Module 9:
 Basics of Pumps and Hydraulics Instructor Guide

Activities for Unit 1 - Basic Hydraulics

Activity 1.1: Convert 45 psi to feet of head.
Ans: $\quad 45 \mathrm{psis} \times 1 \mathrm{ft} .=103.8 \mathrm{ft}$
0.433 psi

Activity 1.2: Determine pressure (in psi) on the wall of a sedimentation basin 2 ft ., 5 ft ., and 10 feet below the water surface.

Ans: $\quad 2 \mathrm{ft} . \times 0.433 \mathrm{psi} / \mathrm{ft}$. of head $=0.866 \mathrm{psi}$
$5 \mathrm{ft} . \times 0.433 \mathrm{psi} / \mathrm{ft}$. of head $=2.165 \mathrm{psi}$
$10 \mathrm{ft} . \times 0.433 \mathrm{psi} / \mathrm{ft}$. of head $=4.33 \mathrm{psi}$

Activity 1.3: What is upward force on an empty tank caused by a groundwater depth of 8 feet above the tank bottom? The tank is 20 feet by 40 feet.

Ans: Head pushing up on bottom is 8 ft .
Pressure pushing up on bottom is $8 \mathrm{ft} . \times 0.433 \mathrm{psi} / \mathrm{ft} .=3.464 \mathrm{psi}$ (pounds per square inch)

Next, convert to pounds per square feet. Since there are 144 sq . in. in 1 sq . ft., pressure is 3.464 psi $\times 144$ sq. in./sq. ft. $=499 \mathrm{lbs} / \mathrm{sq} . \mathrm{ft}$.

Total force is pressure x area
Area of basin bottom is $20 \mathrm{ft} . \mathrm{x} 40 \mathrm{ft}=800 \mathrm{sq} . \mathrm{ft}$.

Total force $=499 \mathrm{lbs} . / \mathrm{sq} . \mathrm{ft} . \times 800 \mathrm{sq} . \mathrm{ft} .=399,200 \mathrm{lbs}$

Example 1.2: Determine factor to convert cfs to gpm.

Ans: There are 7.48 gallons in one cu. ft.
There are 60 seconds in one minute.
Therefore,

$$
\frac{1 \mathrm{cu} . \mathrm{ft} .}{\mathrm{ser}} \times \frac{7.48 \mathrm{gal} .}{\mathrm{gul}} \times \frac{60 \mathrm{sec} .}{\mathrm{min}}=\frac{449 \mathrm{gal} .}{\min }(\mathrm{gpm})
$$

Activity 1.4: Determine factor to convert MGD to gpm.
Ans: There are $60 \mathrm{~min} . / \mathrm{hr} . \times 24 \mathrm{hr} . / \mathrm{day}=1,440 \mathrm{~min} . /$ day
Therefore,

$$
\frac{1,000,000 \text { gal. }}{\text { day }} \times \frac{1 \text { day }}{1,440 \text { min. }}=\frac{694 \text { gal. }}{\min .} \quad(\mathrm{gpm})
$$

Activity 1.5: Determine factor to convert MGD to cfs.
Ans: \quad There are 60 sec. $/ \mathrm{min} . \times 60 \mathrm{~min} . / \mathrm{hr}$. x 24 hr . day $=86,400 \mathrm{sec} . / \mathrm{Iday}$ As previously stated, there are 7.48 gallons in $1 \mathrm{cu} . \mathrm{ft}$. Therefore,

$$
\frac{1,000,000 \mathrm{gal} .}{\text { day }} \times \frac{1 \text { day }}{86,400 \mathrm{sec} .} \times \frac{1 \mathrm{cu} . \mathrm{ft.}}{7.48 \mathrm{gal} .}=\frac{1.547 \mathrm{cu} . \mathrm{ft.}}{\mathrm{sec} .}(\mathrm{cfs})
$$

Activity 1.6: A rectangular channel 3 ft . wide contains water 2 ft . deep flowing at a velocity of 1.5 fps . What is the flow rate in cfs?

