DCNR Climate Change Adaptation Plan

Greg Czarnecki

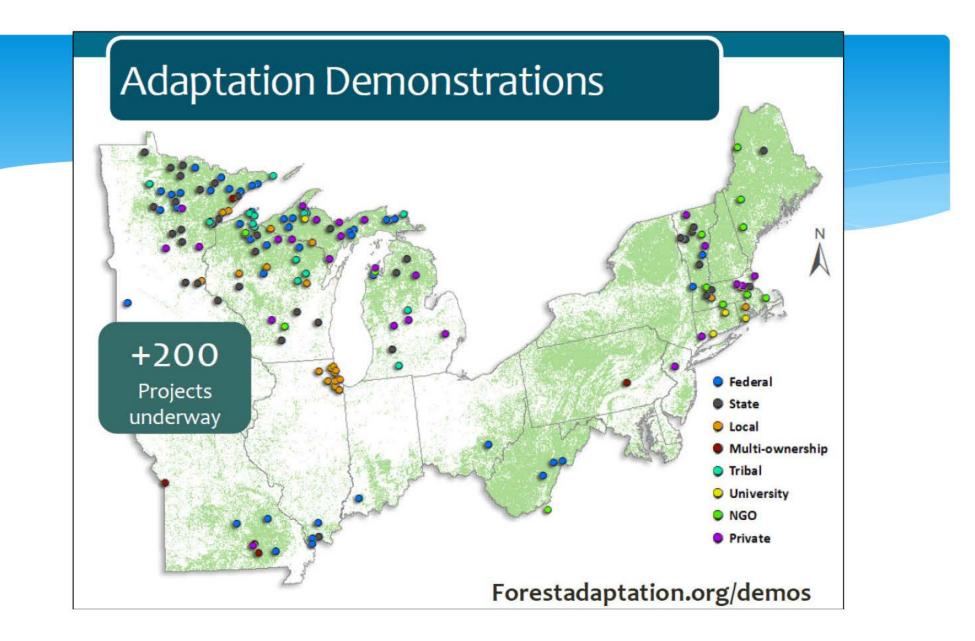
Climate Change & Research Coordinator

www.dcnr.state.pa.us

DCNR's Climate Change Position Statement

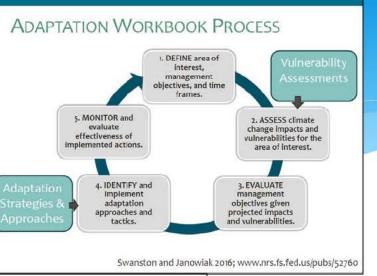
Climate change is real and is impacting the Commonwealth's ecological and recreational resources. As the state's leading conservation agency, DCNR will use the best available science to develop and implement climate change adaptation and mitigation strategies within each of its bureaus to minimize these impacts and serve as a role model for the citizens of Pennsylvania.

NORTHERN INSTITUTE OF APPLIED CLIMATE SCIENCE



Climate

Carbon


Provides **practical** information, resources, and **technical assistance** related to forests and climate change

Climate Adaptation Planning Process

- More than 80 DCNR staff
- Bureaus:
 - Forestry
 - State Parks
 - Facility Design & Construction
 - Recreation & Conservation
 - Topographic & Geologic Survey
- Topical areas:
 - Riparian buffers
 - Emergency management
 - Communication

of Vulnerabilities

- Forestry 16
- Facility Design and Construction 13
- State Parks 9
- Recreation and Conservation 4
- Geologic Survey 3

Vulnerabilities

- Staff training and capacity
- Public outreach and communication
- Resource management and planning
- Changing forest composition
- Habitat connectivity
- Resilience to flooding
- Lake and stream resilience
- Invasive species

- Emergency management
- Human health & safety
- Forest pests
- Rare species
- Drinking and wastewater facilities
- Changing recreational demands and seasons
- Increased wildfire risk

Changing Recreational Demands and Seasons

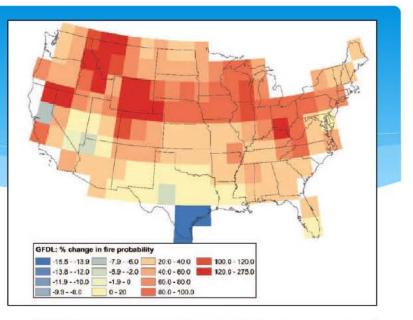
Increased demand for water-based summer recreation

Decreased winter recreation

Fluctuating lake levels

Loss of cold-water fisheries

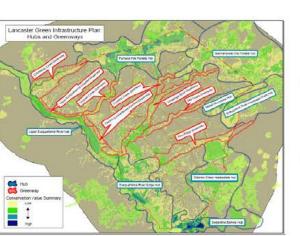
Infrastructure Impacts



Increased Wildfire Risk

- Add more trained firefighters and equipment
- Increase drought monitoring and fire modeling to predict risk
- Use prescribed fire to control fuel loads in wildlandurban interface areas and to make ecosystems more resilient to wildfires.

