LIST OF FIGURES

Chapter 1
Figure 1.1 Distribution of the 16 FBC Power Plants in Pennsylvania 3
Figure 1.2 Annual Coal Refuse Consumed by FBC in Anthracite and Bituminous regions .. 5
Figure 1.3 Cumulative coal refuse consumed by coal region ... 6
Figure 1.4 Acres of Mine Reclaimed by FBCs in Anthracite and Bituminous regions........... 8
Figure 1.5 Distribution of 21 Coal-Fired Power Plants ... 9
Figure 1.6 Locations of beneficial use sites discussed in this book...................................... 11

Chapter 2
Figure 2.1 Map of Physiographic Provinces of PA. .. 20
Figure 2.2 Principal structural features of the Anthracite Coal Fields (from Wood et al., 1986) .. 24
Figure 2.3(a) Cross-section of the geologic structure of the Allegheny Plateau (from King 1977) .. 25
Figure 2.3(b) Cross-section of the geologic structure of the Ridge and Valley Province 25
Figure 2.4 Generalized location of surface anticlines in the Appalachian Plateau’s Province. (from Beardsley et al. 1999) .. 27
Figure 2.5 Generalized stratigraphic sections of the Allegheny and Conemaugh Group (from Edmunds et al., 1999) ... 28
Figure 2.6(a) Lower Kittanning and Middle Kittanning Coals and brackish overburden strata from Clearfield County, PA. (from Brady et al., 1998)....................... 30
Figure 2.6(b) Upper Kittanning and Lower Freeport Coals and nonmarine overburden strata from Fayette County, PA .. 31
Figure 2.7 Generalized columnar sections showing names, average thickness of coals (in ft), and intervals between coal beds in the Pennsylvania Anthracite fields. Figure is primarily from Wood et al. (1986). Information on calcareous zones in the Northern Field has been supplemented by data from Edmunds et al. (1998) and Inners and Fabiny (1997) ... 34
Figure 2.8 Stratigraphic interval from the Mammoth Coal zone up to the Primrose coal bed at the Wadesville site Figure 2.4. Generalized location of surface anticlines in the Appalachian Plateau’s Province. (from Beardsley et al., 1999)........ 36
Figure 2.9 A schematic of the outcrop at mile marker 138 along Interstate 81, near McAdoo, PA, showing the contact between the Mauch Chunk and Pottsville Formations (modified from Bolles and Geyer, 1976) .. 37
Figure 2.10 Block diagram showing shallow, intermediate, and regional (deep) groundwater flow systems in the Bituminous Coal Region of western PA, (from Parizek 1979) ... 38
Figure 2.11 Idealized pattern of groundwater flow in the Mercer Quadrangle, PA 40
Figure 2.12 Bimodal distribution of pH for (a) bituminous mines and (b) anthracite mine discharges in PA. Bituminous data are from Table 8.2 in Brady et al. (1998) and anthracite data are from Growitz et al., (1985). Bituminous data are displayed from stratigraphic group and anthracite data by coal field ... 41
Figure 2.13 Map of collieries in Wyoming Basin of the Northern Field (from Hollowell, 1973) ... 43
Figure 2.14 Schematic diagram of water flow through the mines (eg. Barrier pillar breaches) in the Wyoming Basin, (from Hollowell 1973) 43
Figure 2.15 Jeddo Tunnel drainage system (from Hollowell 1999) ... 44
Figure 2.16 Water discharge from the Jeddo Tunnel in Hazleton, and Wapwallopen Creek near Wapwallopen, PA, October 1, 1974 to September 30, 1975 (from Growitz et al. 1985) .. 45
Figure 2.17(a) Discharge from the Jeddo Tunnel - water years 1996-1998 (from Ballaron 1999) ... 47
Figure 2.17(b) Precipitation data from Hazleton, PA 1996-1998 (from Fox et al., 2001) ... 47
Figure 2.18 (a) and (b) Boxplots showing differences in pH and sulfates from the four anthracite fields in eastern PA. (from Brady et al., 1998) ... 50
Figure 2.19 Anthracite production, 1890-1995 (from Eggleston, et al., 1999) .. 50
Figure 2.20 Typical anthracite underground mining practices (modified from Eggleston et al., 1999). .. 51

