
Climate Change Adaptation in Pennsylvania: Natural Resources

Dr. Erica A.H.Smithwick


Asst. Professor Geography and Ecology Department of Geography Intercollege Graduate Program in Ecology Faculty Associate, Earth and Environmental Systems Institute Laboratory for Landscape Ecology At Penn State (LEAPS) http://www.geog.psu.edu/leaps/ smithwick@psu.edu 814-865-6693

IPCC Emissions Scenarios

Magnitude of Future Climate Change

170-220 Gt CO₂-eq
 between 2012 & 2050

Current rate is 7 Gt/yr
 (~266 Gt net release)

Reduction of 17 to 36% of annual emissions (my math)

NRC Report 2010, Limiting the Magnitude of Future Climate Change

Magnitude of Future Climate Change

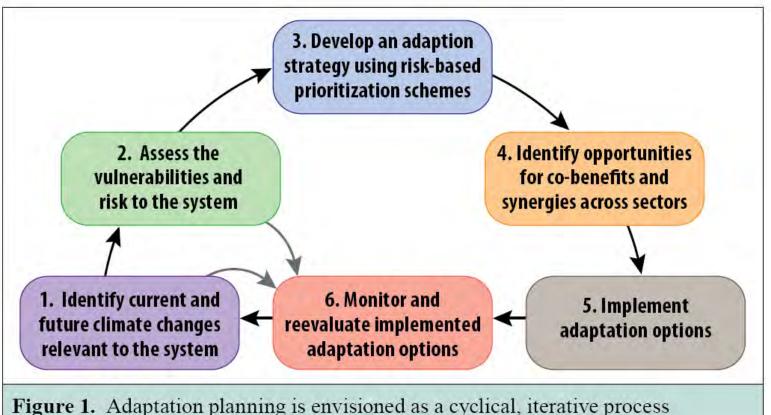
- Only 2 of 14 models were able to produce scenarios that attained the 450 goal (~2°C warming)
 - without immediate, full global participation and only then if an overshoot trajectory to the goal was allowed.
- Otherwise, no models could produce the scenario that met the 450 ppm CO_2 -eq by 2100.
- Warming of ~3°C is more likely (550 ppm) or real warming may be higher (650 ppm)

NRC Report 2010, Limiting the Magnitude of Future Climate Change

* "adjustment in natural or human systems to a new or changing environment that exploits beneficial opportunities or moderates negative effects"

Involves:

- * Projection of potential impacts from science
- * Scale of impacts and response


Includes:

- * Building adaptive capacity
- * Transforming capacity into action

- * <u>Communicating</u> climate change information
- * Building <u>awareness</u> of potential impacts
- * Maintaining well-being
- * Protecting property/land
- * Exploiting new opportunities

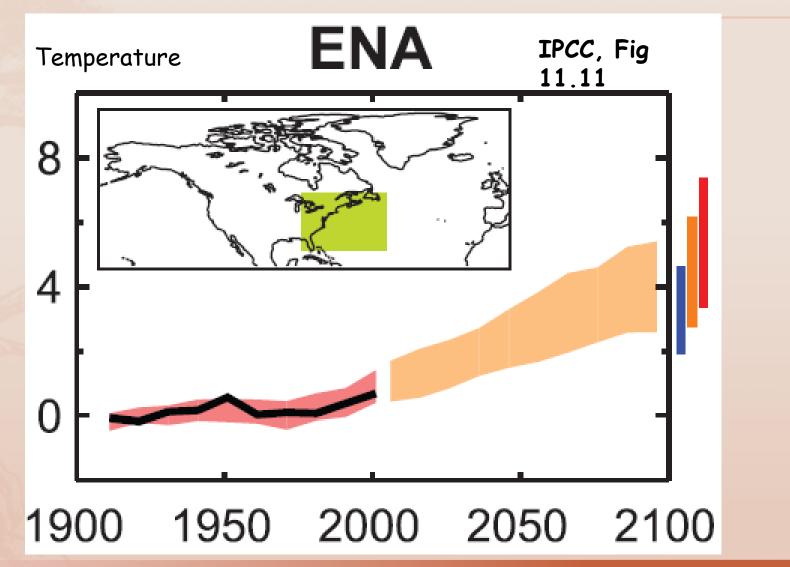
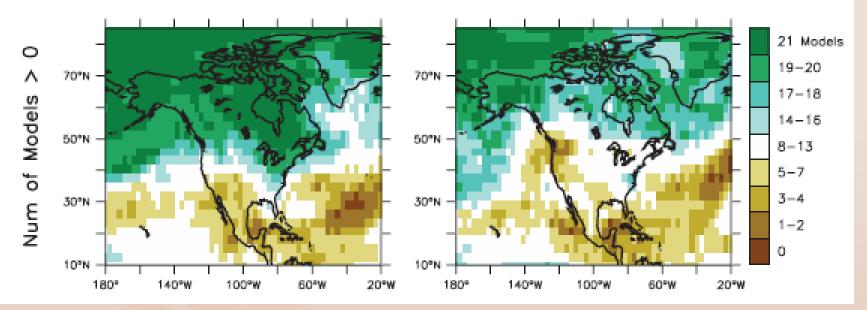

Adapting to the Impacts of Climate Change

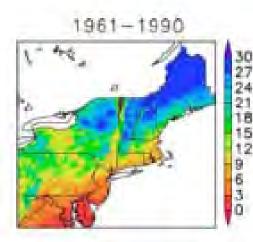
Figure 1. Adaptation planning is envisioned as a cyclical, iterative process incorporating these six steps.

