§ 121.1. Definitions.

The definitions in section 3 of the act (35 P. S. § 4003) apply to this article. In addition, the following words and terms, when used in this article, have the following meanings, unless the context clearly indicates otherwise:

* * * * *

Air dried coating—Coatings which are dried by the use of air or forced warm air at temperatures up to 194°F.

Air flask specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52 (relating to surface coating processes), Table I, category 12, a special composition coating that is:

(i) Applied to interior surfaces of high-pressure breathing air flasks to provide corrosion resistance.

(ii) Certified as safe for use with breathing air supplies.

Airless cleaning system—A solvent cleaning machine that is automatically operated and seals at a differential pressure of 0.50 pounds per square inch gauge (psig) or less, prior to the introduction of solvent or solvent vapor into the cleaning chamber and maintains differential pressure under vacuum during all cleaning and drying cycles.

Airless spray—A spray coating method in which the coating is atomized by forcing it through a small nozzle opening at high pressure. The coating is not mixed with air before exiting from the nozzle opening.

Air oxidation reactor—For purposes of § 129.71a (relating to control of VOC emissions from the synthetic organic chemical manufacturing industry — oxidation, distillation and reactor processes):

(i) A device or process vessel in which one or more organic reactants are combined with air, or a combination of air and oxygen, to produce one or more organic compounds.

(ii) The term includes ammoxidation and oxychlorination reactions.

Air pollution—The presence in the outdoor atmosphere of any form of contaminant, including, but not limited to, the discharging from stacks, chimneys, openings, buildings, structures, open fires, vehicles, processes or any other source of any smoke, soot, fly ash, dust, cinders, dirt,
noxious or obnoxious acids, fumes, oxides, gases, vapors, odors, toxic, hazardous or radioactive substances, waste or other matter in a place, manner or concentration inimical or which may be inimical to public health, safety or welfare or which is or may be injurious to human, plant or animal life or to property or which unreasonably interferes with the comfortable enjoyment of life or property.

* * * * *

Ambient air quality standards—Concentrations of air contaminants in the ambient air, as provided for in Chapter 131 (relating to ambient air quality standards).

Antenna specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating applied to equipment through which electromagnetic signals must pass for reception or transmission.

Antichafe coating—A coating applied to areas of moving aerospace components that may rub during normal operations or installation.

Antifoulant specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating that is:

(i) Applied to the underwater portion of a vessel to prevent or reduce the attachment of biological organisms.

(ii) Registered with the EPA as a pesticide under the Federal Insecticide, Fungicide, and Rodenticide Act.

Antique aerospace vehicle or component—An antique aircraft, as defined by 14 CFR Part 45 (relating to identification and registration marking), or components thereof. An antique aerospace vehicle would not routinely be in commercial or military service in the capacity for which it was designed.

* * * * *

Best available technology—Equipment, devices, methods or techniques as determined by the Department which will prevent, reduce or control emissions of air contaminants to the maximum degree possible and which are available or may be made available.

Bitumens—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, black or brown materials that consist mainly of hydrocarbons and are soluble in carbon disulfide.

Bituminous resin specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12:

(i) A coating that incorporates bitumens as a principal component and is formulated primarily to be applied to a substrate or surface to resist ultraviolet radiation or water, or both.
(ii) The term is included in the specialty coating category “repair and maintenance of thermoplastic coating of commercial vessels.”

Blender—A person who owns, leases, operates, controls or supervises an oxygenate blending facility.

* * * * *

Closed-cycle depainting system—A dust free, automated process that removes a permanent coating in small sections at a time and maintains a continuous vacuum around the area being depainted to capture emissions.

Coal tar—A dark thick liquid that forms as a byproduct of the process of producing coke from coal.

Coal tar epoxy coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a black surface protection polymer that is a blend of various epoxy resins and coal tar used on surfaces subjected to extremely corrosive environments.

Coating—

(i) For purposes of wood furniture manufacturing operations under §§ 129.101—129.107, a protective, decorative or functional material applied in a thin layer to a surface.

(A) The term includes paints, topcoats, clear coats, varnishes, sealers, stains, washcoats, basecoats, inks and temporary protective coatings.

(B) The term does not include adhesives.

(ii) For purposes of paper, film and foil surface coating under § 129.52b (relating to control of VOC emissions from paper, film and foil surface coating processes), a material applied onto or impregnated into a substrate for decorative, protective or functional purposes.

(A) The term includes solvent-borne coatings, waterborne coatings, adhesives, wax coatings, wax laminations, extrusion coatings, extrusion laminations, 100% solid adhesives, UV-cured coatings, electron beam-cured coatings, hot melt coatings and cold seal coatings.

(B) The term does not include materials used to form unsupported substrates, such as calendaring of vinyl, blown film, cast film, extruded film and co-extruded film.

(iii) For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a material that is applied in a thin layer to a substrate and which cures to form a continuous solid film.

* * * * * * *

Cold shutdown—A cold repair or replacement of damaged or worn refractory parts of a glass melting furnace while the furnace does not contain molten glass.
Cold weather time period—For purposes of shipbuilding and ship repair coatings under §129.52, Table I, category 12, a time during which the ambient temperature is below 4.5°C (40°F) and coating is to be applied.

Combustion efficiency—A measure of the extent of a combustion reaction, abbreviated C. E. and computed as follows:

\[
C.\ E. = \frac{[CO_2]}{[CO_2] + [CO]} \times 100\%
\]

where: \([CO_2]\) = concentration of carbon dioxide and \([CO]\) = concentration of carbon monoxide

Container glass—Glass manufactured by pressing, blowing in molds, drawing, rolling or casting which is used as a container.

Container of coating—The bucket, pot, can or other holder from which the coating is applied.

Continuous coater—A surface coating process that continuously applies coatings onto parts moving along a conveyer. Coatings that are not transferred to the part are recycled to a reservoir. Several types of application methods can be used with a continuous coater including spraying, curtain coating, roller coating, dip coating and flow coating.

Cryoprotective coating—A coating applied to aerospace vehicles or components that:

(i) Insulates cryogenic or subcooled surfaces to limit propellant boil-off.

(ii) Maintains structural integrity of metallic structures during ascent or reentry.

(iii) Prevents ice formation.

Cure volatile—For purposes of shipbuilding and ship repair coatings under §129.52, Table I, category 12:

(i) A reaction product which is emitted during the chemical reaction which takes place in some coating films at the cure temperature.

(ii) The reaction product emissions are other than those from the solvents in the coating and may, in some cases, comprise a significant portion of total VOC or HAP emissions, or both.

Curtain coating—The application of a coating to an object by moving the object through a falling curtain of coating.

Dispersion technique—An attempt to affect the concentration of a pollutant in the ambient air by methods contained in 40 CFR 51.100 (gg)—(kk) (relating to definitions).
Distillation operation—For purposes of § 129.71a:

(i) A process that separates one or more feed streams into two or more exit streams, with each exit stream having component concentrations different from those in the feed streams.

(ii) The separation is achieved by the redistribution of the components between the liquid phase and vapor phase as they approach equilibrium within the distillation unit.

Distributor—

(i) A person who transports, stores or causes the transportation or storage of gasoline at any point between a refinery, blending facility or terminal and a retail outlet or wholesale purchaser-consumer’s facility.

(ii) For purposes of § 123.22 (relating to combustion units), a person who transports, stores or causes the transportation or storage of commercial fuel oil at any point between a refinery, blending facility or terminal and a retail outlet, wholesale purchaser-consumer’s facility or ultimate consumer.

(iii) The term includes a refinery, a blending facility or a terminal.

* * * * *

Engineered wood panel product—A derivative wood product that is manufactured by binding together the strands, particles, fibers or veneers of wood with adhesives, resins, other coatings or additives, or a combination of these, to form a composite material. The manufacturing process may also use heat or pressure, or both, to form the product. The product is manufactured to precise design specifications which are tested to meet National or international standards.

Epoxy coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a thermoset coating formed by reaction of a resin containing a reactive epoxide with a curing agent.

Epoxy polyamide topcoat—A coating applied to aerospace vehicles or components when harder films are required or in some areas where engraving is accomplished in camouflage colors.

* * * * *

Facility—An air contamination source or a combination of air contamination sources located on one or more contiguous or adjacent properties, including properties that are separated only by a road or other public right-of-way, and which is owned or operated by the same person under common control.

* * * * *

General plan approval—A plan approval issued for a category of stationary air contamination sources that the Department determines are similar in nature and that can be adequately regulated using standardized specifications and conditions.
General use coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12:

(i) A coating that is not a specialty coating.

(ii) The term includes coal tar epoxy coating.

Generation—With respect to ERCs, an action taken by an owner or operator of an air contamination source, emissions unit or facility that results in the actual reduction of emissions.

Heat input—Heat derived from the combustion of fuel in a NOx affected source. The term does not include the heat derived from preheated combustion air, recirculated flue gas or exhaust from another source or combination of sources.

Heat resistant specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating that must withstand a temperature of at least 204°C (400°F) during normal use.

Heatset—An operation in which heat is required to evaporate ink oils from the printing inks that are applied to the substrate.

Heavy-duty diesel vehicle—A diesel-powered motor vehicle with a GVWR of greater than 14,000 pounds.

High-gloss specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating that achieves at least 85% reflectance on a 60° meter when tested by ASTM Method D-523, “Standard Test Method for Specular Gloss.”

High temperature coating—[An]For purposes of § 129.73, an aerospace vehicle or component coating designed to withstand temperatures of more than 350°F.

High-temperature specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating that must withstand a temperature of at least 426°C (800°F) during normal use.

High volume-low pressure spray—The application of a coating by means of a gun which operates between 0.1 and 10.0 psig air pressure.

Inner zone of the Southeast Pennsylvania air basin—Philadelphia County; the following political subdivision in Bucks County: Bensalem Township, Bristol Borough, Bristol Township, Falls Township, Morrisville Borough and Tullytown Borough; the following political subdivisions in Montgomery County: Abington Township, Bridgeport Borough, Bryn Athyn Borough, Cheltenham Township, Conshohocken Borough, East Norriton Township, Jenkintown Borough, Lower Merion Township, Lower Moreland Township, Narberth Borough, Norristown Borough, and Tullytown Borough.
Borough, Plymouth Township, Rockledge Borough, Springfield Township, Upper Merion Township, West Conshohocken Borough, West Norriton Township and Whitemarsh Township; and all of Delaware County except for Bethel Township, Birmingham Township, Chester Heights Borough, Concord Township, Edgemont Township, Newton Township and Thornbury Township.

Inorganic zinc (high-build) primer specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating that:

(i) Contains 960 g/l (8 lb/gal) or more of elemental zinc incorporated into an inorganic silicate binder that is applied to steel to provide galvanic corrosion resistance.

(ii) Is typically applied at more than 2 mils dry film thickness.

Insulation covering—Material that is applied to foam insulation to protect the insulation from mechanical or environmental damage.

* * * * *

LDT—light-duty truck—

(i) For purposes of § 129.52 [(relating to surface coating processes)], a light-duty truck is a motor vehicle rated at 8,500 pounds gross vehicle weight or less which is designed primarily for purposes of transportation or major components of the vehicle, including, but not limited to, chassis, frames, doors and engines.

(ii) For purposes of Chapter 126, Subchapter D (relating to the Pennsylvania Clean Vehicles Program), a light-duty truck is a motor vehicle rated at 8,500 pounds gross vehicle weight or less which is designed primarily for purposes of transportation of property or is a derivative of such a vehicle, or is available with special features enabling off-street or off-highway operation and use.

* * * * *

Marine deck sealant or marine deck sealant primer—A sealant or sealant primer labeled for application to wooden marine decks.

Maximum allowable thinning ratio—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, the maximum volume of thinner that can be added per volume of coating without violating the applicable VOC limit in § 129.52, Table I, category 12.

Maximum heat input capacity—The maximum steady state heat input under which a source may be operated as determined by its physical design and characteristics. Maximum heat input capacity is expressed in millions of British Thermal Units (MMBtu) per unit of time.

* * * * *

Metalized epoxy coating—A coating applied to aerospace vehicles or components that contains relatively large quantities of metallic pigmentation for appearance or added protection, or both.
Military exterior specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12:

(i) An exterior topcoat applied to a military or U.S. Coast Guard vessel that is subject to specific chemical, biological or radiological washdown requirements.

(ii) The term is also known as a chemical agent resistant coating.

Minor operating permit modification—A change to incorporate de minimis conditions and other insignificant physical changes to a source or applicable requirements into an existing permit or a change that does not require plan approval but which contravenes an express permit term. The term does not include the following:

* * * * *

Miscellaneous metal parts and products—Items made of ferrous or nonferrous metals, including large farm machinery, small farm machinery, small appliances, commercial and industrial machinery, fabricated metal products and items listed under the Standard Industrial Classification Codes 3300—3999. The term does not include cans, coils, automobiles, light-duty trucks, metal furniture, magnet wire, large appliances, aerospace vehicles or components and automobile refinishing and customized top coating of automobiles and trucks, if production since January 1, 1987, has not exceeded 34 vehicles per day.

Mist specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a low viscosity, thin film, epoxy coating applied to an inorganic zinc primer that penetrates the porous zinc primer and allows the occluded air to escape through the paint film prior to curing.

Mobile air contamination source—An air contamination source, including, but not limited to, automobiles, trucks, tractors, buses and other motor vehicles; railroad locomotives; ships, boats and other waterborne craft. The term does not include a source mounted on a vehicle, whether the mounting is permanent or temporary, which source is not used to supply power to the vehicle.

* * * * *

Natural-finish hardwood plywood panel—A panel on which the original grain pattern is enhanced by an essentially transparent finish frequently supplemented by filler and toner.

Navigational aids specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating applied to a Coast Guard buoy or other Coast Guard waterway marker when it is recoated aboard ship at its usage site and immediately returned to the water.

Necessary preconstruction approvals or permits—Those permits or approvals required under the Clean Air Act or the act and regulations adopted under the acts, which are part of the applicable SIP.

* * * * *
Non-Phase 2 outdoor wood-fired boiler—An outdoor wood-fired boiler that has not been certified or qualified by the EPA as meeting a particulate matter emission limit of 0.32 pounds per million Btu output or lower and is labeled accordingly.

Nonskid specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating applied to the horizontal surfaces of a marine vessel for the specific purpose of providing slip resistance for personnel, vehicles or aircraft.

Nonspecific particulate matter—Particulate matter which is nonodorous and nonirritating, including, but not limited to, alundum, calcium carbonate, cellulose, portland cement, graphite, gypsum, limestone, magnesite, starch, tin oxide and glycerine mist.

Nonstructural adhesive—An adhesive applied to aerospace vehicles or components that bonds nonload bearing aerospace components in noncritical applications and is not included in any other specialty adhesive categories.

Nonvolatiles—Substances that do not evaporate readily. The term:

(i) Refers to the film-forming material of a coating.

(ii) Is also known as solids.

Normally closed—A container or piping system that remains closed unless an operator is actively engaged in adding or removing material.

Normally closed container—A container that is closed unless an operator is actively engaged in activities such as emptying or filling the container.

Northeast Ozone Transport Region—The ozone transport region which includes this Commonwealth as established by section 184(a) of the Clean Air Act.

Nuclear specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12:

(i) A protective coating used to seal porous surfaces such as steel or concrete that otherwise would be subject to intrusion by radioactive materials.

