

FM100 Project

Appendix 2-C: Wetland Delineation & Stream Identification Report

July 2019 (Revised September 2020, December 2020) PF17-10-000: Public Prepared by: Mott MacDonald 5295 South Commerce Drive Suite 500 Murray, UT 84107

Prepared for: National Fuel Gas Supply Corporation 1100 State Street Erie, PA 16501

FM100 Project

Appendix 2-C: Wetland Delineation & Stream Identification Report Cameron, Clearfield, Clinton, Elk, McKean, and Potter Counties, PA

July 2019 (Revised September 2020, December 2020) PF17-10-000: Public

Contents

Ac	rony	ms		vi
1	Intr	oductio	٦	1
	1.1	General O	verview	1
2	Pro	ject Ove	erview	3
	2.1	Project Des	scription	3
	2.2	, Purpose ar	nd Need	4
	2.3	Land Requ	irements	4
	2.4	Horizontal	Directional Drill Locations	5
3	Re	gulatory	Authority	11
	3.1	Regulatory	Overview	11
4	Fie	ld Inves	tigation and Mapping Methods	13
1	4.4	Mathada		10
	4.1 12	Evaluation	of Existing Data	13
	4.2		etlands Inventory Mapping	17
	4.2.1	National H	vdrography Dataset	20
	423	National W	atershed Dataset	23
	4.2.4	Aerial Phot	ography	25
	4.2.5	NRCS Soil	Survey Geographic (SSURGO) Database	25
	4.3	Digital Map	ping Methods and Process	25
	4.3.1	Interpretati	on Techniques	25
	4.3.2	Quality Cor	ntrol Measures	26
	4.3.3	GPS Equip	ment Used and Quality Control	26
5	We	tland/W	aterbody Delineation Results	27
	51	Introduction		27
	5.2	General W	etland and Waterbody Descriptions	27
	0.2	5.2.1 For	rested Wetlands	27
		5.2.2 Sci	ub-Shrub Wetlands	28
		5.2.3 He	rbaceous Wetlands	28
		5.2.4 Pa	ustrine Unconsolidated Bottoms	29
		5.2.5 Pe	rennial Streams	29

		5.2.6 5.2.7	Intermittent Streams	29 29
		5.2.8	Jurisdictional Ditches	29
6	Imp	acts	to Wetlands and Waterbodies	31
	6.1	Impacts 6.1.1	s Pipeline Related Wetland Impacts	31 31
		6.1.2	Pipeline Related Waterbody Impacts	31
		6.1.3	Above-ground Facility Related Impacts	32
7	Ref	erend	ces	33
Atta	achn	nents	ı	35
Α.	Fig	ure 1	.1-1, Figures 1.1-2 and 1.1-3	37
B.	We	tland	& Stream Delineation Maps, Figure 4.1-1	39
C.	We	tland	Delineators Credentials	41
D.	US	ACE	Wetland Determination Data Forms	43
Ε.	Fiel	ld Su	rvey Site Photographs	45
F.	NR	CS N	/eb Soil Survey – Soil Unit Descriptions	47
		McKear Potter (n County Soils County Soils	49 52
		Elk and	I Cameron County Soils	57
		Clinton	County Soils ald County Soils	58 58
G.	Tab PS/	ole 4.2 A	2-4: NRCS Mapped Soils Located within t	he 61

H. Table 5.2-1: Field Delineated Wetlands within the PSA 85

I.	Table 5.2-2: Field Delineated Waterbodies within PSA	the 95
J.	Wetland Impacts	107
K.	Waterbody Impacts	119

Tables

Table 2.4-1: Project Resources Crossed by HDD	5
Table 2.3-1: Land Requirements for Project Activities	7
Table 2.3-2: Non-Public Access Roads Proposed for the Project	8
Table 4.1-1: Resources Used to Prepare and Perform Wetland	
Delineation Survey and Report	16
Table 4.2-1: NWI Wetlands within the PSA	17
Table 4.2-2: USGS NHD Waterbodies within the PSA	20
Table 4.2-3: USGS WBD Watersheds Crossed by the PSA	23
Table 4.2-4: NRCS Mapped Soils Located Within the PSA	Attachment G
Table 5.2-1: Field Delineated Wetlands within the PSA	Attachment H
Table 5.2-2: Field Delineated Waterbodies within the PSA	Attachment I
Table 6.1-1: Total Wetland Impacts for Project Construction and Operation	Attachment J
Table 6.1-2: Total Temporary Waterbody Impacts During Project Construction	Attachment K

Figures

Figure 1.1-1: Project Overview Map	Attachment A
Figure 1.1-2: Topographic Project Map	Attachment A
Figure 1.1-3: Aerial Project Map	Attachment A
Figure 4.1-1: Wetland & Stream Delineation Maps	Attachment B

Acronyms

ATWS	additional temporary workspace
Commission	Federal Energy Regulatory Commission
CV	culvert
CWA	Clean Water Act
DBH	diameter at breast height
DD	decimal degrees
EV	exceptional values
FERC	Federal Energy Regulatory Commission
ft	feet
GIS	Geographic Information System
GPS	Global Positioning System
HDD	horizontal directional drilling
HGM	hydrogeomorphic method
hp	horsepower
HUC	hydrologic unit code
mi	miles
MP	milepost
NASIS	National Soil Information System
National Fuel	National Fuel Gas Supply Corporation
NGA	Natural Gas Act
NHD	National Hydrography Dataset
NRCS	Natural Resources Conservation Service
NWI	National Wetlands Inventory
OHWM	Ordinary High-Water Mark
OPP	Over Pressure Protection
PA	Pennsylvania
PADEP	Pennsylvania Department of Environmental Protection
PASPGP-5	Pennsylvania State Programmatic General Permit-5
PEM	palustrine emergent wetland

PFO	palustrine forested wetland
PJD	preliminary jurisdictional determination
Project	FM100 Project
PSA	Project Study Area
PSS	palustrine scrub-shrub wetland
PUB	palustrine unconsolidated bottom
QA	quality assurance
QC	quality control
R2UB	riverine lower perennial streams
R3UB	riverine upper perennial streams
R4SB	riverine intermittent streambed
R4SBCx	intermittent man-made drainage channels
RAP	rapid assessment protocol
ROW	right(s)-of-way
RPW	Relatively Permanent Waters
RU	representative upland plot
RW	representative wetland plot
SC	stream crossing plot
SSURGO	Soil Survey Geographic database
TNW	Traditional Navigable Water
Transco	Transcontinental Gas Pipeline Company, LLC
TWS	temporary workspace
UNT	unnamed tributary
USACE	United States Army Corps of Engineers
USDA	United States Department of Agriculture
USFWS	United States Fish and Wildlife Service
USGS	United States Geological Survey
WBD	Watershed Boundary Dataset
WD	wetland determination plot
WF	wetland boundary flag plot
WOUS	Waters of the United States

This page intentionally left blank.

1 Introduction

1.1 General Overview

Mott MacDonald, on behalf of National Fuel Gas Supply Corporation (National Fuel), conducted a wetland and waterbody field delineation from September 29 through October 11, 2017, as well as on June 13, 2018, and July 31 through August 8, 2018 to identify potential "Waters of the United States," as defined by the United States Army Corps of Engineers (USACE) (33 CFR 328.3) present within the environmental survey corridor developed for the proposed FM100 Project (Project). The Project is located within portions of Cameron, Clearfield, Clinton, Elk, McKean, and Potter Counties Pennsylvania. Additional surveys were conducted from July 28 through August 7, 2020 to address comments received by the Pennsylvania Department of Environmental Protection (PADEP) in their Technical Deficiency letter dated July 10, 2020. Revisions to this report include incorporating additional survey data collected in response to PADEP comments.

The findings included in this report are based on review of publicly available mapping and field investigations. Publicly available mapping includes 7.5-minute United States Geological Survey (USGS) topographic quadrangles, USGS National Hydrography Dataset (NHD) streams and waterbodies, USGS Watershed Boundary Dataset (WBD), United States Department of Agriculture (USDA) Natural Resource Conservation Service (NRCS) soil survey data, United States Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) data, Pennsylvania Department of Environmental Protection (PADEP) Wetlands and Chapter 93 Streams mapping, and aerial photography.

The field survey area for the proposed Line YM58 and Line KL Extension consisted of a typical 300-foot-wide survey corridor developed to provide 100-feet on the non-working side and 200-feet on the working side of the proposed pipeline, a 50-foot-wide corridor centered on proposed access roads, and additional area as needed to capture proposed facility site footprints, extra workspace areas for anticipated horizontal directional drill (HDD) crossings, road crossings, and foreign pipeline crossings; for a survey area of approximately 1,480.5 acres. The field survey area for the proposed Line YM224 Loop consisted of a 200-foot-wide survey corridor developed to provide 50feet on the non-working side and 100-feet on working side of the proposed pipeline, and a 50-footwide corridor centered on proposed access roads for a survey area of 37.1 acres. The field survey area developed for the proposed Tamarack Compressor Station is approximately 48.6 acres. The field survey area for the proposed FM100 Abandonment consisted of a typical 50-foot-wide survey corridor developed to encompass the maintained permanent easement of the existing line, a 50foot-wide corridor centered on proposed access roads, and additional area as needed to capture proposed facility site abandonment footprints, road crossings, and foreign pipeline crossings; for a survey area of approximately 309.8 acres. Combined, the Line YM58, Line KL Extension, Line YM224 Loop, Tamarack Compressor Station, and FM100 Abandonment survey corridors encompass a total of approximately 1,876 acres which is known in this report as the Project Study Area (PSA). An overview map showing the location of the proposed Project and associated facility sites is provided as Figure 1.1-1 in Attachment A.

The following sections of this report describe the Project's purpose and need, location, and land requirements; and include a discussion of the methods used to identify and delineate wetlands and waterbodies for the Project, and provide the results of the wetland and waterbody delineations performed within the PSA.

This page intentionally left blank.

2 **Project Overview**

2.1 **Project Description**

National Fuel Gas Supply Corporation (National Fuel) is applying to the Federal Energy Regulatory Commission (Commission or FERC) for a Certificate of Public Convenience and Necessity under Sections 7(b) and 7(c) of the Natural Gas Act (NGA) for authorization to construct, operate and abandon various facilities in connection with its proposed FM100 Project (Project) located in Cameron, Clearfield, Clinton, Elk, McKean, and Potter counties, Pennsylvania (PA). The Project includes:

Pipelines:

- Installation of approximately 29.5 miles of 20-inch-diameter steel pipeline (Line YM58) from the proposed Interconnect SEM0-4640 near the proposed Marvindale Compressor Station site in Sergeant Township, McKean County, PA (Marvindale Interconnect) and extending to a proposed Over Pressure Protection (OPP) Station HEP0-4639 adjacent to existing Station HEP0-840T between Line YM50 and Line YM224 in Hebron Township, Potter County, PA (Carpenter Hollow OPP Station). The proposed alignment generally parallels the existing Tennessee Gas Pipeline Company, L.L.C. (TGP) 300 Lines.
- Installation of approximately 1.41 miles of 24-inch-diameter steel pipeline looping the existing National Fuel Line YM224 in Potter County, PA (Line YM224 Loop).
- Installation of approximately 0.4 miles of 12-inch-diameter steel pipeline extension of existing Line KL in Sergeant Township, McKean County, PA (Line KL Extension).

Compressor Stations:

- Installation of the proposed 15,165 horsepower (hp) (ISO-rated) Marvindale Compressor Station in Sergeant Township, McKean County, PA.
- Installation of the proposed 22,220 hp (ISO-rated) Tamarack Compressor Station in Leidy Township, Clinton County, PA.

Interconnections/Stations:

- > Proposed Marvindale Interconnect.
- > Proposed Carpenter Hollow OPP Station.
- Modification of existing Leidy Interconnect LDC 2245 with Transcontinental Gas Pipeline Company, LLC (Transco) at the Leidy M&R Station (Clinton County, PA).

Abandonments:

- > Abandonment and removal of the Costello Compressor Station (Potter County, PA).
- > Abandonment in place of approximately 44.9 miles of 12-inch-diameter steel pipeline (existing Line FM100) and appurtenances (Cameron, Clearfield, Elk and Potter Counties, PA).
- > Abandonment and removal of Station WHP-MS-4317X (Wharton Township, Potter County, PA).

Figure 1.1-2 in Attachment A illustrates the location of the proposed alignment and facilities, including proposed work sites for facilities to be abandoned on 1:24,000 USGS 7.5-minute

topographic maps. Figure 1.1-3 in Attachment A illustrates the location of the proposed alignment and facilities including proposed work sites for facilities to be abandoned on aerial imagery.

2.2 Purpose and Need

The primary purpose of the Project, as initially designed and pre-filed with FERC (Docket No. PF17-10-000), is to modernize a portion of National Fuel's existing pipeline system. The Project will allow for the removal from service and abandonment of approximately 44.9 miles of vintage steel pipe. National Fuel's risk analysis (Integrity Management Risk Model) has prioritized the replacement of these aging facilities. In order to continue to provide the existing transportation and storage services provided by the facilities proposed to be abandoned, approximately 29.5 miles of new 20-inch-diameter coated steel pipeline, 0.4 miles of new 12-inch-diameter coated steel pipeline to be used as a suction/discharge header, and 4,055 hp of compression and related facilities at the proposed Marvindale Compressor Station will be installed. The Project will enhance the reliability and safety of the National Fuel system for transportation services, local distribution market needs, storage management purposes and local production collection and transportation. Line FM100 is National Fuel's only connecting pipeline between its western and eastern operating systems.

In addition to modernizing its existing system, National Fuel also proposes to construct additional facilities designed to create 330,000 Dth/day of incremental transportation capacity ("Transportation Capacity") from the Sergeant Township area to Transco at Leidy, PA. These additional facilities include 11,110 hp at the proposed Marvindale Compressor Station, the 22,220 hp at the proposed Tamarack Compressor Station, an increase in the Line YM58 pipe diameter to 20-inch, and measurement upgrades at National Fuel's interconnection with Transco at Leidy.

The Transportation Capacity, which is fully subscribed to Transco under a proposed capacity lease, will provide upstream gas supply from shale producing areas in central PA to Transco's "Leidy South Project" (Docket No. PF19-1-000) on behalf of Transco's foundation shipper. The companion projects will allow abundant, reliable, and economic gas supply to access the interstate pipeline system grid where it can reach key consuming market centers in the northeastern United States via the Transco pipeline system.

The proposed in-service date for the completed Project is December 2021.

2.3 Land Requirements

The typical construction right(s)-of-way (ROW) for the Line YM58 and the Line YM224 Loop will be limited to 75 feet in width, with 50 feet of permanent ROW and 25 feet of temporary workspace (TWS) on the working side of the ROW. Additional temporary workspace (ATWS) will be limited to the extent practicable to provide adequate workspace for road crossings, horizontal directional drill (HDD) or conventional bore locations, access roads turnarounds, topsoil stripping, foreign line crossings, equipment maneuverability, stream crossings, and to allow crews to safely construct facilities. Conversely, in areas where the construction ROW must be restricted (e.g., near residential areas, through wetlands, etc.) ATWS would be reduced.

Line FM100 will require periodic removal of aboveground appurtenances and exposure of the pipeline for grouting purposes at select locations (e.g., wetland, waterbody, road and railroad crossings). In these circumstances, disturbance will be limited to National Fuel's existing ROWs where bell hole locations will be excavated to allow for exposure of the existing pipeline and grouting as required. However, National Fuel completed environmental surveys of the entire ROW in order to provide for allowable workspace along the full extent of the pipeline.

Following construction National Fuel will retain a 50-foot wide permanent easement for operation and maintenance of the new pipelines (Line YM58 and Line KL Extension); however, only a a 10-foot wide (centered on the pipeline) area will be maintained through wetlands for operational and

maintenance purposes. TWS, ATWS and most of the permanent ROW will return to preconstruction land uses. Non-public access roads will be utilized for construction of the Project, most of which are existing roads; identified in Table 2.3-2. Proposed permanent access roads will be maintained after construction to access the ROW and aboveground facilities for operations and maintenance purposes; the rest of the aboveground facilities can be accessed directly off public ROWs or via existing access roads. For abandonment activities, non-public access roads will be temporarily utilized, as listed in Table 2.3-2.

Access roads will be necessary to transport equipment, crews, and materials to the construction ROW. The Project will use existing and new temporary access roads for this purpose. Permanent access roads will be used to support regular and ongoing operational and maintenance activities (e.g., periodic inspections, ROW maintenance). National Fuel will seek and obtain the necessary property rights and/or governmental approvals prior to the use of such roads. Public roads are available for use as access roads without approvals, subject to posted weight restrictions. Safe and accessible conditions (e.g., posted warnings, roadways clear of significant debris) will be maintained at public roadway crossings and access points where appropriate during construction of the Project. A general summary of land requirements for Project activities is presented in Tables 2.3-1 and 2.3-2.

2.4 Horizontal Directional Drill Locations

As identified below in Table 2.4-1, certain resources crossed by the Project will utilize HDD or conventional bore construction methods to minimize surface impacts. The reduction in acreage impact due to HDD or conventional bore crossings is not reflected in the total Project impact numbers discussed herein. Reductions to resource impacts because of HDD or conventional bore crossings are discussed further in Section 6 of this report.

Resource Name	Entry/Exit	Crossing Length (ft)	Area ¹ (acres)	Drill Rig Location ²
Potato Creek	6.7/7.0	1,060	1.07	Exit side
Portage Creek	14.0/14.2	1,070	1.07	Exit side
Allegheny River	14.8/15.0	950	0.98	Exit side
TOTALS		3,080	3.12	

Table 2.4-1: Project Resources Crossed by HDD

¹ Area crossed by HDD reported includes the full length and width of the permanent ROW.

² If geotechnical strata indicates high amounts of unconfined material, the drill rig location may change or potentially be from both sides as a drill/intersect. The rig will be located as indicated for pullback operations

Remainder of this page intentionally left blank.

This page intentionally left blank.

Table 2.3-1: Land Requirements for Project Activities

Project Component	Township; County	Permanent Easement (acres)	Aboveground Facilities ¹ (acres)	Pipeline Temporary Workspace (acres)	Aboveground Facilities Temporary Workspace (acres)	Additional Temporary Workspace (acres)	Contractor Yard and Staging Areas (acres)	Temporary Access Roads (acres)	Permanent Access Roads (acres)	Totals (acres)
Line YM58	 Sergeant, Norwich, Keating, Liberty; McKean Roulette, Pleasant Valley, Clara, and Hebron; Potter 	178.5	0.2	85.9		31.4	36.6	58.3	57.6	448.5
Carpenter Hollow OPP Station	Hebron; Potter		0.4							0.4
Line YM224 Loop	Hebron and Allegany; Potter	8.5	0.2	4.3		1.2			1.5	15.7
Line KL Extension	Sergeant; McKean	4.3	0.1	0.9		0.1				5.4
Marvindale Interconnect	Sergeant; McKean		1.6		6.3					7.9
Marvindale Compressor Station	Sergeant; McKean		3.7		8.2		5.0	0.5	3.1	20.5
Tamarack Compressor Station	Leidy; Clinton		4.6		7.6		2.8		0.6	15.6
Line FM100 Abandonment	 > Huston and Lawrence; Clearfield > Jay and Benezette; Elk > Gibson, Driftwood, Lumber, and Grove; Cameron > Portage and Wharton; Potter 			5.6		9.0		6.6		21.2
Abandon and Remove Costello Compressor Station	Portage; Potter		1.1					0.2		1.3
Abandon and Remove Station WHP-MS-4317X	Wharton; Potter		0.5					0.9		1.4
TOTALS		191.3	12.4	96.7	22.3	41.7	44.4	66.5	62.8	538.1

¹ Anode beds and MLV's have been included in the applicable pipeline segment.

² Total calculations subject to rounding error.

Table 2.3-2: Non-Public Access Roads Proposed for the Project

	Access Road	MP	Status	Proposed Use	Surface Type	Length (mi)	Width (ft)	Area (acres)	Improvements/ Modifications Required ²
Lines Y	M58 and KL Exte	nsion							
PAR 3		2.6	Existing	Permanent	Gravel/dirt	1.3	30	4.4	None
PAR 5		4.5	Existing	Permanent	Gravel/dirt	3.5	30	11.8	None
PAR 9		8.1	New	Permanent	Gravel/dirt	<0.1	15	0.1	Grading
PAR 12		9.6	Existing	Permanent	Gravel/dirt	2.2	30	7.5	None
PAR 21		14.1	Existing	Permanent	Gravel/dirt	<0.1	30	0.1	None
PAR-37		15.6	New	Permanent	Gravel/dirt	<0.1	15	0.1	Grading
PAR 25		17.7	Existing	Permanent	Gravel/dirt	4.3	30	15.5	None
PAR 30		21.2	Existing	Permanent	Gravel/dirt	3.6	30	10.4	None
PAR 31		23.6	Existing	Permanent	Gravel/dirt	1.2	30	3.6	None
PAR 33		25.2	Existing	Permanent	Gravel/dirt	1	30	3.5	None
PAR-35		29.5	Existing	Permanent	Gravel/dirt	0.2	30	0.6	None
TAR 4		2.6	Existing	Temporary	Gravel/dirt	0.2	30	0.5	None
TAR 6		4.9	Existing	Temporary	Gravel/dirt	2.1	30	7.5	None
TAR 7		6.5	Existing	Temporary	Gravel/dirt	0.1	30	0.2	None
TAR 8		6.9	New	Temporary	Gravel/dirt	<0.1	30	0.1	Grading
TAR 10		9.1	Existing	Temporary	Gravel/dirt	1.7	30	5.9	None
TAR 11		9.1	Existing	Temporary	Gravel/dirt	0.5	30	1.7	None
TAR 13		9.6	Existing	Temporary	Gravel/dirt	2.1	30	7.1	None
TAR 14		11.3	Existing	Permanent	Gravel/dirt	2.4	30	7	None
TAR 15		12	Existing	Temporary	Gravel/dirt	0.3	30	1	None
TAR 16		12.2	Existing	Temporary	Gravel/dirt	0.3	30	1.2	None
TAR-35		6.9	Existing	Temporary	Gravel/dirt	0.1	10	<0.1	None
TAR 17		12.6	Existing	Temporary	Gravel/dirt	1.8	30	6.4	None
TAR 18		12.6	Existing	Temporary	Gravel/dirt	0.4	30	1.3	None
TAR 19		12.7	Existing	Temporary	Gravel/dirt	<0.0	30	<0.1	None
TAR 20		12.9	Existing	Temporary	Gravel/dirt	0.2	30	0.7	None
TAR 22		14.8	Existing	Temporary	Paved	0.5	30	1.8	None

9 | National Fuel Gas Supply Corporation | PF17-10-000: Public | FM100 Project

Access Road	MP	Status	Proposed Use	Surface Type	Length (mi)	Width (ft)	Area (acres)	Improvements/ Modifications Required ²
TAR 23	14.4	Existing	Temporary	Gravel/dirt	0.3	30	1.2	None
TAR 24	17	Existing	Temporary	Gravel/dirt	0.6	30	2.4	None
TAR 26	18	Existing	Temporary	Gravel/dirt	1.4	30	4.9	None
TAR 28	18	Existing	Temporary	Gravel/dirt	<0.1	30	<0.1	None
TAR 27	18.4	Existing	Temporary	Gravel/dirt	0.3	30	1	None
TAR 29	18.4	Existing	Temporary	Gravel/dirt	<0.1	30	0.1	None
TAR 32	24	Existing	Temporary	Gravel/dirt	1	30	4	None
TAR 34	25.2	Existing	Temporary	Gravel/dirt	0.6	30	2.3	None
				LINE YM58 TOTAL:	34.2	1000	115.9	
Line YM224 Loop								
PAR 36	0	Existing	Permanent	Gravel/dirt	0.4	30	1.4	None
PAR 40	1.4	New	Permanent	Gravel/dirt	<0.1	15	0.1	Grading
				LINE YM224 TOTAL:	0.4	45	1.5	
Marvindale Compressor	Station							
PAR-1	0.0	Existing	Permanent	Pavement	0.5	50	3.1	Widening
TAR-2	0.2	Existing	Temporary	Gravel/dirt	0.2	30	0.6	None
		I	MARVINDALE COMPRESS	SOR STATION TOTAL:	0.7	80	3.7	
Tamarack Compressor S	tation							
PAR-44	N/A	New	Permanent	Gravel/dirt	0.3	20	0.6	Grading
			TAMARACK COMPRESS	SOR STATION TOTAL:	0.3	20	0.6	
Line FM100 Abandonmer	nt							
HSC-832-Access	0	Existing	Temporary	Gravel/dirt	<0.1	15	0.1	None
RR Access	0.1	Existing	Temporary	Gravel/dirt	0.3	15	0.6	None
UNK AC 4	10	Existing	Temporary	Gravel/dirt	<0.1	15	<0.1	None
Rectifier 167, 168 Access	11.4	Existing	Temporary	Gravel/dirt	0.3	15	0.5	None
MLV BZE0-5810 Access	12	Existing	Temporary	Gravel/dirt	0.1	15	0.2	None
MLV GIC0-5042 Access	22.3	Existing	Temporary	Gravel/dirt	0.6	15	1.1	None
UNK AC 3	23	Existing	Temporary	Gravel/dirt	0.1	15	0.1	None
RR South Access	23.1	Existing	Temporary	Gravel/dirt	<0.1	15	<0.1	None
Rectifier 171 Access	23.5	Existing	Temporary	Gravel/dirt	0.1	15	0.2	None

10 | National Fuel Gas Supply Corporation | PF17-10-000: Public | FM100 Project

Access Road	MP	Status	Proposed Use	Surface Type	Length (mi)	Width (ft)	Area (acres)	Improvements/ Modifications Required ²
SR 555 North Access	23.6	Existing	Temporary	Gravel/dirt	0.3	15	0.4	None
RR Access	26.2	Existing	Temporary	Gravel/dirt	0.6	15	1.1	None
UNK AC 1	27	Existing	Temporary	Gravel/dirt	<0.1	15	0.1	None
SR 120 North Access	27.4	Existing	Temporary	Gravel/dirt	0.5	15	0.9	None
Rectifier 873, 872 Access	29.7	Existing	Temporary	Gravel/dirt	0.3	15	0.5	None
UNK AC 2	30.8	Existing	Temporary	Gravel/dirt	0.3	15	0.5	None
MLV LUC0-5039 Access	33.4	Existing	Temporary	Gravel/dirt	0.1	15	0.3	None
			FM100 AB	ANDONMENT TOTAL:	3.6	240	6.6	
WHP-MS-4317X								
POP0 4317 Access	40.3	Existing	Temporary	Gravel/dirt	0.5	15	0.9	None
			W	HP-MS-4317X TOTAL:	0.5	15	0.9	
Costello Compressor Sta	tion							
POP0 1370 Access	44.1	Existing	Temporary	Gravel/dirt	0.1	15	0.2	None
COSTELLO COMPRESSOR STATION TOTAL:			0.1	15	0.2			
				PROJECT TOTAL:	39.8	1,725	129.3	

¹ Acreage calculation subject to rounding error. Areas less than 0.1 acre will not show up in total.

² Access roads indicating "None" for Improvements/Modifications will require maintenance during construction activities. This may include minor grading to maintain surface conditions and temporary measures such as matting to protect resources and other erosion control best management practices as identified within the ESCGP-3 application; however, these access road will be restored to pre-construction conditions following completion of construction activities.

Remainder of this page intentionally left blank.

3 Regulatory Authority

3.1 Regulatory Overview

Wetlands in Pennsylvania are regulated under the authority of the Dam Safety and Encroachments Act and Dam Safety and Waterway Management Rules and Regulations (Title 25, Pennsylvania Code, Chapter 105). Wetland and Waterways permitting in Pennsylvania is based on the Clean Streams Law and the Dam Safety and Encroachments Act, rather than Section §404 of the Clean Water Act (CWA).

In accordance with 105.17, wetlands are Exceptional Value (EV) wetlands if they are:

- > In an EV watershed;
- > In or along the floodplain of a wild trout stream and the floodplain of its tributaries;
- > Within a designated National or State wild or scenic river corridor;
- > Along a drinking water supply and maintain the quality & quantity of the supply;
- > Threatened and/or endangered species are present; and
- > Hydrologically connected to OR located within 0.5-mile of wetlands that are habitat for flora or fauna AND maintain the habitat of the threatened or endangered species.

Applications for water obstructions and encroachments, including dredge and fill activities, are reviewed by the Regional Soils and Waterways permitting staff. Water obstructions and encroachments must comply with Pennsylvania's Clean Streams Law which requires that all earth moving activities must have an erosion and sedimentation control plan.

The USACE has issued a Pennsylvania State Programmatic General Permit #5 (PASPGP-5). This permit is a federal CWA, Section 404 Permit that authorizes the discharge of dredge and fill material into waters of the United States (WOUS). In most instances, PASPGP-5 can be issued by the PADEP or a county conservation district with approved Chapter 105 water obstruction and encroachment permits (USACE, 2016).

The USACE Ordinary High-Water Mark (OHWM) is a jurisdictional benchmark for administering its regulatory program in navigable waterways under Section 10 of the Rivers and Harbors Act and in Relatively Permanent Waters (RPW) under Section 404 of the CWA. The OHWM is the location that represents the approximate line on the shore established by fluctuations of water as indicated by physical characteristics such as shelving, destruction of terrestrial vegetation, presence of litter or debris, bed and banks, or changes in the character of soil. The USACE may also assert jurisdiction over non-navigable tributaries that have a channel and OHWM but do not flow year-round or have continuous flow at least seasonally if they demonstrate a significant nexus with a Traditional Navigable Water (TNW). These waterbodies are classified as non-navigable, non-RPWs.

For the PSA, all aquatic resources that have an identifiable OHWM or meet the Pennsylvania technical guidance and procedures for identifying and delineating wetlands have been identified. The Project will proceed with a Preliminary Jurisdictional Determination (PJD) and will assume that

all aquatic resources meeting the technical guidance for OHWM or wetland determination will be considered jurisdictional waters of the United States.

Remainder of this page intentionally left blank.

4 Field Investigation and Mapping Methods

4.1 Methods

Wetland and waterbody delineation field surveys were conducted by qualified biologists trained in wetland delineation and stream assessment. The procedures used in the identification and delineation of wetlands followed both the routine determination method established within the Corps of Engineers Wetland Delineation Manual (USACE 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0) (USACE, 2012).

Wetlands and waterbodies were classified in the field using the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al., 1979). Wetland indicator classification for vegetation identified to the species level were recorded based on the National Wetland Plant List: 2016 (Lichvar et al., 2016). Hydrology, soils, and vegetation were examined throughout the PSA at discreet plot locations. Field plot locations and aquatic resource boundaries were delineated in the field by recording positional locations using a Trimble GeoXH, Geoexplorer 6000 Series, submeter hand-held global positioning system (GPS) unit. Delineated wetland boundaries were also marked in the field using pink flagging tape unless the boundary extended into a managed hayfield, across a maintained ROW, or if livestock were present. If a wetland extended beyond the PSA boundary, the wetland was designated as "open-ended". The OHWM of streams were delineated alongside both banks for streams greater than 12-feet in width. For streams less than 12-feet in width, the centerline of the stream was delineated, and the estimated average width was recorded and used to buffer the delineated centerline. Streams within the PSA were classified as either perennial, intermittent, or ephemeral, in accordance with Pennsylvania regulations based on the permanence or duration of flow, as follows:

- > Perennial waterbodies typically flow or contain standing water year-round, and under normal circumstances, support populations of fish and macroinvertebrates.
- Intermittent waterbodies flow or contain standing water seasonally, are typically dry for part of the year, and do not usually support populations of fish or macroinvertebrates which are directly dependent on water.
- Ephemeral waterbodies generally contain water only in response to precipitation or spring snowmelt, and usually do not support populations of fish or macroinvertebrates dependent on water.

Field surveys were conducted from from September 29 through October 11, 2017, as well as on June 13, 2018, and July 31 through August 8, 2018. Additional surveys were conducted from July 28 through August 7, 2020 to address comments received by PADEP in their Technical Deficiency letter dated July 10, 2020. The pedestrian meander surveys included a visual observation of proposed Project workspaces and facility footprints and access roads. The field survey area for the proposed Line YM58 and Line KL Extension consisted of a typical 300-foot-wide survey corridor developed to provide 100-feet on the non-working side and 200-feet on the working side of the proposed pipeline, a 50-foot-wide corridor centered on proposed access roads, and additional area as needed to capture proposed facility site footprints, extra workspace areas for anticipated HDD crossings, road crossings, and foreign pipeline crossings; for a survey area of 1,480.5 acres. The

field survey area for the proposed Line YM224 Loop consisted of a 200-foot-wide survey corridor developed to provide 50-feet on the non-working side and 100-feet on working side of the proposed pipeline, and a 50-foot-wide corridor centered on proposed access roads for a survey area of 37.1 acres. The field survey area developed for the proposed Tamarack Compressor Station is approximately 48.6 acres. The field survey area for the proposed FM100 Abandonment consisted of a typical 50-foot-wide survey corridor developed to encompass the maintained permanent easement of the existing line, a 50-foot-wide corridor centered on proposed access roads, and additional area as needed to capture proposed facility site abandonment footprints, road crossings, and foreign pipeline crossings; for a survey area of approximately 309.8 acres. Combined, the Line YM58, Line KL Extension, Line YM224 Loop, Tamarack Compressor Station, and FM100 Abandonment survey corridors encompass a total of approximately 1,876 acres which is known in this report as the Project Study Area (PSA). An overview map showing the location of the proposed Project and associated facility sites is provided as Figure 1.1-1 in Attachment A. The PSA configuration, wetland and stream delineations, and GPS points collected are represented in Figure 4.1-1, Attachment B. The credentials of the wetland delineator are included in Attachment C.