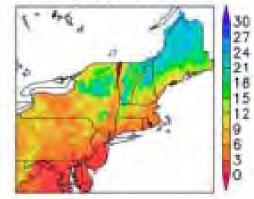
NRC Report 2010, Adapting to the Impacts of Climate Change

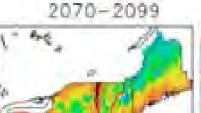


Climate Projections

Annual

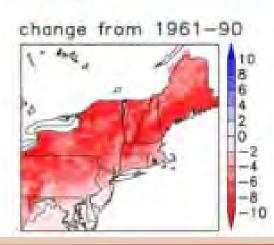

Jun-Jul-Aug


Model agreement: Precipitation IPCC, Fig 11.12



Snow-covered days per month

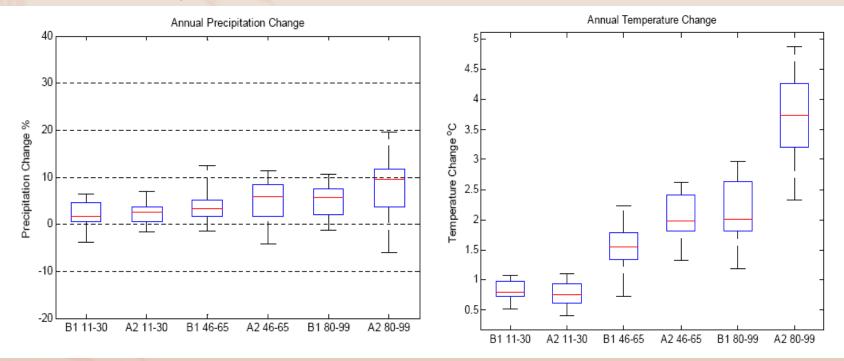
2036-2065



24181512 9630

SRES A1

Hayhoe et al. 2007 in PA Climate Impacts Assessment

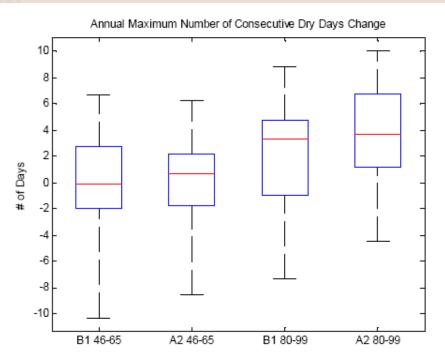


Pennsylvania Climate Impacts Assessment

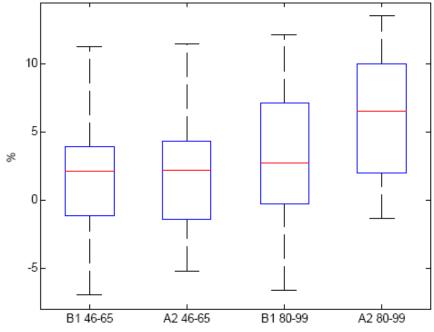
It is very likely that Pennsylvania will warm (7°F) It is likely that annual precipitation will increase

Annual Precipitation

<u>Annual Temperature</u>



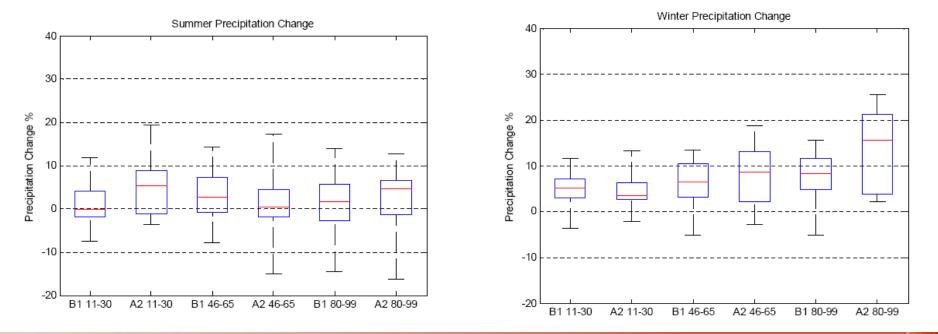
Pennsylvania Climate Impacts Assessment


 It is likely that Pennsylvania's precipitation will become more extreme, with longer dry periods and greater intensity of precipitation

