LIST OF FIGURES

<u>Chapter 1</u>	
Figure 1.1 Distribution of the 16 FBC Power Plants in Pennsylvania	3
Figure 1.2 Annual Coal Refuse Consumed by FBC in Anthracite and Bituminous	3
regions	5
Figure 1.3 Cumulative coal refuse consumed by coal region	6
Figure 1.4 Acres of Mine Reclaimed by FBCs in Anthracite and Bituminous regi	ons 8
Figure 1.5 Distribution of 21 Coal-Fired Power Plants	
Figure 1.6 Locations of beneficial use sites discussed in this book	11
Chanter 2	
Eigure 2.1 Map of Physiographic Provinces of $P\Delta$	20
Figure 2.2 Principal structural features of the Anthracite Coal Fields (from Wood	1 et al
1986)	24 ²⁴
Figure 2.3(a). Cross-section of the geologic structure of the Allegheny Plateau	
(from King 1977)	
Figure 2.3(b) Cross-section of the geologic structure of the Ridge and Valley Pro	ovince 25
Figure 2.4 Generalized location of surface anticlines in the Appalacian Plateau's	3
Province. (from Beardsley et al. 1999)	
Figure 2.5 Generalized stratigraphic sections of the Allegheny and Conemaugh	Group
(from Edmunds et al., 1999)	
Figure 2.6(a) Lower Kittanning and Middle Kittanning Coals and brackish	
overburden strata from Clearfield County, PA. (from Brady et al., 1998)	30
Figure 2.6(b) Upper Kittanning and Lower Freeport Coals and nonmarine	
overburden strata from Fayette County, PA	
Figure 2.7 Generalized columnar sections showing names, average thickness of	coals
(in ft), and intervals between coal beds in the Pennsylvania Anthracite fields.	
Figure is primarily from Wood et al. (1986). Information on calcareous zon	es
in the Northern Field has been supplemented by data from Edmunds et al. (1	998)
Eigure 2.8. Stratigraphic interval from the Mammoth Coal zone up to the Drimro	
Figure 2.8 Strangraphic interval from the Manimoti Coal Zone up to the Finnio	se
anticlines in the Appalacian Plateau's Province (from Beardslev et al. 1999) 36
Figure 2.9 A schematic of the outcrop at mile marker 138 along Interstate 81 ne)
McAdoo PA showing the contact between the Mauch Chunk and Pottsville	
Formations (modified from Bolles and Gever, 1976)	
Figure 2.10 Block diagram showing shallow, intermediate, and regional (deep)	
groundwater flow systems in the Bituminous Coal Region of western PA,	
(from Parizek 1979)	
Figure 2.11 Idealized pattern of groundwater flow in the Mercer Quadrangle, PA	
Figure 2.12 Bimodal distribution of pH for (a) bituminous mines and (b) anthrac	ite mine
discharges in PA. Bituminous data are from Table 8.2 in Brady et al. (1998)	and
anthracite data are from Growitz et al., (1985). Bituminous data are displaye	d from
stratigraphic group and anthracite data by coal field	

Figure 2.13 Map of collieries in Wyoming Basin of the Northern Field (from	
Hollowell,1973)	43
Figure 2.14 Schematic diagram of water flow through the mines	
(eg. Barrier pillar breaches) in the Wyoming Basin, (from Hollowell 1973)	43
Figure 2.15 Jeddo Tunnel drainage system (from Hollowell 1999).	44
Figure 2.16 Water discaharge from the Jeddo Tunnel in Hazleton, and	
Wapwallopen Creek near Wapwallopen, PA, October 1, 1974 to September 30, 1975	
(from Growitz et al. 1985)	45
Figure 2.17(a) Discharge from the Jeddo Tunnel - water years 1996-1998	
(from Ballaron 1999)	47
Figure 2.17(b) Precipitation data from Hazleton, PA 1996-1998 (from Fox et al., 2001)	47
Figure 2.18 (a) and (b) Boxplots showing differences in pH and sulfates from the four	
anthracite fields in eastern PA. (from Brady et al., 1998)	50
Figure 2.19 Anthracite production, 1890-1995 (from Eggleston, et al., 1999)	50
Figure 2.20 Typical anthracite underground mining practices (modified from	
Eggleston et al., 1999).	51