Field surveys determined wetland/upland boundaries, stream OHWM boundaries, and identified and described general plant communities and habitats present in the areas of potential disturbance for the proposed Project. Pedestrian meander surveys included transects throughout the PSA to develop a comprehensive species list, provided in section 5.2, and to conduct wetland and waterbody delineation surveys at specific habitat edges for determining the areal extent of the wetland and other aquatic resources in the PSA. The PSA was configured to encompass all proposed Project facilities and construction limits at the time of the survey, and to allow for Project modifications within a surveyed corridor if workspace changes are necessary. The PSA is not the Project area of impact, but a study boundary to encompass all areas of potential ground disturbance for the construction of the proposed Project and to provide information on the extent and character of wetlands, waterbodies and other habitats within vicinity of the Project.

Field surveys were supplemented with a review of United States Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) mapping, USDA-NRCS soils mapping, aerial photography acquired 06/03/2017, and local landscape topographic 10-foot contours to assist in identifying probable locations for wetlands and waterbodies throughout the PSA. The PADEP Open Data Portal was also utilized to obtain data on Chapter 93 streams in the Project area (PADEP, 2018). During field evaluations, detailed information at test plots (typically configured as a 30-foot radius circle for forested and scrub-shrub sites, and a 5-foot radius circle for herbaceous vegetation) was recorded in representative vegetation types, often in paired upland and wetland locations for determining wetland boundaries. At detailed test plot locations, a USACE Routine Wetland Determination Data Form for the Eastern Mountains and Piedmont Region was completed. These plot locations are considered the Wetland Determination (WD) plot type for this report. For each wetland identified, the wetland/upland boundary was delineated and flagged with pink tape and positions recorded in the field using the Wetland Flagging (WF) GPS plot type. Other plot types utilized during the field evaluation include:

- Culvert (CV) The CV plot type is used to document the location of a culvert structure for erosion and sediment control planning, design or construction concerns.
- Representative Upland (RU) The RU plot type is a simple photographic point GPS location used to document the upland habitat type or land use present at a specific location. Soils, vegetation and hydrology indicators are visually assessed prior to making an upland determination.
- Representative Wetland (RW) The RW plot type is a photographic point GPS location used to document the presence of a wetland with similar characteristics to a nearby

wetland previously identified and described at a WD plot. This plot type is often used to document a wetland mosaic or a series of small wetlands and seeps within an area. Soils, vegetation and hydrology indicators are visually assessed prior to making a wetland determination.

Stream Crossing (SC) – The SC plot type is used to document the location and OHWM extent of a linear waterbody (i.e., ephemeral, intermittent, or perennial streams). Photographs and field notes are recorded at the proposed crossing location. The OHWM of the stream is determined in the field in accordance with USACE guidelines. This plot type is also used to delineate non-jurisdictional man-made ditches and canals for erosion and sediment control planning, design, or construction concerns.

Field plot locations, including aquatic resource boundary flag locations, were collected using submeter, mapping grade GPS units (e.g., Trimble). All GPS data were post-processed using the appropriate base station for the PSA to achieve accurate positional information. Figure 4.1-1 in Attachment B presents the Project wetland and stream mapping and location of field plot GPS data collected for this evaluation. Field investigators used working field maps with an aerial imagery base and topographic 10-foot contours for orientation and to manually record approximate locations of field plots while in the field. Field notes were recorded for each plot location within a Rite-in-the-Rain[®] field logbook. USACE Wetland Determination Data Forms completed at WD plot locations are provided in Attachment D; organized by team leader. Site photos taken at plot locations are included in this report as Attachment E; organized by team leader, then by plot type and plot number.

Table 4.1-1 provides a summary of the resources used to prepare and perform the wetland delineation field surveys and this report. Additionally, Section 4 of this report provides a description of the resources used to map aquatic resources and other habitats or land uses within the Project geographic information systems (GIS).

Remainder of this page intentionally left blank.

Parameter	Method or Tool	Website	Reference
	Corps of Engineers Wetlands Delineation Manual	www.cpe.rutgers.edu/Wetlands/1987-Army- Corps-Wetlands-Delineation-Manual.pdf	Environmental Laboratory (1987). Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
	Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0)	http://www.usace.army.mil/Missions/Civil- Works/Regulatory-Program-and- Permits/reg_supp/	U.S. Army Corps of Engineers. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region Version 2.0, ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-20. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
	USFWS NWI / Cowardin	http://www.fws.gov/nwi/Pubs_ Reports/Class_Manual/class_titlong.htm	Cowardin, L. M., V. Carter, F. C. Golet, E. T. LaRoe 1979. <i>Classification of Wetlands and</i>
Delineation	Hydrogeomorphic Classification (HGM) System	http://el.erdc.usace.army.mil/w etlands/pdfs/wrpde4.pdf	 Brinson, M. M. (1993). A hydrogeomorphic classification for wetlands, Technical Report WRP- DE-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
	USFWS NWI Maps	http://www.fws.gov/wetlands/Data/Data- Download.html	Website
	Pennsylvania Wetland Condition Level 2 Rapid Assessment Protocol (Document No. 310- 2137-002)	www.dep.pa.gov	Website
	Pennsylvania Riverine Condition Level 2 Rapid Assessment Protocol (Document No. 310- 2137-003)	www.dep.pa.gov	Website
Soils	NRCS Soil Surveys - SSURGO GIS Dataset	http://www.nrcs.usda.gov/wps/portal/nrcs/soi lsurvev/soils/survev/state/	Website
Hydrology	USGS National Hydrography Dataset	ftp://nhdftp.usgs.gov/DataSets/Staged/State	Website
	USACE 2016 National Wetland Plant List	http://rsgisias.crrel.usace.army.mil/NWPL/	Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. <i>The National Wetland</i> <i>Plant List</i> . 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X.
Vegetation	NRCS PLANTS Database	http://plants.usda.gov/java/	Website
	Plant Guides	N/A	Numerous sources

Table 4.1-1: Resources Used to Prepare and Perform the Wetland Delineation Survey and Report

4.2 Evaluation of Existing Data

Prior to initiating field studies within the PSA, existing sources of GIS data with relevance to mapping aquatic and biological resources were identified, compiled and analyzed within the Project GIS. These are described in Sections 4.2.1 through 4.2.5.

4.2.1 National Wetlands Inventory Mapping

The USFWS is the principal Federal agency that provides information to the public on the extent and status of the Nation's wetland and aquatic resources. The USFWS's NWI Program has developed a series of topical maps that show the extent and character of the Nation's wetlands and deepwater habitats. The NWI wetlands mapping is often available in two forms, non-digital hard-copy paper maps and digital geospatial data for use in GIS.

NWI mapping data for the PSA is available to the public as a digital GIS data layer. Table 4.2-1 provides a summary of the NWI mapping within the PSA. For reference, the NWI mapping data layer is presented in Figure 4.1-1, Attachment B.

Although not reflected on the table below, PADEP's modeled wetland data was reviewed at the request of PADEP prior to follow-up surveys on Line FM100.

Facility ¹ / MP Begin	MP End	NWI Classification	Туре	Acreage
Line YM58				
0.0	0.0	R4SBC	Riverine	0.1
1.2	1.2	PFO1A	Freshwater Forested/Shrub	
1.4	1.4	PFO1A	Freshwater Forested/Shrub	0.2
3.4	3.4	PFO1A	Freshwater Forested/Shrub	0.3
3.7	3.7	R5UBH	Riverine	0.2
5.0	5.0	R5UBH	Riverine	0.1
6.5	6.5	R4SBC	Riverine	0.1
6.6	6.6	PEM1C	Freshwater Emergent	3.6
6.6	6.6	R4SBC	Riverine	0.1
6.8	6.8	R2UBH	Riverine	0.4
6.9	7.2	R4SBC	Riverine	0.8
7.9	7.9	R4SBC	Riverine	0.2
8.0	8.0	R5UBH	Riverine	0.1
8.0	8.0	PEM1C	Freshwater Emergent	0.2
10.4	10.4	R4SBC	Riverine	0.1
11.2	11.2	R4SBC	Riverine	0.1
11.2	11.2	R5UBH	Riverine	0.3
14.0	14.0	PFO1A	Freshwater Forested/Shrub	0.2
14.0	14.0	R2UBH	Riverine	0.1
14.8	14.8	PEM1C	Freshwater Emergent	4.3

Table 4.2-1: NWI Wetlands within the PSA

Facility ¹ / MP Begin	MP End	NWI Classification	Туре	Acreage
14.8	14.8	PFO1A	Freshwater Forested/Shrub	0.6
14.9	14.9	R5UBH	Riverine	0.2
14.9	14.9	R2UBH	Riverine	0.2
14.9	14.9	PFO1A	Freshwater Forested/Shrub	1.9
15.1	15.2	PF01E	Freshwater Forested/Shrub	6.3
15.7	15.7	PSS1/EM1C	Freshwater Forested/Shrub	1.3
18.1	18.1	R4SBC	Riverine	0.2
18.9	18.9	R4SBC	Riverine	0.4
19.2	19.2	R3UBH	Riverine	0.2
19.6	19.7	R4SBC	Riverine	0.4
21.8	21.8	R4SBC	Riverine	0.1
23.0	23.1	PEM1C	Freshwater Emergent	1.4
25.0	25.0	R4SBC	Riverine	0.2
26.6	26.6	R4SBC	Riverine	0.2
26.8	26.8	R4SBC	Riverine	0.1
26.8	26.8	PUBH	Freshwater Pond	0.3
27.4	27.4	R4SBC	Riverine	0.1
27.8	27.8	R4SBC	Riverine	0.2
28.7	28.7	R4SBC	Riverine	0.1
			Subtotal	26.1
Line YM58 Acc	ess Roads			
PAR-05		R4SBC	Riverine	<0.1
TAR-06		R5UBH	Riverine	<0.1
TAR-06		R5UBH	Riverine	<0.1
PAR-12		R4SBC	Riverine	<0.1
TAR-13		R5UBH	Riverine	<0.1
PAR-14		R4SBC	Riverine	<0.1
PAR-14		R4SBC	Riverine	<0.1
PAR-14		R4SBC	Riverine	<0.1
PAR-14		R5UBH	Riverine	<0.1
TAR-22		R4SBC	Riverine	0.1
PAR-25		R4SBC	Riverine	0.1
PAR-25		R4SBC	Riverine	<0.1
PAR-25		R5UBH	Riverine	0.1
PAR-31		R5UBH	Riverine	<0.1
PAR-33		R4SBC	Riverine	<0.1
PAR-35		R4SBC	Riverine	<0.1

Facility ¹ / MP Begin	MP End	NWI Classification	Туре	Acreage
			Subtotal	0.3
Line YM58 Sta	ging Areas			
SA-6	14.4	PFO1A	Freshwater Forested/Shrub	0.3
SA-7	6.0	PSS1C	Freshwater Forested/Shrub	4.8
SA-7	6.0	PFO1A	Freshwater Forested/Shrub	2.4
SA-7	6.0	R5UBH	Riverine	0.1
			Subtotal	7.6
Line YM224 Lo	рор			
1.1	1.1	R4SBC	Riverine	0.2
1.2	1.2	PUBH	Freshwater Pond	<0.1
			Subtotal	0.2
Line YM224 Lo	oop Access Roads			
0.0	0.0	R4SBC	Riverine	<0.1
			Subtotal	<0.1
Line FM100 Ab	bandonment			
0.0	0.2	R5UBH	Riverine	0.4
0.2	0.2	R5UBH	Riverine	0.1
1.5	1.5	R5UBH	Riverine	0.1
1.7	1.7	R5UBH	Riverine	0.1
2.1	2.1	R5UBH	Riverine	0.1
2.2	2.2	R5UBH	Riverine	0.1
4.8	4.8	R3UBH	Riverine	0.1
4.9	4.9	R5UBH	Riverine	0.1
7.9	7.9	R3UBH	Riverine	0.1
9.6	9.6	R5UBH	Riverine	0.1
11.7	12.0	PFO1/EM1A	Freshwater Forested/Shrub Wetland	1.4
12.3	12.3	R4SBC	Riverine	<0.1
22.2	22.2	R5UBH	Riverine	0.1
22.2	22.2	R3UBH	Riverine	0.1
22.3	22.3	R3UBH	Riverine	<0.1
23.2	23.3	R5UBH	Riverine	0.2
23.9	23.9	R5UBH	Riverine	<0.1
25.1	25.1	R5UBH	Riverine	<0.1
26.8	26.8	R5UBH	Riverine	0.2
27.4	27.4	R5UBH	Riverine	0.1
33.3	33.3	R5UBH	Riverine	<0.1
35.9	35.9	R5UBH	Riverine	<0.1

20 National Fuel Gas Supply Corporation	PF17-10-000:	Public	FM100 Project
---	--------------	--------	---------------

Facility ¹ / MP Begin	MP End	NWI Classification	Туре	Acreage
38.6	38.6	R5UBH	Riverine	<0.1
38.7	38.7	R5UBH	Riverine	<0.1
39.7	39.7	R5UBH	Riverine	<0.1
40.1	40.1	R5UBH	Riverine	<0.1
41.2	41.2	R5UBH	Riverine	<0.1
41.2	41.2	PFO1A	Freshwater Forested/Shrub Wetland	<0.1
42.5	42.5	PFO1A	Freshwater Forested/Shrub Wetland	0.1
			Subtotal	3.5
Line FM100 A	bandonment Acces	ss Roads		
26.0	26.0	R5UBH	Riverine	0.2
27.0	27.1	R5UBH	Riverine	0.3
27.2	27.3	R5UBH	Riverine	0.1
27.5	27.5	R5UBH	Riverine	<0.1
			Subtotal	0.6
			Freshwater Emergent Subtotal	9.5
			Freshwater Forested/Shrub Wetland Subtotal	20.0
			Freshwater Pond Subtotal	0.3
			Riverine Subtotal	8.5
			TOTAL	38.3

¹ Facilities/components not represented do not have NWI mapped wetlands within their respective PSAs.

4.2.2 National Hydrography Dataset

The USGS NHD is developed to portray surface water systems throughout the United States primarily at the 7.5-minute topographic quadrangle scale (i.e., 1: 24,000). The NHD represents the drainage network with features such as rivers, streams, canals, lakes, ponds, coastline, dams and stream gages. The mapped drainage network is designed to be used for general reference, water resource naming, and in the flow analysis of surface water systems and watersheds. Additionally, PADEP, under authority of the Pennsylvania Clean Streams Law, maintains stream data identifying Chapter 93 Designated Use or Existing Use for mapped streams.

Table 4.2-2 lists the waterbodies mapped by the USGS NHD within the PSA. No PA Chapter 93 Existing Use streams are mapped within the PSA.

Facilities ¹ /MP	Waterbody Name ²	Type ³	Designated Use ⁴
Line KL Extension			
0.0	UNT to Warner Brook	Intermittent	HQ-CWF
Line YM58			
1.2	UNT to Red Mill Brook	Perennial	HQ-CWF
1.4	UNT to Red Mill Brook	Perennial	HQ-CWF

Table 4.2-2. USGS NED waterbodies within the Pa

Facilities ¹ /MP	Waterbody Name ²	Type ³	Designated Use ⁴
3.3	Robbins Brook	Perennial	HQ-CWF
3.7	Donley Fork	Perennial	HQ-CWF
4.9	UNT to Robbins Brook	Perennial	HQ-CWF
6.5	UNT to Potato Creek	Intermittent	CWF
6.8	Potato Creek	Perennial	TSF
6.9	UNT to Potato Creek	Intermittent	CWF
7.1	UNT to Potato Creek	Intermittent	CWF
7.9	UNT to Walcott Brook	Intermittent	CWF
8.0	UNT to Walcott Brook	Perennial	CWF
10.4	UNT to Skinner Creek	Intermittent	HQ-CWF
11.2	UNT to Skinner Creek	Perennial	HQ-CWF
14.1	Allegheny Portage Creek	Perennial	TSF
14.8	Allegheny River	Perennial	CWF
15.1	UNT to Allegheny River	Perennial	CWF
15.7	Coleman Creek	Perennial	CWF
18.1	UNT to Sartwell Creek	Intermittent	CWF
18.9	UNT to Sartwell Creek	Intermittent	CWF
19.2	Sartwell Creek	Perennial	CWF
19.6	UNT to Sartwell Creek	Intermittent	CWF
19.6	UNT to Sartwell Creek	Intermittent	CWF
21.8	UNT to Fishing Creek	Intermittent	CWF
23.0	Fishing Creek	Perennial	CWF
25.0	UNT to East Branch Fishing Creek	Intermittent	HQ-CWF
26.6	UNT to East Branch Fishing Creek	Intermittent	HQ-CWF
26.8	UNT to East Branch Fishing Creek	Intermittent	HQ-CWF
27.4	Whitney Creek	Intermittent	EV
27.8	UNT to Whitney Creek	Intermittent	EV
28.6	UNT to Whitney Creek	Intermittent	EV
Line YM58 Access Roads			
PAR-05	Donley Fork	Intermittent	HQ-CWF
TAR-06	UNT to Robbins Brook	Perennial	HQ-CWF
TAR-06	UNT to Robbins Brook	Perennial	HQ-CWF
PAR-12	UNT to Walcott Brook	Intermittent	CWF
PAR-14	UNT to Skinner Creek	Intermittent	HQ-CWF
PAR-14	UNT to Skinner Creek	Intermittent	HQ-CWF
PAR-14	UNT to Skinner Creek	Intermittent	HQ-CWF
PAR-14	Skinner Creek	Perennial	HQ-CWF
TAR-13	UNT to Walcott Brook	Perennial	CWF

Facilities ¹ /MP	Waterbody Name ²	Type ³	Designated Use ⁴
TAR-22	UNT to Allegheny River	Intermittent	CWF
PAR-25	UNT to Coleman Creek	Intermittent	CWF
PAR-25	UNT to Coleman Creek	Intermittent	CWF
PAR-25	Coleman Creek	Perennial	CWF
PAR-31	UNT to East Branch Fishing Creek	Perennial	HQ-CWF
PAR-33	UNT to East Branch Fishing Creek	Intermittent	HQ-CWF
Line YM58 Staging Area	s		
SA-07	UNT to Potato Creek	Perennial	CWF
SA-07	UNT to Potato Creek	Perennial	CWF
Line YM224 Loop			
1.1	South Branch Oswayo Creek	Intermittent	EV
Line YM224 Loop Acces	s Roads		
0.0	UNT to South Branch Oswayo	Intermittent	EV
Line FM100 Abandonme	nt		
0.0	UNT to Bennet Branch Sinnemahoning Creek	Perennial	CWF
0.1	Bennet Branch Sinnemahoning Creek	Perennial	CWF
1.4	Bennet Branch Sinnemahoning Creek	Perennial	CWF
1.7	Bennet Branch Sinnemahoning Creek	Perennial	CWF
2.1	Bennet Branch Sinnemahoning Creek	Perennial	CWF
2.2	Bennet Branch Sinnemahoning Creek	Perennial	CWF
4.7	Laurel Run	Perennial	HQ-CWF
4.8	Saunders Run	Perennial	HQ-CWF
7.9	Medix Run	Perennial	HQ-CWF
9.6	UNT to Jack Dent Branch	Perennial	HQ-CWF
12.3	UNT to Mix Run	Intermittent	EV
22.2	UNT to Mix Run	Perennial	HQ-CWF
22.2	UNT to Mix Run	Perennial	HQ-CWF
22.2	Mix Run	Perennial	HQ-CWF
23.2	Bennet Branch Sinnemahoning Creek	Perennial	WWF
23.2	UNT to Bennet Branch Sinnemahoning Creek	Perennial	WWF
23.9	Little Dent Run	Perennial	CWF
25.0	Boyer Run	Perennial	CWF
26.8	Driftwood Branch Sinnemahoning Creek	Perennial	TSF
27.4	UNT to Johnson Run	Perennial	HQ-CWF
27.4	Johnson Run	Perennial	HQ-CWF
33.3	Right Fork Brooks Run	Perennial	HQ-CWF

Facilities ¹ /MP	Waterbody Name ²	Type ³	Designated Use ⁴			
35.9	Whitehead Run	Perennial	HQ-CWF			
38.1	UNT to Berge Run	Perennial	HQ-CWF			
38.6	UNT to Hunts Run	Perennial	HQ-CWF			
38.7	UNT to Hunts Run	Perennial	HQ-CWF			
39.7	UNT to Little Bailey Run	Perennial	HQ-CWF			
40.1	Little Bailey Run	Perennial	HQ-CWF			
41.2	UNT to Bailey Run	Perennial	EV			
41.2	Bailey Run	Perennial	EV			
42.5	West Darian Run	Perennial	HQ-CWF			
Line FM100 Abandonment Access Roads						
26.0	Driftwood Branch Sinnemahoning Creek	Perennial	TSF			
27.0	Johnson Run	Perennial	HQ-CWF			

¹ Facilities/components not represented do not have NHD mapped waterbodies within their respective PSAs.

² Stream name per USGS NHD data; includes unnamed tributaries (UNT) to named streams.

³ Stream type per USGS NHD data.

⁴ Designated Use classification per PADEP Chapter 93 stream data.

4.2.3 National Watershed Dataset

The USGS WBD represents large drainage basins subdivided into smaller watersheds using eight hydrologic unit code (HUC) classes. The Project is located within the Upper Allegheny 8-digit HUC (i.e., HUC8) drainage basin, the Sinnemahoning HUC8 drainage basin, and the Middle West Branch Susquehanna HUC8 drainage basin. Table 4.2-3 lists the USGS HUC8 drainage basins and HUC12 watersheds crossed by the PSA. The NHD and WBD mapping data layers are also presented in Figure 4.1-1, Attachment B.

Facility & HUC 08 Basin ¹	HUC 12 Watershed ¹	Watershed Name ^{1, 2}	MP Begin	MP End	Crossing Length (miles)
Line YM58					
	050100010103	Marvin Creek	0.0	0.4	0.4
	050100010102	Red Mill Brook-Potato Creek	0.4	5.6	5.2
	050100010105	Potato Creek Outlet	5.6	10.0	4.4
	050100010308	Skinner Creek-Allegheny River	10.0	12.5	2.5
Upper Allegheny 05010001	050100010307	Allegheny Portage Creek	12.5	14.2	2.3
	050100010306	Card Creek-Allegheny River	14.2	17.6	3.4
	050100010305	Sartwell Creek	17.6	21.2	3.6
	050100010304	Fishing Creek	21.2	27.1	5.9
	050100010201	South Branch Oswayo	27.1	29.5	2.4
Line KL Extension					
Upper Allegheny 05010001	050100010103	Marvin Creek	0.0	0.4	0.4

Table 4.2-3: USGS WBD Watersheds Crossed by the PSA

Facility & HUC 08 Basin ¹	HUC 12 Watershed ¹	Watershed Name ^{1, 2}	MP Begin	MP End	Crossing Length (miles)				
Line YM224 Loop									
Upper Allegheny 05010001	050100010201	South Branch Oswayo	0.00	1.3	1.3				
	050100010202	Clara Creek-Oswayo Creek	1.3	1.4	0.1				
Line FM100 Abandon	ment								
	020502020305	Middle Bennett Branch Sinnemahoning Creek	0.0	2.5	2.5				
	020502020303	Laurel Run	2.5	6.8	4.3				
	020502020304	Medix Run	6.8	7.2	0.4				
	020502020303	Laurel Run	7.2	7.3	0.1				
	020502020304	Medix Run	7.3	12.0	4.7				
	020502020311	Mix Run	12.0	12.8	0.8				
	020502020312	Lower Bennett Branch Sinnemahoning Creek	12.8	13.3	0.5				
	020502020311	Mix Run	13.3	15.4	2.1				
	020502020312	Lower Bennett Branch Sinnemahoning Creek	15.4	15.6	0.2				
	020502020311	Mix Run	15.6	16.1	0.5				
	020502020312	Lower Bennett Branch Sinnemahoning Creek	16.1	16.4	0.3				
	020502020311	Mix Run	16.4	16.8	0.4				
	020502020312	Lower Bennett Branch Sinnemahoning Creek	16.8	18.4	1.6				
	020502020311	Mix Run	18.4	19.2	0.8				
	020502020312	Lower Bennett Branch Sinnemahoning Creek	19.2	20.0	0.8				
	020502020311	Mix Run	20.0	20.5	0.5				
Sinnemahoning	020502020312	Lower Bennett Branch Sinnemahoning Creek	20.5	21.2	0.7				
	020502020311	Mix Run	21.2	22.8	1.6				
	020502020312	Lower Bennett Branch Sinnemahoning Creek	22.8	25.4	2.6				
	020502020207	Driftwood Branch Sinnemahoning Creek	25.4	29.0	3.6				
	020502020502	Sinnemahoning Creek-West Branch Susquehanna River	29.0	30.3	1.3				
	020502020407	Lower First Fork Sinnemahoning Creek	30.3	30.5	0.2				
	020502020207	Driftwood Branch Sinnemahoning Creek	30.5	30.6	0.1				
	020502020407	Lower First Fork Sinnemahoning Creek	30.6	32.2	1.6				
	020502020207	Driftwood Branch Sinnemahoning Creek	32.2	32.4	0.2				
	020502020407	Lower First Fork Sinnemahoning Creek	32.4	33.6	1.2				
	020502020207	Driftwood Branch Sinnemahoning Creek	33.6	33.7	0.1				
	020502020406	Middle First Fork Sinnemahoning Creek	33.7	33.9	0.2				
	020502020205	Hunts Run	33.9	35.4	1.5				
	020502020406	Middle First Fork Sinnemahoning Creek	35.4	35.6	0.2				
	020502020205	Hunts Run	35.6	36.9	1.3				
	020502020406	Middle First Fork Sinnemahoning Creek	36.9	38.2	1.3				
	020502020205	Hunts Run	38.2	39.2	1.0				

Facility & HUC 08 Basin ¹	HUC 12 Watershed ¹	Watershed Name ^{1, 2}	MP Begin	MP End	Crossing Length (miles)				
	020502020406	Middle First Fork Sinnemahoning Creek	39.2	44.1	4.9				
Tamarack Compressor Station									
Middle West Branch Susquehanna 02050203	020502030203	Drury Run	N/A	N/A	0.3				

¹ Data Source: USGS National Hydrography Dataset, Watershed Boundary Dataset.

² Watershed name per USGS NHD, Watershed Boundary Dataset; HUC12 boundaries.

4.2.4 Aerial Photography

True-color orthorectified digital aerial photography is available for the PSA at a resolution of 0.3-m², acquired in 2017 for all areas. This imagery was acquired by DigitalGlobe on 06/03/2017 as part of the ESRI World Imagery layer for ArcGIS. This imagery was used as the mapping base to complete the delineation of wetlands and waterbodies, including other habitat types and land uses within the PSA.

4.2.5 NRCS Soil Survey Geographic (SSURGO) Database

The SSURGO database is a digitized soil mapping GIS dataset developed by the USDA NRCS. Mapping scales generally range from 1:12,000 to 1:24,000. The SSURGO dataset are digitized duplicates of the original soil survey maps and, therefore, are the most detailed level of soil mapping performed by the NRCS. SSURGO is linked to a National Soil Information System (NASIS) attribute database which provides the proportionate extent of component soils and their properties for each map unit. Map units for the SSURGO database consist of one to three components each. Attribute data in the NASIS database apply to the principal component in each soil mapping unit and were used to identify the Project soil units including attributes such as hydric condition, texture, drainage class, and prime farmland classification. Minor components may have hydric conditions that differ from the primary component soils. The NRCS Web Soil Survey soil unit descriptions for soils crossed by the PSA, are provided in Attachment F. A summary of the soils mapped within the PSA is provided in Table 4.2-4, Attachment G.

4.3 Digital Mapping Methods and Process

The standard process of conducting a digital vegetation mapping inventory requires an ortho-rectified imagery base, ancillary data layers such as elevation, hydrography (i.e., streams and watersheds), field data (i.e., GPS location points, field notes, and site photographs) and the software to analyze and interpret those data layers. The mapping process includes delineating the field delineated wetlands and surface water features (i.e., lakes, ponds, streams, and ditches), and other major vegetation or landuse units from aerial imagery, and then identifying their features or attributes through the use of classification systems. For the proposed Project, wetland delineation and land use/habitat mapping polygons were created using ESRI ArcGIS 10.5.1 software packages. The mapping process described herein includes information on vegetation interpretation techniques, application of the classification systems, and discusses quality assurance/quality control (QA/QC) measures.

4.3.1 Interpretation Techniques

The mapping process used for the Project was a manual interpretation and delineation of the vegetation communities. The manual interpretation of the imagery provides for an accurate delineation of the major vegetation communities, provides statistics on their extent, and nature of their composition. The delineations are completed on-screen, within the GIS mapping environment. This delineation process is known as "heads-up digitizing". There are no inaccuracies created through a transfer process; the

delineations are as accurate as the ortho-rectified imagery and GPS points allow. In addition to major vegetation and landuse breaks, all wetland and waterbody boundaries were flagged in the field and boundary flag locations were recorded using a sub-meter accuracy GPS unit. The flagged wetland and waterbody boundaries were digitized in the GIS using the GPS location information.

4.3.2 Quality Control Measures

Quality control measures are in place to check the field data collected and the field forms completed as well as to assure the integrity and accuracy of the digital mapping data. Digital mapping quality control measures include semi-automated GIS systems and senior scientist review. To ensure the integrity of the GIS digital line work, the files are validated through a semi-automated GIS model. This model evaluates the GIS mapping data and inspects for data gaps, slivers, overlapping polygons, duplicate polygons, and multi-part polygons. All data errors are flagged and corrected as needed. This semi-automated quality control process provides for accurate summary statistics such as acreages reported.

The senior scientist review occurred collaboratively with the scientists who conducted the wetland field surveys. Additionally, field GPS data and field forms were collaboratively reviewed immediately following the completion of the field surveys. Upon completion of the field surveys, the GIS mapping data was reviewed by senior scientists for consistency and to determine that resources were correctly identified according to field data collected. The senior scientist review involves manually reviewing each mapped polygon individually across all coded attributes. Discrepancies between the field data collected and the delineated vegetation unit within the GIS are further inspected and rectified by the senior scientists.

After completion of the senior scientist review the mapping file is passed through the semi-automated GIS model once again to identify and rectify any physical discrepancies with the data. Upon a clean pass through the QA/QC model the data is considered final and made available for statistical analysis.

4.3.3 GPS Equipment Used and Quality Control

Field plot positional locations were collected in the field using a Trimble GeoXH, Geoexplorer 6000 Series and/or Geo 7 Series, sub-meter hand-held GPS units. Four GPS units were used to collect all field plots for this survey. The GPS units were equipped with Terrasync software used for data collection. Prior to mobilizing for field work, the GPS units were setup with a Terrasync Data Dictionary to collect specific plot types and to record site characteristics. Additionally, GPS units were setup with a background file to delimit the PSA boundary to help field crews with navigation and data collection across the full extent of the PSA.

For quality control, post-processing differential correction of field collected GPS data was completed using Pathfinder Office software. Post-processing was completed individually for each day field surveys were conducted. The differential correction process used to complete the post-processing for this survey is as follows:

Pathfinder Office GPS Differential Correction

Process Used: Automatic Carrier and Code Processing

Single Base Station

GPS and GNSS Enabled (5 second rate)

Remainder of this page intentionally left blank.

5 Wetland/Waterbody Delineation Results

5.1 Introduction

Wetland and waterbody delineations were conducted within the PSA from September 29 through October 11, 2017, as well as on June 13, 2018, and July 31 through August 8, 2018. Additional surveys were conducted from July 28 through August 7, 2020 to address comments received by PADEP in their Technical Deficiency letter dated July 10, 2020. Table 5.2-1, Attachment H, and Table 5.2-2, Attachment I, summarize the results of the wetland and waterbody field delineations within the PSA. The locations of these delineated aquatic features are shown in Figure 4.1-1 within Attachment B. Three types of wetlands and five waterbody types were identified within the PSA:

- Palustrine Emergent (PEM) wetlands that are characterized by erect, rooted, herbaceous hydrophytes, excluding mosses and lichens (Cowardin et al., 1979);
- Palustrine Forested (PFO) wetlands that are dominated by woody vegetation that is at least 20feet tall and has a diameter greater than 3-inches measured at breast height (DBH) (Cowardin et al., 1979);
- Palustrine Scrub-Shrub (PSS) wetlands that are dominated by woody vegetation that is less than 20-feet tall and has a DBH less than 3-inches (Cowardin et al., 1979);
- Riverine Lower Perennial Unconsolidated Bottom (R2UB) natural perennial streams and rivers, delineated to the OHWM, characterized as low-gradient systems having large floodplains and substrates dominated by fine sediments such as silt, clay or mud (Cowardin et al., 1979);
- Riverine Upper Perennial Unconsolidated Bottom (R3UB) natural perennial streams and rivers, delineated to the OHWM, characterized as having riffle/run/pool morphology and substrates dominated by coarse sands, gravels and cobbles (Cowardin et al., 1979);
- Riverine Intermittent Streambed (R4SB) natural intermittent and ephemeral stream channels, delineated to the OHWM, characterized as having flows that are either seasonal or in response to precipitation events only (Cowardin et al., 1979);
- Riverine Intermittent Streambed Excavated (R4SBCx) intermittent man-made drainage channels excavated in uplands, delineated to the OHWM, if present (Cowardin et al., 1979); and
- Palustrine Unconsolidated Bottom (PUB) small waterbodies (i.e., ponds), less than 20 acres in size, dominated by unvegetated open water (Cowardin et al., 1979).