(ii) The coating must meet the following:

(B) Relatively easy to decontaminate.

(C) Resistant to various chemicals to which the coating is likely to be exposed (ASTM D 3912-80, reapproved 1989, “Standard Test Method for Chemical Resistance of Coatings Used in Light-Water Nuclear Power Plants”).
O_2—Oxygen.

* * * * *

Operating parameter value—A minimum or maximum value established for a control [equipment] device or process parameter that, if achieved by itself or in combination with one or more other operating parameter values, determines whether an owner or operator has complied with an applicable emission limitation or standard.

* * * * *

Organic liquid cargo vessel—A tanker, freighter, barge, vessel, ship or boat used for the bulk transport of organic liquid cargo.

Organic zinc specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating derived from zinc dust incorporated into an organic binder that contains more than 960 g/l (8 lb/gal) of elemental zinc, as applied, and that is used for the express purpose of corrosion protection.

Outdoor floor covering installation adhesive—An adhesive intended by the manufacturer for use in the installation of floor covering that is both of the following:

(i) Not in an enclosure.

(ii) Exposed to ambient weather conditions during normal use.

Plastics—Synthetic materials chemically formed by the polymerization of organic (carbon-based) substances. Plastics are usually compounded with modifiers, extenders or reinforcees and are capable of being molded, extruded, cast into various shapes and films or drawn into filaments.

Pleasure craft—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a marine or fresh-water vessel used by an individual for noncommercial, nonmilitary or recreational purposes that is less than 20 meters in length, including a vessel rented exclusively to or chartered for individuals for such purposes.

Plywood—A structural material made of layers of laminated plies of veneers or layers of wood glued together, usually with the grains of adjoining layers at right angles to each other.

Pretreatment coating—An organic coating that contains at least 0.5% acids by weight and is applied directly to metal surfaces of aerospace vehicles and components to provide surface etching, corrosion resistance, adhesion and ease of stripping.

Pretreatment wash primer specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating that contains a minimum of 0.5% acid, by mass, and is applied only to bare metal to etch the surface and enhance adhesion of a subsequent coating.
Primary furnace combustion system—The burners in a glass melting furnace that are used during production of glass.

Process heater—

(i) An enclosed device using controlled flame, that is not a boiler, the primary purpose of which is to transfer heat to a process material or to a heat transfer material for use in a process unit.

(ii) The term does not include an enclosed device that meets either of the following circumstances:

(A) Has the primary purpose of generating steam.

(B) In which the material being heated is in direct contact with the products of combustion, including:

(I) A furnace.

(II) A kiln.

(III) An unfired waste heat recovery heater.

(IV) A unit used for comfort heat, space heat or food preparation for onsite consumption.

(V) An autoclave.

Process vent—For purposes of § 129.71a, the point of discharge to the atmosphere or the point of entry into a control device of a gas stream from a unit operation subject to § 129.71a.

Project—A physical change in or change in the method of operation of an existing facility, including a new emissions unit.

Reactor—A vat or vessel, which may be jacketed to permit temperature control, designed to contain chemical reactions.

Reactor process—For purposes of § 129.71a, a unit operation in which one or more chemicals or reactants other than air are combined or decomposed in a way that their molecular structures are altered and one or more new organic compounds are formed.

Reading air basin—The political subdivisions in Berks County of Bern Township, Cumru Township, Kenhorst Borough, Laureldale Borough, Leesport Borough, Lower Alsace Township, Mohnton Borough, Mt. Penn Borough, Muhlenberg Township, City of Reading, Shillington Borough, Sinking Spring Borough, Spring Township, St. Lawrence Borough, Temple Borough, West Lawn Borough, West Reading Borough, Wyomissing Borough and Wyomissing Hills Borough.
* * * * *

Renewal—The process by which a permit may be reissued at the end of its term.

Repair and maintenance of thermoplastic coating of commercial vessels specialty coating—
For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12:

(i) A vinyl, chlorinated rubber or bituminous resin coating that is applied over the same type of existing coating to perform the partial recoating of an in-use commercial vessel.

(ii) The term does not include coal tar epoxy coating, which is considered a “general use” coating.

Replacement source—A new source which is replacing a NOx affected source where both sources are under common ownership located within this Commonwealth. The NOx affected source shall be deactivated or permitted only as an emergency standby unit to the replacement source with operation limited to a maximum of 500 hours per year following commencement of operation of the replacement source.

* * * * *

Rubber-based adhesive—A quick setting contact cement applied to aeroscape vehicles and components that provides a strong, yet flexible, bond between two mating surfaces that may be of dissimilar materials.

Rubber camouflage specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, an epoxy coating formulated for use as a camouflage topcoat for exterior submarine hulls and sonar domes.

SCAQMD—South Coast Air Quality Management District—The California regional government agency responsible for air pollution control in Los Angeles and Orange counties and parts of Riverside and San Bernardino counties.

* * * * *

Sealant—

(i) For purposes of § 129.73:

(A) A material used to prevent the intrusion of water, fuel, air or other liquids or solids from certain areas of aerospace vehicles or components.

(B) There are two categories of sealants:

(I) Extrudable/rollable/brushable sealants.

(II) Sprayable sealants.

(ii) For purposes of § 129.77 and Chapter 130, Subchapter D:
(A) A material with adhesive properties that is formulated primarily to fill, seal, waterproof or weatherproof gaps or joints between two surfaces.

(B) The term includes caulks.

Sealant for thermal spray aluminum specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, an epoxy coating applied to a thermal spray aluminum surface at a maximum film thickness of 1 dry mil.

Sealant primer—A product intended by the manufacturer for application to a substrate, prior to the application of a sealant, to enhance the bonding surface.

* * * * *

Sheet-fed printing—A printing process in which individual sheets of substrate are fed sequentially to the printing press.

Ship—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a marine or freshwater vessel used for military or commercial operations.

(i) The term includes the following:

(A) Barges.

(B) Commercial cargo and container vessels.

(C) Commercial passenger and cruise vessels.

(D) Dredges.

(E) Ferries.

(F) Military and Coast Guard vessels.

(G) Navigational aids like buoys.

(H) Patrol and pilot boats.

(I) Self-propelled vessels.

(J) Tankers.

(K) Vessels propelled by other craft such as barges.

(ii) The term does not include the following:

(A) Offshore oil and gas drilling platforms.

(B) Pleasure craft.
Shipbuilding and ship repair operation—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, the building, repair, repainting, converting or alteration of a ship.

Shutdown—For purposes of §§ 129.301—129.310, the period of time during which a glass melting furnace is taken from an operational to a non-operational status by allowing it to cool down from its operating temperature to a cold or ambient temperature as the fuel supply is turned off.

* * * * *

Space vehicle—A manmade device, either manned or unmanned, designed for operation beyond earth’s atmosphere.

(i) The term includes integral equipment, such as models, mock-ups, prototypes, molds, jigs, tooling, hardware jackets and test coupons.

(ii) The term also includes auxiliary equipment associated with test, transport and storage, that through contamination can compromise the space vehicle performance.

Special marking specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating that is used for safety or identification applications, such as ship numbers and markings on flight decks.

Specialty coating—[A]

(i) For purposes of § 129.73, a coating applied to aerospace vehicles or components that, even though it meets the definition of a primer, topcoat or self-priming topcoat, has additional performance criteria beyond those of primers, topcoats and self-priming topcoats for specific applications. These performance criteria may include, but are not limited to, include temperature or fire resistance, substrate compatibility, antireflection, temporary protection or marking, sealing, adhesively joining substrates or enhanced corrosion protection.

(ii) For purposes of shipbuilding and ship repair coatings under § 129.52, a coating that is manufactured or used for one of the specialized shipbuilding and ship repair coating applications listed in Table I, coating categories 12(ii)(a)—(v).

Specialty interior coating specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating used on an interior surface aboard a U.S. military vessel that is required to meet specified fire retardant and low toxicity requirements in addition to the other applicable military physical and performance requirements.

Specialized function coating—A coating applied to aerospace vehicles or components that fulfills extremely specific engineering requirements that are limited in application and are characterized by low volume usage. This category excludes coatings included in other specialty coating categories.
TPY—Tons per year.

Tack specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a thin film epoxy coating applied at a maximum film thickness of 2 dry mils to prepare an epoxy coating that has dried beyond the time limit specified by the manufacturer for the application of the next coat.

Tank car—A rail car which is used for transporting liquids in bulk in an unpackaged form.

Thinner—

(i) A volatile liquid that is used to dilute coatings (to reduce viscosity, color strength or solids content or to modify drying conditions).

(ii) For purposes of shipbuilding and ship repair coatings under § 129.52, a liquid that is used to reduce the viscosity of a coating and that evaporates before or during the cure of a film.

(iii) The term includes diluent, makeup solvent, thinning solvent or reducer.

Thinning ratio—The volumetric ratio of thinner to coating, as supplied.

Tileboard—A premium interior wall paneling product made of hardboard that is used in high moisture areas of the home, including kitchens and bathrooms, and which meets the specifications for Class I hardboard approved by the American National Standards Institute.

Undersea-based weapons systems components—The fabrication of parts, parts assembly or completed units of a portion of a missile launching system used on undersea ships.

Undersea weapons systems specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12, a coating applied to a component of a weapons system intended to be launched or fired from under the surface of the sea.

Undertread cementing—The application of a solvent-based cement to the underside of a tire tread.

Web printing—A printing process in which continuous rolls of substrate material are fed to the printing press and rewound or cut to size after printing.

Weld-through preconstruction primer specialty coating—For purposes of shipbuilding and ship repair coatings under § 129.52, Table I, category 12:

(i) A coating that:
(A) Provides corrosion protection for steel during inventory.

(B) Is typically applied at less than 1 mil dry film thickness.

(C) Is temperature resistant (burn back from a weld is less than 1.25 centimeters (0.5 inches)).

(D) Does not require removal prior to welding.

(E) Does not normally require removal before applying film-building coatings, including an inorganic zinc (high-build) primer specialty coating.

(ii) When constructing new vessels, there may be a need to remove areas of this type of coating due to surface damage or contamination prior to application of film-building coatings.

Wet fastener installation coating—A primer or sealant applied to aerospace vehicles or components by dipping, brushing or daubing on fasteners which are installed before the coating is cured.

* * * * *

CHAPTER 129. STANDARDS FOR SOURCES

SOURCES OF VOCs

§ 129.52. Surface coating processes.

(a) This section applies as follows to a [surface]:

(1) Surface coating process category listed in Table I, categories 1—11, regardless of the size of the facility, which emits or has emitted VOCs into the outdoor atmosphere in quantities greater than 3 pounds (1.4 kilograms) per hour, 15 pounds (7 kilograms) per day or 2.7 tons (2,455 kilograms) per year during any calendar year since January 1, 1987.

(2) Shipbuilding or ship repair facility that has a surface coating operation that uses or applies more than 264 gallons of coatings listed in Table I, category 12, beginning (Editor’s note: The blank refers to the effective date of this rulemaking, when published as a final-form rulemaking.).

* * * * *

(c) A facility, regardless of the facility’s annual emission rate, which contains surface coating processes shall maintain records sufficient to demonstrate compliance with this section. At a minimum, a facility shall maintain daily records of:

(1) The following parameters for each coating, thinner and other component as supplied:

(i) The coating, thinner or component name and identification number.

(ii) The volume used.
(iii) The mix ratio.

(iv) The density or specific gravity.

(v) The weight percent of total volatiles, water, solids and exempt solvents.

(vi) The volume percent of solids for Table I surface coating process categories 1—10.

(vii) The volume percent of solids for a Table I surface coating process category 12 coating whose VOC content is expressed in units of weight of VOC per volume of coating solids.

<table>
<thead>
<tr>
<th>Surface Coating Process Category</th>
<th>lbs VOC per gal coating solids</th>
<th>kg VOC per liter coating solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Can coating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) sheet basecoat</td>
<td>4.62</td>
<td>0.55</td>
</tr>
<tr>
<td>(b) can exterior</td>
<td>4.62</td>
<td>0.55</td>
</tr>
<tr>
<td>(c) interior body spray</td>
<td>10.05</td>
<td>1.20</td>
</tr>
<tr>
<td>(d) two piece can end exterior</td>
<td>10.05</td>
<td>1.20</td>
</tr>
<tr>
<td>(e) side-seam spray</td>
<td>21.92</td>
<td>2.63</td>
</tr>
<tr>
<td>(f) end sealing compound</td>
<td>7.32</td>
<td>0.88</td>
</tr>
<tr>
<td>2. Coil coating</td>
<td>4.02</td>
<td>0.48</td>
</tr>
<tr>
<td>3. Fabric coating</td>
<td>4.84</td>
<td>0.58</td>
</tr>
<tr>
<td>4. Vinyl coating</td>
<td>7.69</td>
<td>0.92</td>
</tr>
<tr>
<td>5. Paper coating</td>
<td>4.84</td>
<td>0.58</td>
</tr>
<tr>
<td>6. Automobile and light duty truck coating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) prime coat</td>
<td>2.60</td>
<td>0.31</td>
</tr>
<tr>
<td>(b) top coat</td>
<td>4.62</td>
<td>0.55</td>
</tr>
<tr>
<td>(c) repair</td>
<td>14.14</td>
<td>1.69</td>
</tr>
<tr>
<td>7. Metal furniture coating</td>
<td>5.06</td>
<td>0.61</td>
</tr>
<tr>
<td>8. Magnet wire coating</td>
<td>2.16</td>
<td>0.26</td>
</tr>
<tr>
<td>9. Large appliance coating</td>
<td>4.62</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Categories 1—9 were adopted on April 17, 1979.