<u>Chapter 3</u>

Figure 3.1 USDA Soil Triangle Classification Chart (The Asphalt Institute, 1978)	54
Figure 3.2 Typical display of compaction test data	55
Figure 3.3(a) Plot of Proctor Density lab test results	56
Figure 3.3 (b) Plot of Proctor Density lab test results	56
Figure 3.4(a) Plot of Maximum Dry Density	57
Figure 3.4(b) Plot of Optimum Moisture Content	57
Figure 3.4(c) Field compaction tests of ash from various ash sources	58
Figure 3.5 Map of NEPCO site showing Big Gorilla Pit	60
Figure 3.6 Map of Reading Anthracite Co. Knickerbocker Site	64
Figure 3.7 Coal ash conveyor at left of photo delivers ash from Gilberton Power	
Company FBC plant to mineral processing equipment shown in center of photo to	
produce an aggregate which meets PA Department of Transportation	
specifications	67
Figure 3.8 Effect of lime addition on leachability of minor constituents and trace	
constituents	67
Figure 3.9 Effect of lime addition on leachability of minor constituents and trace	
constituents	68
Figure 3.10 Effect of lime addition on compressive strength	68

<u>Chapter 4</u>

Figure 4.1 Location of coal ash beneficial use mine sites in PA	73
Figure 4.2 Westwood FBC plant near Tremont in Southern Anthracite Field	74
Figure 4.3 Site map of Northampton Fuels – Alden mine site	79
Figure 4.4 Reclaimed area at Northampton Fuels – Alden site	80
Figure 4.5(a) Alkalinity in groundwater monitoring points at Northampton Alden site	82
Figure 4.5(b) Sulfate in groundwater monitoring points at Northampton Alden site	82
Figure 4.6 Site map of Wheelabrator – Morea mine site	83
Figure 4.7(a) Ash placement in pits	84

Figure 4.7(b) Wildlife plantings	84
Figure 4.7(c) Morea minepool and FBC plant	84
Figure 4.7(d) Extensive reclamation area.	84
Figure 4.8(a) Acidity in minepool and stream at Wheelabrator site	86
Figure 4.8(b) Calcium concentration in minepool and stream at Wheelabrator site	87
Figure 4.9 Map of B-D Mining site showing permit boundary, ash disposal areas and	
monitoring locations	88
Figure 4.10(a) Culm, fuel processing, and conveyor to Gilberton Power Plant	89
Figure 4.10(b) Silt dam and adjacent ash reclamation area	89
Figure 4.10(c) Extensive reclamation area	89
Figure 4.10(d) Gilberton Shaft pumping station	89
Figure 4.11 Aerial photograph of B-D Mining and Reading Anthracite permit areas and	
monitoring locations	91
Figure 4.12(a) Culm pile and fuel conveyor to SER power plant	93
Figure 4.12(b) Shen Penn abandoned pit and SER plant	93
Figure 4.12(c) Ash conveyor from SER plant to abandoned silt dam	93
Figure 4.12(d) Reclaimed ash placement area and SER plant	93
Figure 4.13(a) Ranges and medians of elements in Gilberton Power coal ash. (all	
parameters except pH and NP are expressed as mg/kg)	95
Figure 4.13(b) Ranges and medians of elements in SER coal ash	
(all parameters except pH and NP are expressed as mg/kg)	95
Figure 4.14(a) Acidity in groundwater monitoring points at B-D site	99
Figure 4.14(b) Alkalinity in groundwater monitoring points at B-D site	99
Figure 4.14(c) Iron in groundwater monitoring points at B-D site	.100
Figure 4.14(d) Sulfate in groundwater monitoring points at B-D site	.100
Figure 4.15(a) Aluminum content of solid ash, SPLP leachate and groundwater	
monitoring points (solid ash expressed in mg/kg,	
all other items expressed as mg/L)	.102
Figure 4.15(b) Iron content of solid ash, SPLP leachate and groundwater	
monitoring points	.102
Figure 4.15(c) Arsenic content of solid ash, SPLP leachate and groundwater monitoring	
points	.102
Figure 4.16 Site map of Susquehanna Coal – Mt Carmel Cogeneration site	.105
Figure 4.17(a) Abandoned pits and refuse piles at start of ash placement	.106
Figure 4.17(b) 10 years of ash placement and reclamation of pit	.106
Figure 4.17(c) Coal ash deposit greater than 50 feet thick near conveyor	.106
Figure 4.17(d) Scott Overflow monitoring point	.106
Figure 4.18(a) Acidity in upgradient monitoring points and downgradient	
Scott Overflow at the Susquehanna site	.108
Figure 4.18(b) Alkalinity increase in downgradient Scott Overflow	.108
Figure 4.18(c) Sulfate in monitoring points at the Susquehanna Coal site	.109
Figure 4.19 Alkalinity in upgradient and downgradient monitoring wells at the	
Westwood FBC power plant site	.113

