PA Electric Power Generating Industry TDS Issues

Presented to PADEP WRAC – TDS Subcommittee October 16, 2009

PA Coal-Fired Electric Generation

- PA ranks 2nd in electric generation
- 26 coal-fired plants
 - 19,500 MW of generation capacity
 - 15 scrubbed (FGD) plants (52% of capacity)
- 15 waste-coal plants
 - 1,500 MW of generation capacity
- Represents 41% of PA generating capacity and 54% of generation

Power Plant Sources of TDS & SO₄

	TDS	Sulfate	TDS	
	Concentration	Concentration	Loading	
	(mg/L)	(mg/L)	(lbs./day)	
FGD Blowdown (~0.5 MGD)	15,000 - 30,000	>1,000	62,600 - 125,000	
Boiler Makeup Water Waste Stream (~0.040 MGD - Inter.)	>20,000	>11,000	~6,700	
Coal Pile Runoff	>500	>250	Rainfall Dependent	
CCB Landfills	Landfills 1,200 - 2,500		Rainfall Dependent	
Cooling Tower Blowdown (~3.6 MGD – 2500-gpm)	300 - 2500	>250	9,000 – 75, 000	
Waste Coal Plants				
(~0.25 MGD)	~2,000		1,600-4,000	

TDS Treatment Options for FGD Bleed Stream

Deep well injection

Membrane treatment

- **Filtration**
- r Evaporation
- Recycle and Solids Retention
- Emerging technologies

Deep well injection Geologic and regulatory constraints Membrane treatment Reverse Osmosis (RO) Largely ineffective Higher TDS levels = higher reject water volume Severe scaling & fouling issues Electrodialysis (ED) Unproven with FGD bleed stream

Filtration – neither Micro-filtration (0.1 – 10 μm) nor Ultra-filtration (0.001 – 0.1 μm) effective for removal of TDS

Parameter	Unfiltered*	Filtered*
• TDS	18,867	18,867
 Sulfate 	1,173	1,100
Chloride	8,573	7,617

<u>*/ mg/l</u>

- Recycle and Solids Retention
 - Effective for TDS reduction
 - ✓ Depending on site, recycle can achieve >30% reductions
 - Solids retention has demonstrated 30% to 50% reductions

But incapable of achieving PADEP proposed levels

Evaporation Brine Concentrator & Crystallizer

- Used on cooling tower blowdown
- Rarely used for FGD bleed stream
 - Handful in operation worldwide
- Minimum 36 months to design, procure, construct, & commission
 - Longer for plant-wide treatment
 - Plus permitting time
- Significant transportation impacts (additives & waste)

Significant capital, O&M, and energy costs

Permitting Time

- E&SC (3-6 mos)
- NPDES modification (24 mos)
- WQM Part II (9-12 mos)
- Solid waste/landfill expansion (36-48 mos)
 - EPA designation of CCB will affect
- Air/material handling (6-12 mos)

Evaporation (cont.)

400 GPM avg. flow rate

- Power requirement = 4.0 MW/hour of operation
 - Equivalent to lighting 4000 homes
- Solids production = 150 tpd

- Landfill cost ~ \$2,175/day (\$14.50/ton)
 - \$750,000/year (dispatch dependent)
- Soda ash consumption = 2,000# per hour
 - Salt conversion
 - Est \$1.6 million/year (dispatch dependent)

Evaporation Costs

FGD only (assume 400 GPM Flow) Capital costs of ~ \$60 million Annual O&M costs ~ \$4-6 million Annual solids ~ \$750,000 All wastewater streams (assume 2 to 5 MGD flow) Capital costs \$200-\$500 million Annual O&M \$15-\$40 million Power consumption 14 – 35 MW Greater solids generation

Table 3-2							
Evaporator System Cost Summary							
Syst	tem Description	Basis	Estimated Capital Cost (2008 \$)	Estimated Operating Cost (2008 \$/yr)			
1.	Brine Concentrator (2 x 60%)	240 gpm	12,900,000				
2.	Crystallizer (1 x 100%)	60 gpm	9,700,000				
3.	Salt Conversion	400 gpm	5,000,000				
4.	Storage Tank	250,000 gal	400,000				
5.	Balance of Plant		4,000,000				
6.	Pre-Engineered Building	9,000 ft ²	2,800,000				
7.	Site Development	32,000 ft ²	750,000				
8.	Electrical Equipment		7,700,000				
9.	Operating Labor	3 FTE		344,000			
10.	Electrical Demand	4,000 kW		2,103,000			
11.	Trucking	150 tpd		219,000			
12.	Soda Ash	2,000 lb/hr		1,621,000			
13.	Other Chemicals			150,000			
14.	Indirect Cost Multiplier	30%	12,980,000				
15.	Owner Costs	10%	5,700,000				
Tota	l Costs		61,930,000	4,437,000			

Evaporation Costs (cont.)

15 PA plants FGD wastewater stream

Annual O&M costs \$70 million

- Capital costs approach \$1 billion
- Power needs 60 MW
- 2250 tpd solids
- 15 PA plants all wastewater streams
 - Capital costs \$3 \$7.5 billion
 - Annual O&M costs \$230 \$600 million
 - Power needs 200 520 MW (a new plant)
 - Greater solids generation

Caveats

I1 PA non-scrubbed stations?

- "New source" issue or
- CAIR II, MACT, etc.
- Assumes limits similar to those currently being imposed in permits
- Assumes all plants have FGD bleed stream
 - Technology dependent
- Conceptual cost estimates

Caveats (cont.)

- Non TDS/Sulfates permit requirements timelines (sooner) vs. TDS/Sulfates limits (later)
 - Need policy that is not economically wasteful
- Landfill capacity and technology

Need nuclear cooling tower blowdown data

Water Impairment Issues

Significant problems with the Mon River "impairment" finding

- Insufficient time period
- No river segmentation
- Missing data
- Flawed statistics
- Statewide, the sources and relative contributions for TDS are still unknown; for the Mon, WV and PA contributions still unknown
- PA and WV should follow the approach taken in the Chesapeake Bay

Conclusions

- There is no demonstrated, cost-effective technology to achieve the PADEP proposed levels
- However, electric generating stations can achieve significant reductions in TDS using recycle and entrainment methods
- A holistic assessment of the sources and relative contributions should be conducted **before** developing proposed solutions

Questions

6-