Chapter 3
Figure 3.1 USDA Soil Triangle Classification Chart (The Asphalt Institute, 1978) 54
Figure 3.2 Typical display of compaction test data .. 55
Figure 3.3(a) Plot of Proctor Density lab test results ... 56
Figure 3.3 (b) Plot of Proctor Density lab test results ... 56
Figure 3.4(a) Plot of Maximum Dry Density .. 57
Figure 3.4(b) Plot of Optimum Moisture Content ... 57
Figure 3.4(c) Field compaction tests of ash from various ash sources ... 58
Figure 3.5 Map of NEPCO site showing Big Gorilla Pit .. 60
Figure 3.6 Map of Reading Anthracite Co. Knickerbocker Site .. 64
Figure 3.7 Coal ash conveyor at left of photo delivers ash from Gilberton Power Company FBC plant to mineral processing equipment shown in center of photo to produce an aggregate which meets PA Department of Transportation specifications .. 67
Figure 3.8 Effect of lime addition on leachability of minor constituents and trace constituents .. 67
Figure 3.9 Effect of lime addition on leachability of minor constituents and trace constituents .. 68
Figure 3.10 Effect of lime addition on compressive strength ... 68

Chapter 4
Figure 4.1 Location of coal ash beneficial use mine sites in PA ... 73
Figure 4.2 Westwood FBC plant near Tremont in Southern Anthracite Field ... 74
Figure 4.3 Site map of Northampton Fuels – Alden mine site ... 79
Figure 4.4 Reclaimed area at Northampton Fuels – Alden site ... 80
Figure 4.5(a) Alkalinity in groundwater monitoring points at Northampton Alden site ... 82
Figure 4.5(b) Sulfate in groundwater monitoring points at Northampton Alden site ... 82
Figure 4.6 Site map of Wheelabrator – Morea mine site ... 83
Figure 4.7(a) Ash placement in pits ... 84
Figure 4.7(b) Wildlife plantings ... 84
Figure 4.7(c) Morea minepool and FBC plant ... 84
Figure 4.7(d) Extensive reclamation area ... 84
Figure 4.8(a) Acidity in minepool and stream at Wheelabrator site 86
Figure 4.8(b) Calcium concentration in minepool and stream at Wheelabrator site ... 87
Figure 4.9 Map of B-D Mining site showing permit boundary, ash disposal areas and monitoring locations ... 88
Figure 4.10(a) Culm, fuel processing, and conveyor to Gilberton Power Plant ... 89
Figure 4.10(b) Silt dam and adjacent ash reclamation area 89
Figure 4.10(c) Extensive reclamation area ... 89
Figure 4.10(d) Gilberton Shaft pumping station .. 89
Figure 4.11 Aerial photograph of B-D Mining and Reading Anthracite permit areas and monitoring locations .. 91
Figure 4.12(a) Culm pile and fuel conveyor to SER power plant 93
Figure 4.12(b) Shen Penn abandoned pit and SER plant 93
Figure 4.12(c) Ash conveyor from SER plant to abandoned silt dam 93
Figure 4.12(d) Reclaimed ash placement area and SER plant 93
Figure 4.13(a) Ranges and medians of elements in Gilberton Power coal ash. (all parameters except pH and NP are expressed as mg/kg) 95
Figure 4.13(b) Ranges and medians of elements in SER coal ash
(all parameters except pH and NP are expressed as mg/kg) 95
Figure 4.14(a) Acidity in groundwater monitoring points at B-D site 99
Figure 4.14(b) Alkalinity in groundwater monitoring points at B-D site 99
Figure 4.14(c) Iron in groundwater monitoring points at B-D site 100
Figure 4.14(d) Sulfate in groundwater monitoring points at B-D site 100
Figure 4.15(a) Aluminum content of solid ash, SPLP leachate and groundwater monitoring points (solid ash expressed in mg/kg, all other items expressed as mg/L) ... 102
Figure 4.15(b) Iron content of solid ash, SPLP leachate and groundwater monitoring points ... 102
Figure 4.15(c) Arsenic content of solid ash, SPLP leachate and groundwater monitoring points ... 102
Figure 4.16 Site map of Susquehanna Coal – Mt Carmel Cogeneration site 105
Figure 4.17(a) Abandoned pits and refuse piles at start of ash placement 106
Figure 4.17(b) 10 years of ash placement and reclamation of pit 106
Figure 4.17(c) Coal ash deposit greater than 50 feet thick near conveyor 106
Figure 4.17(d) Scott Overflow monitoring point ... 106
Figure 4.18(a) Acidity in upgradient monitoring points and downgradient Scott Overflow at the Susquehanna site ... 108
Figure 4.18(b) Alkalinity increase in downgradient Scott Overflow 108
Figure 4.18(c) Sulfate in monitoring points at the Susquehanna Coal site 109
Figure 4.19 Alkalinity in upgradient and downgradient monitoring wells at the Westwood FBC power plant site ... 113
Chapter 5