5.2 General Wetland and Waterbody Descriptions

All delineated wetlands were palustrine wetlands which are non-tidal wetlands dominated by trees, shrubs, and/or persistent emergent herbaceous vegetation. Table 5.2-1, Attachment H, lists the wetlands crossed by the PSA. Table 5.2-2, Attachment I, lists the waterbodies crossed by the PSA.

5.2.1 Forested Wetlands

PFO wetlands primarily consisted of a mature deciduous bottomland hardwood wetland forested community. Forested wetlands within the PSA were classified as either depressional, flat, slope, or riverine wetlands under the HGM classification system. Depressional wetlands occur within closed topographic

basins, often created by prior excavations, and maintained by either groundwater discharge, runoff, or direct precipitation. Flat wetlands are developed and maintained primarily by direct precipitation, whereas slope wetlands are developed and maintained primarily by groundwater discharge (i.e., seeps and springs), and riverine wetlands periodically receive overbank flooding from rivers or streams (i.e., banks and floodplains). In general, forested wetlands are dominated (areal extent greater than 30 percent cover) by woody vegetation greater than 20-feet tall with tree species having an average DBH greater than three inches.

Common trees found in PFO wetlands throughout the PSA include red maple (*Acer rubrum*), sugar maple (*Acer saccharum*), yellow birch (*Betula alleghaniensis*), Eastern hemlock (*Tsuga canadensis*), and hornbeam (*Carpinus caroliniana*). Primary midstory and understory associates include saplings of the tree species previously identified, as well as, black willow (*Salix nigra*), swamp rose (*Rosa palustris*), meadow-sweet (*Spirea alba*), and dogwoods (*Cornus* spp.). The herbaceous strata were commonly dominated by sedges (*Carex* spp.), deertongue (*Dichanthelium clandestinum*), spinulose woodfern (*Dryopteris carthusiana*), jewelweed (*Impatiens capensis*), rushes (*Juncus* spp.), Japanese stiltgrass (*Microstegium vimineum*), sensitive fern (*Onoclea sensibilis*), cinnamon fern (*Osmundastrum cinnamomeum*), New York fern (*Parathelypteris noveboracensis*), swamp dewberry (*Rubus hispidus*), woolgrass (*Scirpus cyperinus*), violets (*Viola* spp.), and mosses.

5.2.2 Scrub-Shrub Wetlands

PSS wetlands primarily consisted of riparian communities classified as either slope or riverine wetlands under the HGM classification system. Slope wetlands are developed and maintained primarily by groundwater discharge (i.e., seeps and springs) and riverine wetlands periodically receive overbank flooding from rivers or streams (i.e., banks and floodplains). In general, PSS wetlands are dominated by woody vegetation including true shrub species and tree species less than 20-feet tall and having an average DBH less than three inches.

PSS wetlands were primarily dominated by black willow (*Salix nigra*); however, other commonly observed tree saplings included red maple (*Acer rubrum*), sugar maple (*Acer saccharum*), yellow birch (*Betula alleghaniensis*), Eastern hemlock (*Tsuga canadensis*), and hornbeam (*Carpinus caroliniana*). Other shrubs commonly observed included swamp rose (*Rosa palustris*), meadow-sweet (*Spirea alba*), and dogwoods (*Cornus spp.*). The herbaceous strata were commonly dominated by sedges (*Carex spp.*), deertongue (*Dichanthelium clandestinum*), spinulose woodfern (*Dryopteris carthusiana*), jewelweed (*Impatiens capensis*), rushes (*Juncus spp.*), Japanese stiltgrass (*Microstegium vimineum*), sensitive fern (*Onoclea sensibilis*), cinnamon fern (*Osmundastrum cinnamomeum*), New York fern (*Parathelypteris noveboracensis*), swamp dewberry (*Rubus hispidus*), woolgrass (*Scirpus cyperinus*), violets (*Viola spp.*), and mosses.

5.2.3 Herbaceous Wetlands

PEM wetlands observed were classified as either depressional, flat, slope or riverine wetlands under the HGM classification system. In general, PEM wetlands have less than 30-percent areal coverage by woody vegetation and are dominated by erect, rooted, herbaceous hydrophytes. PEM wetlands were commonly observed in disturbed areas such as utility ROWs, depressions related to construction or maintenance activities, excavated depressions, ditches, or swales.

PEM wetlands were primarily dominated by sedges (*Carex* spp.), reedgrass (*Calamagrostis* spp.), deertongue (*Dichanthelium clandestinum*), spinulose woodfern (*Dryopteris carthusiana*), mannagrass (*Glyceria* spp.), jewelweed (*Impatiens capensis*), rushes (*Juncus* spp.), rice cutgrass (*Leersia oryzoides*), Japanese stiltgrass (*Microstegium vimineum*), sensitive fern (*Onoclea sensibilis*), cinnamon fern (*Osmundastrum cinnamomeum*), New York fern (*Parathelypteris noveboracensis*), swamp dewberry (*Rubus hispidus*), woolgrass (*Scirpus cyperinus*), violets (*Viola* spp.), and mosses.
5.2.4 Palustrine Unconsolidated Bottoms

PUB wetland areas are characterized as open water ponds that may include fringe wetlands with vegetative cover less than 30 percent. All ponds identified in the PSA were man-made features excavated or impounded for agriculture.

5.2.5 Perennial Streams

Perennial streams are natural drainage systems that typically have continuous surface flow throughout the year. For CWA jurisdiction, perennial streams within the PSA were determined to be non-navigable tributaries of TNWs that are relatively permanent (i.e., tributaries that typically flow year-round). Lower perennial streams include larger, low-gradient systems such as the Alleghany River. Upper perennial streams include steeper gradient systems (i.e., narrow channels and floodplains) such as the South Branch of Oswayo Creek. Perennial streams were determined in the field by the presence of an OHWM and continuous surface flow at the time of field visit.

5.2.6 Intermittent Streams

Intermittent streams are primarily natural drainage systems that typically have continuous surface flow at least seasonally. For CWA jurisdiction, intermittent streams within the PSA were determined to be nonnavigable tributaries of TNWs that are relatively permanent (i.e., tributaries that typically flow seasonally). Intermittent streams are often dry channels for portions of the year or may contain relatively permanent pools without continuous flow between pools throughout portions of the year. Intermittent streams were determined in the field by the presence of an OHWM and either low or no flow at the time of field visit.

5.2.7 Ephemeral Streams

Ephemeral streams are primarily natural drainage systems that typically have surface flow only during and for short periods following precipitation, and that may or may not have a well-defined channel. For CWA jurisdiction, ephemeral stream channels that have a defined OHWM within the PSA were determined to be non-navigable tributaries of TNWs that are considered relatively permanent waters. Ephemeral streams are often dry channels for most of the year. Ephemeral streams were determined in the field by the presence of a well-defined channel OHWM, location within the watershed, and either low or no flow at the time of field visit.

5.2.8 Jurisdictional Ditches

Ditches are man-made, or man-altered drainage systems that have characteristically straight channels used to collect, transport, or connect surface water flows. In accordance with the Rapanos Guidance, certain ditches or canals that transport relatively permanent (i.e., continuous at least seasonally) flow directly or indirectly into TNWs or between two or more WOUS, including wetlands, are considered jurisdictional waters regulated under the CWA. Additionally, certain ditches that contribute to a surface hydrologic connection where the ditch replaces or relocates a former WOUS (i.e., stream or wetland), or connects a WOUS to another WOUS, or provides relatively permanent flow to a WOUS are considered jurisdictional waters regulated under the CWA. Ditches, including roadside ditches, that do not meet these requirements and were excavated wholly in and draining only uplands and do not carry a relatively permanent flow of water are considered non-jurisdictional features that are not regulated under the CWA (USACE 2007).

6 Impacts to Wetlands and Waterbodies

6.1 Impacts

All wetlands intersecting the Project workspace, including the permanent easement, temporary workspace, access roads, and contractor yards are accounted for in Table 6.1-1, Attachment J. Several segments of the permanent ROW are proposed to be installed using HDD and therefore, surface impacts to aquatic resources are not expected for these segments of the ROW. Aquatic resource impacts reported in Table 6.1-1, Attachment J include these areas proposed for HDD. Proposed access roads are primarily existing roads and therefore impacts to aquatic resources are not expected from the use of the existing access roads; however, if the access road workspace intersected a delineated aquatic resource, the impacts calculated have been included within the corresponding impact tables. Wetlands and waterbody crossings (e.g., drainage ditches) have been identified along the edges of the existing access roads for protection and sediment control measures.

6.1.1 Pipeline Related Wetland Impacts

The Project construction activities will disturb approximately 14.8 acres of wetlands, of which 14.1 acres (95 percent) are considered temporary construction impacts as shown in Table 6.1-1, Attachment J, which may result in temporary impacts to wetland vegetation, soils, hydrological profile, and wetland functional values. Following construction and reclamation, the permanent ROW will be maintained for operations and safety. ROW maintenance activities will permanently convert forested and scrub-shrub wetlands to emergent wetlands due to periodic mowing. This permanent conversion is summarized in Table 6.1-1, Attachment J and equates to approximately 0.3 acres of either forested or scrub-shrub wetlands. The temporary impact to emergent wetlands, accounted for in Table 6.1-1, Attachment J includes both the permanent easement and temporary workspace because upon reclamation the permanent easement will be restored to preconstruction contours and allowed to reestablish natural hydrology and wetland herbaceous vegetation.

6.1.2 Pipeline Related Waterbody Impacts

The Project construction activities will disturb approximately 2,232.9 linear feet of streams; which includes portions of the FM100 Abandonment that will be abandoned-in-place (i.e., no construction activities proposed for some of the abandoned-in-place locations) as shown in Table 6.1-2, Attachment K. Temporary construction impacts to streams may result in short-term temporary impacts to stream bank vegetation and channel substrate. Open-cut stream crossings will be constructed using a dry-channel method such as dam-and-pump or dam-and-flume to prevent construction activities from contacting flowing water. Following construction and reclamation to preconstruction conduitons. Stream banks will not be maintained or mowed for a narrow buffer, minimum of 10 feet on either side of the streams top-of-bank to allow for natural recruitment and to establish and promote stable banks.

6.1.3 Above-ground Facility Related Impacts

The pipeline above-ground facilities will be maintained as gravel pads after construction for maintenance and safety. The siting of above-ground facilities in upland areas results in no temporary impacts and no permanent loss to wetland or other aquatic resources.

Remainder of this page intentionally left blank.

7 References

- Brinson, M. M. (1993). A hydrogeomorphic classification for wetlands, Technical Report WRP-DE-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. Office of Biological Services, U.S. Fish and Wildlife Service, U.S. Department of the Interior. Washington, D.C. 104 p.
- Environmental Laboratory (1987). Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- FEMA. 2018. National Flood Hazard Layer. Internet: <u>https://www.fema.gov/national-flood-hazard-layer-nfhl</u>. Accessed 10/20/2018.
- Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X.
- NRCS. 2018. Web Soil Survey. Internet: <u>https://websoilsurvey.sc.egov.usda.gov/</u> <u>App/HomePage.htm</u>. Accessed 10/20/2018.
- PADEP. 2016. Pennsylvania Wetland Condition Level 2 Rapid Assessment Protocol, Version 2.0. DEP ID: 310-2137-002.
- PADEP. 2016a. Pennsylvania Riverine Condition Level 2 Rapid Assessment Protocol, Version 2.0. DEP ID: 310-2137-003.
- PADEP. 2018. Pennsylvania Department of Environmental Protection Open Data Portal. Internet: <u>http://data-padep-1.opendata.arcgis.com/</u> Accessed 10/19/2018.
- USACE. 2007. U.S. Army Corps of Engineers Jurisdictional Determination Form Instructional Guidebook.
- USACE. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0) ed. J. B. Berkowitz, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-12-9. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- USACE. 2016. Pennsylvania State Programmatic General Permit, 1 July 2016. Internet: <u>https://www.lrp.usace.army.mil/</u> Accessed 10/21/2018.
- USDA, NRCS. 2010. Field Indicators of Hydric Soils in the United States, Version 7.0. L.M. Vasilas, G.W. Hurt, and C.V. Noble (eds.) USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils.
- USFWS. 2018. National Wetlands Inventory Wetlands Mapper. Internet: <u>http://www.fws.gov/wetlands/</u> Accessed 10/25/2018.
- USGS. 2017. National Hydrography Dataset. Internet: <u>https://www.nhd.usgs.gov</u>. Accessed 10/10/2018.

Attachments

A. Figure 1.1-1, Figures 1.1-2 and 1.1-3

B. Wetland & Stream Delineation Maps, Figure 4.1-1

C. Wetland Delineators Credentials

D. USACE Wetland Determination Data Forms

E. Field Survey Site Photographs

F. NRCS Web Soil Survey – Soil Unit Descriptions

McKean County Soils

Albrights silt loam (AbB) (3 to 8 percent slope) The Albrights component makes up 85 percent of the map unit. Slopes are 3 to 8 percent. This component is on hillslopes, dissected plateaus. The parent material consists of acid fine-loamy colluvium derived from sandstone and shale. Depth to a root restrictive layer, fragipan, is 16 to 32 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Albright silt loam (AbC) (8 to 15 percent slopes) The Albrights component makes up 85 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes, dissected plateaus. The parent material consists of acid fine-loamy colluvium derived from sandstone and shale. Depth to a root restrictive layer, fragipan, is 18 to 32 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Atkins silt loam (At) (0 to 3 percent slopes) The Atkins component makes up 85 percent of the map unit. Slopes are 0 to 3 percent. This component is on flood plains on dissected plateaus. The parent material consists of acid fine-loamy alluvium derived from sandstone and shale. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate.

Barbour loam (Ba) (0 to 3 percent slopes) The Basher component makes up 90 percent of the map unit. Slopes are 0 to 3 percent. This component is on flood plains. The parent material consists of loamy alluvium derived from shale and siltstone. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate.

Basher silt loam (Bb) (0 to 3 percent slopes) The Basher component makes up 90 percent of the map unit. Slopes are 0 to 3 percent. This component is on flood plains. The parent material consists of loamy alluvium derived from shale and siltstone. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate.

Braceville silt loam (BeB) (3 to 8 percent slopes) The Braceville component makes up 85 percent of the map unit. Slopes are 3 to 8 percent. This component is on outwash terraces. The parent material consists of coarse-loamy outwash. Depth to a root restrictive layer, fragipan, is 20 to 32 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is low.

Brinkerton silt loam (BrA) (0 to 3 percent slopes) The Brinkerton, wooded component makes up 58 percent of the map unit. Slopes are 0 to 3 percent. This component is on hillslopes on dissected plateaus. The parent material consists of acid fine-silty colluvium derived from shale and siltstone. Depth to a root restrictive layer, fragipan, is 17 to 30 inches (depth from the mineral surface is 17 to 28 inches). The natural drainage class is poorly drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate.

Brinkerton silt loam (BrB) (3 to 8 percent slopes) The Brinkerton, wooded component makes up 66 percent of the map unit. Slopes are 3 to 8 percent. This component is on hillslopes on dissected plateaus. The parent material consists of acid fine-silty colluvium derived from shale and siltstone. Depth to a root restrictive layer, fragipan, is 17 to 30 inches (depth from the mineral surface is 17 to 28 inches). The natural drainage class is poorly drained. Water movement in the

most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate.

Buchanan silt loam (BuB) (3 to 8 percent slopes) The Buchanan component makes up 90 percent of the map unit. Slopes are 3 to 8 percent. This component is on hillslopes on dissected plateaus. The parent material consists of acid fine-loamy colluvium derived from sandstone and siltstone. Depth to a root restrictive layer, fragipan, is 21 to 33 inches (depth from the mineral surface is 21 to 31 inches). The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate.

Buchanan silt loam (BuC) (8 to 15 percent slopes) The Buchanan component makes up 90 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes on dissected plateaus. The parent material consists of loamy colluvium derived from sandstone and shale. Depth to a root restrictive layer, fragipan, is 21 to 33 inches (depth from the mineral surface is 21 to 31 inches). The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate.

Buchanan silt loam (BxB) (0 to 8 percent slopes, extremely stony) The Buchanan component makes up 90 percent of the map unit. Slopes are 0 to 8 percent. This component is on hillslopes on dissected plateaus. The parent material consists of loamy colluvium derived from sandstone and shale. Depth to a root restrictive layer, fragipan, is 21 to 33 inches (depth from the mineral surface is 21 to 31 inches). The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate.

Buchanan silt loam (BxD) (8 to 25 percent slopes, extremely stony) he Buchanan component makes up 85 percent of the map unit. Slopes are 8 to 25 percent. This component is on hill slopes on dissected plateaus. The parent material consists of loamy colluvium derived from sandstone and shale. Depth to a root restrictive layer, fragipan, is 21 to 33 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches is moderate.

Chenango gravelly loam (ChB) (3 to 8 percent slopes) The Chenango component makes up 90 percent of the map unit. Slopes are 3 to 8 percent. This component is on outwash terraces. The parent material consists of gravelly outwash. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Cookport Ioam (CoB) (3 to 8 percent slopes) The Cookport component makes up 80 percent of the map unit. Slopes are 3 to 8 percent. This component is on broad ridges on dissected plateaus. The parent material consists of acid fine-loamy residuum weathered from sandstone. Depth to a root restrictive layer, fragipan, is 20 to 30 inches (depth from the mineral surface is 20 to 28 inches). The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate.

Cookport Ioam (CpB) (0 to 8 percent slopes, very stony) The Cookport component makes up 75 percent of the map unit. Slopes are 0 to 8 percent. This component is on broad ridges on dissected plateaus. The parent material consists of acid fine-loamy residuum weathered from sandstone. Depth to a root restrictive layer, fragipan, is 20 to 30 inches (depth from the mineral surface is 20 to 28 inches). The natural drainage class is moderately well drained. Water

movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate.

Cookport Ioam (CpD) (8 to 25 percent slopes, very stony) The Cookport component makes up 75 percent of the map unit. Slopes are 8 to 25 percent. This component is on hillslopes on dissected plateaus. The parent material consists of acid fine-loamy residuum weathered from sandstone. Depth to a root restrictive layer, fragipan, is 20 to 30 inches (depth from the mineral surface is 20 to 28 inches). The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate.

Hartleton channery silt loam (HaC) (8 to 15 percent slopes) The Hartleton component makes up 90 percent of the map unit. Slopes are 8 to 15 percent. This component is on ridges. The parent material consists of residuum weathered from sandstone and shale. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low to high. Available water to a depth of 60 inches (or restricted depth) is low.

Hartleton channery silt loam (HaD) (15 to 25 percent slopes) he Hartleton component makes up 90 percent of the map unit. Slopes are 15 to 25 percent. This component is on plateaus, ridges. The parent material consists of residuum weathered from sandstone and shale. Depth to a root restrictive layer, bedrock, lithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is low.

Hazleton channery loam (HbB) (3 to 8 percent slopes) The Hazleton component makes up 90 percent of the map unit. Slopes are 3 to 8 percent. This component is on hillsides or mountainsides, plateaus. The parent material consists of acid sandy residuum weathered from noncalcareous sandstone. Depth to a root restrictive layer, bedrock, lithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Hazleton channery loam (HbC) (8 to 15 percent slopes) The Hazleton component makes up 90 percent of the map unit. Slopes are 8 to 15 percent. This component is on plateaus, hillsides or mountainsides. The parent material consists of acid sandy residuum weathered from noncalcareous sandstone. Depth to a root restrictive layer, bedrock, lithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Hazleton channery loam (HdB) (0 to 8 percent slopes, very stony) The Hazleton component makes up 85 percent of the map unit. Slopes are 0 to 8 percent. This component is on mountains. The parent material consists of residuum weathered from acid sandstone. Depth to a root restrictive layer, bedrock, lithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Hazleton channery loam (HdD) (8 to 25 percent slope, very stony) The Hazleton component makes up 85 percent of the map unit. Slopes are 8 to 25 percent. This component is on mountains. The parent material consists of residuum weathered from acid sandstone. Depth to a root restrictive layer, bedrock, lithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Harleton and Buchanan soils (HeF) (25 to 60 percent slope) The Hartleton component makes up 50 percent of the map unit. Slopes are 25 to 60 percent. This component is on hills. The parent

material consists of residuum weathered from sandstone and shale. Depth to a root restrictive layer, bedrock, lithic, is 40 to 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is low.

Leck Kill channery silt loam (LeD) (15 to 25 percent slopes) The Leck Kill component makes up 85 percent of the map unit. Slopes are 15 to 25 percent. This component is on hills. The parent material consists of residuum weathered from sandstone and shale. Depth to a root restrictive layer, bedrock, lithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Leck Kill channery loam (LeF) (25 to 50 percent slopes) The Leck Kill component makes up 80 percent of the map unit. Slopes are 25 to 60 percent. This component is on mountain slopes. The parent material consists of reddish residuum derived from sedimentary rock. Depth to a root restrictive layer, bedrock, lithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Philo silt loam (Ph) (0 to 3 percent slopes) The Philo component makes up 85 percent of the map unit. Slopes are 0 to 3 percent. This component is on flood plains on dissected plateaus. The parent material consists of over gravelly coarse-loamy alluvium derived from sandstone and shale. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate.

Pope loam (Po) (0 to 3 percent slopes) The Pope component makes up 85 percent of the map unit. Slopes are 0 to 3 percent. This component is on flood plains on dissected plateaus. The parent material consists of acid coarse-loamy alluvium derived from sandstone and shale. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate.

Rexford silt loam (ReA) (0 to 3 percent slopes) The Rexford series consists of very deep, somewhat poorly drained to poorly drained soils on terraces and moraines. They formed in glacial outwash or stream terraces derived mainly from sandstone and shale. Slopes range from 0 to 15 percent.

Water (W) This is water.

Waukegan silt loam (WaB) (0 to 6 percent slopes) The Waukegan series consists of very deep, well drained soils that formed in 50 to 100 centimeters of loess or silty glacial alluvium and in the underlying sandy or sandy-skeletal glacial outwash. These soils are on slightly concave to convex slopes on glacial outwash plains and valley trains. Slope ranges from 0 to 12 percent. Mean annual precipitation is about 837 millimeters. Mean annual air temperature is about 8 degrees C.

Potter County Soils

Atkins silt loam (AtA) (0 to 3 percent slopes, frequently flooded) The Atkins series consists of very deep, poorly drained soils formed in acid alluvium washed from upland soils that formed in shale and sandstone. Permeability is slow to moderate. Slope ranges from 0 to 3 percent. Mean annual precipitation is about 46 inches and the mean annual air temperature is about 54 degrees F.

Barbour fine sandy loam (BaA) (0 to 3 percent slopes, occasionally flooded) The Barbour series consists of very deep, well drained soils formed in recent alluvial deposits derived from areas of acid, reddish sandstone, siltstone, and shale. They are nearly level or gently sloping soils on flood plains. Mean annual temperature is 50 degrees F, and mean annual precipitation is 40 inches.

Basher sandy loam (BcA) (0 to 3 percent slopes, occasionally flooded) The Basher series consists of very deep, moderately well drained soils formed in recent alluvial deposits derived from acid, reddish siltstone, sandstone, and shale. They are nearly level soils on flood plains. Permeability is moderate in the A horizon and B horizon, and moderate or moderately slow in the upper part of the C horizon, and moderate or moderately rapid in the lower part. Mean annual temperature is 50 degrees F, and mean annual precipitation is 40 inches.

Basher silt loam (BdA) (0 to 3 percent slopes, occasionally flooded) The Basher series consists of very deep, moderately well drained soils formed in recent alluvial deposits derived from acid, reddish siltstone, sandstone, and shale. They are nearly level soils on flood plains. Permeability is moderate in the A horizon and B horizon, and moderate or moderately slow in the upper part of the C horizon, and moderate or moderately rapid in the lower part. Mean annual temperature is 50 degrees F, and mean annual precipitation is 40 inches.

Basher silt loam (BeA) (0 to 3 percent slopes, rarely flooded) The Basher series consists of very deep, moderately well drained soils formed in recent alluvial deposits derived from acid, reddish siltstone, sandstone, and shale. They are nearly level soils on flood plains. Permeability is moderate in the A horizon and B horizon, and moderate or moderately slow in the upper part of the C horizon, and moderate or moderately rapid in the lower part. Mean annual temperature is 50 degrees F., and mean annual precipitation is 40 inches.

Blandburg stony sandy loam (BIB) (3 to 8 percent slopes, extremely stony) The Blandburg series consists of deep, well-drained, rapidly permeable soils on uplands. They formed in residual or colluvial materials that weathered from sandstone. Slopes range from 2 to 25 percent. Mean annual temperature is about 43 degrees F, and annual precipitation is about 47 inches.

Blandburg stony sandy loam (BIC) (8 to 15 percent slopes, extremely stony) The Blandburg series consists of deep, well-drained, rapidly permeable soils on uplands. They formed in residual or colluvial materials that weathered from sandstone. Slopes range from 2 to 25 percent. Mean annual temperature is about 43 degrees F, and annual precipitation is about 47 inches.

Ceres channery silt loam (CeB) (3 to 8 percent slopes, stony) The Ceres component makes up 80 percent of the map unit. Slopes are 3 to 8 percent. This component is on hillslopes and summits. The parent material consists of loamy residuum derived from red shale, siltstone, and sandstone, with a thin mantle of till or loess in some places. The natural drainage class is well drained. Water movement in the most restrictive layer is very low to moderately low. Available water to a depth of 60 inches (or restricted depth) is low.

Ceres channery silt loam (CeC) (8 to 15 percent slopes, stony) The Ceres component makes up 80 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes and summits. The parent material consists of loamy residuum derived from red shale, siltstone, and sandstone, with a thin mantle of till or loess in some places. The natural drainage class is well drained. Water movement in the most restrictive layer is very low to moderately low. Available water to a depth of 60 inches (or restricted depth) is low.

Ceres channery silt loam (CeD) (15 to 25 percent slopes, stony) The Ceres component makes up 80 percent of the map unit. Slopes are 15 to 25 percent. This component is on hillslopes and summits. The parent material consists of loamy residuum derived from red shale, siltstone, and sandstone, with a thin mantle of till or loess in some places. The natural drainage class is well

drained. Water movement in the most restrictive layer is very low to moderately low. Available water to a depth of 60 inches (or restricted depth) is low.

Clymer channery loam, frigid (CmfB) (0 to 8 percent slopes, extremely stony) The Clymer component makes up 80 percent of the map unit. Slopes are 0 to 8 percent. This component is on hillslopes. The parent material consists of residuum weathered from sandstone and shale. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high to high. Available water to a depth of 60 inches (or restricted depth) is low.

Clymer channery loam, frigid (CmfC) (8 to 15 percent slopes, extremely stony) The Clymer component makes up 80 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes. The parent material consists of residuum weathered from sandstone and shale. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high to high. Available water to a depth of 60 inches (or restricted depth) is low.

Clymer channery loam, frigid (CmfD) (15 to 25 percent slopes, extremely stony) The Clymer component makes up 80 percent of the map unit. Slopes are 15 to 25 percent. This component is on hillslopes. The parent material consists of residuum weathered from sandstone and shale. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high to high. Available water to a depth of 60 inches (or restricted depth) is low.

Clymer-Cookport channery loams (CncB) (0 to 8 percent slopes, extremely stony) The Clymer component makes up 40 percent of the map unit. Slopes are 0 to 8 percent. This component is on hillslopes. The parent material consists of stony residuum weathered from sandstone and shale. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high to high. Available water to a depth of 60 inches (or restricted depth) is low.

Craigsville gravelly loam (CrA) (0 to 5 percent slopes, rarely flooded) Soils of the Craigsville series are very deep and well drained to somewhat excessively drained. They formed in moderately coarse and coarse textured sediments. Permeability is moderately rapid or rapid. They are nearly level to gently sloping soils on flood plains. Slopes range from 0 to 5 percent. Mean annual temperature is about 50 degrees F, and mean annual precipitation is about 40 inches.

Eldred channery silt loam (EdB) (0 to 8 percent slopes) The Eldred series consists of very deep, moderately well drained soils formed in residuum from interbedded shale, siltstone, and fine grained sandstone. They are on upland ridgetops and hillsides. Slope ranges from 0 to 35 percent. Mean annual temperature is 44 degrees F, and mean annual precipitation is 37 inches near the type location.

Eldred channery silt loam (EdC) (8 to 15 percent slopes) The Eldred series consists of very deep, moderately well drained soils formed in residuum from interbedded shale, siltstone, and fine grained sandstone. They are on upland ridgetops and hillsides. Slope ranges from 0 to 35 percent. Mean annual temperature is 44 degrees F, and mean annual precipitation is 37 inches near the type location.

Elko channery loam (EIB) (0 to 8 percent slopes) The Elko series consists of deep and very deep, moderately well drained soils formed in weathered residuum from interbedded siltstone fine grained sandstone and shale. These soils are on broad ridgetops, upland depressions and upper side slopes. Slopes range from 0 to 15 percent. Mean annual air temperature is 44 degrees F, and mean annual precipitation is 37 inches.

Elko channery loam (ElsB) (0 to 8 percent slopes, extremely stony) The Elko series consists of deep and very deep, moderately well drained soils formed in weathered residuum from interbedded siltstone fine grained sandstone and shale. These soils are on broad ridgetops,

upland depressions and upper side slopes. Slopes range from 0 to 15 percent. Mean annual air temperature is 44 degrees F, and mean annual precipitation is 37 inches.

Hartleton channery silt loam, frigid (HafC) (8 to 15 percent slopes) The Hartleton component makes up 80 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes. The parent material consists of residuum weathered from sandstone and shale. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high to high. Available water to a depth of 60 inches (or restricted depth) is low.

Hartleton channery silt loam, frigid (HafD) (15 to 25 percent slopes) The Hartleton component makes up 80 percent of the map unit. Slopes are 15 to 25 percent. This component is on hillslopes. The parent material consists of residuum weathered from sandstone and shale. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high to high. Available water to a depth of 60 inches (or restricted depth) is low.

Kedron channery silt loam (KeB) (3 to 8 percent slopes) The Kedron series consists of very deep, somewhat poorly, and moderately well drained soils formed in colluvium or glacial till from reddish shale, siltstone, and fine-grained sandstone. Slopes range from 0 to 25 percent. Permeability is slow. Mean annual precipitation is 41 inches. Mean annual temperature is 49 degrees F.

Kedron channery silt loam (KeC) (8 to 15 percent slopes) The Kedron series consists of very deep, somewhat poorly, and moderately well drained soils formed in colluvium or glacial till from reddish shale, siltstone, and fine-grained sandstone. Slopes range from 0 to 25 percent. Permeability is slow. Mean annual precipitation is 41 inches. Mean annual temperature is 49 degrees F.

Kedron channery silt loam, frigid (KefB) (3 to 8 percent slopes) The Kedron series consists of very deep, somewhat poorly, and moderately well drained soils formed in colluvium or glacial till from reddish shale, siltstone, and fine-grained sandstone. Slopes range from 0 to 25 percent. Permeability is slow. Mean annual precipitation is 41 inches. Mean annual temperature is 49 degrees F.

Kedron channery silt loam, frigid (KefC) (8 to 15 percent slopes) The Kedron series consists of very deep, somewhat poorly, and moderately well drained soils formed in colluvium or glacial till from reddish shale, siltstone, and fine-grained sandstone. Slopes range from 0 to 25 percent. Permeability is slow. Mean annual precipitation is 41 inches. Mean annual temperature is 49 degrees F.

Kedron channery silt loam, frigid (KefD) (15 to 25 percent slopes) The Kedron series consists of very deep, somewhat poorly, and moderately well drained soils formed in colluvium or glacial till from reddish shale, siltstone, and fine-grained sandstone. Slopes range from 0 to 25 percent. Permeability is slow. Mean annual precipitation is 41 inches. Mean annual temperature is 49 degrees F.

Kedron channery silt loam, frigid (KfsD) (15 to 25 percent slopes, extremely stony) The Kedron series consists of very deep, somewhat poorly, and moderately well drained soils formed in colluvium or glacial till from reddish shale, siltstone, and fine-grained sandstone. Slopes range from 0 to 25 percent. Permeability is slow. Mean annual precipitation is 41 inches. Mean annual temperature is 49 degrees F.