10. Miscellaneous metal parts & products
(a) top coats for locomotives and heavy-duty trucks 6.67 0.80
(b) hopper car and tank car interiors 6.67 0.80
(c) pail and drum interiors 10.34 1.24
(d) clear coatings 10.34 1.24
(e) air-dried coatings 6.67 0.80
(f) extreme performance coatings 6.67 0.80
(g) all other coatings 5.06 0.61

Category 10 was adopted on April 21, 1981

Weight of VOC per Weight of Coating Solids

<table>
<thead>
<tr>
<th></th>
<th>lbs VOC per lb coating solids</th>
<th>kg VOC per kg coating solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Wood furniture manufacturing operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Topcoats and enamels</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>(b) Washcoat</td>
<td>14.3</td>
<td>14.3</td>
</tr>
<tr>
<td>(c) Final repair coat</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>(d) Basecoats</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>(e) Cosmetic specialty coatings</td>
<td>14.3</td>
<td>14.3</td>
</tr>
<tr>
<td>(f) Sealers</td>
<td>3.9</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Category 11 was adopted on May 7, 1988

12. Shipbuilding and ship repair coatings

Weight of VOC per Volume of Coating Less Water and Exempt Compounds

<table>
<thead>
<tr>
<th></th>
<th>lbs VOC per gallon coating less water and exempt compounds</th>
<th>grams VOC per liter coating less water and exempt compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) General use, including coal tar epoxy coatings</td>
<td>2.83</td>
<td>340</td>
</tr>
<tr>
<td>(ii) Specialty coating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Air flask</td>
<td>2.83</td>
<td>340</td>
</tr>
<tr>
<td>(b) Antenna</td>
<td>4.42</td>
<td>530</td>
</tr>
<tr>
<td>(c) Antifoulant</td>
<td>3.33</td>
<td>400</td>
</tr>
<tr>
<td>(d) Heat resistant</td>
<td>3.50</td>
<td>420</td>
</tr>
<tr>
<td>(e) High-gloss</td>
<td>3.50</td>
<td>420</td>
</tr>
<tr>
<td>(f) High-temperature</td>
<td>4.17</td>
<td>500</td>
</tr>
<tr>
<td>(g) Inorganic zinc high build primer</td>
<td>2.83</td>
<td>340</td>
</tr>
</tbody>
</table>
(h) Military exterior 2.83 340
(i) Mist 5.08 610
(j) Navigational aids 4.58 550
(k) Nonskid 2.83 340
(l) Nuclear 3.50 420
(m) Organic zinc 3.00 360
(n) Pretreatment wash primer 6.50 780
(o) Repair and maintenance of thermoplastic coating of commercial vessels 4.58 550
(p) Rubber camouflage 2.83 340
(q) Sealant for thermal spray aluminum 5.08 610
(r) Special marking 4.08 490
(s) Specialty interior 2.83 340
(t) Tack 5.08 610
(u) Undersea weapons systems 2.83 340
(v) Weld-through preconstruction primer 5.42 650

Weight of VOC per Volume of Coating Solids

<table>
<thead>
<tr>
<th>Description</th>
<th>At temperature less than 4.5°C (40°F)</th>
<th>At temperature equal to or greater than 4.5°C (40°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs VOC per gallon coating solids</td>
<td>grams VOC per liter coating solids</td>
</tr>
<tr>
<td>(i) General use, including coal tar epoxy coatings</td>
<td>6.07</td>
<td>728</td>
</tr>
<tr>
<td>(ii) Specialty coating</td>
<td>6.07</td>
<td>728</td>
</tr>
<tr>
<td>(a) Air flask</td>
<td>6.07</td>
<td>728</td>
</tr>
<tr>
<td>(b) Antenna</td>
<td>12.01</td>
<td>1,439</td>
</tr>
<tr>
<td>(c) Antifoulant</td>
<td>8.10</td>
<td>971</td>
</tr>
<tr>
<td>(d) Heat resistant</td>
<td>8.92</td>
<td>1,069</td>
</tr>
<tr>
<td>(e) High-gloss</td>
<td>8.92</td>
<td>1,069</td>
</tr>
<tr>
<td>(f) High-temperature</td>
<td>13.33</td>
<td>1,597</td>
</tr>
<tr>
<td>(g) Inorganic zinc high build primer</td>
<td>6.07</td>
<td>728</td>
</tr>
<tr>
<td>(h) Military exterior</td>
<td>6.07</td>
<td>728</td>
</tr>
<tr>
<td>(i) Mist</td>
<td>18.64</td>
<td>2,235</td>
</tr>
<tr>
<td>(j) Navigational aids</td>
<td>13.33</td>
<td>1,597</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>(k) Nonskid</td>
<td>6.07</td>
<td>728</td>
</tr>
<tr>
<td>(l) Nuclear</td>
<td>8.92</td>
<td>1,069</td>
</tr>
<tr>
<td>(m) Organic zinc</td>
<td>6.69</td>
<td>802</td>
</tr>
<tr>
<td>(n) Pretreatment wash primer</td>
<td>92.58</td>
<td>11,095</td>
</tr>
<tr>
<td>(o) Repair and maintenance of thermoplastic coating of commercial vessels</td>
<td>13.33</td>
<td>1,597</td>
</tr>
<tr>
<td>(p) Rubber camouflage</td>
<td>6.07</td>
<td>728</td>
</tr>
<tr>
<td>(q) Sealant for thermal spray aluminum</td>
<td>18.65</td>
<td>2,235</td>
</tr>
<tr>
<td>(r) Special marking</td>
<td>9.83</td>
<td>1,178</td>
</tr>
<tr>
<td>(s) Specialty interior</td>
<td>6.07</td>
<td>728</td>
</tr>
<tr>
<td>(t) Tack</td>
<td>18.65</td>
<td>2,235</td>
</tr>
<tr>
<td>(u) Undersea weapons systems</td>
<td>6.07</td>
<td>728</td>
</tr>
<tr>
<td>(v) Weld-through preconstruction primer</td>
<td>24.07</td>
<td>2,885</td>
</tr>
</tbody>
</table>

The limits are expressed in two sets of equivalent units: pounds (lbs) per gallon and grams per liter. Either set of limits may be used to demonstrate compliance.

To convert from grams per liter to pounds (lbs) per gallon, multiply the limit by (3,785 liter/gallon)/(1/453.6 pound/gram) or 1/120. For compliance purposes, metric units define the standards.

VOC limits expressed in units of mass of VOC per volume of solids were derived from the VOC limits expressed in units of mass of VOC per volume of coating less water and exempt compounds by assuming the coating contains no water or exempt compounds and that the volumes of all components within the coating are additive.

These limits apply during cold weather time periods, that is, temperatures below 4.5°C (40°F). Cold weather allowances are not given to coatings in categories that allow less than 40% solids (nonvolatiles) content by volume. These coatings are subject to the single limit regardless of weather conditions and temperatures.

Category 12 was adopted on (Editor’s note: The blank refers to the effective date of this rulemaking, when published as a final-form rulemaking.)

* * * * * *

(Editor’s Note: The following two new sections are proposed to be added and printed in regular type to enhance readability.)

§ 129.63b. Control of VOC emissions from large petroleum solvent dry cleaners.

(a) Applicability. This section applies statewide to the owner and operator of a petroleum solvent washer, dryer, solvent filter, settling tank, vacuum still, and other containers and conveyors of
petroleum solvent that are used in petroleum solvent dry cleaning facilities that consume 123,000 liters (32,493 gallons) or more of petroleum solvent annually.

(b) Definitions. The following words and terms, when used in this section, have the following meanings unless the context clearly indicates otherwise:

Cartridge filter—A perforated canister containing filtration paper or activated carbon, or both, that is used in a pressurized system to remove solid particles and fugitive dyes from soil-laden solvent.

Consume—The amount of petroleum solvent purchased less the amount of petroleum solvent sent for disposal or returned for recycling during a calendar year.

Containers and conveyors of solvent—Piping, ductwork, pumps, storage tanks and other ancillary equipment that are associated with the installation and operation of petroleum dry cleaning washers, dryers, filters, stills and settling tanks.

Dry cleaning—A process for the cleaning of textiles and fabric products in which articles are washed in a nonaqueous solution (solvent) and then dried by exposure to a heated air stream.

Perceptible leak—A petroleum solvent vapor or liquid leak that is conspicuous from visual observation. The term includes the following:

(i) A pool or droplet of petroleum solvent liquid.

(ii) A bucket or barrel of petroleum solvent or petroleum solvent-laden waste standing open to the atmosphere.

Petroleum solvent—A group of organic materials produced by petroleum distillation comprising a hydrocarbon range of 8 to 12 carbon atoms per organic molecule that exists as a liquid under standard conditions.

Petroleum solvent recovery dryer—A class of dry-cleaning dryers that employs a condenser to liquify and recover petroleum solvent vapors evaporated in a closed-loop, recirculating stream of heated air.

(c) Emission limitations.

(1) The owner and operator of a petroleum solvent dry cleaning dryer shall do one of the following:

(i) Limit VOC emissions to the atmosphere to an average of 3.5 kilograms (kg) of VOC per 100 kg dry weight of articles dry cleaned.

(ii) Install and operate a petroleum solvent recovery dryer in a manner that the dryer remains closed and the recovery phase continues until a final recovered solvent flow rate of 50 milliliters per minute is attained.
(2) The owner or operator of a petroleum solvent filtration system shall do one of the following:

(i) Reduce the VOC content in filtration wastes to 1.0 kg or less per 100 kg dry weight of articles dry cleaned, before disposal and exposure to the atmosphere.

(ii) Install and operate a cartridge filtration system and drain the filter cartridges in their sealed housings for 8 hours or more before their removal.

(3) The owner or operator of a petroleum solvent dry cleaning dryer or petroleum solvent filtration system shall repair a petroleum solvent vapor or liquid leak within 3 working days after identifying the source of the leak.

(i) If the necessary repair part is not on hand to perform the repair, the owner or operator shall order the part within 3 working days following identification of the source of the leak.

(ii) The owner or operator shall repair the identified leak no later than 3 working days following the arrival of the necessary repair part ordered under subparagraph (i).

(d) Compliance monitoring and testing requirements. The owner or operator of a petroleum solvent dry cleaning operation subject to this section shall demonstrate compliance as follows.

(1) To determine compliance with subsection (c)(1)(i), the owner or operator shall do the following:

(i) Calculate the weight of VOC vented from the dryer emission control device using EPA Reference Test Methods 1, 2 and 25A, with the following specifications:

(A) Field calibration of the flame ionization analyzer with propane standards.

(B) Laboratory determination of the ratio of the flame ionization analyzer response to a given parts per million by volume concentration of propane to the response to the same parts per million concentration of the VOC to be measured.

(C) Determination of the weight of VOC emissions vented to the atmosphere by performing the following:

(I) Multiplying the ratio determined in clause (B) by the measured concentration of VOC gas (as propane) as indicated by the flame ionization analyzer response output record.

(II) Converting the parts per million by volume value calculated in subclause (I) into a mass concentration value for the VOCs present.

(III) Multiplying the mass concentration value calculated in subclause (II) by the exhaust flow rate determined by using EPA Reference Test Methods 1 and 2.

(ii) Calculate the dry weight of articles dry cleaned.
(iii) Repeat subparagraphs (i) and (ii) for normal operating conditions that encompass at least 30 dryer loads which meet the following:

(A) Total not less than 1,800 kg dry weight.

(B) Represent a normal range of variations in fabrics, solvents, load weights, temperatures, flow rates and process deviations.

(2) To determine compliance with subsection (c)(1)(ii), the owner or operator shall verify that the flow rate of recovered solvent from the solvent recovery dryer at the termination of the recovery phase is no greater than 50 milliliters per minute by performing the following steps:

(i) Conducting a one-time procedure for a duration of no less than 2 weeks that:

(A) Monitors at least 50% of the dryer loads for their final recovered solvent flow rate.

(B) Measures the flow rate of recovered solvent from the solvent-water separator.

(I) Near the end of the recovery cycle, the flow of recovered solvent should be diverted to a graduated cylinder.

(II) Continue the cycle until the flow rate of the solvent is 50 milliliters per minute.

(ii) Recording the type of articles cleaned and the total length of the cycle measured in subparagraph (i).

(3) To determine compliance with subsection (c)(2)(i) and (ii), the owner or operator shall do the following:

(i) Calculate the weight of VOCs contained in each of five 1-kg samples of filtration waste material taken at intervals of 1 week, using ASTM Method D322-80 (Standard Test Method for Gasoline Diluent in Used Gasoline Engine Oils by Distillation).

(ii) Calculate the total dry weight of articles dry cleaned during the intervals between removal of filtration waste samples, as well as the total mass of filtration waste produced in the same period.

(iii) Calculate the weight of VOCs contained in filtration waste material per 100 kg dry weight of articles dry cleaned.

(4) To determine compliance with subsection (c)(3), the owner or operator shall perform weekly inspections of washers, dryers, solvent filters, settling tanks, vacuum stills and all containers and conveyors of petroleum solvent to identify a perceptible petroleum solvent vapor or liquid leak.

(e) Recordkeeping and reporting requirements. The owner or operator of a petroleum solvent dry cleaning facility subject to this section shall maintain records sufficient to demonstrate compliance with this section.
(1) Records of the weight of VOC emissions vented from the dryer emission control device, calculated according to subsection (d)(1).

(2) Records of the dry weight of articles dry cleaned for use in the calculations in subsections (d)(1)—(3).

(3) Records of the weight of VOCs contained in the filtration waste samples required in subsection (d)(1)(i).

(4) Records of the weight of VOCs contained in the filtration waste material for each 220 lb (100 kg) dry weight of articles dry cleaned.

(f) Exemption. The owner or operator of a petroleum solvent dry cleaning facility subject to subsection (a) claiming exemption from the requirements of subsections (c)—(e) shall maintain records of annual solvent consumption onsite for 5 years to demonstrate that the applicability threshold of subsection (a) has not been exceeded.

§ 129.71a. Control of VOC emissions from the synthetic organic chemical manufacturing industry — oxidation, distillation and reactor processes.

(a) Applicability.

(1) Except as specified in paragraph (3), this section applies to the owner and operator of a synthetic organic chemical manufacturing facility that has a vent stream originating from a process unit in which an air oxidation unit process, distillation operation or reactor process produces one or more of the chemicals listed in Table 1 as a product, coproduct, byproduct or intermediate.

(2) For purposes of this section, reference to total organic compounds or TOC in 40 CFR 60 Subpart III (relating to standards of performance for VOC), 40 CFR 60 Subpart NNN (relating to standards of performance for VOC) or 40 CFR 60 Subpart RRR (relating to standards of performance for VOC) shall be considered equivalent to VOC as defined in § 121.1 (relating to definitions).

(3) The owner and operator of a synthetic organic chemical manufacturing facility located in this Commonwealth that has a vent stream originating from a process unit in which an air oxidation unit process, distillation operation or reactor process produces one or more of the chemicals listed in Table 1 as a product, coproduct, byproduct or intermediate shall meet the requirements of this section unless more stringent requirements in an applicable permit or plan approval issued by the Department apply.

(b) Standards.

(1) Process vents. For a process vent that is subject to equivalent VOC control provisions under an existing 40 CFR Part 60 (relating to standards of performance for new stationary sources) or 63 (relating to National emission standards for hazardous air pollutants for source
categories) standard, compliance with the requirements of the existing 40 CFR Part 60 or 63 standard shall constitute compliance with the provisions of this section.

(2) **Air oxidation unit processes.**

(i) The owner or operator of a source with an air oxidation unit process meeting the applicability criteria in subsection (a) shall comply with the requirements of 40 CFR 60 Subpart III unless the source has RACT control measures approved in a permit as part of a Pennsylvania’s Federally approved SIP prior to _______ (Editor’s note: The blank refers to the effective date of this rulemaking, when published as a final-form rulemaking.).

(ii) The exemption listed in 40 CFR 60.610(c) (relating to applicability and designation of affected facility) applies to an owner or operator subject to this section.

(iii) Notwithstanding 40 CFR 60.610, for purposes of this section:

(A) An affected source is one that meets the criteria in 40 CFR 60.610(a) regardless of the specific date of construction, modification or reconstruction of the source for a regulated chemical described in subsection (a)(1) and Table 1.

(B) The owner or operator of an affected source shall comply with this section no later than_______ (Editor’s note: The blank refers to the date 2 years after the effective date of this rulemaking, when published as a final-form rulemaking.).

(iv) Notwithstanding 40 CFR 60.615(a) (relating to reporting and recordkeeping requirements), each owner or operator subject to this section shall notify the Department no later than _______ (Editor’s note: The blank refers to the date 90 days after the effective date of this rulemaking, when published as a final-form rulemaking.), of the method by which the owner or operator of the affected source will comply with the applicable provisions of 40 CFR 60.612 (relating to standards).

(v) For the purposes of this section, 40 CFR 60.616 and 40 CFR 60.618 (relating to reconstruction; and delegation of authority) are not applicable.

(vi) Notwithstanding 40 CFR 60.610(d)(4), 60.614(g) (relating to test methods and procedures), 60.615(c), 60.615(g) [but not 60.615(g)(1) or 60.615(g)(4)], and 60.615(j) reference to the Administrator shall mean the Department.