Consecutive Dry Days

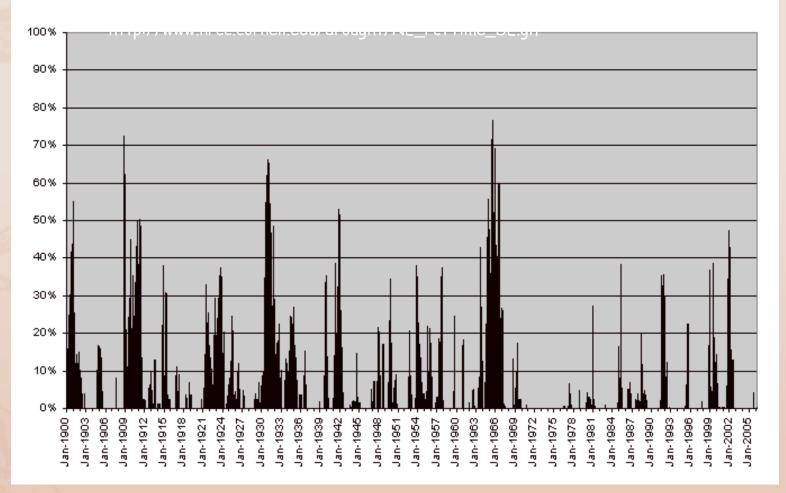
Large Precipitation Events

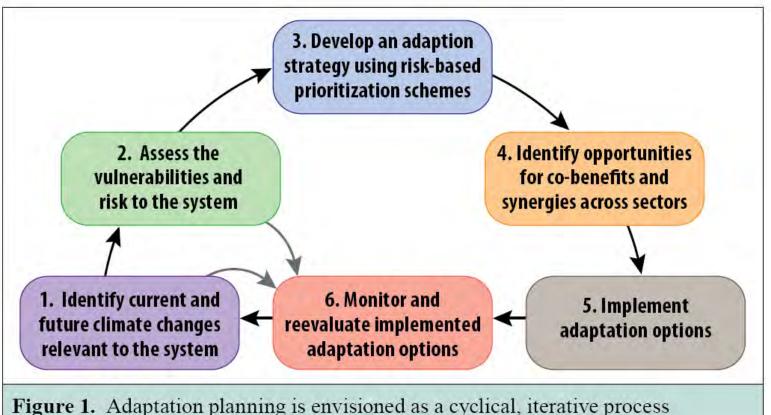
Fraction of Annual Precipitation Events Exceeding Historial 95th Percentile



Pennsylvania Climate Impacts Assessment

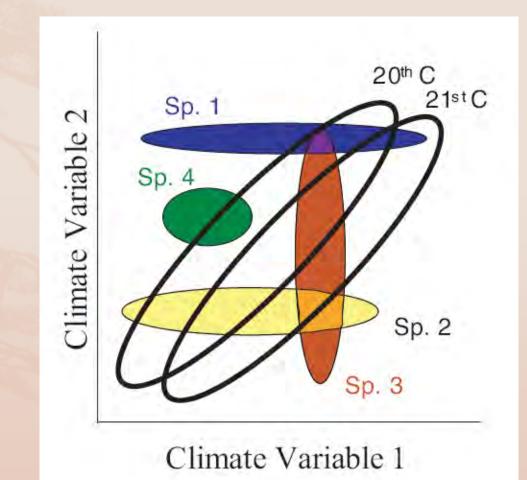
It is very likely that winter precipitation will increase


<u>Summer</u>


Percent of Northeast in Severe or Extreme Drought

- Getting warmer (0.65 to 0.75°C/decade) especially in winter (Hayhoe et al. 2007)
- Increase in growing season (1 week);
 decrease in frost
- Increase in annual precipitation and heavy rain events (9.5mm), but droughts too

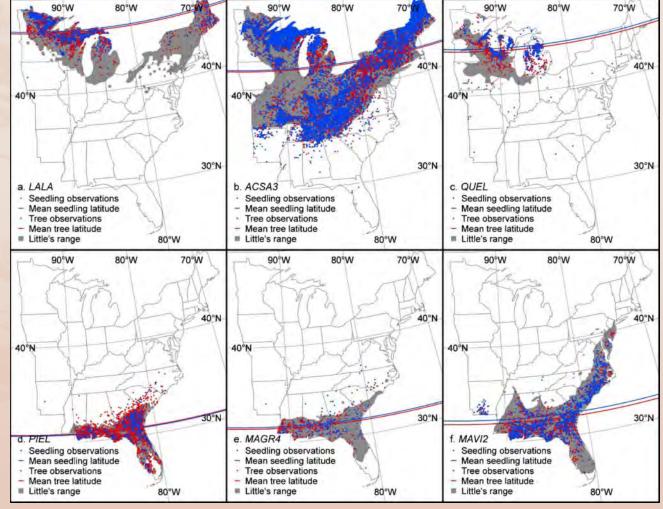
Adapting to the Impacts of Climate Change


Figure 1. Adaptation planning is envisioned as a cyclical, iterative process incorporating these six steps.

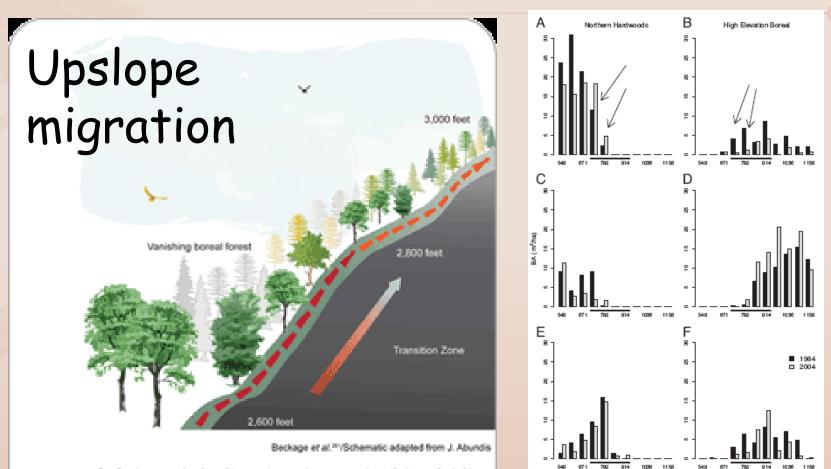
NRC Report 2010, Adapting to the Impacts of Climate Change

Vulnerabilities and Risks

- Species composition and ranges
- Disturbance regimes
- Growth rates and phenology
- Insect/disease dynamics
- Hydrology & earlier peak discharge
- Interactive factors
 - fragmentation, invasive species, nitrogen deposition