Kinzu channery silt loam (KkF) (25 to 65 percent slopes, extremely stony) The Kinzua series consists of very deep well drained soils formed in weathered residuum or colluvium from interbedded shale, siltstone, and fine grained sandstone. They are on upland ridgetops and

hillsides. Slope ranges from 0 to 60 percent. Mean annual temperature is 44 degrees F, and mean annual precipitation is 37 inches.

Kinzu-Madsheep channery silt loam (KmF) (25 to 65 percent slopes, extremely stony) The Kinzu component makes up 55 percent of the map unit. Slopes are 25 to 65 percent. This component is on backslopes. The parent material consists of loamy residuum or colluvium derived from interbedded shale, siltstone, and sandstone. The natural drainage class is well drained. Water movement in the most restrictive layer is very low to moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Leck Kill channery loam (LeD) (15 to 25 percent slopes) The Leck Kill series consists of deep and very deep, well drained soils formed in residuum or glacial till weathered from red shale, siltstone, and sandstone. They are on the uplands. Slopes range from 0 to 60 percent.

Macove channery silt loam (MaF) (25 to 65 percent slopes, extremely stony) Soils of the Macove series are very deep and well drained. They formed in colluvium from acid shale and fine grain sandstone. They are on nearly level to steep mountain foot slopes and benches. Slopes range from 0 to 65 percent. Mean annual precipitation is about 42 inches. Mean annual temperature is about 55 degrees F.

Macove-Gainesboro channery silt loam (MgF) (25 to 65 percent slopes, extremely stony) The Macove component makes up 55 percent of the map unit. Slopes are 25 to 65 percent. This component is on hillslopes. The parent material consists of colluvium derived from acid sandstone and shale. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high to high. Available water to a depth of 60 inches (or restricted depth) is moderate.

Macove channery silt loam (MmD) (8 to 25 percent slopes, extremely stony) Soils of the Macove series are very deep and well drained. They formed in colluvium from acid shale and fine grain sandstone. They are on nearly level to steep mountain foot slopes and benches. Slopes range from 0 to 65 percent. Mean annual precipitation is about 42 inches. Mean annual temperature is about 55 degrees F.

Scio silt loam (ScA) (0 to 3 percent slopes) The Scio series consists of very deep, moderately well drained soils formed in eolian, lacustrine, or alluvial sediments dominated by silt and very fine sand. They are on terraces, old alluvial fans, lake plains, outwash plains and lakebeds. Saturated hydraulic conductivity is moderately high or high to a depth of 100 centimeters and ranges from moderately low through very high below 100 centimeters. Slope ranges from 0 through 25 percent. Mean annual temperature is 9 degrees C, and mean annual precipitation is 940 millimeters.

Tunkhannock gravelly loam (TuB) (0 to 8 percent slopes) The Tunkhannock series consists of very deep, well to somewhat excessively drained soils formed in water-sorted glacial material derived from reddish sandstone, siltstone, and shale. Slope ranges from 0 to 60 percent. Permeability is moderately rapid in the solum and rapid in the substratum. Mean annual precipitation is 40 inches. Mean annual temperature is 50 degrees F.

Tunkhannock gravelly loam (TuC) (8 to 15 percent slopes) The Tunkhannock series consists of very deep, well to somewhat excessively drained soils formed in water-sorted glacial material derived from reddish sandstone, siltstone, and shale. Slope ranges from 0 to 60 percent. Permeability is moderately rapid in the solum and rapid in the substratum. Mean annual precipitation is 40 inches. Mean annual temperature is 50 degrees F.

Unadilla silt loam (UnA) (0 to 3 percent slopes) The Unadilla series consists of deep and very deep, well drained soils formed in silty, lacustrine sediments or old alluvial deposits. These soils are on valley terraces and lacustrine plains. Saturated hydraulic conductivity is moderately high to high in the solum and substratum above 40 inches, and from moderately high to very high in the substratum below 40 inches. Slope ranges from 0 to 50 percent. Mean annual temperature is 48 degrees F, and mean annual precipitation is 36 inches.

Varilla-Laidig complex, frigid (VgfF) (25 to 80 percent slopes, very rubbly) The Varilla component makes up 58 percent of the map unit. Slopes are 25 to 80 percent. This component is on hill sopes. The parent material consists of colluvium derived from sandstone. The natural drainage class is somewhat excessively drained. Water movement in the most restrictive layer is high. Available water to a depth of 60 inches (or restricted depth) is low.

Elk and Cameron County Soils

Albright silt loam (AbC) (8 to 15 percent slopes) The Albrights component makes up 85 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes, dissected plateaus. The parent material consists of acid fine-loamy colluvium derived from sandstone and shale. Depth to a root restrictive layer, fragipan, is 18 to 32 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Albrights silt loam (AbD) (15 to 25 percent slopes) The Albrights component makes up 85 percent of the map unit. Slopes are 15 to 25 percent. This component is on hillslopes, dissected plateaus. The parent material consists of acid fine-loamy colluvium derived from sandstone and shale. Depth to a root restrictive layer, fragipan, is 18 to 32 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Cookport Ioam (CoB) (3 to 8 percent slopes) The Cookport component makes up 80 percent of the map unit. Slopes are 3 to 8 percent. This component is on broad ridges on dissected plateaus. The parent material consists of acid fine-loamy residuum weathered from sandstone. Depth to a root restrictive layer, fragipan, is 20 to 30 inches (depth from the mineral surface is 20 to 28 inches). The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate.

Cookport Ioam (CpB) (0 to 8 percent slopes, very stony) The Cookport component makes up 75 percent of the map unit. Slopes are 0 to 8 percent. This component is on broad ridges on dissected plateaus. The parent material consists of acid fine-loamy residuum weathered from sandstone. Depth to a root restrictive layer, fragipan, is 20 to 30 inches (depth from the mineral surface is 20 to 28 inches). The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate.

Hartleton channery silt loam (HaF) (25 to 60 percent slopes) The Hartleton component makes up 90 percent of the map unit. Slopes are 25 to 60 percent. This component is on ridges. The parent material consists of residuum weathered from sandstone and shale. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high to high. Available water to a depth of 60 inches (or restricted depth) is low.

Hazleston channery loam (HoC) (8 to 15 percent slopes) The Hazleton series consists of deep and very deep, well drained soils formed in residuum of acid gray, brown or red sandstone on uplands. Slope ranges from 0 to 80 percent. Permeability is moderately rapid to rapid. Mean annual precipitation is about 48 inches. Mean annual air temperature is about 51 degrees F.

Leck Kill channery silt loam (LeB) (3 to 8 percent slopes) The Leck Kill series consists of deep and very deep, well drained soils formed in residuum or glacial till weathered from red shale, siltstone, and sandstone. They are on the uplands. Slopes range from 0 to 60 percent.

Leck Kill channery silt loam (LeD) (15 to 25 percent slopes) The Leck Kill component makes up 85 percent of the map unit. Slopes are 15 to 25 percent. This component is on hills. The parent material consists of residuum weathered from sandstone and shale. Depth to a root restrictive layer, bedrock, lithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Leck Kill channery loam (LeF) (25 to 50 percent slopes) The Leck Kill component makes up 80 percent of the map unit. Slopes are 25 to 60 percent. This component is on mountain slopes. The parent material consists of reddish residuum derived from sedimentary rock. Depth to a root restrictive layer, bedrock, lithic, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Philo silt loam (Ph) (0 to 3 percent slopes) The Philo component makes up 85 percent of the map unit. Slopes are 0 to 3 percent. This component is on flood plains on dissected plateaus. The parent material consists of over gravelly coarse-loamy alluvium derived from sandstone and shale. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate.

Water (W) N/A

Clinton County Soils

Hustontown silt loam (HuB) (3 to 8 percent slopes) The Hustontown series consists of very deep, moderately well drained soils on dissected uplands. They are formed in colluvium derived from acid red shale, siltstone and sandstone sedimentary rocks. Permeability is moderate above the fragipan and moderately slow in the fragipan. Slopes range from 0 to 25 percent. Mean annual precipitation is 40 inches and the mean annual air temperature is 51 degrees F.

Ungers Ioam (UnB) (3 to 8 percent slopes) The Ungers series consists of deep and very deep, well drained soils formed in residuum from red sandstone and shale. Slopes range from 0 to 60 percent. Permeability is moderate. Mean annual precipitation is 43 inches. Mean annual temperature is 52 degrees F.

Clearfield County Soils

Ernest silt loam (ErC) (8 to 15 percent slopes) The Ernest component makes up 85 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes. The parent material consists of acid fine-loamy colluvium derived from shale and siltstone. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low to moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Gilpin channery silt loam (GIC) (8 to 15 percent slopes) The Gilpin component makes up 85 percent of the map unit. Slopes are 8 to 15 percent. This component is on hillslopes. The parent material consists of acid fine-loamy residuum weathered from shale and siltstone and/or fine-grained sandstone. The natural drainage class is well drained. Water movement in the most

restrictive layer is moderately low to moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Monongahela silt loam (MoB) (3 to 8 percent slopes) The Monongahela component makes up 85 percent of the map unit. Slopes are 3 to 8 percent. This component is on stream terraces. The parent material consists of acid loamy alluvium derived from interbedded and sedimentary rock. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low to moderately high. Available water to a depth of 60 inches (or restricted depth) is low.

Philo silt Ioam (Ph) (0 to 3 percent slopes) The Philo component makes up 85 percent of the map unit. Slopes are 0 to 3 percent. This component is on flood plains on dissected plateaus. The parent material consists of over gravelly coarse-loamy alluvium derived from sandstone and shale. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate.

Pope loam (Po) (0 to 3 percent slopes, occasionally flooded) The Pope series consists of very deep, well drained soils formed in alluvium on flood plains. Permeability is moderate or moderately rapid. Slopes range from 0 to 4 percent. Mean annual precipitation is about 48 inches and mean annual air temperature is about 53 degrees F. near the type location.

Purdy silt loam (Pu) The Purdy series consists of very deep, poorly drained or very poorly drained soils formed in slackwater-deposited alluvial materials on terraces. Permeability is slow or very slow. Slope ranges from 0 to 8 percent. Mean annual precipitation is about 42 inches and Mean annual air temperature is about 51 degrees F.

Rayne channery silt loam (RbF) (25 to 65 percent slopes) The Rayne component makes up 45 percent of the map unit. Slopes are 25 to 65 percent. This component is on hills. The parent material consists of acid fine-loamy residuum weathered from sandstone and siltstone. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low to moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate.

Rayne-Gilpin complex (RcD) (15 to 25 percent slopes) The Rayne component makes up 45 percent of the map unit. Slopes are 15 to 25 percent. This component is on hills. The parent material consists of acid fine-loamy residuum weathered from sandstone and siltstone. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low to high. Available water to a depth of 60 inches (or restricted depth) is moderate.

Tyler silt loam (TyA) (0 to 3 percent slopes) The Tyler series consists of very deep, somewhat poorly drained soils formed in silty alluvium and in a mantle of loess on high Illinoian age terraces and valley fills. Permeability is moderately slow above the fragipan, slow or very slow in the fragipan, and moderately slow in the substratum. Slope ranges from 0 to 8 percent. Mean annual precipitation is about 40 inches. Mean annual air temperature is about 55 degrees F.

G. Table 4.2-4: NRCS Mapped Soils Located within the PSA

Table 4.2-4: NRCS Mapped Soils Located within the PSA

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	Highly Erodibl Water ³ W	/ le ind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Line YM58														
McKean	0.0	0.2	CoB	Cookport	80	0.2	Y (Prime)	Ν	Ν	Ν	N	Ν	Ν	N
McKean	0.2	0.3	BrB	Brinkerton	58	0.1	Ν	Y	Y	Ν	N	Ν	Ν	N
McKean	0.3	0.3	BrA	Brinkerton	58	<0.1	Ν	Y	Y	Ν	N	Ν	Ν	Ν
McKean	0.3	0.6	CoB	Cookport	80	0.3	Y (Prime)	Ν	Ν	Ν	N	Ν	Ν	Ν
McKean	0.6	0.7	HbB	Hazleton	90	0.1	Y (Prime)	Ν	Ν	Ν	N	Ν	Y	Y
McKean	0.7	0.7	HbC	Hazleton	90	<0.1	Y (State)	Ν	Ν	Y	Ν	Y	Y	Y
McKean	0.7	0.8	BuB	Buchanan	90	0.1	Y (Prime)	Ν	Ν	Ν	N	Ν	Ν	Ν
McKean	0.8	1.0	HbC	Hazleton	90	0.2	Y (State)	Ν	Ν	Y	Ν	Y	Y	Y
McKean	1.0	1.6	BuB	Buchanan	90	0.6	Y (Prime)	Ν	Ν	Ν	N	Ν	Ν	Ν
McKean	1.6	1.7	HbC	Hazleton	90	0.1	Y (State)	Ν	Ν	Y	Ν	Y	Y	Y
McKean	1.7	1.8	HbB	Hazleton	90	0.1	Y (Prime)	Ν	N	N	N	Ν	Y	Y
McKean	1.8	1.8	HeF	Hartleton, Buchanan	50, 30	<0.1	Ν	Ν	Ν	Y	N	Y	Ν	Y
McKean	1.8	1.8	HaD	Hartleton	90	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	1.8	1.9	BuC	Buchanan	90	0.1	Y (State)	Ν	Ν	Y	Ν	Y	Ν	Ν
McKean	1.9	1.9	HaD	Hartleton	90	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	1.9	2.0	HbC	Hazleton	90	0.1	Y (State)	Ν	Ν	Y	Ν	Y	Y	Y
McKean	2.1	2.1	HbB	Hazleton	90	0.1	Y (Prime)	Ν	Ν	Ν	N	Ν	Y	Y
McKean	2.1	2.1	HeF	Hartleton, Buchanan	50, 30	<0.1	Ν	Ν	Ν	Y	N	Υ	Ν	Y
McKean	2.1	2.2	BuC	Buchanan	90	0.1	Y (State)	Ν	Ν	Y	Ν	Y	Ν	Ν
McKean	2.2	2.4	CoB	Cookport	80	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	2.4	2.6	HbB	Hazleton	90	0.2	Y (Prime)	Ν	Ν	Ν	N	Ν	Y	Y
McKean	2.6	2.8	CoB	Cookport	80	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	2.8	2.9	HbC	Hazleton	90	0.1	Y (State)	Ν	N	Y	N	Y	Y	Y

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erod Water ³	nly ible Wind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
McKean	2.9	3.0	BuB	Buchanan	90	0.1	Y (Prime)	Ν	N	Ν	Ν	Ν	Ν	N
McKean	3.0	3.1	HbC	Hazleton	90	0.1	Y (State)	Ν	N	Y	Ν	Y	Y	Y
McKean	3.1	3.1	CoB	Cookport	80	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	3.1	3.1	HbB	Hazleton	90	0.1	Y (Prime)	Ν	N	Ν	Ν	Ν	Y	Y
McKean	3.1	3.2	HeF	Hartleton, Buchanan	50, 30	0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	3.2	3.7	BxD	Buchanan	85	0.5	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
McKean	3.7	3.9	HeF	Hartleton, Buchanan	50, 30	0.2	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	3.9	4.1	HbB	Hazleton	90	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	4.1	4.2	СрВ	Cookport	75	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
McKean	4.2	4.3	HbB	Hazleton	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	4.3	4.4	BxD	Buchanan	85	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
McKean	4.4	4.6	HdB	Hazleton	85	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	4.6	4.6	СрВ	Cookport	75	<0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
McKean	4.6	4.6	HdD	Hazleton	85	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	4.6	4.7	BxB	Buchanan	90	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	N
McKean	4.7	4.7	HdD	Hazleton	85	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	4.7	4.8	HdB	Hazleton	85	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	4.8	4.9	HdD	Hazleton	85	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	4.9	5.0	BxB	Buchanan	90	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
McKean	5.0	5.2	HdB	Hazleton	85	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	5.2	5.3	CoB	Cookport	80	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	5.5	5.7	HdB	Hazleton	85	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	5.7	5.9	СрВ	Cookport	75	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Y	N
McKean	5.9	6.3	HdB	Hazleton	85	0.4	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	6.3	6.4	HdD	Hazleton	85	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erodi Water ³	hly ble Wind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
--------	-------------	-----------	---------------------------------	------------------------	----------------------	-------------------------------	--	--------------------------	--	-------------------------------------	---------------------------------	--	---------------------------------------	---
McKean	6.4	6.5	HeF	Hartleton, Buchanan	50, 30	0.1	Ν	Ν	N	Y	N	Y	Ν	Y
McKean	6.5	6.5	BuC	Buchanan	90	<0.1	Y (State)	Ν	Ν	Y	Ν	Y	Ν	Ν
McKean	6.5	6.6	At	Atkins	85	0.1	Y (State)	Y	Ν	Ν	Ν	Ν	Ν	Ν
McKean	6.6	6.8	Ph	Philo	85	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	6.8	6.8	W	Water	100	<0.1	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	6.8	6.8	Ph	Philo	85	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	6.8	6.9	BuB	Buchanan	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	6.9	7.0	BuC	Buchanan	90	0.1	Y (State)	Ν	Ν	Y	Ν	Y	Ν	Ν
McKean	7.1	7.3	BxD	Buchanan	85	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
McKean	7.3	7.5	HeF	Hartleton, Buchanan	50, 30	0.2	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	7.5	7.6	HdB	Hazleton	85	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	7.6	7.6	HdD	Hazleton	85	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	7.6	7.7	HeF	Hartleton, Buchanan	50, 30	0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	7.7	7.9	BxD	Buchanan	85	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
McKean	7.9	8.0	BuC	Buchanan	90	0.1	Y (State)	Ν	Ν	Y	Ν	Y	Ν	Ν
McKean	8.0	8.0	At	Atkins	85	<0.1	Y (State)	Y	Ν	Ν	Ν	Ν	Ν	Ν
McKean	8.0	8.1	BuB	Buchanan	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	8.1	8.2	BuC	Buchanan	90	0.1	Y (State)	Ν	Ν	Y	Ν	Y	Ν	Ν
McKean	8.2	8.3	HeF	Hartleton, Buchanan	50, 30	0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	8.3	8.5	HdD	Hazleton	85	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	8.5	8.6	HdB	Hazleton	85	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	8.6	8.9	HbB	Hazleton	90	0.3	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	8.9	8.9	HdB	Hazleton	85	<0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	8.9	9.0	HbB	Hazleton	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Y

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	Higl Erod Water ³	hly ible Wind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
McKean	9.0	9.2	СоВ	Cookport	80	0.2	Y (Prime)	Ν	N	N	Ν	Ν	Ν	N
McKean	9.2	9.6	СрВ	Cookport	75	0.5	Ν	Ν	N	Ν	Ν	Ν	Y	N
McKean	9.6	9.7	СрD	Cookport	75	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
McKean	9.7	9.8	СрВ	Cookport	75	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
McKean	9.8	10.3	СоВ	Cookport	80	0.5	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	10.3	10.5	BxD	Buchanan	85	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	N
McKean	10.5	10.5	HeF	Hartleton, Buchanan	50, 30	<0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	10.5	10.7	HdD	Hazleton	85	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	10.7	11.0	HdB	Hazleton	85	0.3	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	11.0	11.2	HeF	Hartleton, Buchanan	50, 30	0.2	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	11.2	11.2	BxD	Buchanan	85	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
McKean	11.2	11.3	BxB	Buchanan	90	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	N
McKean	11.3	11.3	BxD	Buchanan	85	<0.1	Ν	Ν	Ν	Υ	Ν	Y	Y	Ν
McKean	11.3	11.5	HeF	Hartleton, Buchanan	50, 30	0.2	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	11.5	11.6	HdD	Hazleton	85	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	11.6	12.0	HbB	Hazleton	90	0.5	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	12.0	12.1	HdB	Hazleton	85	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	12.1	12.2	CoB	Cookport	80	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	12.2	12.3	HdB	Hazleton	85	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	12.3	12.5	CoB	Cookport	80	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	12.5	12.6	HbB	Hazleton	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	12.6	12.7	HdD	Hazleton	85	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	12.7	12.9	HdB	Hazleton	85	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	12.9	13.3	HdD	Hazleton	85	0.4	Ν	Ν	Ν	Y	Ν	Y	Y	Y

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	Higi Erod	hly ible	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky	Shallow to Bedrock (Y/N) ⁷
				I leaders a		(mies)	importance (1/14)	()		water	wina	(1714)	(1/14)	()
McKean	13.3	13.5	HeF	Hartleton, Buchanan	50, 30	0.2	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	13.5	13.6	LeF	Leck Kill	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	13.6	13.6	LeD	Leck Kill	85	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	13.6	13.7	AbC	Albrights	85	0.1	Y (State)	Ν	Ν	Y	Ν	Y	Ν	Ν
McKean	13.7	13.9	AbB	Albrights	85	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	13.9	14.1	Ph	Philo	85	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	14.1	14.1	W	Water	100	<0.1	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	14.1	14.3	AbB	Albrights	85	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	14.3	14.7	AbC	Albrights	85	0.4	Y (State)	Ν	Ν	Y	Ν	Y	Ν	Ν
McKean	14.7	14.7	AbB	Albrights	85	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	N
McKean	14.7	14.7	At	Atkins	85	<0.1	Y (State)	Y	Ν	Ν	Ν	Ν	Ν	N
McKean	14.7	14.8	Bb	Basher	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	N
McKean	14.8	14.8	W	Water	100	<0.1	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	14.8	14.9	Ва	Barbour	85	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	14.9	15.1	Bb	Basher	90	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	15.1	15.2	At	Atkins	85	0.1	Y (State)	Y	Ν	Ν	Ν	Ν	Ν	N
McKean	15.2	15.3	Bb	Basher	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	15.3	15.4	BeB	Braceville	85	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	N
McKean	15.4	15.6	ChB	Chenango	90	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	N
McKean	15.6	15.7	Bb	Basher	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	N
McKean	15.7	15.8	AbC	Albrights	85	0.1	Y (State)	Ν	Ν	Y	Ν	Y	Ν	N
McKean	15.8	15.9	LeD	Leck Kill	85	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	15.9	16.0	LeF	Leck Kill	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
McKean	16.0	16.2	HeF	Hartleton, Buchanan	50, 30	0.2	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	16.2	16.3	HbB	Hazleton	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Y

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length	Prime Farmland/ Farmland of Statewide	Hydric Soils	Compaction Prone (Y/N) ²	High Erodi	ly ble	Revegetation Concerns	Stony/ Rocky	Shallow to Bedrock
						(miles)	Importance (Y/N)	(1/N)		Water ³	Wind⁴	(1/N)*	(Y/N)°	(T/N) [,]
McKean	16.3	16.3	HeF	Hartleton, Buchanan	50, 30	<0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	16.3	17.7	HbB	Hazleton	90	1.4	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Y
McKean	17.7	17.9	HeF	Hartleton, Buchanan	50, 30	0.2	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
McKean	17.9	18.1	LeF	Leck Kill	80	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	18.1	18.1	CrA	Craigsville	75	<0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potter	18.1	18.2	MmD	Meckesville	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	18.2	18.3	MaF	Macove	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	18.3	18.4	MgF	Macove, Gainesboro	55, 40	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	18.4	18.4	MaF	Macove	80	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	18.4	18.4	HcfC	Hazleton, frigid	80	<0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	18.4	18.7	MaF	Macove	80	0.3	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	18.7	18.8	LeD	Leck Kill	75	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	18.8	18.9	TuB	Tunkhannock	85	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	18.9	19.0	KeC	Kedron	80	0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	19.0	19.0	LeD	Leck Kill	75	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	19.0	19.1	BeA	Basher	85	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potter	19.1	19.1	AtA	Atkins	85	<0.1	Ν	Y	Ν	Ν	Ν	Ν	Ν	Ν
Potter	19.1	19.2	BcA	Basher	80	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potter	19.2	19.3	BaA	Barbour	80	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potter	19.3	19.4	TuB	Tunkhannock	85	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	19.4	19.5	KeB	Kedron	80	0.1	Y (State)	Ν	N	Ν	Ν	Ν	Y	N
Potter	19.5	19.6	TuB	Tunkhannock	85	0.1	Y (Prime)	Ν	N	Ν	Ν	Ν	Y	Ν
Potter	19.6	19.6	BdA	Basher	80	<0.1	Y (Prime)	Ν	N	Ν	Ν	N	Ν	N
Potter	19.6	19.7	TuB	Tunkhannock	85	0.1	Y (Prime)	Ν	N	Ν	Ν	N	Y	N

County	MP Begin	MP End	Map Unit Symbol ¹	Component (Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	Higl Erod Water ³	hly ible Wind⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Potter	19.7	19.8	KeC	Kedron	80	0.1	Y (State)	Ν	N	N	N	Ν	Y	N
Potter	19.8	19.8	LeD	Leck Kill	75	<0.1	Ν	Ν	N	Y	Ν	Y	Y	Y
Potter	19.8	19.9	MaF	Macove	80	0.1	N	Ν	N	Y	N	Y	Y	N
Potter	19.9	19.9	LeD	Leck Kill	75	<0.1	Ν	Ν	N	Y	Ν	Y	Y	Y
Potter	19.9	19.9	VgfF	Varilla, Laidig	58, 34	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	19.9	20.0	MaF	Macove	80	0.1	Ν	Ν	N	Y	Ν	Y	Y	Ν
Potter	20.0	20.1	VgfF	Varilla, Laidig	58, 34	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	20.1	20.2	BIC	Blandburg	75	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	20.2	20.3	CmfC	Clymer	80	0.1	Ν	Ν	Ν	Y	Ν	Ν	Y	Y
Potter	20.3	20.5	CmfB	Clymer	80	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	20.5	20.5	CmfD	Clymer	80	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	20.5	20.7	EdB	Eldred	85	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	20.7	20.8	MaF	Macove	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	20.8	20.8	EdB	Eldred	85	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	20.8	21.4	BIB	Blandburg	75	0.6	Ν	Ν	Ν	Ν	Ν	Y	Y	Y
Potter	21.4	21.6	BIC	Blandburg	75	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	21.6	21.7	VgfF	Varilla, Laidig	58, 34	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	21.7	21.8	KkF	Kinzua	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	21.8	22.1	VgfF	Varilla, Laidig	58, 34	0.3	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	22.1	22.1	CmfB	Clymer	80	<0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	22.2	22.3	ElsB	Elko	80	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	22.3	22.6	CmfB	Clymer	80	0.3	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	22.6	22.7	VgfF	Varilla, Laidig	58, 34	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	22.7	22.9	MgF	Macove, Gainesboro	55, 40	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	22.9	23.0	MaF	Macove	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	N
Potter	23.0	23.0	UnA	Unadilla	85	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erod Water ³	nly ible Wind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Potter	23.0	23.0	ScA	Scio	90	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	N
Potter	23.0	23.1	AtA	Atkins	85	0.1	Ν	Y	Ν	Ν	Ν	Ν	Ν	Ν
Potter	23.1	23.1	ScA	Scio	90	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	N
Potter	23.1	23.2	KeC	Kedron	80	0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	23.2	23.5	KeD	Kedron	80	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	23.5	23.6	KeC	Kedron	80	0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	23.6	23.7	KeD	Kedron	80	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	23.7	23.9	KkF	Kinzua	80	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	23.9	24.5	CeC	Ceres	80	0.6	Ν	Ν	Ν	Y	Ν	Ν	Y	Y
Potter	24.5	24.7	KkF	Kinzua	80	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	24.7	24.8	CeC	Ceres	80	0.1	Ν	Ν	Ν	Y	Ν	Ν	Y	Y
Potter	24.8	24.8	KefB	Kedron	80	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potter	24.8	25.0	CeD	Ceres	80	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	25.0	25.1	KkF	Kinzua	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	25.1	25.1	CeD	Ceres	80	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	25.1	25.2	KkF	Kinzua	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	25.2	25.3	KmF	Kinzua, Madsheep	55, 40	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	25.3	25.4	CeC	Ceres	80	0.1	Ν	Ν	Ν	Y	Ν	Ν	Y	Y
Potter	25.4	25.5	HafD	Hartleton	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	25.5	25.5	KmF	Kinzua, Madsheep	55, 40	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	25.5	25.7	HafD	Hartleton	80	0.12	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	25.7	25.7	KkF	Kinzua	80	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	25.7	26.0	CeB	Ceres	80	0.3	N	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	26.0	26.0	KkF	Kinzua	80	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	26.0	26.4	CeB	Ceres	80	0.4	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y

County	MP	MP End	Map Unit	Component	Component	Crossing Length	Prime Farmland/ Farmland of Statewide	Hydric Soils	Compaction	High Erodi	nly ible	Revegetation Concerns	Stony/ Rocky	Shallow to Bedrock
	Degin	Enu	Symbol	Name	Feicent	(miles)	Importance (Y/N)	(Y/N)		Water ³	Wind ⁴	(Y/N) ⁵	(Y/N) ⁶	(Y/N) ⁷
Potter	26.4	26.4	CeD	Ceres	80	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	26.4	26.5	CeB	Ceres	80	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	26.5	26.5	KkF	Kinzua	80	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	26.5	26.6	CeD	Ceres	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	26.6	26.6	BdA	Basher	80	<0.11	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potter	26.6	26.7	KefB	Kedron, frigid	80	0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	26.7	26.7	BdA	Basher	80	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potter	26.7	26.8	KefC	Kedron, frigid	80	0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	26.8	26.9	KkF	Kinzua	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	26.9	27.1	KefB	Kedron, frigid	80	0.2	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	27.1	27.1	CeB	Ceres	80	<0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	27.1	27.3	KefB	Kedron, frigid	80	0.2	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	27.3	27.3	CeD	Ceres	80	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	27.3	27.4	KefC	Kedron, frigid	80	0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	27.4	27.4	CeC	Ceres	80	<0.1	Ν	Ν	Ν	Y	Ν	Ν	Y	Y
Potter	27.4	27.5	CeD	Ceres	80	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	27.5	27.7	CeB	Ceres	80	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	27.7	27.8	KkF	Kinzua	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	27.8	27.9	CeD	Ceres	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	27.9	28.0	KkF	Kinzua	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	28.0	28.2	CeC	Ceres	80	0.2	Ν	Ν	Ν	Y	Ν	Ν	Y	Y
Potter	28.2	28.3	CeB	Ceres	80	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	28.3	28.5	CeC	Ceres	80	0.2	N	Ν	N	Y	Ν	N	Y	Y
Potter	28.5	28.6	KkF	Kinzua	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	N
Potter	28.6	28.7	KefC	Kedron, frigid	80	0.1	Y (State)	Ν	N	Ν	Ν	N	Y	N
Potter	28.7	28.7	KkF	Kinzua	80	<0.1	Ν	Ν	N	Y	Ν	Y	Y	N

County	MP Begin	MP End	Map Unit Symbol ¹	Component (Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erod Water ³	hly ible Wind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Potter	28.7	28.8	CeD	Ceres	80	0.1	Ν	Ν	N	Y	Ν	Y	Y	Y
Potter	28.8	28.9	KefC	Kedron, frigid	80	0.1	Y (State)	Ν	N	Ν	Ν	Ν	Y	N
Potter	28.9	28.9	KkF	Kinzua	80	<0.1	Ν	Ν	N	Y	Ν	Y	Y	Ν
Potter	28.9	29.2	CeB	Ceres	80	0.3	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	29.2	29.3	KefB	Kedron, frigid	80	0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	29.3	29.5	CeB	Ceres	80	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	29.5	29.5	KefB	Kedron, frigid	80	<0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Line KL Ex	ctension													
McKean	0.0	0.2	CoB	Cookport	80	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
McKean	0.2	0.3	BrB	Brinkerton	58	0.1	Ν	Y	Y	Ν	Ν	Ν	Ν	Ν
McKean	0.3	0.3	BrA	Brinkerton	58	<0.1	Ν	Y	Y	Ν	Ν	Ν	Ν	Ν
McKean	0.3	0.4	CoB	Cookport	80	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Line YM22	4 Loop													
Potter	0.0	0.2	CeC	Ceres	80	0.2	Ν	Ν	Ν	Y	Ν	Ν	Y	Y
Potter	0.2	0.2	KefC	Kedron, frigid	80	<0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	0.2	0.4	CeB	Ceres	80	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	0.4	0.5	KefB	Kedron, frigid	80	0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	0.5	0.6	CeB	Ceres	80	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	0.6	0.8	KefB	Kedron, frigid	80	0.2	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	0.8	0.9	CeB	Ceres	80	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Potter	0.9	1.0	CeD	Ceres	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	1.0	1.1	KefC	Kedron, frigid	80	0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	1.1	1.2	KfsD	Kedron, frigid	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	1.2	1.2	KefC	Kedron, frigid	80	<0.1	Y (State)	Ν	N	Ν	Ν	Ν	Y	Ν
Potter	1.2	1.3	KefB	Kedron, frigid	80	0.1	Y (State)	Ν	N	Ν	Ν	Ν	Y	Ν
Potter	1.3	1.4	CeD	Ceres	80	0.1	Ν	Ν	N	Y	Ν	Y	Y	Y