(vii) Notwithstanding 40 CFR 60.614(c), the Department reserves the option to require testing at other times as may be required.

(3) **Distillation operations.**

(i) The owner or operator of a source with a distillation operation subject to subsection (a) shall comply with the requirements of 40 CFR 60 Subpart NNN.

(ii) The following exemptions apply:
(A) The exemptions listed in 40 CFR 60.660(c) (relating to applicability and designation of affected facility).

(B) The owner or operator of a distillation operation with a vent stream that has a total VOC concentration of less than 500 ppmv is subject only to the test method and procedure and the recordkeeping and reporting requirements specified in 40 CFR 60.660(c)(6) and not to the test method and procedure and the recordkeeping and reporting requirements of this section.

(iii) Notwithstanding 40 CFR 60.660, for purposes of this section:

(A) An affected source is one that meets the criteria in 40 CFR 60.660(a), regardless of the specific date of construction, modification or reconstruction of the source.

(B) A regulated chemical is one described in subsection (a)(1) and Table 1, rather than in 40 CFR 60.667 (relating to chemicals affected by subpart NNN).

(C) The owner or operator of an affected source shall comply with this section no later than____ (Editor’s note: The blank refers to the date 2 years after the effective date of this rulemaking, when published as a final-form rulemaking.).

(iv) Notwithstanding 40 CFR 60.665(a) (relating to reporting and recordkeeping requirements), each owner or operator subject to this section shall notify the Department no later than _____ (Editor’s note: The blank refers to the date 90 days after the effective date of this rulemaking, when published as a final-form rulemaking.) of the method by which the owner or operator of the affected source will comply with the applicable provisions of 40 CFR 60.662 (relating to standards).

(v) For the purposes of this section, 40 CFR 60.666 and 40 CFR 60.668 (relating to reconstruction; and delegation of authority) are not applicable.

(vi) Notwithstanding 40 CFR 60.660(d)(4), 60.664(g)(1) (relating to test methods and procedures), 60.665(c), 60.665(g) [but not 60.665(g)(1)(ii)], 60.665(l), 60.665(n) and 60.665(o) reference to the Administrator shall mean the Department.

(vii) Notwithstanding 40 CFR 60.664(c), the Department reserves the option to require testing at other times as may be required.

(4) Reactor processes.

(i) The owner or operator of a source with a reactor process subject to subsection (a) shall comply with the requirements of 40 CFR 60 Subpart RRR.

(ii) The following exemptions apply:

(A) Exemptions listed in 40 CFR 60.700(c) (relating to applicability and designation of affected facility), except that the cutoff for the vent stream flow rate shall be 0.0085 scm/min, not 0.011 scm/min as specified in 40 CFR 60.700(c)(4).
(B) The owner or operator of a reactor operation with a vent stream that has a total VOC concentration of less than 500 ppmv is subject only to the test method and procedure and the record keeping and reporting requirements specified in 40 CFR 60.700(c)(8), and not to the test method and procedure and record keeping and reporting requirements of this section.

(iii) Notwithstanding 40 CFR 60.700, for purposes of this section:

 (A) An affected source is one that meets the criteria in 40 CFR 60.700(a), regardless of the specific date of construction, modification or reconstruction of the source.

 (B) A regulated chemical is one described in subsection (a)(1) and Table 1 rather than in 40 CFR 60.707 (relating to chemicals affected by subpart RRR).

 (C) The owner or operator of an affected source shall comply with this section no later than____ (Editor’s note: The blank refers to the date 2 years after the effective date of this rulemaking, when published as a final-form rulemaking.).

 (iv) Notwithstanding 40 CFR 60.705(a) (relating to reporting and recordkeeping requirements), each owner or operator subject to this section shall notify the Department no later than ____ (Editor’s note: The blank refers to the date 90 days after the effective date of this rulemaking, when published as a final-form rulemaking.) of the method by which the owner or operator of the affected source will comply with the applicable provisions of 40 CFR 60.702 (relating to standards).

 (v) For the purposes of this section, 40 CFR 60.706 and 40 CFR 60.708 (relating to reconstruction and delegation of authority) are not applicable.

 (vi) Notwithstanding 40 CFR 60.700(d)(4), 60.704(f)(1) (relating to test methods and procedures), 60.705(c), 60.705(f) [but not 60.705(f)(1)], 60.705(l), 60.6705(n), 60.705(o), 60.705(p) and 60.705(r) reference to the Administrator shall mean the Department.

 (vii) Notwithstanding 40 CFR 60.704(b)(5)(iii), the Department reserves the option to require testing at other times as may be required.

Table 1. List of Regulated SOCMI Chemicals

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Chemical name</th>
<th>Reactor and Distillation CTG Chemicals</th>
<th>Air Oxidation CTG Chemicals</th>
<th>Distillation NSPS Chemicals</th>
<th>Reactor Process NSPS Chemicals</th>
<th>Air Oxidation NSPS Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1-Tribromo-2-methyl-2-propanol</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>584032</td>
<td>1,2 Butanediol</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28553-12-0</td>
<td>1,2-Benzenedicarboxylic acid diisononyl ester</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>524-42-5</td>
<td>1,2-Naphthoquinone (particulate, vapor)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichloride</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