Shifts in Species Ranges

Jack Williams et al. PNAS 2007

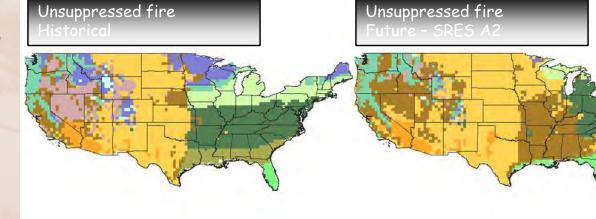

Evidence for Range Shifts

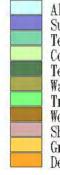
Northward migration

Woodall et al. Forest Ecology and Management 2009

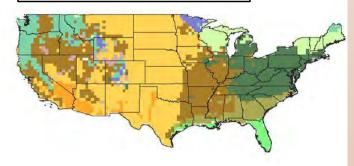
Evidence for Range Shifts

As climate warms, hardwood trees out-compete evergreen trees that are adapted to colder conditions.


Beckage et al. PNAS 2008

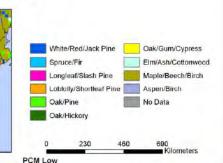

Fig. 3. Basal area of dominant tree species of northern hardwood (A, C, and E) and boreal (B, D, and F) forests by elevation for 1964 and 2004. Sugar maple (A), red spruce (B), American beech (C), balsam fir (D), yellow birch (E), and paper birch (F). The elevational range of the ecotone is indicated by the underscoring. The shift in the ecotone has been driven both by increases in northern hardwood species at their upper elevation limit (e.g., A, arrows) and decreases in boreal species at their lower limits (e.g., B, arrows).

Elevation (m)



Shifts in Biomes

Alpine Subalpine Forest Temperate Conifer Forest Cool Mixed Forest Temperature Deciduous Forest Warm Temperate Mixed Forest Tropical Forest Woodland/Savanna Shrubland Grassland Desert Unsuppressed fire Future - SRES B2


Shifts in forest types

Modeled Current

Hadley High

Avg of 3 GCM High

Avg of 3 GCM Low

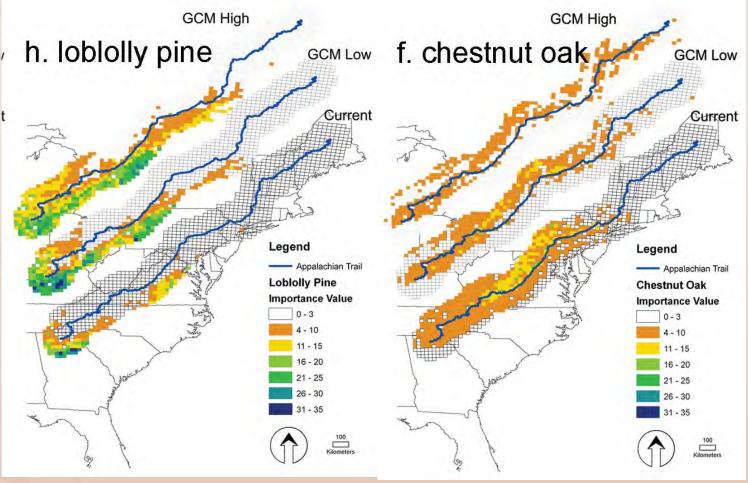
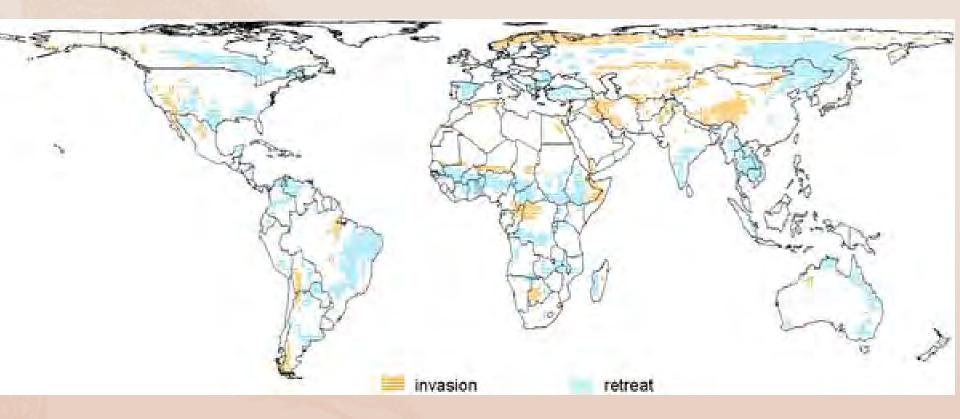


Figure 7.1. Current modeled forest type distribution in Pennsylvania and surrounding states and projected forest type shifts under four climate change scenarios (image provided by Louis Iverson and Matt Peterson).

Forest Types

Shifts in individual species


Shifts in Species Ranges

As climate warms, many species in the United States are shifting their ranges northward and to higher elevations. The map shows the response of Edith's checkerspot butterfly populations to a warming climate over the past 136 years in the American West. Over 70 percent of the southernmost populations (shown in yellow) have gone extinct. The northernmost populations and those above 8,000 feet elevation in the cooler climate of California's Sierra Nevada (shown in green) are still thriving. These differences in numbers of population extinctions across the geographic range of the butterfly have resulted in the average location shifting northward and to higher elevations over the past century, illustrating how climate change is altering the ranges of many species. Because their change in range is slow, most species are not expected to be able to keep up with the rapid climate change projected in the coming decades.245

http://www.globalchange.gov/publications/reports/sci entific-assessments/us-impacts/full-report/climatechange-impacts-by-sector/ecosystems

Changing Disturbance Regimes

The invasion (orange) and retreat (blue) of fire projected by 2010-2039 under the A2 (mid-high) emissions scenario and based on the $FIRE_{NPP}$ ensembles. Invasion was constrained to places with existing vegetation. (Krawchuk et al.

