

December 5, 2022

Ms. JoAnn Truchan, MPM, P.E. Section Chief, Engineering Allegheny County Health Department 301 39th Street, Building #7 Pittsburgh, PA 15201-1811 AQPermits@AlleghenyCounty.US

RE: Reasonably Available Control Technology (RACT III) Evaluation

Dear Ms. Truchan,

Neville Chemical Company is submitting an updated Reasonably Available Control Technology (RACT III) Evaluation for the Neville Island facility as required by changes to 25 Pa. Code §§129.111 – 129.115.

If you have any questions regarding this report, please feel free to contact me directly at 412-777-4201 or by e-mail at <u>dkokoski@nevchem.com</u>.

Sincerely,

Daniel D. Kokoski Vice President of Manufacturing

DDK/dld

Enclosure

cc: Helen Gurvich, Air Quality Engineer at Helen.Gurvich@AlleghenyCounty.US

VOC RACT III Evaluation Neville Chemical Company – Pittsburgh, PA

1. INTRODUCTION

The Neville Chemical Company (Neville) facility located in Neville Township, Allegheny County, Pennsylvania, is classified as a major stationary source of volatile organic compounds (VOC) emissions. As such, the facility is subject to the Reasonably Available Control Technology (RACT III) rules enacted in Pennsylvania on November 12, 2022, outlined in 25 Pa. Code §§129.111 – 129.115. The RACT III rule requires all existing major facilities of NOx and VOC emissions to assess the need to install new or additional emission controls, or implement work practice measures to reduce emissions of those two pollutants. This document contains Neville's RACT III evaluation of VOC-emitting sources, to be submitted to Allegheny County Health Department (ACHD), Air Quality Control.

Supporting documents for this evaluation include:

Attachment A – RACT III Applicability Tables Attachment B – Economic Analysis Tables

2. RACT III SOURCE APPLICABILITY EVALUATION

The tables included in Attachment 1 form the basis of the RACT III applicability evaluation of all VOC-emitting sources at the Neville facility. These tables include:

- Table 1, sorted by RACT III classification, lists all of the VOC sources and includes the source potential to emit (PTE), and the determination of applicability to RACT III.
- Table 2 contains the same information as Table 1, but is sorted by Source ID.
- Table 3 lists all of the storage tanks at the facility, their individual capacities, and an indication of whether they are subject to the RACT III rule.
- Table 4 provides a summary of the sources found to be 'Exempt' from the RACT III requirements, due to having a potential to emit (PTE) of less than one (1) ton/year.
- Table 5 summarizes all the sources classified as 'Presumptive'. These sources have a PTE of greater than 1 ton/year but less than 2.7 tons/year.
- Table 6 shows all of the sources subject to 'Case-by-Case' technical and economic evaluation, per section §129.114 of the RACT III rules. This table also provides Neville's determination of technically-feasible control options for each of these sources.
- Table 7 contains the RACT III economic evaluation results for each case-by-case source that was determined to have technically-feasible control options.
- For reference, Table 8 contains the economic evaluation results that ACHD used for determining economic feasibility under the RACT II requirements. Note that control options as low as \$6,700 per ton of VOC controlled were determined by ACHD to be infeasible.

3. TECHNICAL FEASIBILITY OF CONTROLLING CASE-BY-CASE SOURCES

As noted above, Table 6 in Attachment 1 includes a determination of technical feasibility of various options for controlling VOC emissions from the case-by-case sources. Following are additional explanations for the technical feasibility determinations.

3.1 Rotary Concentrator Feasibility

While doing research for this RACT III evaluation, it was discovered that Rotary Concentrators, using zeolite for adsorption, are not suitable for controlling any of the processes at Neville. Per TANN Corporation, a vendor of zeolite concentrators, the presence of certain pollutants in the emission streams, such as styrene and methylene chloride, will lead to adverse fouling of the adsorption media, thus shortening its life. TANN recommended <u>not</u> using this control technology. Therefore, Neville considers Rotary Concentrator technology to be <u>not technically</u> <u>feasible</u> for the sources at this facility.

3.2 Oxidation Control Feasibility

Under this RACT III analysis, the technical feasibility of the various oxidation control options was re-examined and is now determined based on the cost correlation equation restrictions noted in USEPA's *Air Pollution Control Cost Manual*, 7th Edition, Section 3.2, Chapter 2. The exhaust flow rate ranges that coincide with each oxidation option are noted in the table below. What this means is that the USEPA manual's capital cost equations are not applicable beyond these flow rate ranges.

Incinerator Type	Total (Flue) Gas Flowrate, scfm	Figure Number
Thermal-Recuperative	$500^{a} - 50,000$	2.4
Thermal-Regenerative	10,000 - 100,000	2.5
Fixed-Bed Catalytic	2,000 - 50,000	2.6
Fluid-Bed Catalytic	2,000 - 25,000	2.7

Table 2.9: Scope of Cost Correlations

^aAlthough Figure 2.4 covers the 1,000 to 50,000 scfm range, the correlation is valid for the 500 to 50,000 scfm range.

3.3 Product Loading Capture and Loading Feasibility

Table 6 in Attachment 1 states that capture and control of the Product Loading stations is technically feasible, and the cost analysis assumes all of the loading stations can be captured and routed to a single control device. In reality, the three (3) railcar and six (6) tank truck loading stations are located in various spots within the facility, such that connecting all of these sources to a common control device is not practically feasible.

3.4 Resin Kettles Capture and Control Feasibility

Table 6 in Attachment 1 also states that capture and control of the Packaging Center's resin kettles is technically feasible. Neville has concerns regarding installation of a capture system for the kettles due to the complexity required for safe operation.

The system would require a significant amount of instrumentation, long duct runs requiring additional structural support in areas where space is tight, all ducting would require insulation, flame/denotation arresters would be required, a control system would be required, plus the operating temperatures of a refrigerated condenser

could cause the entire system to plug up with ice due to steam being required to clear resin lines. It is Neville's opinion that design and implementation of such a collection system would require extensive and unreasonable costs. Based on engineering judgment, Neville estimates that these additional costs could easily be in the \$250,000 to \$400,000 range. To be conservative, the economic evaluation tables for the resin kettles use the mid-point of this range to represent auxiliary equipment and installation costs.

3.5 Wastewater Conveyance System Capture and Control Feasibility

It has been determined that capture and control of the Wastewater Conveyance System (P014) is <u>not</u> technically feasible. The wastewater conveyance system is a facility-wide collection and transport system that is mainly underground. The system includes hundreds of manholes and catch basins where fugitive emissions can escape. There is no reasonable or feasible method to capture all of these fugitive emission points. Therefore, control of the conveyance system is not feasible.

3.6 Resin Rework Tanks

Neville has not operated the Resin Rework Tanks (P015) over the past couple of years and has decided to permanently shut down this source. As noted in Section 5 below, Neville is proposing to remove this source from the facility's Title V permit. Therefore, further technical and economic evaluation of this source is not required.

3.7 VOC Control Technology Search

A search was conducted for VOC technologies that may have been developed subsequent to the evaluation conducted under the RACT II requirements. No "newer" technologies were found during this search. Some of the sites utilized for this search included the following:

- <u>www.epa.gov</u>
 - Ground-level Ozone Pollution
 - o Controlling Air Pollution from the Oil and Natural Gas Industry
 - Air Pollution Control Technology Fact Sheet
 - o NSCEP
- <u>www.dep.pa.gpv</u>
 - o Control Technique Guidelines
- <u>Choosing the Right VOC Emission Control Technology | Products Finishing (pfonline.com)</u>

4. ECONOMIC ANALYSIS

An economic analysis of all technically feasible control options for the case-by-case sources was conducted. A summary of the results is provided in Table 6 of Attachment 1. The detailed cost analysis tables are provided in Attachment 2. All control cost analyses were conducted pursuant to procedures provided in USEPA's *Air Pollution Control Cost Manual*, 7th Edition (the most recent edition).

Every technically feasible control option for every source exceeds the RACT III "screening threshold" value of \$12,000 per ton of VOC removed. Control options with costs above this threshold are automatically considered to be economically infeasible. It is Neville's contention that it is not economically feasible to install additional controls on any of the Case-by-Case VOC sources.

5. PROPOSED RACT III

The only change being requested by Neville is the removal of the Resin Rework (P015) operation from the Title V permit. The permanent shutdown of this source results in a potential VOC emission reduction of 16.24 tpy. Neville proposes that no other additional VOC reductions are necessary to satisfy the RACT III requirements.

ATTACHMENT 1 RACT III Applicability Tables

Table 1 Summary of Facility VOC Sources and RACT III Classification - Sorted by Classification Neville Chemical Company - Pittsburgh, PA

Source ID	Description	VOC PTE ¹ (TPY)	RACT III Classification
D001	Tanks 174, 1001, 1002, 1017	3.08	Not Applicable ²
D002	Tanks 9, 12-14, 69, 80, 85, 178, 273-278, 307-309, 314-315, 342, 8501, 8503, 3 Still Wash Tank	2.26	Not Applicable ²
D003	Tanks 601, 2108	2.71	Not Applicable ²
D004	Tanks 176, 177, 205, 206, 1014, 2104, 2109	1.65	Not Applicable ²
D005	Tanks 76, 252, 60SC	0.04	Not Applicable ²
D006	Tanks 1- 2, 4, 10, 68, 81, 100, 102, 108, 112, 202-204, 302-303	0.84	Not Applicable ²
D007	Tanks 82-83	0.15	Not Applicable ²
D008	Tank 1008	0.02	Not Applicable ²
D009	Tanks 1012, 1015, 5003, 6101-6102, 8502, 8504-8506	1.92	Not Applicable ²
D010	Tanks 135, 304-305, 312-313, 316-317, 320, 330-334	18.31	Not Applicable ²
D011	Tanks 271-272, 341, 2105-2106	3.32	Not Applicable ²
G004	Tank Cleaning and Painting	3.75	Not Applicable ³
B001	No.15 Still Process Heater	0.21	Exempt ⁴
B002	No.16 Still Process Heater	0.17	Exempt ⁴
B003	No.18 Still Process Heater	0.20	Exempt ⁴
B004	No.19 Still Process Heater	0.21	Exempt ⁴
B006	No. 3 Continuous Still Process Heater	0.14	Exempt ⁴
B009	No. 2 Packaging Center Heater	0.14	Exempt ⁴
B010	No. 3 Packaging Center Heater	0.11	Exempt ⁴
B011	No. 5 Packaging Center Heater	0.08	Exempt ⁴
B012	Boiler #8	0.80	Exempt ⁴
B015	Heat Polymerization Unit #43: Process Heater	0.21	Exempt ⁴
D005	9 Agitator (storage tank)	< 1 tpy	Exempt ⁴
D006	Tank 145	< 1 tpy	Exempt ⁴
N/A	Eight (8) Emergency Generators	0.71	Exempt ⁴
P001	Heat Polymerization Still #15	0.58	Exempt ⁴
P001	Heat Polymerization Still #16	0.80	Exempt ⁴
P001	Heat Polymerization Still #18	0.85	Exempt ⁴
P001	Heat Polymerization Still #19	0.80	Exempt ⁴
P001	Heat Polymerization Still #43	0.80	Exempt ⁴
P001	Thermal Oxidizer Fuel Consumption	0.51	Exempt ⁴
P016	Final Product Loading: Barge Loading	0.78	Exempt ⁴
B013	Boiler #6	1.34	Presumptive ⁵
G002	Parts Washing	2.00	Presumptive ⁵
G003	R&D Lab Hoods	2.00	Presumptive ⁵
P008	Continuous Still #3	2.56	Presumptive ⁵
P012	No.3 Packaging Center: Pouring Station	1.88	Presumptive ⁵
P014	Wastewater Treatment System: Equalization Tank	1.79	Presumptive ⁵
P014	Wastewater Treatment System: Biological Treatment Aeration Tanks	1.37	Presumptive ⁵
P014	Wastewater Treatment System: Surge Tank	1.89	Presumptive ⁵
P017	Groundwater Remediation System	1.51	Presumptive ⁵
P006	Unit 20-21	9.71	Case-by-case
P011	No. 2 Packaging Center: Drain Kettles	15.57	Case-by-case
P011	No. 2 Packaging Center: Flaking Belt	8.14	Case-by-case
P012	No. 3 Packaging Center: Drain Kettles	21.79	Case-by-case
P012	No. 3 Packaging Center: Pastillating Belt	6.69	Case-by-case
P013	No. 5 Packaging Center: Drain Kettles	14.00	Case-by-case
P013	No. 5 Packaging Center: Flaking Belt	7.32	Case-by-case
P014	Wastewater Treatment System: 3 Batch Tanks	10.28	Case-by-case
P014	Wastewater Conveyance System	3.36	Case-by-case
P015	Resin Rework Tanks	16.24	Case-by-case
P016	Final Product Loading: Final Product Tankcar & Tankwagon Loading	18.24	Case-by-case

¹ VOC PTE taken from ACHD's draft Title V Renewal OP, dated 4/14/2022.

² Storage tanks with capacity of 2000 gallons or more are Not Applicable to RACT III due to being subject to ACHD storage tank regulations at 2105.12.

³ Not applicable to RACT III due to being subject to ACHD surface coating regulations at 2105.10.

⁴ Exempt from RACT III due to emissions less than 1 tpy, per PADEP regulation 129.111(c).

⁵ Subject to applicable Presumptive RACT requirements, per PADEP regulation 129.112.

⁶ Sources with VOC emissions of 2.7 tpy or greater are subject to case-by-case analysis requirements, per PADEP regulation 129.114.

Table 2 Summary of Facility VOC Sources and RACT III Classification - Sorted by Source ID Neville Chemical Company - Pittsburgh, PA

Source	Description	VOC PTE*	RACT III Classification
ID		(TPY)	
B001	No.15 Still Process Heater	0.21	Exempt
B002	No.16 Still Process Heater	0.17	Exempt
B003	No.18 Still Process Heater	0.20	Exempt
B004	No.19 Still Process Heater	0.21	Exempt
B006	No. 3 Continuous Still Process Heater	0.14	Exempt
B009	No. 2 Packaging Center Heater	0.14	Exempt
B010	No. 3 Packaging Center Heater	0.11	Exempt
B010	No. 5 Packaging Center Heater	0.11	Exempt
B011		0.08	Exempt
B012		0.80	Exempt
B013	Boller #6	1.34	Presumptive
B015	Heat Polymerization Unit #43: Process Heater	0.21	Exempt
D001	Tanks 174, 1001, 1002, 1017	3.08	Not Applicable
D002	Tanks 9, 12-14, 69, 80, 85, 178, 273-278, 307-309, 314-315, 342, 8501, 8503, 3 Still Wash Tank	2.26	Not Applicable
D003	Tanks 601, 2108	2.71	Not Applicable
D004	Tanks 176, 177, 205, 206, 1014, 2104, 2109	1.65	Not Applicable
D005	Tanks 76, 252, 60SC	0.04	Not Applicable
D005	9 Agitator (storage tank)	< 1 tpv	Exempt
D006	Tanks 1- 2, 4, 10, 68, 81, 100, 102, 108, 112, 202-204, 302-303	0.84	Not Applicable
D006	Tank 145	< 1 tov	Evemnt
D000		< 1 tpy	Literilieshis
D007		0.13	Not Applicable
D008	Tank 1008	0.02	Not Applicable
D009	Tanks 1012, 1015, 5003, 6101-6102, 8502, 8504-8506	1.92	Not Applicable
D010	Tanks 133, 504-503, 512-513, 510-517, 520, 550-554	2 2 2 2	Not Applicable
D011	Tallis 2/1-2/2, 541, 2103-2100	3.52	Drosumntivo
G002	R&D Lab Hoods	2.00	Presumptive
G003	Tank Cleaning and Painting	3 75	Not Applicable
P001	Heat Polymerization Still #15	0.58	Exempt
P001	Heat Polymerization Still #16	0.80	Exempt
P001	Heat Polymerization Still #18	0.85	Exempt
P001	Heat Polymerization Still #19	0.80	Exempt
P001	Heat Polymerization Still #43	0.80	Exempt
P001	Thermal Oxidizer Fuel Consumption	0.51	Exempt
P006	Unit 20-21	9.71	Case-by-case
P008	Continuous Still #3	2.56	Presumptive
P011	No. 2 Packaging Center: Drain Kettles	15.57	Case-by-case
P011	No. 2 Packaging Center: Flaking Belt	8.14	Case-by-case
P012	No. 3 Packaging Center: Drain Kettles	21.79	Case-by-case
P012	No. 3 Packaging Center: Pastillating Belt	6.69	Case-by-case
P012	No.3 Packaging Center: Pouring Station	1.88	
P013	No. 5 Packaging Center: Elaking Belt	7 32	Case-by-case
P014	Wastowator Troatmont System: 2 Patch Tanks	10.28	
P014 P014	Wastewater Conveyance System	3 36	Case-by-case
P014	Wastewater Treatment System Equalization Tank	1 79	Presumptive
P014	Wastewater Treatment System: Biological Treatment Aeration Tanks	1.37	Presumptive
P014	Wastewater Treatment System: Surge Tank	1.89	Presumptive
P015	Resin Rework Tanks	16.24	Case-by-case
P016	Final Product Loading: Final Product Tankcar & Tankwagon Loading	18.24	, Case-by-case
P016	Final Product Loading: Barge Loading	0.78	Exempt
P017	Groundwater Remediation System	1.51	Presumptive
N/A	Eight (8) Emergency Generators	0.71	Exempt

* VOC PTE taken from ACHD's draft Title V Renewal OP, dated 4/14/2022

List of Storage Tanks and Capacities Neville Chemical Company - Pittsburgh, PA

Material Category	Category ID	Tank ID#	Capacity	RACT III Classification *
		171	(gallons)	
Catalytic & Misc Poly Oil	D001	1/4	20,350	Not Applicable
Catalytic & Misc Poly Oil	D001	1001	100,980	Not Applicable
Catalytic & Misc Poly Oil	D001	1002	100,980	Not Applicable
Catalytic & Misc Poly Oil	D001	1017	100,980	Not Applicable
	D 000		2.256	
Distillates, Low VP	D002	y 12	2,256	Not Applicable
Distillates, Low VP	D002	12	19,320	Not Applicable
Distillates, Low VP	D002	13	20,305	Not Applicable
Distillates, Low VP	D002	14	20,305	Not Applicable
Distillates, Low VP	D002	3 Still Wash	3,900	Not Applicable
Distillates, LOW VP	D002	69	9,568	
Distillates, LOW VP	D002	80	15,100	
Distillates, Low VP	D002	85	3,900	Not Applicable
Distillates, LOW VP	D002	178	16,120	
Distillates, LOW VP	D002	273	26,004	Not Applicable
Distillates, LOW VP	D002	274	24,004	Not Applicable
Distillates, LOW VP	D002	275	26,004	
Distillates, LOW VP	D002	276	26,004	
Distillates, LOW VP	D002	277	26,004	Not Applicable
Distillates, LOW VP	D002	278	26,004	
Distillates, LOW VP	D002	307	30,050	
Distillates, LOW VP	D002	308	30,050	Not Applicable
Distillates, LOW VP	D002	309	30,050	
Distillates, LOW VP	D002	314	30,050	Not Applicable
Distillates, LOW VP	D002	315	30,050	
Distillates, LOW VP	D002	342	34,000	Not Applicable
Distillates, LOW VP	D002	8501	845,968	Not Applicable
Distillates, LOW VP	D002	8503	845,908	Not Applicable
Distillatos Mid VP	D002	601	60.014	Not Applicable
Distillatos, Mid VP	D003	2109	217 226	Not Applicable
	0003	2108	217,550	Not Applicable
Heat Poly Charge Stock	D004	176	16 120	Not Applicable
Heat Poly Charge Stock	D004	170	16,120	Not Applicable
Heat Poly Charge Stock	D004	205	20 305	Not Applicable
Heat Poly Charge Stock	D004	205	20,303	Not Applicable
Heat Poly Charge Stock	D004	1014	100 651	Not Applicable
Heat Poly Charge Stock	D004	2104	217 336	Not Applicable
Heat Poly Charge Stock	D004	2104	217,336	Not Applicable
	5001	2103	217,000	
Miscellaneous	D005	76	7 614	Not Applicable
Miscellaneous	D005	252	24.052	Not Applicable
Miscellaneous	D005	60SC	6.016	Not Applicable
Miscellaneous	D005	9 Agitator	1.980	Exempt
		- 0	_,;;;;;	
Napthenic/Ink/Veg Oils	D006	1	19.320	Not Applicable
Napthenic/Ink/Veg Oils	D006	2	19.320	Not Applicable
Napthenic/Ink/Veg Oils	D006	4	17.626	Not Applicable
Napthenic/Ink/Veg Oils	D006	10	20.850	Not Applicable
Napthenic/Ink/Veg Oils	D006	68	9.568	Not Applicable
Napthenic/Ink/Veg Oils	D006	81	10.000	Not Applicable
Napthenic/Ink/Veg Oils	D006	100	10.450	Not Applicable
Napthenic/Ink/Veg Oils	D006	102	10,000	Not Applicable

List of Storage Tanks and Capacities Neville Chemical Company - Pittsburgh, PA

Material Category	Material Category Category ID Tank ID# Capacity		RACT III Classification *	
			(gallons)	
Napthenic/Ink/Veg Oils	D006	108	10,450	Not Applicable
Napthenic/Ink/Veg Oils	D006	112	9,107	Not Applicable
Napthenic/Ink/Veg Oils	D006	145	1,763	Exempt
Napthenic/Ink/Veg Oils	D006	202	20,082	Not Applicable
Napthenic/Ink/Veg Oils	D006	203	20,082	Not Applicable
Napthenic/Ink/Veg Oils	D006	204	20,082	Not Applicable
Napthenic/Ink/Veg Oils	D006	302	30,050	Not Applicable
Napthenic/Ink/Veg Oils	D006	303	30,050	Not Applicable
NEVCHEM LR	D007	83	10,000	Not Applicable
NEVCHEM LR	D007	82	10,000	Not Applicable
Recovered Oil	D008	1008	100,980	Not Applicable
Resin Former	D009	1012	100,651	Not Applicable
Resin Former	D009	1015	100,980	Not Applicable
Resin Former	D009	5003	497,277	Not Applicable
Resin Former	D009	6301	630,000	Not Applicable
Resin Former	D009	6302	630,000	Not Applicable
Resin Former	D009	8502	845,968	Not Applicable
Resin Former	D009	8504	845,968	Not Applicable
Resin Former	D009	8505	845,968	Not Applicable
Resin Former	D009	8506	845,968	Not Applicable
Resin Solutions	D010	135	2,010	Not Applicable
Resin Solutions	D010	304	30,050	Not Applicable
Resin Solutions	D010	305	30,050	Not Applicable
Resin Solutions	D010	312	30,050	Not Applicable
Resin Solutions	D010	313	30,050	Not Applicable
Resin Solutions	D010	316	30,050	Not Applicable
Resin Solutions	D010	317	30,050	Not Applicable
Resin Solutions	D010	320	22,438	Not Applicable
Resin Solutions	D010	330	30,913	Not Applicable
Resin Solutions	D010	331	30,913	Not Applicable
Resin Solutions	D010	332	30,913	Not Applicable
Resin Solutions	D010	333	30,913	Not Applicable
Resin Solutions	D010	334	30,913	Not Applicable
Unit 20-21 Feed Blend	D011	271	26,004	Not Applicable
Unit 20-21 Feed Blend	D011	272	26,004	Not Applicable
Unit 20-21 Feed Blend	D011	341	34,000	Not Applicable
Unit 20-21 Feed Blend	D011	2105	217,336	Not Applicable
Unit 20-21 Feed Blend	D011	2106	217,336	Not Applicable

* Storage tanks with capacity of 2000 gallons or more are 'Not Applicable' to RACT III due to being subject to ACHD storage tank regulations at 2105.12. The tanks in this list marked as "Exempt" have emissions of less than 1 tpy.