27 of 53
<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Chemical Name</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>109693</td>
<td>1-Chloro-4-nitrobenzene</td>
<td></td>
</tr>
<tr>
<td>63-25-2</td>
<td>1-Naphthyl-N-methylcarbamate</td>
<td>X</td>
</tr>
<tr>
<td>3071-32-7</td>
<td>1-phenylethyl hydroperoxide</td>
<td>X</td>
</tr>
<tr>
<td>221-341-3</td>
<td>1-Phenylethyl hydroperoxide</td>
<td>X</td>
</tr>
<tr>
<td>107-01-7</td>
<td>2-Butene</td>
<td>X</td>
</tr>
<tr>
<td>110-65-6</td>
<td>2-Butyne-1, 4-diol</td>
<td>X</td>
</tr>
<tr>
<td>26266682</td>
<td>2-Ethylhexanal</td>
<td>X</td>
</tr>
<tr>
<td>53971-27-0</td>
<td>2-Hydroxy-1,2,3-propanetricarboxylic acid</td>
<td>X</td>
</tr>
<tr>
<td>513-35-9</td>
<td>2-Methylbutenes, mixed</td>
<td>X</td>
</tr>
<tr>
<td>617-94-7</td>
<td>a,a-Dimethyl Benzyl Alcohol (2-Phenyl-2-Propanol)(Vapor)</td>
<td>X</td>
</tr>
<tr>
<td>67774-74-7</td>
<td>Acrylic esters</td>
<td>X</td>
</tr>
<tr>
<td>6358-15-2</td>
<td>Amino-3,4,6-trichlorophenol (2-)</td>
<td>X</td>
</tr>
<tr>
<td>85-68-7</td>
<td>Butylbenzyl Phthalate</td>
<td>X</td>
</tr>
<tr>
<td>1111-78-0</td>
<td>Carbamic acid, mono ammonium salt</td>
<td>X</td>
</tr>
<tr>
<td>126-99-8</td>
<td>Chloroprene</td>
<td>X</td>
</tr>
<tr>
<td>61789-31-9</td>
<td>Coconut oil acids, sodium salt</td>
<td>X</td>
</tr>
<tr>
<td>75-34-3</td>
<td>Dichloropane (1,1-)</td>
<td>X</td>
</tr>
<tr>
<td>85687</td>
<td>Di-n-heptyl-n-nonyl undecyl phthalate</td>
<td>X</td>
</tr>
<tr>
<td>123-66-0</td>
<td>Ethyl caproate</td>
<td>X</td>
</tr>
<tr>
<td>61790-45-2</td>
<td>Fatty acids, tall oil, sodium salt</td>
<td>X</td>
</tr>
<tr>
<td>123013</td>
<td>Linear alkyl benzene</td>
<td>X</td>
</tr>
<tr>
<td>67774-74-7</td>
<td>Linear alkylbenzene</td>
<td>X</td>
</tr>
<tr>
<td>763-29-1</td>
<td>Methyl-1-pentene (2-)</td>
<td>X</td>
</tr>
<tr>
<td>25377837</td>
<td>Octene -</td>
<td>X</td>
</tr>
<tr>
<td>463-49-0</td>
<td>Propadiene</td>
<td>X</td>
</tr>
<tr>
<td>108-32-7</td>
<td>Propyl carbonate</td>
<td>X</td>
</tr>
<tr>
<td>75-56-9</td>
<td>Propylene Oxide</td>
<td>X</td>
</tr>
<tr>
<td>CAS</td>
<td>Description</td>
<td>A</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>98-51-1</td>
<td>P-tert-Butyltoluene</td>
<td>X</td>
</tr>
<tr>
<td>61790-32-7</td>
<td>Tallow acids, potassium salt</td>
<td></td>
</tr>
<tr>
<td>0000057-13-6</td>
<td>Urea ammonium nitrate</td>
<td></td>
</tr>
<tr>
<td>76131</td>
<td>(1,1,2-) Trichloro (1,2,2-) trifluoroethane</td>
<td>X</td>
</tr>
<tr>
<td>104756</td>
<td>(2-Ethylhexyl) amine</td>
<td>X</td>
</tr>
<tr>
<td>85687</td>
<td>1,2-Benzenedicarboxylic acid butyl, phenyl methyl ester -</td>
<td>X</td>
</tr>
<tr>
<td>78875</td>
<td>1,2-diechloropropane</td>
<td>X</td>
</tr>
<tr>
<td>110576</td>
<td>1,4-Dichlorobutene</td>
<td>X</td>
</tr>
<tr>
<td>106989</td>
<td>1-Butene</td>
<td>X</td>
</tr>
<tr>
<td>684255</td>
<td>1-Dodecene -</td>
<td>X</td>
</tr>
<tr>
<td>872504</td>
<td>1-Methyl-2-pyrrolidone</td>
<td>X</td>
</tr>
<tr>
<td>124118</td>
<td>1-Nonene</td>
<td>X</td>
</tr>
<tr>
<td>2516763</td>
<td>1-Phenyl ethyl hydroperoxide</td>
<td>X</td>
</tr>
<tr>
<td>3071-32-7</td>
<td>1-Phenylethyl hydroperoxide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2'-Iminobisethanol - 11422</td>
<td>X</td>
</tr>
<tr>
<td>11466</td>
<td>2,2'-Oxybisethanol</td>
<td>X</td>
</tr>
<tr>
<td>80568</td>
<td>2,6,6-Trimethylbicyclo (3,1,1) hept-2-ene</td>
<td>X</td>
</tr>
<tr>
<td>78923</td>
<td>2-Butanol</td>
<td>X</td>
</tr>
<tr>
<td>110656</td>
<td>2-Butene</td>
<td>X</td>
</tr>
<tr>
<td>126998</td>
<td>2-Butyne-1,4-diol</td>
<td>X</td>
</tr>
<tr>
<td>78897</td>
<td>2-Chloro-1-propanol</td>
<td>X</td>
</tr>
<tr>
<td>1912249</td>
<td>2-Chloro-4-(ethylamino)-6-(isopropylamino)-S-triazine</td>
<td>X</td>
</tr>
<tr>
<td>123057</td>
<td>2-Ethylhexanal -</td>
<td>X</td>
</tr>
<tr>
<td>104767</td>
<td>2-Ethylhexanol (2-ethyl-1-hexanol)</td>
<td>X</td>
</tr>
<tr>
<td>13042029</td>
<td>2-Hexenedinitrile</td>
<td>X</td>
</tr>
<tr>
<td>64037543</td>
<td>3,4-Dichloro-1-butene</td>
<td>X</td>
</tr>
<tr>
<td>1119853</td>
<td>3-Hexenedinitrite</td>
<td>X</td>
</tr>
<tr>
<td>4635874</td>
<td>3-Pentenenitrile</td>
<td>X</td>
</tr>
<tr>
<td>1912249</td>
<td>6-Chloro-N-ethyl-N'-(1-methylthyl)-1,3,5-triazine-2,4-diamine -</td>
<td>X</td>
</tr>
<tr>
<td>15547178</td>
<td>6-Ethyl-1,2,3,4-tetrahydro-9,10-antracenedione</td>
<td>X</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Chemical Name</td>
<td>X</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>26952216</td>
<td>6-Methyl-heptanol</td>
<td>X</td>
</tr>
<tr>
<td>83329</td>
<td>Acenaphthene</td>
<td>X</td>
</tr>
<tr>
<td>105577</td>
<td>Acetal (1,1-diethoxy-ethane)</td>
<td>X</td>
</tr>
<tr>
<td>75070</td>
<td>Acetaldehyde</td>
<td>X</td>
</tr>
<tr>
<td>107891</td>
<td>Acetaldol (3-hydroxy-butanal)</td>
<td>X</td>
</tr>
<tr>
<td>60355</td>
<td>Acetamide</td>
<td>X</td>
</tr>
<tr>
<td>60355</td>
<td>Acetamides</td>
<td>X</td>
</tr>
<tr>
<td>103844</td>
<td>Acetanilide</td>
<td>X</td>
</tr>
<tr>
<td>64197</td>
<td>Acetic acid</td>
<td>X</td>
</tr>
<tr>
<td>108247</td>
<td>Acetic anhydride</td>
<td>X</td>
</tr>
<tr>
<td>102012</td>
<td>Acetoacetanilide</td>
<td>X</td>
</tr>
<tr>
<td>67641</td>
<td>Acetone</td>
<td>X</td>
</tr>
<tr>
<td>75865</td>
<td>Acetone cyanohydrin</td>
<td>X</td>
</tr>
<tr>
<td>75058</td>
<td>Acetonitrile</td>
<td>X</td>
</tr>
<tr>
<td>98862</td>
<td>Acetophenone</td>
<td>X</td>
</tr>
<tr>
<td>75365</td>
<td>Acetyl chloride</td>
<td>X</td>
</tr>
<tr>
<td>74862</td>
<td>Acetylene</td>
<td>X</td>
</tr>
<tr>
<td>79276</td>
<td>Acetylene tetrabromide (1,1,2,2-</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>tetrabromomethane)</td>
<td></td>
</tr>
<tr>
<td>107028</td>
<td>Acrolein</td>
<td>X</td>
</tr>
<tr>
<td>79061</td>
<td>Acrylamide</td>
<td>X</td>
</tr>
<tr>
<td>79107</td>
<td>Acrylic acid</td>
<td>X</td>
</tr>
<tr>
<td>107131</td>
<td>Acrylonitrile</td>
<td>X</td>
</tr>
<tr>
<td>124049</td>
<td>Adipic acid</td>
<td>X</td>
</tr>
<tr>
<td>111693</td>
<td>Adiponitrile</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Alcohols, C-11 or higher, mixtures</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Alcohols, C-11 or lower, mixtures</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Alcohols, C-12 or higher, unmixed</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Alcohols, C-12 or higher, unmixed</td>
<td>X</td>
</tr>
<tr>
<td>72480</td>
<td>Alizarin</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Chemical Name</td>
<td>X</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>84651</td>
<td>Alkyl anthraquinones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alkyl naphthalene sulfonates</td>
<td></td>
</tr>
<tr>
<td>91203</td>
<td>Alkyl naphthalenes</td>
<td></td>
</tr>
<tr>
<td>107186</td>
<td>Allyl alcohol</td>
<td></td>
</tr>
<tr>
<td>106956</td>
<td>Allyl bromide</td>
<td></td>
</tr>
<tr>
<td>107051</td>
<td>Allyl chloride</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109751</td>
<td>Allyl cyanide</td>
<td></td>
</tr>
<tr>
<td>7360443</td>
<td>Aluminum acetate</td>
<td></td>
</tr>
<tr>
<td>7429905</td>
<td>Aluminum formates</td>
<td></td>
</tr>
<tr>
<td>1321115</td>
<td>Aminobenzoic acid</td>
<td></td>
</tr>
<tr>
<td>111411</td>
<td>Aminoethylethanolamine</td>
<td></td>
</tr>
<tr>
<td>123308</td>
<td>Aminophenol (p-isomer)</td>
<td></td>
</tr>
<tr>
<td>96-67-3</td>
<td>Aminophenol sulfonic acid</td>
<td></td>
</tr>
<tr>
<td>631618</td>
<td>Ammonium acetate</td>
<td></td>
</tr>
<tr>
<td>1762954</td>
<td>Ammonium thiocyanate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71410</td>
<td>Amyl alcohol (n-) (1-pentanol)</td>
<td></td>
</tr>
<tr>
<td>75854</td>
<td>Amyl alcohol (tert-)</td>
<td></td>
</tr>
<tr>
<td>30899195</td>
<td>Amyl alcohols (mixed)</td>
<td></td>
</tr>
<tr>
<td>543599</td>
<td>Amyl chloride (n-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>693652</td>
<td>Amyl ether</td>
<td></td>
</tr>
<tr>
<td>110587</td>
<td>Amylamines</td>
<td></td>
</tr>
<tr>
<td>513359</td>
<td>Amylene</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62533</td>
<td>Aniline</td>
<td></td>
</tr>
<tr>
<td>142041</td>
<td>Aniline hydrochloride</td>
<td></td>
</tr>
<tr>
<td>90040</td>
<td>Anisidine (o-)</td>
<td></td>
</tr>
<tr>
<td>100663</td>
<td>Anisole (methoxyl benzene)</td>
<td></td>
</tr>
<tr>
<td>120127</td>
<td>Anthracene</td>
<td></td>
</tr>
<tr>
<td>CAS Number</td>
<td>Chemical Name</td>
<td>SB PDC</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>118923</td>
<td>Anthranilic acid</td>
<td>X</td>
</tr>
<tr>
<td>84651</td>
<td>Anthraquinone -</td>
<td>X</td>
</tr>
<tr>
<td>25376458</td>
<td>ar-Methylbenzenediamine</td>
<td>X</td>
</tr>
<tr>
<td>103333</td>
<td>Azobenzene</td>
<td>X</td>
</tr>
<tr>
<td>543806</td>
<td>Barium acetate</td>
<td>X</td>
</tr>
<tr>
<td>100527</td>
<td>Benzaldehyde -</td>
<td>X</td>
</tr>
<tr>
<td>55210</td>
<td>Benzanil</td>
<td>X</td>
</tr>
<tr>
<td>71432</td>
<td>Benzene</td>
<td>X</td>
</tr>
<tr>
<td>98486</td>
<td>Benzenedisulfonic acid</td>
<td>X</td>
</tr>
<tr>
<td>981113</td>
<td>Benzenesulfonic acid</td>
<td>X</td>
</tr>
<tr>
<td>68081812</td>
<td>Benzenesulfonic acid C10–16-alkyl derivatives, sodium salts</td>
<td>X</td>
</tr>
<tr>
<td>92875</td>
<td>Benzidine</td>
<td>X</td>
</tr>
<tr>
<td>134816</td>
<td>Benzil</td>
<td>X</td>
</tr>
<tr>
<td>76937</td>
<td>Benzillic acid</td>
<td>X</td>
</tr>
<tr>
<td>91769</td>
<td>Benzoguanamine</td>
<td>X</td>
</tr>
<tr>
<td>65850</td>
<td>Benzoic acid -</td>
<td>X</td>
</tr>
<tr>
<td>119539</td>
<td>Benzoic acid C10–16-alkyl derivatives, sodium salts</td>
<td>X</td>
</tr>
<tr>
<td>100470</td>
<td>Benzonitrile</td>
<td>X</td>
</tr>
<tr>
<td>119619</td>
<td>Benzophenone</td>
<td>X</td>
</tr>
<tr>
<td>98077</td>
<td>Benzotrichloride</td>
<td>X</td>
</tr>
<tr>
<td>98884</td>
<td>Benzoyl chloride</td>
<td>X</td>
</tr>
<tr>
<td>94360</td>
<td>Benzoyl peroxide</td>
<td>X</td>
</tr>
<tr>
<td>140114</td>
<td>Benzyl acetate</td>
<td>X</td>
</tr>
<tr>
<td>100516</td>
<td>Benzyl alcohol</td>
<td>X</td>
</tr>
<tr>
<td>120514</td>
<td>Benzyl benzoate</td>
<td>X</td>
</tr>
<tr>
<td>100447</td>
<td>Benzyl chloride</td>
<td>X</td>
</tr>
<tr>
<td>98873</td>
<td>Benzyl dichloride</td>
<td>X</td>
</tr>
<tr>
<td>100469</td>
<td>Benzyllamine</td>
<td>X</td>
</tr>
<tr>
<td>1896624</td>
<td>Benzyllidineacetone</td>
<td>X</td>
</tr>
<tr>
<td>92524</td>
<td>Biphenyl</td>
<td>X</td>
</tr>
<tr>
<td>542881</td>
<td>Bis(Chloromethyl)Ether</td>
<td>X</td>
</tr>
<tr>
<td>80057</td>
<td>Bisphenol A</td>
<td>X</td>
</tr>
<tr>
<td>108861</td>
<td>Brometone</td>
<td>X</td>
</tr>
<tr>
<td>75252</td>
<td>Bromobenzene</td>
<td>X</td>
</tr>
<tr>
<td>27497514</td>
<td>Bromonaphthalene</td>
<td>X</td>
</tr>
<tr>
<td>106990</td>
<td>Butadiene (1,3-)</td>
<td>X</td>
</tr>
<tr>
<td>106978</td>
<td>Butadiene and butene fractions</td>
<td>X</td>
</tr>
<tr>
<td>110634</td>
<td>Butane</td>
<td>X</td>
</tr>
<tr>
<td>123864</td>
<td>Butanediol (1,4-)</td>
<td>X</td>
</tr>
<tr>
<td>141322</td>
<td>Butanes, mixed</td>
<td>X</td>
</tr>
<tr>
<td>136607</td>
<td>Butenes, mixed</td>
<td>X</td>
</tr>
<tr>
<td>123864</td>
<td>Butyl acetate (n-) (Acetic Acid, butyl ester)</td>
<td>X</td>
</tr>
<tr>
<td>105464</td>
<td>Butyl acetate (sec-)</td>
<td>X</td>
</tr>
<tr>
<td>540885</td>
<td>Butyl acetate (tert-)</td>
<td>X</td>
</tr>
<tr>
<td>71363</td>
<td>Butyl alcohol (n-)</td>
<td>X</td>
</tr>
<tr>
<td>78922</td>
<td>Butyl alcohol (sec-)</td>
<td>X</td>
</tr>
<tr>
<td>75650</td>
<td>Butyl alcohol (tert-)</td>
<td>X</td>
</tr>
<tr>
<td>507200</td>
<td>Butyl benzoate</td>
<td>X</td>
</tr>
<tr>
<td>75912</td>
<td>Butyl hydrogenperoxide (tert-)</td>
<td>X</td>
</tr>
<tr>
<td>109795</td>
<td>Butyl mercaptan (n-)</td>
<td>X</td>
</tr>
<tr>
<td>97881</td>
<td>Butyl methacrylate (n-)</td>
<td>X</td>
</tr>
<tr>
<td>585-07-9</td>
<td>Butyl methacrylate (tert-)</td>
<td>X</td>
</tr>
<tr>
<td>88186</td>
<td>Butyl phenol (tert-)</td>
<td>X</td>
</tr>
<tr>
<td>109739</td>
<td>Butylamine (n-)</td>
<td>X</td>
</tr>
<tr>
<td>13952846</td>
<td>Butylamine (s-)</td>
<td>X</td>
</tr>
<tr>
<td>75649</td>
<td>Butylamine (t-)</td>
<td>X</td>
</tr>
<tr>
<td>98066</td>
<td>Butylbenzene (tert-)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Chemical Name</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-----</td>
</tr>
<tr>
<td>98737</td>
<td>Butylbenzoic acid (p-tert-)</td>
<td>X</td>
</tr>
<tr>
<td>85867</td>
<td>Butylbenzyl phthalate</td>
<td>X</td>
</tr>
<tr>
<td>107880</td>
<td>Butylene glycol (1,3-)</td>
<td>X</td>
</tr>
<tr>
<td>123728</td>
<td>Butyraldehyde (n-)</td>
<td>X</td>
</tr>
<tr>
<td>107926</td>
<td>Butyric acid (n-)</td>
<td>X</td>
</tr>
<tr>
<td>106310</td>
<td>Butyric anhydride (n-)</td>
<td>X</td>
</tr>
<tr>
<td>96480</td>
<td>Butyrolactone – must be Butyrolactone</td>
<td>X</td>
</tr>
<tr>
<td>109740</td>
<td>Butyronitrile</td>
<td>X</td>
</tr>
<tr>
<td>62544</td>
<td>Calcium acetate</td>
<td>X</td>
</tr>
<tr>
<td>4075814</td>
<td>Calcium propionate</td>
<td>X</td>
</tr>
<tr>
<td>142621</td>
<td>Caproic acid</td>
<td>X</td>
</tr>
<tr>
<td>105602</td>
<td>Caprolactam</td>
<td>X</td>
</tr>
<tr>
<td>63252</td>
<td>Carbaryl</td>
<td>X</td>
</tr>
<tr>
<td>86748</td>
<td>Carbazole</td>
<td>X</td>
</tr>
<tr>
<td>75150</td>
<td>Carbon disulfide</td>
<td>X</td>
</tr>
<tr>
<td>558134</td>
<td>Carbon tetrabromide</td>
<td>X</td>
</tr>
<tr>
<td>56235</td>
<td>Carbon tetrachloride</td>
<td>X</td>
</tr>
<tr>
<td>75730</td>
<td>Carbon tetrafluoride</td>
<td>X</td>
</tr>
<tr>
<td>75876</td>
<td>Chloral</td>
<td>X</td>
</tr>
<tr>
<td>243532</td>
<td>Chloranil (o-chloranil)</td>
<td>X</td>
</tr>
<tr>
<td>79118</td>
<td>Chloroacetic acid</td>
<td>X</td>
</tr>
<tr>
<td>532274</td>
<td>Chloroacetophenone (2-)</td>
<td>X</td>
</tr>
<tr>
<td>108429</td>
<td>Chloroaniline (m-)</td>
<td>X</td>
</tr>
<tr>
<td>95512</td>
<td>Chloroaniline (o-)</td>
<td>X</td>
</tr>
<tr>
<td>106478</td>
<td>Chloroaniline (p-)</td>
<td>X</td>
</tr>
<tr>
<td>89985</td>
<td>Chlorobenzaldehyde (2-)</td>
<td>X</td>
</tr>
<tr>
<td>587042</td>
<td>Chlorobenzaldehyde (3-)</td>
<td>X</td>
</tr>
<tr>
<td>104881</td>
<td>Chlorobenzaldehyde (4-)</td>
<td>X</td>
</tr>
<tr>
<td>108907</td>
<td>Chlorobenzene</td>
<td>X</td>
</tr>
<tr>
<td>118912</td>
<td>Chlorobenzoic acid (2-)</td>
<td>X</td>
</tr>
<tr>
<td>Code</td>
<td>Substance</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>535808</td>
<td>Chlorobenzoic acid (3-)</td>
<td>X</td>
</tr>
<tr>
<td>74113</td>
<td>Chlorobenzoic acid (4-)</td>
<td>X</td>
</tr>
<tr>
<td>2136892</td>
<td>Chlorobenzotrichloride (o-)</td>
<td>X</td>
</tr>
<tr>
<td>5216251</td>
<td>Chlorobenzotrichloride (p-)</td>
<td>X</td>
</tr>
<tr>
<td>609654</td>
<td>Chlorobenzoyl chloride (o-)</td>
<td>X</td>
</tr>
<tr>
<td>122010</td>
<td>Chlorobenzoyl chloride (p-)</td>
<td>X</td>
</tr>
<tr>
<td>25497294</td>
<td>Chlorodifluoroethane</td>
<td>X</td>
</tr>
<tr>
<td>75456</td>
<td>Chlorodifluoromethane</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Chlorofluorocarbons</td>
<td>X</td>
</tr>
<tr>
<td>67663</td>
<td>Chloroform</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Chlorohydrin</td>
<td>X</td>
</tr>
<tr>
<td>25586430</td>
<td>Chloronaphthalene</td>
<td>X</td>
</tr>
<tr>
<td>121733</td>
<td>Chloronitrobenzene (m-)</td>
<td>X</td>
</tr>
<tr>
<td>88733</td>
<td>Chloronitrobenzene (o-)</td>
<td>X</td>
</tr>
<tr>
<td>100005</td>
<td>Chloronitrobenzene (p-)</td>
<td>X</td>
</tr>
<tr>
<td>108430</td>
<td>Chlorophenol (m-)</td>
<td>X</td>
</tr>
<tr>
<td>95578</td>
<td>Chlorophenol (o-)</td>
<td>X</td>
</tr>
<tr>
<td>106489</td>
<td>Chlorophenol (p-)</td>
<td>X</td>
</tr>
<tr>
<td>126998</td>
<td>Chloroprene -</td>
<td>X</td>
</tr>
<tr>
<td>7790945</td>
<td>Chlorosulfonic acid</td>
<td>X</td>
</tr>
<tr>
<td>108418</td>
<td>Chlorotoluene (m-)</td>
<td>X</td>
</tr>
<tr>
<td>95498</td>
<td>Chlorotoluene (o-)</td>
<td>X</td>
</tr>
<tr>
<td>106434</td>
<td>Chlorotoluene (p-)</td>
<td>X</td>
</tr>
<tr>
<td>79389</td>
<td>Chlorotrifluoroethylene</td>
<td>X</td>
</tr>
<tr>
<td>67481</td>
<td>Choline chloride</td>
<td>X</td>
</tr>
<tr>
<td>218019</td>
<td>Chrysene</td>
<td>X</td>
</tr>
<tr>
<td>140103</td>
<td>Cinnamic acid</td>
<td>X</td>
</tr>
<tr>
<td>77929</td>
<td>Citric acid</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Cobalt acetate</td>
<td>X</td>
</tr>
<tr>
<td>142712</td>
<td>Copper acetate</td>
<td>X</td>
</tr>
<tr>
<td>Identifier</td>
<td>Substance Description</td>
<td>X</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>108394</td>
<td>Cresol and cresylic acid (m-)</td>
<td>X</td>
</tr>
<tr>
<td>95487</td>
<td>Cresol and cresylic acid (o-)</td>
<td>X</td>
</tr>
<tr>
<td>106445</td>
<td>Cresol and cresylic acid (p-)</td>
<td>X</td>
</tr>
<tr>
<td>1319773</td>
<td>Cresols and cresylic acids (mixed)</td>
<td>X</td>
</tr>
<tr>
<td>4170300</td>
<td>Crotonaldehyde</td>
<td>X</td>
</tr>
<tr>
<td>3724650</td>
<td>Crotonic acid -</td>
<td>X</td>
</tr>
<tr>
<td>98828</td>
<td>Cumene -</td>
<td>X</td>
</tr>
<tr>
<td>80159</td>
<td>Cumene hydroperoxide -</td>
<td>X</td>
</tr>
<tr>
<td>420042</td>
<td>Cyanamide</td>
<td>X</td>
</tr>
<tr>
<td>372098</td>
<td>Cyanoacetic acid</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Cyanoformamide</td>
<td>X</td>
</tr>
<tr>
<td>506774</td>
<td>Cyanogen chloride</td>
<td>X</td>
</tr>
<tr>
<td>108805</td>
<td>Cyanuric acid</td>
<td>X</td>
</tr>
<tr>
<td>108770</td>
<td>Cyanuric chloride</td>
<td>X</td>
</tr>
<tr>
<td>110827</td>
<td>Cyclohexane -</td>
<td>X</td>
</tr>
<tr>
<td>68512152</td>
<td>Cyclohexane, oxidized</td>
<td>X</td>
</tr>
<tr>
<td>108930</td>
<td>Cyclohexanol -</td>
<td>X</td>
</tr>
<tr>
<td>108941</td>
<td>Cyclohexanone -</td>
<td>X</td>
</tr>
<tr>
<td>100641</td>
<td>Cyclohexanone oxime</td>
<td>X</td>
</tr>
<tr>
<td>110838</td>
<td>Cyclohexene</td>
<td>X</td>
</tr>
<tr>
<td>108918</td>
<td>Cyclohexylamine</td>
<td>X</td>
</tr>
<tr>
<td>29965977</td>
<td>Cyclooctadiene</td>
<td>X</td>
</tr>
<tr>
<td>3806595</td>
<td>Cyclooctadiene (1,3-)</td>
<td>X</td>
</tr>
<tr>
<td>111784</td>
<td>Cyclooctadiene (1,5-)</td>
<td>X</td>
</tr>
<tr>
<td>542-92-7</td>
<td>Cyclopentadiene (1,3-)</td>
<td>X</td>
</tr>
<tr>
<td>75194</td>
<td>Cyclopropane</td>
<td>X</td>
</tr>
<tr>
<td>91178</td>
<td>Decahydranaphthalene</td>
<td>X</td>
</tr>
<tr>
<td>117828</td>
<td>Di(2-methoxyethyl) phthalate</td>
<td>X</td>
</tr>
<tr>
<td>123422</td>
<td>Diacetone alcohol</td>
<td>X</td>
</tr>
<tr>
<td>25260-60-0</td>
<td>Diacetoxy-2-Butene (1,4-)</td>
<td>X</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Chemical Name</td>
<td>X</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1087-21-4</td>
<td>Diallyl isophthalate</td>
<td>X</td>
</tr>
<tr>
<td>131179</td>
<td>Diallyl phthalate</td>
<td>X</td>
</tr>
<tr>
<td>27576041</td>
<td>Diaminobenzoic acids</td>
<td>X</td>
</tr>
<tr>
<td>137097</td>
<td>Diaminophenol hydrochloride</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Dibutanized aromatic concentrate</td>
<td>X</td>
</tr>
<tr>
<td>17-83-9</td>
<td>Dibutoxyethyl phthalate</td>
<td>X</td>
</tr>
<tr>
<td>760236</td>
<td>Dichloro-1-butene (3,4-)</td>
<td>X</td>
</tr>
<tr>
<td>764410</td>
<td>Dichloro-2-butene (1,4-)</td>
<td>X</td>
</tr>
<tr>
<td>27134276</td>
<td>Dichloroaniline (mixed isomers)</td>
<td>X</td>
</tr>
<tr>
<td>541731</td>
<td>Dichlorobenzene (m-)</td>
<td>X</td>
</tr>
<tr>
<td>95501</td>
<td>Dichlorobenzene (o-)</td>
<td>X</td>
</tr>
<tr>
<td>106467</td>
<td>Dichlorobenzene (p-)</td>
<td>X</td>
</tr>
<tr>
<td>91941</td>
<td>Dichlorobenzidine (3,3')</td>
<td>X</td>
</tr>
<tr>
<td>75718</td>
<td>Dichlorodifluoromethane</td>
<td>X</td>
</tr>
<tr>
<td>75785</td>
<td>Dichlorodimethylsilane</td>
<td>X</td>
</tr>
<tr>
<td>107062</td>
<td>Dichloroethane (1,2-) (Ethylene dichloride) (EDC) -</td>
<td>X</td>
</tr>
<tr>
<td>111444</td>
<td>Dichloroethyl ether (bis(2-chloroethyl) ether)</td>
<td>X</td>
</tr>
<tr>
<td>540590</td>
<td>Dichloroethylene (1,2-)</td>
<td>X</td>
</tr>
<tr>
<td>75434</td>
<td>Dichlorodifluoromethane</td>
<td>X</td>
</tr>
<tr>
<td>96231</td>
<td>Dichlorohydrin (a-)</td>
<td>X</td>
</tr>
<tr>
<td>99-54-7</td>
<td>Dichloronitrobenzenes</td>
<td>X</td>
</tr>
<tr>
<td>628-76-2</td>
<td>Dichloropentanes</td>
<td>X</td>
</tr>
<tr>
<td>120832</td>
<td>Dichlorophenol (2,4-)</td>
<td>X</td>
</tr>
<tr>
<td>78999</td>
<td>Dichloropropane (1,1-)</td>
<td>X</td>
</tr>
<tr>
<td>542756</td>
<td>Dichloropropene (1,3-)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Dichloropropene/dichloropropane (mixed)</td>
<td>X</td>
</tr>
<tr>
<td>1320372</td>
<td>Dichlorotetrafluoroethane</td>
<td>X</td>
</tr>
<tr>
<td>461585</td>
<td>Dicyandiamide</td>
<td>X</td>
</tr>
<tr>
<td>101837</td>
<td>Dicyclohexylamine</td>
<td>X</td>
</tr>
<tr>
<td>77736</td>
<td>Dicyclopentadiene</td>
<td>X</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>111422</td>
<td>Dietholamine (2,2'-Iminodiethanol)</td>
<td>X</td>
</tr>
<tr>
<td>84662</td>
<td>Diethyl phthalate</td>
<td>X</td>
</tr>
<tr>
<td>64675</td>
<td>Diethyl sulfate</td>
<td>X</td>
</tr>
<tr>
<td>109897</td>
<td>Diethyamine</td>
<td>X</td>
</tr>
<tr>
<td>579668</td>
<td>Diethylaniline (2,6-)</td>
<td>X</td>
</tr>
<tr>
<td>91667</td>
<td>Diethylaniline (N,N-)</td>
<td>X</td>
</tr>
<tr>
<td>25340174</td>
<td>Diethylbenzene</td>
<td>X</td>
</tr>
<tr>
<td>111466</td>
<td>Diethylene glycol</td>
<td>X</td>
</tr>
<tr>
<td>112732</td>
<td>Diethylene glycol dibutyl ether</td>
<td>X</td>
</tr>
<tr>
<td>112367</td>
<td>Diethylene glycol diethyl ether</td>
<td>X</td>
</tr>
<tr>
<td>111966</td>
<td>Diethylene glycol dimethyl ether</td>
<td>X</td>
</tr>
<tr>
<td>112345</td>
<td>Diethylene glycol monobutyl ether</td>
<td>X</td>
</tr>
<tr>
<td>124174</td>
<td>Diethylene glycol monobutyl ether acetate</td>
<td>X</td>
</tr>
<tr>
<td>111900</td>
<td>Diethylene glycol monoethyl ether</td>
<td>X</td>
</tr>
<tr>
<td>112152</td>
<td>Diethylene glycol monoethyl ether acetate</td>
<td>X</td>
</tr>
<tr>
<td>111773</td>
<td>Diethylene glycol monomethyl ether</td>
<td>X</td>
</tr>
<tr>
<td>629389</td>
<td>Diethylene glycol monomethyl ether acetate</td>
<td>X</td>
</tr>
<tr>
<td>75379</td>
<td>Difluoroethane (1,1-)</td>
<td>X</td>
</tr>
<tr>
<td>25167708</td>
<td>Diisobutylene</td>
<td>X</td>
</tr>
<tr>
<td>26761400</td>
<td>Diisodecyl phthalate</td>
<td>X</td>
</tr>
<tr>
<td>28553120</td>
<td>Diisononyl phthalate</td>
<td>X</td>
</tr>
<tr>
<td>27554263</td>
<td>Diisooctyl phthalate</td>
<td>X</td>
</tr>
<tr>
<td>108189</td>
<td>Diisopropylamine</td>
<td>X</td>
</tr>
<tr>
<td>674828</td>
<td>Diketene (4-methylene-2-oxetanone)</td>
<td>X</td>
</tr>
<tr>
<td>115106</td>
<td>Dimethyl ether -</td>
<td>X</td>
</tr>
<tr>
<td>131113</td>
<td>Dimethyl phthalate</td>
<td>X</td>
</tr>
<tr>
<td>77781</td>
<td>Dimethyl sulfate</td>
<td>X</td>
</tr>
<tr>
<td>75183</td>
<td>Dimethyl sulfide</td>
<td>X</td>
</tr>
<tr>
<td>67685</td>
<td>Dimethyl sulfoxide</td>
<td>X</td>
</tr>
<tr>
<td>120616</td>
<td>Dimethyl terephthalate -</td>
<td>X</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Chemical Name</td>
<td>AQTAC 10-15-2020</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>127195</td>
<td>Dimethylacetamide (N,N-)</td>
<td>X</td>
</tr>
<tr>
<td>124403</td>
<td>Dimethylamine</td>
<td>X</td>
</tr>
<tr>
<td>108010</td>
<td>Dimethylaminoethanol (2-)</td>
<td></td>
</tr>
<tr>
<td>121697</td>
<td>Dimethylaniline (N,N)</td>
<td></td>
</tr>
<tr>
<td>119937</td>
<td>Dimethylbenzidine (3,3'-)</td>
<td></td>
</tr>
<tr>
<td>68122</td>
<td>Dimethylformamide (N,N-)</td>
<td>X</td>
</tr>
<tr>
<td>57147</td>
<td>Dimethylhydrazine (1,1-)</td>
<td></td>
</tr>
<tr>
<td>526750</td>
<td>Dimethylphenol (2,3-) Xylenol (2, 3-)</td>
<td>X</td>
</tr>
<tr>
<td>105679</td>
<td>Dimethylphenol (2,4-) Xylenol (2, 4-)</td>
<td>X</td>
</tr>
<tr>
<td>95874</td>
<td>Dimethylphenol (2,5-) Xylenol (2, 5-)</td>
<td>X</td>
</tr>
<tr>
<td>576261</td>
<td>Dimethylphenol (2,6-) Xylenol (2, 6-)</td>
<td>X</td>
</tr>
<tr>
<td>95658</td>
<td>Dimethylphenol (3,4-) Xylenol (3, 4-)</td>
<td>X</td>
</tr>
<tr>
<td>108689</td>
<td>Dimethylphenol (3,5-) Xylenol (3, 5-)</td>
<td>X</td>
</tr>
<tr>
<td>25154545</td>
<td>Dinitrobenzenes (NOS)c</td>
<td></td>
</tr>
<tr>
<td>99343</td>
<td>Dinitrobenzoic acid (3,5-)</td>
<td></td>
</tr>
<tr>
<td>51285</td>
<td>Dinitrophenol (2,4-)</td>
<td></td>
</tr>
<tr>
<td>602017</td>
<td>Dinitrotoluene (2,3-)</td>
<td></td>
</tr>
<tr>
<td>121142</td>
<td>Dinitrotoluene (2,4-)</td>
<td>X</td>
</tr>
<tr>
<td>606202</td>
<td>Dinitrotoluene (2,6-)</td>
<td>X</td>
</tr>
<tr>
<td>610399</td>
<td>Dinitrotoluene (3,4-)</td>
<td></td>
</tr>
<tr>
<td>117817</td>
<td>Dioctyl phthalate</td>
<td>X</td>
</tr>
<tr>
<td>97392</td>
<td>Di-o-tolyguanidine</td>
<td></td>
</tr>
<tr>
<td>123911</td>
<td>Dioxane (1,4-) (1,4-Diethyleneoxide)</td>
<td>X</td>
</tr>
<tr>
<td>646060</td>
<td>Dioxolane (1,3-)</td>
<td></td>
</tr>
<tr>
<td>101815</td>
<td>Diphenyl methane</td>
<td></td>
</tr>
<tr>
<td>101848</td>
<td>Diphenyl oxide</td>
<td></td>
</tr>
<tr>
<td>102089</td>
<td>Diphenyl thiourea (N,N'-)</td>
<td></td>
</tr>
<tr>
<td>122394</td>
<td>Diphenylamine</td>
<td></td>
</tr>
<tr>
<td>110985</td>
<td>Dipropylene glycol</td>
<td></td>
</tr>
<tr>
<td>112414</td>
<td>Dodecene (branched)</td>
<td></td>
</tr>
<tr>
<td>Substance Code</td>
<td>Substance Name</td>
<td>X</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>25378227</td>
<td>Dodecene (n-)</td>
<td></td>
</tr>
<tr>
<td>123013</td>
<td>Dodecyl benzene (branched)</td>
<td>X</td>
</tr>
<tr>
<td>121158585</td>
<td>Dodecyl phenol (branched)</td>
<td></td>
</tr>
<tr>
<td>28675174</td>
<td>Dodecylaniline</td>
<td></td>
</tr>
<tr>
<td>121013</td>
<td>Dodecylbenzene (n-)</td>
<td></td>
</tr>
<tr>
<td>27176870</td>
<td>Dodecylbenzene sulfonic acid</td>
<td>X</td>
</tr>
<tr>
<td>25155300</td>
<td>Dodecylbenzene sulfonic acid, sodium salt</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Dodecylbenzene, nonlinear</td>
<td>X</td>
</tr>
<tr>
<td>25103586</td>
<td>Dodecylmercaptan (branched)</td>
<td>X</td>
</tr>
<tr>
<td>27193868</td>
<td>Dodecylphenol</td>
<td></td>
</tr>
<tr>
<td>106898</td>
<td>Epichlorohydrin (1-chloro-2,3-epoxypropane)</td>
<td>X</td>
</tr>
<tr>
<td>74840</td>
<td>Ethane -</td>
<td></td>
</tr>
<tr>
<td>64175</td>
<td>Ethanol -</td>
<td>X</td>
</tr>
<tr>
<td>141435</td>
<td>Ethanolamine (2-Aminoethanol)</td>
<td>X</td>
</tr>
<tr>
<td>141786</td>
<td>Ethyl acetate (Acetic acid, ethyl ester)</td>
<td>X</td>
</tr>
<tr>
<td>141979</td>
<td>Ethyl acetoacetate</td>
<td></td>
</tr>
<tr>
<td>140885</td>
<td>Ethyl acrylate</td>
<td>X</td>
</tr>
<tr>
<td>74964</td>
<td>Ethyl bromide</td>
<td></td>
</tr>
<tr>
<td>75003</td>
<td>Ethyl chloride (Chloroethane)</td>
<td>X</td>
</tr>
<tr>
<td>105395</td>
<td>Ethyl chloroacetate</td>
<td></td>
</tr>
<tr>
<td>107120</td>
<td>Ethyl cyanide</td>
<td></td>
</tr>
<tr>
<td>60297</td>
<td>Ethyl ether</td>
<td></td>
</tr>
<tr>
<td>75081</td>
<td>Ethyl mercaptan (ethanethiol)</td>
<td>X</td>
</tr>
<tr>
<td>122510</td>
<td>Ethyl orthoformate</td>
<td></td>
</tr>
<tr>
<td>95921</td>
<td>Ethyl oxalate</td>
<td></td>
</tr>
<tr>
<td>41892711</td>
<td>Ethyl sodium oxalacetate</td>
<td>X</td>
</tr>
<tr>
<td>75047</td>
<td>Ethylamine</td>
<td></td>
</tr>
<tr>
<td>103695</td>
<td>Ethylaniline (n-)</td>
<td></td>
</tr>
<tr>
<td>578541</td>
<td>Ethylaniline (o-)</td>
<td></td>
</tr>
<tr>
<td>100414</td>
<td>Ethylbenzene</td>
<td>X</td>
</tr>
</tbody>
</table>