Changing Disturbance Regimes

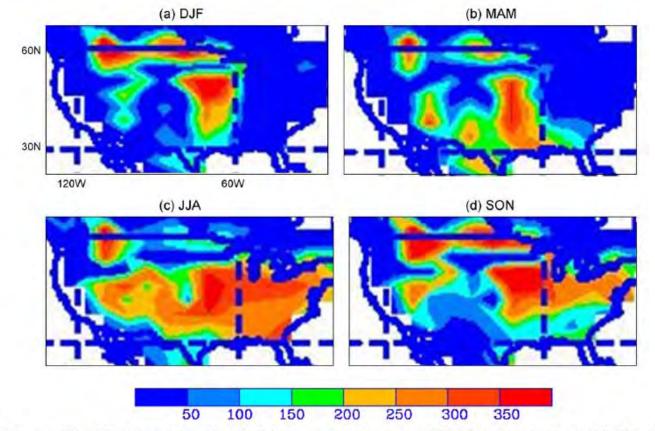
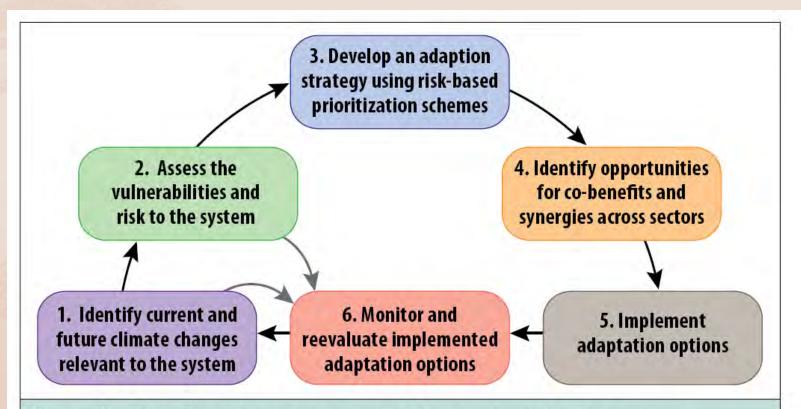


Fig. 5. The seasonal future KBDI changes in the United States. Panels (a–d) are winter, spring, summer and fall. The climate change is projected with HadCM3 with a2a scenario. The blue lines indicate latitudes and longitudes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Liu et al. Forest Ecology and Management 2009


Changing Disturbance Regimes

Fuel loads Fuel structure Fuel type Fuel chemistry Fuel moisture

CDT/Nabil K. Mark

Adapting to the Impacts of Climate Change

Figure 1. Adaptation planning is envisioned as a cyclical, iterative process incorporating these six steps.

Conservation

* "Coarse-filter" approaches, resiliency

Restoration

* Larger seed zones, southern/drier species

Active Management

- * Match species to future habitat suitability (e.g., facilitated migration)
- * Manage with/for disturbance

(e.g., prescribed fire)

Consider resistance, resilience, and facilitation

* Resistance

- * Increasing water supply; mitigate drought stress
- * Reduce herbivory/invasives
- * Fight insect/disease outbreaks
- * Promote regeneration following disturbance

* Resilience

- * Buffers: reduce specific impacts, promote connectivity
- Identify climate refuges and movement networks (pay attention to topography)
- * Facilitation

Tree species	Mean seedling latitude (°)	Mean biomass latitude (°)	DIL (°)	DIL SE (°)	t	Probability
Balsam fir	46.0095	46.0853	-0.0758	0.0090	-8.4037	< 0.001
Eastern redcedar	35.9834	36.5485	-0.5651	0.0373	-15.1492	< 0.001
Black Spruce	46.7393	46.7368	0.0024	0.0162	0.1505	0.8805
Red spruce	44.9218	44.8786	0.0432	0.0203	2.1273	0.0346
Shortleaf Pine	34.8013	34.5993	0.2020	0.0635	3.1822	0.0017
Slash pine	30.655	30.7319	-0.0769	0.0553	-1.3890	0.1664
Longleaf pine	31.8671	31.7042	0.1629	0.0815	1.9989	0.047
Red Pine	45.4607	45.2686	0.1922	0.0636	3.0219	0.0028
Eastern white pine	43.1911	43.0218	0.1693	0.0536	3.1567	0.0018
Loblolly pine	33.2556	33.3208	-0.0652	0.0193	-3.3763	0.0009
Virginia pine	36.0456	36.3318	-0.2862	0.0484	-5.9079	< 0.001
Baldcypress	32.1483	32.0193	0.1290	0.1536	0.8399	0.402
Northern white-cedar	46.1646	46.0193	0.1453	0.0221	6.5811	< 0.001
Eastern hemlock	43.3309	42.8959	0.4350	0.0595	7.3146	< 0.001
Striped maple	43.3127	43.1007	0.2120	0.0654	3.2401	0.0014
Red maple	39.1311	39.8713	-0.7402	0.0303	-24.4684	< 0.001
Silver maple	40.2962	41.1289	-0.8327	0.2344	-3.5522	0.0005
Sugar maple	42.4914	42.3539	0.1375	0.0262	5.2540	< 0.001
Yellow birch	44.9369	44.6440	0.2929	0.0364	8.0526	< 0.001
Sweet birch	40.0891	39.8633	0.2258	0.0661	3.4170	0.0008
Paper birch	45.9419	45.7901	0.1518	0.0259	5.8656	< 0.001
American hornbeam	37.7515	36.4356	1.3160	0.0664	19.8223	< 0.001
Bitternut hickory	39.4203	39.5577	-0.1374	0.0642	-2.1390	0.0337
Pignut hickory	36.0611	36.5066	-0.4455	0.0386	-11.5410	< 0.001
Shagbark hickory	38.7979	38.8010	-0.0031	0.0640	-0.0487	0.9612
Mockernut hickory	35.4868	35.9003	-0.4135	0.0327	-12.6547	< 0.001
Eactorn radbud	36 6936	26 9400	0 1672	0.0519	3 3 3 3 9	0.0014