Forests Pests & Invasives

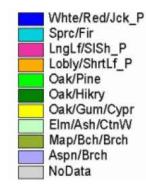

- Incorporate climate change considerations into pest response plans and monitoring.
- Manage for diversity of species and forest types in landscapes impacted by pests and invasives.
- Evaluate whether manipulating density, structure, or species composition improves a forest's ability to resist biological stressors.
- Investigate new methods of invasives control, including biocontrol agents.

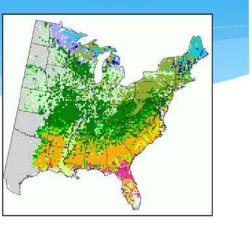
Habitat Connectivity & Landscape-Scale Conservation

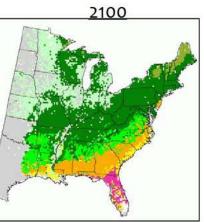
- Conserve key tracts of land that increase connectivity and
- Conserve key tracts of land that increase connectivity and provide migration corridors.
- Prioritize grant funding that addresses climate change impacts on species, natural communities, and connecting parcels that facilitate the movement of species.
- Maintain or create refugia, areas that could potentially resist climatic changes.
- Conserve biological legacies and unique ecological sites.

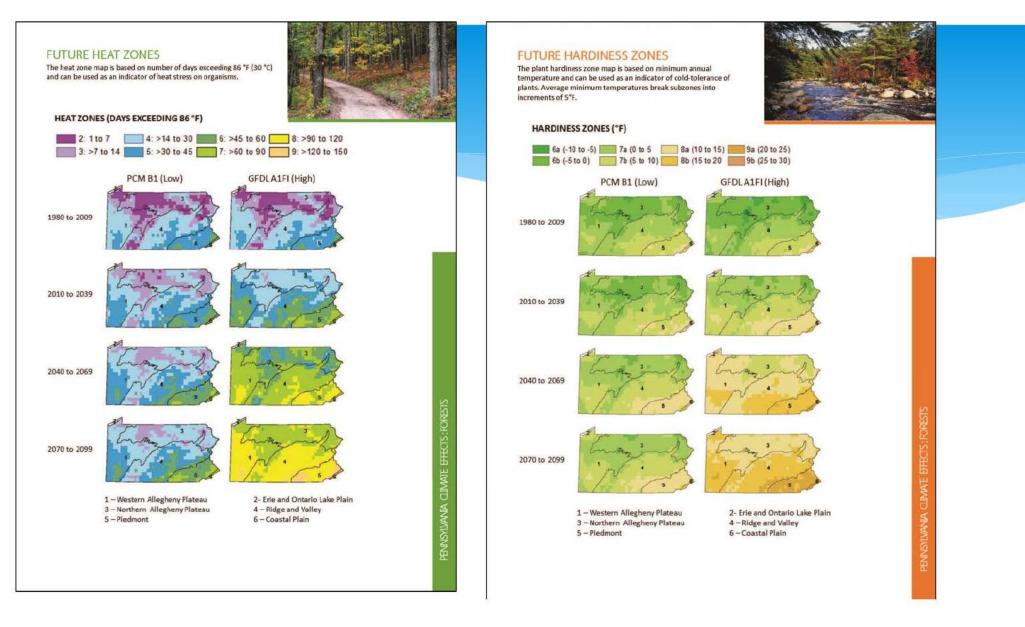
Impacts on Aquatic Habitats

- Ensure culverts, bridges, and stream crossings connect cold-water stream communities.
- Restore hydrologic connectivity between riparian areas and the surrounding landscape.
- Plant species along riparian corridors that are better adapted to future climate conditions.
- Monitor lake and stream temperatures, water levels, and chemistry for climate change impacts.






Changing Forest Composition


Today

- Enhance species and structural diversity.
- Facilitate forest community changes:
 - Favor species adapted to future conditions
 - Manage for species with wide moisture and temperature tolerances
 - Establish new mixes of native species
- Consider assisted migration when needed and only after stringent scientific review.
- Permit the use of seeds and germplasm from across a wider geographic range.