Table 4Facility Sources Exempt from RACT III (PA Code 129.111(c) [< 1 TPY VOC])</th>Neville Chemical Company - Pittsburgh, PA

Source ID	Description	VOC PTE (TPY)
P001	Heat Polymerization Still #15	0.58
P001	Heat Polymerization Still #16	0.80
P001	Heat Polymerization Still #18	0.85
P001	Heat Polymerization Still #19	0.80
P001	Heat Polymerization Still #43	0.80
P001	Thermal Oxidizer Fuel Consumption	0.51
P016	Final Product Loading: Barge Loading	0.78
B001	No.15 Still Process Heater	0.21
B002	No.16 Still Process Heater	0.17
B003	No.18 Still Process Heater	0.20
B004	No.19 Still Process Heater	0.21
B006	No. 3 Continuous Still Process Heater	0.14
B009	No. 2 Packaging Center Heater	0.14
B010	No. 3 Packaging Center Heater	0.11
B011	No. 5 Packaging Center Heater	0.08
B012	Boiler #8	0.80
B015	Heat Polymerization Unit #43: Process Heater	0.21
N/A	Eight (8) Emergency Generators	0.71
D005	9 Agitator (storage tank)	< 1 tpy

Source ID	Description	VOC PTE (TPY)	Basis for Presumptive	Presumptive RACT Requirement
P008	Continuous Still #3	2.56	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
P012	No.3 Packaging Center: Pouring Station	1.88	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
P014	Wastewater Treatment System: Equalization Tank	1.79	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
P014	Wastewater Treatment System: Biological Treatment Aeration Tanks	1.37	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
P014	Wastewater Treatment System: Surge Tank	1.89	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
P017	Groundwater Remediation System	1.51	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
B013	Boiler #6	1.34	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
G002	Parts Washing	2.00	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
G003	R&D Lab Hoods	2.00	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices

Table 5 Facility Sources Subject to Presumptive RACT III (PA Code 129.112) Neville Chemical Company - Pittsburgh, PA

Table 6Facility Sources Subject to Case-by-Case RACT III (PA Code 129.114) & Technical Feasibility of Controls
Neville Chemical Company - Pittsburgh, PA

Source ID	Description	VOC PTE (TPY)	Exhaust Flow (acfm)	Technically Feasible Controls
P006	Unit 20-21	9.71	100	Condensation; Adsorption
P011	No. 2 Packaging Center: Drain Kettles	15.57	200	Condensation; Adsorption
P011	No. 2 Packaging Center: Flaking Belt	8.14	4,850	Recuperative, Regenerative & Catalytic Oxidation; Adsorption
P012	No. 3 Packaging Center: Drain Kettles	21.79	200	Condensation; Adsorption
P012	No. 3 Packaging Center: Pastillating Belt	6.69	9,700	Recuperative, Regenerative & Catalytic Oxidation; Adsorption
P013	No. 5 Packaging Center: Drain Kettles	14.00	75	Condensation; Adsorption
P013	No. 5 Packaging Center: Flaking Belt	7.32	4,850	Recuperative, Regenerative & Catalytic Oxidation; Adsorption
P014	Wastewater Treatment System: 3 Batch Tanks	10.28	300	Recuperative Oxidation; Condensation; Adsorption
P014	Wastewater Conveyance System	3.36	Fugitive	None - see Section 3 of VOC RACT III Evaluation report
P015	Resin Rework Tanks	16.24	150	None - operation is shut down and is proposed to be removed from the permit
P016	Final Product Loading: Final Product Tankcar & Tankwagon Loading	18.24	1,000	Recuperative Oxidation; Condensation; Adsorption

Flow Rate basis for Technical Feasibility:

Control Type	Minimum Flow Rate, cfm*
Recuperative Oxidation	500
Regenerative Oxidation	5000
Catalytic Oxidation	2000
Carbon Adsorption	None
Vapor Condensation	None

* Per EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2

Table 7 VOC Control Costs of Technically Feasible Control Options for Case-by-Case RACT III Sources Neville Chemical Company - Pittsburgh, PA

Control Option		P006 (Unit 20-21)	P011 (2PC Kettles)	P011 (2PC Flaking Belt)	P012 (3PC Kettles)	P012 (3PC Pastillating	P013 (5PC Kettles)	P013 (5PC Flaking Belt)	P014 (WWT Batch Tanks)	P016 (Product Loading)
Recuperative	tpy VOC Removed			7.82		6.43		7.03	9.9	17.5
Oxidation	Annual Cost			\$430,406		\$687,412		\$430,406	\$195,078	\$240,097
(98%)	\$/ton	N/A	N/A	\$55 <i>,</i> 056	N/A	\$106,989	N/A	\$61,223	\$19,759	\$13,706
Regenerative	tpy VOC Removed			7.82		6.43		7.03		
	Annual Cost			\$318,638		\$436,938		\$318,638		
(98%)	\$/ton	N/A	N/A	\$40,759	N/A	\$68,005	N/A	\$45,325	N/A	N/A
Catalytic	tpy VOC Removed			7.82		6.43		7.03		
Oxidation	Annual Cost			\$283 <i>,</i> 493		\$409,670		\$283 <i>,</i> 493		
(98%)	\$/ton	N/A	N/A	\$36,263	N/A	\$63,761	N/A	\$40,325	N/A	N/A
Concentrator/	tpy VOC Removed									
	Annual Cost									
(98%)	\$/ton	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Carbon	tpy VOC Removed	9.24	14.77	7.74	20.68	6.37	13.32	6.95	9.78	16.64
Adsorption	Annual Cost	\$217,619	\$327,190	\$197,490	\$377,512	\$187,426	\$302,791	\$197,490	\$217,619	\$288,069
(95%)	\$/ton	\$23,558	\$22,150	\$25,517	\$18,255	\$29,440	\$22,740	\$28,420	\$22,255	\$17,308
Condensation	tpy VOC Removed	8.70	13.90		19.30		12.70		9.00	16.00
(90%)	Annual Cost	\$155,687	\$244,588		\$238,858		\$189,941		\$174,553	\$303,291
	\$/ton	\$17,870	\$17,355	N/A	\$12,185	N/A	\$15,206	N/A	\$19,325	\$18,938
N	1inimum \$/ton:	\$17,870	\$17,355	\$25,517	\$12,185	\$29,440	\$15,206	\$28,420	\$19,325	\$13,706

N/A - the control type is not technically feasible for this process (see Table 6)

Table 8 ACHD's VOC Control Cost Comparisons for Case-by-Case RACT II Sources* Neville Chemical Company - Pittsburgh, PA

Control Option		P007 (Unit 21)	P009 (stills #3 & 4)	P011 (2PC resin	P011 (2PC belt,	P012 (3PC resin	P012 (3PC	P013 (5PC resin	P013 (5PC belt,	P014 (WW	P014 (WWT batch	P015 (rework	P016 (product
				kettles)	packaging)	kettles)	pastillating	kettles)	packaging)	conveyance	tanks)	tanks)	loading)
Regenerative	tpy VOC Removed	6.1	13.6	15.2	7.8	21.3	6.6	13.7	7.2	3.3	10.1	16.2	17.9
	Annual Cost	\$262,000	\$218,000	\$157,000	\$80,000	\$243,000	\$516,000	\$141,000	\$74,000	\$64,000	\$197,000	\$165,000	\$160,000
(98%)	\$/ton	\$42,900	\$16,000	\$10,300	\$10,300	\$11,400	\$78,200	\$10,300	\$10,300	\$19,500	\$19,500	\$10,200	\$8,940
Catalytic	tpy VOC Removed	6.1	13.6	15.2	7.8	21.3	6.6	13.7	7.2	3.3	10.1	16.2	17.9
	Annual Cost	\$183,000	\$140,000	\$114,000	\$58,500	\$162,000	\$312,000	\$103,000	\$54,000	\$45,000	\$137,000	\$159,000	\$154,000
(98%)	\$/ton	\$30,000	\$10,300	\$7,500	\$7,500	\$7,600	\$47,200	\$7,500	\$7,500	\$13,600	\$13,600	\$9,790	\$8,590
Concentrator/	tpy VOC Removed	6.1	13.6	15.2	7.8	21.3	6.6	13.7	7.2	3.3	10.1	16.2	17.9
	Annual Cost	\$185,000	\$185,000	\$102,000	\$52,000	\$162,000	\$222,000	\$92,000	\$48,000	\$46,000	\$139,000	\$168,000	\$168,000
(98%)	\$/ton	\$30,400	\$13,600	\$6,700	\$6,700	\$7,600	\$33,600	\$6,700	\$6,700	\$13,800	\$13,800	\$10,400	\$9,390
Carbon	tpy VOC Removed	6.1	13.6	15.2	7.8	21.3	6.6	13.7	7.2	3.3	10.1	16.2	17.9
	Annual Cost	\$256,000	\$260,000	\$181,000	\$93,000	\$213,000	\$183,000	\$163,000	\$86,000	\$64,000	\$196,000	\$266,000	\$261,000
(95%)	\$/ton	\$42,000	\$19,100	\$11,900	\$11,900	\$10,000	\$27,700	\$11,900	\$11,900	\$19,400	\$19,400	\$16,400	\$14,600
Condensation	tpy VOC Removed	5.6	12.5	14.0	7.3	19.6	6.0	12.6	6.6	3.0	9.3	14.9	16.4
(90%)	Annual Cost	\$372,000	\$217,000	\$370,000	\$193,000	\$425,000	\$846,000	\$333,000	\$174,000	\$100,000	\$305,000	\$297,000	\$290,000
	\$/ton	\$66,500	\$17,400	\$26,400	\$26,400	\$21,700	\$141,000	\$26,400	\$26,400	\$30,200	\$30,200	\$19,900	\$17,700
r	Vinimum \$/ton:	\$30,000	\$10,300	\$6,700	\$6,700	\$7,600	\$27,700	\$6,700	\$6,700	\$13,600	\$13,600	\$9,790	\$8,590

* These values were taken from ACHD's Technical Support Document associated with the Title V Permit 0006c Amendment, issued April 23, 2020.

ATTACHMENT 2 Economic Analysis Tables

Oxidation Cost Tables

Table 1.	Cost Summary of RACT III VOC Oxidation Control Options	Source Name:	#2 PC Flaking Belt		
	Neville Chemical Company - Pittsburgh, PA	Source ID:	P011		

1a. - Ranking of VOC Oxidation Control Options, by Reduction Efficiency

Ranking	Control Technology	Destruction Efficiency (%)	Capture Efficiency (%)	Reduction ¹ Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Recuperative Thermal Oxidizer	98.0	98.0	96.0	8.14	7.82
2.	Catalytic Oxidizer	98.0	98.0	96.0	8.14	7.82
3.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	8.14	7.82

1b. - Ranking of Annual Control Costs per Ton of Pollutant Reduced

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital-Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	VOC Control Cost (\$/ton/yr)
1.	Catalytic Oxidizer	442,043	34,939	4,469	283,493	36,263
2.	Regenerative Thermal Oxidizer	726,001	58,256	7,452	318,638	40,759
3.	Recuperative Thermal Oxidizer	455,893	36,582	4,679	430,406	55,056

¹ Overall reduction based on product of Control efficiency and Capture efficiency

Table 2. INPUT PARAMETERS FOR CONTROL TECHNOLOGY ANALYSIS Neville Chemical Company - Pittsburgh, PA

Facility-specific Economic Data

Operator labor cost, \$/hr	45.00
Maintenance labor cost, \$/hr	45.00
Electricity cost, \$/kwh	0.10
Natural Gas cost, \$/mcf	8.00
Debt Interest rate, fraction	0.05

Other Economic Data

Taxes, insurance, admin, fraction	0.05	EPA spreadsheet*
Catalyst cost, \$/ft3	350	EPA spreadsheet*
Catalyst life (years):	4	EPA spreadsheet*
Control system life (years):	20	EPA spreadsheet*
Operating labor factor (hr/sh):	0.5	EPA spreadsheet*
Maintenance labor factor (hr/sh):	0.5	EPA spreadsheet*
CEPCI (cost inflation factor)	832.6	Final value for June 2022

(Chemical Engineering Plant Cost Index, updated monthly in "Chemical Engineering Magazine")

Control System Data

	Removal	Heat
	Efficiency, %	Recovery, %
Recuperative Thermal Oxidizer	98	50
Catalytic Oxidizer (fixed bed)	98	50
Regenerative Thermal Oxidizer (RTO)	98	85

Auxiliary Equipment and Costs

	<u>Cost</u>	
Ductwork to collect fumes	15,435	(see Table 6)
Other equipment	0	
Total Auxiliary Equipment Costs:	15,435	

* USEPA-developed spreadsheet, named:

US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm

(available at https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution)

Table 3. Total Annual Cost Spreadsheet - Recuperative Thermal Oxidizer Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	1999
Reference Date CEPCI value*	390.6
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	2.13

INPUT PARAMETERS

Gas flowrate (scfm):	4,850	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	70	
Inlet gas density (Ib/scf):	0.0739	air
Primary heat recovery (fraction):	0.5	
Waste gas heat content (BTU/scf):	5.0	conservative estimate
Waste gas heat content (BTU/lb):	68	
Gas heat capacity (BTU/Ib-oF):	0.26	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	735	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
Pressure drop (in. w.c.):	11.0	Table 2.11

2.305 Equation 2.21

56.5

Operating factor (hr/yr):
Operating labor rate (\$/hr):
Maintenance labor rate (\$/hr):
Operating labor factor (hr/sh):
Maintenance labor factor (hr/sh):
Electricity price (\$/kwh):
Natural gas price (\$/mscf):
Annual interest rate (fraction):

8,760

45.00

45.00

0.50

0.50

0.100

8.00

0.05

0.0802

0.05

20

ANNUAL COST INPUTS

CALCULATED UTILITY USAGES

Auxiliary Fuel Reqrmnt (Ib/mi	n):
	(scfm):
Total Gas Flowrate (scfm):	

CALCULATED CAPITAL COSTS

Equipment Costs (\$): Incinerator: @ 0 % heat recovery:

- @ 35 % heat recovery: @ 50 % heat recovery: @ 70 % heat recovery:
- Other equipment (see Table 2): Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B = 1.08A): Total Capital Investment (TCI = 1.25B):

CALCULATED ANNUAL COSTS

Control system life (years):

Taxes, insurance, admin. factor:

Capital recovery factor:

4,907		ltem	Cost (\$/yr)	-
		Operating labor	24,638	
		Supervisory labor	3,696	Table 2.10
		Maintenance labor	24,638	
0	Equation 2.29	Maintenance materials	24,638	Table 2.10, equals maintenance labor cost
0	Equation 2.30	Natural gas	237,596	
142,991	Equation 2.31	Electricity	9,260	Equation 2.42
0	Equation 2.32	Overhead	46,565	Table 2.10
		Taxes, insurance, administrative	22,795	Table 2.10
15,435		Capital recovery	36,582	Table 2.10
158,426	Sum of EC and auxiliary equipment			_
337,699	Base cost times escalation factor	Total Annual Cost	430,406	
364,714	Table 2.8			
455,893	Table 2.8			

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

Table 4. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer **Neville Chemical Company - Pittsburgh, PA**

Total Capital Investment (TCI = 1.25B):

COST REFERENCE DATE*:		2016	5		
Reference Date CEPCI value*		541.7	7		
Most recent CEPCI value**		832.6	Final value for June 2022		
Cost Escalation Factor		1.54	1		
INPUT PARAMETERS				ANNUAL COST INPUTS	
Exhaust Gas flowrate (scfm):		4,850		Operating factor (hr/yr):	8,760
Reference temperature (oF):		77		Operating labor rate (\$/hr):	45.00
Waste gas inlet temperature, Tw _i (oF):		70		Maintenance labor rate (\$/hr):	45.00
Inlet gas density (Ib/scf):		0.0739	air	Operating labor factor (hr/sh):	0.50
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.50
Waste gas heat content, annual avg. (BTU/scf):		5.00		Electricity price (\$/kwh):	0.100
Waste gas heat content (BTU/lb):		68		Natural gas price (\$/mscf):	8.00
Gas heat capacity (BTU/lb-oF):		0.255	air	Annual interest rate (fraction):	0.05
Combustion temperature (oF):		1,800		Control system life (years):	20
Temperature leaving heat exchanger, Tw _o (oF):		1541	Equation 2.18	Capital recovery factor:	0.0802
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05
Fuel density (lb/ft3):		0.0408	methane		
Pressure drop (in. w.c.):		30.4	Table 2.11		
CALCULATED UTILITY USAGES				ANNUAL COSTS	
Auxiliary Fuel Requirement:	(lb/min):	0.724	Equation 2.45		
	(scfm):	17.74		Item	Cost (\$/yr)
	(mcf/yr):	9,325.5		Operating labor	24,638
Total Maximum Exhaust Gas Flowrate:	(scfm):	4,868		Supervisory labor	3,696
				Maintenance labor	24,638
CALCULATED CAPITAL COSTS				Maintenance materials	24,638
Oxidizer Equipment Cost (EC):				Natural gas	74,604
@ 85% heat recovery	/:	334,451	Equation 2.33	Electricity	25,305
@ 95% heat recovery	/:	0	Equation 2.33	Overhead	46,565
				Taxes, insurance, administrative	36,300
Other equipment (see Table 2):		15,435		Capital recovery	58,256
Total Equipment Costbase:		349,886	Sum of EC and auxiliary equipment		
Total Equipment Costescalated (A):		537,779	Base cost times escalation factor	Total Annual Cost	318,638
Purchased Equipment Cost (B = 1.08A):		580,801	Table 2.8		

726,001 Table 2.8

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

3,696 Table 2.10

25,305 Equation 2.42 46,565 Table 2.10 36,300 Table 2.10 58,256 Table 2.10

24,638 Table 2.10, equals maintenance labor cost

Table 5. Total Annual Cost Spreadsheet - Catalytic Oxidizer (Fixed Bed) Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	1999
Reference Date CEPCI value*	390.6
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	2.13

INPUT PARAMETERS

Gas flowrate (scfm):	4,850	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	70	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	5.0	
Waste gas heat content (BTU/lb):	67.66	
Gas heat capacity (BTU/lb-oF):	0.255	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	460	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
Pressure drop (in. w.c.):	13.0	Table 2.11

CALCULATED UTILITY USAGES

Auxiliary Fuel Reqrmnt (lb/min):	
	(scfm):
Total Gas Flowrate (scfm):	
Catalyst Volume (ft3):	

CALCULATED CAPITAL COSTS

Equipment Costs (\$):			
@ 0 % heat recovery:			
@ 35 % heat recovery:			
@ 50 % heat recovery:			
@ 70 % heat recovery:			
Other equipment (see Table 2):			
Total Equipment Costbase:			
Total Equipment Costescalated (A):			
Purchased Equipment Cost (B = 1.08A):			
Total Capital Investment (TCI = 1.25B):			

0 Equation 2.34
0 Equation 2.35
138,178 Equation 2.36
0 Equation 2.37
15,435
153,612 Sum of EC and auxiliary e
327,439 Base cost times escalatio
353,634 Table 2.8
442,043 Table 2.8

0.869 Equation 2.21

9.4 Equation 2.28

21.3

4,871

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	45.00
Maintenance labor rate (\$/hr):	45.00
Operating labor factor (hr/sh):	0.50
Maintenance labor factor (hr/sh):	0.50
Electricity price (\$/kwh):	0.100
Catalyst price (\$/ft3):	650
Natural gas price (\$/mscf):	8.00
Annual interest rate (fraction):	0.05
Control system life (years):	20
Catalyst life (years):	4
Capital recovery factor (system):	0.0802
Capital recovery factor (catalyst):	0.2820
Taxes, insurance, admin. factor:	0.05

CALCULATED ANNUAL COSTS

	Total Annual Cost	283,493	
			-
alation factor	Capital recovery	34,939	
liary equipment	Taxes, insurance, administrative	22,102	Table 2.10
	Overhead	46,565	Table 2.10
	Catalyst replacement	1,868	Table 2.10
	Electricity	10,858	Equation 2.42
	Natural gas	89,553	
	Maintenance materials	24,638	Table 2.10, equals maintenance labor cost
	Maintenance labor	24,638	
	Supervisory labor	3,696	Table 2.10
	Operating labor	24,638	
			-
	Item	Cost (\$/yr)	

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition.

** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

Table 6. Total Annual Cost Spreadsheet - Straight Ductwork For Routing To Controls Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	2016
Reference Date CEPCI value*	541.7
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	1.54

INPUT PARAMETERS

Inlet stream flowrate (acfm):		1,617	per exhaust fan	
Duct velocity (ft/min)		329	5.5 ft/s	sec
Duct length (ft)		33	per exhaust fan	
Material of construction		Galv. CS sh.		
Insulation thickness (in.)		1		
Duct design		Circspiral		
Cost equation parameters	a:	2.560		
	b:	0.937		
Cost equation form		1		
Control system installation factor		1.5		
(if no system, enter '0')				
Fan-motor combined efficiency (fraction)		0.60		
DESIGN PARAMETERS				
Number of exhaust fans		3		
Duct diameter (in.)		30.00		
Pressure drop (in. w.c.)		0.002		
CALCULATED CAPITAL COSTS				
Equipment Cost (\$)base		2,066		
Equipment Cost (\$)escalated		3,176		
Purchased Equipment Cost (\$)		3,430		
Total Capital Investment per Exhaust Fan(\$)	5,145		
Overall Total Capital Investment(\$):		15,435		

ANNUAL COST INPUTS

Operating factor (hours/year):	8760
Electricity price (\$/kWhr):	0.100
Annual interest rate (fractional):	0.05
Ductwork economic life (years):	20
Capital recovery factor (system):	0.0802
Taxes, insurance, admin. factor:	0.05

CALCULATED ANNUAL COSTS

<u>Item</u>	Cost (\$/yr)		
Electricity	1		
Taxes, insurance, administrative	257		
Capital recovery	413		
Total Annual Cost	671		
TULAI AIIIIUAI CUSL	0/1		

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in *Chemical Engineering* monthly journals

Table 1. Cost Summary of RACT III VOC Oxidation Control Options		Source Name:	#3 PC Pastillating Belt	
	Neville Chemical Company - Pittsburgh, PA	Source ID:	P012	

1a. - Ranking of VOC Oxidation Control Options, by Reduction Efficiency

Ranking	Control Technology	Destruction Efficiency (%)	Capture Efficiency (%)	Reduction ¹ Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Recuperative Thermal Oxidizer	98.0	98.0	96.0	6.69	6.43
2.	Catalytic Oxidizer	98.0	98.0	96.0	6.69	6.43
3.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	6.69	6.43

1b. - Ranking of Annual Control Costs per Ton of Pollutant Reduced

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital-Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	VOC Control Cost (\$/ton/yr)
1.	Catalytic Oxidizer	629,610	49,459	7,698	409,670	63,761
2.	Regenerative Thermal Oxidizer	867,205	69,587	10,830	436,938	68,005
3.	Recuperative Thermal Oxidizer	533,815	42,835	6,667	687,412	106,989

¹ Overall reduction based on product of Control efficiency and Capture efficiency

Table 2. INPUT PARAMETERS FOR CONTROL TECHNOLOGY ANALYSIS Neville Chemical Company - Pittsburgh, PA

Facility-specific Economic Data

Operator labor cost, \$/hr	45.00
Maintenance labor cost, \$/hr	45.00
Electricity cost, \$/kwh	0.10
Natural Gas cost, \$/mcf	8.00
Debt Interest rate, fraction	0.05

Other Economic Data

Taxes, insurance, admin, fraction	0.05	EPA spreadsheet*
Catalyst cost, \$/ft3	350	EPA spreadsheet*
Catalyst life (years):	4	EPA spreadsheet*
Control system life (years):	20	EPA spreadsheet*
Operating labor factor (hr/sh):	0.5	EPA spreadsheet*
Maintenance labor factor (hr/sh):	0.5	EPA spreadsheet*
CEPCI (cost inflation factor)	832.6	Final value for June 2022

(Chemical Engineering Plant Cost Index, updated monthly in "Chemical Engineering Magazine")

Control System Data

	Removal	Heat
	Efficiency, %	Recovery, %
Recuperative Thermal Oxidizer	98	50
Catalytic Oxidizer (fixed bed)	98	50
Regenerative Thermal Oxidizer (RTO)	98	85

Auxiliary Equipment and Costs

	<u>Cost</u>	
Ductwork to collect fumes	15,435	(see Table 6)
Other equipment	0	
Total Auxiliary Equipment Costs:	15,435	

* USEPA-developed spreadsheet, named: US

US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm

(available at https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution)

Table 3. Total Annual Cost Spreadsheet - Recuperative Thermal Oxidizer Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	1999
Reference Date CEPCI value*	390.6
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	2.13

INPUT PARAMETERS

Gas flowrate (scfm):	9,700	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	70	
Inlet gas density (Ib/scf):	0.0739	air
Primary heat recovery (fraction):	0.5	
Waste gas heat content (BTU/scf):	5.0	conservative estimate
Waste gas heat content (BTU/lb):	68	
Gas heat capacity (BTU/Ib-oF):	0.26	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	735	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
Pressure drop (in. w.c.):	11.0	Table 2.11

ANNUAL COST INPUTS	
Operating factor (hr/yr):	8,760
Operating labor rate (\$/hr):	45.00
Maintenance labor rate (\$/hr):	45.00
Operating labor factor (hr/sh):	0.50
Maintenance labor factor (hr/sh):	0.50
Electricity price (\$/kwh):	0.100
Natural gas price (\$/mscf):	8.00
Annual interest rate (fraction):	0.05
Control system life (years):	20
Capital recovery factor:	0.0802
Taxes, insurance, admin. factor:	0.05

24,638

24,638

475,193

687,412

3,696 Table 2.10

18,521 Equation 2.42 46,565 Table 2.10 26,691 Table 2.10

42,835 Table 2.10

24,638 Table 2.10, equals maintenance labor cost

CALCULATED UTILITY USAGES

Auxiliary Fuel Reqrmnt (lb/min):	4.611	Equation 2.21	CALCULATED ANNUAL COSTS	
(scfm):	113.0			
Total Gas Flowrate (scfm):	9,813		Item	Cost (\$/yr)
CALCULATED CAPITAL COSTS			Operating labor	24,63
Equipment Costs (\$):			Supervisory labor	3,69
Incinerator:			Maintenance labor	24,63
@ 0 % heat recovery:	0	Equation 2.29	Maintenance materials	24,63
@ 35 % heat recovery:	0	Equation 2.30	Natural gas	475,19
@ 50 % heat recovery:	170,069	Equation 2.31	Electricity	18,52
@ 70 % heat recovery:	0	Equation 2.32	Overhead	46,56
			Taxes, insurance, administrative	26,69
Other equipment (see Table 2):	15,435		Capital recovery	42,83
Total Equipment Costbase:	185,504	Sum of EC and auxiliary equipment		
Total Equipment Costescalated (A):	395,419	Base cost times escalation factor	Total Annual Cost	687,41

427,052 Table 2.8

533,815 Table 2.8

Ot Tot Tot Purchased Equipment Cost (B = 1.08A): Total Capital Investment (TCI = 1.25B):

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

Table 4. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer **Neville Chemical Company - Pittsburgh, PA**

COST REFERENCE DATE*:		2016	i			
Reference Date CEPCI value*		541.7	,			
Most recent CEPCI value**		832.6	Final value for June 2022			
Cost Escalation Factor		1.54	Ļ			
INPUT PARAMETERS				ANNUAL COST INPUTS		
Exhaust Gas flowrate (scfm):		9,700		Operating factor (hr/yr):	8,760	
Reference temperature (oF):		77		Operating labor rate (\$/hr):	45.00	
Waste gas inlet temperature, Tw _i (oF):		70		Maintenance labor rate (\$/hr):	45.00	
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.50	
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.50	
Waste gas heat content, annual avg. (BTU/scf):		5.00		Electricity price (\$/kwh):	0.100	
Waste gas heat content (BTU/lb):		68		Natural gas price (\$/mscf):	8.00	
Gas heat capacity (BTU/lb-oF):		0.255	air	Annual interest rate (fraction):	0.05	
Combustion temperature (oF):		1,800		Control system life (years):	20	
Temperature leaving heat exchanger, Tw _o (oF):		1541	Equation 2.18	Capital recovery factor:	0.0802	
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05	
Fuel density (lb/ft3):		0.0408	methane			
Pressure drop (in. w.c.):		30.4	Table 2.11			
CALCULATED UTILITY USAGES				ANNUAL COSTS		
Auxiliary Fuel Requirement:	(lb/min):	1.448	Equation 2.45			
	(scfm):	35.49		Item	Cost (\$/yr)	
	(mcf/yr):	18,651.0		Operating labor	24,638	-
Total Maximum Exhaust Gas Flowrate:	(scfm):	9,735		Supervisory labor	3,696	Table 2.10
				Maintenance labor	24,638	
CALCULATED CAPITAL COSTS				Maintenance materials	24,638	Table 2.10, equals maintenance labor cost
Oxidizer Equipment Cost (EC):				Natural gas	149,208	
@ 85% heat recovery:		402,502	Equation 2.33	Electricity	50,610	Equation 2.42
@ 95% heat recovery:		0	Equation 2.33	Overhead	46,565	Table 2.10
				Taxes, insurance, administrative	43,360	Table 2.10
Other equipment (see Table 2):		15,435		Capital recovery	69,587	Table 2.10
Total Equipment Costbase:		417,937	Sum of EC and auxiliary equipment			
Total Equipment Costescalated (A):		642,374	Base cost times escalation factor	Total Annual Cost	436,938	
Purchased Equipment Cost (B = 1.08A):		693,764	Table 2.8			
Total Capital Investment (TCI = 1.25B):		867,205	Table 2.8			

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

Table 5. Total Annual Cost Spreadsheet - Catalytic Oxidizer (Fixed Bed) Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	1999
Reference Date CEPCI value*	390.6
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	2.13

INPUT PARAMETERS

Gas flowrate (scfm):	9,700	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	70	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	5.0	
Waste gas heat content (BTU/lb):	67.66	
Gas heat capacity (BTU/lb-oF):	0.255	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	460	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
Pressure drop (in. w.c.):	13.0	Table 2.11

CALCULATED UTILITY USAGES

Auxiliary Fuel Reqrmnt (lb/min):		1.738	Equation 2.21
(1	scfm):	42.6	
Total Gas Flowrate (scfm):		9,743	
Catalyst Volume (ft3):		18.9	Equation 2.28

CALCULATED CAPITAL COSTS

Equipment Costs (\$):			
@ 0 % heat recovery:			
@ 35 % heat recovery:			
@ 50 % heat recovery:			
@ 70 % heat recovery:			
Other equipment (see Table 2):			
Total Equipment Costbase:			
Total Equipment Costescalated (A):			
Purchased Equipment Cost (B = 1.08A):			
Total Capital Investment (TCI = 1.25B):			

Equation 2.34
 Equation 2.35
 203,359
 Equation 2.36
 Equation 2.37
 15,435
 218,793
 Sum of EC and auxiliary endition
 466,378
 Base cost times escalation
 503,688
 Table 2.8
 629,610
 Table 2.8

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	45.00
Maintenance labor rate (\$/hr):	45.00
Operating labor factor (hr/sh):	0.50
Maintenance labor factor (hr/sh):	0.50
Electricity price (\$/kwh):	0.100
Catalyst price (\$/ft3):	650
Natural gas price (\$/mscf):	8.00
Annual interest rate (fraction):	0.05
Control system life (years):	20
Catalyst life (years):	4
Capital recovery factor (system):	0.0802
Capital recovery factor (catalyst):	0.2820
Taxes, insurance, admin. factor:	0.05

CALCULATED ANNUAL COSTS

	Item	Cost (\$/yr)	
			-
	Operating labor	24,638	
	Supervisory labor	3,696	Table 2.10
	Maintenance labor	24,638	
	Maintenance materials	24,638	Table 2.10, equals maintenance labor cost
	Natural gas	179,106	
	Electricity	21,716	Equation 2.42
	Catalyst replacement	3,735	Table 2.10
	Overhead	46,565	Table 2.10
y equipment	Taxes, insurance, administrative	31,481	Table 2.10
tion factor	Capital recovery	49,459	
			-
	Total Annual Cost	409,670	

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition.

** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

Table 6. Total Annual Cost Spreadsheet - Straight Ductwork For Routing To Controls Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	2016
Reference Date CEPCI value*	541.7
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	1.54

INPUT PARAMETERS

Inlet stream flowrate (acfm):		3,233	per exhaust fan
Duct velocity (ft/min)		658	11.0
Duct length (ft)		33	per exhaust fan
Material of construction		Galv. CS sh.	
Insulation thickness (in.)		1	
Duct design		Circspiral	
Cost equation parameters	a:	2.560	
	b:	0.937	
Cost equation form		1	
Control system installation factor		1.5	
(if no system, enter '0')			
Fan-motor combined efficiency (fraction)		0.60	
DESIGN PARAMETERS			
Number of exhaust fans		3	
Duct diameter (in.)		30.00	
Pressure drop (in. w.c.)		0.007	
CALCULATED CAPITAL COSTS			
Equipment Cost (\$)base		2,066	
Equipment Cost (\$)escalated		3,176	
Purchased Equipment Cost (\$)		3,430	
Total Capital Investment per Exhaust Fan(\$)	5,145	
Overall Total Capital Investment(\$):		15,435	

ANNUAL COST INPUTS

ft/sec

Operating factor (hours/year):	8760
Electricity price (\$/kWhr):	0.100
Annual interest rate (fractional):	0.05
Ductwork economic life (years):	20
Capital recovery factor (system):	0.0802
Taxes, insurance, admin. factor:	0.05

CALCULATED ANNUAL COSTS

Total Annual Cost

Item	<u>Cost (\$/yr)</u>
Electricity	4
Taxes, insurance, administrative	257
Capital recovery	413

674

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in *Chemical Engineering* monthly journals

Table 1.	Cost Summary of RACT III VOC Oxidation Control Options	Source Name:	#5 PC Flaking Belt	
	Neville Chemical Company - Pittsburgh, PA	Source ID:	P013	

1a. - Ranking of VOC Oxidation Control Options, by Reduction Efficiency

Ranking	Control Technology	Destruction Efficiency (%)	Capture Efficiency (%)	Reduction ¹ Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Recuperative Thermal Oxidizer	98.0	98.0	96.0	7.32	7.03
2.	Catalytic Oxidizer	98.0	98.0	96.0	7.32	7.03
3.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	7.32	7.03

1b. - Ranking of Annual Control Costs per Ton of Pollutant Reduced

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital-Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	VOC Control Cost (\$/ton/yr)
1.	Catalytic Oxidizer	442,043	34,939	4,970	283,493	40,325
2.	Regenerative Thermal Oxidizer	726,001	58,256	8,287	318,638	45,325
3.	Recuperative Thermal Oxidizer	455,893	36,582	5,204	430,406	61,223

¹ Overall reduction based on product of Control efficiency and Capture efficiency

Table 2. INPUT PARAMETERS FOR CONTROL TECHNOLOGY ANALYSIS Neville Chemical Company - Pittsburgh, PA

Facility-specific Economic Data

Operator labor cost, \$/hr	45.00
Maintenance labor cost, \$/hr	45.00
Electricity cost, \$/kwh	0.10
Natural Gas cost, \$/mcf	8.00
Debt Interest rate, fraction	0.05

Other Economic Data

Taxes, insurance, admin, fraction	0.05	EPA spreadsheet*
Catalyst cost, \$/ft3	350	EPA spreadsheet*
Catalyst life (years):	4	EPA spreadsheet*
Control system life (years):	20	EPA spreadsheet*
Operating labor factor (hr/sh):	0.5	EPA spreadsheet*
Maintenance labor factor (hr/sh):	0.5	EPA spreadsheet*
CEPCI (cost inflation factor)	832.6	Final value for June 2022
		· · · · · · · · · · · · · · · · · · ·

(Chemical Engineering Plant Cost Index, updated monthly in "Chemical Engineering Magazine")

Control System Data

	Removal		Heat
	Efficiency, %		Recovery, %
Recuperative Thermal Oxidizer	98		50
Catalytic Oxidizer (fixed bed)	98		50
Regenerative Thermal Oxidizer (RTO)	98		85

Auxiliary Equipment and Costs

	<u>Cost</u>	
Ductwork to collect fumes	15,435	(see Table 6)
Other equipment	0	
Total Auxiliary Equipment Costs:	15,435	

* USEPA-developed spreadsheet, named:

US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm

(available at https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution)

Table 3. Total Annual Cost Spreadsheet - Recuperative Thermal Oxidizer Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	1999
Reference Date CEPCI value*	390.6
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	2.13

INPUT PARAMETERS

Gas flowrate (scfm):	4,850	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	70	
Inlet gas density (Ib/scf):	0.0739	air
Primary heat recovery (fraction):	0.5	
Waste gas heat content (BTU/scf):	5.0	conservative estimate
Waste gas heat content (BTU/lb):	68	
Gas heat capacity (BTU/Ib-oF):	0.26	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	735	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
Pressure drop (in. w.c.):	11.0	Table 2.11

2.305 Equation 2.21

56.5

Operating factor (hr/yr):
Operating labor rate (\$/hr):
Maintenance labor rate (\$/hr):
Operating labor factor (hr/sh):
Maintenance labor factor (hr/sh):
Electricity price (\$/kwh):
Natural gas price (\$/mscf):
Annual interest rate (fraction):

8,760

45.00

45.00

0.50

0.50

0.100

8.00

0.05

0.0802

0.05

20

ANNUAL COST INPUTS

CALCULATED UTILITY USAGES

Auxiliary Fuel Reqrmnt (Ib/mi	n):
	(scfm):
Total Gas Flowrate (scfm):	

CALCULATED CAPITAL COSTS

Equipment Costs (\$): Incinerator: @ 0 % heat recovery:

- @ 35 % heat recovery: @ 50 % heat recovery: @ 70 % heat recovery:
- Other equipment (see Table 2): Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B = 1.08A): Total Capital Investment (TCI = 1.25B):

CALCULATED ANNUAL COSTS

Control system life (years):

Taxes, insurance, admin. factor:

Capital recovery factor:

4,907		ltem	Cost (\$/yr)	-
		Operating labor	24,638	
		Supervisory labor	3,696	Table 2.10
		Maintenance labor	24,638	
0	Equation 2.29	Maintenance materials	24,638	Table 2.10, equals maintenance labor cost
0	Equation 2.30	Natural gas	237,596	
142,991	Equation 2.31	Electricity	9,260	Equation 2.42
0	Equation 2.32	Overhead	46,565	Table 2.10
		Taxes, insurance, administrative	22,795	Table 2.10
15,435		Capital recovery	36,582	Table 2.10
158,426	Sum of EC and auxiliary equipment			_
337,699	Base cost times escalation factor	Total Annual Cost	430,406	
364,714	Table 2.8			
455,893	Table 2.8			

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

Table 4. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer **Neville Chemical Company - Pittsburgh, PA**

Total Capital Investment (TCI = 1.25B):

COST REFERENCE DATE*:		2016	5		
Reference Date CEPCI value*		541.7	7		
Most recent CEPCI value**		832.6	Final value for June 2022		
Cost Escalation Factor		1.54	1		
INPUT PARAMETERS				ANNUAL COST INPUTS	
Exhaust Gas flowrate (scfm):		4,850		Operating factor (hr/yr):	8,760
Reference temperature (oF):		77		Operating labor rate (\$/hr):	45.00
Waste gas inlet temperature, Tw _i (oF):		70		Maintenance labor rate (\$/hr):	45.00
Inlet gas density (Ib/scf):		0.0739	air	Operating labor factor (hr/sh):	0.50
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.50
Waste gas heat content, annual avg. (BTU/scf):		5.00		Electricity price (\$/kwh):	0.100
Waste gas heat content (BTU/lb):		68		Natural gas price (\$/mscf):	8.00
Gas heat capacity (BTU/lb-oF):		0.255	air	Annual interest rate (fraction):	0.05
Combustion temperature (oF):		1,800		Control system life (years):	20
Temperature leaving heat exchanger, Tw _o (oF):		1541	Equation 2.18	Capital recovery factor:	0.0802
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05
Fuel density (lb/ft3):		0.0408	methane		
Pressure drop (in. w.c.):		30.4	Table 2.11		
CALCULATED UTILITY USAGES				ANNUAL COSTS	
Auxiliary Fuel Requirement:	(lb/min):	0.724	Equation 2.45		
	(scfm):	17.74		Item	Cost (\$/yr)
	(mcf/yr):	9,325.5		Operating labor	24,638
Total Maximum Exhaust Gas Flowrate:	(scfm):	4,868		Supervisory labor	3,696
				Maintenance labor	24,638
CALCULATED CAPITAL COSTS				Maintenance materials	24,638
Oxidizer Equipment Cost (EC):				Natural gas	74,604
@ 85% heat recovery	/:	334,451	Equation 2.33	Electricity	25,305
@ 95% heat recovery	/:	0	Equation 2.33	Overhead	46,565
				Taxes, insurance, administrative	36,300
Other equipment (see Table 2):		15,435		Capital recovery	58,256
Total Equipment Costbase:		349,886	Sum of EC and auxiliary equipment		
Total Equipment Costescalated (A):		537,779	Base cost times escalation factor	Total Annual Cost	318,638
Purchased Equipment Cost (B = 1.08A):		580,801	Table 2.8		

726,001 Table 2.8

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

3,696 Table 2.10

25,305 Equation 2.42 46,565 Table 2.10 36,300 Table 2.10 58,256 Table 2.10

24,638 Table 2.10, equals maintenance labor cost

Table 5. Total Annual Cost Spreadsheet - Catalytic Oxidizer (Fixed Bed) Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	1999
Reference Date CEPCI value*	390.6
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	2.13

INPUT PARAMETERS

Gas flowrate (scfm):	4,850	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	70	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	5.0	
Waste gas heat content (BTU/lb):	67.66	
Gas heat capacity (BTU/lb-oF):	0.255	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	460	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
Pressure drop (in. w.c.):	13.0	Table 2.11

CALCULATED UTILITY USAGES

Auxiliary Fuel Reqrmnt (lb/min):	
	(scfm):
Total Gas Flowrate (scfm):	
Catalyst Volume (ft3):	

CALCULATED CAPITAL COSTS

Equipment Costs (\$):					
@ 0 % heat recovery:					
@ 35 % heat recovery:					
@ 50 % heat recovery:					
@ 70 % heat recovery:					
Other equipment (see Table 2):					
Total Equipment Costbase:					
Total Equipment Costescalated (A):					
Purchased Equipment Cost (B = 1.08A):					
Total Capital Investment (TCI = 1.25B):					

0 Equation 2.34
0 Equation 2.35
138,178 Equation 2.36
0 Equation 2.37
15,435
153,612 Sum of EC and auxiliary e
327,439 Base cost times escalatio
353,634 Table 2.8
442,043 Table 2.8

0.869 Equation 2.21

9.4 Equation 2.28

21.3

4,871

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	45.00
Maintenance labor rate (\$/hr):	45.00
Operating labor factor (hr/sh):	0.50
Maintenance labor factor (hr/sh):	0.50
Electricity price (\$/kwh):	0.100
Catalyst price (\$/ft3):	650
Natural gas price (\$/mscf):	8.00
Annual interest rate (fraction):	0.05
Control system life (years):	20
Catalyst life (years):	4
Capital recovery factor (system):	0.0802
Capital recovery factor (catalyst):	0.2820
Taxes, insurance, admin. factor:	0.05

CALCULATED ANNUAL COSTS

	Total Annual Cost	283,493	
			-
alation factor	Capital recovery	34,939	
liary equipment	Taxes, insurance, administrative	22,102	Table 2.10
	Overhead	46,565	Table 2.10
	Catalyst replacement	1,868	Table 2.10
	Electricity	10,858	Equation 2.42
	Natural gas	89,553	
	Maintenance materials	24,638	Table 2.10, equals maintenance labor cost
	Maintenance labor	24,638	
	Supervisory labor	3,696	Table 2.10
	Operating labor	24,638	
			-
	Item	Cost (\$/yr)	

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition.

** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

Table 6. Total Annual Cost Spreadsheet - Straight Ductwork For Routing To Controls Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	2016
Reference Date CEPCI value*	541.7
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	1.54

INPUT PARAMETERS

Inlet stream flowrate (acfm):		1,617	per exhaust fan	
Duct velocity (ft/min)		329	5.5 ft/s	sec
Duct length (ft)		33	per exhaust fan	
Material of construction		Galv. CS sh.		
Insulation thickness (in.)		1		
Duct design		Circspiral		
Cost equation parameters	a:	2.560		
	b:	0.937		
Cost equation form		1		
Control system installation factor		1.5		
(if no system, enter '0')				
Fan-motor combined efficiency (fraction)		0.60		
DESIGN PARAMETERS				
Number of exhaust fans		3		
Duct diameter (in.)		30.00		
Pressure drop (in. w.c.)		0.002		
CALCULATED CAPITAL COSTS				
Equipment Cost (\$)base		2,066		
Equipment Cost (\$)escalated		3,176		
Purchased Equipment Cost (\$)		3,430		
Total Capital Investment per Exhaust Fan(\$)	5,145		
Overall Total Capital Investment(\$):		15,435		

ANNUAL COST INPUTS

Operating factor (hours/year):	8760
Electricity price (\$/kWhr):	0.100
Annual interest rate (fractional):	0.05
Ductwork economic life (years):	20
Capital recovery factor (system):	0.0802
Taxes, insurance, admin. factor:	0.05

CALCULATED ANNUAL COSTS

<u>Item</u>	Cost (\$/yr)
Electricity	1
Taxes, insurance, administrative	257
Capital recovery	413
Total Annual Cost	671
TULAI AIIIIUAI CUSL	0/1

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in *Chemical Engineering* monthly journals

Table 1.	Cost Summary of RACT III VOC Oxidation Control Options	Source Name:	WWT Batch Tanks	
	Neville Chemical Company - Pittsburgh, PA	Source ID:	P014	

1a. - Ranking of VOC Oxidation Control Options, by Reduction Efficiency

Ranking	Control Technology	Destruction Efficiency (%)	Capture Efficiency (%)	Reduction ¹ Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Recuperative Thermal Oxidizer	98.0	98.0	96.0	10.28	9.87
2.	Catalytic Oxidizer	Not Technically Feasible		N/A	N/A	
3.	Regenerative Thermal Oxidizer	Not Technically Feasible		N/A	N/A	

1b. - Ranking of Annual Control Costs per Ton of Pollutant Reduced

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital-Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	VOC Control Cost (\$/ton/yr)
1.	Recuperative Thermal Oxidizer	427,169	34,277	3,472	195,078	19,759
2.	Catalytic Oxidizer	Not Technically Feasible				N/A
3.	Regenerative Thermal Oxidizer	Not Technically Feasible			N/A	

¹ Overall reduction based on product of Control efficiency and Capture efficiency
Table 2. INPUT PARAMETERS FOR CONTROL TECHNOLOGY ANALYSIS Neville Chemical Company - Pittsburgh, PA

Facility-specific Economic Data

Operator labor cost, \$/hr	45.00
Maintenance labor cost, \$/hr	45.00
Electricity cost, \$/kwh	0.10
Natural Gas cost, \$/mcf	8.00
Debt Interest rate, fraction	0.05

Other Economic Data

Taxes, insurance, admin, fraction	0.05	EPA spreadsheet*
Catalyst cost, \$/ft3	350	EPA spreadsheet*
Catalyst life (years):	4	EPA spreadsheet*
Control system life (years):	20	EPA spreadsheet*
Operating labor factor (hr/sh):	0.5	EPA spreadsheet*
Maintenance labor factor (hr/sh):	0.5	EPA spreadsheet*
CEPCI (cost inflation factor)	832.6	Final value for June 2022

(Chemical Engineering Plant Cost Index, updated monthly in "Chemical Engineering Magazine")

Control System Data (typical)

	Removal	Heat
	Efficiency, %	Recovery, %
Recuperative Thermal Oxidizer	98	50
Catalytic Oxidizer (fixed bed)	98	50
Regenerative Thermal Oxidizer (RTO)	98	85

Auxiliary Equipment and Costs

	<u>Cost</u>	
Ductwork to collect fumes	77,173	(see Table 7)
Other equipment	0	
Total Auxiliary Equipment Costs:	77,173	

* USEPA-developed spreadsheet, named: US El

US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm

(available at https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution)

Table 3. Total Annual Cost Spreadsheet - Recuperative Thermal Oxidizer Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	1999
Reference Date CEPCI value*	390.6
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	2.13

INPUT PARAMETERS

Gas flowrate (scfm):	300	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	70	
Inlet gas density (Ib/scf):	0.0739	air
Primary heat recovery (fraction):	0.5	
Waste gas heat content (BTU/scf):	5.0	conservative estimate
Waste gas heat content (BTU/lb):	68	
Gas heat capacity (BTU/Ib-oF):	0.26	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	735	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
Pressure drop (in. w.c.):	11.0	Table 2.11

0.143 Equation 2.21

3.5

ANNUAL COST INPUTS	
Operating factor (hr/yr):	8,760
Operating labor rate (\$/hr):	45.00
Maintenance labor rate (\$/hr):	45.00
Operating labor factor (hr/sh):	0.50
Maintenance labor factor (hr/sh):	0.50
Electricity price (\$/kwh):	0.100
Natural gas price (\$/mscf):	8.00
Annual interest rate (fraction):	0.05
Control system life (years):	20
Capital recovery factor:	0.0802
Taxes, insurance, admin. factor:	0.05

CALCULATED UTILITY USAGES

Auxiliary Fuel Reqrmnt (lb/min): (scfm): Total Gas Flowrate (scfm):

CALCULATED CAPITAL COSTS

Equipment Costs (\$): Incinerator: @ 0 % h

- @ 0 % heat recovery:
 @ 35 % heat recovery:
 @ 50 % heat recovery:
 @ 70 % heat recovery:
- Other equipment (see Table 2): Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B = 1.08A): Total Capital Investment (TCI = 1.25B):

CALCULATED ANNUAL COSTS

303		Item	Cost (\$/yr)	_
		Operating labor	24,638	
		Supervisory labor	3,696	Table 2.10
		Maintenance labor	24,638	
0	Equation 2.29	Maintenance materials	24,638	Table 2.10, equals maintenance labor cost
0	Equation 2.30	Natural gas	14,697	
71,271	Equation 2.31	Electricity	573	Equation 2.42
0	Equation 2.32	Overhead	46,565	Table 2.10
		Taxes, insurance, administrative	21,358	Table 2.10
77,173		Capital recovery	34,277	Table 2.10
148,444	Sum of EC and auxiliary equipment			_
316,422	Base cost times escalation factor	Total Annual Cost	195,078	
341,735	Table 2.8			
427,169	Table 2.8			

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in *Chemical Engineering* monthly journals

Table 4. Total Annual Cost Spreadsheet - Straight Ductwork For Routing To Controls Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	2016
Reference Date CEPCI value*	541.7
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	1.54

INPUT PARAMETERS

Inlet stream flowrate (acfm):		10	D per exhaust fan
Duct velocity (ft/min)		20	0 0.3 ft/sec
Duct length (ft)		16	7 per exhaust fan
Material of construction		Galv. CS sh.	
Insulation thickness (in.)		1	
Duct design		Circspiral	
Cost equation parameters	a:	2.560	
	b:	0.937	
Cost equation form		1	
Control system installation factor		1.5	
(if no system, enter '0')			
Fan-motor combined efficiency (fra	ction)	0.60	
DESIGN PARAMETERS			
Number of exhaust fans		3	
Duct diameter (in.)		30.00	
Pressure drop (in. w.c.)		0.000	
CALCULATED CAPITAL COSTS			
Equipment Cost (\$)base		10,331	
Equipment Cost (\$)escalated		15,879	
Purchased Equipment Cost (\$)		17,150	
Total Capital Investment per Exhaus	st Fan(\$)	25,724	
		77 4 70	
Overall Total Capital Investment(\$)		//,1/3	

ANNUAL COST INPUTS

Operating factor (hours/year):	8760
Electricity price (\$/kWhr):	0.100
Annual interest rate (fractional):	0.05
Ductwork economic life (years):	20
Capital recovery factor (system):	0.0802
Taxes, insurance, admin. factor:	0.05

CALCULATED ANNUAL COSTS

<u>Item</u>	Cost (\$/yr)
Electricity	0
Taxes, insurance, administrative	1,286
Capital recovery	2,064
Total Annual Cost	3,350

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in *Chemical Engineering* monthly journals

Table 1.	Cost Summary of RACT III VOC Oxidation Control Options	Source Name:	Product Loading	
	Neville Chemical Company - Pittsburgh, PA	Source ID:	P016	

1a. - Ranking of VOC Oxidation Control Options, by Reduction Efficiency

Ranking	Control Technology	Destruction Efficiency (%)	Capture Efficiency (%)	Reduction ¹ Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Recuperative Thermal Oxidizer	98.0	98.0	96.0	18.24	17.52
2.	Catalytic Oxidizer	No	ot Technically Feas	ible	N/A	N/A
3.	Regenerative Thermal Oxidizer	No	ot Technically Feas	ible	N/A	N/A

1b. - Ranking of Annual Control Costs per Ton of Pollutant Reduced

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital-Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	VOC Control Cost (\$/ton/yr)
1.	Recuperative Thermal Oxidizer	499,264	40,062	2,287	240,097	13,706
2.	Catalytic Oxidizer	Not Technically Feasible			N/A	
3.	Regenerative Thermal Oxidizer		Not Technic	ally Feasible		N/A

¹ Overall reduction based on product of Control efficiency and Capture efficiency

Table 2. INPUT PARAMETERS FOR CONTROL TECHNOLOGY ANALYSIS Neville Chemical Company - Pittsburgh, PA

Operator labor cost, \$/hr

Facility-specific Economic Data

45.00
0.10
8.00
0.05

Other Economic Data

Taxes, insurance, admin, fraction	0.05	EPA spreadsheet*
Catalyst cost, \$/ft3	350	EPA spreadsheet*
Catalyst life (years):	4	EPA spreadsheet*
Control system life (years):	20	EPA spreadsheet*
Operating labor factor (hr/sh):	0.5	EPA spreadsheet*
Maintenance labor factor (hr/sh):	0.5	EPA spreadsheet*
CEPCI (cost inflation factor)	832.6	Final value for June 2022

45.00

(Chemical Engineering Plant Cost Index, updated monthly in "Chemical Engineering Magazine")

Control System Data (typical)

	Removal	Heat
	<u>Efficiency, %</u>	Recovery, %
Recuperative Thermal Oxidizer	98	50
Catalytic Oxidizer (fixed bed)	98	50
Regenerative Thermal Oxidizer (RTO)	98	85

Auxiliary Equipment and Costs

	<u>Cost</u>	
Ductwork to collect fumes	77,173	(see Table 7)
Other equipment	0	
Total Auxiliary Equipment Costs:	77,173	

* USEPA-developed spreadsheet, named:

US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm

(available at https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution)

Table 3. Total Annual Cost Spreadsheet - Recuperative Thermal Oxidizer Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	1999
Reference Date CEPCI value*	390.6
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	2.13

INPUT PARAMETERS

Gas flowrate (scfm): 1,000 Reference temperature (oF): 77 Inlet gas temperature (oF): 70 0.0739 air Inlet gas density (lb/scf): Primary heat recovery (fraction): 0.5 Waste gas heat content (BTU/scf): 5.0 conservative estimate Waste gas heat content (BTU/lb): 68 Gas heat capacity (BTU/lb-oF): 0.26 air Combustion temperature (oF): 1,400 Preheat temperature (oF): 735 Equation 2.18 Fuel heat of combustion (BTU/lb): 21,502 methane Fuel density (lb/ft3): 0.0408 methane Pressure drop (in. w.c.): 11.0 Table 2.11

0.475 Equation 2.21

11.7

А	NNUAL COST INPUTS	
0	perating factor (hr/yr):	8,760
0	perating labor rate (\$/hr):	45.00
N	laintenance labor rate (\$/hr):	45.00
0	perating labor factor (hr/sh):	0.50
N	laintenance labor factor (hr/sh):	0.50
El	lectricity price (\$/kwh):	0.100
N	atural gas price (\$/mscf):	8.00
A	nnual interest rate (fraction):	0.05
C	ontrol system life (years):	20
Ca	apital recovery factor:	0.0802
Ta	axes, insurance, admin. factor:	0.05

CALCULATED UTILITY USAGES

Auxiliary Fuel Reqrmnt (lb/min): (scfm): Total Gas Flowrate (scfm):

CALCULATED CAPITAL COSTS

Equipment Costs (\$): Incinerator: @ 0 % heat recovery:

- @ 35 % heat recovery:
 @ 50 % heat recovery:
 @ 70 % heat recovery:
- Other equipment (see Table 2): Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B = 1.08A): Total Capital Investment (TCI = 1.25B):

CALCULATED ANNUAL COSTS

1,012		Item	Cost (\$/yr)	_
		Operating labor	24,638	
		Supervisory labor	3,696	Table 2.10
		Maintenance labor	24,638	
0	Equation 2.29	Maintenance materials	24,638	Table 2.10, equals maintenance labor cost
0	Equation 2.30	Natural gas	48,989	
96,324	Equation 2.31	Electricity	1,909	Equation 2.42
0	Equation 2.32	Overhead	46,565	Table 2.10
		Taxes, insurance, administrative	24,963	Table 2.10
77,173		Capital recovery	40,062	Table 2.10
173,497	Sum of EC and auxiliary equipment			_
369,825	Base cost times escalation factor	Total Annual Cost	240,097	
399,411	Table 2.8			
499.264	Table 2.8			

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in *Chemical Engineering* monthly journals

Table 4. Total Annual Cost Spreadsheet - Straight Ductwork For Routing To Controls Neville Chemical Company - Pittsburgh, PA

COST REFERENCE DATE*:	2016
Reference Date CEPCI value*	541.7
Most recent CEPCI value**	832.6 Final value for June 2022
Cost Escalation Factor	1.54

INPUT PARAMETERS

Inlet stream flowrate (acfm):			333	per exhaust fan
Duct velocity (ft/min)			68	1.1 ft/sec
Duct length (ft)			167	per exhaust fan
Material of construction		Galv. CS sh.		
Insulation thickness (in.)			1	
Duct design		Circspiral		
Cost equation parameters	a:	2.	560	
	b:	0.	937	
Cost equation form			1	
Control system installation factor			1.5	
(if no system, enter '0')				
Fan-motor combined efficiency (fraction)		C	0.60	
DESIGN PARAMETERS				
Number of exhaust fans			3	
Duct diameter (in.)		30	0.00	
Pressure drop (in. w.c.)		0.	001	
CALCULATED CAPITAL COSTS				
Equipment Cost (\$)base		10,	331	
Equipment Cost (\$)escalated		15,	879	
Purchased Equipment Cost (\$)		17,	150	
Total Capital Investment per Exhaust Fan	\$)	25,	724	
Overall Total Capital Investment(\$):		77,	173	

ANNUAL COST INPUTS

Operating factor (hours/year):	8760
Electricity price (\$/kWhr):	0.100
Annual interest rate (fractional):	0.05
Ductwork economic life (years):	20
Capital recovery factor (system):	0.0802
Taxes, insurance, admin. factor:	0.05

CALCULATED ANNUAL COSTS

<u>Item</u>	Cost (\$/yr)
Electricity	0
Taxes, insurance, administrative	1,286
Capital recovery	2,064
Total Annual Cost	3,350

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition. ** Chemical Engineering Plant Cost Index (CEPCI) values are published in *Chemical Engineering* monthly journals

Carbon Adsorption Tables

Source Name and ID:	Unit 20-21 (P006)		
Facility Name:	Neville Chemical Company		

Data Inputs				
Select the type of carbon adsorber system:		Carbon Canist	er Adsorber with Carbon Replacement	,
For fixed-bed carbon adsorbers, provide the following information:				
Select the type of operation:		Not Applicable	~	
Select the type of material used to fabricate the carbon adsorber vessels:		Not Applicable	~	
Select the orientation for the adsorber vessels:		Not Applicable	•	
Enter the design data for the proposed Carbon Canister Adsorber wi	th Carbon Replacement			
Number of operating hours per year (Θ_s)	8,760 hours/ye	ear		
Waste Gas Flow Rate (Q)	100 acfm*		*acfm is actual cubic feet/min	
VOC Emission Rate (m _{voc})	2.220 lbs/hour			
Required VOC removal efficiency (E)	95 percent			
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15 Years*		* 15 years is a default equipment life. User should	enter actual value, if known.
Estimated Carbon life (n)	2 Years			
Estimated Carbon Replacement Rate (CRR)	379 lbs/hour	.*	* 379 lbs./hour is a default value. User should ent	er actual value, if known.
Carbon Canister Size	3000 Ibs carbo	n per canister*	* 3000 lbs of carbon per canister is a default value	. User should enter prefered canister size, if known.
Enter the Characteristics of the VOC/HAP:				
Name of VOC/HAP	m-Xylene			
Partial Pressure of m-Xylene in waste gas stream	0.005 psia			
Parameter "k" for m-Xylene	0.708 <u>Note:</u>			
Parameter "m" for m-Xylene	Typical va 0.113 VOCs are	alues of "k" and "m" shown in Table A	for some common	
Enter the cost data for the carbon adsorber:	voes are	shown in rubic / .		
Desired dollar-year	2022			
CEPCI* for 2022	833 CEPCI va	lue for 2022	567.5	2018
Annual Interest Rate (i)	5 percent	*	* 5 percent is a default value. User should enter co	urrent prime bank rate.
* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S)	is not an endorsement of the in is acceptable.	dex for purpose of c	ost escalation or de-escalation, but is there merely	to allow for availability of a well-
Carbon Canister Cost	\$20,403 per cani	ster (in 2022 dolla	Note: Typical costs for carbon canisters are sh	iown in Table B.
Operator Labor Rate	\$45.00 per hour	<u>r</u>	-	
Maintenance Labor Rate	\$45.00 per hour \$4.20 per lb		* \$4 20/lb is a default value based on 2018 marke	t price. User should enter actual value, if known
If known, enter any additional costs for site preparation and building construction	/modification:			
Site Preparation (SP) =	\$0 * Default	value. User should	enter actual value, if known.	
Buildings (Bldg) =	\$0 * Default	value. User should	enter actual value, if known.	
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack) (EC _{aux}) =	\$15,000			
Contingency Factor (CF)	10.0 percent'	k	* 10 percent is a default value. The contingency fa	ctor should be between 5 and 15 percent.

Type of Carbon Adsorber:	Carbon Canister Adsorber with Carbon Replacement		
Name of VOC Controlled:	m-Xylene		
Parameter	Equation	Calculated Value	Units
Quantity of m-Xylene Removed:			
Quantity of m-Xylene Removed (Wvoc) =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	9.237	tons/year
Number of times canister(s) replaced per year =	$\Theta_s / \Theta_A =$	2	
Adsorber Parameters for Carbon Canisters:			
Time for Adsorption (Θ_A) =	Number of operating hours before carbon canister replacement =	4,380	hours
Equilibrium Capacity at the Inlet (W _{e(max)}) =	$k \times P^{m} =$	0.389	lb. VOC/lb. Carbon
Working Capacity $(w_c) =$	0.5 x w _{e(max)} =	0.195	lb. VOC/lb. Carbon
Estimated Total Carbon Required (M _c) =	$(m_{voc}/w_c) \times \Theta_A$ =	24,993	lbs.
Number of Carbon Canisters Required =	M _c /Carbon Canister Capacity	9	canisters
Total Quantity of Carbon Required for 9 Canisters =	Number of Carbon Canisters * Carbon Capacity per Canister =	27,000	lbs.
Capital Recovery Factor:			
Capital Recovery Factor for adsorber vessels and auxiliary	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.0963	
equipment (CFRabsorber)=	Where n = Equipment Life and i = Interest Rate		
Capital Recovery Factor for carbon (CRF _{Carbon}) =	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.5378	
, carbony	Where n = Carbon Life and i = Interest Rate		

	Cost Estimate		
	Capital Costs		
Estimated capital costs for a Carbon Canister Adsorber with Ca VOC Controlled/Recovered Adsorber Vessel Orientation Operating Schedule	arbon Replacement with the following characteristics: I = m-Xylene I = Not Applicable = Not Applicable		
Total Capital Investment (TCI) (in 2022 dollars:)			
Parameter	Equation	Cost	
Total Cost for All Carbon Adsorber Canisters (EC _{Adsorb}) =	Canister Cost x Number of Canisters Required =	\$183,627	
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$15,000	
Total Purchased Equipment Costs for Carbon Adsorber (A) =	EC _{Adsorb} + EC _{aux} =	\$198,627	
Instrumentation =	0.10 × A =	\$19,863	
Sales taxes =	0.03 × A =	\$5,959	
Freight =	0.05 × A =	\$9,931	
	Total Purchased Equipment Costs (B) =	\$234,380	
Installation Costs (in 2022 dollars:)			
Parameter	Equation	Cost	
Direct and Indirect Installation =	0.20 × B =	\$18,750	
Site Preparation (SP) =		\$0 ¢0	
Buildings (Blog) =	Total Direct and Indirect Installation Costs -	\$U	
Contingency Cost (C) =	CF x (Purchase Equipment Cost + Installation costs) =	\$18,750 \$25,313	
Total Cap	ital Investment (TCI) = Purchace Equipment + Installation + Contingency Costs =	\$278,443	in 2022 dollars
	Annual Costs		
Direct Annual Costs			
Parameter	Equation	Cost	
Operating Labor Costs:	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$24,638	
Malakarana Casha	Supervisor = 15% of Operator	\$3,696	
Maintenance Costs:	Labor = 0.5 nours/snift × Labor Rate × (Operating Hours/8 nours/snift) Materials = 100% of maintenance labor	\$24,638	
Carbon Replacement Costs:	Labor = CFR_{exten} [Labor Rate × T_c /CRR] =	\$24,638 \$1.724	
	Carbon = $CRF_{carbon}[CC \times T_c \times 1.08] =$	\$65,866	
	Direct Annual Costs (DAC) =	\$145,198	in 2022 dollars
Indirect Annual Costs			
Parameter	Equation	Cost	
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$46,565	
Administrative Charges	= 2% of TCI	\$5,569	
Property Taxes	= 1% of TCI	\$2,784	
Insurance	= 1% of TCI	\$2,784	
Capital Recovery	= CRF _{Adsorber} × [TCI - [(1.08 *CC *Tc) + (LR*Tc/CRR)] =	\$14,718	
	Indirect Annual Costs (IAC) =	\$72,420	in 2022 dollars
	Total Annual Cost (TAC) = DAC + IAC =	\$217,619	in 2022 dollars
	Cost Effectiveness		
Parameter	Equation	Cost	
Total Annual Cost =	TAC =	\$217,619	per year in 2022 dollar
Annual Quantity of VOC Removed =	$W_{\text{voc}} = m_{\text{voc}} \times \Theta_{\text{s}} \times E =$	9.24	tons/year

Cost Effectiveness =

\$23,558

per ton of pollutants removed

Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =

Source Name and ID:	2PC Flaking Belt (P011)	
Facility Name:	Neville Chemical Company	

Data Inputs				
Select the type of carbon adsorber system:		Carbon Caniste	r Adsorber with Carbon Replacement	▼
For fixed-bed carbon adsorbers, provide the following information:				
Select the type of operation:		Not Applicable	-	
Select the type of material used to fabricate the carbon adsorber vessels:		Not Applicable	-	
Select the orientation for the adsorber vessels:		Not Applicable	▼	
Enter the design data for the proposed Carbon Canister Adsorber wi	th Carbon Replaceme	nt		
Number of operating hours per year (Θ_s)	8,760 hour	rs/year		
Waste Gas Flow Rate (Q)	4,850 acfm	۱*	*acfm is actual cubic feet/min	
VOC Emission Rate (m _{voc})	1.860 lbs/h	nour		
Required VOC removal efficiency (E)	95 perce	ent		
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15 Years	s*	* 15 years is a default equipment life. User	should enter actual value, if known.
Estimated Carbon life (n)	2 Years	S		
Estimated Carbon Replacement Rate (CRR)	379 lbs/h	10ur*	* 379 lbs./hour is a default value. User shou	ıld enter actual value, if known.
Carbon Canister Size	3000 lbs ca	arbon per canister*	* 3000 lbs of carbon per canister is a default	t value. User should enter prefered canister size, if known.
Enter the Characteristics of the VOC/HAP:				
Name of VOC/HAP	m-Xylene			
Partial Pressure of m-Xylene in waste gas stream	0.005 psia			
Parameter "k" for m-Xylene	0.708 Note	<u>:</u>		
Parameter "m" for m-Xylene	Typic 0.113 VOCs	cal values of "k" and "m" s are shown in Table A.	for some common	
Enter the cost data for the carbon adsorber:				
Desired dollar-year	2022			
CEPCI* for 2022	833 CEPC	CI value for 2022	567.5	2018
Annual Interest Rate (i)	5 perce	ent*	* 5 percent is a default value. User should e	nter current prime bank rate.
* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S)	t is not an endorsement of th is acceptable.	ne index for purpose of co	ost escalation or de-escalation, but is there n	nerely to allow for availability of a well-
Carbon Canister Cost	\$20,403 per c	canister (in 2022 dollar	Note: Typical costs for carbon canisters	are shown in Table B.
Operator Labor Rate	\$45.00 per h	hour		
Maintenance Labor Rate	\$45.00 per h	nour Ih	* \$4.20/lb is a default value based on 2018	market price. User should enter actual value, if known
If known onter any additional costs for site proparation and building construction	m/modification:			narket price. Oser should enter detail value, it known.
Site Preparation (SP) =	\$0 * Def	fault value. User should e	enter actual value, if known.	
Buildings (Bldg) =	\$0 * Def	fault value. User should e	nter actual value, if known.	
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack) (EC _{aux}) =	\$15,000			
Contingency Factor (CF)	10.0 perce	ent*	* 10 percent is a default value. The continge	ency factor should be between 5 and 15 percent.