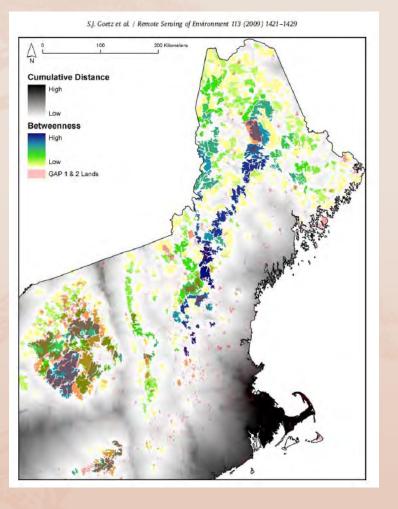
Selecting tree species for testing climate change migration hypotheses using forest inventory data

C.W. Woodall^{a,*}, C.M. Oswalt^b, J.A. Westfall^c, C.H. Perry^a, M.D. Nelson^a, A.O. Finley^d

Sweetbay	32,395	32.0203	0.3746	0.0521	7,1900	< 0.001
Blackgum	35.5336	35,4969	0.0367	0.0292	1,2595	0.2093
Swamp tupelo	32,3321	32.2472	0.0849	0.0742	1,1442	0.2539
Eastern hophornbeam	40.5129	40.9216	-0.4087	0.0571	-7.1643	< 0.001
Sourwood	35.8631	35.6038	0.2592	0.0361	7.1907	< 0.001
Sycamore	35.8859	36.6765	-0.7905	0.1611	-4.9085	< 0.001
Bigtooth aspen	44,9178	44.4084	0.5095	0.0637	7,9984	< 0.001
Quaking aspen	46.0486	45.8636	0.1850	0.0175	10.5948	< 0.001
Black cherry	39.571	39.2192	0.3518	0.0430	8.1733	< 0.001
White oak	37.0316	37.4117	-0.3802	0.0319	-11.9069	< 0.001
Scarlet oak	36.8328	37.1596	-0.3269	0.0485	-6.7373	< 0.001
Southern red oak	33.7992	34.1693	-0.3702	0.0295	-12.5559	< 0.001
Cherrybark oak	33.2757	33.5323	-0.2566	0.0623	-4.1177	0.0001
Laurel oak	31.6754	31.578	0.0974	0.0360	2.7049	0.0074
Bur oak	45.577	44.9085	0.6685	0.0971	6.8822	< 0.001
Water oak	32.7041	32.6432	0.0609	0.0176	3.4724	0.0006
Willow oak	33.9288	34.0494	-0.1206	0.0509	(2.3708	0.0187
Chestnut oak	37.2196	37.5600	-0.3404	0.0420	(8.1051	< 0.001
Northern red oak	40.8104	40.6762	0.1342	0.0457	2.9407	0.0037
Post oak	34.9866	35.2379	-0.2513	0.0404	-6.2164	< 0.001
Black oak	37.6027	38.1147	-0.5120	0.0411	-12.4530	< 0.001
Black locust	37.918	38.1418	-0.2238	0.1040	-2.1525	0.0326
Sassafras	36.8242	37.5858	-0.7616	0.0418	-18.2017	< 0.001
American basswood	44.0135	43.4555	0.5580	0.0799	6.9834	< 0.001
Winged elm	34.4151	34.4376	-0.0224	0.0242	-0.9257	0.3557
American elm	40.2414	40.3487	-0.1073	0.0597	-1.7979	0.0737

Conservation Actions

- * "Coarse-filter" approach
 - * Expand reserves that lack adequate environmental heterogeneity
 - * Focus on future desired forest functions, rather than species
- Prioritize climate refuges; buffer small reserves
- Maintain high biodiversity to promote resiliency
 - * Manage forests for multi-species, multi-ages
 - * Genetic diversity


Conservation Networks

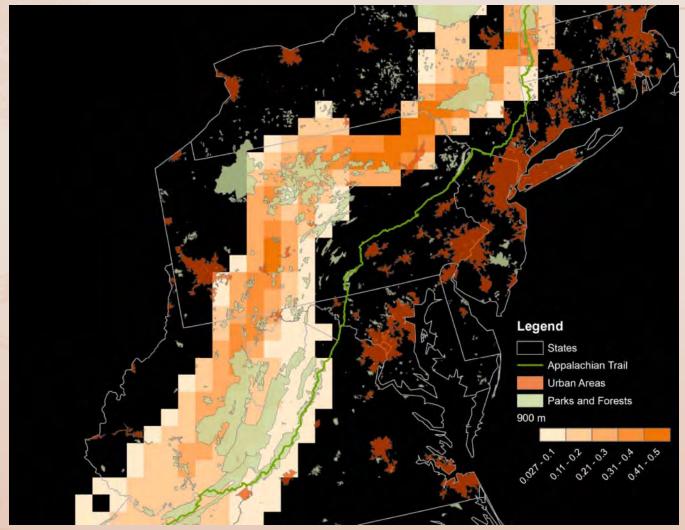
- * Link to climate-proof networks
 - Link isolated habitat that is within a new suitable climate zone to the nearest climate-proof network