<u>Chapter 5</u>

Figure 5.1 Photograph of the reclaimed portions of the Revloc 1 refuse site. Note the	
contrast with Figure 5.2	123
Figure 5.2 Aerial photo circa 1988 showing the Revloc sites and key associated	
monitoring reports. The photo was obtained from the permit application for	
Revloc 1	124
Figure 5.3 Graph of acidity, sulfate and iron at MW-1	125
Figure 5.4 Graph of selenium and arsenic concentrations at MW-1	126
Figure 5.5. Flow, acid load and aluminum load at discharge 4SP	128
Figure 5.6 Comparison of background and recent median acidity, aluminum and sulfate	
concentrations at monitoring point SP-1, downstream of the Revloc sites	132
Figure 5.7 Selenium concentrations at down-gradient ash monitoring points	
at the Revloc sites	133
Figure 5.8 Map showing the locations of the McDermott Mine monitoring points	139
Figure 5.9 Mine drainage parameters at spring MD-12	139
Figure 5.10. Acidity sulfate and iron at MW-2	140
Figure 5.11 Acidity, sulfate and iron at MW-1	141
Figure 5.12 Calcium, magnesium, aluminum and manganese at MW-1	141
Figure 5.13 Acidity, sulfate and iron at MW-3	142
Figure 5.14 Lead concentrations at various monitoring points on the McDermott Mine	
site	143
Figure 5.15 Map of the Abel-Dreshman site and monitoring points	148
Figure 5.16. Graph of pH with time at points 29, 29A and 29B. The two vertical lines	
bracket the period during which ash placement and reclamation took place	151
Figure 5.17 Graph of net alkalinity with time at points 29, 29A and 29B.	
The two vertical lines bracket the period during which ash placement and	
reclamation took place	151
Figure 5.18 Graph of aluminum concentrations with time at points 29, 29A and 29B	
The two vertical lines bracket the period during which ash placement and	
reclamation took place	152
L	
napter 6	

<u>Ch</u>

Figure 6.1 Methods of underground anthracite mining (from Wallace 1987)	157
Figure 6.2 Typical mining plan of an anthracite underground mine	
(from Levitz, 2001)	158
Figure 6.3(a) Narrow cropfall	159
Figure 6.3(b) View of extensive cropfalls on multiple veins	159
Figure 6.4 Map of Hickory Ridge Colliery showing cropfalls,	
January 9, 1914	160
Figure 6.5 Composite of attempts to control the Centralia Mine Fire (1980)	162
Figure 6.6 Site map of Sharp Mountain Reclamation Project	166
Figure 6.7 Cross-sectional map of Pottsville, 1892	167
Figure 6.8 Exposure of the Pottsville Formation, along Rt. 61, Pottsville.	
Note the vertical stop sign at the bottom of the photo	168