Ans: First determine the Area (A).
Cross sectional area is $3 \mathrm{ft} . \times 2 \mathrm{ft} .=6 \mathrm{sq} . \mathrm{ft}$.
Using the Continuity Equation $(\mathrm{Q}=\mathrm{V} \times \mathrm{A})$
$\mathrm{Q}=1.5 \mathrm{fps} \times 6 \mathrm{sq}$. ft. $=9.0 \mathrm{cfs}$

Activity 1.7: Flow in an 8 -inch pipe is 500 gpm . What is the average velocity?
Ans: First determine the Area (A)
Area of an 8 -inch pipe $=\frac{\pi \times 8^{2}}{4}$ sq. in. $x \frac{1 \text { sq. ft. }}{144 \mathrm{sq} . \mathrm{in} .}=0.349 \mathrm{sq} . \mathrm{ft}$.
Flow rate (Q) in cfs $=500 \mathrm{gpm} \times \frac{1 \mathrm{cfs}}{449 \mathrm{gpm}}=1.11 \mathrm{cfs}$
Re-arrange Continuity Equation to solve for velocity

$$
\mathrm{Q}=\mathrm{V} \times \mathrm{A} \gg \mathrm{~V}=\mathrm{Q} / \mathrm{A}
$$

Therefore, $\mathrm{V}=1.11 \mathrm{cfs} \div 0.349 \mathrm{sq} . \mathrm{ft} .=3.18 \mathrm{fps}$

Examples and Activities for Unit 2 - Open Channel (Gravity) Flow

Example 2.1: Use figure 2.2 to calculate Hydraulic radius.

- Flow area $=2 \mathrm{ft} . \times 3 \mathrm{ft} .=6 \mathrm{sq} . \mathrm{ft}$.
- Wetted perimeter $=$ length of sides and bottom in contact with water. For this case:

$$
(2 \times 2 \mathrm{ft} .)[\text { sides] }+(1 \times 3 \mathrm{ft} .) \text { [bottom] }=7 \mathrm{ft} .
$$

- Hydraulic Radius $=6$ sq. ft. $\div 7 \mathrm{ft} .=0.857 \mathrm{ft}$.

Example 2.2: Use figure 2.3 to calculate slope.

- Slope $=3.0 \mathrm{ft} . \div 500 \mathrm{ft} .=0.006 \mathrm{ft} . / \mathrm{ft}$.

Activity 2.1: What is the flow rate in the channel described in Figures 2.2 and 2.3? Use the Manning Equation to determine V (flow velocity) and the Continuity Equation to determine flow rate.

Ans: 1. Using Manning Equation:
$V=\frac{1.49}{0.014} \times 0.857^{(2 / 3)} \times 0.006^{(1 / 2)}=7.44 \mathrm{fps}$

2. Using Continuity Equation:

$\mathrm{Q}=\mathrm{V} \times \mathrm{A}=7.44 \mathrm{fps} \times 6 \mathrm{sq} . \mathrm{ft} .=44.6 \mathrm{cfs}$

Example 2.3: A 12-inch sewer, laid on a 2% (0.02 ft . ft) slope, is carrying $1,800 \mathrm{gpm}$. Determine the depth of flow, flow area, and flow velocity for this condition. Use Figure 2.4 to help find the variables for your calculations.

- Calculate full pipe flow using Manning Equation. (Note: Hydraulic radius for a full circular pipe $=D / 4$, where $D=$ pipe diameter in ft .)

$$
V=\underline{1.49} \times(1.0 / 4)^{(2 / 3)} \times 0.02^{(1 / 2)}=5.973 \mathrm{fps}
$$

0.014

- \quad Convert to gpm
4.69 cfs $\times 449 \mathrm{gpm} / \mathrm{cfs}=\mathbf{2 , 1 0 6} \mathrm{gpm}$
- Determine ratio of flow to full pipe flow
$1,800 \mathrm{gpm} \div 2,106 \mathrm{gpm}=0.855$

Find 0.855 on horizontal axis of graph. Go straight up until you intersect curve labeled "Discharge." Move from that point horizontally and read value off of left vertical axis (in this case 70\%). This means the pipe is flowing at a depth of 70% of the pipe diameter.