* Increase colonizing capacity

- * in the overlap zone, the part of a network that remains suitable in successive time frames
- Optimize sustainable networks in climate refugia
 - the part of a species range where climate remains stable

Conservation Networks

- Connectivity metrics (graph theory) among core conservation areas
- 1/3 of core habitat is not protected
- Currently protected areas are typically isolated, but buffered
- Connectivity is vulnerable to development


Conservation Networks

E. Crisfield/Smithwick, unpublished data

- High elevation communities in the Southern Appalachians are particularly vulnerable - limited upward migration
- Northward migration, while slower than upslope migration, may be important
- Mid-Atlantic Appalachians may present some hurdles, both because it is lower elevation by comparison (max. elevation around 1000 m) and is narrower.
- Narrow pathway for northward migration is limited to 900-1000 m; follows Allegheny Plateau through Pennsylvania

Conservation Networks

E. Crisfield/Smithwick, unpublished data

Department of Environmental Protection **Bureau of Oil and Gas Management** Marcellus Shale Permits Issued & Wells Drilled (January - December 2009) Permits Issued - 1,984/ Wells Drilled - 763* ERIE WARREN SUSQUEHANNA BRADFORD MCKEAN TIOGA POTTER 155 / 60CRAWFORD 10/10 430/11331/8 300/114 WAYNE 1/0. FOREST WYOMING LACKA-5 SULLIVAN ELK CAMERON VENANGO 22/4 15/ 1/0LYCOMING PIKE MERCER CLINTON 24MONTOUR 07 JEFFERSON LUZERNE CLARION 41/12 1/0 8/4 6/2 COLUMBIA MONROE LAWRENCE CLEARFIELD man 2/0 UNION BUTLER 72/27 CENTRE CARBON NORTHAMPTON NORTH-2 ARMSTRONO 42/8 42/7 SNYDER 42/17MIFFLIN BEAVER SCHUYLKILL INDIANA JUNIATA 6/0 LEHIGH CAMBRIA 19/ 8 DAUPHIN ALLEGHENY BLAIR 6 2 BERKS PERRY 21 5 2 BUCKS WESTMORELAND LEBANON MONTGOMERY HUNTINGDON 88/46 CUMBERLAND WASHINGTON LANCASTER 209 / 138 BEDFORD CHESTER SOMERSET DELA-YORK PHILADELPHIA FULTON FRANKLIN FAYETTE WARE 18/3 ADA MS GREENE 88 / 55 182/91 Copyright 2005 digital-topo-maps.com * As reported by Operators Up dated 12/07/2009

Restoration

- * Mitigation (increase carbon storage)
- * Build resiliency
- * To what?
 - * Historic ranges of variability still relevant?
 * Focus on function/service/natural capital?
 * Manage for future species/functions?

Table 1. Ecosystem functions with examples of processes, goods, and services (adapted from de Groot et al. 2002).

Ecosystem Function	Ecosystem Process and Components	Goods and Services		
Regulation functions	Maintenance of essential ecological processes and life support processes			
Gas regulation	Biogeochemical cycling	UVb protection by ozone		
Climate regulation	Influence of land-cover vegetation type	Maintenance of a favorable climate		
Water supply	Filtering, retention, and storage of water	Provision of water for consumption		
Habitat functions	Providing habitat for plant and animal species			
Refugium function	Niche availability	Maintenance of biological and genetic diversity (and hence most other functions)		
Production functions	Provision of food and fiber			
Raw materials	Conversion of solar energy into edible plants and animals	Fuel, structural materials		
Information functions	Providing opportunities for cognitive development			
	Cultural and artistic information	Use of nature as motive in books, film, and painting		

JUNE 2006 Restoration Ecology

173

Harris, Restoration Ecology, 2006

Facilitated Migration

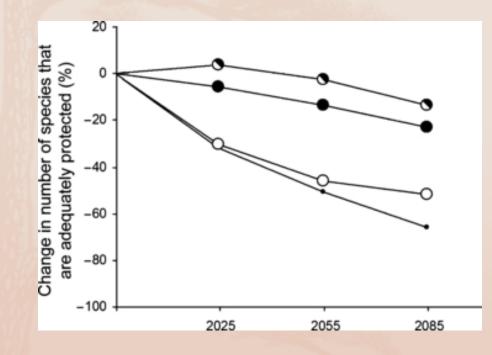
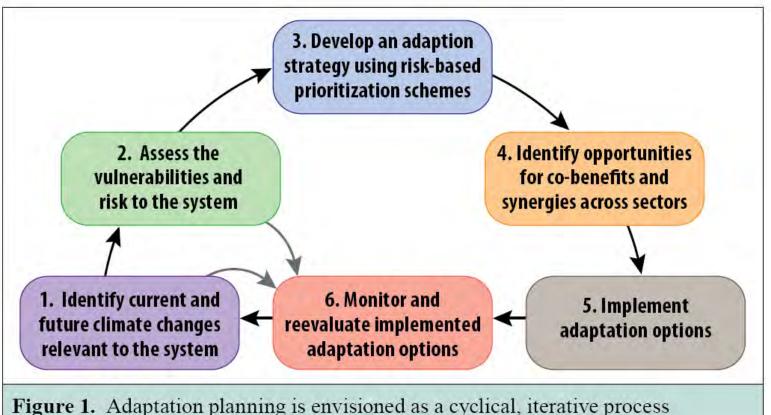