Figure 6.9 An aerial view of Sharp Mountain and the City of Pottsville from above 20th	
street looking west. Four lines of subsidence are evident. The demonstration projec	t
reclaimed 2.0 acres of in cropfalls in the black highlighted area	169
Figure 6.10(a) Recent and more mature subsidences	170
Figure 6.10(b) Expanding subsidence, notice the hanging chainlink fence on the left.	
Wall at the far end represents a stable pillar	170
Figure 6.11(a) Emergency cropfalls	171
Figure 6.11(b) Sagging of filled area	171
Figure 6.11(c) Severe collapse and loss of fill	171
Figure 6.11(d) Subsidences. Site of Demonstration Pit A	171
Figure 6.12(a) Subsidence in 1999	175
Figure 6.12(b) Restoration effort, 2000	175
Figure 6.12(c) Area resubsides, 2001	175
Figure 6.12(d) Demonstration Area, 2002. An orange safety fence surrounds the	
construction area	175
Figure 6.13(a) Pit A prepared	176
Figure 6.13(b) Steel trusses installed in Pit A east	176
Figure 6.13(c) Grout mixture placement, Pit A east	176
Figure 6.13(d) Pit A east grout complete	176
Figure 6.14(a) Scrap rebar in replaces trusses, Pit A west	177
Figure 6.14(b) Grout added. Notice the mixer is driving on previously poured grout	177
Figure 6.14(c) Ash bulk fill placed	177
Figure 6.14(d) Prepared for topsoil. Pit A complete	177
Figure 6.15 Completed Sharp Mountain demonstration project	178
Figure 6.16 Map of McCloskey mine site. Areas already capped and those	
remaining to be capped are differentiated. T-5 discharge location is included	180
Figure 6.17 Historical quality of the T-5 discharge for sulfate and acidity.	
Ash placement began in 1992 The trend line for sulfate is included in the graph	183
Figure 6.18 Historical quality of the T-5 discharge for aluminum and iron.	
Although not included, manganese follows a similar trend. The trend line for iron is	
included	183
Figure 6.19 Qualitative benthic macroinvertebrate comparison upstream and	
downstream of discharge	185
Figure 6.20 Electrofishing results upstream and downstream of discharge	
Figure 6.21 Location of buried pods of pyritic materials and ash grout	
application sites.	187
Figure 6.22 Response in pH monitoring well L25 to pit floor grouting effort	
Figure 6.23 Sulfate and acidity response to pit floor grouting effort. Note the	
temporary effect of the drought during 1995	199
Figure 6.25 Calcium and aluminum response to the pit floor grouting effort. Note the	
general inverse relationship between Al from AMD and Ca.	
primarily from the grout	199
Figure 6.26 Long-term calcium concentrations in two monitoring wells.	200
Figure 6.27 Long-term behavior of Cd. Cr. and As in well L 25	201

Chapter 7

Figure 7.1 The eastern end of the Western Middle anthracite field, containing the	
Ellengowan, Knickerbocker, and Shen Penn mines (Danilchik, Rothrock,	
and Wagner, 1955)	206
Figure 7.2 Lithologic sections of the Ellengowan and Knickerbocker basins	
(Danilchik, Rothrock, and Wagner, 1955)	207
Figure 7.3 Cross section through the basins mapped on the eastern edge of the	
Shenandoah quadrangle (Danilchik, Rothrock, and Wagner, 1955)	209
Figure 7.4 Cross-section through Shen Penn pit (48+00E) showing surface mining	
locations and dates	213
Figure 7.5 Projected flow path from mine pool water discharging from the vicinity	
of the Shen Penn demonstration site (Laslow, pers. comm.)	214
Figure 7.6 Shen Penn site map with locations of chemical sampling.	
The area of open connection to the deep underground mine is to the southeast	215
Figure 7.7 X-ray diffraction pattern and identified crystalline phases present in	
SER bottom ash	217
Figure 7.8 Photograph of test pit dug into end dumped ash. Note the wall structure	
and the presence of water at the silt/ash interface	219
Figure 7.9 Photograph of the slurry placement facility	220
Figure 7.10 A D8 operating on the surface of the slurry-placed ash after closure of the	
demonstration pond	221
Figure 7.11 Strength development in lime kiln dust (LKD) activated fly ash grout as a	
function of curing time	221
Figure 7.12 X-ray diffraction pattern for a) fly ash grout cured for 90 days and	
b) slurry placed fly ash	223
Figure 7.13 Strength development in CKD activated fly ash grout as a function of	
curing time	224
Figure 7.14 Variation in compaction pressure with depth under a load	225
Figure 7.15 Aerial photograph of the Shen Penn Pit in relation to the Schuylkill	
Energy Resources Co-generation facility and to the town of Shenandoah	
to the west of the pit	227

<u>Chapter 8</u>

Figure 8.1 Cross-section through Knickerbocker pit (34 + 00)	231
Figure 8.2 Aerial photograph of the Schuylkill Energy plant, the Knickerbocker pit,	
and the slurry pipe	233
Figure 8.3 Schematic of cells and locations of sampling	234
Figure 8.4 a) Inlet pipe to cell 1, February 2000. b) Locations of borings in cell 2, the	
first group of people is near the inlet pipe location, and the farther group is at the	
boring location closer to the center of the cell. Delta formation is evident, with	
mudcracks in the remainder of the cell	234
Figure 8.5 Truck parked on recently placed ash	235
Figure 8.6 Blow count plots for samples taken in November 2000	237
Figure 8.7 CaO concentration in test cells	239
Figure 8.8 SEM images from cell 1-2 at 8-10 feet depth and a magnification of	
a) 120µm, b) 700µm, and c) 3500µm	243