Type of Carbon Adsorber:	Carbon Canister Adsorber with Carbon Replacement		
Name of VOC Controlled:	m-Xylene		
Parameter	Equation	Calculated Value	Units
Quantity of m-Xylene Removed:			
Quantity of m-Xylene Removed (Wvoc) =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	7.739	tons/year
Number of times canister(s) replaced per year =	$\Theta_s / \Theta_A =$	2	
Adsorber Parameters for Carbon Canisters:			
Time for Adsorption (Θ_A) =	Number of operating hours before carbon canister replacement =	4,380	hours
Equilibrium Capacity at the Inlet (W _{e(max)}) =	$k \times P^{m} =$	0.389	lb. VOC/lb. Carbon
Working Capacity $(w_c) =$	0.5 x w _{e(max)} =	0.195	lb. VOC/lb. Carbon
Estimated Total Carbon Required (M _c) =	$(m_{voc}/w_c) \times \Theta_A$ =	20,940	lbs.
Number of Carbon Canisters Required =	M _c /Carbon Canister Capacity	7	canisters
Total Quantity of Carbon Required for 7 Canisters =	Number of Carbon Canisters * Carbon Capacity per Canister =	21,000	lbs.
Capital Recovery Factor:			
Capital Recovery Factor for adsorber vessels and auxiliary	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.0963	
equipment (CFRabsorber)=	Where n = Equipment Life and i = Interest Rate		
Capital Recovery Factor for carbon (CRF _{Carbon}) =	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.5378	
, carbony	Where n = Carbon Life and i = Interest Rate		

	COSTESTINATE		
	Capital Costs		
Estimated capital costs for a Carbon Canister Adsorber with Ca VOC Controlled/Recovered Adsorber Vessel Orientation Operating Schedule	arbon Replacement with the following characteristics: = m-Xylene = Not Applicable = Not Applicable		
Total Capital Investment (TCI) (in 2022 dollars:)			
Parameter	Equation	Cost	
Total Cost for All Carbon Adsorber Canisters (EC _{Adsorb}) =	Canister Cost x Number of Canisters Required =	\$142,821	
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$15,000	
Total Purchased Equipment Costs for Carbon Adsorber (A) =	EC _{Adsorb} + EC _{aux} =	\$157,821	
Instrumentation =	0.10 × A =	\$15,782	
Sales taxes =	0.03 × A =	\$4,735	
Freight =	0.05 × A =	\$7,891	
-	Total Purchased Equipment Costs (B) =	\$186,229	
Installation Costs (in 2022 dollars:)			
Parameter	Equation	Cost	
Direct and Indirect Installation =	0.20 × B =	\$14,898	
Site Preparation (SP) =		\$0 \$0	
Buildings (Blug) =	Total Direct and Indirect Installation Costs -	ېں 14 000	
Contingency Cost (C) =	CF x (Purchase Equipment Cost + Installation costs) =	\$14,898	
Total Cap	ital Investment (TCI) = Purchace Equipment + Installation + Contingency Costs =	\$221,240	in 2022 dollars
	Annual Costs		
Direct Annual Costs			
Parameter	Equation	Cost	
Operating Labor Costs:	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$24,638	
Maintonanco Coste	Supervisor = 15% of Operator	\$3,696	
Maintenance Costs:	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor	\$24,038 \$24,638	
Carbon Replacement Costs:	Labor = CFR _{extens} [Labor Rate $\times T_c/CRR$] =	\$1.341	
	Carbon = $CRF_{carbon}[CC \times T_c \times 1.08] =$	\$51,229	
	Direct Annual Costs (DAC) =	\$130,178	in 2022 dollars
Indirect Annual Costs			
Parameter	Equation	Cost	
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$46,565	
Administrative Charges	= 2% of TCI	\$4,425	
Property Taxes	= 1% of TCI	\$2,212	
Insurance	= 1% of TCI	\$2,212	
Capital Recovery	= CRF _{Adsorber} × [TCI - [(1.08 *CC *Tc) + (LR*Tc/CRR)] =	\$11,897	
	Indirect Annual Costs (IAC) =	\$67,312	in 2022 dollars
	Total Annual Cost (TAC) = DAC + IAC =	\$197,490	in 2022 dollars
	Cost Effectiveness		
Parameter	Equation	Cost	
I otal Annual Cost =		\$197,490	per year in 2022 dollars
Annual Quantity of VUC Removed =	$W_{yoc} = m_{yoc} \times \Theta_s \times E =$	1.74	tons/year

Cost Effectiveness =

\$25,517

per ton of pollutants removed

Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =

Source Name and ID: Facility Name: 2PC Resin Kettles (P011) Neville Chemical Company

Data Inputs

Select the type of carbon adsorber system:	Carbon Canister Adsorber with Carbon Replacement		
For fixed-bed carbon adsorbers, provide the following information:			
Select the type of operation:	Not Applicable		
Select the type of material used to fabricate the carbon adsorber vessels:	Not Applicable		
Select the orientation for the adsorber vessels:	Not Applicable		
Enter the design data for the proposed Carbon Canister Adsorber with Carbon Replacement			

Number of operating hours per year (Θ_s)	8,760	hours/year	
Waste Gas Flow Rate (Q)	200	acfm*	*acfm is actual cubic feet/min
VOC Emission Rate (m _{voc})	3.550	lbs/hour	
Required VOC removal efficiency (E)	95	percent]
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15	Years*	* 15 years is a default equipment life. User should enter actual value, if known.
Estimated Carbon life (n)	2	Years	
Estimated Carbon Replacement Rate (CRR)	379	lbs/hour*	* 379 lbs./hour is a default value. User should enter actual value, if known.
Carbon Canister Size	3000	lbs carbon per canister*	* 3000 lbs of carbon per canister is a default value. User should enter prefered canister size, if known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	m-Xylene		
Partial Pressure of m-Xylene in waste gas stream	0.005	psia	
Parameter "k" for m-Xylene	0.708	Note:	
		Typical values of "k" and "m"	for some common
Parameter "m" for m-Xylene	0.113	VOCs are shown in Table A.	

Enter the cost data for the carbon adsorber:

Desired dollar-year	2022					
CEPCI* for 2022	833	CEPCI value for 2022		567.5	2018	
Annual Interest Rate (i)	5	percent*	* 5 percent is a defau	lt value. User should	l enter current prime	bank rate.

* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet is not an endorsement of the index for purpose of cost escalation or de-escalation, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Carbon Canister Cost	\$20,403 per canister (in 2022 d	ollar Note: Typical costs for carbon canisters are shown in Table B.
Operator Labor Rate	\$45.00 per hour	
Maintenance Labor Rate	\$45.00 per hour	
Carbon Cost (CC)	\$4.20 per lb	* \$4.20/lb is a default value based on 2018 market price. User should enter actual value, if known.
If known, enter any additional costs for site preparation and building construction	n/modification:	
Site Preparation (SP) =	\$0 * Default value. User sho	uld enter actual value, if known.
Buildings (Bldg) =	\$0 * Default value. User sho	uld enter actual value, if known.
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack) (EC _{aux}) =	\$325,000 Neville estimate - see Se	tion 3.4 of VOC RACT III Evaluation for an explanation
Contingency Factor (CF)	10.0 percent*	* 10 percent is a default value. The contingency factor should be between 5 and 15 percent.

Type of Carbon Adsorber:	Carbon Canister Adsorber with Carbon Replacement		
Name of VOC Controlled:	m-Xylene		
Parameter	Equation	Calculated Value	Units
Quantity of m-Xylene Removed:			
Quantity of m-Xylene Removed (Wvoc) =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	14.772	tons/year
Number of times canister(s) replaced per year =	$\Theta_s / \Theta_A =$	2	
Adsorber Parameters for Carbon Canisters:			
Time for Adsorption (Θ_A) =	Number of operating hours before carbon canister replacement =	4,380	hours
Equilibrium Capacity at the Inlet (W _{e(max)}) =	$k \times P^{m} =$	0.389	lb. VOC/lb. Carbon
Working Capacity $(w_c) =$	0.5 x w _{e(max)} =	0.195	lb. VOC/lb. Carbon
Estimated Total Carbon Required (M_c) =	$(m_{voc}/w_c) \times \Theta_A =$	39,966	lbs.
Number of Carbon Canisters Required =	M _c /Carbon Canister Capacity	14	canisters
Total Quantity of Carbon Required for 14 Canisters =	Number of Carbon Canisters * Carbon Capacity per Canister =	42,000	lbs.
Capital Recovery Factor:			
Capital Recovery Factor for adsorber vessels and auxiliary	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.0963	
equipment (CFRabsorber)=	Where n = Equipment Life and i = Interest Rate		
Capital Recovery Factor for carbon (CRF _{Carbon}) =	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.5378	
	Where n = Carbon Life and i = Interest Rate		

	Capital Costs		
Estimated capital costs for a Carbon Canister Adsorber with Ca	rbon Replacement with the following characteristics:		
VOC Controlled/Recovered	= m-Xylene		
Adsorber Vessel Orientation	= Not Applicable		
Operating schedule	= Not Applicable		
Total Capital Investment (TCI) (in 2022 dollars:)	For a three	6	
Parameter	Equation	COST	
Total Cost for All Carbon Adsorber Carlisters (EC _{Adsorb}) =		\$285,642	
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$325,000	
Total Purchased Equipment Costs for Carbon Adsorber (A) =	EC _{Adsorb} + EC _{aux} =	\$610,642	
Instrumentation =	0.10 × A =	\$61,064	
Sales taxes =	0.03 × A =	\$18,319	
Freight =	0.05 × A =	\$30,532	
	Total Purchased Equipment Costs (B) =	\$720,558	
Installation Costs (in 2022 dollars:)			
Parameter	Equation	Cost	
Direct and Indirect Installation =	0.20 × B =	\$57,645	
Site Preparation (SP) =		\$0 ¢0	
Buildings (Bidg) =		\$U	
Contingonou Cost (C) -	I otal Direct and Indirect Installation Costs =	\$57,645	
contingency cost (c) =	CF X (Purchase Equipment Cost + installation costs) =	\$77,820	
Total Cap	ital Investment (TCI) = Purchace Equipment + Installation + Contingency Costs =	\$856,022	in 2022 dollars
	Annual Costs		
Direct Annual Costs	Fauntion	Cash	
Operating Labor Costs:	Equation	COST	
Operating Labor Costs.	Supervisor = 15% of Operator	\$3.696	
Maintenance Costs:	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$24,638	
	Materials = 100% of maintenance labor	\$24,638	
Carbon Replacement Costs:	Labor = CFR_{carbon} [Labor Rate × T_C/CRR] =	\$2,682	
	Carbon = $CRF_{carbon}[CC \times T_c \times 1.08] =$	\$102,458	
	Direct Annual Costs (DAC) =	\$182,748	in 2022 dollars
Indirect Annual Costs			
Parameter	Equation	Cost	
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$46,565	
Administrative Charges	= 2% of TCI	\$17.120	
Property Taxes	= 1% of TCI	\$8,560	
Insurance	= 1% of TCI	\$8,560	
Capital Recovery	= CRF _{Adsorber} × [TCI - [(1.08 *CC *Tc) + (LR*Tc/CRR)] =	\$63,636	
	Indirect Annual Costs (IAC) =	\$144,442	in 2022 dollars
	Total Annual Cost (TAC) = DAC + IAC =	\$327.190	in 2022 dollars
	Cost Effortivoness	<i>+•=:)=••</i>	
Parameter	Fourtion	Cost	
Total Annual Cost =		\$327,190	per year in 2022 dollars
Annual Quantity of VOC Removed =	$W_{\rm max} = m_{\rm max} \times \Theta_{\rm s} \times E =$	14 77	tons/year
Cost Effectiveness -	Total Appual Cost (TAC) / Appual Quantity of VOC Demound (Decoursed -	622.150	nor top of pollutents
COST FILECTIVEHESS -	Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =	\$ZZ,130	per ton or ponutants rel

Source Name and ID:	3PC Flaking Belt (P012)
Facility Name:	Neville Chemical Company

	Data Inpr	uts	
Select the type of carbon adsorber system:		Carbon Canister Adsorber with Carbon Replacement	
For fixed-bed carbon adsorbers, provide the following information:			
Select the type of operation:		Not Applicable	
Select the type of material used to fabricate the carbon adsorber vessels:		Not Applicable	
Select the orientation for the adsorber vessels:		Not Applicable	
Enter the design data for the proposed Carbon Canister Adsorber wi	th Carbon Replacement		
Number of operating hours per year (Θ_s)	8,760 hours/year		
Waste Gas Flow Rate (Q)	9,700 acfm*	*acfm is actual cubic feet/min	
VOC Emission Rate (m _{voc})	1.530 lbs/hour		
Required VOC removal efficiency (E)	95 percent		
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15 Years*	* 15 years is a default equipment life. Use	er should enter actual value, if known.
Estimated Carbon life (n)	2 Years		·
Estimated Carbon Replacement Rate (CRR)	379 lbs/hour*	* 379 lbs./hour is a default value. User sh	ould enter actual value, if known.
Carbon Canister Size	3000 Ibs carbon per	canister* * 3000 lbs of carbon per canister is a defa	ult value. User should enter prefered canister size, if known.
Enter the Characteristics of the VOC/HAP:			
Name of VOC/HAP	m-Xylene		
Partial Pressure of m-Xylene in waste gas stream	0.005 psia		
Parameter "k" for m-Xylene	0.708 Note:		
Parameter "m" for m-Xylene	Typical values of 0,113 VOCs are shown	of "k" and "m" for some common	
Enter the cost data for the carbon adcorbor:	0.113 VOCS are show	in in Table A.	
Desired dollar-year	2022		
CEPCI* for 2022	822 CEPCL value fr	or 2022 567 5	2018
Annual Interest Rate (i)	5 percent*	* 5 percent is a default value. User should	enter current prime bank rate.
* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S)	t is not an endorsement of the index fo) is acceptable.	or purpose of cost escalation or de-escalation, but is there	merely to allow for availability of a well-
Carbon Canister Cost	\$20,403 per canister (i	in 2022 dollar Note: Typical costs for carbon canister	rs are shown in Table B.
Operator Labor Rate	\$45.00 per hour		
Maintenance Labor Rate	\$45.00 per hour		
Carbon Cost (CC)	\$4.20 per lb	* \$4.20/lb is a default value based on 201	8 market price. User should enter actual value, if known.
If known, enter any additional costs for site preparation and building construction	n/modification:		
Site Preparation (SP) = Buildings (Bldg) =	\$0 * Default value	 User should enter actual value, if known. User should enter actual value, if known 	
Fouriement Costs for auxiliary equipment (e.g. ductwork dampers and stack)		oser should enter actual value, il Nilowii.	
(EC _{aux}) =	\$15,000		
Contingency Factor (CF)	10.0 percent*	* 10 percent is a default value. The contin	igency factor should be between 5 and 15 percent.

Type of Carbon Adsorber:	Carbon Canister Adsorber with Carbon Replacement		
Name of VOC Controlled:	m-Xylene		
Parameter	Equation	Calculated Value	Units
Quantity of m-Xylene Removed:			
Quantity of m-Xylene Removed (Wvoc) =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	6.366	tons/year
Number of times canister(s) replaced per year =	$\Theta_s / \Theta_A =$	2	
Adsorber Parameters for Carbon Canisters:			
Time for Adsorption (Θ_A) =	Number of operating hours before carbon canister replacement =	4,380	hours
Equilibrium Capacity at the Inlet (W _{e(max)}) =	$k \times P^{m} =$	0.389	lb. VOC/lb. Carbon
Working Capacity $(w_c) =$	0.5 x w _{e(max)} =	0.195	lb. VOC/lb. Carbon
Estimated Total Carbon Required (M _c) =	$(m_{voc}/w_c) \times \Theta_A =$	17,225	lbs.
Number of Carbon Canisters Required =	M _c /Carbon Canister Capacity	6	canisters
Total Quantity of Carbon Required for 6 Canisters =	Number of Carbon Canisters * Carbon Capacity per Canister =	18,000	lbs.
Capital Recovery Factor:			
Capital Recovery Factor for adsorber vessels and auxiliary	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.0963	
equipment (CFRabsorber)=	Where n = Equipment Life and i = Interest Rate		
Capital Recovery Factor for carbon (CRF _{Carbon}) =	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.5378	
, carbony	Where n = Carbon Life and i = Interest Rate		

	Capital Costs		
Estimated capital costs for a Carbon Canister Adsorber with Ca VOC Controlled/Recovered Adsorber Vessel Orientation Operating Schedule	arbon Replacement with the following characteristics: = m-Xylene = Not Applicable = Not Applicable		
Total Capital Investment (TCI) (in 2022 dollars:)			
Parameter	Equation	Cost	
Total Cost for All Carbon Adsorber Canisters (EC _{Adsorb}) =	Canister Cost x Number of Canisters Required =	\$122,418	
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$15,000	
Total Purchased Equipment Costs for Carbon Adsorber (A) =	EC _{Adsorb} + EC _{aux} =	\$137,418	
Instrumentation =	0.10 × A =	\$13,742	
Sales taxes =	0.03 × A =	\$4,123	
Freight =	0.05 × A =	\$6,871	
	Total Purchased Equipment Costs (B) =	\$162,153	
Installation Costs (in 2022 dollars:)	······································	. ,	
Parameter	Equation	Cost	
Direct and Indirect Installation =	0.20 × B =	\$12,972	
Site Preparation (SP) =		\$0	
Buildings (Bldg) =		\$0	
	Total Direct and Indirect Installation Costs =	\$12,972	
Contingency Cost (C) =	CF x (Purchase Equipment Cost + Installation costs) =	\$17,513	
Total Cap	ital Investment (TCI) = Purchace Equipment + Installation + Contingency Costs =	\$192,638	in 2022 dollars
	Annual Costs		
Direct Annual Costs	Proved and	6	
Parameter Operating Labor Costs:	Equation	COST	
	Supervisor = 15% of Operator	\$3.696	
Maintenance Costs:	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$24,638	
	Materials = 100% of maintenance labor	\$24,638	
Carbon Replacement Costs:	Labor = CFR_{carbon} [Labor Rate × T_c/CRR] =	\$1,149	
	Carbon = $CRF_{carbon}[CC \times T_c \times 1.08] =$	\$43,911	
	Direct Annual Costs (DAC) =	\$122,668	in 2022 dollars
Indirect Annual Costs			
Parameter	Equation	Cost	
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$46,565	
Administrative Charges	= 2% of TCI	\$3,853	
Property Taxes	= 1% of TCI	\$1,926	
Insurance	= 1% of TCI	\$1,926	
Capital Recovery	= CRF _{Adsorber} × [TCI - [(1.08 *CC *Tc) + (LR*Tc/CRR)] =	\$10,487	
	Indirect Annual Costs (IAC) =	\$64,758	in 2022 dollars
	Total Annual Cost (TAC) = DAC + IAC =	\$187,426	in 2022 dollars
	Cost Effectiveness		
Parameter	Equation	Cost	
Total Annual Cost =	TAC =	\$187,426	per year in 2022 dollars
Annual Quantity of VOC Removed =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	6.37	tons/year
Cost Effectiveness =	Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =	\$29,440	per ton of pollutants removed

Source Name and ID: Facility Name:

3PC Resin Kettles (P012) **Neville Chemical Company**

Data Inputs

•	
Select the type of carbon adsorber system:	Carbon Canister Adsorber with Carbon Replacement
For fixed-bed carbon adsorbers, provide the following information:	
Select the type of operation:	Not Applicable
Select the type of material used to fabricate the carbon adsorber vessels:	Not Applicable
Select the orientation for the adsorber vessels:	Not Applicable
Enter the design data for the proposed Carbon Canister Adsorber with Carbon Replacement	

Number of operating hours per year (Θ_s)	8,760 k	hours/year	
Waste Gas Flow Rate (Q)	200 a	acfm*	*acfm is actual cubic feet/min
VOC Emission Rate (m _{voc})	4.970 l	lbs/hour	
Required VOC removal efficiency (E)	95 p	percent]
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15	Years*	* 15 years is a default equipment life. User should enter actual value, if known.
Estimated Carbon life (n)	2 \	Years	
Estimated Carbon Replacement Rate (CRR)	379	lbs/hour*	* 379 lbs./hour is a default value. User should enter actual value, if known.
Carbon Canister Size	3000	lbs carbon per canister*	* 3000 lbs of carbon per canister is a default value. User should enter prefered canister size, if known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	m-Xylene		
Partial Pressure of m-Xylene in waste gas stream	0.005	psia	
Parameter "k" for m-Xylene	0.708	Note:	
		Typical values of "k" and "m"	for some common
Parameter "m" for m-Xylene	0.113	VOCs are shown in Table A.	

Enter the cost data for the carbon adsorber:

Desired dollar-year	2022					
CEPCI* for 2022	833	CEPCI value for 2022		567.5	2018	
Annual Interest Rate (i)	5	percent*	* 5 percent is a defau	lt value. User should	l enter current prime	bank rate.

* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet is not an endorsement of the index for purpose of cost escalation or de-escalation, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable. ÷

Carbon Canister Cost	\$20,403 per canister (in 2022 dollar	Note: Typical costs for carbon canisters are shown in Table B.
Operator Labor Rate	\$45.00 per hour	
Maintenance Labor Rate	\$45.00 per hour	
Carbon Cost (CC)	\$4.20 per lb	* \$4.20/lb is a default value based on 2018 market price. User should enter actual value, if known.
If known, enter any additional costs for site preparation and building construction	n/modification:	
Site Preparation (SP) =	\$0 * Default value. User should	enter actual value, if known.
Buildings (Bldg) =	\$0 * Default value. User should	enter actual value, if known.
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack) (EC _{aux}) =	\$325,000 Neville estimate - see Section	3.4 of VOC RACT III Evaluation for an explanation
Contingency Factor (CF)	10.0 percent*	* 10 percent is a default value. The contingency factor should be between 5 and 15 percent.