40 of 53
<table>
<thead>
<tr>
<th>Code</th>
<th>Chemical Name</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>9004573</td>
<td>Ethylcellulose</td>
<td>X</td>
</tr>
<tr>
<td>105566</td>
<td>Ethylcyanoacetate</td>
<td>X</td>
</tr>
<tr>
<td>74851</td>
<td>Ethylene</td>
<td>X</td>
</tr>
<tr>
<td>96491</td>
<td>Ethylene carbonate</td>
<td>X</td>
</tr>
<tr>
<td>107073</td>
<td>Ethylene chlorohydrin</td>
<td>X</td>
</tr>
<tr>
<td>106934</td>
<td>Ethylene dibromide (Dibromoethane)</td>
<td>X</td>
</tr>
<tr>
<td>107062</td>
<td>Ethylene dichloride</td>
<td>X</td>
</tr>
<tr>
<td>107211</td>
<td>Ethylene glycol</td>
<td>X</td>
</tr>
<tr>
<td>111557</td>
<td>Ethylene glycol diacetate</td>
<td>X</td>
</tr>
<tr>
<td>112481</td>
<td>Ethylene glycol dibutyl ether</td>
<td>X</td>
</tr>
<tr>
<td>629141</td>
<td>Ethylene glycol diethyl ether (1,2-diethoxyethane)</td>
<td>X</td>
</tr>
<tr>
<td>110714</td>
<td>Ethylene glycol dimethyl ether</td>
<td>X</td>
</tr>
<tr>
<td>542596</td>
<td>Ethylene glycol dimethyl ether</td>
<td>X</td>
</tr>
<tr>
<td>111762</td>
<td>Ethylene glycol monobutyl ether</td>
<td>X</td>
</tr>
<tr>
<td>112072</td>
<td>Ethylene glycol monobutyl ether acetate</td>
<td>X</td>
</tr>
<tr>
<td>110805</td>
<td>Ethylene glycol monoethyl ether</td>
<td>X</td>
</tr>
<tr>
<td>111159</td>
<td>Ethylene glycol monoethyl ether acetate</td>
<td>X</td>
</tr>
<tr>
<td>109864</td>
<td>Ethylene glycol monomethyl ether</td>
<td>X</td>
</tr>
<tr>
<td>110496</td>
<td>Ethylene glycol monomethyl ether acetate</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Ethylene glycol monooctyl ether</td>
<td>X</td>
</tr>
<tr>
<td>122996</td>
<td>Ethylene glycol monophenyl ether</td>
<td>X</td>
</tr>
<tr>
<td>2807309</td>
<td>Ethylene glycol monopropyl ether</td>
<td>X</td>
</tr>
<tr>
<td>75218</td>
<td>Ethylene oxide</td>
<td>X</td>
</tr>
<tr>
<td>107153</td>
<td>Ethylenediamine</td>
<td>X</td>
</tr>
<tr>
<td>60004</td>
<td>Ethylenediamine tetraacetic acid</td>
<td>X</td>
</tr>
<tr>
<td>151564</td>
<td>Ethylenimine (Aziridine)</td>
<td>X</td>
</tr>
<tr>
<td>149575</td>
<td>Ethylhexanoic acid (2-)</td>
<td>X</td>
</tr>
<tr>
<td>103117</td>
<td>Ethylhexyl acrylate (2-isomer)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Ethylhexyl succinate (2-)</td>
<td>X</td>
</tr>
<tr>
<td>25550145</td>
<td>Ethylmethylbenzene</td>
<td>X</td>
</tr>
<tr>
<td>S.No</td>
<td>Chemical Name</td>
<td>X</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>206440</td>
<td>Fluoranthene</td>
<td>X</td>
</tr>
<tr>
<td>50000</td>
<td>Formaldehyde -</td>
<td>X</td>
</tr>
<tr>
<td>75127</td>
<td>Formamide</td>
<td>X</td>
</tr>
<tr>
<td>64186</td>
<td>Formic acid -</td>
<td>X</td>
</tr>
<tr>
<td>110178</td>
<td>Fumaric acid</td>
<td>X</td>
</tr>
<tr>
<td>111308</td>
<td>Glutaraldehyde</td>
<td>X</td>
</tr>
<tr>
<td>367475</td>
<td>Glyceraldehyde</td>
<td>X</td>
</tr>
<tr>
<td>56815</td>
<td>Glycerol</td>
<td>X</td>
</tr>
<tr>
<td>26545737</td>
<td>Glycerol dichlorohydrin</td>
<td>X</td>
</tr>
<tr>
<td>556525</td>
<td>Glycidol</td>
<td>X</td>
</tr>
<tr>
<td>56406</td>
<td>Glycine</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Glycol ethers</td>
<td>X</td>
</tr>
<tr>
<td>107222</td>
<td>Glyoxal (ethane dial) -</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Guanidine</td>
<td>X</td>
</tr>
<tr>
<td>506934</td>
<td>Guanidine nitrate</td>
<td>X</td>
</tr>
<tr>
<td>592-76-7</td>
<td>Heptenes</td>
<td>X</td>
</tr>
<tr>
<td>118741</td>
<td>Hexachlorobenzene</td>
<td>X</td>
</tr>
<tr>
<td>87683</td>
<td>Hexachlorobutadiene</td>
<td>X</td>
</tr>
<tr>
<td>77474</td>
<td>Hexachlorocyclopentadiene</td>
<td>X</td>
</tr>
<tr>
<td>67721</td>
<td>Hexachloroethane</td>
<td>X</td>
</tr>
<tr>
<td>36653824</td>
<td>Hexadecyl alcohol (1-hexadecanol)</td>
<td>X</td>
</tr>
<tr>
<td>4860031</td>
<td>Hexadecyl chloride</td>
<td>X</td>
</tr>
<tr>
<td>592450</td>
<td>Hexadiene (1,4-)</td>
<td>X</td>
</tr>
<tr>
<td>3323533</td>
<td>Hexamethylene diamine adipate</td>
<td>X</td>
</tr>
<tr>
<td>124094</td>
<td>Hexamethylenediamine</td>
<td>X</td>
</tr>
<tr>
<td>100970</td>
<td>Hexamethylenetetramine</td>
<td>X</td>
</tr>
<tr>
<td>110543</td>
<td>Hexane</td>
<td>X</td>
</tr>
<tr>
<td>106694</td>
<td>Hexanetriol (1,2,6-)</td>
<td>X</td>
</tr>
<tr>
<td>111273</td>
<td>Hexyl alcohol</td>
<td>X</td>
</tr>
<tr>
<td>107415</td>
<td>Hexylene glycol</td>
<td>X</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Chemical Name</td>
<td>X</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>74908</td>
<td>Hydrogen cyanide -</td>
<td>X</td>
</tr>
<tr>
<td>123319</td>
<td>Hydroquinone</td>
<td></td>
</tr>
<tr>
<td>141311</td>
<td>Hydroxyadipaldehyde</td>
<td></td>
</tr>
<tr>
<td>99967</td>
<td>Hydroxybenzoic acid (p-)</td>
<td></td>
</tr>
<tr>
<td>111422</td>
<td>Iminodiethanol (2,2-) (diethanolamine)</td>
<td></td>
</tr>
<tr>
<td>123513</td>
<td>Isoamyl alcohol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isoamyl chloride (mixed)</td>
<td></td>
</tr>
<tr>
<td>26760645</td>
<td>Isoamylene</td>
<td></td>
</tr>
<tr>
<td>75285</td>
<td>Isobutane</td>
<td>X</td>
</tr>
<tr>
<td>78831</td>
<td>Isobutanol</td>
<td>X</td>
</tr>
<tr>
<td>110190</td>
<td>Isobutyl acetate</td>
<td></td>
</tr>
<tr>
<td>106638</td>
<td>Isobutyl acrylate</td>
<td></td>
</tr>
<tr>
<td>97869</td>
<td>Isobutyl methacrylate</td>
<td></td>
</tr>
<tr>
<td>109535</td>
<td>Isobutyl vinyl ether</td>
<td></td>
</tr>
<tr>
<td>115117</td>
<td>Isobutylene</td>
<td>X</td>
</tr>
<tr>
<td>78842</td>
<td>Isobutyraldehyde (2-methyl-propanal)</td>
<td>X</td>
</tr>
<tr>
<td>79312</td>
<td>Isobutyric acid -</td>
<td>X</td>
</tr>
<tr>
<td>25339177</td>
<td>Isodecanol</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Isohexyldecal alcohol</td>
<td></td>
</tr>
<tr>
<td>27458-94-2</td>
<td>Isononyl alcohol</td>
<td>X</td>
</tr>
<tr>
<td>26952216</td>
<td>Isooctyl alcohol</td>
<td>X</td>
</tr>
<tr>
<td>78784</td>
<td>Isopentane</td>
<td>X</td>
</tr>
<tr>
<td>78591</td>
<td>Isophorone</td>
<td>X</td>
</tr>
<tr>
<td>7027114</td>
<td>Isophorone nitrile</td>
<td>X</td>
</tr>
<tr>
<td>121915</td>
<td>Isophthalic acid -</td>
<td>X</td>
</tr>
<tr>
<td>78795</td>
<td>Isoprene</td>
<td>X</td>
</tr>
<tr>
<td>67630</td>
<td>Isopropanol</td>
<td>X</td>
</tr>
<tr>
<td>108214</td>
<td>Isopropyl acetate</td>
<td>X</td>
</tr>
<tr>
<td>75296</td>
<td>Isopropyl chloride</td>
<td>X</td>
</tr>
<tr>
<td>ID</td>
<td>Chemical Name</td>
<td>Xs</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>108203</td>
<td>Isopropyl ether</td>
<td>X</td>
</tr>
<tr>
<td>75310</td>
<td>Isopropylamine</td>
<td>X</td>
</tr>
<tr>
<td>25168063</td>
<td>Isopropylphenol</td>
<td>X</td>
</tr>
<tr>
<td>463514</td>
<td>Ketene</td>
<td>X</td>
</tr>
<tr>
<td>79334</td>
<td>Lactic acid</td>
<td>X</td>
</tr>
<tr>
<td>1643-20-5</td>
<td>Lauryl dimethylamine oxide</td>
<td>X</td>
</tr>
<tr>
<td>6080564</td>
<td>Lead acetate</td>
<td>X</td>
</tr>
<tr>
<td>17976-436-1</td>
<td>Lead phthalate</td>
<td>X</td>
</tr>
<tr>
<td>1335326</td>
<td>Lead subacetate</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Linear alcohols, ethoxylated and sulfated, sodium salt, mixed</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Linear alcohols, ethoxylated, mixed</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Linear alcohols, sulfated, sodium salt, mixed</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Linear alkyl benzene (linear dodecylbenzene)</td>
<td>X</td>
</tr>
<tr>
<td>142723</td>
<td>Magnesium acetate (Acetic acid, magnesium salt)</td>
<td>X</td>
</tr>
<tr>
<td>110167</td>
<td>Maleic acid</td>
<td>X</td>
</tr>
<tr>
<td>108316</td>
<td>Maleic anhydride</td>
<td>X</td>
</tr>
<tr>
<td>123331</td>
<td>Maleic hydrazide</td>
<td>X</td>
</tr>
<tr>
<td>6915157</td>
<td>Malic acid</td>
<td>X</td>
</tr>
<tr>
<td>108781</td>
<td>Melamine (1,3,5-triazine-2,4,6-triamine)</td>
<td>X</td>
</tr>
<tr>
<td>1600277</td>
<td>Mercuric acetate</td>
<td>X</td>
</tr>
<tr>
<td>141797</td>
<td>Mesityl oxide</td>
<td>X</td>
</tr>
<tr>
<td>121471</td>
<td>Metanilic acid</td>
<td>X</td>
</tr>
<tr>
<td>79414</td>
<td>Methacrylic acid</td>
<td>X</td>
</tr>
<tr>
<td>126987</td>
<td>Methacrylonitrile</td>
<td>X</td>
</tr>
<tr>
<td>513428</td>
<td>Methallyl alcohol</td>
<td>X</td>
</tr>
<tr>
<td>563473</td>
<td>Methallyl chloride</td>
<td>X</td>
</tr>
<tr>
<td>74828</td>
<td>Methane</td>
<td>X</td>
</tr>
<tr>
<td>67561</td>
<td>Methanol</td>
<td>X</td>
</tr>
<tr>
<td>63683</td>
<td>Methionine</td>
<td>X</td>
</tr>
<tr>
<td>79209</td>
<td>Methyl acetate</td>
<td>X</td>
</tr>
<tr>
<td>Code</td>
<td>Chemical Name</td>
<td>Presence</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>105453</td>
<td>Methyl acetoacetate</td>
<td>X</td>
</tr>
<tr>
<td>96333</td>
<td>Methyl acrylate</td>
<td>X</td>
</tr>
<tr>
<td>74839</td>
<td>Methyl bromide (Bromomethane)</td>
<td>X</td>
</tr>
<tr>
<td>37365712</td>
<td>Methyl butynol</td>
<td>X</td>
</tr>
<tr>
<td>74873</td>
<td>Methyl chloride (Chloromethane)</td>
<td>X</td>
</tr>
<tr>
<td>78933</td>
<td>Methyl ethyl ketone (2-butanone)</td>
<td>X</td>
</tr>
<tr>
<td>107313</td>
<td>Methyl formate</td>
<td>X</td>
</tr>
<tr>
<td>60344</td>
<td>Methyl hydrazine</td>
<td>X</td>
</tr>
<tr>
<td>74884</td>
<td>Methyl iodide</td>
<td>X</td>
</tr>
<tr>
<td>108112</td>
<td>Methyl isobutyl carbinol</td>
<td>X</td>
</tr>
<tr>
<td>108101</td>
<td>Methyl isobutyl ketone (Hexone)</td>
<td>X</td>
</tr>
<tr>
<td>624839</td>
<td>Methyl isocyanate</td>
<td>X</td>
</tr>
<tr>
<td>74931</td>
<td>Methyl mercaptan</td>
<td>X</td>
</tr>
<tr>
<td>80626</td>
<td>Methyl methacrylate</td>
<td>X</td>
</tr>
<tr>
<td>98851</td>
<td>Methyl phenyl carbinol</td>
<td>X</td>
</tr>
<tr>
<td>119368</td>
<td>Methyl salicylate</td>
<td>X</td>
</tr>
<tr>
<td>1634044</td>
<td>Methyl tert-butyl ether</td>
<td>X</td>
</tr>
<tr>
<td>74895</td>
<td>Methylamine</td>
<td>X</td>
</tr>
<tr>
<td>100618</td>
<td>Methylene (N-)</td>
<td>X</td>
</tr>
<tr>
<td>910807</td>
<td>Methylbenzene (80/20 mixture)</td>
<td>X</td>
</tr>
<tr>
<td>137326</td>
<td>Methylbutanol (2-)</td>
<td>X</td>
</tr>
<tr>
<td>108872</td>
<td>Methylcyclohexane</td>
<td>X</td>
</tr>
<tr>
<td>25639423</td>
<td>Methylcyclohexanol</td>
<td>X</td>
</tr>
<tr>
<td>1331222</td>
<td>Methylcyclohexanone</td>
<td>X</td>
</tr>
<tr>
<td>75092</td>
<td>Methylene chloride (Dichloromethane)</td>
<td>X</td>
</tr>
<tr>
<td>101779</td>
<td>Methylene dianiline (4,4')</td>
<td>X</td>
</tr>
<tr>
<td>101688</td>
<td>Methylene diphenyl diisocyanate (4,4') (MDI)</td>
<td>X</td>
</tr>
<tr>
<td>79696</td>
<td>Methylionones (a-)</td>
<td>X</td>
</tr>
<tr>
<td>90120</td>
<td>Methylnapthalene (1-)</td>
<td>X</td>
</tr>
<tr>
<td>Code</td>
<td>Chemical Name</td>
<td>Prefix</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>91576</td>
<td>Methyl naphthalene (2-)</td>
<td></td>
</tr>
<tr>
<td>107835</td>
<td>Methyl pentane (2-)</td>
<td>X</td>
</tr>
<tr>
<td>77758</td>
<td>Methyl pentynol</td>
<td></td>
</tr>
<tr>
<td>98839</td>
<td>Methyl styrene (a-) -</td>
<td>X</td>
</tr>
<tr>
<td>110918</td>
<td>Morpholine</td>
<td></td>
</tr>
<tr>
<td>91203</td>
<td>Naphthalene</td>
<td>X</td>
</tr>
<tr>
<td>85472</td>
<td>Naphthalene sulfonic acid (a-)</td>
<td></td>
</tr>
<tr>
<td>120183</td>
<td>Naphthalene sulfonic acid (b-)</td>
<td></td>
</tr>
<tr>
<td>1338-24-5</td>
<td>Naphthenic acids</td>
<td></td>
</tr>
<tr>
<td>90153</td>
<td>Naphthol (a-)</td>
<td></td>
</tr>
<tr>
<td>135193</td>
<td>Naphthol (b-)</td>
<td></td>
</tr>
<tr>
<td>567180</td>
<td>Naphtholsulfonic acid (1-)</td>
<td></td>
</tr>
<tr>
<td>134327</td>
<td>Naphthylamine (1-)</td>
<td></td>
</tr>
<tr>
<td>91598</td>
<td>Naphthylamine (2-)</td>
<td></td>
</tr>
<tr>
<td>84866</td>
<td>Naphthylamine sulfonic acid (1,4-)</td>
<td></td>
</tr>
<tr>
<td>81163</td>
<td>Naphthylamine sulfonic acid (2,1-)</td>
<td></td>
</tr>
<tr>
<td>75832</td>
<td>Neohexane</td>
<td></td>
</tr>
<tr>
<td>75989</td>
<td>Neopentanoic acid</td>
<td></td>
</tr>
<tr>
<td>126307</td>
<td>Neopentyl glycol</td>
<td></td>
</tr>
<tr>
<td>142825</td>
<td>n-Heptane</td>
<td>X</td>
</tr>
<tr>
<td>3349-06-2</td>
<td>Nickel formate</td>
<td></td>
</tr>
<tr>
<td>99092</td>
<td>Nitroaniline (m-)</td>
<td></td>
</tr>
<tr>
<td>88744</td>
<td>Nitroaniline (o-)</td>
<td></td>
</tr>
<tr>
<td>100016</td>
<td>Nitroaniline (p-)</td>
<td></td>
</tr>
<tr>
<td>91236</td>
<td>Nitroanisole (o-)</td>
<td></td>
</tr>
<tr>
<td>100174</td>
<td>Nitroanisole (p-)</td>
<td></td>
</tr>
<tr>
<td>98953</td>
<td>Nitrobenzene</td>
<td></td>
</tr>
<tr>
<td>121926</td>
<td>Nitrobenzoic acid (m-)</td>
<td></td>
</tr>
<tr>
<td>552169</td>
<td>Nitrobenzoic acid (o-)</td>
<td></td>
</tr>
</tbody>
</table>

