Mercury Co-benefits of the Clean Air Interstate Rule

Sam Napolitano Office of Air and Radiation U.S. Environmental Protection Agency November 18, 2005

CAIR: Affected Region and Emission Caps

N States controlled for both fine particles (annual SO₂ and NO_x) and ozone (ozone season NO_x)

States not covered by CAIR

CAMR Builds Off of CAIR's Mercury Co-benefits

Projected 2020 Hg Emissions for Power Plants w CAMR

CAMR Starts with CAIR in Mind

CAIR Lowers Hg Emissions in PA and Upwind States

CAMR Further Lowers Hg Emissions

Coal-fired Generation Unit Operations and Mercury

Factors that influence mercury control:

- Coal type
- Time/temperature profile
- Flue gas composition (chlorine) and fly ash characteristics (carbon, calcium, iron, porosity)
- Air pollution controls already in place

¹ Hg(0) = elemental Hg; Hg(II) = oxidized Hg; Hg_p = particulate Hg

Estimated Mercury Emissions Speciation by Coal Type, EPA Base Case, 2010

	Mercury Species			
Coal Grade	Elemental	Oxidized	Particulate	
Bituminous	52.8%	37.2%	10.0%	
Subbituminous	76.5%	23.2%	0.3%	
Lignite	85.9%	13.4%	0.7%	

Source: EPA Analysis using the Integrated Planning Model, 2005.

Mercury Emissions Factors for Coals Used in EPA Analysis

Coal Sulfur, Region, Grade	Low	Medium	High
Low Sulfur Eastern Bituminous	3.69	5.17	-
Low Sulfur Western Bituminous	3.41	4.1	7.85
Low-Medium Sulfur Bituminous	5.07	12.54	21.95
Medium Sulfur Bituminous	6.08	10.45	18.42
Medium High Sulfur Bituminous	6.83	11.09	18.69
High Sulfur Bituminous	8.04	17.43	28.73
Low Sulfur Subbituminous	4.55	5.88	7.06
Low-Medium Sulfur Subbituminous	4.4	6.01	7.39
Medium Sulfur Subbituminous	4.61	6.45	10.71
Low Medium Sulfur Lignite	8.45	-	-
Medium High Sulfur Lignite	5.88	9.79	-

Pounds per trillion Btus

Source: EPA IPM Modeling Documentation, 2005.

Mercury Reductions from "Other" Air Pollution Controls

Coal Type

Control Configuration - Pulverized Coal Units	Bituminous	Subbitiminous	Lignite
Cold Side - ESP	36 %	3 %	0 %
Cold Side - ESP/FGD	66 %	16 %	44 %
Cold Side - ESP/FGD-dry	36 %	35 %	0 %
Cold Side - ESP/SCR/FGD	90 %	16 %	44 %
FF	89 %	73 %	0 %
FF/FGD	90 %	73 %	0 %
FF/FGD-dry	95 %	25 %	0 %
FF/SCR/FGD	90 %	73 %	44 %
Hot Side - ESP	10 %	6 %	0 %
Hot Side - ESP/FGD	42 %	20 %	0 %
Hot Side - ESP/FGD - Dry	40 %	15 %	0 %
Hot Side – ESP/SCR/FGD	90 %	20 %	0 %

Key: ESP = Electrostatic Precipitator, FGD = Flue Gas Desulfurization, SCR = Selective Catalytic Reduction, FF = Fabric Filter.

Source: EPA Analysis using the Integrated Planning Model, 2005.

Mercury Co-benefits from CAIR in Perspective

Mercury Deposition From All Sources in 2001

Source: EPA Technical Support for CAMR, 2005

National Hg Power Plant Emissions: Historic and Projected with CAMR

Note: 1999 emission estimate for utility coal boilers is based on 1999 Information Collection Request (ICR); 1990 and 1996 are based on different methodology.

Source: EPA

To Learn More ...

Clean Air Mercury Rule

www.epa.gov/mercury