<u>Chapter 9</u>

Figure 9.1 Anthracite basins of the Eastern Middle field (Inners, 1988)	246
Figure 9.2 Aerial photo of the Silverbrook Basin	247
Figure 9.3 Location map for the Big Gorilla mine pool and the Silverbrook	
outflow within the Silverbrook Basin	248
Figure 9.4 Regional geologic cross-section, McAdoo area, Pennsylvania	
(US EPA, 1991)	249
Figure 9.5 Mining cross-section of Silverbrook Basin. The No. 1 Basin contains	
the Big Gorilla (original draftsperson unknown). The two Mammoth basins	
show the former location of the removed Mammoth seam	250
Figure 9.6 Mike Menghini, Tom Owen, and Mike Wehr using Cs-137 densitometer	
on the lower ash terrace	253
Figure 9.7 Fly and bottom ash silos for storage until placement on the NEPCO site	253
Figure 9.8 A truck and bulldozer used to transport and place ash in the Big Gorilla	
mine pool	254
Figure 9.9 Boils present approximately 300 feet from the Big Gorilla ash face	254
Figure 9.10 Photograph of bottom and fly ash from the NEPCO site	256
Figure 9.11 X-ray diffraction trace from a fly ash sample (pre-placement) and	
quartz, illite, and muscovite patterns for comparison	260
Figure 9.12 Three locations where the surface mine pool bottom was sampled on	
22 October 1999	261
Figure 9.13 X-ray diffraction trace from a post-placement minepool sample and	
quartz, illite, and muscovite patterns for comparison	261
Figure 9.14 Sample EDS scan from post-placement ash	262
Figure 9.15 SEM image of fly ash before placement in the Big Gorilla mine pool	262
Figure 9.16 SEM image of post-placement ash collected from the Big Gorilla	
minepool	263
Figure 9.17 SEM image of post-placement ash collected from the Big Gorilla	
minepool	263
Figure 9.18 Plots showing increasing concentrations of chemical constituents in the	
Big Gorilla mine pool with increasing depth 7/2/93	267
Figure 9.19 Plot of iron concentration in the Silverbrook outflow compared	
with the pre-ash placement concentration values from the Big Gorilla mine pool	268
Figure 9.20 Plot of sulfate concentration in the Silverbrook outflow compared	
with the pre-ash placement concentration values from the Big Gorilla mine pool	268
Figure 9.21 Plot of acidity concentration in the Silverbrook outflow compared	
with the pre-ash placement concentration values from the Big Gorilla mine pool	269
Figure 9.22 Plot of calcium concentration in the Silverbrook outflow compared	
with the pre-ash placement concentration values from the Big Gorilla mine pool	270
Figure 9.23 Plot of sodium concentration in the Silverbrook outflow compared	070
with the pre-ash placement concentration values from the Big Gorilla mine pool	270
Figure 9.24 Plots showing lack of stratification in concentrations of chemical	.
constituents in the Big Gorilla mine pool with depth $10/28/97$	272
Figure 9.25 The response of pH to monthly ash input in the Big Gorilla mine pool	273

