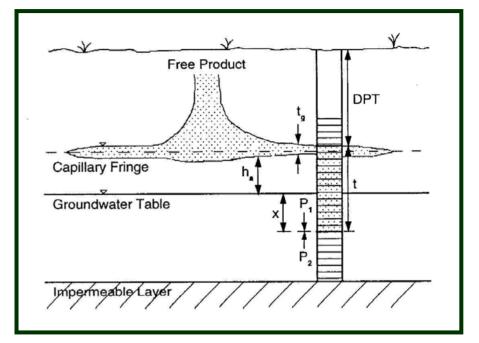
A Case For the Formation of a Subcommittee to Develop a NAPL* Management Approach under Act 2

*LNAPL – light non-aqueous phase liquid, e.g., gasoline


New Understanding Should Move LNAPL Projects Forward

- > LNAPL Technology is redefining the understanding of the problems and leading to possible new solutions
- > Regulations have not kept up with the new technical understanding
- > Many attitudes based upon old beliefs impair the ability to make progress on sites
- > Several states and EPA are working toward new approaches to managing LNAPL.

LNAPL in Porous Media The Classical Conceptual Model – "The Pancake"

- LNAPL floats on the WT or Capillary fringe (Van Dam, 1967)
- LNAPL does not penetrate below the water-table
- LNAPL forms a pancake like lens of uniformly high saturation
- Thickness of gas in a well is 2-3
 (4)times that in the dirt (Kramer 1982)
- If you see LNAPL in a well it is mobile and migrating
- Our LNAPL problem is completely analogous to petroleum engineering

From: Ballestero et al, 1994

There is a New Paradigm for LNAPL

- > The LNAPL pancake is the exception not the rule
- LNAPL saturation and it's volume can be understood and quantified
- > The conductivity of LNAPL: can be calculated
- > The hydraulic recovery of LNAPL can be predicted
- This requires an understanding of the science, common sense, and good judgment
- So what does this mean??

It Means:

> We have a much improved understanding of the sites:

- LNAPL distribution
- LNAPL saturations and volumes
- LNAPL movement
- LNAPL recovery
- > We can have discussions based upon good science
- This is helpful in setting expectations for LNAPL recovery

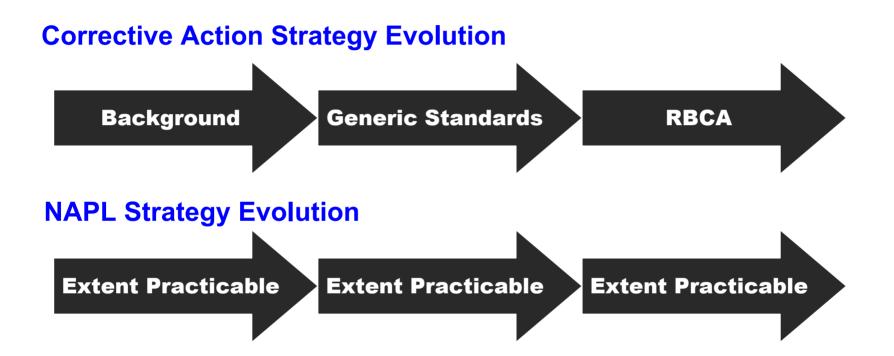
What is Going On?

- Technical Advances are continuing
- > ASTM is developing a standard for LNAPL Evaluation
- Training materials are under review by State and Federal technical and regulatory experts and should be available this year
- > EPA and State programs are:
 - Developing approaches consistent with their current regulations and stakeholder desires to develop LNAPL management plans that make sense to all

Some states are considering regulatory change

Historical Regulatory Perspectives on NAPL

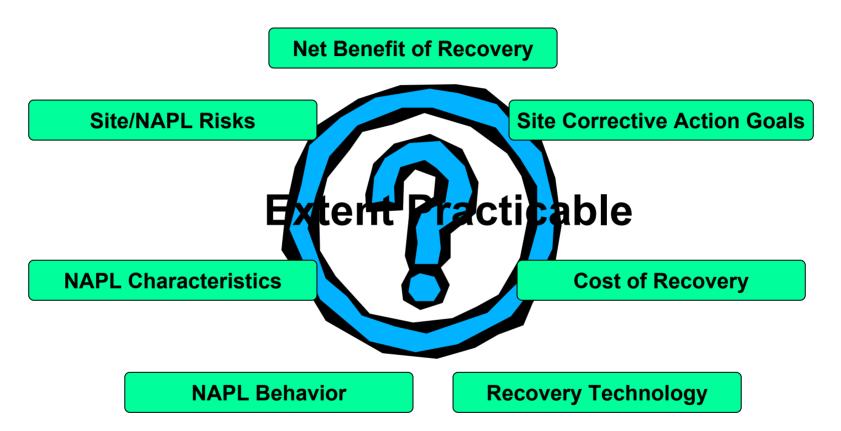
The general regulatory view:


Recover NAPL to the maximum extent practicable....
Remove principle threat wastes...