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erodi Water ³	ly ble Nind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Line FM10	0 Aband	onmer	nt											
Clearfield	0.0	0.0	ErC	Ernest	85	<0.01	Y (State)	Ν	N	N	Ν	Y	Ν	N
Clearfield	0.0	0.1	Pu	Purdy	75	0.1	Ν	Ν	Y	Ν	N	Ν	Ν	Ν
Clearfield	0.1	0.1	ТуА	Tyler	85	<0.1	Y (State)	Ν	Y	Ν	Ν	Ν	Ν	Ν
Clearfield	0.1	0.1	Ph	Philo	85	<0.1	Y (Prime)	Y	Ν	Ν	Ν	Y	Ν	Ν
Clearfield	0.1	0.3	Po	Pope	85	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Clearfield	0.3	0.3	Pu	Purdy	75	<0.1	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν
Clearfield	0.3	0.4	MoB	Monongahela	85	<0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Clearfield	0.4	0.6	RbF	Rayne	90	0.2	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
Clearfield	0.6	0.7	BeD	Berks	85	0.1	Ν	Ν	Y	Ν	Ν	Ν	Y	Y
Clearfield	0.7	0.8	CoB	Cookport	80	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Clearfield	0.8	0.8	CaB	Cavode	85	<0.1	Y (State)	Ν	Ν	Y	Ν	Ν	Ν	Y
Clearfield	0.8	0.9	BeC	Berks	85	0.1	Ν	Ν	Y	Ν	Ν	Ν	Y	Y
Clearfield	0.9	0.9	WhC	Wharton	80	<0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Clearfield	0.9	1.0	BeC	Berks	85	0.1	Ν	Ν	Y	Ν	N	Ν	Y	Y
Clearfield	1.0	1.0	BeB	Braceville	85	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Clearfield	1.0	1.0	BeC	Berks	85	<0.1	Ν	Ν	Y	Ν	Ν	Ν	Y	Y
Clearfield	1.0	1.1	WhC	Wharton	80	0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Clearfield	1.1	1.2	GIB	Gilpin	85	0.1	Yes (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Clearfield	1.2	1.2	RbF	Rayne	90	<0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
Clearfield	1.2	1.3	CaC	Cavode	85	0.1	Y (State)	Ν	Ν	Y	Ν	Ν	Ν	Y
Clearfield	1.3	1.3	RbF	Rayne	90	<0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
Clearfield	1.3	1.3	CaC	Cavode	85	<0.1	Y (State)	Ν	Ν	Y	Ν	Ν	Ν	Y
Clearfield	1.3	1.5	RbF	Rayne	90	0.2	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
Clearfield	1.5	1.6	BeB	BeB	Braceville	0.1	Y (Prime)	Ν	N	Ν	N	Ν	Ν	Ν
Clearfield	1.6	1.6	RbF	Rayne	90	<0.1	Ν	Ν	N	Y	Ν	Y	Ν	Y

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erod Water ³	nly ible Wind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Clearfield	1.6	1.7	ErC	Ernest	85	0.1	Y (State)	N	N	N	N	Y	N	N
Clearfield	1.7	2.0	RbF	Rayne	90	0.3	N	N	N	Y	N	Y	N	Y
Clearfield	2.0	2.2	ErC	Ernest	85	0.2	Y (State)	Ν	N	Ν	Ν	Y	N	Ν
Clearfield	2.2	2.4	RbF	Rayne	90	0.2	Ν	N	N	Y	N	Y	N	Y
Clearfield	2.4	2.4	RcD	Rayne-Gilpin	85	<0.1	Ν	N	Ν	Y	Ν	Ν	Ν	Y
Clearfield	2.4	2.7	GIC	Gilpin	85	0.3	Yes (State)	N	N	Y	Ν	N	N	Y
Clearfield	2.7	2.8	RbF	Rayne	90	0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
Clearfield	2.8	2.8	GIB	Gilpin	85	<0.1	Ν	Ν	N	Ν	Ν	N	Y	Y
Clearfield	2.8	2.9	WhD	Wharton	70	0.1	Ν	Ν	N	Y	Ν	Ν	Ν	Y
Clearfield	2.9	3.0	GIB	Gilpin	85	0.1	Ν	Ν	N	Ν	Ν	N	Y	Y
Clearfield	3.0	3.0	RbF	Rayne	90	<0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
Clearfield	3.0	3.1	ErC	Ernest	85	0.1	Y (State)	Ν	Ν	Ν	Ν	Y	Ν	N
Clearfield	3.1	3.1	RcD	Rayne-Gilpin	85	<0.1	Ν	Ν	N	Y	Ν	N	Ν	Y
Clearfield	3.1	3.2	WhB	Wharton	80	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	N
Clearfield	3.2	3.3	RbF	Rayne	90	0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
Clearfield	3.3	3.3	ErD	Ernest	85	<0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν
Clearfield	3.3	3.4	RbF	Rayne	90	<0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
Clearfield	3.4	3.4	Erd	Ernest	85	<0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν
Clearfield	3.4	3.5	RbF	Rayne	90	0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
Clearfield	3.5	3.5	CIC	Clymer	75	<0.1	Y (State)	Ν	Ν	Y	Ν	Ν	Ν	Y
Clearfield	3.5	3.6	CIB	Clymer	75	0.1	Y (State)	Ν	Ν	Y	Ν	Ν	Ν	Y
Clearfield	3.6	3.7	RbF	Rayne	90	0.1	Ν	Ν	Ν	Y	Ν	Y	Ν	Y
Clearfield	3.7	3.7	DeC	Dekalb	100	<0.1	Y (State)	Ν	Ν	Y	Ν	Ν	Ν	Y
Clearfield	3.7	3.9	DeB	Dekalb	100	0.2	Yes (State)	Ν	N	Ν	Ν	Ν	Ν	Y
Clearfield	3.9	4.0	CmB	Clymer	80	0.1	Ν	Ν	N	Ν	Ν	N	Ν	Y
Clearfield	4.0	4.1	RcD	Rayne-Gilpin	85	0.1	N	Ν	N	Y	Ν	N	Ν	Y

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	Higl Erod Water ³	hly ible Wind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Clearfield	4.1	4.1	92B	Bethesda	90	<0.1	Ν	Ν	N	N	N	Ν	Ν	N
Clearfield	4.1	4.2	92D	Bethesda	90	0.1	Ν	Ν	N	Ν	Ν	N	Ν	N
Clearfield	4.2	4.2	WhC	Wharton	80	<0.1	Y (State)	Ν	N	Y	Ν	Ν	Ν	Ν
Clearfield	4.2	4.3	CaB	Cavode	85	0.1	Y (State)	Ν	N	Y	Ν	N	Ν	Y
Clearfield	4.3	4.4	WhB	Wharton	80	0.1	Y (Prime)	Ν	N	Ν	Ν	Ν	Ν	Ν
Clearfield	4.4	4.5	CmC	Clymer	95	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Clearfield	4.5	4.7	HbF	Hazleton	95	0.2	Ν	Ν	Y	Ν	Ν	Ν	Y	Y
Clearfield	4.7	4.8	CxB	Cookport	80	0.1	Ν	Ν	Ν	Y	Ν	Ν	Y	Y
Clearfield	4.8	4.9	HbF	Hazleton	95	0.1	Ν	Ν	Y	Ν	Ν	Ν	Y	Y
Clearfield	4.9	5.0	HbD	Hazleton	95	0.1	Ν	Ν	N	Y	Ν	Ν	Ν	Y
Clearfield	5.0	5.2	HdB	Hazleton	85	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Clearfield	5.2	5.2	CmB	Cookport	80	<0.1	Ν	Ν	N	Y	Ν	N	Y	Y
Clearfield	5.2	5.5	HdB	Hazleton	85	0.3	Ν	Ν	N	Ν	Ν	N	Y	Y
Clearfield	5.5	5.7	CxB	Cookport	80	0.2	Ν	Ν	Ν	Y	Ν	Ν	Y	Y
Clearfield	5.7	6.4	HdB	Hazleton	85	0.7	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Clearfield	6.4	6.6	CIB	Clymer	75	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Clearfield	6.6	6.8	СоВ	Cookport	80	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Clearfield	6.8	6.9	CmB	Cookport	80	0.1	Ν	Ν	Ν	Y	Ν	Ν	Y	Y
Clearfield	6.9	6.9	HbD	Hazleton	95	<0.1	Ν	Ν	N	Y	Ν	N	Ν	Y
Clearfield	6.9	7.0	CxD	Cookport	85	0.1	Ν	Ν	N	Y	Ν	Ν	Ν	Y
Clearfield	7.0	7.1	HbD	Hazleton	95	0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Clearfield	7.1	7.2	HdB	Hazleton	85	0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Clearfield	7.2	7.3	СоВ	Cookport	80	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Clearfield	7.3	7.3	СоВ	Cookport	80	<0.1	Y (Prime)	Ν	N	Ν	Ν	N	Ν	N
Elk	7.3	7.6	HxB	HxB	Hazleton	0.3	Ν	Ν	N	Ν	Ν	Y	Y	Y
Elk	7.6	7.9	HxF	Hazleton	80	0.3	0.2	Ν	N	Ν	Y	N	Ν	N

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erodi Water ³	hly ible Wind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Elk	7.9	8.0	Ub	Udifluvents	50	0.1	Ν	N	N	N	N	Ν	N	N
Elk	8.0	8.3	HxF	Hazleton	80	0.3	0.2	N	N	N	Y	N	N	N
Elk	8.3	8.5	HxD	Hazleton	85	0.2	Ν	Ν	N	Y	Y	Y	Y	Y
Elk	8.5	9.2	CeC	Ceres	80	0.7	Ν	N	N	Y	Ν	N	Y	Y
Elk	9.2	9.5	CoB	Cookport	80	0.3	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Elk	9.5	9.7	CoA	Cookport	85	0.2	Yes (Prime)	Ν	N	N	Ν	N	Y	Y
Elk	9.7	10.8	HoB	Hazelton	90	1.1	Y (Prime)	Ν	N	Ν	Ν	Ν	Ν	Y
Elk	10.8	10.8	HxF	Hazleton	80	<0.1	Ν	Ν	N	Y	Ν	N	Ν	Ν
Elk	10.8	11.1	CoB	Cookport	80	0.3	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Elk	11.1	11.4	HoC	Hazelton	90	0.3	Y (State)	Ν	N	Ν	Ν	Y	Ν	Y
Elk	11.4	12.0	CoB	Cookport	80	0.6	Y (Prime)	Ν	N	Ν	Ν	Ν	Ν	N
Elk	12.0	12.3	CoA	Cookport	85	0.3	Yes (Prime)	Ν	N	Ν	Ν	N	Y	Y
Elk	12.3	12.3	CoB	Cookport	80	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Elk	12.3	12.4	HoC	HoC	Hazelton	0.1	Y (State)	Ν	Ν	Ν	Ν	Y	Ν	Y
Elk	12.4	12.6	CoB	Cookport	80	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Elk	12.6	12.8	HoC	Hazelton	90	0.2	Y (State)	Ν	Ν	Ν	Ν	Y	Ν	Y
Elk	12.8	13.0	CpD	Cookport	75	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Elk	13.0	13.3	СрВ	Cookport	75	0.3	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
Elk	13.3	13.4	CpD	Cookport	75	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Elk	13.4	14.0	СрВ	Cookport	75	0.6	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
Elk	14.0	14.7	HxB	Hazleton	85	0.7	Ν	Ν	Ν	Ν	Ν	Y	Y	Y
Elk	14.7	14.9	CoB	Cookport	80	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Elk	14.9	15.9	СрВ	Cookport	75	1.0	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
Elk	15.9	16.0	HxD	Hazleton	85	0.1	Ν	Ν	Ν	Y	Υ	Y	Y	Y
Elk	16.0	16.0	HoB	Hazelton	90	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Elk	16.0	16.2	HxB	Hazleton	85	0.2	Ν	Ν	Ν	Ν	Ν	Y	Y	Y

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erodi Water ³	nly ible Wind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Elk	16.2	16.5	HoB	Hazelton	90	0.3	Y (Prime)	Ν	N	N	Ν	Ν	Ν	Y
Elk	16.5	16.8	СрВ	Cookport	75	0.3	Ν	N	N	N	Ν	N	Y	N
Elk	16.8	17.0	HxB	Hazleton	85	0.2	Ν	Ν	N	Ν	Ν	Y	Y	Y
Elk	17.0	17.0	HxD	Hazleton	85	<0.1	Ν	Ν	N	Y	Y	Y	Y	Y
Elk	17.0	17.5	СрВ	Cookport	75	0.5	Ν	Ν	N	Ν	Ν	Ν	Y	Ν
Elk	17.5	17.6	HxD	Hazleton	85	0.1	Ν	Ν	N	Y	Y	Y	Y	Y
Elk	17.6	17.9	HxB	Hazleton	85	0.3	Ν	Ν	Ν	Ν	Ν	Y	Y	Y
Elk	17.9	17.9	HxD	Hazleton	85	<0.1	Ν	Ν	Ν	Y	Y	Y	Y	Y
Elk	17.9	18.4	CoB	Cookport	80	0.5	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Elk	18.4	18.5	HxB	Hazleton	85	0.1	Ν	Ν	Ν	Ν	Ν	Y	Y	Y
Elk	18.5	18.5	HxD	Hazleton	85	<0.1	Ν	Ν	Ν	Y	Y	Y	Y	Y
Elk	18.5	18.7	HxB	Hazleton	85	0.2	Ν	Ν	N	Ν	Ν	Y	Y	Y
Elk	18.7	18.7	HxD	Hazleton	85	<0.1	Ν	Ν	N	Y	Y	Y	Y	Y
Elk	18.7	18.8	HoB	Hazelton	90	0.1	Y (Prime)	Ν	N	Ν	Ν	Ν	Ν	Y
Elk	18.8	18.8	HxD	Hazleton	85	<0.1	Ν	Ν	N	Y	Y	Y	Y	Y
Elk	18.8	19.0	СрВ	Cookport	75	0.2	Ν	Ν	N	Ν	Ν	Ν	Y	N
Elk	19.0	19.4	HxB	Hazleton	85	0.4	Ν	Ν	N	Ν	Ν	Y	Y	Y
Elk	19.4	19.4	HxD	Hazleton	85	<0.1	Ν	Ν	N	Y	Y	Y	Y	Y
Elk	19.4	19.6	СрВ	Cookport	75	0.2	Ν	Ν	N	Ν	Ν	Ν	Y	Ν
Cameron	19.6	19.7	HxD	Hazleton	85	0.1	Ν	Ν	N	Y	Y	Y	Y	Y
Cameron	19.7	19.9	СрВ	Cookport	75	0.2	Ν	Ν	N	Ν	Ν	Ν	Y	Ν
Cameron	19.9	20.1	HxD	Hazleton	85	0.2	Ν	Ν	N	Y	Y	Y	Y	Y
Cameron	20.1	20.5	СрВ	Cookport	75	0.4	Ν	Ν	N	Ν	Ν	Ν	Y	Ν
Cameron	20.5	20.9	HxD	Hazleton	85	0.4	Ν	N	N	Y	Y	Y	Y	Y
Cameron	20.9	21.1	HxF	Hazleton	80	0.2	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν
Cameron	21.1	21.2	HxB	Hazleton	85	0.1	Ν	N	N	N	Ν	Y	Y	Y

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length	Prime Farmland/ Farmland of Statewide	Hydric Soils	Compaction Prone (Y/N) ²	Higl Erod	nly ible	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky	Shallow to Bedrock
Cameron	21.2	21.2	UvE	Hazlatan	80	0.1	N	N	N	water*	wina [.]	N	(1/N) N	N
Comoron	21.2	21.5			00	0.1	IN N		11	1 				
Cameron	21.3	21.7	LeF	Leck Kill	80	0.4	N	N	N	Y	N	Y	Y	Ŷ
Cameron	21.7	21.7	LeD	Leck Kill	85	<0.1	Ν	N	N	Y	Ν	Y	Y	Y
Cameron	21.7	22.4	Ub	Udifluvents	50	0.7	N	Ν	N	N	Ν	N	N	N
Cameron	22.4	22.9	LeF	Leck Kill	80	0.5	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	22.9	23.1	LeD	Leck Kill	85	0.2	N	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	23.1	23.2	Ph	Philo	85	0.1	Y (Prime)	Y	Ν	Ν	Ν	Y	Ν	Ν
Cameron	23.2	23.2	W	Water	100	<0.1	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	23.2	23.4	Ub	Udifluvents	50	0.2	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	23.4	23.6	LeB	Leck Kill		0.2	Y (Prime)	Ν	Ν	Ν	Ν	Y	Ν	Y
Cameron	23.6	23.7	LeF	Leck Kill	80	0.1								
Cameron	23.7	23.9	LeB	Leck Kill		0.2	Y (Prime)	Ν	N	Ν	Ν	Y	Ν	Y
Cameron	23.9	24.9	LeF	Leck Kill	80	1.0	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	24.9	25.1	LeD	Leck Kill	85	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	25.1	25.3	LeF	Leck Kill	80	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	25.3	25.5	HxF	Hazleton	80	0.2	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν
Cameron	25.5	25.7	LeF	Leck Kill	80	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	25.7	25.8	LeD	Leck Kill	85	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	25.8	25.8	LeF	Leck Kill	80	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	25.8	26.2	LeD	Leck Kill	85	0.4	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	26.2	26.5	AbC	Albrights	85	0.3	Y (State)	Ν	Ν	Y	Ν	Y	Ν	Ν
Cameron	26.5	26.7	LeD	Leck Kill	85	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	26.7	26.8	Ph	Philo	85	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	26.8	26.8	W	Water	100	<0.1	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	26.8	26.9	LeF	Leck Kill	80	0.1	Ν	Ν	N	Y	Ν	Y	Y	Y
Cameron	26.9	26.9	Ph	Philo	85	<0.1	Y (Prime)	Y	Ν	Ν	Ν	Y	Ν	Ν

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erod	hly ible	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky	Shallow to Bedrock
Cameron	26.0	27.7	LoE	Lock Kill	80	0.9	N	N	N	water*	wina ·	((1/N) V	v
Camoron	20.9	21.1			00	0.0	IN N		N	I V		1 N	1 N	N
Cameron	27.7	28.1	HXF	Hazleton	80	0.4	N	N	N	Y	N	N	N	N
Cameron	28.1	28.2	HxD	Hazleton	85	0.1	N	Ν	Ν	Ν	N	Y	Y	Y
Cameron	28.2	28.3	HxB	HxB	85	0.1	Ν	Ν	Ν	Ν	Ν	Y	Y	Y
Cameron	28.3	28.4	HxF	Hazleton	80	0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν
Cameron	28.4	28.5	HxB	HxB	85	0.1	Ν	Ν	Ν	Ν	Ν	Y	Y	Y
Cameron	28.5	28.9	HxD	Hazleton	85	0.4	Ν	Ν	Ν	Y	Y	Y	Y	Y
Cameron	28.9	29.1	HxB	HxB	85	0.2	Ν	Ν	Ν	Ν	Ν	Y	Y	Y
Cameron	29.1	29.4	CoA	Cookport	85	0.3	Yes (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Y
Cameron	29.4	29.6	HoB	Hazleton	90	0.2	Yes (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Cameron	29.6	29.6	HxD	Hazleton	85	<0.1	Ν	Ν	Ν	Y	Y	Y	Y	Y
Cameron	29.6	30.0	CpD	Cookport	75	0.4	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Cameron	30.0	30.4	CoA	Cookport	85	0.4	Yes (Prime)	Ν	Ν	Ν	Ν	Ν	Y	Y
Cameron	30.4	30.6	HoB	Hazelton	90	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Cameron	30.6	31.0	СоВ	Cookport	80	0.4	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	31.0	31.3	HoB	Hazelton	90	0.3	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Cameron	31.3	31.4	HoD	Hazleton	90	0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Cameron	31.4	31.5	HaF	Hartleton	85	0.1	Yes (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Cameron	31.5	31.6	CoB	Cookport	80	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	31.6	31.7	BuC	Buchanan	90	0.1	Y (State)	Ν	Ν	Y	Ν	Y	Ν	N
Cameron	31.7	31.7	СоВ	Cookport	80	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	31.7	31.8	HoD	Hazleton	90	0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Cameron	31.8	31.9	HoB	Hazelton	90	0.1	Y (Prime)	Ν	N	N	Ν	Ν	Ν	Y
Cameron	31.9	31.9	HoD	Hazleton	90	<0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Cameron	31.9	32.1	СоВ	Cookport	80	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	N
Cameron	32.1	32.1	HoD	Hazleton	90	<0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	Hig Erod Water ³	hly lible Wind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Cameron	32.1	32.2	HoC	Hazelton	90	0.1	Y (State)	Ν	N	N	N	Y	Ν	Y
Cameron	32.2	32.5	HaF	Hartleton	85	0.3	Ν	Ν	N	Y	١N	Y	N	Y
Cameron	32.5	32.5	HoC	Hazelton	90	<0.1	Y (State)	Ν	N	Ν	Ν	Y	Ν	Y
Cameron	32.5	32.6	HoB	HoB	Hazelton	0.1	Y (Prime)	Ν	N	Ν	Ν	N	Ν	Y
Cameron	32.6	32.7	HaF	Hartleton	85	0.1	Ν	Ν	N	Y	١N	Y	Ν	Y
Cameron	32.7	33.0	HoD	Hazleton	90	0.3	Ν	Ν	N	Y	Ν	Ν	Ν	Y
Cameron	33.0	33.0	HaF	Hartleton	85	<0.1	Ν	Ν	N	Y	١N	Y	Ν	Y
Cameron	33.0	33.1	HoD	Hazleton	90	0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Cameron	33.1	33.2	HoB	Hazelton	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Cameron	33.2	33.3	HoD	Hazleton	90	0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Cameron	33.3	33.3	BxD	Buchanan	85	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Cameron	33.3	33.4	AbD	Albrights	80	0.1	Ν	Y	Ν	Ν	Ν	Y	Ν	Ν
Cameron	33.4	33.5	HaF	Hartleton	85	0.1	Ν	Ν	Ν	Y	١N	Y	Ν	Y
Cameron	33.5	33.6	HoB	Hazelton	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Cameron	33.6	33.7	HaF	Hartleton	85	0.1	Ν	Ν	Ν	Y	\N	Y	Ν	Y
Cameron	33.7	33.9	HoB	Hazelton	90	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Cameron	33.9	34.0	HoD	Hazleton	90	0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Cameron	34.0	34.3	HaF	Hartleton	85	0.3	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Cameron	34.3	34.5	HaD	Hartleton	90	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	34.5	34.6	HaC	Hartleton	90	0.1	Yes (State)	Ν	Ν	Y	Ν	Ν	Ν	Y
Cameron	34.6	34.8	HaF	Hartleton	85	0.2	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Cameron	34.8	34.9	HaB	Hartleton	90	0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Cameron	34.9	35.0	СоВ	Cookport	80	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	35.0	35.2	HaC	Hartleton	90	0.2	Yes (State)	Ν	N	Y	Ν	Ν	Ν	Y
Cameron	35.2	35.3	BuC	Buchanan	90	0.1	Y (State)	Ν	N	Y	Ν	Y	Ν	N
Cameron	35.3	35.4	HaD	Hartleton	90	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erodi Water ³	nly ible Wind⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Cameron	35.4	35.5	HaB	Hartleton	90	0.1	Y (State)	Ν	N	N	N	N	Ν	Y
Cameron	35.5	35.6	LeF	Leck Kill	80	0.1	Ν	Ν	N	Y	Ν	Y	Y	Y
Cameron	35.6	35.6	HaB	Hartleton	90	<0.1	Y (State)	Ν	N	Ν	Ν	Ν	Ν	Y
Cameron	35.6	35.8	HaC	Hartleton	90	0.2	Yes (State)	Ν	N	Y	Ν	N	Ν	Y
Cameron	35.8	36.1	HaD	Hartleton	90	0.3	Ν	Ν	N	Y	Ν	Y	Y	Y
Cameron	36.1	36.2	HaC	Hartleton	90	0.1	Yes (State)	Ν	N	Y	Ν	N	Ν	Y
Cameron	36.2	36.3	LeD	Leck Kill	85	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Cameron	36.3	36.4	HaD	Hartleton	90	0.1	Ν	Ν	N	Y	Ν	Y	Y	Y
Cameron	36.4	36.4	CpD	Cookport	75	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Cameron	36.4	36.5	BrB	Brinkerton	58	0.1	Ν	Y	Y	Ν	Ν	Ν	Ν	N
Cameron	36.5	36.6	CpD	Cookport	75	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Cameron	36.6	36.7	HaD	Hartleton	90	0.1	Ν	Ν	N	Y	Ν	Y	Y	Y
Cameron	36.7	37.0	HoB	Hazelton	90	0.3	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Cameron	37.0	37.3	HoC	Hazelton	90	0.3	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Cameron	37.3	37.5	AbB	Albrights	85	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	37.5	37.6	HxB	Hazleton	85	0.1	Ν	Ν	Ν	Ν	Ν	Y	Y	Y
Cameron	37.6	37.8	AbB	Albrights	85	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	37.8	38.0	HxB	Hazleton	85	0.2	Ν	Ν	Ν	Ν	Ν	Y	Y	Y
Cameron	38.0	38.0	СоВ	Cookport	80	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	38.0	38.4	AbB	Albrights	85	0.4	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cameron	38.4	38.5	HoB	Hazelton	90	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Cameron	38.5	38.5	HxF	Hazleton	80	<0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν
Cameron	38.5	38.6	AbC	Albrights	85	0.1	Y (State)	Ν	Ν	Y	Ν	Y	Ν	Ν
Potter	38.6	38.8	KeC	Kedron	80	0.2	Y (State)	Ν	Ν	Ν	Ν	Ν	Y	Ν
Potter	38.8	38.8	CoC	Cookport	85	<0.1	Y (State)	Ν	N	Y	Ν	N	Ν	Y
Potter	38.8	38.9	CoB	Cookport	80	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	N

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erodi Water ³	nly ible Wind⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Potter	38.9	39.0	CoC	Cookport	85	0.1	Y (State)	Ν	N	Y	N	N	Ν	Y
Potter	39.0	39.5	CncB	Cookport	80	0.5	<0.1	Ν	N	N	Ν	N	Ν	Y,
Potter	39.5	39.8	CoC	Cookport	85	0.3	Y (State)	Ν	N	Y	Ν	N	Ν	Y
Potter	39.8	39.9	HcD	Hazleton	80	0.1	Ν	Ν	N	Y	Y	Y	Y	Y
Potter	39.9	39.9	CoC	Cookport	85	<0.1	Y (State)	Ν	N	Y	Ν	N	Ν	Y
Potter	39.9	40.0	CncB	Cookport	80	0.1	<0.1	Ν	Ν	Ν	Ν	Ν	Ν	Y,
Potter	40.0	40.1	HcD	Hazleton	80	0.1	Ν	Ν	Ν	Y	Y	Y	Y	Y
Potter	40.1	40.3	CosD	Cookport	80	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	40.3	40.3	HcD	Hazleton	80	<0.1	Ν	Ν	N	Y	Y	Y	Y	Y
Potter	40.3	40.4	HcC	Hazleton	80	0.1	Ν	Ν	N	Y	Y	Y	Y	Y
Potter	40.4	40.6	CncB	Cookport	80	0.2	<0.1	Ν	N	Ν	Ν	Ν	Ν	Y '
Potter	40.6	40.7	CosD	Cookport	80	0.1	Ν	Ν	N	Y	Y	Y	Y	Y
Potter	40.7	40.9	CncB	Cookport	80	0.2	<0.1	Ν	N	Ν	Ν	N	Ν	Y,
Potter	40.9	41.0	HcD	Hazleton	80	0.1	Ν	Ν	Ν	Y	Y	Y	Y	Y
Potter	41.0	41.1	VgF	Varilla-Laidig	92	0.1	Ν	Ν	N	Y	Y	Y	Y	Ν
Potter	41.1	41.1	MaF	Macove	80	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	41.1	41.2	CrA	Craigsville	75	0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potter	41.2	41.3	VgF	Varilla-Laidig	92	0.1	Ν	Ν	Ν	Y	Y	Y	Y	Ν
Potter	41.3	41.5	WhD	Wharton	70	0.2	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Potter	41.5	41.7	WhB	Wharton	80	0.2	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potter	41.7	41.8	HaD	Hartleton	90	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	41.8	41.9	CosC	Cookport	85	0.1	Ν	Ν	Ν	Ν	Ν	Y	Y	Y
Potter	41.9	42.0	CoB	Cookport	80	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potter	42.0	42.2	HcsD	Hazleton	85	0.2	Ν	Ν	N	Y	Y	Y	Y	Y
Potter	42.2	42.3	HaB	Hartleton	90	0.1	Y (State)	Ν	N	Ν	Ν	N	Ν	Y
Potter	42.3	42.4	MaF	Macove	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	N

County	MP Begin	MP End	Map Unit Symbol ¹	Component Name	Component Percent	Crossing Length (miles)	Prime Farmland/ Farmland of Statewide Importance (Y/N)	Hydric Soils (Y/N)	Compaction Prone (Y/N) ²	High Erodi Water ³	nly ible Wind ⁴	Revegetation Concerns (Y/N) ⁵	Stony/ Rocky (Y/N) ⁶	Shallow to Bedrock (Y/N) ⁷
Potter	42.4	42.4	MgF	Macove, Gainesboro	55, 40	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	42.4	42.5	MaF	Macove	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	42.5	42.5	CrA	Craigsville	75	<0.1	Y (State)	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potter	42.5	42.7	MgF	Macove, Gainesboro	55, 40	0.2	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	42.7	43.1	HaC	Hartleton	90	0.4	Yes (State)	Ν	Ν	Y	Ν	Ν	Ν	Y
Potter	43.1	43.2	MgD	Macove- Gainesboro	95	0.1	Ν	Ν	Ν	Y	Y	Y	Y	Ν
Potter	43.2	43.2	MgF	Macove, Gainesboro	55, 40	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	43.2	43.5	HafD	Hartleton	80	0.3	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Potter	43.5	43.5	CoC	Cookport	85	<0.1	Y (State)	Ν	Ν	Y	Ν	Ν	Ν	Y
Potter	43.5	43.6	MgF	Macove, Gainesboro	55, 40	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	43.6	43.6	HasD	HasD		<0.1	Ν	Ν	Ν	Y	Y	Y	Y	Y
Potter	43.6	43.6	HafB	Hartleton	85	<0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Potter	43.6	43.6	HaD	Hartleton	90	<0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Y
Potter	43.6	43.7	HafB	Hartleton	85	0.1	Y (Prime)	Ν	Ν	Ν	Ν	Ν	Ν	Y
Potter	43.7	43.8	MgF	Macove, Gainesboro	55, 40	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	Ν
Potter	43.8	43.8	HcfD	Hartleton	80	<0.1	Ν	Ν	Ν	Y	Ν	Ν	Ν	Y
Potter	43.8	44.0	MgF	Macove, Gainesboro	55, 40	0.2	N	Ν	N	Y	Ν	Y	Y	Ν
Potter	44.0	44.1	MaF	Macove	80	0.1	Ν	Ν	Ν	Y	Ν	Y	Y	N

¹ As designated by the USDA-NRCS.

² Compaction prone soils were determined using drainage classification ratings of somewhat poor, poor, and very poor as designated by the USDA-NRCS and combined with soil clay content based on the following: 1 to 18 percent clay content having low to moderate compaction potential; greater than 18 percent clay content having high compaction potential.

³ Highly erodible soils by water were predicted using land capability classification 4E through 8E and/or soils with an average slope greater than or equal to nine percent.

⁴ Highly erodible soils by wind includes those soils that were designated by the USDA-NRCS as having Wind Erodibility Group classifications of one or two.

⁵ Includes coarse-textured soils (sandy loams and coarser) that are moderately well to excessively well drained and/or soils with an average slope greater than or equal to 15 percent. ⁶ Includes soils that have a very gravelly, extremely gravelly, cobbly, stony, boulder, flaggy, or channery modifier to the textural class. 84 | National Fuel Gas Supply Corporation | PF17-10-000: Public | FM100 Project

⁷ Includes soils that have lithic bedrock within 60 inches of the soil surface as designated by the USDA-NRCS. Source: Soil Survey Staff, USDA-NRCS Web Soil Survey (2017).

Remainder of this page intentionally left blank.

H. Table 5.2-1: Field Delineated Wetlands within the PSA

This page intentionally left blank.

