Ambient Measurements to Support Coal Combustion Emission Research

International Workshop on Mercury Control from Coal Combustion

> October 31, 2005 Beijing, China

Matthew S. Landis

U.S. EPA Office of Research and Development, RTP, NC

Ambient Measurements to Support Coal Combustion Emission Research

> Atmospheric Mercury Model Validation

Quantify Deposition Impacts from Specific Sources

Emission Reduction Accountability

RESEARCH & DEVELOPMENT

Overview of Source Apportionment

- Source apportionment relates sources and environmental concentrations
- Approaches to source apportionment
 - Deterministic modeling (e.g., CMAQ)
 - Requires emission inventory, chemistry, and meteorology
 - Models emission source impacts on predicted concentrations
 - Receptor modeling
 - Requires comprehensive environmental measurements
 - Statistically identifies sources impacting measured concentrations

> Approaches are independent and complementary

RESEARCH & DEVELOPMENT

Contemporary Atmospheric Mercury Conceptual Model

Hg(p)

Hg(II)

RESEARCH & DEVELOPMENT

Mercury Modeling Limitations

Current Deterministic Models

- Need Comprehensive Global Emission Inventories
- Need Improved Understanding of Hg Kinetics
- Need Improved Dry Deposition Parameterizations
- Source Apportionment Modeling Requires Comprehensive Monitoring
 - Need Automated Ambient Speciation Measurements
 - Need Event Precipitation
 - Need Comprehensive Tracer Species
 - Need Coordinated Monitoring Strategy

RESEARCH & DEVELOPMENT

Multivariate Receptor Modeling

- Identify major "factors" by statistical analysis of an element measurement matrix
- Relate "factors" to source type using tracer compounds
- Example tracer compounds
 - Coal Combustion S, Se
 - Oil Combustion Ni, V
- Requires many samples (150 or more)
- Ohio River Valley Study
 - Applied both positive matrix factorization (PMF) and UNMIX models
 - Estimated source contributors to measured wet Hg deposition

RESEARCH & DEVELOPMENT

Automated Speciation Instrumentation

* Landis et al. Environ. Sci. Technol., 2002, 36, 3000-3009

RESEARCH & DEVELOPMENT

Speciation Methods Summary

- KCI-Coated Quartz Annular Denuders Quantitatively Collect RGM Without Known Interconversion or Interference Problems.
- RGM is Thermally (~500°C) Converted to Hg⁰
- Hg(p) is Thermally (~800°C) Converted to Hg⁰
- Low Denuder MDL's Allow High Resolution Sampling
- Manual Sampling is Inexpensive, Simple, and Mobile
- Automated Sampling Provides High Resolution Hg Speciation

RESEARCH & DEVELOPMENT

Wet-Only Precipitation Collection

* Landis and Keeler *Environ. Sci. Technol.*, **1997**, 31, 2610-2615

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Analyte Specific Sampling Trains

RESEARCH & DEVELOPMENT

Temperature Controlled Storage Module

RESEARCH & DEVELOPMENT

Ohio Mercury Source Apportionment Study

> Objective

 Determine the impact of local/regional coal combustion sources on Hg deposition in the Ohio River Valley

➤ Time Line

- Study designed in 1999
- Study began January 2002
- Study will run to end of 2006

RESEARCH & DEVELOPMENT

NADP Mercury Deposition Network Site Map

RESEARCH & DEVELOPMENT

Ohio Study Overview

- Comprehensive state-of-the-art measurement & analyses
 - Aerosols Integrated and Continuous
 - Wet Deposition Daily Event
 - Criteria Gases Continuous
 - Meteorology Continuous
- Receptor Modeling
 - UNMIX, and PMF
 - Hybrid Modeling (Regional Transport)

RESEARCH & DEVELOPMENT

Steubenville EPA PMF v1.1 Apportionment Results 2003 & 2004

Analyte	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6
	(Iron/Steel)	(P Source)	(Coal)	(Crustal)	(Metals)	(Oil/Incineration)
Mg	187.14	95.11	*	539.31	29.58	*
AÌ	49.19	*	75.71	346.68	34.67	52.20
Р	*	64.36	*	*	*	*
S	*	172.33	(11187.00)	363.19	*	*
Cl	257.26	*	602.59	186.41	647.79	1745.00
V	2.82	*	*	*	*	1.26
Cr	2.40	*	*	*	*	0.62
Mn	53.93	14.02	*	33.01	*	*
Fe	337.11	15.32	22.52	12.40	*	136.26
Ni	*	0.53	*	*	*	3.93
Cu	*	2.29	19.90	*	8.23	14.38
Zn	3.31	4.20	*	*	13.78	44.79
As	*	0.04	0.70	0.09	0.27	0.60
Se	*	*	2.39	*	1.25	0.26
Rb	*	0.26	0.23	0.14	0.08	0.20
Sr	0.51	1.53	1.77	5.54	*	2.19
Mo	*	*	*	*	3.60	*
Cd	0.09	*	0.33	*	0.25	0.25
La	*	*	*	0.61	0.01	0.07
Ce	0.02	*	*	1.19	*	*
Hg	0.011	0.003	0.136	*	*	*
Pb	0.91	*	3.83	*	*	6.26
NO ₃	*	216.00	5993.80	1325.70	*	5296.70
% Hg	4 ± 3	2 ± 1	$\left(67 \pm 14 \right)$	*	*	*