Experience:

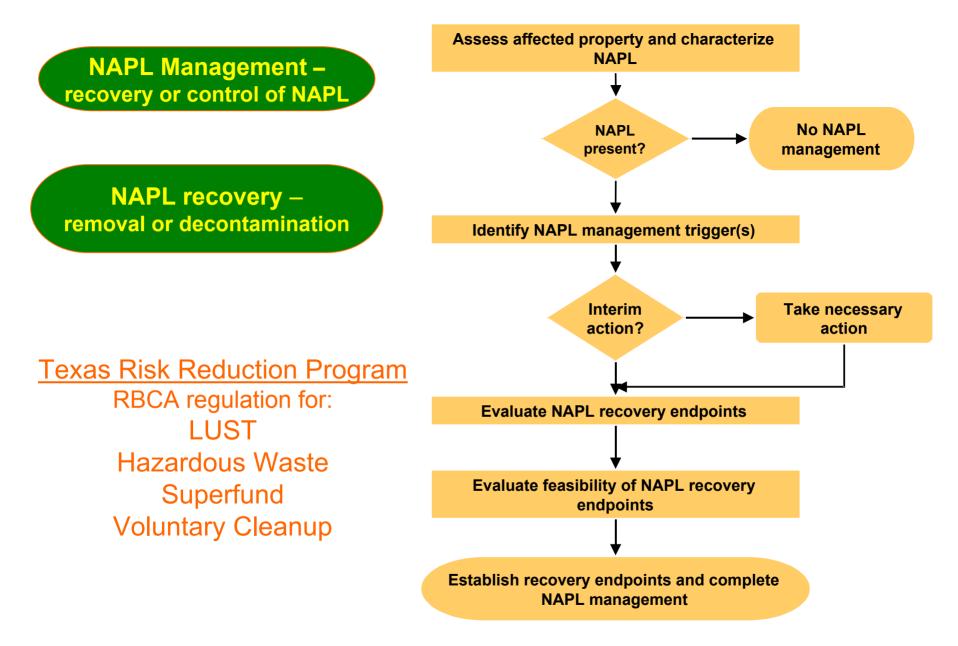
 When finished? What are the specific objectives? •Minimal NAPL characterization Ineffective technology application Delayed closures & backlogs Over-allocation of limited resources

The NAPL Disconnect



KEY POINT: Shouldn't the NAPL strategy reflect the corrective action strategy?

Tyner & Clarke, TCEQ, 2004


The Big Mystery

KEY POINT: *Extent Practicable* is performance-based terminology, should fit well with RBCA strategy.