- Calculate depth of flow:
$y=70 \% \times D=0.7 \times 1.0 \mathrm{ft} .=0.7 \mathrm{ft}$.
Starting at the depth ratio on the left axis (in this case 70\%), move right until you intersect the line labeled "Area". Move straight down until you intersect the horizontal axis. Read value off of axis (0.75 in this case)
- Calculate flow area:
$A=\pi \times \frac{1.0^{2}}{4}$ sq. ft. $\times 0.75=0.589 \mathrm{sq} . \mathrm{ft}$.
Starting at depth ratio on left axis (70\%), move right until you intersect the curve labeled "Velocity". Move straight down until you intersect the horizontal axis. Read value off axis (1.12 in this case)
- Calculate flow velocity:
5.973 fps (full pipe velocity calculated above) $\times 1.12=6.69 \mathrm{fps}$

Activity 2.2: What is the flow (gpm) in a sedimentation basin effluent trough, 20 feet long, with 90 -degree V-notch weirs along both sides, if the V-notches are spaced 6-inches apart and the head over the weirs is 1.5 inches?

Ans: Calculate the number of V -notches in the trough:
$\mathrm{n}=(20 \mathrm{ft} . \div 0.5$ feet per notch $) \times 2$ sides $=80$ notches
Convert head over weir from inches to feet:
1.5 inches $\div 12$ inches/ft. $=0.125$ feet

Calculate the flow using the V-notch weir equation:
$\mathrm{Q}=2.5 \times(0.125)^{(5 / 2)} \times 80$ notches $=1.105 \mathrm{cfs}$
Convert from cfs to gpm:
1.105 cfs x $449 \mathrm{gpm} / \mathrm{cfs}=496 \mathrm{gpm}$

Exercise for Unit 2 - Open Channel Gravity Flow

1. The two devices used most often to measure open channel flow rate are flumes and weirs .
2. In a steady state open channel flow situation which of the following factors stay the same from the upstream end of the channel to the downstream end of the channel:
a. \qquad shape of the channel
b. \qquad depth of flow
c. \qquad flow velocity
d. \qquad all of the above
3. The Manning formula is used to estimate friction losses in open channel steady state flows.
4. For most commonly used pipe materials the roughness coefficient (n) can be estimated to be:
a. \qquad zero
b. \qquad 0.010
c. $\mathrm{X} \quad 0.014$
d. \qquad 0.35
5. Slope is the difference in elevation between upstream and downstream ends of a channel divided by the horizontal length of the channel. Slope is expressed in units of $\quad \mathrm{ft} / \mathrm{ft}$. .
6. Each occurrence of minor losses will contribute approximately $\quad \mathbf{0 . 2}$ to $\quad \mathbf{0 . 3}$ feet of head losses in open channel flow.
7. Weirs should not be used with:
a. \qquad treated wastewater
b. \qquad clean spring water
c. \mathbf{x} untreated waste water
d. \qquad all of the above

Activity and Exercise for Unit 3 - Pressure Flow in Force Mains

Activity 3.1: What would the head and pressure at Point D be?

Figure 3.1 Hydraulic grade line

Ans: Head would be 3.0 feet. Pressure would be $3.0 \times 0.433=1.3 \mathrm{psi}$

Exercise for Unit 3 - Pressure Flow in Force Mains

1. Explain the difference between pressure flow in force mains and flow in an open channel.

Answers may vary somewhat, but in an open channel the top of the channel may be open to the atmosphere or it could be a partially filled pipe with the air above the water level is open to the atmosphere. In pressure flow in force mains, the pipes are completely filled with water and the water is not open to the atmosphere.
2. HGL is the abbreviation for Hydraulic Grade Line.
3. A friction loss in water flow is caused by turbulence along the walls of the pipes.
4. List three examples of things that will cause minor losses:
a. See Figure 3.4
b. See Figure 3.4
c. See Figure 3.4
5. Which of the following devices would normally be expected to have the greatest minor loss?
a. Butterfly Valve 15 inch
b. __ 90 degree bend 12 inch
c. $\quad \mathrm{X}$ Swing Check Valve
d. Gate Valve
6. The difference in elevation of the HGLs at the ends of a flow system is called Static Head.
7. Explain why a magnetic flow meter is less susceptible to clogging than a venturi meter.

The magnetic flow meter has an open unobstructed design that will not trap debris or solids.