Wetland Designation	Latitude ¹ (DD)	Longitude ¹ (DD)	Cowardin Classification ²	Area within PSA ³ (acres)
Line YM58				
Pond 01	41.70441487	-78.50001305	PUB	<0.1
Pond 02	41.71171737	-78.48033562	PUB	<0.1
Pond 03	41.71155901	-78.48007148	PUB	<0.1
Pond 04	41.72035586	-78.46487535	PUB	<0.1
Pond 05	41.72053858	-78.46483615	PUB	<0.1
Pond 06	41.72494208	-78.45623677	PUB	0.1
Pond 07	41.78831230	-78.27019496	PUB	<0.1
Pond 11	41.78576062	-78.20449857	PUB	0.1
Wetland 001	41.70438582	-78.50012438	PEM	<0.1
Wetland 002	41.70424227	-78.50006645	PEM	<0.1
Wetland 003	41.70452425	-78.49998532	PFO	<0.1
Wetland 004	41.70401405	-78.49974931	PFO	0.2
Wetland 004a	41.70444937	-78.49964139	PEM	0.1
Wetland 004b	41.70388689	-78.49615881	PEM	3.7
Wetland 005	41.70611880	-78.49075725	PEM	0.5
Wetland 006	41.70796242	-78.48724065	PEM	0.2
Wetland 006a	41.70793567	-78.48701021	PFO	<0.1
Wetland 007	41.70978495	-78.48324413	PEM	1.1
Wetland 007a	41.70979758	-78.48410994	PFO	1.0
Wetland 007b	41.71061072	-78.48259874	PFO	0.4
Wetland 008	41.71062654	-78.48126176	PEM	0.2
Wetland 009	41.71172048	-78.47948773	PEM	1.4
Wetland 009a	41.71155091	-78.48070217	PFO	1.1
Wetland 009b	41.71266474	-78.47879895	PFO	0.4
Wetland 010	41.71351636	-78.47627742	PEM	1.5
Wetland 010a	41.71381932	-78.47680418	PFO	2.7
Wetland 010b	41.71457741	-78.47513077	PFO	0.8
Wetland 011	41.71452881	-78.47415506	PEM	0.1
Wetland 012b	41.71467211	-78.47372646	PEM	<0.1
Wetland 013a	41.71631593	-78.47077807	PEM	<0.1
Wetland 014	41.71694865	-78.47071553	PEM	0.1
Wetland 015	41.71667534	-78.47026966	PEM	<0.1
Wetland 016	41.72025610	-78.46544702	PFO	0.9
Wetland 016a	41.71987016	-78.46513708	PEM	0.2
Wetland 016b	41.72014546	-78.46469344	PEM	0.2
Wetland 017	41.72349536	-78.45630178	PEM	<0.1

Table 5.2-1: Field Delineated Wetlands within the PSA

Wetland Designation	Latitude ¹ (DD)	Longitude ¹ (DD)	Cowardin Classification ²	Area within PSA ³ (acres)
Wetland 017a	41.72338441	-78.45626261	PEM	<0.1
Wetland 018	41.72621711	-78.45228922	PEM	<0.1
Wetland 019	41.72858378	-78.44946118	PFO	<0.1
Wetland 020	41.72968710	-78.44755217	PEM	0.7
Wetland 020a	41.72982749	-78.44791532	PFO	0.7
Wetland 021	41.72995769	-78.44867613	PFO	<0.1
Wetland 022	41.73052968	-78.44788996	PFO	0.5
Wetland 023	41.73141688	-78.44578055	PEM	1.2
Wetland 024	41.73238840	-78.44532078	PEM	<0.1
Wetland 025	41.73249059	-78.44446310	PEM	0.2
Wetland 026	41.73333554	-78.44387495	PSS	1.1
Wetland 026a	41.73281712	-78.44311567	PEM	0.3
Wetland 027	41.73391437	-78.44306511	PEM	0.5
Wetland 028	41.73817443	-78.43941374	PEM	0.4
Wetland 029	41.74005554	-78.43517807	PEM	0.2
Wetland 030a	41.74234093	-78.43139828	PEM	<0.1
Wetland 031	41.74407984	-78.42611860	PFO	2.0
Wetland 031a	41.74367526	-78.42570758	PEM	0.2
Wetland 034	41.75279457	-78.39689786	PSS	0.1
Wetland 035	41.75461467	-78.39838327	PSS	1.9
Wetland 035a	41.75634217	-78.39971820	PEM	0.9
Wetland 037a	41.75376852	-78.39478522	PSS	0.4
Wetland 037b	41.75399913	-78.39484209	PEM	0.7
Wetland 037c	41.75504297	-78.39530714	PSS	0.7
Wetland 038	41.75396844	-78.39636381	PEM	<0.1
Wetland 039	41.75480036	-78.39564848	PEM	0.1
Wetland 040	41.75332136	-78.39436746	PSS	<0.1
Wetland 040a	41.75353742	-78.39337059	PSS	0.1
Wetland 041	41.75479857	-78.39409976	PEM	0.2
Wetland 042	41.75446337	-78.39341735	PEM	<0.1
Wetland 043	41.75377168	-78.39295955	PEM	<0.1
Wetland 044	41.75478341	-78.39287906	PEM	<0.1
Wetland 045	41.75462727	-78.38744256	PEM	0.1
Wetland 045a	41.75366592	-78.38865274	PSS	<0.1
Wetland 045b	41.75382714	-78.39093149	PSS	0.3
Wetland 045c	41.75359648	-78.38777099	PSS	<0.1
Wetland 046	41.75710991	-78.38022568	PEM	0.1
Wetland 047	41.75698484	-78.37981705	PEM	<0.1

Wetland Designation	Latitude ¹ (DD)	Longitude ¹ (DD)	Cowardin Classification ²	Area within PSA ³ (acres)
Wetland 048	41.75735623	-78.37965453	PEM	<0.1
Wetland 049	41.75701750	-78.37911447	PEM	<0.1
Wetland 051	41.75693624	-78.37669430	PEM	0.5
Wetland 052	41.75745756	-78.37651760	PEM	0.1
Wetland 053	41.75759098	-78.37550597	PFO	0.1
Wetland 054	41.75689469	-78.37494652	PEM	0.1
Wetland 055	41.75713654	-78.37261695	PEM	0.5
Wetland 056	41.75710486	-78.37208096	PEM	<0.1
Wetland 057	41.74909870	-78.37639956	PEM	<0.1
Wetland 058	41.76028487	-78.35702206	PEM	0.1
Wetland 058a	41.75996652	-78.35652924	PEM	<0.1
Wetland 059a	41.75586861	-78.34902940	PEM	0.2
Wetland 060	41.75886483	-78.34651021	PEM	0.1
Wetland 060a	41.75895036	-78.34641265	PEM	0.1
Wetland 061	41.75883375	-78.34103267	PEM	0.8
Wetland 061b	41.75838389	-78.33888837	PEM	0.1
Wetland 061c	41.75828671	-78.33876138	PEM	<0.1
Wetland 062	41.75610712	-78.33342806	PEM	0.1
Wetland 062a	41.75601615	-78.33350287	PEM	<0.1
Wetland 063	41.75282384	-78.33163939	PEM	0.1
Wetland 063a	41.75290629	-78.33150301	PEM	0.1
Wetland 064	41.75210479	-78.33110801	PEM	<0.1
Wetland 065	41.74816057	-78.32683433	PEM	0.1
Wetland 065a	41.74805827	-78.32675432	PEM	<0.1
Wetland 066a	41.76051790	-78.33724819	PEM	0.6
Wetland 067	41.76333817	-78.32954985	PEM	<0.1
Wetland 070	41.76695593	-78.31473084	PEM	<0.1
Wetland 071	41.76681925	-78.31451712	PEM	<0.1
Wetland 072	41.76662529	-78.31360908	PEM	<0.1
Wetland 075	41.78701142	-78.27284238	PEM	0.3
Wetland 076	41.78778129	-78.27143658	PEM	0.1
Wetland 077	41.78760780	-78.27100661	PEM	0.1
Wetland 078	41.78848301	-78.27069237	PEM	0.1
Wetland 079	41.78806914	-78.27044484	PSS	<0.1
Wetland 080	41.78835689	-78.27017153	PEM	0.1
Wetland 082	41.78875385	-78.26923384	PEM	<0.1
Wetland 083	41.79086624	-78.26635255	PEM	0.2
Wetland 084	41.79081992	-78.26597702	PEM	<0.1

Wetland Designation	Latitude ¹ (DD)	Longitude ¹ (DD)	Cowardin Classification ²	Area within PSA ³ (acres)
Wetland 085	41.79062490	-78.26552402	PEM	<0.1
Wetland 086	41.79255104	-78.26454462	PEM	0.1
Wetland 087	41.79531875	-78.26223021	PEM	0.1
Wetland 088	41.79566962	-78.26420451	PEM	1.7
Wetland 089	41.79553600	-78.26673209	PEM	0.1
Wetland 089a	41.79572160	-78.26667919	PEM	<0.1
Wetland 090	41.79571292	-78.25924382	PSS	<0.1
Wetland 091	41.79533323	-78.25447572	PSS	4.9
Wetland 091a	41.79592411	-78.25523880	PEM	0.6
Wetland 092	41.79488424	-78.25118982	PEM	0.1
Wetland 093	41.79482077	-78.25083881	PEM	0.1
Wetland 094	41.79524097	-78.25045879	PEM	0.5
Wetland 095	41.79547938	-78.24310303	PEM	0.1
Wetland 096	41.81126596	-78.20533834	PEM	<0.1
Wetland 097	41.81589707	-78.19887448	PEM	0.1
Wetland 098	41.81866470	-78.19618304	PEM	<0.1
Wetland 099	41.81930193	-78.19439593	PEM	<0.1
Wetland 100	41.81966346	-78.19420961	PEM	<0.1
Wetland 101	41.81942243	-78.19301220	PEM	0.5
Wetland 103	41.82131131	-78.19116230	PSS	0.1
Wetland 104	41.82624049	-78.18200239	PEM	0.3
Wetland 105	41.83349810	-78.16861688	PEM	<0.1
Wetland 106	41.84941713	-78.15929310	PUB	0.1
Wetland 117	41.75979425	-78.46875840	PEM	<0.1
Wetland 118	41.75771973	-78.46492853	PEM	0.1
Wetland 119	41.75580990	-78.46188589	PEM	0.2
Wetland 119a	41.75593897	-78.46182079	PEM	0.3
Wetland 120	41.75266948	-78.4562502	PEM	0.1
Wetland 121	41.74824352	-78.44857621	PEM	0.1
Wetland 121a	41.74812562	-78.44861235	PEM	<0.1
Wetland 122	41.74395253	-78.43782099	PEM	0.2
Wetland 123	41.74279584	-78.43467863	PEM	<0.1
Wetland 123a	41.74289166	-78.43462020	PEM	0.1
Wetland 124	41.84561011	-78.06403752	PEM	0.1
Wetland 124a	41.84530583	-78.06473427	PEM	0.1
Wetland 124b	41.84525154	-78.06477465	PEM	<0.1
Wetland 125	41.84573303	-78.06745356	PEM	0.4
Wetland 126	41.76728213	-78.31447343	PEM	0.1

Wetland Designation	Latitude ¹ (DD)	Longitude ¹ (DD)	Cowardin Classification ²	Area within PSA ³ (acres)
Wetland 126a	41.76801417	-78.31370975	PEM	<0.1
Wetland 126b	41.76787232	-78.31398199	PEM	<0.1
Wetland 126c	41.76717775	-78.31514056	PEM	0.1
Wetland 126d	41.76721178	-78.31737171	PEM	0.1
Wetland 127	41.76045321	-78.33795705	PFO	0.4
Wetland 128	41.75881127	-78.34259328	PFO	0.2
Wetland 140	41.76720791	-78.30858403	PEM	<0.1
Wetland 141	41.83569212	-78.12482499	PSS	0.8
Wetland 141a	41.83594440	-78.12506076	PEM	0.5
Wetland 142	41.83560217	-78.12785001	PSS	0.9
Wetland 142a	41.83528585	-78.12869166	PEM	0.1
Wetland 143	41.82170461	-78.19150568	PEM	0.1
Wetland 143a	41.82211917	-78.19152052	PEM	0.1
Wetland 144	41.75445820	-78.38676188	PEM	<0.1
Wetland 145	41.71596753	-78.47456089	PEM	0.1
Wetland 159	41.75453040	-78.35327011	PEM	<0.1
Wetland 160	41.75429601	-78.35307421	PEM	0.1
Wetland 161	41.79618594	-78.26184730	PEM	<0.1
Wetland 200	41.846256	-78.084034	PEM	<0.1
Wetland 255	41.84190038	-78.15627745	PEM	<0.1
Wetland 256	41.8490781	-78.15921796	PEM	<0.1
Wetland 258	41.85347479	-78.16036792	PEM	<0.1
Wetland 258a	41.85340885	-78.16049602	PEM	<0.1
Wetland 260	41.86901969	-78.16368763	PEM	<0.1
Wetland 261	41.87281125	-78.16331993	PEM	<0.1
Wetland 261a	41.8729048	-78.16340303	PEM	<0.1
Wetland 261b	41.87291854	-78.16337377	PEM	<0.1
Wetland 264	41.77621242	-78.29228342	PEM	<0.1
Wetland 265	41.77506801	-78.3106705	PFO	0.1
Wetland 266	41.77494528	-78.31061604	PEM	<0.1
Wetland 267	41.83712906	-78.1481594	PEM	<0.1
Wetland 276	41.77654632	-78.3099707	PSS	<0.1
Wetland 276a	41.78238084	-78.30669044	PEM	<0.1
Wetland 277	41.78208796	-78.30670638	PEM	<0.1
Wetland 277a	41.78256387	-78.30685304	PEM	<0.1
Wetland 279	41.78684311	-78.20461944	PEM	<0.1
Wetland 279a	41.78647986	-78.20472333	PEM	<0.1
Wetland 279b	41.78647576	-78.20467815	PEM	<0.1

Wetland Designation	Latitude ¹ (DD)	Longitude ¹ (DD)	Cowardin Classification ²	Area within PSA ³ (acres)
Wetland 280	41.78581174	-78.20344453	PEM	<0.1
Wetland 285	41.70783106	-78.49724375	PEM	0.4
Wetland 285a	41.70847072	-78.49716924	PEM	<0.1
Wetland 285b	41.70745163	-78.49617986	PEM	<0.1
Line YM224 Loop				
Pond 08	41.88447741	-77.95332696	PUB	<0.1
Wetland 112	41.88390601	-77.95577891	PEM	0.1
Wetland 113	41.88424436	-77.95569151	PEM	<0.1
Wetland 114	41.88408236	-77.95518029	PEM	0.1
EM100 Abandonmont				
Pond 12	11 346782	-78 137827	DUR	-0.1
Wetland 129	41.538853	-78.094481	PEM	<0.1
Wetland 129	41.538397	-78.094536	PEM	0.1
Wetland 130	41 532801	-78.094786	PEM	0.1
Wetland 130a	41 533405	-78.094845	PEM	0.1
Wetland 130b	41 527446	-78.095054	PEM	0.2
Wetland 131	41.517893	-78.095458	PEM	0.3
Wetland 131a	41.518892	-78.095436	PFM	0.1
Wetland 131b	41.509102	-78.09621	PEM	<0.1
Wetland 132	41.323727	-78.245837	PEM	<0.1
Wetland 132a	41.323427	-78.247984	PEM	<0.1
Wetland 133	41.264751	-78.34431	PEM	0.1
Wetland 134	41.26195	-78.347135	PEM	0.6
Wetland 134a	41.259983	-78.351378	PEM	2.6
Wetland 135	41.253369	-78.362233	PEM	0.7
Wetland 136	41.244595	-78.386092	PEM	0.2
Wetland 136a	41.244715	-78.384783	PEM	0.1
Wetland 136b	41.245096	-78.381647	PEM	<0.1
Wetland 137	41.241145	-78.418386	PEM	<0.1
Wetland 138	41.240996	-78.417151	PEM	<0.1
Wetland 139	41.232687	-78.474216	PEM	<0.1
Wetland 139a	41.232885	-78.475562	PEM	<0.1
Wetland 139b	41.232822	-78.474842	PEM	0.2
Wetland 146	41.55235	-78.085392	PEM	<0.1
Wetland 146a	41.553095	-78.085086	PEM	<0.1
Wetland 147	41.355707	-78.126805	PEM	<0.1
Wetland 147a	41.354406	-78.12689	PEM	0.1
Wetland 148	41.328294	-78.201643	PSS	0.1
Wetland 149	41.219774	-78.55829	PSS	0.4
Wetland 149a	41.219851	-78.55739	PSS	<0.1
Wetland 149b	41.219688	-78.557075	PSS	<0.1
Wetland 149c	41.219321	-78.553844	PÉM	0.2
Wetland 149d	41.219088	-78.552983	PSS	0.1

Wetland Designation	Latitude ¹ (DD)	Longitude ¹ (DD)	Cowardin Classification ²	Area within PSA ³ (acres)
Wetland 150	41.221629	-78.533157	PFO	<0.1
Wetland 151	41.221678	-78.520585	PEM	<0.1
Wetland 151a	41.221709	-78.521482	PEM	<0.1
Wetland 154	41.546035	-78.089802	PEM	<0.1
Wetland 155	41.221713	-78.518235	PEM	<0.1
Wetland 156	41.221709	-78.526162	PEM	0.1
Wetland 157	41.221674	-78.528478	PEM	<0.1
Wetland 158	41.22169	-78.527813	PEM	<0.1
Wetland 287	41.56021128	-78.07988012	PEM	0.3
Wetland 288	41.56159367	-78.07892584	PEM	0.2
Wetland 288a	41.56088149	-78.07942142	PEM	<0.1
Wetland 290	41.57000758	-78.0731891	PEM	<0.1
Wetland 290a	41.57000846	-78.07311883	PFO	<0.1
Wetland 292	41.40703002	-78.11394258	PEM	0.1
Wetland 294	41.40207815	-78.11535293	PEM	<0.1
Wetland 297	41.38130184	-78.11294687	PEM	0.6
Wetland 297a	41.37989185	-78.11240198	PEM	<0.1
Wetland 297b	41.38292951	-78.11355106	PEM	<0.1
Wetland 299	41.38539309	-78.11455078	PEM	0.1
Wetland 299a	41.38988865	-78.11621736	PEM	0.1
Wetland 303	41.34642133	-78.13810934	PSS	0.3
Wetland 303a	41.34694704	-78.13810524	PSS	<0.1
Wetland 303b	41.34603873	-78.13785746	PSS	0.1
Wetland 304	41.34530397	-78.13780474	PEM	<0.1
Wetland 305	41.35702396	-78.12859981	PEM	0.1
Wetland 305a	41.35645819	-78.12774669	PEM	<0.1
Wetland 307	41.33101855	-78.19916659	PSS	0.1
Wetland 311	41.25514819	-78.36011971	PEM	0.5
Wetland 313	41.25790427	-78.35642544	PEM	0.2
Wetland 313a	41.25757593	-78.35727187	PEM	<0.1
Wetland 314	41.25573001	-78.35690182	PEM	<0.1
Wetland 316	41.23613289	-78.44683798	PEM	<0.1
Wetland 316a	41.236043	-78.4472046	PEM	<0.1
Wetland 318	41.23799519	-78.44009455	PEM	0.3
Wetland 320	41.24129332	-78.42799568	PEM	0.1
Wetland 325	41.27516913	-78.33402006	PEM	0.1
Wetland 327	41.28208797	-78.33068607	PEM	0.1
Wetland 329	41.29928979	-78.32253945	PEM	0.1
Wetland 329a	41.29690215	-78.32480517	PEM	0.1

94 | National Fuel Gas Supply Corporation | PF17-10-000: Public | FM100 Project

Wetland Designation	Latitude ¹ (DD)	Longitude ¹ (DD)	Cowardin Classification ²	Area within PSA ³ (acres)
Wetland 329b	41.29911095	-78.32218171	PEM	0.1
Wetland 329c	41.29914022	-78.3225274	PEM	<0.1
Wetland 330	41.30484751	-78.31504774	PFO	0.5
Wetland 330a	41.30525547	-78.31469643	PFO	0.1
Wetland 331	41.31947867	-78.27057343	PEM	0.2
Wetland 333	41.32209518	-78.25660188	PEM	<0.1
		Subtotal ^₄	PEM	37.3
		Subtotal⁴	PFO	12.2
		Subtotal⁴	PSS	12.3
		Subtotal ⁴	PUB	0.5
			TOTAL⁴	62.3

¹ Coordinates provide as the GIS derived centroid, North American Datum, 1983.

² Field determined, simplified Cowardin Classification: PEM, PFO, PSS, PUB (Cowardin et al., 1979).

³ Extent of wetland delineated within the Project study area.

⁴ Differences between the sum of the individual records and the subtotals and total acres reported are due to rounding to the nearest tenth. The subtotals and total acres reported were derived from GIS analysis.

Remainder of this page intentionally left blank.

I. Table 5.2-2: Field Delineated Waterbodies within the PSA

This page intentionally left blank.

Waterbody	Cowardin	Area within the PSA ²	Latituda ³ (DD)	Longitudo ³ (DD)
	Classification	(acres)	Latitude ² (DD)	Longitude [®] (DD)
	P/SBCy	<0.1	41 73030427	-78 3033237
Ditch 02	R4SBCx	<0.1	41.75362674	-78 30020448
Ditch 02	P4SBCx	<0.1	41.75432479	78 20220922
Ditch 03	R4SBCX	<0.1	41.75292479	78 20206621
Ditch 04	R43BCX	0.1	41.75362473	-78.39300031
Ditch 05	R4SBCX	-0.1	41.75443107	-78.39301080
Ditch 06	R4SBCX	<0.1	41.76023084	-78.35705711
Ditch 08	R4SBCX	<0.1	41.78520066	-78.27405279
Ditch 09	R4SBCx	0.2	41.78565898	-78.27398464
Ditch 10	R4SBCx	0.1	41.78661402	-78.27256263
Ditch 11	R4SBCx	0.1	41.78910611	-78.26954993
Ditch 12	R4SBCx	<0.1	41.78906703	-78.26842529
Ditch 13	R4SBCx	0.1	41.78934143	-78.2684181
Ditch 15	R4SBCx	<0.1	41.79426308	-78.27217186
Ditch 15a	R4SBCx	<0.1	41.7955248	-78.27287594
Ditch 15b	R4SBCx	0.2	41.79975618	-78.27546963
Ditch 16	R4SBCx	0.1	41.79537958	-78.25210074
Ditch 17	R4SBCx	0.1	41.79525469	-78.2508490
Ditch 18	R4SBCx	<0.1	41.81021707	-78.20628189
Ditch 20	R4SBCx	<0.1	41.84604770	-78.08516071
Ditch 21	R4SBCx	<0.1	41.84599136	-78.08948616
Ditch 22	R4SBCx	<0.1	41.84606741	-78.09117888
Ditch 23	R4SBCx	<0.1	41.84377643	-78.09028109
Ditch 24	R4SBCx	<0.1	41.84299574	-78.08956818
Ditch 25	R4SBCx	<0.1	41.84219855	-78.09040583
Ditch 26	R4SBCx	<0.1	41.84178756	-78.09138169
Ditch 27	R4SBCx	<0.1	41.84074797	-78.09280810
Ditch 28	R4SBCx	<0.1	41.83670038	-78.10125715
Ditch 29	R4SBCx	<0.1	41.83712764	-78.11765194
Ditch 30	R4SBCx	<0.1	41.83724843	-78.11623298
Ditch 31	R4SBCx	<0.1	41.83744704	-78.11506826
Ditch 32	R4SBCx	<0.1	41.83763763	-78.11416243
Ditch 33	R4SBCx	<0.1	41.83778654	-78.11366106
Ditch 34	R4SBCx	<0.1	41.83812152	-78.11269783
Ditch 35	R4SBCx	<0.1	41.83829172	-78.11222627
Ditch 36	R4SBCx	<0.1	41.83848183	-78.11165532

Table 5.2-2: Field Delineated Waterbodies within the PSA

Waterbody	Cowardin	Area within the PSA ²	Latituda ³ (DD)	Longitudo ³ (DD)
Designation	PASECy		41 83880461	-78 110/8880
Ditch 37	P4SBCx	<0.1	41.83803634	78.11040000
Ditch 38		<0.1	41.83092034	-76.11011960
Ditch 39	R43BCX	<0.1	41.83902387	-76.10974906
Ditch 40	R4SBCX	<0.1	41.83971788	-78.10732312
Ditch 41	R4SBCx	<0.1	41.83968539	-78.10659159
Ditch 42	R4SBCx	<0.1	41.83963667	-78.10513306
Ditch 43	R4SBCx	<0.1	41.83939347	-78.10351204
Ditch 44	R4SBCx	<0.1	41.83843384	-78.10230447
Ditch 45	R4SBCx	<0.1	41.82296982	-78.18853399
Ditch 46	R4SBCx	<0.1	41.74666897	-78.41627333
Ditch 56	R4SBCx	<0.1	41.84606614	-78.06796431
Ditch 57	R4SBCx	<0.1	41.76729546	-78.30872482
Ditch 58	R4SBCx	<0.1	41.76730375	-78.30845363
Ditch 59	R4SBCx	<0.1	41.75641536	-78.34909939
Ditch 63	R4SBCx	<0.1	41.786318	-78.204727
Ditch 64	R4SBCx	<0.1	41.707545	-78.496713
Ditch 65	R4SBCx	<0.1	41.708411	-78.497315
Ditch 67	R4SBCx	<0.1	41.835765	-78.160121
Ditch 68	R4SBCx	<0.1	41.845839	-78.156924
Ditch 69	R4SBCx	<0.1	41.85156	-78.160371
Ditch 70	R4SBCx	<0.1	41.853925	-78.160379
Ditch 71	R4SBCx	<0.1	41.854717	-78.160645
Ditch 72	R4SBCx	<0.1	41.855711	-78.160712
Ditch 73	R4SBCx	<0.1	41.85762	-78.160365
Ditch 74	R4SBCx	<0.1	41.857618	-78.160435
Ditch 75	R4SBCx	<0.1	41.872829	-78.163426
Ditch 76	R4SBCx	<0.1	41.837619	-78.158881
Ditch 77	R4SBCx	0.1	41.841556	-78.156902
Allegheny Portage Creek	R2UB	0.4	41.78826348	-78.27061892
Allegheny River	R2UB	0.8	41.79582627	-78.26014549
Coleman Creek-1	R4SB	0.1	41.79577722	-78.24334076
Coleman Creek-2	R4SB	<0.1	41.80859015	-78.22259838
Donley Fork	R3UB	0.1	41.73327555	-78.44368528
Potato Creek	R2UB	1.8	41.75390276	-78.39411604
Robbins Brook	R3UB	0.3	41.73003915	-78.44807180
Sartwell Creek	R3UB	0.3	41.82042529	-78.19148554
Whitney Creek	R4SB	<0.1	41.8447063	-78.05277106
Stream 001	R4SB	0.1	41.70416595	-78.50030196

	e (DD)
Stroom 002 R4SB <0.1 41 70450142 -78 5004	11951
Stream 002 P4SB <0.1 41 70302365 -78 5001	8474
Stream 004 R4SB <0.1 41 70460735 -78 5000	23643
Stream 004 R4SB <0.1 41 70443809 -78 4990	8877
Sileam 005 R45D CO. 4170445005 -70.4555	12954
Stream 006 1435 01 41.70971519 -76.4044	30004
Stream 007 RS0B 0.1 41.71101550 -76.400	02022
Stream 008 R45B 0.1 41.71341509 -76.4775	03001
Stream 009 R4SB -0.1 41.71455918 -78.4755	02768
Stream 010 R4SB <0.1 41.71484172 -78.4753	30534
Stream 011 R4SB <0.1 41.71460914 -78.4748	38730
Stream 012 R4SB 0.1 41.71452741 -78.4742	21339
Stream 013 R4SB <0.1 41.71515357 -78.4744	14527
Stream 014 R4SB <0.1 41.71526555 -78.4739	93737
Stream 016 R4SB <0.1 41.71526280 -78.4737	75738
Stream 017 R4SB <0.1 41.71661401 -78.4703	38038
Stream 018 R4SB <0.1 41.71738592 -78.4705	51824
Stream 019 R4SB <0.1 41.71995523 -78.4654	18610
Stream 020 R4SB <0.1 41.72012942 -78.4649	93429
Stream 021 R4SB <0.1 41.72246034 -78.4540)2342
Stream 022 R4SB <0.1 41.71776043 -78.4530)4633
Stream 023 R4SB <0.1 41.71658843 -78.4515	57907
Stream 024 R4SB <0.1 41.71381317 -78.4463	33274
Stream 025 R4SB <0.1 41.71285710 -78.4463	35530
Stream 026 R4SB <0.1 41.72630019 -78.4523	36678
Stream 027 R3UB <0.1 41.72977110 -78.4475	50950
Stream 028 R4SB <0.1 41.73347780 -78.4441	9447
Stream 030 R4SB <0.1 41.74304526 -78.4255	59331
Stream 032 R4SB <0.1 41.73621188 -78.4079	96498
Stream 033 R4SB <0.1 41.73603671 -78.4064	1644
Stream 034 R4SB <0.1 41.73655295 -78.4043	31977
Stream 035 R4SB <0.1 41.73698369 -78.4027	75433
Stream 036 R4SB <0.1 41.73764346 -78.4008	31778
Stream 037 R3UB 0.2 41.75281949 -78.3974	14652
Stream 038 R3UB <0.1 41.75441548 -78.3897	79034
Stream 039 R4SB 0.2 41.75439608 -78.389	5924
Stream 040 R4SB <0.1 41.75715868 -78.3751	15933
Stream 041 R3UB 0.1 41.75735197 -78.3752	29845
Stream 042 R3UB <0.1 41.75740522 -78.375	0452

Waterbody Designation	Cowardin Classification ¹	Area within the PSA ² (acres)	Latitude ³ (DD)	Longitude ³ (DD)
Stream 043	R3UB	0.1	41.75721034	-78.37231701
Stream 044	R4SB	<0.1	41.74904835	-78.37660478
Stream 045	R4SB	<0.1	41.76037104	-78.36636079
Stream 046	R4SB	<0.1	41.76104886	-78.36443073
Stream 047	R4SB	<0.1	41.76100614	-78.35819901
Stream 048	R4SB	<0.1	41.76087928	-78.35799034
Stream 049	R4SB	<0.1	41.76042819	-78.35508347
Stream 050	R4SB	<0.1	41.76325779	-78.34996107
Stream 051	R4SB	<0.1	41.74884020	-78.32852128
Stream 052	R4SB	<0.1	41.74797672	-78.32749606
Stream 053	R4SB	<0.1	41.74793384	-78.32585575
Stream 054	R3UB	0.1	41.76334528	-78.32985059
Stream 055	R3UB	0.2	41.76701613	-78.31445081
Stream 056	R3UB	<0.1	41.76672231	-78.31353964
Stream 057	R4SB	<0.1	41.76744295	-78.31398571
Stream 058	R4SB	<0.1	41.77140821	-78.31074707
Stream 059	R4SB	<0.1	41.77686831	-78.30967429
Stream 060	R3UB	<0.1	41.78000899	-78.30785683
Stream 061	R4SB	<0.1	41.78091962	-78.30703159
Stream 062	R3UB	<0.1	41.78398514	-78.30767123
Stream 063	R4SB	<0.1	41.78410453	-78.30773973
Stream 064	R4SB	<0.1	41.78413907	-78.30803968
Stream 066	R4SB	<0.1	41.78265987	-78.27729169
Stream 067	R4SB	<0.1	41.78862018	-78.2700348
Stream 068	R4SB	0.1	41.78974022	-78.26751575
Stream 069	R4SB	<0.1	41.79073400	-78.26579865
Stream 070	R4SB	0.1	41.79090742	-78.26592558
Stream 071	R4SB	<0.1	41.79240227	-78.26389537
Stream 072	R4SB	<0.1	41.79304200	-78.26277315
Stream 073	R4SB	<0.1	41.79352071	-78.26287361
Stream 074	R4SB	<0.1	41.79401976	-78.26194209
Stream 075	R4SB	<0.1	41.79421151	-78.26177659
Stream 076	R4SB	<0.1	41.79530496	-78.26036818
Stream 077	R3UB	0.1	41.79575134	-78.25672228
Stream 078	R4SB	<0.1	41.79536158	-78.24913836
Stream 080	R4SB	<0.1	41.81062422	-78.23815542
Stream 081	R4SB	<0.1	41.81023062	-78.23383574
Stream 082	R4SB	<0.1	41.80961115	-78.22115724
Waterbody Designation	Cowardin Classification ¹	Area within the PSA ² (acres)	Latitude ³ (DD)	Longitude ³ (DD)
--------------------------	---	---	----------------------------	-----------------------------
Stream 083	R4SB	<0.1	41.81000457	-78.22097877
Stream 084	R4SB	<0.1	41.81350125	-78.21883052
Stream 085	R4SB	<0.1	41.81664146	-78.21883917
Stream 085a	R4SB	<0.1	41.81749325	-78.20855955
Stream 085b	R4SB	<0.1	41.81578394	-78.20913225
Stream 085c	R4SB	<0.1	41.81394074	-78.20888584
Stream 086	R4SB	<0.1	41.81030959	-78.20545822
Stream 087	R4SB	<0.1	41.81016921	-78.20562394
Stream 088	R4SB	<0.1	41.81024550	-78.20536958
Stream 089	R4SB	<0.1	41.81101822	-78.20529652
Stream 090	R3UB	0.1	41.81096963	-78.20490642
Stream 091	R4SB	<0.1	41.81118921	-78.20520020
Stream 092	R4SB	<0.1	41.81124702	-78.20492159
Stream 093	R3UB	0.4	41.81814259	-78.19435901
Stream 094	R4SB	0.2	41.81999971	-78.19273693
Stream 096	R3UB	0.2	41.82396718	-78.18465464
Stream 097	R4SB	<0.1	41.82415010	-78.18514343
Stream 098	R4SB	0.1	41.82503866	-78.18293855
Stream 099	R3UB	0.1	41.83729272	-78.14950046
Stream 102	R4SB	<0.1	41.845102	-78.044432
Stream 103	R4SB	<0.1	41.84963543	-78.02929972
Stream 109	R4SB	<0.1	41.76272365	-78.47462551
Stream 110	R4SB	<0.1	41.76160709	-78.47390477
Stream 111	R4SB	<0.1	41.75556303	-78.47224029
Stream 112	R4SB	<0.1	41.75713593	-78.47043193
Stream 113	R4SB	<0.1	41.75785076	-78.46516442
Stream 114	R4SB	<0.1	41.74450578	-78.43977231
Stream 116	R3UB	0.1	41.84537864	-78.06414387
Stream 117	R4SB	<0.1	41.84485055	-78.07963950
Stream 118	R3UB	<0.1	41.76734712	-78.30826248
Stream 119	R4SB	<0.1	41.76790345	-78.31381507
Stream 121	R4SB	0.1	41.76724807	-78.31686750
Stream 122	R4SB	<0.1	41.76737073	-78.31503511
Stream 123	R4SB	<0.1	41.76755202	-78.31659200
Stream 124	R4SB	<0.1	41.76725057	-78.31697331
Stream 149	R4SB	<0.1	41.85050113	-78.03017303
Stream 150	R4SB	<0.1	41.84624075	-78.08421822
Stream 151	R4SB	0.1	41.83916331	-78.09657468