CLIMATE CHANGE PROJECTIONS FOR INDIVIDUAL TREE SPECIES **RIDGE AND VALLEY (PENNSYLVANIA SUBREGION 4)**

Pennsylvania's forests will be affected by a changing climate during this century. A team of forest managers and researchers created an assessment that describes the vulnerability of forests in the Mid-Atlantic region (https://forestadaptation assessment). This handout is summarized from the full assessment, but focuses on one region in Pennsylvania. Model results for additional regions can be found online at (https://forestadaptation.org/PA-DISTRI8)

TREE SPECIES INFORMATION:

The DISTRIB model of the Climate Change Tree Atlas uses inputs of tree abundance, climate, and environmental attributes to simulate current and future species habitat under two climate scenarios. Results for "low" and "high" climate scenarios can be compared on page 2 of this handout.

Remember that models are just tools, and they're not perfect. Output from DISTRIB does not consider many biological or disturbance factors which favor or limit tree establishment, growth, or mortality. For example, the susceptibility of ash species to emerald ash borer is causing widespread mortality and it will likely do even worse than the model suggests. For the 30 most common species, we present such factors not included in the model that may cause species to do better or worse than models suggest.

Despite their limitations, models provide useful information about future expectations. It's important to think of these projections as indicators of potential change in the amount of suitable habitat for a species, but that human choices and other factors will continue to influence tree distribution, movement, and forest composition at individual sites.

CONTACT:

Greg Czarnecki (gczarnecki@pa.gov) Climate Change & Research Coordinator, PA Department of Conservation and Natural Resources.

Patricia Leopold (pleopold@mtu.edu) Mid-Atlantic Climate Change Response Framework Coordinator, NIACS.

SPECIES ADDITIONAL CONSIDERATIONS

SPECIES	ADDITIONAL CONSIDERATIONS
LIKELY TO DECREASE	
American basswood	Tolerates shade, susceptible to fire
American beech	Susceptible to beech diseases, very shade tolerant
American mountain-ash	Requires specific habitat, intolerant of fire and shade
Atlantic white-cedar	Requires specific habitat, intolerant of fire and drought
Balsam poplar	Vegetative resprout following fire
Bigtooth aspen	Early-sucessional colonizer, susceptible to drought
Black ash	Narrow requirements; Emerald ash borer causes mortality
Black spruce	Prone to sawfly and budworm attacks, drought-sensitve
Butternut	Prone to butternut canker, drought-sensitive
Chokecherry	Shade intolerant, sensitive to browsing and competition
Eastern hemlock	Hemlock woolly adelgid causes widespread mortality
MAY DECREASE	
Black cherry	Susceptible to insects and fire, somewhat drought-tolerant
Chestnut oak	Establishes from seed or sprout, adapted to fire
Cucumber tree	Susceptible to fire topkill
NO CHANGE	
Black locust	Early colonizer, but susceptible to locust borer & heart rot
MIXED MODEL RESUL	TS
American chestnut	prone to chestnut blight; intolerant of fire
American hornbeam	Tolerates shade, susceptible to fire and drought
Black willow	Intolerant of shade, fire, and drought
Bur oak	Drought-tolerant, fire-resistant, adaptS to a variety of sites
Eastern cottonwood	Intolerant of shade, fire, defoliators and cankers
MAY INCREASE	
American elm	Grows on a variety of sites, Dutch elm disease
Black oak	Drought tolerant, susceptible to insect pests and diseases
Boxelder	Widespread and tolerant of drought and shade
Chinkapin oak	Tolerates a gradient of temperatures, very adaptable species
Eastern hophornbeam	Grows across a variety of sites, tolerates shade
LIKELY TO INCREASE	
Bear oak: scrub oak	Shade intolerant, susceptible to fire topkill and flood
Bitternut hickory	Drought-tolerant, susceptible to insects and fire topkill
Black walnut	Good disperser, but intolerant of shade and drought
Blackgum	Shade tolerant, fire adapted
Persimmon	Shade tolerant

SOURCE: Prasad, AM: Iverson, LR: Peters, MP: Matthews, SN, 2014, Climate change tree atlas. Northern Research Station, U.S. Forest Service, Delaware,

FUTURE PROJECTIONS

The DISTRIB model uses Forest Inventory and Analysis (FIA) data to calculate an Importance Value (IV) for each species on the landscape in order to evaluate potential IV's at the end of this century (2070 - 2099). Those changes are classified in the table below as: ▼ DECREASE

- INCREASE NO CHANGE Projected increase of >20% by 2100
 - Little change (<20%) projected by 2100

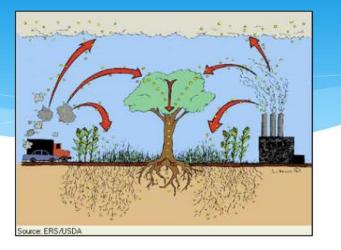
o medium

- Projected decrease of >20% by 2100
- Tree Atlas projects new habitat for species not currently present

NEW HABITAT

ADAPTABILITY

Factors not included in the Tree Atlas model, such as the ability to respond favorably to disturbance, may make a species more or less able to adapt to future stressors. Specific considerations are provided on page 1 for the 30 most abundant species.