Figure 5.1 Photograph of the reclaimed portions of the Revloc 1 refuse site. Note the
contrast with Figure 5.2 ...123
Figure 5.2 Aerial photo circa 1988 showing the Revloc sites and key associated
monitoring reports. The photo was obtained from the permit application for
Revloc 1 ..124
Figure 5.3 Graph of acidity, sulfate and iron at MW-1 ..125
Figure 5.4 Graph of selenium and arsenic concentrations at MW-1126
Figure 5.5 Flow, acid load and aluminum load at discharge 4SP128
Figure 5.6 Comparison of background and recent median acidity, aluminum and sulfate
concentrations at monitoring point SP-1, downstream of the Revloc sites132
Figure 5.7 Selenium concentrations at down-gradient ash monitoring points
at the Revloc sites ..133
Figure 5.8 Map showing the locations of the McDermott Mine monitoring points139
Figure 5.9 Mine drainage parameters at spring MD-1 ..139
Figure 5.10 Acidity, sulfate and iron at MW-2 ...140
Figure 5.11 Acidity, sulfate and iron at MW-1 ..141
Figure 5.12 Calcium, magnesium, aluminum and manganese at MW-1141
Figure 5.13 Acidity, sulfate and iron at MW-3 ..142
Figure 5.14 Lead concentrations at various monitoring points on the McDermott Mine
site ..143
Figure 5.15 Map of the Abel-Dreshman site and monitoring points148
Figure 5.16 Graph of pH with time at points 29, 29A and 29B. The two vertical lines
bracket the period during which ash placement and reclamation took place151
Figure 5.17 Graph of net alkalinity with time at points 29, 29A and 29B.
The two vertical lines bracket the period during which ash placement and
reclamation took place ...151
Figure 5.18 Graph of aluminum concentrations with time at points 29, 29A and 29B.
The two vertical lines bracket the period during which ash placement and
reclamation took place ...152

Chapter 6

Figure 6.1 Methods of underground anthracite mining (from Wallace 1987)157
Figure 6.2 Typical mining plan of an anthracite underground mine (from Levitz, 2001) ...158
Figure 6.3(a) Narrow cropfall ..159
Figure 6.3(b) View of extensive cropfalls on multiple veins159
Figure 6.4 Map of Hickory Ridge Colliery showing cropfalls, January 9, 1914160
Figure 6.5 Composite of attempts to control the Centralia Mine Fire (1980)162
Figure 6.6 Site map of Sharp Mountain Reclamation Project166
Figure 6.7 Cross-sectional map of Pottsville, 1892 ..167
Figure 6.8 Exposure of the Pottsville Formation, along Rt. 61, Pottsville.
Note the vertical stop sign at the bottom of the photo168
Figure 6.9 An aerial view of Sharp Mountain and the City of Pottsville from above 20th street looking west. Four lines of subsidence are evident. The demonstration project reclaimed 2.0 acres of in cropfalls in the black highlighted area.

Figure 6.10(a) Recent and more mature subsidences

Figure 6.10(b) Expanding subsidence, notice the hanging chainlink fence on the left. Wall at the far end represents a stable pillar.

Figure 6.11(a) Emergency cropfalls

Figure 6.11(b) Sagging of filled area

Figure 6.11(c) Severe collapse and loss of fill

Figure 6.11(d) Subsidences. Site of Demonstration Pit A

Figure 6.12(a) Subsidence in 1999

Figure 6.12(b) Restoration effort, 2000

Figure 6.12(c) Area resubsides, 2001

Figure 6.12(d) Demonstration Area, 2002. An orange safety fence surrounds the construction area.