Waterbody Designation	Cowardin Classification ¹	Area within the PSA ² (acres)	Latitude ³ (DD)	Longitude ³ (DD)
Stream 152	R4SB	0.1	41 83548861	-78 12540536
Stream 153	R4SB	<0.1	41 8393634	-78 10879099
Stream 154	R4SB	<0.1	41 83972424	-78 10782345
Stream 155	R3UB	<0.1	41 83747898	-78 1202366
Stream 156	R3UB	0.3	41.83560614	-78 12816888
Stream 157	R4SB	<0.1	41.83520714	-78 13214405
Stream 158	R4SB	0.1	41.75413838	-78 38740641
Stream 159	R4SB	<0.1	41 7542011	-78 38765234
Stream 160	R4SB	<0.1	41.7342011	-78 43158035
Stream 195	R4SB	<0.1	41.74237835	78.42505657
Stream 196	R4SB	<0.1	41.80947700	-78.42393037
Stream 197	R4SB	<0.1	41.8185785	-78.18129453
Stream 198	R4SB	<0.1	41.75371929	-78.36447397
Stream 312	R4SB	<0.1	41.846991	-78.157237
Stream 320	R4SB	<0.1	41.776215	-78.292377
Stream 321	R4SB	0.2	41.777194	-78.30946
Stream 344	R3UB	<0.1	41.780197	-78.307807
Stream 345	R4SB	<0.1	41.78105	-78.307157
Stream 347	R4SB	<0.1	41.776538	-78.3099
Stream 348	R4SB	<0.1	41.779882	-78.307898
Stream 349	R4SB	<0.1	41.780412	-78.307416
Stream 350	R4SB	<0.1	41.780788	-78.307154
Stream 351	R3UB	0.1	41.78177	-78.307005
Stream 352	R4SB	<0.1	41.782256	-78.306766
Stream 353	R4SB	<0.1	41.783637	-78.307161
Stream 354	R4SB	<0.1	41.783946	-78.307433
Line YM224 Loop				
Ditch 19	R4SBCx	<0.1	41.88615234	-77.94925263
Ditch 21a	R4SBCx	<0.1	41.875066	-77.972414
Ditch 53	R4SBCx	<0.1	41.87516160	-77.97243928
South Branch Oswayo Creek	R4SB	<0.1	41.88437485	-77.95568148
FM100 Abandonment				
Ditch 47	R4SBCx	<0.1	41.21972575	-78.55760676
Ditch 60	R4SBCx	<0.1	41.25430265	-78.36108591
Ditch 80	R4SBCx	<0.1	41.347294	-78.138212
Ditch 81	R4SBCx	<0.1	41.300025	-78.321582
Ditch 82	R4SBCx	<0.1	41.304559	-78.314878

Waterbody	Cowardin	Area within the PSA ²	Latituda ³ (DD)	Longitudo ³ (DD)
Stream 125	R3UB		41 53884272	-78 09458007
Stream 126	R3UB	<0.1	41 538843	-78 09458
Stream 127	R4SB	<0.1	41 51699697	-78 09556657
Stream 128	P4SB	<0.1	41.51871	-78.095433
Stream 120	D45D	-0.1	41.51071	78.005480
Stream 129	R45B	<0.1	41.510048	-78.095469
Stream 130	R45B	<0.1	41.50900217	-78.09029433
Stream 122	RJUB	<0.1	41.30923830	-78.09019337
Stream 132	RJUB	<0.1	41.34591844	-78.14337273
Stream 133	R30B	<0.1	41.53841189	-78.09440185
Stream 134	R45B	<0.1	41.323764	-78.245817
Stream 135	R4SB	<0.1	41.323738	-78.245976
Stream 136	R3UB	<0.1	41.323818	-78.246098
Stream 137	R4SB	<0.1	41.323449	-78.248074
Stream 138	R4SB	<0.1	41.323235	-78.249506
Stream 139	R4SB	<0.1	41.323133	-78.249951
Stream 140	R3UB	<0.1	41.264869	-78.344385
Stream 141	R3UB	<0.1	41.264657	-78.344541
Stream 142	R3UB	<0.1	41.244582	-78.385711
Stream 143	R3UB	0.1	41.24119763	-78.41819764
Stream 144	R4SB	<0.1	41.24112555	-78.41853688
Stream 145	R4SB	0.1	41.23290907	-78.47525624
Stream 146	R4SB	<0.1	41.2328101	-78.47494263
Stream 147	R3UB	<0.1	41.23277867	-78.4744326
Stream 161	R3UB	<0.1	41.570075	-78.073169
Stream 162	R4SB	<0.1	41.569997	-78.07317
Stream 163	R4SB	<0.1	41.552871	-78.085159
Stream 164	R3UB	0.1	41.552538	-78.085215
Stream 165	R4SB	<0.1	41.54600436	-78.08981781
Stream 166	R4SB	<0.1	41.36209112	-78.12421258
Stream 167	R3UB	0.1	41.3622671	-78.12412082
Stream 168	R4SB	<0.1	41.362261	-78.123965
Stream 169	R2UB	0.3	41.35493882	-78.12688071
Stream 170	R4SB	<0.1	41.34027472	-78.1542501
Stream 171	R3UB	<0.1	41.34047877	-78.15420342
Stream 172	R4SB	<0.1	41.33953072	-78.15552594
Stream 173	R3UB	<0.1	41.33228288	-78.17265584
Stream 174	R2UB	0.2	41.33125816	-78.18382838
Stream 175	R3UB	0.1	41.32918445	-78.20041466

Waterb Designa	ody ation	Cowardin Classification ¹	Area within the PSA ² (acres)	Latitude ³ (DD)	Longitude ³ (DD)
Stream 176		R3UB	<0.1	41.32885197	-78.2007436
Stream 177		R3UB	<0.1	41.32864852	-78.20101528
Stream 178		R4SB	<0.1	41.32855365	-78.20130078
Stream 179		R4SB	<0.1	41.21991007	-78.55836065
Stream 180		R2UB	0.1	41.21948073	-78.55627569
Stream 181		R4SB	<0.1	41.21915872	-78.55235156
Stream 182		R4SB	<0.1	41.22171082	-78.53331092
Stream 183		R3UB	<0.1	41.22183613	-78.52882079
Stream 184		R4SB	<0.1	41.2217991	-78.52845389
Stream 185		R4SB	<0.1	41.22184899	-78.52817308
Stream 186		R3UB	<0.1	41.22176697	-78.52075764
Stream 187		R3UB	<0.1	41.22177456	-78.51868523
Stream 188		R4SB	<0.1	41.22177456	-78.51868523
Stream 189		R4SB	<0.1	41.22171211	-78.51833233
Stream 190		R4SB	<0.1	41.22163775	-78.51846151
Stream 199		R3UB	0.1	41.55221411	-78.08551352
Stream 357		R4SB	<0.1	41.56050796	-78.07968242
Stream 358		R4SB	<0.1	41.56135091	-78.07911454
Stream 359		R4SB	<0.1	41.56181023	-78.07868783
Stream 360		R4SB	<0.1	41.40717249	-78.11399603
Stream 362		R4SB	<0.1	41.38735121	-78.11521779
Stream 363		R4SB	<0.1	41.34958976	-78.13541148
Stream 365		R2UB	0.2	41.34560342	-78.13790876
Stream 366		R4SB	<0.1	41.34612652	-78.13783405
Stream 367		R4SB	<0.1	41.35933261	-78.12855786
Stream 368		R4SB	<0.1	41.36287823	-78.12482996
Stream 369		R4SB	<0.1	41.357966	-78.12830968
Stream 370		R4SB	<0.1	41.35748781	-78.1285917
Stream 371		R4SB	<0.1	41.33106646	-78.19932662
Stream 372		R4SB	<0.1	41.23930967	-78.43524751
	Subtotal ⁴	R2UB	3.9		
	Subtotal ⁴	R3UB	3.3		
	Subtotal ⁴	R4SB	2.6		
	Subtotal ⁴	R4SBCx	1.5		
		Total ⁴	11.2		

¹ Field determined stream type (i.e., lower perennial, upper perennial, intermittent, ephemeral/ditch), simplified Cowardin Classification: R2UB, R3UB, R4SB, R4SBCx (Cowardin et al., 1979).

 $^{\rm 2}$ Extent of waterbody delineated within PSA.

³ Coordinates provided as the GIS derived midpoint, North American Datum, 1983.

⁴ Differences between the sum of the individual records and the subtotals and total acres reported are due to rounding to the nearest tenth. The subtotals and total acres reported were derived from GIS analysis.

Remainder of this page intentionally left blank.

J. Wetland Impacts

Table 6.1-1: Total Wetland Impacts for Project Construction and Operation

		MP	MP	Wetland Type		Wetland Construction	Total Wetland Impacts	Permanent Wetland
Wetland Name ¹	County	Begin	End	Classification ²	EV Status ⁵	Impact Dimensions (ft.)	(acres) ³	Impacts (acres) ⁴
Line KL Extension V	Nork Areas							
Wetland 004b*	McKean	0.2	0.2	PEM	EV	237.50 – 123.99 1.00 – 188.45	0.584*	0.004
Marvindale Compre	ssor Station Acce	ss Roads						
Wetland 004	McKean	0.1	0.1	PFO	EV	0.59 - 8.07	<0.001	
Wetland 285b	McKean	0.3	0.3	PEM	Other	2.21 - 23.62	0.001	
Line YM58 Work Are	eas							
Wetland 004b*	McKean	0.2	0.2	PEM	EV	1.67 – 223.21	*	0.009
Wetland 005	McKean	0.5	0.6	PEM	Other	291.52 - 85.02	0.381	0.011
Wetland 006	McKean	0.7	0.8	PEM	EV	99.12 – 72.51	0.169	0.004
Wetland 007	McKean	0.9	1.0	PEM	EV	6,161.17 - 57.97	0.822	0.023
Wetland 007a	McKean	0.9	1.0	PFO	EV	433.91 - 17.68	0.176	
Wetland 007b	McKean	1.1	1.1	PFO	EV	56.26 - 15.15	0.020	
Wetland 008	McKean	1.1	1.1	PEM	EV	65.23 - 68.11	0.104	0.003
Wetland 009	McKean	1.2	1.3	PEM	EV	799.23 – 57.55	1.087	0.031
Wetland 009a	McKean	1.2	1.2	PFO	EV	187.00 - 26.94	0.116	
Pond 03	McKean	1.2	1.2	PUB	EV	37.52 - 23.74	0.020	
Wetland 009b	McKean	1.3	1.3	PFO	EV	99.81 - 21.86	0.050	
Wetland 010	McKean	1.4	1.5	PEM	EV	826.46 - 62.51	1.217	0.032
Wetland 010a	McKean	1.4	1.5	PFO	EV	408.50 - 18.76	0.176	
Wetland 010b	McKean	1.5	1.5	PFO	EV	164.66 - 11.09	0.042	
Wetland 011	McKean	1.6	1.6	PEM	EV	60.00 - 22.51	0.031	0.001

		MP	MP	Wotland Type		Wetland Construction	Total Wotland Impacts	Permanent Wetland
Wetland Name ¹	County	Begin	End	Classification ²	EV Status ⁵	Impact Dimensions (ft.)	(acres) ³	Impacts (acres) ⁴
Wetland 145	McKean	1.6	1.6	PEM	EV	161.49 - 12.00	0.025	
Wetland 012b	McKean	1.6	1.6	PEM	EV	41.65 - 12.00	0.012	
Wetland 014	McKean	1.8	1.8	PEM	EV	33.25 - 23.57	0.018	
Wetland 015	McKean	1.8	1.8	PEM	EV	20.39 - 11.05	0.006	
Wetland 016	McKean	2.2	2.2	PFO	EV	31.45 - 13.46	0.010	
Wetland 016a	McKean	2.2	2.2	PEM	EV	103.77 – 71.78	0.175	0.004
Wetland 016b	McKean	2.2	2.2	PEM	EV	192.47 – 50.47	0.231	0.007
Pond 06	McKean	2.8	2.8	PUB	Other	88.57 - 44.16	0.090	
Wetland 018	McKean	3.0	3.0	PEM	EV	21.66 - 17.35	0.009	
Wetland 020	McKean	3.3	3.4	PEM	EV	388.67 - 53.01	0.488	0.015
Wetland 020a	McKean	3.3	3.3	PFO	EV	107.42 - 92.05	0.227	0.021
Wetland 023	McKean	3.4	3.6	PEM	EV	727.41 - 47.79	0.815	0.028
Wetland 025	McKean	3.6	3.6	PEM	EV	81.17 – 57.96	0.111	0.003
Wetland 026	McKean	3.6	3.7	PSS	EV	215.83 - 67.55	0.335	0.050
Wetland 026a	McKean	3.6	3.7	PEM	EV	254.40 - 36.13	0.222	0.010
Wetland 027	McKean	3.7	3.7	PEM	EV	139.53 – 60.25	0.198	0.005
Wetland 028	McKean	4.1	4.1	PEM	Other	258.95 - 52.15	0.321	0.010
Wetland 029	McKean	4.3	4.3	PEM	EV	123.51 – 56.43	0.165	0.005
Wetland 031	McKean	4.9	5.0	PFO	EV	234.81 - 27.31	0.147	
Wetland 031a	McKean	4.9	5.0	PEM	EV	182.80 - 41.94	0.183	0.007
Wetland 034	McKean	6.6	6.6	PSS	EV	72.56 - 24.08	0.040	
Wetland 035-1	McKean	6.6	6.6	PSS	EV	80.00 - 15.50	0.027	
Wetland 037b	McKean	6.8	6.8	PEM	EV	35.68 - 17.57	0.014	

		MP	MP	Wetland Type		Wetland Construction	Total Wetland Impacts	Permanent Wetland
Wetland Name ¹	County	Begin	End	Classification ²	EV Status ⁵	Impact Dimensions (ft.)	(acres) ³	Impacts (acres) ⁴
Wetland 037c	McKean	6.8	6.8	PSS	EV	104.83 - 65.99	0.159	0.015
Wetland 039	McKean	6.7	6.7	PEM	EV	87.69 - 52.05	0.105	
Wetland 041	McKean	6.8	6.8	PEM	EV	8.85 - 6.02	0.001	
Wetland 042	McKean	6.9	6.9	PEM	EV	27.75 - 13.27	0.008	
Wetland 045	McKean	7.2	7.2	PEM	EV	107.08 - 20.63	0.050	
Wetland 049	McKean	7.7	7.7	PEM	EV	21.13 - 2.00	0.001	
Wetland 051	McKean	7.8	7.8	PEM	EV	247.36 - 50.01	0.293	0.009
Wetland 054	McKean	7.9	7.9	PEM	EV	55.12 - 36.35	0.047	0.001
Wetland 055	McKean	8.0	8.0	PEM	EV	170.07 - 37.65	0.148	0.001
Wetland 056	McKean	7.62	7.62	PEM	EV	9.79 - 3.00	0.001	
Wetland 059a	McKean	9.3	9.3	PEM	EV	92.76 - 56.82	0.106	0.002
Wetland 061	McKean	9.7	9.7	PEM	Other	337.04 - 71.34	0.509	0.013
Wetland 066a	McKean	9.9	10.0	PEM	Other	404.04 - 47.86	0.453	0.015
Wetland 127	McKean	9.9	10.0	PFO	Other	265.54 - 23.47	0.143	
Wetland 067	McKean	10.4	10.4	PEM	EV	59.45 - 15.89	0.022	
Wetland 126c	McKean	11.2	11.2	PEM	EV	78.65 - 18.37	0.001	
Wetland 126	McKean	11.2	11.2	PEM	EV	1.00 – 5.94	<0.001	
Wetland 070	McKean	11.2	11.2	PEM	EV	33.07 - 25.06	0.019	
Wetland 071	McKean	11.2	11.2	PEM	EV	28.51 - 28.68	0.018	
Wetland 075	McKean	13.9	13.9	PEM	EV	25.88 - 13.50	0.008	
Wetland 076	McKean	14.0	14.0	PEM	EV	118.18 - 10.47	0.028	<0.001
Wetland 077	McKean	14.0	14.0	PEM	EV	74.80 - 32.03	0.056	0.001
Wetland 078	McKean	14.1	14.1	PEM	EV	39.59 - 13.21	0.012	

		MP	MP	Wetland Type		Wetland Construction	Total Wetland Impacts	Permanent Wetland
Wetland Name ¹	County	Begin	End	Classification ²	EV Status ⁵	Impact Dimensions (ft.)	(acres) ³	Impacts (acres) ⁴
Wetland 080	McKean	14.1	14.1	PEM	EV	150.48 - 16.53	0.058	0.001
Pond 07	McKean	14.1	14.1	PUB	EV	25.77 - 16.20	0.010	
Wetland 082	McKean	14.1	14.1	PEM	EV	2.56 - 7.00	<0.001	
Wetland 083	McKean	14.3	14.3	PEM	EV	82.40 - 74.79	0.131	0.003
Wetland 086	McKean	14.5	14.5	PEM	EV	108.61 - 26.26	0.066	
Wetland 088	McKean	14.5	14.6	PEM	EV	287.84 - 50.00	0.331	
Wetland 091	McKean	15.1	15.2	PSS	EV	615.12 - 56.72	0.801	0.141
Wetland 091a	McKean	15.2	15.2	PEM	EV	233.71 - 71.20	0.385	0.003
Wetland 094	McKean	15.3	15.4	PEM	EV	123.50 - 15.31	0.043	
Wetland 096	McKean	18.0	18.0	PEM	EV	22.50 - 8.46	0.004	
Wetland 101	Potter	19.0	19.0	PEM	EV	61.96 - 68.19	0.099	0.002
Wetland 143	Potter	19.2	19.2	PEM	EV	52.75 -44.59	0.056	0.002
Wetland 142	Potter	23.0	23.1	PSS	EV	142.08-95.04	0.241	0.033
Wetland 141a	Potter	23.2	23.2	PEM	EV	195.52 -62.83	0.289	0.007
Wetland 141	Potter	23.2	23.3	PSS	EV	129.43 -32.31	0.095	0.007
Wetland 125	Potter	26.6	26.6	PEM	EV	66.24 -78.91	0.121	0.003
Wetland 124a	Potter	26.7	26.7	PEM	EV	94.43 -17.99	0.040	0.001
Wetland 124b	Potter	26.7	26.7	PEM	EV	47.13 -28.65	0.032	0.001
Line YM58 Access I	Roads							
Wetland 118	McKean	4.5	4.5	PEM	EV	83.64 - 1.26	0.002	
Wetland 119a	McKean	4.5	4.5	PEM	Other	415.00 - 3.43	0.033	
Wetland 120	McKean	4.5	4.5	PEM	Other	73.54 – 2.63	0.004	
Wetland 121a	McKean	4.5	4.5	PEM	EV	23.41 - 4.85	0.003	

		MP	MP	Wotland Type		Wetland Construction	Total Wotland Impacts	Permanent Wetland
Wetland Name ¹	County	Begin	End	Classification ²	EV Status ⁵	Impact Dimensions (ft.)	(acres) ³	Impacts (acres) ⁴
Wetland 122	McKean	4.5	4.5	PEM	Other	265.39 - 3.47	0.021	
Wetland 123a	McKean	4.5	4.5	PEM	Other	167.83 – 6.57	0.025	
Wetland 035-2	McKean	6.5	6.6	PSS	EV	25.70 - 2.60	0.001	
Wetland 035a	McKean	6.6	6.6	PEM	EV	43.44 – 0.98	0.001	
Wetland 058	McKean	8.8	8.8	PEM	EV	173.10 – 2.78	0.011	
Wetland 058a	McKean	8.8	8.8	PEM	EV	21.83 - 1.65	0.001	
Wetland 060a	McKean	9.6	9.6	PEM	EV	165.45 – 1.59	0.006	
Wetland 060	McKean	9.6	9.6	PEM	EV	66.83 - 0.97	0.001	
Wetland 061b	McKean	9.8	9.8	PEM	Other	88.57 - 3.63	0.007	
Wetland 062	McKean	10.0	10.0	PEM	EV	116.88 – 4.32	0.012	
Wetland 063	McKean	10.0	10.0	PEM	EV	23.40 - 0.26	<0.001	
Wetland 065	McKean	10.1	10.1	PEM	EV	4.39 – 90.59	0.009	
Wetland 140	McKean	11.5	11.5	PEM	EV	18.44 – 2.49	0.001	
Wetland 265	McKean	11.8	11.8	PFO	EV	1.66 - 101.53	0.004	
Wetland 276	McKean	11.8	11.8	PSS	EV	3.23 - 7.36	0.001	
Wetland 276a	McKean	12.1	12.1	PEM	EV	1.14 - 30.91	0.001	
Wetland 264	McKean	12.6	12.6	PEM	EV	27.22 - 12.00	0.007	
Wetland 089	McKean	14.4	14.4	PEM	EV	17.80 – 1.39	0.001	
Wetland 258a	Potter	21.5	21.5	PEM	Other	38.00 -2.28	0.002	
Wetland 261	Potter	21.5	21.5	PEM	Other	25.00 - 3.50	0.002	
Line YM224 Loop W	ork Areas							
Wetland 112	Potter	1.1	1.1	PEM	EV	142.31 -12.00	0.039	<0.001
Wetland 114	Potter	1.1	1.1	PEM	EV	166.17 -12.00	0.046	

		MP	MP	Wotland Type		Wetland Construction	Total Wotland Impacts	Permanent Wetland
Wetland Name ¹	County	Begin	End	Classification ²	EV Status ⁵	Impact Dimensions (ft.)	(acres) ³	Impacts (acres) ⁴
Line FM100 Abando	onment							
Wetland 149	Clearfield	0.0	0.1	PSS	EV	49.00 - 42.00	0.055	0.008
Wetland 149b	Clearfield	0.1	0.1	PEM	EV	34.00 - 0.30	<0.001	
Wetland 149c	Clearfield	0.3	0.3	PEM	EV	49.00 - 93.00	0.106	0.002
Wetland 149d	Clearfield	0.3	0.3	PSS	EV	49.00 – 22.00	0.025	<0.001
Wetland 139a	Clearfield	4.7	4.7	PEM	EV	34.63 - 1.00	0.001	0.001
Wetland 139b	Clearfield	4.8	4.8	PEM	EV	200.50 - 1.00	0.005	0.005
Wetland 139	Clearfield	4.8	4.8	PEM	EV	50.00 - 17.00	0.020	
Wetland 316a	Clearfield	6.3	6.3	PEM	Other	3.64 – 1.00	<0.001	<0.001
Wetland 318	Clearfield	6.6	6.7	PEM	Other	34.34 - 1.00	0.001	0.001
Wetland 320	Elk	7.4	7.4	PEM	Other	154.76 – 1.00	0.004	0.004
Wetland 137	Elk	7.9	7.9	PEM	EV	3.00 – 2.75	<0.001	
Wetland 138	Elk	8.0	8.0	PEM	EV	49.00 - 13.00	0.015	<0.001
Wetland 136	Elk	9.6	9.6	PEM	EV	113.87 – 1.00	0.003	0.003
Wetland 136a	Elk	9.7	9.7	PEM	EV	71.95 – 1.00	0.002	0.002
Wetland 136b	Elk	9.8	9.8	PEM	Other	77.52 – 1.00	0.002	0.002
Wetland 135	Elk	11.0	11.1	PEM	Other	36.00 - 28.00	0.040	0.016
Wetland 311	Elk	11.2	11.3	PEM	Other	31.00 - 24.00	0.030	0.013
Wetland 313	Elk	11.5	11.5	PEM	EV	128.03 – 1.00	0.003	0.003
Wetland 134a	Elk	11.6	12.0	PEM	EV	54.00 -48.00	0.111	0.052
Wetland 134	Elk	12.0	12.1	PEM	EV	434.82 – 1.00	0.010	0.010
Wetland 133	Elk	12.3	12.3	PEM	EV	57.67 – 1.00	0.001	0.001
Wetland 325	Elk	13.2	13.2	PEM	Other	168.65 – 1.00	0.004	0.004

		MP	MP	Wotland Type		Wetland Construction	Total Wotland Impacts	Permanent Wetland
Wetland Name ¹	County	Begin	End	Classification ²	EV Status ⁵	Impact Dimensions (ft.)	(acres) ³	Impacts (acres) ⁴
Wetland 327	Elk	13.7	13.7	PEM	Other	351.27 – 1.00	0.008	0.008
Wetland 329a	Elk	14.9	14.9	PEM	Other	19.78 – 1.00	<0.001	<0.001
Wetland 331	Elk	18.4	18.4	PEM	Other	194.66 - 1.00	0.004	0.004
Wetland 333	Elk	19.1	19.1	PEM	Other	44.44 - 1.00	0.001	0.001
Wetland 148	Cameron	22.1	22.1	PSS	EV	91.03 - 1.00	0.002	0.002
Wetland 303	Cameron	26.0	26.0	PSS	EV	200.00 -15.00	0.065	
Wetland 303b	Cameron	26.0	26.0	PSS	EV	12.00 -15.00	0.005	
Wetland 147a	Cameron	26.7	26.7	PEM	EV	102.97 – 1.00	0.002	0.002
Wetland 147	Cameron	26.8	26.8	PEM	EV	5.21 – 1.00	<0.001	<0.001
Wetland 305a	Cameron	26.9	26.9	PEM	EV	13.00 - 1.00	<0.001	
Wetland 305	Cameron	27.0	27.0	PEM	EV	158.00 - 20.00	0.076	0.001
Wetland 297a	Cameron	28.9	28.9	PEM	Other	28.16 -1.00	0.001	0.001
Wetland 297	Cameron	28.9	29.1	PEM	Other	927.77 -1.00	0.021	0.021
Wetland 297b	Cameron	29.1	29.1	PEM	Other	47.73 -1.00	0.001	0.001
Wetland 299	Cameron	29.3	29.3	PEM	Other	144.79 – 1.00	0.003	0.003
Wetland 299a	Cameron	29.6	29.6	PEM	Other	226.11 – 1.00	0.005	0.005
Wetland 294	Cameron	30.4	30.4	PEM	EV	10.97 -1.00	<0.001	<0.001
Wetland 292	Cameron	30.8	30.8	PEM	EV	106.00 - 17.00	0.043	
Wetland 131	Cameron	38.6	38.6	PEM	EV	34.07 – 1.00	0.001	0.001
Wetland 131	Potter	38.6	38.6	PEM	EV	299.52 – 1.00	0.007	0.007
Wetland 131a	Potter	38.7	38.7	PEM	EV	1.00 – 3.11	<0.001	<0.001
Wetland 130b	Potter	39.3	39.3	PEM	Other	1.00 – 22.48	0.001	0.001
Wetland 130	Potter	39.7	39.7	PEM	EV	1.00 – 27.20	0.001	0.001

Wetland Name ¹	County	MP Begin	MP End	Wetland Type Classification ²	EV Status⁵	Wetland Construction Impact Dimensions (ft.)	Total Wetland Impacts (acres) ³	Permanent Wetland Impacts (acres) ⁴
Wetland 130a	Potter	39.7	39.7	PEM	EV	1.00 - 65.49	0.002	0.002
Wetland 129a	Potter	40.1	40.1	PEM	EV	1.00 – 77.57	0.002	0.002
Wetland 154	Potter	40.7	40.7	PEM	EV	1.00 – 29.81	0.001	0.001
Wetland 146	Potter	41.2	41.2	PEM	EV	1.00 – 3.91	<0.001	<0.001
Wetland 287	Potter	41.7	41.8	PEM	EV	1.00 – 347.82	0.008	0.008
Wetland 288a	Potter	41.8	41.8	PEM	EV	1.00 - 33.24	0.001	0.001
Wetland 288	Potter	41.8	41.9	PEM	EV	1.00 – 209.82	0.005	0.005
Wetland 290	Potter	42.5	42.5	PEM	EV	1.00 – 19.92	<0.001	<0.001
						PEM Subtotal ⁶	11.713	0.465
						PSS Subtotal ⁶	1.852	0.257
						PFO Subtotal ⁶	1.111	0.021
						PUB Subtotal ⁶	0.120	0.000
						Project Total ⁶	14.796	0.743

¹ Field designations represent unique identifiers assigned to each wetland during field surveys.

² Wetland classifications are based on the Cowardin classification system whereby P = Palustrine, EM = Emergent, FO = Forested, SS = Scrub-Shrub, and UB = Unconsolidated Bottom.

³ Total wetland impacts include all temporary and permanent impacts to wetlands.

⁴ Permanent wetland impacts account for PFO and PSS wetlands that will be converted into PEM wetlands within a 10-foot-wide permanently maintained ROW. Permanent wetland impact acres reported also include the length and width of the pipeline within a wetland crossing.

⁶ Exceptional Value (EV) wetlands include wetland areas that exhibit one or more of the following characteristics: (i) Wetlands which serve as habitat for fauna or flora listed as "threatened" or "endangered" under the Endangered Species Act of 1973 (7 U.S.C.A. § 136; 16 U.S.C.A. § \$ 4601-9, 460k-1, 668dd, 715i, 715a, 1362, 1371, 1372, 1402 and 1531— 1543), the Wild Resource Conservation Act (32 P. S. § \$ 5301—5314), 30 Pa.C.S. (relating to the Fish and Boat Code) or 34 Pa.C.S. (relating to the Game and Wildlife Code).; (ii) Wetlands that are hydrologically connected to or located within 1/2-mile of wetlands identified under subparagraph (i) and that maintain the habitat of the threatened or endangered species within the wetland identified under subparagraph (i); (iii) Wetlands that are located in or along the floodplain of the reach of a wild trout stream or waters listed as exceptional value under Chapter 93 (relating to water quality standards) and the floodplain of streams tributary thereto, or wetlands within the corridor of a watercourse or body of water that has been designated as a National wild or scenic river in accordance with the Wild and Scenic Rivers Act of 1968 (16 U.S.C.A. § \$ 1271—1287) or designated as wild or scenic under the Pennsylvania Scenic Rivers Act (32 P. S. § \$ 820.21—820.29); (iv) Wetlands located along an existing public or private drinking water supply, including both surface water and groundwater sources, that maintain the quality or quantity of the drinking water supply; or, (v) Wetlands located in areas designated by the Department as "natural" or "wild" areas within State forest or park lands, wetlands located in areas designated as Federal wilderness areas under the Wilderness Act (16 U.S.C.A. § \$ 1131—1136) or the Federal 117 | National Fuel Gas Supply Corporation | PF17-10-000: Public | FM100 Project

Eastern Wilderness Act of 1975 (16 U.S.C.A. § 1132) or wetlands located in areas designated as National natural landmarks by the Secretary of the Interior under the Historic Sites Act of 1935 (16 U.S.C.A. § 461–467).

⁶ Differences between the sum of the individual records and the subtotals and total acres reported are due to rounding to the nearest one-thousandth of an acre. The subtotals and total acres reported were derived from GIS analysis.

* Wetland 004b is crossed by both YM58 and KL Extension pipelines. The permanent impacts for each pipeline crossing are recorded individually for each pipeline with the total construction impacts to this wetland recorded under the Line KL Extension.

Remainder of this page intentionally left blank.