Type of Carbon Adsorber:	Carbon Canister Adsorber with Carbon Replacement		
Name of VOC Controlled:	m-Xylene		
Parameter	Equation	Calculated Value	Units
Quantity of m-Xylene Removed:			
Quantity of m-Xylene Removed (Wvoc) =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	20.680	tons/year
Number of times canister(s) replaced per year =	$\Theta_s / \Theta_A =$	2	
Adsorber Parameters for Carbon Canisters:			
Time for Adsorption (Θ_A) =	Number of operating hours before carbon canister replacement =	4,380	hours
Equilibrium Capacity at the Inlet (W _{e(max)}) =	$k \times P^{m} =$	0.389	lb. VOC/lb. Carbon
Working Capacity $(w_c) =$	0.5 x w _{e(max)} =	0.195	lb. VOC/lb. Carbon
Estimated Total Carbon Required (M_c) =	$(m_{voc}/w_c) \times \Theta_A =$	55,952	lbs.
Number of Carbon Canisters Required =	M _c /Carbon Canister Capacity	19	canisters
Total Quantity of Carbon Required for 19 Canisters =	Number of Carbon Canisters * Carbon Capacity per Canister =	57,000	lbs.
Capital Recovery Factor:			
Capital Recovery Factor for adsorber vessels and auxiliary	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.0963	
equipment (CFRabsorber)=	Where n = Equipment Life and i = Interest Rate		
Capital Recovery Factor for carbon (CRF _{Carbon}) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Carbon Life and i = Interest Rate	0.5378	

	Capital Costs		
Estimated capital costs for a Carbon Canister Adsorber with Ca	arbon Replacement with the following characteristics:		
Adsorber Vessel Orientation Operating Schedule	= Not Applicable = Not Applicable		
Total Capital Investment (TCI) (in 2022 dollars:)		•	
Parameter	Equation	Cost	
Call Cost for All Carbon Ausorber Callisters (ECAdsorb) = 0.0000000000000000000000000000000000	(Decod on decime costs or estimated using methods required in Costion 2)	\$387,057	
Auxiliary Equipment (EC _{aux}) =		\$325,000	
	ECAdsorb + ECaux -	\$712,037	
Instrumentation =	0.10 × A =	\$71,266	
Sales taxes =	0.03 × A =	\$21,380	
Freight =	0.05 × A =	\$35 <i>,</i> 633	
	Total Purchased Equipment Costs (B) =	\$840,935	
Installation Costs (in 2022 dollars:)	Faustian	Cast	
Parameter		COST	
Site Prenaration (SP) =	0.20 ^ B -	\$07,273	
Buildings (Bldg) =		\$0	
	Total Direct and Indirect Installation Costs =	\$67.275	
Contingency Cost (C) =	CF x (Purchase Equipment Cost + Installation costs) =	\$90,821	
Total Cap	ital Investment (TCI) = Purchace Equipment + Installation + Contingency Costs =	\$999,031	in 2022 dollars
	Annual Costs	. ,	
Direct Annual Costs			
Parameter	Equation	Cost	
Operating Labor Costs:	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$24,638	
	Supervisor = 15% of Operator	\$3,696	
Maintenance Costs:	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$24,638	
Carbon Bonlacomont Costc:	Materials = 100% of maintenance labor	\$24,638	
carbon replacement costs.	Carbon = $CRE_{carbon}[CC x T_c x 1.08] =$	\$139.051	
		6220.208	in 2022 dellara
Indirect Annual Costs	Direct Annual Costs (DAC) =	\$220,298	In 2022 dollars
Parameter	Equation	Cost	
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$46,565	
Administrative Charges	= 2% of TCI	\$19,981	
Property Taxes	= 1% of TCI	\$9,990	
Insurance	= 1% of TCI	\$9,990	
Capital Recovery	= CRF _{Adsorber} × [TCI - [(1.08 *CC *Tc) + (LR*Tc/CRR)] =	\$70,687	
	Indirect Annual Costs (IAC) =	\$157,214	in 2022 dollars
	Total Annual Cost (TAC) = DAC + IAC =	\$377,512	in 2022 dollars
	Cost Effectiveness		
Parameter	Equation	Cost	
Total Annual Cost =	TAC =	\$377,512	per year in 2022 dollars
Annual Quantity of VOC Removed =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	20.68	tons/year
Cost Effectiveness =	Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =	\$18,255	per ton of pollutants removed

Source Name and ID:	3PC Resin Kettles (P012)
Facility Name:	Neville Chemical Company

Neville Chemical Company

Data Inputs

▼

Is the condenser a packaged, custom or gasoline vapor recovery system?

Packaged Condenser System

Enter the design data for the proposed condenser:

Number of operating hours per year and per day (Θ_s)	8,760	hours/year	24 hours/day
Volumetric flow rate of the waste stream (Q _{in})	200	scfm (at 77 °F; 1 atm)	
Inlet stream temperature (T _{in})	375	°F	
Required VOC removal efficiency (n)	90	%*	* 90% is a default control efficiency. Enter actual value, if known.
Specific heat of the coolant (C _{p,cool})	0.65	Btu/lb-mole-°F*	* 0.65 Btu/lb-mole-°F is a default value. Enter actual value, if known.
Estimated equipment life (n)	15	Years*	* 15 years is a default equipment life. Enter actual value, if known.
Overall heat transfer coefficient (U)	20	Btu/hour-ft ² -°F*	* 20 Btu/hour-ft ² -°F is a default coefficient. Enter actual value, if known.
Mechanical efficiency of compressor (η_{comp})	85	%*	* 85% is a default value. Enter actual value, if known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	m-Xylene	lle das els		
Molecular weight of m-xylene (WW)	106.17	lb./mole		
Heat Capacity of m-Xylene (Cp,voc)	43.82	Btu/lbmole-°F		
Heat of Condensation of m-Xylene (ΔHref)	15,360	Btu/lbmole		
Boiling Point of m-Xylene	282	°F		_
Antoine Equation Constants for m-Xylene	Α	В	С	
	7.00908	1462.266	215.11	based on degrees C and mmHg
Critical Temperature for m-Xylene	1111	°R		_
Volume Fraction of m-Xylene in waste stream entering the condenser (Yvoc,in)	0.00153			

Enter the cost data for the condenser:

Electricity (Cost _{elect})	\$0.1000	per kWh	
Operator Labor Rate	\$45.00	per hour	
Maintenance Labor Rate	\$45.00	per hour	
Re-Sale Value of Recovered VOC (Credit)	\$0.00	per lb	
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value.

If known, enter any additional costs for site preparation and building construction/modification:

Site Preparation (SP) =	\$0	* Default value. User should enter actual value, if known	own.	
Buildings (Bldg) and Ductwork =	\$325,000	Neville estimate - see Section 3.4 of VOC RACT III Evaluation for an explanation		
Equipment Costs for auxiliary equipment for custom condenser systems (EC _{aux}) =	\$0	* Default value. User should enter actual value, if kno	own.	
Desired dollar-year	2022			
CEPCI* for 2022	833	Enter the CEPCI value for 2022	576.1 2014 CEPCI	
Annual Interest Rate (i)	5.00	% (Default value is 4.25%)		

* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet is not an endorsement of the index for purpose of cost escalation or de-escalation, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Source Name and ID:	5PC Flaking Belt (P013)
Facility Name:	Neville Chemical Company

Data Inputs				
Select the type of carbon adsorber system:		Carbon Caniste	r Adsorber with Carbon Replacement	
For fixed-bed carbon adsorbers, provide the following information:				
Select the type of operation:		Not Applicable	▼	
Select the type of material used to fabricate the carbon adsorber vessels:		Not Applicable		
Select the orientation for the adsorber vessels:		Not Applicable	▼	
Enter the design data for the proposed Carbon Canister Adsorber wi	th Carbon Replaceme	nt		
Number of operating hours per year (Θ_s)	8,760 hou	rs/year		
Waste Gas Flow Rate (Q)	4,850 acfm	*	*acfm is actual cubic feet/min	
VOC Emission Rate (m _{voc})	1.670 lbs/h	nour		
Required VOC removal efficiency (E)	95 perc	ent		
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15 Year	s*	* 15 years is a default equipment life. User should enter actual value, if known.	
Estimated Carbon life (n)	2 Year	S		
Estimated Carbon Replacement Rate (CRR)	379 lbs/ł	10ur*	* 379 lbs./hour is a default value. User should enter actual value, if known.	
Carbon Canister Size	3000 lbs ca	arbon per canister*	* 3000 lbs of carbon per canister is a default value. User should enter prefered canister size, if known.	
Enter the Characteristics of the VOC/HAP:				
Name of VOC/HAP	m-Xylene			
Partial Pressure of m-Xylene in waste gas stream	0.005 psia			
Parameter "k" for m-Xylene	0.708 Note	<u>::</u>		
Parameter "m" for m-Xylene	Typic 0.113 VOC	cal values of "k" and "m" are shown in Table A.	for some common	
Enter the cost data for the carbon adsorber:				
Desired dollar-year	2022			
CEPCI* for 2022	833 CEP0	CI value for 2022	567.5 2018	
Annual Interest Rate (i)	5 perc	ent*	* 5 percent is a default value. User should enter current prime bank rate.	
* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S)	is not an endorsement of this acceptable.	ne index for purpose of co	ost escalation or de-escalation, but is there merely to allow for availability of a well-	
Carbon Canister Cost	\$20,403 per 0	canister (in 2022 dollar	Note: Typical costs for carbon canisters are shown in Table B.	
Operator Labor Rate	\$45.00 per	hour		
Maintenance Labor Rate	\$45.00 per	hour	* ¢4.20 //h is a default value based on 2010 merica trice. User about denter actual value, if lucuum	
Carbon Cost (CC)	\$4.20 per	0	* \$4.20/lb is a default value based on 2018 market price. User should enter actual value, if known.	
If known, enter any additional costs for site preparation and building construction	n/modification:	faultualua. Usar should r	anter actual value. if known	
Buildings (Bldg) =	\$0 * De	fault value. User should e	enter actual value, if known.	
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack) (EC _{aux}) =	\$15,000			
Contingency Factor (CF)	10.0 perc	ent*	* 10 percent is a default value. The contingency factor should be between 5 and 15 percent.	

Type of Carbon Adsorber:	Carbon Canister Adsorber with Carbon Replacement		
Name of VOC Controlled:	m-Xylene		
Parameter	Equation	Calculated Value	Units
Quantity of m-Xylene Removed:			
Quantity of m-Xylene Removed (Wvoc) =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	6.949	tons/year
Number of times canister(s) replaced per year =	$\Theta_s / \Theta_A =$	2	
Adsorber Parameters for Carbon Canisters:			
Time for Adsorption (Θ_A) =	Number of operating hours before carbon canister replacement =	4,380	hours
Equilibrium Capacity at the Inlet (W _{e(max)}) =	$k \times P^{m} =$	0.389	lb. VOC/lb. Carbon
Working Capacity $(w_c) =$	0.5 x w _{e(max)} =	0.195	lb. VOC/lb. Carbon
Estimated Total Carbon Required (M_c) =	$(m_{voc}/w_c) \times \Theta_A =$	18,801	lbs.
Number of Carbon Canisters Required =	M _c /Carbon Canister Capacity	7	canisters
Total Quantity of Carbon Required for 7 Canisters =	Number of Carbon Canisters * Carbon Capacity per Canister =	21,000	lbs.
Capital Recovery Factor:			
Capital Recovery Factor for adsorber vessels and auxiliary	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.0963	
equipment (CFRabsorber)=	Where n = Equipment Life and i = Interest Rate		
Capital Recovery Factor for carbon (CRF _{Carbon}) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Carbon Life and i = Interest Rate	0.5378	

	Cost Estimate		
	Capital Costs		
Estimated capital costs for a Carbon Canister Adsorber with Ca VOC Controlled/Recovered Adsorber Vessel Orientatior Operating Schedule	arbon Replacement with the following characteristics: I = m-Xylene n = Not Applicable = Not Applicable		
Total Capital Investment (TCI) (in 2022 dollars:)			
Parameter	Equation	Cost	
Total Cost for All Carbon Adsorber Canisters (EC _{Adsorb}) =	Canister Cost x Number of Canisters Required =	\$142,821	
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$15,000	
Total Purchased Equipment Costs for Carbon Adsorber (A) =	EC _{Adsorb} + EC _{aux} =	\$157,821	
Instrumentation =	0.10 × A =	\$15,782	
Sales taxes =	0.03 × A =	\$4,735	
Freight =	0.05 × A =	\$7,891	
	Total Purchased Equipment Costs (B) =	\$186,229	
Installation Costs (in 2022 dollars:)			
Parameter	Equation	Cost	
Direct and Indirect Installation =	0.20 × B =	\$14,898	
Site Preparation (SP) =		\$0 ¢0	
Buildings (Bldg) =	Tabl Direction distribution Costs	\$U	
Contingency Cost (C) =	Total Direct and Indirect Installation Costs = CE x (Purchase Equipment Cost + Installation costs) =	\$14,898 \$20,113	
Total Can	ital Investment (TCI) = Purchace Equipment + Installation + Contingency Costs =	\$221 240	in 2022 dollars
	Annual Costs	<i><i>vzzzijz+</i>0</i>	
Direct Annual Costs			
Parameter	Equation	Cost	
Operating Labor Costs:	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$24,638	
	Supervisor = 15% of Operator	\$3,696	
Maintenance Costs:	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$24,638	
Carbon Danlagement Castor	Materials = 100% of maintenance labor	\$24,638	
Carbon Replacement Costs:	Labor = CPE_{carbon} [Labor Rate × I_C /CRR] =	\$1,341	
	Carbon = Chrcarbon[CC x Ic x 1.00] = Direct Arrow [October (D10)]	\$51,229	
Indirect Annual Costs	Direct Annual Costs (DAC) =	\$130,178	in 2022 dollars
Parameter	Equation	Cost	
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$46,565	
Administrative Charges		¢4.425	
Property Taxes	= 2% of TCI	\$4,425 \$2,212	
Insurance	= 1% of TCI	\$2,212	
Capital Recovery	= CRF _{Adsorber} × [TCI - [(1.08 *CC *Tc) + (LR*Tc/CRR)] =	\$11,897	
	Indirect Annual Costs (IAC) =	\$67 312	in 2022 dollars
	Total Annual Cost (TAC) = DAC + IAC =	\$197.490	in 2022 dollars
	Cost Effectiveness	, . ,	
Parameter	Equation	Cost	
Total Annual Cost =	TAC =	\$197,490	per year in 2022 dollar
Annual Quantity of VOC Removed =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	6.95	tons/year

Cost Effectiveness =

\$28,420

per ton of pollutants removed

Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =

Source Name and ID:	5PC Resin Kettles (P013)			
Facility Name:	Neville Chemical Company			

	Data Inp	uts	
Select the type of carbon adsorber system:		Carbon Canister Adsorber with Carbon Replacement	T
For fixed-bed carbon adsorbers, provide the following information:			
Select the type of operation:		Not Applicable	
Select the type of material used to fabricate the carbon adsorber vessels:		Not Applicable	
Select the orientation for the adsorber vessels:		Not Applicable	
Enter the design data for the proposed Carbon Canister Adsorber with	th Carbon Replacement		
Number of operating hours per year (Θ_s)	8,760 hours/year		
Waste Gas Flow Rate (Q)	75 acfm*	*acfm is actual cubic feet/min	
VOC Emission Rate (m _{voc})	3.200 lbs/hour		
Required VOC removal efficiency (E)	95 percent		
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15 Years*	* 15 years is a default equipment life. U	Jser should enter actual value, if known.
Estimated Carbon life (n)	2 Years		
Estimated Carbon Replacement Rate (CRR)	379 lbs/hour*	* 379 lbs./hour is a default value. User	should enter actual value, if known.
Carbon Canister Size	3000 lbs carbon per	canister* * 3000 lbs of carbon per canister is a de	efault value. User should enter prefered canister size, if known.
Enter the Characteristics of the VOC/HAP:			
Name of VOC/HAP	m-Xylene		
Partial Pressure of m-Xylene in waste gas stream	0.005 psia		
Parameter "k" for m-Xylene	0.708 <u>Note:</u>		
Parameter "m" for m Yulono	Typical values	of "k" and "m" for some common	
	0.113 VUCs are show	vn in Table A.	
Enter the cost data for the carbon adsorber:	2022		
	2022	5 2022 EC	7.5 2019
Annual Interest Rate (i)	5 percent*	* 5 percent is a default value. User sho	uld enter current prime bank rate.
* CEDCI is the Chemical Engineering Plant Cast Index. The use of CEDCI is this engeddheat			
known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S)	is acceptable.	or purpose of cost escalation of de-escalation, but is the	remerely to allow for availability of a well-
Carbon Canister Cost	\$20,403 per canister (in 2022 dollar Note: Typical costs for carbon canist	ters are shown in Table B.
Operator Labor Rate	\$45.00 per hour		
Maintenance Labor Rate	\$45.00 per hour	* \$4.20/lb is a default value based on 2	018 market price. User should enter actual value, if known
	94.20 per 15		oro market price. Oser should enter actual value, il known.
Site Preparation (SP) =	1/modification:	e. User should enter actual value, if known	
Buildings (Bldg) =	\$0 * Default value	e. User should enter actual value, if known.	
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack) (EC _{aux}) =	\$250,000 Neville estimat	te - see Section 3.4 of VOC RACT III Evaluation for an exp	planation
Contingency Factor (CF)	10.0 percent*	* 10 percent is a default value. The cont	tingency factor should be between 5 and 15 percent.

Type of Carbon Adsorber:	Carbon Canister Adsorber with Carbon Replacement		
Name of VOC Controlled:	m-Xylene		
Parameter	Equation	Calculated Value	Units
Quantity of m-Xylene Removed:			
Quantity of m-Xylene Removed (Wvoc) =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	13.315	tons/year
Number of times canister(s) replaced per year =	$\Theta_s / \Theta_A =$	2	
Adsorber Parameters for Carbon Canisters:			
Time for Adsorption (Θ_A) =	Number of operating hours before carbon canister replacement =	4,380	hours
Equilibrium Capacity at the Inlet (W _{e(max)}) =	$k \times P^{m} =$	0.389	lb. VOC/lb. Carbon
Working Capacity $(w_c) =$	0.5 x w _{e(max)} =	0.195	lb. VOC/lb. Carbon
Estimated Total Carbon Required (M _c) =	$(m_{voc}/w_c) \times \Theta_A =$	36,025	lbs.
Number of Carbon Canisters Required =	M _c /Carbon Canister Capacity	13	canisters
Total Quantity of Carbon Required for 13 Canisters =	Number of Carbon Canisters * Carbon Capacity per Canister =	39,000	lbs.
Capital Recovery Factor:			
Capital Recovery Factor for adsorber vessels and auxiliary	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.0963	
equipment (CFRabsorber)=	Where n = Equipment Life and i = Interest Rate		
Capital Recovery Factor for carbon (CRF _{Carbon}) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$	0.5378	
	Where n = Carbon Life and i = Interest Rate		

	Capital Costs		
Estimated capital costs for a Carbon Canister Adsorber with Car VOC Controlled/Recovered = Adsorber Vessel Orientation = Operating Schedule =	bon Replacement with the following characteristics: = m-Xylene = Not Applicable = Not Applicable		
Total Capital Investment (TCI) (in 2022 dollars:)		_	
Parameter	Equation	Cost	
Total Cost for All Carbon Adsorber Canisters (EC _{Adsorb}) =	Canister Cost x Number of Canisters Required =	\$265,239	
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$250,000	
Total Purchased Equipment Costs for Carbon Adsorber (A) =	EC _{Adsorb} + EC _{aux} =	\$515,239	
Instrumentation =	0.10 × A =	\$51,524	
Sales taxes =	0.03 × A =	\$15,457	
Freight =	0.05 × A =	\$25,762	
	Total Purchased Equipment Costs (B) =	\$607,982	
Installation Costs (in 2022 dollars:)			
Parameter	Equation	Cost	
Direct and Indirect Installation =	0.20 × B =	\$48,639	
Site Preparation (SP) =		\$0	
Buildings (Bldg) =		\$0 \$ 1 - 5 - 5 - 5	
Contingency Cost (C) =	Total Direct and Indirect Installation Costs = CF x (Purchase Equipment Cost + Installation costs) =	\$48,639 \$65,662	
Total Capit	\$722,283	in 2022 dollars	
Direct Annual Costs			
Parameter	Equation	Cost	
Operating Labor Costs:	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$24,638	
	Supervisor = 15% of Operator	\$3,696	
Maintenance Costs:	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$24,638	
Carbon Dealacament Casto	Materials = 100% of maintenance labor	\$24,638	
Carbon Replacement Costs:	Labor = CFR_{carbon} [Labor Rate × I_c/CRR] =	\$2,490 \$05 140	
	$Carbon = CKr_{carbon}[CCXT_{c}X1.06] =$	\$95,140	
	Direct Annual Costs (DAC) =	\$175,238	in 2022 dollars
Indirect Annual Costs			
Parameter	Equation	Cost	
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$46,565	
Administrative Charges	= 2% of TCI	\$14,446	
Property Taxes	= 1% of TCI	\$7,223	
Insurance	= 1% of TCI	\$7,223	
Capital Recovery	= CRF _{Adsorber} × [TCI - [(1.08 *CC *Tc) + (LR*Tc/CRR)] =	\$52,097	
	Indirect Annual Costs (IAC) =	\$127.553	in 2022 dollars
	Total Annual Cost (TAC) = DAC + IAC =	\$302,791	in 2022 dollars
	Cost Effectiveness		
Parameter	Equation	Cost	
Total Annual Cost =	TAC =	\$302 791	per year in 2022 dollars
Annual Quantity of VOC Removed =	$W_{\rm ext} = m_{\rm ext} \times \Theta_{\rm ext} F =$	13 32	tons/vear
Cost Effectiveness =	Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =	\$22,740	per ton of pollutants removed

Source Name and ID:	WWT Batch Tanks (P014)
Facility Name:	Neville Chemical Company

Data Inputs						
Select the type of carbon adsorber system:			Carbon Caniste	r Adsorber with Carbon Replacement	-	
For fixed-bed carbon adsorbers, provide the following information:						
Select the type of operation:			Not Applicable	-		
Select the type of material used to fabricate the carbon adsorber vessels:			Not Applicable	-		
Select the orientation for the adsorber vessels:			Not Applicable	-		
Enter the design data for the proposed Carbon Canister Adsorber wi	th Carbon Replacen	nent				
Number of operating hours per year (Θ_s)	8,760 ho	ours/year				
Waste Gas Flow Rate (Q)	300 ac	cfm*		assumed 100 cfm per each of thr	ee batch tanks	
VOC Emission Rate (m _{voc})	2.350 lb	s/hour				
Required VOC removal efficiency (E)	95 pe	ercent				
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15 Ye	ears*		* 15 years is a default equipment	t life. User should	enter actual value, if known.
Estimated Carbon life (n)	2 Ye	ears				
Estimated Carbon Replacement Rate (CRR)	379 lb	s/hour*		* 379 lbs./hour is a default value	. User should ente	er actual value, if known.
Carbon Canister Size	3000 lb	s carbon per ca	anister*	* 3000 lbs of carbon per canister	is a default value	. User should enter prefered canister size, if known.
Enter the Characteristics of the VOC/HAP:						
Name of VOC/HAP	m-Xylene					
Partial Pressure of m-Xylene in waste gas stream	0.005 ps	sia				
Parameter "k" for m-Xylene	0.708 <u>N</u>	ote:				
Parameter "m" for m-Xylene	0.113 vo	pical values of Cs are shown	f "k" and "m" f in Table A.	for some common		
Enter the cost data for the carbon adsorber:						
Desired dollar-year	2022					
CEPCI* for 2022	833 CE	EPCI value for	r 2022		567.5	2018
Annual Interest Rate (i)	5 pe	ercent*		* 5 percent is a default value. Use	er should enter cu	irrent prime bank rate.
* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S)	is not an endorsement o is acceptable.	f the index for	purpose of co	ost escalation or de-escalation, bu	t is there merely t	o allow for availability of a well-
Carbon Canister Cost	\$20,403 pe	er canister (in	2022 dollar	Note: Typical costs for carbon	canisters are sh	own in Table B.
Operator Labor Rate	\$45.00 pe	er hour				
Maintenance Labor Rate	\$45.00 pe	er hour ar lb		* \$4.20/lb is a default value base	d on 2019 market	t price. User should enter actual value, if known
	34.20 pe			\$4.20/10 is a default value base	U UN 2016 Marker	. price. Oser should enter actual value, il known.
IT KNOWN, ENTER ANY additional costs for site preparation and building construction Site Preparation (SP) =		Default value	l Iser should e	nter actual value if known		
Buildings (Bldg) =	\$0 *	Default value.	User should e	nter actual value, if known.		
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack) (EC _{aux}) =	\$15,000					
Contingency Factor (CF)	10.0 pe	ercent*		* 10 percent is a default value. The	he contingency fa	ctor should be between 5 and 15 percent.