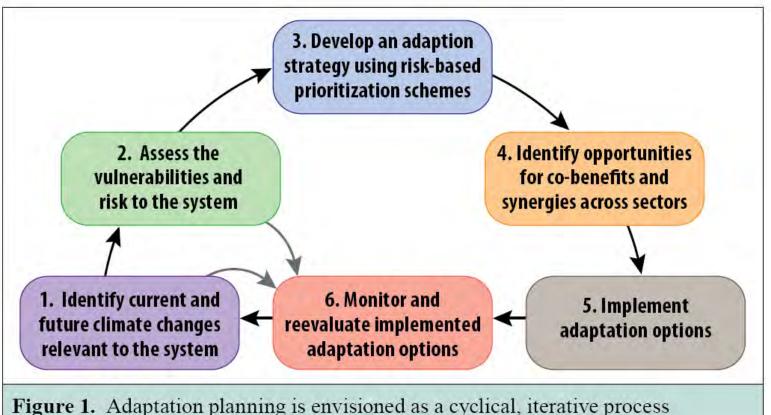
Figure 1 Change in the number of tree species predicted to be adequately conserved (cumulative cover of 10 ha, Hamann and Wang 2006) into the future, under the assumption that species are capable to adapt to changed climate, (•), migrate to suitable habitat within a reserve, (\odot), both, migrate and adapt, or neither (•). The analysis is based on bioclimatic envelope models for 49 tree species and 906 protected areas in British Columbia (Hamann and Wang 2006; A. Hamann and S.N. Aitken, unpublished manuscript.).

Species that occur in small, fragmented populations, or those with low fecundity or late age of sexual maturity, reproductive characteristics more typical of later successional species and high-elevation habitats, will likely suffer greater adaptational lag.

Adapting to the Impacts of Climate Change

incorporating these six steps.

NRC Report 2010, Adapting to the Impacts of Climate Change



- Success must include assessment of:
 - * Effectiveness, Efficiency, Equity, Legitimacy
 - Recognize heterogeneity in capacity, benefits, objectives
 - Ensure actions do not adversely affect others (minimize negative downstream effects)
 - * Be careful not to amplify conflicts
- Scale-specific criteria
 - * International/National/State/County/Household
 - * Implement and Evaluate at relevant scale
 - * Cross-scale interactions will add complexity

Monitoring

- Trailing edge of rare species
- Reproduction and regeneration should be monitored in protected areas to determine if facilitated migration of populations is necessary among protected areas or to extend species ranges.

Adapting to the Impacts of Climate Change

incorporating these six steps.

NRC Report 2010, Adapting to the Impacts of Climate Change

- Adger, W. N., N. W. Arnell, and E. L. Tompkins. 2005. Successful adaptation to climate change across scales. Global Environmental Change-Human and Policy Dimensions 15:77-86.
- Galatowitsch, S., L. Frelich, and L. Phillips-Mao. 2009. Regional climate change adaptation strategies for biodiversity conservation in a midcontinental region of North America. Biological Conservation 142:2012-2022.
- Evans, A. M. and R. Perschel. 2009. A review of forestry mitigation and adaptation strategies in the Northeast US. Climatic Change 96:167-183.
- Visser, M. E. 2008. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings of the Royal Society B-Biological Sciences 275:649-659.
- BENNIE, J., E. KUBIN, A. WILTSHIRE, B. HUNTLEY, and R. BAXTER. 2010. Predicting spatial and temporal patterns of budburst and spring frost risk in north-west Europe: the implications of local adaptation to climate. Global Change Biology 16:1503-1514.
- Woodall, C. W., C. M. Oswalt, J. A. Westfall, C. H. Perry, M. D. Nelson, and A. O. Finley. 2009. An indicator of tree migration in forests of the eastern United States. Forest Ecology and Management 257:1434-1444.
- Beckage, B., B. Osborne, D. G. Gavin, C. Pucko, T. Siccama, and T. Perkins. 2008. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings of the National Academy of Sciences of the United States of America 105:4197-4202.
- Shortle, J., D. Abler, S. Blumsack, R. G. Crane, Z. Kaufman, M. McDill, R. G. Najjar, R. Ready, T. Wagener, and D. H. Wardrop.
 2009. Pennsylvania Climate Impacts Assessment: Report to the Department of Environmental Protection. Pennsylvania
 Department of Environmental Protection.
- Limiting the Magnitude of Future Climate Change, National Research Council, 2010.
- Vos, C. C., P. Berry, P. Opdam, H. Baveco, B. Nijhof, J. O'Hanley, C. Bell, and H. Kuipers. 2008. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. Journal of Applied Ecology 45:1722-1731.
- Parks, C. G. and P. Bernier. 2010. Adaptation of forests and forest management to changing climate with emphasis on forest health: A review of science, policies and practices. Forest Ecology and Management **259:657-659**.
- Woodall, C. W., C. M. Oswalt, J. A. Westfall, C. H. Perry, M. D. Nelson, and A. O. Finley. Selecting tree species for testing climate change migration hypotheses using forest inventory data. Forest Ecology and Management **259:778-785**.