesel trucks and buses, a large sector of the mobile sources NO_x inventory.

Clean Air Non-road Diesel Rule

In May 2004, U.S. EPA issued the Clean Air Non-road Diesel Rule. This rule applies to diesel engines used in industries such as construction, agriculture, and mining. It also contains a cleaner fuel standard similar to the highway diesel program. The new standards will cut emissions from non-road diesel engines by more than 90 percent. Non-road diesel equipment, as described in this rule, currently accounts for 47 percent of diesel particulate matter (PM) and 25 percent of NO_x from mobile sources nationwide. Sulfur levels will be reduced in non-road diesel fuel by 99 percent from current levels, from approximately 3,000 parts per million (ppm) now to 15 ppm in 2009. New engine standards take effect, based on engine horsepower, starting in 2008.

Together, these rules will substantially reduce local and regional sources of ozone precursors.

Requirement 3 of 4:

Acceptable provisions to provide for new source review.

Background:

Ohio has a long standing and fully implemented New Source Review (NSR) program. This is addressed in OAC Chapter 3745-31. The chapter includes provisions for the Prevention of Significant Deterioration (PSD) permitting program in OAC 3745-31-01 to 3745-31-20. Ohio's PSD program was conditionally approved on October 10, 2001 (66 FR 51570) and received final approval on January 22, 2003 (68FR 2909) by U.S. EPA as part of the SIP.

Demonstration:

Any facility that is not listed in the 2002 emission inventory, or for the closing of which credit was taken in demonstrating attainment, will not be allowed to construct, reopen, modify, or reconstruct without meeting all applicable permit rule requirement. The review process will be identical to that used for new sources. Once the area is redesignated, Ohio EPA will implement NSR through the PSD program.

Requirement 4 of 4:

Assure that existing controls will remain in effect after redesignation unless the State demonstrates through photochemical modeling that the standard can be maintained without one (1) or more controls.

Demonstration:

Ohio commits to maintaining the aforementioned control measures after redesignation. Ohio hereby commits that any changes to its rules or emission limits applicable to VOC and/or NO_x sources, as required for maintenance of the ozone standard in Youngstown-Warren-Sharon, PA-OH, will be submitted to U.S. EPA for approval as a SIP revision.

Ohio, through Ohio EPA's Legal section, has the legal authority and necessary resources to actively enforce any violations of its rules or permit provisions. After redesignation, it intends to continue enforcing all rules that relate to the emission of ozone precursors in the Ohio portion of the Youngstown-Warren-Sharon, PA-OH area.

LADCO Modeling Analysis for 8-Hour Ozone Standard Assessment

LADCO performed modeling to evaluate the effect of the NO_x SIP Call and Tier II / Low Sulfur rule for future year 2007 ozone in the Lake Michigan area. This modeling was originally designed to assess the one-hour ozone standard. Further

analysis was conducted and documented in the LADCO's White Paper "8-Hour Ozone Assessment" dated May 2, 2001. Base year design values used were the average of the design values for the three (3) three-year periods (1994-1996, 1995-1997, and 1996-1998). Base year emissions were taken from 1996 and four (4) ozone episodes were evaluated: June 22-28, 1991; July 14-21, 1991; June 13-25, 1995; and July 7-18, 1995.

While modeling results were not calculated for Columbiana, Mahoning and Trumbull counties, the average decrease in ozone from the base case modeling run with modeling runs that applied emission controls required by the CAA, NO_x SIP Call and Tier II /low-sulfur requirements was nine (9) ppb.

LADCO Modeling for CAIR of 2004

On March 10, 2004, the U.S. EPA promulgated the CAIR. NO_x emissions will be cut from 4.5 million tons in 2004, to a cap of 1.5 million tons by 2009, and 1.3 million tons in 2018 in 28 eastern states and the District of Columbia.

LADCO performed modeling to support the associated emission reductions for CAIR. This modeling was based on 2001 – 2002 design values for the Ohio portion of the Youngstown-Warren-Sharon, PA-OH area. Results of the CAIR modeling show that Columbiana, Mahoning and Trumbull counties will continue to attain the eight-hour ozone NAAQS well into the future.