Figure 6.13(a) Pit A prepared

Figure 6.13(b) Steel trusses installed in Pit A east

Figure 6.13(c) Grout mixture placement, Pit A east

Figure 6.13(d) Pit A east grout complete

Figure 6.14(a) Scrap rebar in replaces trusses, Pit A west

Figure 6.14(b) Grout added. Notice the mixer is driving on previously poured grout

Figure 6.14(c) Ash bulk fill placed

Figure 6.14(d) Prepared for topsoil. Pit A complete

Figure 6.15 Completed Sharp Mountain demonstration project

Figure 6.16 Map of McCloskey mine site. Areas already capped and those remaining to be capped are differentiated. T-5 discharge location is included

Figure 6.17 Historical quality of the T-5 discharge for sulfate and acidity. Ash placement began in 1992. The trend line for sulfate is included in the graph

Figure 6.18 Historical quality of the T-5 discharge for aluminum and iron. Although not included, manganese follows a similar trend. The trend line for iron is included

Figure 6.19 Qualitative benthic macroinvertebrate comparison upstream and downstream of discharge

Figure 6.20 Electrofishing results upstream and downstream of discharge

Figure 6.21 Location of buried pods of pyritic materials and ash grout application sites

Figure 6.22 Response in pH monitoring well L25 to pit floor grouting effort

Figure 6.23 Sulfate and acidity response to pit floor grouting effort. Note the temporary effect of the drought during 1995

Figure 6.24 Calcium and aluminum response to the pit floor grouting effort. Note the general inverse relationship between Al from AMD and Ca, primarily from the grout

Figure 6.25 Long-term calcium concentrations in two monitoring wells

Figure 6.26 Long-term behavior of Cd, Cr, and As in well L25
Chapter 7

Figure 7.1 The eastern end of the Western Middle anthracite field, containing the Ellengowan, Knickerbocker, and Shen Penn mines (Danilchik, Rothrock, and Wagner, 1955) ..206
Figure 7.2 Lithologic sections of the Ellengowan and Knickerbocker basins (Danilchik, Rothrock, and Wagner, 1955)..207
Figure 7.3 Cross section through the basins mapped on the eastern edge of the Shenandoah quadrangle (Danilchik, Rothrock, and Wagner, 1955) ...209
Figure 7.4 Cross-section through Shen Penn pit (48+00E) showing surface mining locations and dates ..213
Figure 7.5 Projected flow path from mine pool water discharging from the vicinity of the Shen Penn demonstration site (Laslow, pers. comm.) ...214
Figure 7.6 Shen Penn site map with locations of chemical sampling. The area of open connection to the deep underground mine is to the southeast215
Figure 7.7 X-ray diffraction pattern and identified crystalline phases present in SER bottom ash..217
Figure 7.8 Photograph of test pit dug into end dumped ash. Note the wall structure and the presence of water at the silt/ash interface ...219
Figure 7.9 Photograph of the slurry placement facility ...220
Figure 7.10 A D8 operating on the surface of the slurry-placed ash after closure of the demonstration pond ..221
Figure 7.11 Strength development in lime kiln dust (LKD) activated fly ash grout as a function of curing time ...221
Figure 7.12 X-ray diffraction pattern for a) fly ash grout cured for 90 days and b) slurry placed fly ash ..223
Figure 7.13 Strength development in CKD activated fly ash grout as a function of curing time ...224
Figure 7.14 Variation in compaction pressure with depth under a load ..225
Figure 7.15 Aerial photograph of the Shen Penn Pit in relation to the Schuylkill Energy Resources Co-generation facility and to the town of Shenandoah to the west of the pit ..227

Chapter 8

Figure 8.1 Cross-section through Knickerbocker pit (34 + 00) ..231
Figure 8.2 Aerial photograph of the Schuylkill Energy plant, the Knickerbocker pit, and the slurry pipe ...233
Figure 8.3 Schematic of cells and locations of sampling ..234
Figure 8.4 a) Inlet pipe to cell 1, February 2000. b) Locations of borings in cell 2, the first group of people is near the inlet pipe location, and the farther group is at the boring location closer to the center of the cell. Delta formation is evident, with mudcracks in the remainder of the cell ..234
Figure 8.5 Truck parked on recently placed ash ..235
Figure 8.6 Blow count plots for samples taken in November 2000 ...237
Figure 8.7 CaO concentration in test cells ..239
Figure 8.8 SEM images from cell 1-2 at 8-10 feet depth and a magnification of a) 120µm, b) 700µm, and c) 3500µm ...243
Chapter 9