The following design parameters for the carbon adsorber we shown on the <i>Cost Estimate</i> tab.	ere calculated based on the values entered on the <i>Data Inputs</i> tab. T	hese values were used	to prepare the costs
Type of Carbon Adsorber:	Carbon Canister Adsorber with Carbon Replacement		
Name of VOC Controlled:	m-Xylene		
Parameter	Equation	Calculated Value	Units
Quantity of m-Xylene Removed:			
Quantity of m-Xylene Removed (Wvoc) =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	9.778	tons/year
Number of times canister(s) replaced per year =	$\Theta_s / \Theta_A =$	2	
Adsorber Parameters for Carbon Canisters:			
Time for Adsorption (Θ_A) =	Number of operating hours before carbon canister replacement =	4,380	hours
Equilibrium Capacity at the Inlet (W _{e(max)}) =	$k \times P^{m} =$	0.389	lb. VOC/lb. Carbon
Working Capacity $(w_c) =$	0.5 x w _{e(max)} =	0.195	lb. VOC/lb. Carbon
Estimated Total Carbon Required (M _c) =	$(m_{voc}/w_c) \times \Theta_A =$	26,456	lbs.
Number of Carbon Canisters Required =	M _c /Carbon Canister Capacity	9	canisters
Total Quantity of Carbon Required for 9 Canisters =	Number of Carbon Canisters * Carbon Capacity per Canister =	27,000	lbs.
Capital Recovery Factor:			
Capital Recovery Factor for adsorber vessels and auxiliary	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.0963	
equipment (CFRabsorber)=	Where n = Equipment Life and i = Interest Rate		
Capital Recovery Factor for carbon (CRF _{Carbon}) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Carbon Life and i = Interest Rate	0.5378	

	Capital Costs		
Estimated capital costs for a Carbon Canister Adsorber with Ca VOC Controlled/Recovered Adsorber Vessel Orientation Operating Schedule	arbon Replacement with the following characteristics: = m-Xylene = Not Applicable = Not Applicable		
Total Capital Investment (TCI) (in 2022 dollars:)			
Parameter	Equation	Cost	
Total Cost for All Carbon Adsorber Canisters (EC _{Adsorb}) =	Canister Cost x Number of Canisters Required =	\$183,627	
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$15,000	
Total Purchased Equipment Costs for Carbon Adsorber (A) =	EC _{Adsorb} + EC _{aux} =	\$198,627	
Instrumentation =	0.10 × A =	\$19,863	
Sales taxes =	0.03 × A =	\$5,959	
Freight =	0.05 × A =	\$9,931	
	Total Purchased Equipment Costs (B) =	\$234,380	
Installation Costs (in 2022 dollars:)			
Parameter	Equation	Cost	
Direct and indirect installation =	0.20 × B =	\$18,750 ¢0	
Buildings (Bldg) =		\$0 \$0	
buildings (blog) -	Total Direct and Indirect Installation Costs =	\$18 750	
Contingency Cost (C) =	CF x (Purchase Equipment Cost + Installation costs) =	\$25,313	
Total Cap	\$278,443	in 2022 dollars	
	Annual Costs	. ,	
Direct Annual Costs			
Parameter	Equation	Cost	
Operating Labor Costs:	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$24,638	
	Supervisor = 15% of Operator	\$3,696	
Maintenance Costs:	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$24,638	
Carbon Replacement Costs:	$I_{abor} = CFR$ [labor Rate x T_{a}/CRR] =	\$24,638 \$1 724	
	Carbon = $CRF_{carbon}[CC x T_c x 1.08] =$	\$65,866	
	Direct Annual Costs (DAC) =	\$145 198	in 2022 dollars
Indirect Annual Costs		<i></i>	
Parameter	Equation	Cost	
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$46,565	
Administrative Charges	- 2% of TCI	\$5 560	
Property Taxes	= 2% of TCI	\$3,309 \$2,784	
Insurance	= 1% of TCI	\$2,784	
Capital Recovery	= CRF _{Adsorber} × [TCI - [(1.08 *CC *Tc) + (LR*Tc/CRR)] =	\$14,718	
	Indirect Annual Costs (IAC) -	\$72.420	in 2022 dollars
		\$72,420	in 2022 dollars
		Ş217,019	111 2022 Utilats
N	Cost Effectiveness	. .	
Parameter	Equation	Cost	norwort in 2022 dellar-
Annual Autitual Cost =	1AC - 11/ - m x A x E -	۶217,019 0 78	tons woar
Cost Effectiveness -	$w_{VOC} = m_{VOC} \times \sigma_{S} \times L =$	5.70	
LOST Effectiveness =	i otal Annual Cost (IAC) / Annual Quantity of VOC Removed/Recovered =	\$22,255	per ton of pollutants removed

Source Name and ID:	Product Loading (P016)
Facility Name:	Neville Chemical Company

Data Inputs					
Select the type of carbon adsorber system:		Carbon Can	ster Adsorber with Carbon Replacement		
For fixed-bed carbon adsorbers, provide the following information:					
Select the type of operation:		Not Applicat	le 🗸 🗸		
Select the type of material used to fabricate the carbon adsorber vessels:		Not Applicat	le V		
Select the orientation for the adsorber vessels:		Not Applicab	ie 🗸 🗸		
Enter the design data for the proposed Carbon Canister Adsorber wi	th Carbon Replace	ement	_		
Number of operating hours per year (Θ_s)	8,760	hours/year			
Waste Gas Flow Rate (Q)	1,000	acfm*	*acfm is actual cubic feet/min		
VOC Emission Rate (m _{voc})	4.000	lbs/hour			
Required VOC removal efficiency (E)	95	percent			
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15	Years*	* 15 years is a default equipment life. User should enter actual value, if known.		
Estimated Carbon life (n)	2	Years			
Estimated Carbon Replacement Rate (CRR)	379	lbs/hour*	* 379 lbs./hour is a default value. User should enter actual value, if known.		
Carbon Canister Size	3000	lbs carbon per canister*	* 3000 lbs of carbon per canister is a default value. User should enter prefered canister size, if known.		
Enter the Characteristics of the VOC/HAP:					
Name of VOC/HAP	m-Xylene				
Partial Pressure of m-Xylene in waste gas stream	0.005	psia			
Parameter "k" for m-Xylene	0.708	Note:			
Parameter "m" for m-Xvlene	0.113	Typical values of "k" and "n VOCs are shown in Table A	" for some common		
Enter the cost data for the carbon adsorber:					
Desired dollar-year	2022				
CEPCI* for 2022	833	CEPCI value for 2022	567 5 2018		
Annual Interest Rate (i)	5	percent*	* 5 percent is a default value. User should enter current prime bank rate.		
* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S)	is not an endorsement is acceptable.	of the index for purpose of	cost escalation or de-escalation, but is there merely to allow for availability of a well-		
Carbon Canister Cost	\$20,403	per canister (in 2022 doll	ar Note: Typical costs for carbon canisters are shown in Table B.		
Operator Labor Rate	\$45.00	per hour	_		
Maintenance Labor Rate	\$45.00	per hour per lb	* ¢4.20/lb is a default value based on 2018 market price. Liser should enter actual value, if known		
	Ş4.20	perio	54.20/10 is a default value based on 2018 market price. User should enter actual value, it known.		
If known, enter any additional costs for site preparation and building construction Site Preparation (SP) =	n/modification:	* Default value Liser shoul	d enter actual value, if known		
Buildings (Bldg) =	\$0	* Default value. User should	d enter actual value, if known.		
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack) $(EC_{mw}) =$	\$15,000				
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value. The contingency factor should be between 5 and 15 percent.		

The following design parameters for the carbon adsorber were shown on the <i>Cost Estimate</i> tab.	e calculated based on the values entered on the <i>Data Inputs</i> tab. Th	ese values were used	to prepare the costs
Type of Carbon Adsorber:	Carbon Canister Adsorber with Carbon Replacement		
Name of VOC Controlled:	m-Xylene		
Parameter	Equation	Calculated Value	Units
Quantity of m-Xylene Removed:			
Quantity of m-Xylene Removed (Wvoc) =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	16.644	tons/year
Number of times canister(s) replaced per year =	$\Theta_s / \Theta_A =$	2	
Adsorber Parameters for Carbon Canisters:			
Time for Adsorption (Θ_A) =	Number of operating hours before carbon canister replacement =	4,380	hours
Equilibrium Capacity at the Inlet (W _{e(max)}) =	$k \times P^{m} =$	0.389	lb. VOC/lb. Carbon
Working Capacity (w _c) =	0.5 x w _{e(max)} =	0.195	lb. VOC/lb. Carbon
Estimated Total Carbon Required (M_c) =	$(m_{voc}/w_c) \times \Theta_A$ =	45,032	lbs.
Number of Carbon Canisters Required =	M _c /Carbon Canister Capacity	16	canisters
Total Quantity of Carbon Required for 16 Canisters =	Number of Carbon Canisters * Carbon Capacity per Canister =	48,000	lbs.
Capital Recovery Factor:			
Capital Recovery Factor for adsorber vessels and auxiliary equipment (CFRabsorber)=	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Equipment Life and i = Interest Rate	0.0963	
Capital Recovery Factor for carbon (CRF _{Carbon}) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Carbon Life and i = Interest Rate	0.5378	

	Capital Costs		
Estimated capital costs for a Carbon Canister Adsorber with Ca VOC Controlled/Recovered Adsorber Vessel Orientation Operating Schedule	arbon Replacement with the following characteristics: = m-Xylene = Not Applicable = Not Applicable		
Total Capital Investment (TCI) (in 2022 dollars:)			
Parameter	Equation	Cost	
Total Cost for All Carbon Adsorber Canisters (EC _{Adsorb}) =	Canister Cost x Number of Canisters Required =	\$326,448	
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$15,000	
Total Purchased Equipment Costs for Carbon Adsorber (A) =	EC _{Adsorb} + EC _{aux} =	\$341,448	
Instrumentation =	0.10 × A =	\$34,145	
Sales taxes =	0.03 × A =	\$10,243	
Freight =	0.05 × A =	\$17,072	
	Total Purchased Equipment Costs (B) =	\$402,909	
Installation Costs (in 2022 dollars:)			
Parameter	Equation	Cost	
Direct and Indirect Installation =	0.20 × B =	\$32,233	
Site Preparation (SP) =		\$0	
Buildings (Bldg) =		\$0 \$0	
Contingency ($ost(C) =$	I OTAL DIFECT and Indifect Installation Costs =	\$32,233 \$43 514	
Total Can	ital Investment (TCI) = Durchase Equipment + Installation + Contingency Costs =	\$43,314	in 2022 dollars
Total Cap		3478,033	
Direct Annual Costs			
Parameter	Equation	Cost	
Operating Labor Costs:	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$24,638	
	Supervisor = 15% of Operator	\$3,696	
Maintenance Costs:	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$24,638	
	Materials = 100% of maintenance labor	\$24,638	
Carbon Replacement Costs:	Labor = CFR _{carbon} [Labor Rate × I_C/CRR] =	\$3,065 \$117.005	
		\$117,095	
Indiract Annual Costs	Direct Annual Costs (DAC) =	\$197,768	in 2022 dollars
Parameter	Equation	Cost	
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$46,565	
Administrative Charges	= 2% of TCI	\$9,573	
Property Taxes		\$4,787	
		\$4,787	
	$= CRr_{Adsorber} \times [1CI - [(1.08 + CC + 1C) + (LR + 1C/CRR)] =$	\$24,569	
	Indirect Annual Costs (IAC) =	\$90,300	in 2022 dollars
	Total Annual Cost (TAC) = DAC + IAC =	\$288,069	in 2022 dollars
	Cost Effectiveness		
Parameter	Equation	Cost	
Total Annual Cost =	TAC =	\$288,069	per year in 2022 dollars
Annual Quantity of VOC Removed =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	16.64	tons/year
Cost Effectiveness =	Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =	\$17.308	per ton of pollutants re-
Condensation Cost Tables

Source Name and ID:	Unit 20-21 (P006)		
Facility Name:	Neville Chemical Company		

Data Inputs

▾

Is the condenser a packaged, custom or gasoline vapor recovery system?

Packaged Condenser System

Enter the design data for the proposed condenser:

Number of operating hours per year and per day (Θ_s)	8,760	hours/year	24 hours/day
Volumetric flow rate of the waste stream (Q _{in})	100	scfm (at 77 °F; 1 atm)*	
Inlet stream temperature (T _{in})	80	°F	
Required VOC removal efficiency (ŋ)	90	%*	* 90% is a default control efficiency. Enter actual value, if known.
Specific heat of the coolant (C _{p,cool})	0.65	Btu/lb-mole-°F*	* 0.65 Btu/lb-mole-°F is a default value. Enter actual value, if known.
Estimated equipment life (n)	15	Years*	* 15 years is a default equipment life. Enter actual value, if known.
Overall heat transfer coefficient (U)	20	Btu/hour-ft²-°F*	* 20 Btu/hour-ft ² -°F is a default coefficient. Enter actual value, if known.
Mechanical efficiency of compressor (η_{comp})	85	%*	* 85% is a default value. Enter actual value, if known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	m-Xylene]		
Molecular Weight of m-Xylene (MW)	106.17	lb./mole		
Density of m-Xylene	9.6	lb./gallon		
Heat Capacity of m-Xylene (Cp,voc)	43.82	Btu/lbmole-°F		
Heat of Condensation of m-Xylene (ΔHref)	15,360	Btu/lbmole		
Boiling Point of m-Xylene	282	°F		
Antoine Equation Constants for m-Xylene	Α	В	С	
	7.00908	1462.266	215.11	based on degrees C and mmHg
Critical Temperature for m-Xylene	1111	°R		
Volume Fraction of m-Xylene in waste stream entering the condenser (Yvoc, in)	0.0014			

Enter the cost data for the condenser:

Electricity (Cost _{elect})	\$0.1000	per kWh	
Operator Labor Rate	\$45.00	per hour	
Maintenance Labor Rate	\$45.00	per hour	
Re-Sale Value of Recovered VOC (Credit)	\$0.00	per lb	
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value.

If known, enter any additional costs for site preparation and building construction/modification:

Site Preparation (SP) =	\$0	* Default value. User should enter actual value, if kno	own.
Buildings (Bldg) and Ductwork =	\$25,000		
Equipment Costs for auxiliary equipment for custom condenser systems (EC _{aux}) =	\$0	* Default value. User should enter actual value, if kno	own.
Desired dollar-year	2022		
CEPCI* for 2022	833	Enter the CEPCI value for 2022	576.1 2014 CEPCI
Annual Interest Rate (i)	5.00	% (Default value is 4.25%)	

	VOC volume Fraction of waste stream	Heat Capacity (C _{p,voc})	Heat of Condensation (ΔH _{ref})	
woc m-Xvlene	0.00136	(Btu/Ibmole-°F)	(Btu/Ibmole) 15360	
	0.00130	-5.02	15500	
Parameter	Equation		Calculated Value	Units
Partial Pressure of m-Xylene VOC in Exit Stream (Pvoc) = Estimated Condensation Temperature for m-Xylene (Tcon) =	760 × (M _{voc,out} / (M _{in} - M _{voc, recovered})) = ((B / (A - log (P _{voc}))) - C) × 1.8 + 32 =	$760 \times [Y_{voc,in} \times (1 - \eta)] / [1 - (\eta \times Y_{voc,in})] =$	0.1 -25.9	mmHg °F
Parameter	Equation	Calculated Value	Units	Calculated Value Units
Quantities of VOC in Inlet and Outlet streams: Moles of VOC in the inlet stream (M _{voc,in}) = Moles of VOC in the outlet stream (M _{voc,out}) =	$(Q_{in} / 392) \times (Y_{voc,in}) \times 60 = M_{voc,in} \times (1 - \eta) =$	0.021 0.002	lbmoles/hour lbmoles/hour	2.21 lb/hour
Quantity of VOC Recovered:				
Moles of VOC Recovered (M _{voc, recovered}) = Quantity of VOC Recovered (W _{voc}) =	$M_{voc,in} \times \eta =$ $M_{voc, recovered} \times MW_{voc} =$	0.019 1.99	lbmoles/hour lb./operating hour	8.71 Tons/year
Calculation of Enthalpy of Condensation: Critical Temperature for VOC (T_c) = Reference Temperature for Heat of Condensation (T_1) = Condensation Temperature (T_2) = Enthalpy of condensation of VOC (Δ Hyoc) at -25.9 °F =	T_{con} + 459.67 = ΔH_{corr} + (1 - T ₂ / T ₂) / (1 - T ₂ / T ₂) ^{0.38} =	1111 742 434 19,340	°R °R 8tu/lbmole	
Calculation of Condenser Heat Load: Heat capacity of air (C _{p, air}) = Mean Temperature (T _{mean}) = Enthalpy change associated with the condensed VOC (ΔH_{con}) = Enthalpy change associated with the uncondensed VOC (ΔH_{uncon}) = Enthalpy change associated with the non-condensable air (Δ Hnoncon) = Condenser Heat Load (H _{load}) =	$\begin{split} & (T_{in} + T_{con}) / 2 = \\ & M_{voc,recovered} \times [\Delta H_{voc} + C_{p,voc} (T_{in} - T_{con})] = \\ & M_{voc,out} \times C_{p,voc} \times (T_{in} - T_{con}) = \\ & [((Q_{in} / 392) \times 60) - M_{voc,in}] \times C_{p,air} \times (T_{in} - T_{con}) = \\ & \Delta H_{con} + \Delta H_{uncon} + \Delta H_{noncon} = \end{split}$	6.95 27 449 10 11,255 11,714	Btu/lbmole-°F @ 7 °F Btu/hour Btu/hour Btu/hour Btu/hour Btu/hour	7 °F and 1 atm.
Calculation of Surface Area: Temperature of coolant entering the condenser ($T_{cool,in}$) = Temperature of coolant exiting the condenser ($T_{cool,out}$) =	$T_{con} - 15 \text{ °F} =$ $T_{cool,in} + 25 \text{ °F} =$ $[(T_{in} - T_{cool,out}) - (T_{con} - T_{cool,in})]$ $[In\{(T_{in} - T_{in}) - (T_{in}) - T_{in})]$	-40.9 -15.9 -43.6	°F °F	
Condenser Surface Area (A _{con}) =	$H_{load} / (U \times \Delta T_{lm}) =$	13.4	ft²	
Calculation of Coolant Flow Rate and Refrigeration Capacity: Coolant Flow Rate (W _{cool}) = Refrigeration Capacity (R) =	$\begin{split} H_{load} \ / \ (C_{p,cool} \times (T_{cool,out} - T_{cool,in})) = \\ H_{load} \ / \ 12,000 \ Btu/ton = \end{split}$	721 0.98	lb./hour Tons/hour	
Calculation of Electricity Consumption: Estimated Electricity Consumption (E) =	$2.7411 \times exp(-0.015 \times T_{con}) =$	4.05	kW/ton	
Capital Recovery Factor:				
Capital Recovery Factor (CRF) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Equipment Life and i = Interest Rate	0.0963		

Source Name and ID: Unit 20-21 (P006) Facility Name: Neville Chemical Company

Control Cost Estimate			
	Capital Costs		
VOC Controlled/Recovered = Refrigeration Capacity (R) = Condensation Temperature for Waste Stream (T _{con}) =	m-Xylene 0.98 tons/hour -26 °F		
Total Capital Investment (TCI) (in 2022 dollars) Parameter	Equation	Single Stage	Multi-Stage
		Single Stage	Multi Stuge
Equipment Costs for Single Stage Refrigeration Unit (ECr):	1.611 × exp[9.83 - 0.014 × Tcon + 0.34 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =	\$61,741	
Equipment Costs for Multistage Refrigeration Unit (ECr):	1.611 × exp[9.73 - 0.012 × Tcon + 0.58 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =		\$52,734
Other Equipment Costs for a Packaged Solvent Recovery System (ECp):	1.25 × ECr =	\$77,176	\$13,184
Costs for Refrigerated Condenser (A) =	ECp + ECr =	\$138,917	\$65,918
Instrumentation =	0.10 × A =	Included in A	Included in A
Sales taxes = Freight =	0.03 × A = 0.05 × A =	\$4,168 \$6,946	\$1,978 \$3,296
	Total Purchased Equipment Costs (B) =	\$150,031	\$71,191
Direct Installation Costs (in 2022 dollars)			
Parameter	Equation	Single Stage	Multi-Stage
Foundations and Supports =	0.14 × B =	Not applicable	Not applicable
Handling and Erection =	0.08 × B =	Not applicable	Not applicable
Piping =	0.02 × B =	Not applicable	Not applicable
Insulation =	0.10 × B =	Not applicable	Not applicable
Painting =	0.01 × B =	Not applicable	Not applicable
Site Preparation (SP) =		\$0	\$0
Buildings (Bldg) =		\$25,000	\$25,000
	Total Direct Costs (DC) = $B + (0.43 \times B) + SP + Bldg =$	\$175,031	\$96,191
	Total Capital Investment (TCI) = Direct Costs + Contingency = (1.15 × DC) =	\$201,285	\$110,620
	Annual Costs		
Direct Annual Costs			
Parameter	Equation	Single Stage	Multi-Stage
Annual Electricity Cost =	$(R / \eta_{Comp}) \times E \times \Theta_s \times p_e =$	\$4,070	\$4,070
Operating Labor =	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$24,638	\$24,638
Maintananco Costo -	Supervisor = 15% of Uperator	\$3,696	\$3,696
	Materials = 100% of maintenance labor	\$24,638	\$24,638 \$24,638
	Direct Annual Costs (DAC) =	\$81,678	\$81,678
Indirect Annual Costs			
Parameter	Equation	Single Stage	Multi-Stage
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$46,565	\$46,565
Administrative Charges	= 2% of TCI	\$4,026	\$2,212
Property Taxes	= 1% of TCI	\$2,013	\$1,106
Insurance	= 1% of TCI	\$2,013	\$1,106
Capital Recovery	= CRF × TCI	\$19,392	\$10,657
VOC Recovery Credit	Indirect Annual Costs (IAC) =	\$74,009	Ş61,647
Parameter	Equation	Single Stage	Multi-Stage
Annual Recovery Credit for Condensate (RC)	$= W_{voc} \times Credit \times \Theta_s =$	\$0	\$0
	Total Annual Cost (TAC) = DAC + IAC - RC =	\$155,687	\$143,325
	Cost Effectiveness		
Parameter	Equation	Single Stage	Multi-Stage
Total Annual Cost =	TAC =	\$155,687	\$143,325
Annual Quantity of VOC Removed/Recovered =	W _{voc} =	8.7	8.7
Cost Effectiveness =	Total Annual Cost/Annual Quantity of VOC Removed/Recovered =	\$17,870	\$16,451

Source	Name	and	ID:

Facility Name:

2PC Resin Kettles (P011) Neville Chemical Company

Data Inputs

▼

Is the condenser a packaged, custom or gasoline vapor recovery system?