CHAPTER SIX

CONTINGENCY MEASURES

CAA Section 107(d)(3)(E)(v)

Requirement 1 of 4:

A commitment to submit a revised plan eight (8) years after redesignation.

Demonstration:

Ohio hereby commits to review its maintenance plan eight (8) years after redesignation, as required by Section 175(A) of the CAA.

Requirement 2 of 4:

A commitment to expeditiously enact and implement additional contingency control measures in response to exceeding specified predetermined levels (triggers) or in the event that future violations of the ambient standards occur.

Demonstration:

Ohio hereby commits to adopt and expeditiously implement necessary corrective actions in the following circumstances:

Warning Level Response:

A warning level response shall be prompted whenever an annual (1-year) fourth high monitored value of 88 ppb occurs in a single ozone season within the maintenance area. A warning level response will consist of a study to determine whether the ozone value indicates a trend toward higher ozone values or whether emissions appear to be increasing. The study will evaluate whether the trend, if any, is likely to continue and, if so, the control measures necessary to reverse the trend taking into consideration ease and timing for implementation as well as economic and social considerations. Implementation of necessary controls in response to a warning level response trigger will take place as expeditiously as possible, but in no event later than 12 months from the conclusion of the most recent ozone season (September 30).

Should it be determined through the warning level study that action is necessary to reverse the noted trend, the procedures for control selection and implementation outlined under action level response shall be followed.

Action Level Response

An action level response shall be prompted whenever a two (2) year average fourth high monitored value of 85 ppb occurs within the maintenance area. In the event that the action level is triggered and is not due to an exceptional event, malfunction, or noncompliance with a permit condition or rule requirement, Ohio EPA will determine additional control measures needed to assure future attainment of NAAQS for ozone. In this case, measures that can be implemented in a short time will be selected in order to be in place within eighteen (18) months from the close of the ozone season that prompted the action level.

Control Measure Selection and Implementation

Adoption of any additional control measures is subject to the necessary administrative and legal process. This process will include publication of notices, an opportunity for public hearing, and other measures required by Ohio law for rulemaking by state environmental boards.

If a new measure/control is already promulgated and scheduled to be implemented at the federal or state level, and that measure/control is determined to be sufficient to address the upward trend in air quality, additional local measures may be unnecessary. Furthermore, Ohio will submit to U.S. EPA an analysis to demonstrate the proposed measures are adequate to return the area to attainment.

Requirement 3 of 4:

A list of potential contingency measures that would be implemented in such an event.

Demonstration:

In the event that a violation of the ozone NAAQS is measured such that nonattainment is indicated at any ozone monitor in the Youngstown-Warren-Sharon, PA-OH nonattainment area operated in accordance with 40 CFR Parts 53 and 58, Ohio EPA and PA DEP will accordingly select and adopt one or more measures from the list provided below to assure continued attainment. The selection of measures will be based on cost-effectiveness, emission reduction potential, economic and social considerations or other factors that Ohio EPA and PA DEP deems appropriate. Ohio EPA in conjunction with PA DEP will solicit input from all interested and affected persons in the maintenance area prior to selecting appropriate contingency measures. Because it is not possible at this time to determine what control measure will be appropriate at an unspecified time in the future, the list of contingency measures outlined below is not comprehensive.

- 1) Lower Reid vapor pressure gasoline program.
- 2) Tighten RACT on existing sources covered by U.S. EPA Control Technique Guidelines issued in response to the 1990 CAA.
- 3) Apply RACT to smaller existing sources.

- 4) One or more transportation control measures sufficient to achieve at least half a percent reduction in actual area wide VOC emissions. Transportation measures will be selected from the following, based upon the factors listed above after consultation with affected local governments:
 - a) trip reduction programs, including, but not limited to, employerbased transportation management plans, area wide rideshare programs, work schedule changes, and telecommuting:
 - b) traffic flow and transit improvements:
 - c) other new or innovative transportation measures not yet in widespread use that affects state and local governments deemed appropriate.
- 5) Alternative fuel and diesel retrofit programs for fleet vehicle operations.
- 6) Controls on consumer products consistent with those adopted elsewhere in the United States.
- Require VOC or NO_x emission offsets for new and modified major sources.
- 8) Require VOC or NO_x emission offsets for new and modified minor sources.
- 9) Increase the ratio of emission offsets required for new sources.
- 10) Require VOC or NO_x controls on new minor sources (less than 100 tons).