* = Not Significant at 95% confidence interval

RESEARCH & DEVELOPMENT

Preliminary Steubenville Source Apportionment Results

	Measured Hg Wet Deposition (µg m ⁻²)	PMF Estimated CFUB* Contribution (µg m ⁻²)	Unmix Estimated CFUB* Contribution (μg m ⁻²)
2003	13.1	9.3 (73%)	7.9 (60%)
2004	18.0	11.2 (62%)	10.5 (59%)

*Coal-fired Utility Boiler

RESEARCH & DEVELOPMENT

EPA PMF Estimated versus Measured Mercury Deposition

RESEARCH & DEVELOPMENT

HY-SPLIT Back Trajectories

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Summary of Steubenville Receptor Modeling

Hg wet deposition at Steubenville

- ~ 75% is attributable to local/regional anthropogenic sources
- $\sim 65\%$ is attributable to coal combustion
- ~ 25% from reemission/global background
- A significant portion of total Hg wet deposition is driven by a few local coal combustion dominated precipitation events
 - In 2004, >8% of total wet Hg deposition occurred during one event
 - S/Se ratio may be useful to evaluate relative importance of regional CFUBs not equipped with FGD

RESEARCH & DEVELOPMENT

CMAQ-simulated total mercury deposition for 2001 (micrograms per square meter)

Base case

RESEARCH & DEVELOPMENT

CMAQ-simulated total mercury deposition for 2001 (micrograms per square meter)

Utility Zero Out

RESEARCH & DEVELOPMENT

Comparison of CMAQ Model Results to Measured Mercury Wet Deposition at Steubenville

CMAQ Simulations performed by CSC for EPA (6FEB04)

	Hg Deposition (µg m ⁻²)	CFUB Contribution (%)
CMAQ 2001	13.6	43
PMF & UNMIX 2003 & 2004	15.6	65

RESEARCH & DEVELOPMENT

Comparison of CMAQ Modeled versus UMAQL Measured Hg Wet Deposition 2001

Site	CMAQ Wet Deposition (µg m ⁻²)	Measured (µg m⁻²)
Dexter, MI	8.3	12.5
Pellston, MI	4.6	10.5
Eagle Harbor, MI	4.7	7.7
Underhill, VT	4.4	8.6

RESEARCH & DEVELOPMENT

High Volume Slurry Sampler

* 30 minute PM_{2.5} samples

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

High Resolution ICP-MS Capability (Slurry Sample Aerosol Samples)

Low Resolution

- Li, Be, Rb, Sr, Mo, Ag, Cd, In, Sn, SbCs, Ba, La, Ce, Nd, Sm, W, Tl, Pb, U
- Medium Resolution
 - Na, Mg, Al, P, S, Ca, Sc, Ti, V, Cr
 Mn, Fe, Co, Ni, Cu, Zn
- High Resolution
 - K, As, Se
- Stable Isotope Ratios
 - Pb

RESEARCH & DEVELOPMENT

Example Slurry Sampler Data

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Directionality: A Powerful Constraint with Time-Resolved Data

Sources Near the Sydney Site

Model Description

- Basic Mass Balance with Meteorological Dispersion
- Our goal is to determine the emission rates of species, i, which are of interest from power plant plumes, from j sources, using highly timeresolved concentration measurements from SEAS and SO₂ monitors, as the products of emission rates and P/Q, meteorological dispersion factor for each source. This is given by the following equation:

$$[E_{i}]_{t} = \sum_{j=1}^{n} ER_{i,j} \cdot \chi/Q_{j,t} + [E_{bkgnd_{i}}]_{t}$$
(1)

 $\begin{bmatrix} E_i \end{bmatrix}_t = \text{Ambient conc. species i at time (sample) t, } \mu g \text{ m}^{-3} \\ (SO_2, Se, As, Ni, Pb, Zn, Cd, Cu, Cr, Al, Fe, Mn) \end{bmatrix}$

$$ER_{i,t,j}$$
 = Emission Rate of species i at time, t, from source j, $\mu g s^{-1}$

 $X/Q_{j,t}$ = Dispersion Factor for each source j at time t, s m⁻³

$$\chi/Q = \frac{1}{\pi \sigma_y \sigma_z u} \exp\left[-\frac{1}{2} \frac{y^2}{\sigma_y^2}\right] \cdot \exp\left[-\frac{1}{2} \frac{H^2}{\sigma_z^2}\right]$$
(2)

$$\chi = \frac{1}{\pi \sigma_y \sigma_z u} \exp\left[-\frac{1}{2} \frac{y^2}{\sigma_z^2}\right] \cdot \exp\left[-\frac{1}{2} \frac{H^2}{\sigma_z^2}\right]$$
(2)
Volumetric dilution rate

RESEARCH & DEVELOPMENT

Predicted Emission Rates of SO₂ and Metal Species

Species	Unit	Gannon	Big Bend	Bartow	Manatee
SO ₂ observed	g/s	2,600	311	1140	1280
SO ₂ predicted	g/s	2,700	430	1200	1135
AI	g/s	2.059	1.743	0.262	11.084
As	g/s	0.019	0.016	0.021	0.017
Cr	g/s	0.029	0.031	0.023	0.178
Cu	g/s	0.033	0.044	0.025	0.160
Fe	g/s	1.496	1.359	0.749	6.514
Mn	g/s	0.024	0.031	0.020	0.254
Ni	g/s	0.022	0.074	0.021	0.635
Pb	g/s	0.055	0.069	0.043	0.188
Se	g/s	0.035	0.019	0.030	0.050
Zn	g/s	0.099	0.142	0.085	1.045

RESEARCH & DEVELOPMENT