K. Waterbody Impacts

Table 6.1-2: Total Waterbody Impacts for Project Construction and Operation

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
Marvindale Co	mpressor Station	Access Ro	ads							
McKean	Stream 001	PAR-1	N/A	Minor	UNT to Warner Brook	IT	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 003	PAR-1	N/A	Minor	UNT to Warner Brook	IT	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 005	PAR-1	N/A	Minor	UNT to Warner Brook	IT	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Line YM58 Wo	rk Areas									
McKean	Stream 006	0.9	3.3	Minor	UNT to Wernwag Hollow	IT	HQ-CWF	Yes⁵/NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 007	1.2	4.3	Minor	UNT to Wernwag Hollow	Ρ	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 008	1.4	12.4	Minor	Wernwag Hollow	Р	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 011	1.5	3.3	Minor	UNT to Wernwag Hollow	IT	HQ-CWF	Yes⁵/NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 012	1.6	7.7	Minor	UNT to Wernwag Hollow	IT	HQ-CWF	Yes⁵/NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 014	1.6	1.0	Minor	UNT to Wernwag Hollow	IT	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 017	1.8	3.6	Minor	UNT to Red Mill Brook	IT	CWF	Yes⁵/NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 019	2.2	3.3	Minor	UNT to Browns Mill Hollow Run	IT	CWF	Yes⁵/NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 020	2.2	2.6	Minor	UNT to Browns Mill Hollow Run	IT	CWF	Yes⁵/NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 026	3.0	3.9	Minor	UNT to Robbins Brook	IT	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 027	3.3	3.0	Minor	UNT to Robbins Brook	Р	HQ-CWF	Yes⁵/NRT	N/A - Workspace	10/01 – 12/31

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
McKean	Robbins Brook	3.4	13.4	Intermediate	Robbins Brook	Р	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Donley Fork	3.6	6.6	Minor	Donley Fork	Р	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 — 12/31
McKean	Stream 160	4.2	2.5	Minor	UNT to Robbins Brook	IT	HQ-CWF	Yes ⁵ /NRT	N/A - Workspace	10/01 – 12/31
McKean	Stream 030-1	4.9	3.3	Minor	UNT to Robbins Brook	Е	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Ditch 02*	6.5	3.0	Minor	UNT to Boyer Brook	E	HQ-CWF	Yes ⁵ /NRT	Open Cut	10/01 – 12/31
McKean	Stream 037	6.6	24.9	Intermediate	UNT to Boyer Brook	Ρ	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Potato Creek	6.8	246.5	Major	Potato Creek	Р	TSF	No ⁵ /ST	HDD	3/1 - 6/15
McKean	Ditch 03*	6.9	3.0	Minor	UNT to Potato Creek	Е	TSF	No ⁵ /ST	Open Cut	3/1 – 6/15
McKean	Ditch 05	6.9	5.7	Minor	UNT to Potato Creek	IT	TSF	No⁵/ST	Open Cut	3/1 – 6/15
McKean	Stream 038	7.1	4.8	Minor	UNT to Potato Creek	Ρ	CWF	No ⁵ /ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Stream 039	7.1	4.4	Minor	UNT to Potato Creek	IT	CWF	No ⁵ /ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Stream 158	7.2	N/A	Minor	UNT to Potato Creek	E	CWF	No ⁵ /ST	N/A – Workspace	10/01 – 12/31 3/1 – 6/15
McKean	Stream 159	7.2	4.5	Intermediate	UNT to Potato Creek	E	CWF	No ⁵ /ST	N/A – Workspace	10/01 – 12/31 3/1 – 6/15
McKean	Stream 040	7.9	3.0	Minor	UNT to White Hollow	E	CWF	Yes ⁵ /NRT	N/A – Workspace	10/01 – 12/31
McKean	Stream 041	7.9	3.6	Minor	UNT to White Hollow	Ρ	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 043	8.0	16.1	Intermediate	White Hollow	Р	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 054	10.4	3.7	Minor	Coalbed Hollow	Р	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
McKean	Stream 121	11.2	N/A	Minor	UNT to Bemis Hollow	E	HQ-CWF	Yes ⁵ /NRT	N/A – Workspace	10/01 – 12/31
McKean	Stream 122	11.2	5.0	Minor	UNT to Bemis Hollow	Е	HQ-CWF	Yes⁵/NRT	N/A – Workspace	10/01 – 12/31
McKean	Stream 055	11.2	8.1	Intermediate	Bemis Hollow	Р	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 056	11.3	3.8	Minor	UNT to Bemis Hollow	Ρ	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 057	11.3	3.0	Minor	UNT to Bemis Hollow	Е	HQ-CWF	Yes⁵/NRT	N/A – Workspace	10/01 – 12/31
McKean	Ditch 08*	13.3	3.0	Minor	UNT to Allegheny Portage Creek	E	TSF	Yes ⁵ /NRT/ST	Dry Crossing if No Flow/Dam and Pump/Flume	10/01 — 12/31 3/1 — 6/15
McKean	Ditch 09	13.3	8.3	Minor	UNT to Allegheny Portage Creek	IT	TSF	Yes⁵/NRT/ST	Dry Crossing if No Flow/Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Ditch 10	13.4	23.4	Minor	UNT to Allegheny Portage Creek	IT	TSF	Yes ⁵ /NRT/ST	Dry Crossing if No Flow/Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Stream 066	13.6	4.1	Minor	UNT to Allegheny Portage Creek	E	CWF	Yes⁵/NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Ditch 11	13.7	6.5	Minor	UNT to Allegheny Portage Creek	IT	TSF	Yes ⁵ /NRT/ST	HDD	10/01 – 12/31 3/1 – 6/15
McKean	Ditch 12	13.7	3.0	Minor	UNT to Allegheny Portage Creek	IΤ	TSF	Yes ⁵ /NRT/ST	N/A - Workspace	10/01 – 12/31 3/1 – 6/15
McKean	Ditch 13	13.7	5.8	Minor	UNT to Allegheny Portage Creek	IT	TSF	Yes⁵/NRT/ST	Dry Crossing if No Flow/Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Allegheny Portage Creek	14.1	128.4	Major	Allegheny Portage Creek	Р Р	TSF	Yes ⁵ /NRT/ST	HDD	10/01 – 12/31 3/1 – 6/15
McKean	Stream 067	14.1	10.0	Intermediate	UNT to Allegheny Portage Creek	ΙT	CWF	Yes ⁵ /NRT	HDD	10/01 – 12/31
McKean	Stream 068	14.2	7.6	Minor	UNT to Allegheny River	E	CWF	No⁵/ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
McKean	Stream 070	14.3	6.6	Minor	UNT to Allegheny River	IT	CWF	No ⁵ /ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Stream 071	14.5	3.4	Minor	UNT to Allegheny River	Е	CWF	No ⁵ /ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Stream 073	14.6	3.3	Minor	UNT to Allegheny River	Е	CWF	No ⁵ /ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Stream 074	14.7	3.3	Minor	UNT to Allegheny River	Е	CWF	No ⁵ /ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Stream 075	14.7	2.3	Minor	UNT to Allegheny River	IT	CWF	No ⁵ /ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Allegheny River	14.8	168.2	Major	Allegheny River	Ρ	CWF	No ⁵ /ST	HDD	10/01 – 12/31 3/1 – 6/15
McKean	Ditch 16	14.9	31.6	Minor	UNT to Allegheny River	IT	CWF	No ⁵ /ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Ditch 17	14.9	11.2	Minor	UNT to Allegheny River	IT	CWF	No ⁵ /ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Stream 077	15.0	4.0	Intermediate	UNT to Benson Hollow	Ρ	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 078	15.4	3.5	Minor	UNT to Allegheny River	IT	CWF	No ⁵ /ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
McKean	Coleman Creek-1	15.7	28.1	Intermediate	Coleman Creek	IT	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Ditch 18-2	17.5	3.3	Minor	UNT to Jordan Hollow	IT	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 086	18.0	3.0	Minor	UNT to Jordan Hollow	Е	CWF	Yes ⁵ /NRT	N/A - Workspace	10/01 – 12/31
McKean/Potter	Stream 089	18.1	3.4	Minor	UNT to Jordan Hollow	IT	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean/Potter	Stream 090	18.1	N/A	Intermediate	Jordan Hollow	Р	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
Potter	Stream 090	18.1	13.7	Intermediate	Jordan Hollow	Ρ	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
McKean/Potter	Stream 091	18.1	3.4	Minor	UNT to Jordan Hollow	IT	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
McKean	Stream 195	SA-7	7.0	Minor	UNT to Potato Creek	E	CWF	Yes ⁵ /NRT	Existing Road, install temporary bridge	10/01 – 12/31
Potter	Stream 092	18.1	1.0	Minor	UNT to Jordan Hollow	IT	CWF	Yes ⁵ /NRT	N/A - Workspace	10/01 – 12/31
Potter	Stream 093	18.9	36.5	Intermediate	Ernst Hollow	Р	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
Potter	Stream 094	19.1	22.3	Intermediate	UNT to Sartwell Creek	IT	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
Potter	Sartwell Creek	19.2	25.9	Intermediate	Sartwell Creek	Р	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
Potter	Stream 096	19.6	33.1	Intermediate	UNT to Sartwell Creek	Ρ	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
Potter	Stream 098	19.7	7.5	Minor	UNT to Sartwell Creek	Е	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
Potter	Stream 197	19.9	N/A	Minor	UNT to Sartwell Creek	Е	CWF	Yes ⁵ /NRT	N/A - Workspace	10/01 – 12/31
Potter	Stream 099	21.8	9.2	Intermediate	Baker Hollow	Р	CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
Potter	Stream 156	23.0	36.7	Intermediate	Fishing Creek	Ρ	CWF	Yes ⁵ /NRT/ST	Dam and Pump/Flume	10/01 – 12/31 3/1 – 6/15
Potter	Stream 152	23.2	N/A	Minor	UNT to Fishing Creek	IT	CWF	Yes ⁵ /NRT/ST	N/A - Workspace	10/01 – 12/31 3/1 – 6/15
Potter	Stream 151	25.0	8.8	Minor	UNT to East Branch Fishing Creek	IT	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
Potter	Stream 117	26.0	N/A	Minor	UNT to White Chopin Hollow	Е	HQ-CWF	Yes ⁵ /NRT	N/A - Workspace	10/01 – 12/31
Potter	Stream 116	26.7	3.9	Minor	East Branch Fishing Creek	Ρ	HQ-CWF	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
Potter	Whitney Creek	27.4	3.3	Minor	Whitney Creek	Е	EV	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31
Potter	Stream 102	27.8	3.8	Minor	UNT to Whitney Creek	Е	EV	Yes ⁵ /NRT	Dam and Pump/Flume	10/01 – 12/31

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
Potter	Stream 103	28.7	4.0	Minor	UNT to Whitney Creek	E	EV	Yes⁵/NRT	N/A – Workspace	10/01 – 12/31
Line YM58 Acc	cess Roads									
McKean	Stream 021	PAR-3	N/A	Minor	UNT to Red Mill Brook	IT	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 022	PAR-3	N/A	Minor	UNT to Red Mill Brook	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 023	PAR-3	N/A	Minor	UNT to Red Mill Brook	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 025	PAR-3	3.0	Minor	UNT to Red Mill Brook	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 024	PAR- 3/TAR-4	3.0	Minor	UNT to Red Mill Brook	Е	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 109	PAR-5	3.0	Minor	UNT to Irons Hollow	E	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 110	PAR-5	N/A	Minor	UNT to Irons Hollow	IT	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 111	PAR-5	3.0	Minor	UNT to Irons Hollow	IT	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 112	PAR-5	N/A	Minor	UNT to Donley Fork	IT	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 113	PAR-5	N/A	Minor	Donley Fork	IT	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 114	PAR-5	N/A	Minor	UNT to Donley Fork	IT	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 030-2	TAR-6	N/A	Minor	UNT to Robbins Brook	E	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 032	TAR-6	N/A	Minor	UNT to Robbins Brook	IT	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 033	TAR-6	N/A	Minor	UNT to Robbins Brook	IT	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 034	TAR-6	N/A	Minor	UNT to Robbins Brook	IT	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31

County	Waterbody Project ID	МР	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
McKean	Stream 035	TAR-6	N/A	Minor	UNT to Robbins Brook	IT	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 036	TAR-6	N/A	Minor	UNT to Robbins Brook	IT	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Ditch 01*	TAR-6	3.0	Minor	UNT to Potato Creek	Е	TSF	No ⁵ /ST	Existing Road, No Improvements Proposed	3/1 – 6/15
McKean	Ditch 05-2	TAR-8	5.0	Minor	UNT to Potato Creek	IT	TSF	No ⁵ /ST	Existing Road, No Improvements Proposed	3/1 – 6/15
McKean	Stream 044	TAR-10	3.0	Minor	UNT to White Hollow	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 198	TAR-10	N/A	Minor	UNT to White Hollow	Е	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Ditch 59	TAR-11	3.0	Minor	UNT to White Hollow	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 045	PAR-12	N/A	Minor	UNT to White Hollow	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 046	PAR-12	N/A	Minor	UNT to White Hollow	Е	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 047	PAR-12	N/A	Minor	UNT to White Hollow	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 048	PAR-12	1.00	Minor	UNT to White Hollow	IT	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 049	PAR-12	N/A	Minor	UNT to White Hollow	IT	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 050	PAR-12	N/A	Minor	UNT to White Hollow	Е	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Ditch 06	PAR-12	3.0	Minor	UNT to White Hollow	IT	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 051	TAR-13	N/A	Minor	UNT to Larson Hollow	ІТ	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 052	TAR-13	N/A	Minor	UNT to Larson Hollow	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31

County	Waterbody Project ID	МР	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
McKean	Stream 053	TAR-13	N/A	Minor	UNT to Larson Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 057	TAR-14	3.0	Minor	UNT to Bemis Hollow	E	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 058	TAR-14	N/A	Minor	UNT to Bemis Hollow	E	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 118	TAR-14	6.5	Minor	UNT to Bemis Hollow	Р	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 061	TAR-14	N/A	Minor	UNT to Bemis Hollow	IT	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 062	TAR-14	N/A	Minor	Bemis Hollow	Р	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 064	TAR-14	3.0	Minor	UNT to Bemis Hollow	IT	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Ditch 58	TAR-14	3.0	Minor	UNT to Bemis Hollow	IT	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 321	TAR-14	N/A	Minor	Bemis Hollow	E	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 344	TAR-14	10.0	Intermediate	Bemis Hollow	Р	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 345	TAR-14	8.0	Minor	UNT to Bemis Hollow	IT	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 347	TAR-14	3.0	Minor	UNT to Bemis Hollow	IT	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 348	TAR-14	2.0	Minor	Bemis Hollow	E	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 349	TAR-14	N/A	Minor	UNT to Bemis Hollow	E	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 350	TAR-14	2.0	Minor	UNT to Bemis Hollow	IT	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 351	TAR-14	N/A	Intermediate	Bemis Hollow	Р	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
McKean	Stream 352	TAR-14	2.0	Minor	UNT to Bemis Hollow	E	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 353	TAR-14/ TAR-17	2.0	Minor	UNT to Bemis Hollow	E	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 354	TAR-14	2.0	Minor	UNT to Bemis Hollow	E	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 320	TAR-17	N/A	Minor	UNT to Bemis Hollow	Е	HQ-CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Ditch 11-2	PAR-21	N/A	Minor	UNT to Allegheny Portage Creek	IT	TSF	No ⁵ /ST	Existing Road, No Improvements Proposed	3/1 - 6/15
McKean	Ditch 15*	TAR-22	N/A	Minor	UNT to Allegheny Portage Creek	Е	TSF	No ⁵ /ST	Existing Road, No Improvements Proposed	3/1 – 6/15
McKean	Stream 080	PAR-25	N/A	Minor	UNT to Benson Hollow	IT	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 081	PAR-25	10.0	Minor	UNT to Benson Hollow	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Coleman Creek-2	PAR-25	N/A	Intermediate	Coleman Creek	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 082	PAR-25	N/A	Minor	UNT to Coleman Creek	IT	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 083	PAR-25	N/A	Minor	UNT to Coleman Creek	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 084	PAR-25	N/A	Minor	UNT to Coleman Creek	Е	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 085	PAR-25	N/A	Minor	UNT to Coleman Creek	Е	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 196	PAR-25	N/A	Minor	UNT to Jordan Hollow	Е	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 086	TAR-28	3.0	Minor	UNT to Jordan Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Ditch 18-1	TAR-28	3.0	Minor	UNT to Jordan Hollow	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
McKean	Stream 085c	TAR-26	N/A	Minor	UNT to Jordan Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 085b	TAR-26	N/A	Minor	UNT to Jordan Hollow	Е	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Stream 085a	TAR-26	N/A	Minor	UNT to Jordan Hollow	E	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
McKean	Ditch 18-3	TAR-26	3.0	Minor	UNT to Jordan Hollow	IT	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Stream 312	PAR-30	N/A	Minor	UNT to Baker Hollow	E	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 67*	PAR-30	2.0	Minor	UNT to Baker Hollow	Е	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 68*	PAR-30	2.0	Minor	UNT to Baker Hollow	E	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 69*	PAR-30	2.0	Minor	UNT to Bear Creek	Е	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 70*	PAR-30	2.0	Minor	UNT to Bear Creek	E	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 72*	PAR-30	2.0	Minor	UNT to Wiemer Hollow	Е	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 73*	PAR-30	2.0	Minor	UNT to Wiemer Hollow	E	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 74*	PAR-30	2.0	Minor	UNT to Wiemer Hollow	E	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 76*	PAR-30	2.0	Minor	UNT to Baker Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 77*	PAR-30	2.0	Minor	UNT to Baker Hollow	E	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Stream 155	PAR-31	N/A	Intermediate	White Chopin Hollow	Р	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Stream 153	PAR-31	N/A	Minor	UNT to White Chopin Hollow	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31

County	Waterbody Project ID	МР	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
Potter	Stream 154	PAR-31	1.0	Minor	UNT to White Chopin Hollow	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 29*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	Е	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 30*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 31*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 32*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 33*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 34*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 35*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 36*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 37*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 38*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 39*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 40*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 41*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	Е	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 42*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 43*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	Е	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
Potter	Ditch 44*	PAR-31	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 28*	TAR-32	1.5	Minor	UNT to East Branch Fishing Creek	E	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Stream 150	PAR-33	3.0	Minor	UNT to White Chopin Hollow	IT	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 20	PAR-33	2.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 21*	PAR-33	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes⁵/NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 22*	PAR-33	1.0	Minor	UNT to White Chopin Hollow	E	CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 23*	PAR-33	1.0	Minor	UNT to East Branch Fishing Creek	E	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 24*	PAR-33	1.0	Minor	UNT to East Branch Fishing Creek	E	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 25*	PAR-33	1.0	Minor	UNT to East Branch Fishing Creek	E	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 26*	PAR-33	1.0	Minor	UNT to East Branch Fishing Creek	E	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Potter	Ditch 27*	PAR-33	1.0	Minor	UNT to East Branch Fishing Creek	E	HQ-CWF	Yes ⁵ /NRT	Existing Road, No Improvements Proposed	10/01 – 12/31
Line YM224 Lo	oop Access Roads	5								
Potter	Ditch 53*	PAR-36	3.0	Minor	UNT to South Branch Oswayo Creek	E	EV	Yes ⁵ /CA	Existing Road, No Improvements Proposed	10/1 – 4/1 10/01 – 12/31

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
Potter	Ditch 21a*	PAR-36	3.0	Minor	UNT to South Branch Oswayo Creek	E	EV	Yes ⁵ /CA	Existing Road, No Improvements Proposed	10/1 – 4/1 10/01 – 12/31
Line FM100 Ab	andonment									
Clearfield	Stream 179	0.0	3.0	Minor	Lamb Hollow	IT	CWF	Yes ⁵ /NRT	N/A - Workspace	10/01 – 12/31
Clearfield	Ditch 47	0.1	1.0	Minor	UNT to Lamb Hollow	Е	CWF	Yes⁵/NRT	Abandon in place / Access Road	10/01 – 12/31
Clearfield	Stream 180	0.2	62.9	Intermediate	Bennett Branch Sinnemahoning Creek	Ρ	CWF	Yes⁵/NRT	Abandon in place / Access Road / Workspace	10/01 – 12/31
Clearfield	Stream 181	0.4	2.0	Minor	UNT to Bennett Branch Sinnemahoning Creek	E	CWF	Yes ⁵ /NRT	Abandon in place, Grout / Access Road / Workspace	10/01 – 12/31
Clearfield	Stream 182	1.4	3.3	Minor	UNT to Bennett Branch Sinnemahoning Creek	IT	CWF	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31
Clearfield	Stream 183	1.6	3.3	Minor	UNT to Bennett Branch Sinnemahoning Creek	Ρ	CWF	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31
Clearfield	Stream 184	1.7	3.3	Minor	UNT to Bennett Branch Sinnemahoning Creek	IT	CWF	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31
Clearfield	Stream 185	1.7	3.3	Minor	UNT to Bennett Branch Sinnemahoning Creek	E	CWF	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31
Clearfield	Stream 186	2.1	22.6	Intermediate	UNT to Bennett Branch Sinnemahoning Creek	Ρ	CWF	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
Clearfield	Stream 187	2.2	5.1	Minor	UNT to Bennett Branch Sinnemahoning Creek	Ρ	CWF	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31
Clearfield	Stream 188	2.2	12.5	Minor	UNT to Bennett Branch Sinnemahoning Creek	E	CWF	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31
Clearfield	Stream 190	2.1	8.5	Minor	UNT to Bennett Branch Sinnemahoning Creek	E	CWF	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31
Clearfield	Stream 145	4.8	21.0	Intermediate	Laurel Run	IT	HQ-CWF	Yes⁵/NRT	Abandon in place, Foam	10/01 – 12/31
Clearfield	Stream 146	4.8	6.0	Minor	UNT to Laurel Rur	n IT	HQ-CWF	Yes ⁵ /NRT	Abandon in place, Foam	10/01 – 12/31
Clearfield	Stream 147	4.8	26.4	Intermediate	Saunders Run	Ρ	HQ-CWF	Yes ⁵ /CA	Abandon in place, Foam	10/1 – 4/1 10/01 – 12/31
Clearfield	Stream 372	7.0	2.0	Minor	UNT to Little Medix Run	E	HQ-CWF	Yes ⁵ /CA	Abandon in place	10/1 – 4/1 10/01 – 12/31
Elk	Stream 144	7.9	N/A	Minor	UNT to Medix Run	IT	HQ-CWF	Yes⁵/NRT/ST	Abandon in place	10/01 – 12/31 3/1 – 6/15
Elk	Stream 143	7.9	57.1	Intermediate	Medix Run	Ρ	HQ-CWF	Yes⁵/NRT/ST	Abandon in place	10/01 – 12/31 3/1 – 6/15
Elk	Stream 142	9.6	3.4	Minor	Jack Dent Branch	Ρ	HQ-CWF	Yes ⁵ /CA	Abandon in place	10/1 – 4/1 10/01 – 12/31
Elk	Ditch 60	11.1	3.8	Minor	UNT to Sullivan Run	E	HQ-CWF	Yes ⁵ /CA	Abandon in place, Grout	10/1 – 4/1 10/01 – 12/31
Elk	Stream 140	12.3	9.1	Intermediate	UNT to Mix Run	Р	EV	Yes⁵/NRT	Abandon in place	10/01 – 12/31
Elk	Stream 141	12.3	5.3	Minor	Mix Run	Р	EV	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31
Elk	Stream 139	19.4	N/A	Minor	UNT to Miller Run	IT	HQ-CWF	Yes ⁵ /CA	Abandon in place	10/1 – 4/1 10/01 – 12/31
Elk	Stream 138	19.5	5.5	Minor	UNT to Miller Run	IT	HQ-CWF	Yes ⁵ /CA	Abandon in place	10/1 - 4/1

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
										10/01 – 12/31
Elk	Stream 137	19.6	2.0	Minor	UNT to Miller Run	Е	HQ-CWF	Yes ⁵ /CA	Abandon in place	10/1 – 4/1 10/01 – 12/31
Cameron	Stream 134	19.7	N/A	Minor	UNT to Miller Run	ΙТ	HQ-CWF	Yes ⁵ /CA	Abandon in place	10/1 – 4/1 10/01 – 12/31
Cameron	Stream 136	19.7	5.6	Minor	UNT to Miller Run	Ρ	HQ-CWF	Yes ⁵ /CA	Abandon in place	10/1 – 4/1 10/01 – 12/31
Cameron	Stream 175	22.2	48.7	Intermediate	Mix Run	Ρ	HQ-CWF	Yes ⁵ /NRT/ST	Abandon in place	10/01 – 12/31 3/1 – 6/15
Cameron	Stream 176	22.2	23.9	Intermediate	UNT to Mix Run	Ρ	HQ-CWF	Yes⁵/NRT/ST	Abandon in place	10/01 – 12/31 3/1 – 6/15
Cameron	Stream 177	22.2	27.4	Intermediate	UNT to Mix Run	Ρ	HQ-CWF	Yes⁵/NRT/ST	Abandon in place	10/01 – 12/31 3/1 – 6/15
Cameron	Stream 371	22.4	2.0	Minor	UNT to Mix Run	E	HQ-CWF	Yes ⁵ /NRT/MF	Existing Road, No Improvements Proposed	10/01 – 12/31
Cameron	Stream 174	23.2	186.3	Major	Bennett Branch Sinnemahoning Creek	Ρ	WWF	No ⁵ /WWF	Abandon in place	12/1 – 5/31
Cameron	Stream 173	23.9	20.2	Intermediate	Little Dent Run	Ρ	HQ-CWF	Yes ⁵ /CA	Abandon in place	10/1 – 4/1 10/01 – 12/31
Cameron	Stream 172	24.9	N/A	Minor	UNT to Boyer Run	E	CWF	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31
Cameron	Stream 170	25.0	N/A	Minor	UNT to Boyer Run	E	CWF	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31
Cameron	Stream 171	25.0	15.9	Intermediate	Boyer Run	Р	CWF	Yes ⁵ /NRT	Abandon in place	10/01 – 12/31
Cameron	Stream 132	25.7	12.5	Intermediate	UNT to Driftwood Branch Sinnemahoning Creek	Ρ	EV	No ⁵ /ST/MF	Abandon in place	3/1 – 6/15
Cameron	Ditch 80	26.0	1.0	Minor	UNT to Driftwood Branch Sinnemahoning Creek	E	EV	No ⁵ /ST/MF	Existing Road, No Improvements Proposed	3/1 – 6/15

County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
Cameron	Stream 365	26.0	178.0	Major	Driftwood Branch Sinnemahoning Creek	Ρ	EV	No ⁵ /ST/MF	Existing Road, No Improvements Proposed	3/1 – 6/15
Cameron	Stream 366	26.0	6.0	Minor	UNT to Driftwood Branch Sinnemahoning Creek	E	EV	No ⁵ /ST/MF	Existing Road, No Improvements Proposec	3/1 – 6/15
Cameron	Stream 363	26.2	4.0	Minor	Driftwood Branch Sinnemahoning Creek	IT	EV	No ⁵ /ST/MF	Abandon in place	3/1 – 6/15
Cameron	Stream 169	26.8	279.7	Major	Driftwood Branch Sinnemahoning Creek	Ρ	EV	No ⁵ /ST/MF	Abandon in place, Foam	3/1 – 6/15
Cameron	Stream 370	27.0	2.0	Minor	UNT to Driftwood Branch Sinnemahoning Creek	E	EV	No ⁵ /ST/MF	N/A - Workspace	3/1 – 6/15
Cameron	Stream 367	27.1	2.0	Minor	UNT to Johnson Run	IT	EV	Yes ⁵ /NRT/MF	Existing Road, No Improvements Proposed	10/01 – 12/31
Cameron	Stream 369	27.1	3.1	Minor	UNT to Johnson Run	Е	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Cameron	Stream 166	27.4	3.3	Minor	UNT to Johnson Run	E	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Cameron	Stream 167	27.4	46.6	Intermediate	Johnson Run	Р	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Cameron	Stream 168	27.4	2.0	Minor	UNT to Johnson Run	E	EV	Yes ⁵ /NRT/MF	N/A - Workspace	10/01 – 12/31
Cameron	Stream 368	27.4	8.0	Minor	UNT to Johnson Run	IT	EV	Yes ⁵ /NRT/MF	Existing Road, No Improvements Proposed	10/01 – 12/31
Cameron	Stream 362	29.4	3.4	Minor	UNT to Grove Run	E	HQ-CWF	Yes ⁵ /CA	Abandon in place	10/1 – 4/1 10/01 – 12/31
Cameron	Stream 361	30.4	N/A	Minor	UNT to Lick Island Run	Е	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Cameron	Stream 360	30.8	3.0	Minor	UNT to Lick Island Run	Е	EV	Yes ⁵ /NRT/MF	Dam and Pump/Flume	10/01 – 12/31
County	Waterbody Project ID	MP	Crossing Length ¹ (ft.)	FERC Waterbody Classification	Waterbody Name	Flow Regime ²	Chapter 93 Existing or Designated Use ³	Wild Trout ^{4,5}	Crossing Method ⁶	In-Stream Work Restrictions ⁷
---------	-------------------------	------	--	-------------------------------------	-----------------------------	-----------------------------	---	---------------------------	------------------------------	---
Cameron	Stream 130	38.1	1.6	Minor	UNT to Berge Run	Е	EV	Yes ⁵ /CA/MF	Abandon in place	10/1 – 4/1 10/01 – 12/31
Cameron	Stream 131	38.1	4.0	Minor	UNT to Berge Run	Ρ	EV	Yes ⁵ /CA/MF	Abandon in place	10/1 – 4/1 10/01 – 12/31
Cameron	Stream 127	38.6	4.1	Minor	Colbert Hollow	IT	EV	Yes ⁵ /CA/MF	Abandon in place	10/1 – 4/1 10/01 – 12/31
Potter	Stream 128	38.7	4.2	Minor	UNT to Colbert Hollow	IT	EV	Yes ⁵ /CA/MF	Abandon in place	10/1 – 4/1 10/01 – 12/31
Potter	Stream 129	38.7	3.9	Minor	UNT to Colbert Hollow	IT	EV	Yes ⁵ /CA/MF	Abandon in place	10/1 – 4/1 10/01 – 12/31
Potter	Stream 126	39.7	4.0	Minor	UNT to Little Bailey Run	Ρ	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Potter	Stream 125	40.1	8.0	Minor	Little Bailey Run	Р	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Potter	Stream 133	40.1	4.5	Minor	UNT to Little Bailey Run	Ρ	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Potter	Stream 165	40.7	1.7	Minor	Brainard Hollow	Е	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Potter	Stream 199	41.1	50.2	Intermediate	Bailey Run	Р	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Potter	Stream 163	41.2	4.7	Minor	UNT to Bailey Run	Е	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Potter	Stream 164	41.2	38.7	Intermediate	Bailey Run	Р	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Potter	Stream 357	41.8	2.4	Minor	UNT to Bailey Run	Е	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Potter	Stream 358	41.9	3.0	Minor	UNT to Bailey Run	Е	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Potter	Stream 161	42.5	23.8	Intermediate	West Darian Run	Р	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31
Potter	Stream 162	42.5	2.1	Minor	UNT to West Darian Run	IT	EV	Yes ⁵ /NRT/MF	Abandon in place	10/01 – 12/31

Notes:

¹ Crossing length is recorded as either the length of pipeline or access road centerline crossing the stream from bank-to-bank; or the length of workspace crossing the stream if the pipeline or access road centerline does not cross the waterbody. Additionally, crossing lengths listed as N/A indicate that the pipeline, access road, or workspace does not cross the waterbody; however, the project crosses the associated floodway of this waterbody as indicated on the ARIT.

² Flow regime based on onsite field review. IT – Intermittent; E – Ephemeral; and P – Perennial. As classified by PA Code Title 25 Chapter 93.

³ As classified by PA Code Title 25 Chapter 93.9 Existing or Designated Use shapefiles. WWF – Warm Water Fishes; CWF – Cold Water Fishes; MF – Migratory Fishes; TSF – Trout Stocked Fishery; HQ-CWF – High Quality Cold Water Fishery; and EV – Exceptional Value Fishery.

⁴ As classified by PA Code Title 25 Chapter 93 Existing Use and Existing Use Migratory Fish shapefiles and the PA Fish and Boat Commission Trout Waters shapefiles. CA – Class A Trout Fishery, WWF – Warm Water Fishes; MF – Migratory Fishes; ST – Stocked Trout Fishery; and NRT – Naturally Reproducing Trout Water.

⁵ Regional listings of Approved Trout Waters are provided by the PFBC website: <u>http://pfbc.pa.gov/fishpubs/summaryad/troutwaters.html</u>. Accessed May 2018. Waterbodies within 0.5-mile of a confluence with an Approved Trout Water and within the upper and lower section(s) are also considered Approved Trout Waters.

⁶ If it is determined in the field during construction that either dam or pump or flume pipe methods are not possible; a wet trench method may be utilized. Open-cut methods will be evaluated at the time of construction to be used for streams if no flow is present.

⁷ As classified under PA Code Title 58, Chapters 57.4 and 57.11 as a Class A Wild Trout Water, Wild Trout Water, or Wilderness Trout Water. In-stream work restrictions for Wild Trout Waters are in effect between October 1 and December 31. All streams classified as Wilderness Trout Waters qualify as EV resources; consultation with PFBC is required to obtain information regarding in-stream construction restriction periods.

* Ditches identified in the table with an asterisk have been determined by PADEP as ditches that do not contribute perennial or intermittent surface water flows to other jurisdictional Waters of the Commonwealth, as such, these ditches are not a regulated Waters of the Commonwealth and are not included on the ARIT Table. These non-jurisdictional ditches are included in the table for FERC reporting purposes, as such, if surface water flows are present at the time of construction crossing, these ditches will be considered Minor Waterbodies and crossed in accordance with the FERC Wetland and Waterbody Procedures.