One or more of these regulatory revisions would be selected within three (3) months after verification of a monitored violation within forty-five (45) days of occurrence. For each regulatory revision selected, a draft rule will be developed by Ohio EPA and PA DEP within six (6) months of selection. Ohio EPA and PA DEP will file the draft rule as an emergency rule and will become effective within forty-two (42) days after filing and fully implemented within six (6) months after adoption. Rule(s) will be filed as a legislative rule(s) for permanent authorization by the Legislature during the following legislative session. Therefore, less than eighteen (18) months should elapse from the time a violation occurs until an appropriate control measure is fully implemented.

No contingency measure shall be implemented without providing the opportunity for full public participation during which the relative costs and benefits of individual measures, at the time they are under consideration, can be fully evaluated.

Requirement 4 of 4:

A list of VOC and NO_x sources potentially subject to future controls.

Demonstration:

The following is a list of VOC and NO_x sources potentially subject to future controls.

NO_x RACT

- EGUs
- asphalt batching plants
- industrial/commercial and institutional boilers
- process heaters
- internal combustion engines
- combustion turbines
- other sources greater than 100 tons per year

VOC RACT

- consumer products
- architectural and industrial maintenance coatings
- stage I gasoline dispensing facilities (including pressure valves)
- automobile refinishing shops
- cold cleaner degreasers
- portable fuel containers
- synthetic organic compound manufacturing
- organic compound batch processes
- wood manufacturing
- industrial wastewater
- aerospace industry
- shipbuilding
- bakeries
- plastic parts coating
- volatile organic liquid storage
- industrial solvent cleaning
- offset lithography
- industrial surface coating
- other sources greater than 50 tons per year

CHAPTER SEVEN

PUBLIC PARTICIPATION

Ohio published notification for a public hearing and solicitation for public comment concerning the draft redesignation petition and maintenance plan in the widely distributed county publications on ______, 2006.

The public hearing to receive comments on the redesignation request was held on ______, 2006, at the ______, located at ______, in _____, Ohio. The public comment period will close on ______, 2006. Comments received during the public comment period will be included with the final package. Appendix D will include a copy of the public notice, certifications of publication, and the transcript from the public hearing.

CHAPTER EIGHT

CONCLUSIONS

The Youngstown-Warren-Sharon, PA-OH basic nonattainment area has attained the NAAQS standard and complied with the applicable provisions of the 1990 Amendments to the CAA regarding redesignations of basic ozone nonattainment areas. Documentation to that effect is contained herein. Ohio EPA has prepared a state implementation and maintenance plan that meets the requirement of Section 110 (a)(1) of the 1990 CAA.

Ohio has performed an analysis that shows the air quality improvements are due to permanent and enforceable measures. In addition, significant regional NO_x reductions will ensure continued compliance (maintenance) with the standard and that all CAA requirements necessary for redesignation have been met.

Based on this presentation, the Youngstown-Warren-Sharon, PA-OH ozone basic nonattainment area meets the requirements for redesignation under the CAA and U.S. EPA guidance. Furthermore, because this area is subject to significant transport of pollutants, significant regional NO_x reductions will ensure continued compliance (maintenance) with the standards with an increasing margin of safety.

The State of Ohio hereby requests that the Youngstown-Warren-Sharon, PA-OH ozone basic nonattainment area be redesignated to attainment simultaneously with U.S. EPA approval of the Ohio state implementation and maintenance plan provisions contained herein. In addition, the State of Ohio requests that this maintenance plan satisfy the requirements of CAA Section 175A (b), for subsequent plan revisions required for areas redesignated for the one-hour ozone standard, as was the case with the Youngstown-Warren-Sharon, PA-OH nonattainment area.

This page left intentionally blank