Tyner & Clarke, TCEQ, 2004

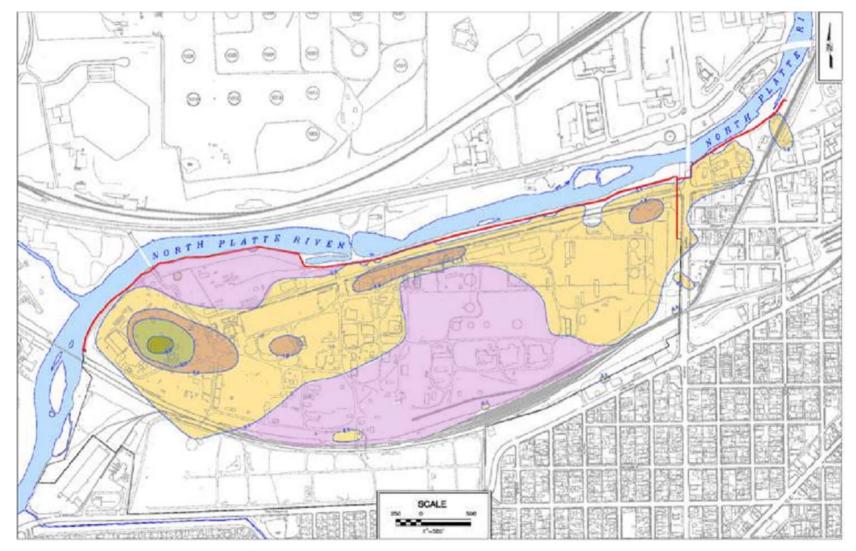
Tyner & Clarke, TCEQ, 2004

LNAPL Cleanup Alliance RTDF

- > Currently an EPA TIO, EPA OSW, EPA Region 8, Wyoming, and Industry initiative, but recent participation by many states and EPA Regions.
- > **Develop LNAPL Management Plan**
 - Develop a process to determine Reasonable and Practical Endpoints
 - > Meet needs of all stakeholders
- > Train regulators and consultants in LNAPL technology
- > Test Innovative Technologies: Steam, Surfactants, etc.

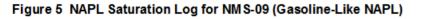
A Decision-Making Framework for Cleanup of Sites Impacted with LNAPL

- 1. Goals: Owner, Regulator, Stakeholders
- 2. Regulatory Structure
- 3. LNAPL History and Current Situation Sources, type, extent, recovery, El Status, geology, regulatory and community setting
- 4. Expected Facility Future Land Use
- 5. Existing and Future Potential Receptors
- 6. Technologies considered and proposed costs, satisfaction of aspirations, others.
- 7. Proposed endpoints and how they result in managing risk plume longevity, mobility reduction, vapor issues, points of compliance, etc.
- 8. Long Term Site Management
 - > Institutional and engineering controls
 - > Schedule and time frame
 - > Land and groundwater uses
 - > Monitor compliance and performance



Example: LNAPL Management Plan; EPA Region 8 and Wyoming

- > RCRA site 250 acres underlain by residual hydrocarbons
- > Local community and city desire reuse
- > 180 acres of LNAPL may migrate
- > Remedy Decision: LNAPL recovery is required
 - > Where LNAPL with the potential to migrate exists within 300 ft of downgradient boundary
 - > Where LNAPL is a source of benzene to groundwater
- > Hydraulic conductivities 240-350 ft/day
- > **DTW 8-12 ft**
- > Gasoline, diesel, lube oil, and composite
- > Currently, 300,000 gal per year of recovery



Original LNAPL Site Map

Comparison of Results

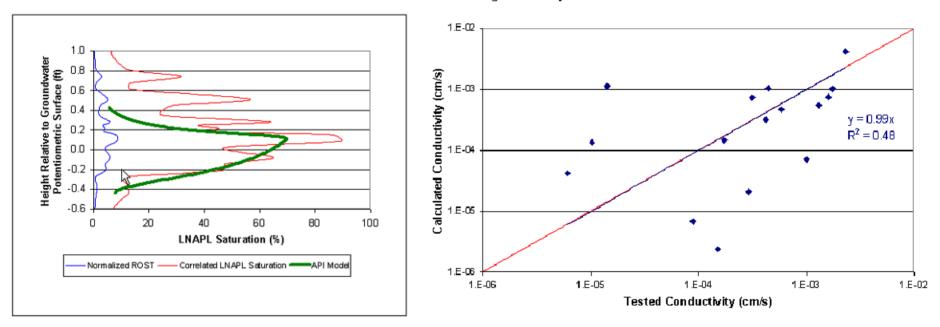


Figure 6 Comparison of Tested Versus Calculated NAPL Conductivities

Correlate ROST, capillary data, and saturation with API spreadsheets

Make saturation and conductivity predictions and validate versus field data

LNAPL Conductivity Distribution

Blue = $>10^{-2}$ cm²/sec (2.5 acres) Teal = $>10^{-3}$ cm²/sec (23 acres) Grey = $>10^{-4}$ cm²/sec (82 acres) Brown = $> 10^{-5}$ cm²/sec (179 acres)

Results

- > LNAPL recovery will only be implemented within areas that contain benzene impacted LNAPL at an initial conductivity greater than 10⁻⁴ cm²/sec
 - > Corresponds to 0.15 ft thickness with gasoline type product
 - > Approximately 46 acres (180 acres previously)
- > Theory helped estimate optimum groundwater pumping rates and operating periods with recovery rate estimates
- > Site is being redeveloped into a golf course and recreation area.

New Understanding Should Move LNAPL Projects Forward

- > LNAPL Technology is redefining the understanding of the problems and leading to possible new solutions
- > Regulations have not kept up with the new technical understanding
- > Many attitudes based upon old beliefs impair the ability to make progress on sites
- > Several states and EPA are working toward new approaches to managing LNAPL.