Figure 9.1 Anthracite basins of the Eastern Middle field (Inners, 1988) .. 246
Figure 9.2 Aerial photo of the Silverbrook Basin ... 247
Figure 9.3 Location map for the Big Gorilla mine pool and the Silverbrook outflow within the Silverbrook Basin ... 248
Figure 9.4 Regional geologic cross-section, McAdoo area, Pennsylvania (US EPA, 1991) .. 249
Figure 9.5 Mining cross-section of Silverbrook Basin. The No. 1 Basin contains the Big Gorilla (original draftsperson unknown). The two Mammoth basins show the former location of the removed Mammoth seam ... 250
Figure 9.6 Mike Menghini, Tom Owen, and Mike Wehr using Cs-137 densitometer on the lower ash terrace ... 253
Figure 9.7 Fly and bottom ash silos for storage until placement on the NEPCO site 253
Figure 9.8 A truck and bulldozer used to transport and place ash in the Big Gorilla mine pool .. 254
Figure 9.9 Boils present approximately 300 feet from the Big Gorilla ash face 254
Figure 9.10 Photograph of bottom and fly ash from the NEPCO site .. 256
Figure 9.11 X-ray diffraction trace from a fly ash sample (pre-placement) and quartz, illite, and muscovite patterns for comparison .. 260
Figure 9.12 Three locations where the surface mine pool bottom was sampled on 22 October 1999 ... 261
Figure 9.13 X-ray diffraction trace from a post-placement minepool sample and quartz, illite, and muscovite patterns for comparison .. 261
Figure 9.14 Sample EDS scan from post-placement ash .. 262
Figure 9.15 SEM image of fly ash before placement in the Big Gorilla mine pool 262
Figure 9.16 SEM image of post-placement ash collected from the Big Gorilla minepool 263
Figure 9.17 SEM image of post-placement ash collected from the Big Gorilla minepool 263
Figure 9.18 Plots showing increasing concentrations of chemical constituents in the Big Gorilla mine pool with increasing depth 7/2/93 .. 267
Figure 9.19 Plot of iron concentration in the Silverbrook outflow compared with the pre-ash placement concentration values from the Big Gorilla mine pool 268
Figure 9.20 Plot of sulfate concentration in the Silverbrook outflow compared with the pre-ash placement concentration values from the Big Gorilla mine pool 268
Figure 9.21 Plot of acidity concentration in the Silverbrook outflow compared with the pre-ash placement concentration values from the Big Gorilla mine pool 269
Figure 9.22 Plot of calcium concentration in the Silverbrook outflow compared with the pre-ash placement concentration values from the Big Gorilla mine pool 270
Figure 9.23 Plot of sodium concentration in the Silverbrook outflow compared with the pre-ash placement concentration values from the Big Gorilla mine pool 270
Figure 9.24 Plots showing lack of stratification in concentrations of chemical constituents in the Big Gorilla mine pool with depth 10/28/97 .. 272
Figure 9.25 The response of pH to monthly ash input in the Big Gorilla mine pool 273
Figure 9.26 a) Ash input (bars) versus alkalinity (points) in the Big Gorilla.
Open circles are points where surface samples were collected at the western end of the lake during periods of prolonged ash input. Asterisks represent monthly samples collected at depth, during periods of increasing ash input. Solid diamonds represent samples collected during hiatuses in ash input, and triangles represent samples for which no silica data are available ..273

Figure 9.27 Plot of alkalinity versus silica in the Big Gorilla mine lake. Open circles are points where surface samples were collected at the western end of the lake during periods of prolonged ash input. Asterisks represent monthly samples collected at depth, during periods of increasing ash input. Solid diamonds represent samples collected during hiatuses in ash input. Data collected by PA DEP ...275