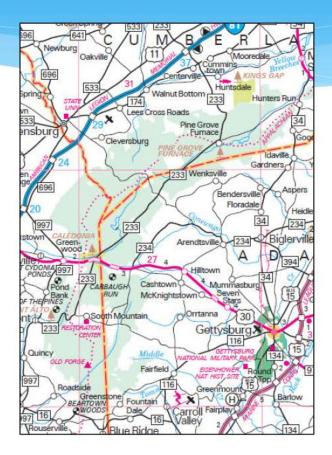

+ high Species may perform better than modeled low Species may perform worse than modeled

SPECIES	FIA IV	MODEL	CLIMATE	HIGH CLIMATE CHANGE (GFDL A1FI)	ADAPT	SPECIES	FIAIV	MODEL	LOW CLIMATE CHANGE (PCM B1)	IGFDL	ADAPT
American basswood	98	M			0	Northern red oak	881	н			+
American beech	286	н			0	Osage-orange	1	M			- (*)
American chestnut	55	M			0	Paper birch	11	н			0
American elm	87	M			0	Pawpaw	5	L		٠	0
American hornbeam	56	M			0	Persimmon	2	M			+
American mountain-ash	1	M			-	Pignut hickory	128	н			0
Atlantic white-cedar	1	L				Pin cherry	43	M			0
Balsam poplar	2	н			0	Pin oak	17	L			
Bear oak; scrub oak	111	L			0	Pitch pine	96	н			0
Bigtooth aspen	123	н			0	Quaking aspen	54	н			0
Bitternut hickory	27	L			+	Red maple	2021	н			
Black ash	1	н			2	Red mulberry	6	L			0
Black cherry	1129	Н				Red pine	40	M			0
Black locust	217	L			0	Red spruce	9	н			
Black maple	1	L				River birch	7	L			0
Black oak	361	н			0	Sassafras	449	н			0
Black spruce	4	н			0	Scarlet oak	187	н			0
Black walnut	90	M			0	Serviceberry	166	M			0
Black willow	4	L			-	Shagbark hickory	45	M			0
Blackgum	352	H			+	Shellbark hickory	1	L			0
Boxelder	79	M			+	Shingle oak	4	M			0
Buroak	2	M			+	Shortleaf pine	2	н			0
Butternut	15	L				Silver maple	27	M			
Chestnut oak	1160	M				Slippery elm	94	M		-	0
Chinkapin oak	2	M			0	Sourwood	0	н	*	-	-
Chokecherry	57	E.			0	Southern red oak	1	н			
Cucumbertree	13	i			0	Striped maple	220	H		-	0
Eastern cottonwood	367	н				Sugar maple	515	н		÷	+
Eastern hemlock	134	M		-	+	Swamp white oak	12	L		*	0
Eastern hophornbeam	26	M			0	Sweet birch	826	н			
Eastern redbud	49	M		-	0	Sweetgum	1	H	-	-	0
Eastern redcedar	274	H	-		0	Sycamore	38	M		-	0
Eastern white pine	203	н	-	+	0	Table mountain pine	7	M	-	-	+
Flowering dogwood	59	M		÷	0	Tamarack (native)	16	H	-	÷	
Gray birch	51	M	-	-	0	Virginia pine	117	н		-	0
aray birch Sreen ash	23	M			+	White ash	844	н	-	-	
Hackberry	23	L		-	+	White oak	502	н	-	-	+
	2	H		1		White spruce	17	M		-	
Honeylocust	114	н	÷	-	0		81	н	+		0
lack pine					*	Yellow birch				÷	0
Mockernut hickory	2	H			*	Yellow-poplar	224	н			+

www.forestadaptation.org

Mitigation Strategies

- Carbon sequestration
 - Forest
 - Geologic
- Energy conservation & sustainable design
 - Sustainable site selection
 - Energy reduction strategies
 - Increase use of solar and geothermal technologies



South Mountain Pilot Project

- Michaux State Forest
- Caledonia State Park
- Pine Grove Furnace State Park
- King's Gap Environmental Education Center

Questions?