46 of 53
<p>| 62237 | Nitrobenzoic acid (p-) | X |
| 122-04-3 | Nitrobenzoyl chloride (p-) | X | | |
| 79243 | Nitroethane | X |
| 556887 | Nitroguanidine | X |
| 75525 | Nitromethane | X |
| 86577 | Nitronaphthalene (1-) | X |
| 88755 | Nitrophenol (o-) | X |
| 100027 | Nitrophenol (p-) | X |
| 25322014 | Nitropropane (1-) | X |
| 79469 | Nitropropane (2-) | X |
| 1321126 | Nitrotoluene (all isomers) | X |
| 99081 | Nitrotoluene (m-) | X |
| 88722 | Nitrotoluene (o-) | X |
| 99990 | Nitrotoluene (p-) | X |
| 25168041 | Nitroxyylene | X |
| 27215958 | Nonylene | X | X | X |
| 1430808 | Nonyl alcohol | X | X | X |
| 1081772 | Nonylbenzene (branched) | X |
| 25154523 | Nonylphenol | X | X | X |
| 25154523 | Nonylphenol (branched) | X |
| 9016459 | Nonylphenol, ethoxylated | X | X | X |
| 111659 | Octane | X |
| 111660 | Octene-1 | X | X | X |
| 107459 | Octylamine (tert-) | X |
| 27193288 | Octylphenol | X |
| Oil-soluble petroleum sulfonate calcium salt | X | X | X |
| Oil-soluble petroleum sulfonate sodium salt | X | X |
| 144627 | Oxalic acid | X |
| 471465 | Oxamide | X |
| Oxo chemicals | X |</p>
<table>
<thead>
<tr>
<th>ID</th>
<th>Chemical Name</th>
<th>X</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30525894</td>
<td>Paraformaldehyde</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123637</td>
<td>Paraldehyde</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87865</td>
<td>Pentachlorophenol</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-11-5</td>
<td>Pentaerythritol tetranitrate</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109660</td>
<td>Pentane</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115775</td>
<td>Pentanethiol</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6032297</td>
<td>Pentanol (2-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>584021</td>
<td>Pentanol (3-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109671</td>
<td>Pentene (1-)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>109682</td>
<td>Pentene (2-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79210</td>
<td>Peracetic acid</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>594423</td>
<td>Perchloromethyl mercaptan</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62442</td>
<td>Phenacetin</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85018</td>
<td>Phenanthrene</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94702</td>
<td>Phenetidine (o-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156434</td>
<td>Phenetidine (p-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108952</td>
<td>Phenol -</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>77098</td>
<td>Phenolphthalein</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1333397</td>
<td>Phenolsulfonic acids (all isomers)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91407</td>
<td>Phenyl anthranilic acid (all isomers)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108452</td>
<td>Phenylenediamine (m-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95545</td>
<td>Phenylenediamine (o-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106503</td>
<td>Phenylenediamine (p-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89-25-8</td>
<td>Phenylmethylpyrazolone</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103651</td>
<td>Phenylpropane</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>108736</td>
<td>Phloroglucinol (1,3,5-benzenetriol)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75445</td>
<td>Phosgene</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>88993</td>
<td>Phthalic acid</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85449</td>
<td>Phthalic anhydride -</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>85416</td>
<td>Phthalimide</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>91156</td>
<td>Phthalonitrile</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109-06-8</td>
<td>Picoline (a-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108996</td>
<td>Picoline (b-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-91-3</td>
<td>Picramic acid</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88891</td>
<td>Picric acid</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110850</td>
<td>Piperazine</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>504609</td>
<td>Piperlyene</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25322683</td>
<td>Polyethylene glycol</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25322694</td>
<td>Polypropylene glycol</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127082</td>
<td>Potassium acetate</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74986</td>
<td>Propane</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>57578</td>
<td>Propiolactone (beta-) (2-Oxetanone)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123386</td>
<td>Propionaldehyde</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79094</td>
<td>Propionic acid -</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>109604</td>
<td>Propyl acetate (n-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71238</td>
<td>Propyl alcohol (n-)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>540545</td>
<td>Propyl chloride</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107108</td>
<td>Propylamine</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115071</td>
<td>Propylene -</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>127004</td>
<td>Propylene chlorohydrin</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57556</td>
<td>Propylene glycol</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107982</td>
<td>Propylene glycol monomethyl ether</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75569</td>
<td>Propylene oxide -</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>95636</td>
<td>Pseudocumene</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137-17-7</td>
<td>Pseudocumidine</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129000</td>
<td>Pyrene</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110861</td>
<td>Pyridine</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616455</td>
<td>Pyrrolidone (2-)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106514</td>
<td>Quinone</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108463</td>
<td>Resorcinol (1,3-benzenediol)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