Figure 9.28 Photo of Big Gorilla mine pool with rim of calcite on 22 October 1999277

Figure 9.29 X-ray diffraction trace of calcite rim above the water surface. Collected 22 October 1999..277

Figure 9.30 X-ray diffraction trace of calcite rim below the water surface. Collected 22 October 1999..278

Figure 9.31 SEM image of white precipitate from the Big Gorilla mine pool (250um)279

Figure 9.32 SEM image of white precipitate from the Big Gorilla mine pool (10um)279

Figure 9.33 SEM image of white precipitate from the Big Gorilla mine pool (10um)280

Figure 9.34 Eh-pH diagram for sulfur species at standard conditions with total dissolved sulfur activity of 96 mg/L (adapted from Hem, 1985) ..281

Figure 9.35 Sulfate concentrations in the Big Gorilla mine pool ..281

Figure 9.36 Eh-pH diagram at 25°C for aqueous species in the Fe-O2-H2O system at 10^-5 mg/kg (Langmuir, 1997) ..283

Figure 9.37 Schematic illustration of the effects of pH on the solubility of trace elements occurring in the form of cations or oxyanions (Jones, 1995) ..284

Figure 9.38 Calcium concentrations in the Silverbrook outflow 1989-2002288

Figure 9.39 Location of the monitoring wells, Silverbrook outflow, Big Gorilla, and power plant on the NEPCO property ...290

Figure 9.40 Sulfate, calcium, and hydrogen ion activity in wells 2 (a) and 3 (b). Corresponding aluminum, iron, hot acidity, and alkalinity concentrations for well 3 (c). Samples analyzed by PA DEP ..292

Figure 9.41 Histogram of sulfate concentrations in well 3. Data collected by the PA DEP ..293

Figure 9.42 Solubility plot constructed by Dr. Charles Cravotta, with data from the Silverbrook Basin, provided by the PA DEP. All Al values represent dissolved and suspended constituents combined (total). Red asterisks show data from the test borings ..296

Figure 9.43 Compounds in the system CaO-SiO2-H2O (Taylor, 1964)297

Figure 9.44 SEM image of ash from the eastern test boring in the ash platform at a depth of 50 to 52 feet. Long, thin particles are visible, and show evidence of cementitious phases forming ..298

Figure 9.45 Saturation index values for 12 key minerals with mixing of the Silverbrook outflow and Big Gorilla waters ..299
Chapter 10

- Figure 10.1 How soil pH affects availability of plant nutrients and aluminum
- Figure 10.2 Plant yields on acidic mine spoil covered with 20 cm depth of borrow topsoil or amended with biosolids (100 Mt ha\(^{-1}\)), FGD (670 Mt ha\(^{-1}\)), or FGD+biosolids
 - (Stehouwer et al., 1998)
- Figure 10.3 Distribution of exchangeable calcium, aluminum, and iron in the acidic mine spoil profile nine months after treatment application.
 - (Error bars indicate the width of the LSD\(_{0.1}\) value for comparison of treatment means at each depth.)
 - (Stehouwer et al., 1998)

Chapter 11

- Figure 11.1 Range in proctor density measurements for a single FBC facility
- Figure 11.2 Thermodynamic control over the solubility of aluminum in AMD and the Gorilla mine-pit lake waters.
 - Plot constructed by Dr. Charles Cravotta, with an ettringite solubility line altered by the authors to best fit the Big Gorilla data
- Figure 11.3 Scanning electron micrograph of ettringite growth in FBC ash
- Figure 11.4 Development of C-S-H in ash
- Figure 11.5 Model for calculation of hydraulic conductivity
- Figure 11.6 Effects of leaching on pH of C-S-H-portlandite-silica system as a function continued leaching.
 - (after Atkinson, 1985)
- Figure 11.7 Percentage leached of the smallest dimension of the Gorilla ash fill as a function of time based on an ash structure-controlled leaching model
- Figure 11.8 Percentage leached of the smallest dimension of the Gorilla ash fill as a function of time based on a geology-controlled leaching model
- Figure 11.9 Various possibilities for the interaction of heavy metals in a cementitious matrix
 - (after Gougar et al., 1996)
- Figure 11.10 Solubility (mg/L) vs. pH plots for selected metallic elements showing minimum solubilities