Figure 9.26 a) Ash input (bars) versus alkalinity (points) in the Big Gorilla.	
Open circles are points where surface samples were collected at the western	
end of the lake during periods of prolonged ash input. Asterisks represent	
monthly samples collected at depth, during periods of increasing ash input.	
Solid diamonds represent samples collected during hiatuses in ash input, and	
triangles represent samples for which no silica data are available	273
Figure 9.27 Plot of alkalinity versus silica in the Big Gorilla mine lake. Open	
circles are points where surface samples were collected at the western end of	
the lake during periods of prolonged ash input. Asterisks represent monthly	
samples collected at depth, during periods of increasing ash input. Solid	
diamonds represent samples collected during hiatuses in ash input. Data	
collected by PA DEP	275
Figure 9.28 Photo of Big Gorilla mine pool with rim of calcite on 22 October 1999	277
Figure 9.29 X-ray diffraction trace of calcite rim above the water surface. Collected	
22 October 1999	277
Figure 9 30 X-ray diffraction trace of calcite rim below the water surface. Collected	
22 October 1999	278
Figure 9.31 SEM image of white precipitate from the Big Gorilla mine pool (250um)	279
Figure 9.32 SEM image of white precipitate from the Big Gorilla mine pool (10um)	279
Figure 9.33 SEM image of white precipitate from the Big Gorilla mine pool (10um)	280
Figure 9.34 Eh-pH diagram for sulfur species at standard conditions with total	
dissolved sulfur activity of 96 mg/L (adapted from Hem, 1985)	281
Figure 9.35 Sulfate concentrations in the Big Gorilla mine pool	281
Figure 9.36 Eh-pH diagram at 25° C for aqueous species in the Fe-O ₂ -H ₂ O system	
at 10 ⁻⁵ mg/kg (Langmuir, 1997)	283
Figure 9.37 Schematic illustration of the effects of pH on the solubility of trace	
elements occurring in the form of cations or oxyanions (Jones, 1995)	284
Figure 9.38 Calcium concentrations in the Silverbrook outflow 1989-2002	288
Figure 9.39 Location of the monitoring wells, Silverbrook outflow, Big Gorilla,	
and power plant on the NEPCO property	290
Figure 9.40 Sulfate, calcium, and hydrogen ion activity in wells 2 (a) and 3 (b).	
Corresponding aluminum, iron, hot acidity, and alkalinity concentrations for	
well 3 (c). Samples analyzed by PA DEP	292
Figure 9.41 Histogram of sulfate concentrations in well 3. Data collected by the	
PA DEP	293
Figure 9.42 Solubility plot constructed by Dr. Charles Cravotta, with data from the	
Silverbrook Basin, provided by the PA DEP. All Al values represent dissolved	
and suspended constituents combined (total). Red asterisks show data from the test	
borings	296
Figure 9.43 Compounds in the system CaO-SiO ₂ -H ₂ O (Taylor, 1964)	297
Figure 9.44 SEM image of ash from the eastern test boring in the ash platform	
at a depth of 50 to 52 feet. Long, thin particles are visible, and show evidence	
of cementitious phases forming	298
Figure 9.45 Saturation index values for 12 key minerals with mixing of the Silverbrook	
outflow and Big Gorilla waters	300

Chapter 10

Figure 10.1 How soil pH affects availability of plant nutrients and aluminu	309
Figure 10.2 Plant yields on acidic mines spoil covered with 20 cm depth of borrow	
topsoil or amended with biosolids (100 Mt ha ⁻¹), FGD (670 Mt ha ⁻¹), or	
FGD+biosolids	
(Stehouwer et al., 1998)	311
Figure 10.3 Distribution of exchangeable calcium, aluminum, and iron in the acidic	
mine spoil profile nine months after treatment application. (Error bars indicate	
the width of the LSD _{0.1} value for comparison of treatment means at each dept	h.)
(Stehouwer et al., 1998)	312
Chapter 11	

Figure 11.1 Range in proctor density measurements for a single FBC facility	322
Figure 11.2 Thermodynamic control over the solubility of aluminum in AMD and the	ne
Gorilla mine-pit lake waters. Plot constructed by Dr. Charles Cravotta, with an	
ettringite solubility line altered by the authors to best fit the Big Gorilla data	324
Figure 11.3 Scanning electron micrograph of ettringite growth in FBC ash	325
Figure 11.4 Development of C-S-H in ash	326
Figure 11.5 Model for calculation of hydraulic conductivity	327
Figure 11.6 Effects of leaching on pH of C-S-H-portlandite-silica system as	
a function continued leaching. (after Atkinson, 1985)	
Figure 11.7 Percentage leached of the smallest dimension of the Gorilla ash fill as a	
function of time based on an ash structure-controlled leaching model	
Figure 11.8 Percentage leached of the smallest dimension of the Gorilla ash fill as a	
function of time based on a geology-controlled leaching model	
Figure 11.9 Various possibilities for the interaction of heavy metals in a cementitiou	IS
matrix (after Gougar et al., 1996)	
Figure 11.10 Solubility (mg/L) vs. pH plots for selected metallic elements showing	
Minimum solubilities	