49 of 53
<table>
<thead>
<tr>
<th></th>
<th>Chemical Name</th>
<th>CAS Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>69727</td>
<td>Salicylic acid</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>11206</td>
<td>Sebacic acid</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>127093</td>
<td>Sodium acetate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>532321</td>
<td>Sodium benzoate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3926623</td>
<td>Sodium chloroacetate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>143339</td>
<td>Sodium cyanide</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>25155-30-0</td>
<td>Sodium dodecyl benzene sulfonate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>141537</td>
<td>Sodium formate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>124414</td>
<td>Sodium methoxide</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>62760</td>
<td>Sodium oxalate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>139026</td>
<td>Sodium phenate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>137406</td>
<td>Sodium propionate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>110441</td>
<td>Sorbic acid</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>50704</td>
<td>Sorbitol (D-Glucitol)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>588590</td>
<td>Stilbene</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>100425</td>
<td>Styrene -</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>110156</td>
<td>Succinic acid</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>110612</td>
<td>Succinonitrile</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>121573</td>
<td>Sulfinic acid</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>126330</td>
<td>Sulfolane</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synthesis gas</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tallow acids, sodium salt</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetra (methyl-ethyl) plumbane</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>526830</td>
<td>Tartaric acid</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>100210</td>
<td>Terephthalic acid -</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>100209</td>
<td>Terephthaloyl chloride</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetra (methyl-ethyl) lead</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>632791</td>
<td>Tetrabromophthalic anhydride</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>634-90-2</td>
<td>Tetrachlorobenzene (1,2,3,5-)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>95943</td>
<td>Tetrachlorobenzene (1,2,4,5-)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>79345</td>
<td>Tetrachloroethane (1,1,2,2-)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Chemical Name</td>
<td>Regulation A</td>
<td>Regulation B</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>127184</td>
<td>Tetrachloroethylene (Perchloroethylene)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>117088</td>
<td>Tetrachlorophthalic anhydride</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>78002</td>
<td>Tetraethyl lead</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>112607</td>
<td>Tetraethylene glycol</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>112572</td>
<td>Tetraethylene pentamine</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>116-14-3</td>
<td>Tetrafluoroethylene</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>109999</td>
<td>Tetrahydrofuran</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>119642</td>
<td>Tetrahydroxynaphthalene</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>85438</td>
<td>Tetrahydrophthalic anhydride</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>110601</td>
<td>Tetramethylenediamine</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>110189</td>
<td>Tetramethylethlenediamine</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>75741</td>
<td>Tetramethyllead</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>62566</td>
<td>Thiourea</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>108883</td>
<td>Toluene</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>95807</td>
<td>Toluene diamine (2,4-)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>584849</td>
<td>Toluene diisocyanate (2,4-)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>26471627</td>
<td>Toluene diisocyanates (mixture)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1333079</td>
<td>Toluene sulfonamides (o- and p-)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>104154</td>
<td>Toluene sulfonic acids</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>584-84-9 (2,4-TDI) and 91-08-7 (2,6-TDI)</td>
<td>Toluene-2,4 (and 2,6)-diisocyanate (80/20) mixture</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>98599</td>
<td>Toluenesulfonyl chloride</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>95534</td>
<td>Toluidine (o-)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>76039</td>
<td>Trichloroacetic acid</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>634935</td>
<td>Trichloroaniline (2,4,6-)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>87616</td>
<td>Trichlorobenzene (1,2,3-)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>120821</td>
<td>Trichlorobenzene (1,2,4-)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>108703</td>
<td>Trichlorobenzene (1,3,5-)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>71556</td>
<td>Trichloroethane (1,1,1-)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

51 of 53
<table>
<thead>
<tr>
<th>Code</th>
<th>Chemical Name</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>79005</td>
<td>Trichloroethane (1,1,2-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79016</td>
<td>Trichloroethylene</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75694</td>
<td>Trichlorofluoromethane</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95954</td>
<td>Trichlorophenol (2,4,5-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96184</td>
<td>Trichloropropane (1,2,3-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330785</td>
<td>Tricresyl phosphate</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112709</td>
<td>Tridecyl alcohol</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102716</td>
<td>Triethanolamine</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121448</td>
<td>Triethylamine</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112276</td>
<td>Triethylene glycol</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112492</td>
<td>Triethylene glycol dimethyl ether</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112505</td>
<td>Triethylene glycol monoethyl ether</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112356</td>
<td>Triethylene glycol monomethyl ether</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7756947</td>
<td>Trisobutylene</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>552307</td>
<td>Trimellitic anhydride</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144194</td>
<td>Trimethyl-1,3-pentanediol (2,2,4-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16325636</td>
<td>Trimethyl-1-pentanol (2,4,4-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75503</td>
<td>Trimethylamine</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>933482</td>
<td>Trimethylcyclohexanol</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2408379</td>
<td>Trimethylcyclohexanone</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34216347</td>
<td>Trimethylcyclohexylamine</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77996</td>
<td>Trimethylolpropane</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>540841</td>
<td>Trimethylpentane (2,2,4-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24800440</td>
<td>Tripropylene glycol</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57136</td>
<td>Urea</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88120</td>
<td>Vinyl (N-)-pyrrolidone (2-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108054</td>
<td>Vinyl acetate (Acetic acid, ethenyl ester)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75014</td>
<td>Vinyl chloride (Chloroethylene)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25013154</td>
<td>Vinyl toluene</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100403</td>
<td>Vinylcyclohexene (4-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS Number</td>
<td>Chemical Name</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>75354</td>
<td>Vinylidene chloride (1,1-dichloroethylene)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>140896</td>
<td>Xanthates</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108383</td>
<td>Xylene (m-)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>1330207</td>
<td>Xylene (NOS)c</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>95476</td>
<td>Xylene (o-)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>106423</td>
<td>Xylene (p-)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>25321419</td>
<td>Xylene sulfonic acid</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300716</td>
<td>Xylenols (Mixed)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300738</td>
<td>Xylidene (2,3-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300738</td>
<td>Xylidene (2,4-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300738</td>
<td>Xylidene (2,5-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300738</td>
<td>Xylidene (2,6-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300738</td>
<td>Xylidene (3,4-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300738</td>
<td>Xylidene (3,5-)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5970456</td>
<td>Zinc acetate</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)CAS Number = Chemical Abstract Service number.
\(^b\)Isomer means all structural arrangements for the same number of atoms of each element and does not mean salts, esters or derivatives.