Packaged Condenser System

Enter the design data for the proposed condenser:

Number of operating hours per year and per day (Θ_s)	8,760	hours/year	24 hours/day
Volumetric flow rate of the waste stream (Q _{in})	200	scfm (at 77 °F; 1 atm)	
Inlet stream temperature (T _{in})	375	°F	
Required VOC removal efficiency (n)	90	%*	* 90% is a default control efficiency. Enter actual value, if known.
Specific heat of the coolant (C _{p,cool})	0.65	Btu/lb-mole-°F*	* 0.65 Btu/lb-mole-°F is a default value. Enter actual value, if known.
Estimated equipment life (n)	15	Years*	* 15 years is a default equipment life. Enter actual value, if known.
Overall heat transfer coefficient (U)	20	Btu/hour-ft ² -°F*	* 20 Btu/hour-ft ² -°F is a default coefficient. Enter actual value, if known.
Mechanical efficiency of compressor (η_{comp})	85	%*	* 85% is a default value. Enter actual value, if known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	m-Xylene			
Molecular Weight of m-Xylene (MW)	106.17	lb./mole		
Density of m-Xylene	9.6	lb./gallon		
Heat Capacity of m-Xylene (Cp,voc)	43.82	Btu/lbmole-°F		
Heat of Condensation of m-Xylene (ΔHref)	15,360	Btu/lbmole		
Boiling Point of m-Xylene	282	°F		
Antoine Equation Constants for m-Xylene	Α	В	С	
	7.00908	1462.266	215.11	based on degrees C and mmHg
Critical Temperature for m-Xylene	1111	°R		-
Volume Fraction of m-Xylene in waste stream entering the condenser (Yvoc,in)	0.00110			

Enter the cost data for the condenser:

Electricity (Cost _{elect})	\$0.1000	per kWh	
Operator Labor Rate	\$45.00	per hour	
Maintenance Labor Rate	\$45.00	per hour	
Re-Sale Value of Recovered VOC (Credit)	\$0.00	per lb	
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value.

If known, enter any additional costs for site preparation and building construction/modification:

Site Preparation (SP) =	\$0	* Default value. User should enter actual value, if knc	iwn.	
Buildings (Bldg) and Ductwork =	\$325,000	Neville estimate - see Section 3.4 of VOC RACT III Evaluation for an explan		
Equipment Costs for auxiliary equipment for custom condenser systems (EC _{aux}) =	\$0	* Default value. User should enter actual value, if kno	iwn.	
Desired dollar-year	2022			
CEPCI* for 2022	833	Enter the CEPCI value for 2022	576.1 2014 CEPCI	
Annual Interest Rate (i)	5.00	% (Default value is 4.25%)		

VOC	VOC volume Fraction of waste stream entering the condenser (Y _{voc,in})	Heat Capacity (C _{p,voc}) (Btu/lbmole-°F) 43.8	Heat of Condensation (ΔH _{ref}) (Btu/lbmole)	
	0.0011		2 15500	1
Parameter Partial Pressure of m-Xylene VOC in Exit Stream (Pvoc) = Estimated Condensation Temperature for m-Xylene (Tcon) =	Equation 760 × (M _{voc,out} / (M _{in} - M _{voc, recovered})) = ((B / (A - log (P _{voc}))) - C) × 1.8 + 32 =	$760 \times \left[Y_{voc,in} \times (1 - \eta)\right] / \left[1 - (\eta \times Y_{voc,in})\right] =$	Calculated Value 0.1 -29.7	Units mmHg °F
Parameter	Equation	Calculated Value	Units	Calculated Value Units
Quantities of VOC in Inlet and Outlet streams: Moles of VOC in the inlet stream ($M_{voc,in}$) = Moles of VOC in the outlet stream ($M_{voc,out}$) =	$(Q_{in} / 392) \times (Y_{voc,in}) \times 60 = M_{voc,in} \times (1 - \eta) =$	0.03 0.00	4 lbmoles/hour 3 lbmoles/hour	3.58 lb/hour
Quantity of VOC Recovered: Moles of VOC Recovered (M _{voc, recovered}) = Quantity of VOC Recovered (W _{voc}) =	$M_{voc,in} \times \eta =$ $M_{voc, recovered} \times MW_{voc} =$	0.03	0 lbmoles/hour 2 lb./operating hour	14.09 Tons/year
Calculation of Enthalpy of Condensation: Critical Temperature for VOC (T_c) = Reference Temperature for Heat of Condensation (T_1) = Condensation Temperature (T_2) = Enthalpy of condensation of VOC (Δ Hvoc) at -29.7 °F =	T_{con} + 459.67 = ΔH _{ref} × [(1 - T ₂ / T _c) / (1 - T ₁ / T _c)] ^{0.38} =	111 74 43 19,38	1 °R 2 °R 0 °R 1 Btu/lbmole	
Calculation of Condenser Heat Load: Heat capacity of air ($C_{p, air}$) = Mean Temperature (T_{mean}) = Enthalpy change associated with the condensed VOC (ΔH_{con}) = Enthalpy change associated with the uncondensed VOC (ΔH_{uncon}) = Enthalpy change associated with the non-condensable air (Δ Hnoncon) = Condenser Heat Load (H_{load}) =		6.9 17 1,12 6 86,00 87,19	5 Btu/lbmole-°F @ 7 3 °F 5 Btu/hour 0 Btu/hour 8 Btu/hour 3 Btu/hour	7 °F and 1 atm.
Calculation of Surface Area: Temperature of coolant entering the condenser $(T_{cool,in}) =$ Temperature of coolant exiting the condenser $(T_{cool,out}) =$ Logarithmic mean temperature difference $(\Delta T_{Im}) =$	T _{con} - 15 °F = T _{cool,in} + 25 °F = [(T _{in} - T _{cool,out}) - (T _{con} -T _{cool,in})] [In{(T _{in} - T _{cool,out})/(T _{con} - T _{cool,in})}]	-44. -19. 	7 °F 7 °F 1 °F	
Condenser Surface Area (A _{con}) = Calculation of Coolant Flow Rate and Refrigeration Capacity: Coolant Flow Rate (W _{cool}) = Refrigeration Capacity (R) =	$H_{load} / (U \times \Delta T_{lm}) =$ $H_{load} / (C_{p,cool} \times (T_{cool,out} - T_{cool,in})) =$ $H_{load} / 12,000 Btu/ton =$	37. 5,36 7.2	5 ft ² 6 lb./hour 7 Tons/hour	
Calculation of Electricity Consumption: Estimated Electricity Consumption (E) =	$2.7411 \times exp(-0.015 \times T_{con}) =$	4.2	8 kW/ton	
Capital Recovery Factor (CRF) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Equipment Life and i = Interest Rate	0.096	3	

	Control Cost Estimate		
	Capital Costs		
VOC Controlled/Recovered = Refrigeration Capacity (R) = Condensation Temperature for Waste Stream (T _{con}) =	m-Xylene 7.27 tons/hour -30 °F		
Total Capital Investment (TCI) (in 2022 dollars)			
Parameter	Equation	Single Stage	Multi-Stage
Equipment Costs for Single Stage Refrigeration Unit (ECr):	1.611 × exp[9.83 - 0.014 × Tcon + 0.34 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =	\$128,769	
Equipment Costs for Multistage Refrigeration Unit (ECr):	1.611 × exp[9.73 - 0.012 × Tcon + 0.58 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =		\$176,723
Other Equipment Costs for a Packaged Solvent Recovery System (ECp):	1.25 × ECr =	\$160,961	\$44,181
Costs for Refrigerated Condenser (A) =	ECp + ECr =	\$289,730	\$220,903
Instrumentation =	0.10 × A =	Included in A	Included in A
Sales taxes =	0.03 × A =	\$8,692	\$6,627
Freight =	0.05 × A =	\$14,487	\$11,045
	Total Purchased Equipment Costs (B) =	\$312,908	\$238,575
Direct Installation Costs (in 2022 dollars)			
Parameter	Equation	Single Stage	Multi-Stage
Foundations and Supports =	0.14 × B =	Not applicable	Not applicable
Handling and Erection =	0.08 × B =	Not applicable	Not applicable
Piping -	0.03 × B =	Not applicable	Not applicable
Insulation =	0.10 × B =	Not applicable	Not applicable
Painting =	0.01 × B =	Not applicable	Not applicable
Site Preparation (SP) =		\$0	\$0
Buildings (Bldg) =		\$325,000	\$325,000
	Total Direct Costs (DC) = $B + (0.43 \times B) + SP + Bldg =$	\$637,908	\$563,575
	Total Capital Investment (TCI) = Direct Costs + Contingency = (1.15 × DC) =	\$733,595	\$648,112
	Annual Costs		
Direct Annual Costs			
Parameter	Equation	Single Stage	Multi-Stage
Annual Electricity Cost =	$(R / \eta_{Comp}) \times E \times \Theta_s \times P_e =$	\$32,050	\$32,050
Operating Labor =	Supervisor = 15% of Operator	\$24,638	\$24,038
Maintenance Costs =	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$24,638	\$24,638
	Materials = 100% of maintenance labor	\$24,638	\$24,638
	Direct Annual Costs (DAC) =	\$109,658	\$109,658
Indirect Annual Costs			
	E. alta	Circle Chara	
Parameter	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	Single Stage	SAG EGE
Administrative Charges	= 2% of TCI	\$40,505	\$12 962
Property Taxes	= 1% of TCI	\$7.336	\$6.481
Insurance	= 1% of TCI	\$7,336	\$6,481
Capital Recovery	= CRF × TCI	\$70,676	\$62,441
	Indirect Annual Costs (IAC) =	\$146,585	\$134,930
VOC Recovery Credit			
Parameter	Equation	Single Stage	Multi-Stage
Annual Recovery Credit for Condensate (RC)	$= W_{voc} \times Credit \times \Theta_s =$	Ş0	Ş0
	Total Annual Cost (TAC) = DAC + IAC - RC =	\$256,243	\$244,588
	LOST ETTECTIVENESS		A 1 1 0 1
Parameter		Single Stage	Multi-Stage
Iolal Annual Cost =	IAC =	\$250,243	\$244,588 1 4 1
Annual Quantity of voc Kentoved/Kettovereu -	**voc -	14.1	14.1
Cost Effectiveness =	Total Annual Cost/Annual Quantity of VOC Removed/Recovered =	\$18,182	\$17,355

Source Name and ID:	3PC Resin Kettles (P012)		
Facility Name:	Neville Chemical Company		

Neville Chemical Company

Data Inputs

▼

Is the condenser a packaged, custom or gasoline vapor recovery system?

Packaged Condenser System

Enter the design data for the proposed condenser:

Number of operating hours per year and per day (Θ_s)	8,760	hours/year	24 hours/day
Volumetric flow rate of the waste stream (Q _{in})	200	scfm (at 77 °F; 1 atm)	
Inlet stream temperature (T _{in})	375	°F	
Required VOC removal efficiency (n)	90	%*	* 90% is a default control efficiency. Enter actual value, if known.
Specific heat of the coolant (C _{p,cool})	0.65	Btu/lb-mole-°F*	* 0.65 Btu/lb-mole-°F is a default value. Enter actual value, if known.
Estimated equipment life (n)	15	Years*	* 15 years is a default equipment life. Enter actual value, if known.
Overall heat transfer coefficient (U)	20	Btu/hour-ft ² -°F*	* 20 Btu/hour-ft ² -°F is a default coefficient. Enter actual value, if known.
Mechanical efficiency of compressor (η_{comp})	85	%*	* 85% is a default value. Enter actual value, if known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	m-Xylene	lle das els		
Molecular weight of m-xylene (WW)	106.17	lb./mole		
Heat Capacity of m-Xylene (Cp,voc)	43.82	Btu/lbmole-°F		
Heat of Condensation of m-Xylene (ΔHref)	15,360	Btu/lbmole		
Boiling Point of m-Xylene	282	°F		_
Antoine Equation Constants for m-Xylene	Α	В	С	
	7.00908	1462.266	215.11	based on degrees C and mmHg
Critical Temperature for m-Xylene	1111	°R		_
Volume Fraction of m-Xylene in waste stream entering the condenser (Yvoc,in)	0.00153			

Enter the cost data for the condenser:

Electricity (Cost _{elect})	\$0.1000	per kWh	
Operator Labor Rate	\$45.00	per hour	
Maintenance Labor Rate	\$45.00	per hour	
Re-Sale Value of Recovered VOC (Credit)	\$0.00	per lb	
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value.

If known, enter any additional costs for site preparation and building construction/modification:

Site Preparation (SP) =	\$0	* Default value. User should enter actual value, if known	own.	
Buildings (Bldg) and Ductwork =	\$325,000	Neville estimate - see Section 3.4 of VOC RACT III Evaluation for an explanat		
Equipment Costs for auxiliary equipment for custom condenser systems (EC _{aux}) =	\$0	* Default value. User should enter actual value, if kno	own.	
Desired dollar-year	2022			
CEPCI* for 2022	833	Enter the CEPCI value for 2022	576.1 2014 CEPCI	
Annual Interest Rate (i)	5.00	% (Default value is 4.25%)		

voc	VOC volume Fraction of waste stream entering the condenser (Y _{voc,in})	Heat Capacity (C _{p,voc}) (Btu/lbmole-°F)	Heat of Condensation (ΔH _{ref}) (Btu/lbmole)	
m-Xylene	0.00153	43.82	15360	
Parameter	Equation		Calculated Value	Units
Partial Pressure of m-Xylene VOC in Exit Stream (Pvoc) = Estimated Condensation Temperature for m-Xylene (Tcon) =	$760 \times (M_{voc,out} / (M_{in} - M_{voc, recovered})) = ((B / (A - log (P_{voc}))) - C) \times 1.8 + 32 =$	$760 \times [Y_{voc,in} \times (1 - \eta)] / [1 - (\eta \times Y_{voc,in})] =$	0.1 -23.8	mmHg °F
Parameter	Equation	Calculated Value	Units	Calculated Value Units
Quantities of VOC in Inlet and Outlet streams: Moles of VOC in the inlet stream ($M_{voc,in}$) = Moles of VOC in the outlet stream ($M_{voc,out}$) =	$(Q_{in} / 392) \times (Y_{voc,in}) \times 60 = M_{voc,in} \times (1 - \eta) =$	0.047 0.005	lbmoles/hour lbmoles/hour	4.97 lb/hour
Quantity of VOC Recovered: Moles of VOC Recovered (M _{voc, recovered}) = Quantity of VOC Recovered (W _{voc}) =	$M_{voc,in} \times \eta =$ $M_{voc, recovered} \times MW_{voc} =$	0.042 4.48	lbmoles/hour lb./operating hour	19.60 Tons/year
Calculation of Enthalpy of Condensation: Critical Temperature for VOC (T_c) = Reference Temperature for Heat of Condensation (T_1) = Condensation Temperature (T_2) = Enthalpy of condensation of VOC (Δ Hvoc) at -23.8 °F =	T_{con} + 459.67 = ΔH _{ref} × [(1 - T ₂ / T _c) / (1 - T ₁ / T _c)] ^{0.38} =	1111 742 436 19,317	°R °R °R Btu/lbmole	
Calculation of Condenser Heat Load: Heat capacity of air $(C_{p, air}) =$ Mean Temperature $(T_{mean}) =$ Enthalpy change associated with the condensed VOC (ΔH_{con}) = Enthalpy change associated with the uncondensed VOC (ΔH_{uncon}) = Enthalpy change associated with the non-condensable air (Δ Hnoncon) = Condenser Heat Load (H_{load}) =	$ \begin{array}{l} \left(T_{in}+T_{con}\right)/2 = \\ M_{voc,recovered} \times \left[\Delta H_{voc}+C_{p,voc}\left(T_{in}-T_{con}\right)\right] = \\ M_{voc,out} \times C_{p,voc} \times \left(T_{in}-T_{con}\right) = \\ \left[\left(\left(Q_{in}/392\right) \times 60\right) - M_{voc,in}\right] \times C_{p,air} \times \left(T_{in}-T_{con}\right) = \\ \Delta H_{con} + \Delta H_{uncon} + \Delta H_{noncon} = \end{array} $	6.95 176 1,551 82 84,722 86,355	Btu/lbmole-°F @ 7 °F Btu/hour Btu/hour Btu/hour Btu/hour	7 °F and 1 atm.
Calculation of Surface Area: Temperature of coolant entering the condenser ($T_{cool,in}$) = Temperature of coolant exiting the condenser ($T_{cool,out}$) = Logarithmic mean temperature difference (ΔT_{im}) = Condenser Surface Area (A,) =	$T_{con} - 15 °F =$ $T_{cool,in} + 25 °F =$ $[(T_{in} - T_{cool,out}) - (T_{con} - T_{cool,in})]$ $[In\{(T_{in} - T_{cool,out})/(T_{con} - T_{cool,in})\}]$ $H_{row} - ((11 \times \Delta T_{row}) - 1)$	-38.8 -13.8 - 114.8 37.6	°F °F fr 2	
Calculation of Coolant Flow Rate and Refrigeration Capacity: Coolant Flow Rate (W _{cool}) = Refrigeration Capacity (R) =	$H_{load} / (C_{p,cool} \times (T_{cool,out} - T_{cool,in})) =$ $H_{load} / (12,000 \text{ Btu/ton} =$	5,314 7.20	lb./hour Tons/hour	
Calculation of Electricity Consumption: Estimated Electricity Consumption (E) =	$2.7411 \times exp(-0.015 \times T_{con}) =$	3.92	kW/ton	
Capital Recovery Factor (CRF) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Equipment Life and i = Interest Kate	0.0963		

. .

	Control Cost Estimate		
	Capital Costs		
VOC Controlled/Recovered = Refrigeration Capacity (R) = Condensation Temperature for Waste Stream (T _{con}) =	m-Xylene 7.2 tons/hour -24 °F		
Total Capital Investment (TCI) (in 2022 dollars)			
Parameter	Equation	Single Stage	Multi-Stage
Equipment Costs for Single Stage Refrigeration Unit (ECr):	1.611 × exp[9.83 - 0.014 × Tcon + 0.34 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =	\$118,206	
Equipment Costs for Multistage Refrigeration Unit (ECr):	1.611 × exp[9.73 - 0.012 × Tcon + 0.58 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =		\$163,765
Other Equipment Costs for a Packaged Solvent Recovery System (ECp):	1.25 × ECr =	\$147,758	\$40,941
Costs for Refrigerated Condenser (A) =	ECp + ECr =	\$265,964	\$204,706
Instrumentation = Sales taxes = Freight =	0.10 × A = 0.03 × A = 0.05 × A =	Included in A \$7,979 \$13,298	Included in A \$6,141 \$10,235
	Total Purchased Equipment Costs (B) =	\$287,241	\$221,083
		. ,	. ,
Direct Installation Costs (in 2022 dollars) Parameter Foundations and Supports = Handling and Erection = Electrical = Piping = Insulation = Painting = Site Preparation (SP) = Buildings (Bldg) =	Equation 0.14 × B = 0.08 × B = 0.08 × B = 0.02 × B = 0.10 × B = 0.01 × B =	Single Stage Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable \$0 \$325,000	Multi-Stage Not applicable Not applicable Not applicable Not applicable Not applicable S0 \$325,000
	Total Direct Costs (DC) = B + (0.43 × B) + SP + Bldg =	\$612,241	\$546,083
	Total Capital Investment (TCI) = Direct Costs + Contingency = (1.15 × DC) =	\$704,077	\$627,995
	Annual Costs		
Direct Annual Costs			
Parameter Annual Electricity Cost = Operating Labor = Maintenance Costs =	Equation $(R / \eta_{Comp}) \times E \times \Theta_s \times p_e =$ Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) =	Single Stage \$29,062 \$24,638 \$3,696 \$24,638 \$24,638 \$106,671	Multi-Stage \$29,062 \$24,638 \$3,696 \$24,638 \$24,638 \$24,638 \$106,671
Indirect Annual Costs			
Parameter Overhead Administrative Charges Property Taxes Insurance Capital Recovery	Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCI = 1% of TCI = 1% of TCI = CRF × TCI	Single Stage \$46,565 \$14,082 \$7,041 \$7,041 \$67,832	Multi-Stage \$46,565 \$12,560 \$6,280 \$6,280 \$60,503
	Indirect Annual Costs (IAC) =	\$142 560	\$132 187
VOC Recovery Credit		÷= .=,500	+,107
Parameter Annual Recovery Credit for Condensate (RC)	Equation = $W_{voc} \times Credit \times \Theta_s$ =	Single Stage \$0	Multi-Stage \$0
	Total Annual Cost (TAC) = DAC + IAC - RC =	\$249,231	\$238,858
	Cost Effectiveness		
Parameter Total Annual Cost = Annual Quantity of VOC Removed/Recovered =	Equation TAC = W _{voc} =	Single Stage \$249,231 19.6	Multi-Stage \$238,858 19.6
Cost Effectiveness =	Total Annual Cost/Annual Quantity of VOC Removed/Recovered =	\$12,714	\$12,185

Source	Name	and	ID:
000.00			

Facility Name:

5PC Resin Kettles (P013) Neville Chemical Company

Data Inputs

▼

Is the condenser a packaged, custom or gasoline vapor recovery system?

Packaged Condenser System

Enter the design data for the proposed condenser:

Number of operating hours per year and per day (Θ_s)	8,760	hours/year	24 hours/day
Volumetric flow rate of the waste stream (Q _{in})	75	scfm (at 77 °F; 1 atm)	
Inlet stream temperature (T _{in})	375	°F	
Required VOC removal efficiency (n)	90	%*	* 90% is a default control efficiency. Enter actual value, if known.
Specific heat of the coolant (C _{p,cool})	0.65	Btu/lb-mole-°F*	* 0.65 Btu/lb-mole-°F is a default value. Enter actual value, if known.
Estimated equipment life (n)	15	Years*	* 15 years is a default equipment life. Enter actual value, if known.
Overall heat transfer coefficient (U)	20	Btu/hour-ft²-°F*	* 20 Btu/hour-ft ² -°F is a default coefficient. Enter actual value, if known.
Mechanical efficiency of compressor (η_{comp})	85	%*	* 85% is a default value. Enter actual value, if known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP Molecular Weight of m-Xylene (MW) Density of m-Xylene Heat Capacity of m-Xylene (Cp,voc) Heat of Condensation of m-Xylene (ΔHref)	m-Xylene 106.17 9.6 43.82 15,360	lb./mole lb./gallon Btu/lbmole-°F Btu/lbmole		
Boiling Point of m-Xylene	282	°F		
Antoine Equation Constants for m-Xylene	Α	В	С]
	7.00908	1462.266	215.11	based on degrees C and mmHg
Critical Temperature for m-Xylene	1111	°R		-
Volume Fraction of m-Xylene in waste stream entering the condenser (Yvoc, in)	0.00260			

Enter the cost data for the condenser:

Electricity (Cost _{elect})	\$0.1000	per kWh	
Operator Labor Rate	\$45.00	per hour	
Maintenance Labor Rate	\$45.00	per hour	
Re-Sale Value of Recovered VOC (Credit)	\$0.00	per lb	
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value.

If known, enter any additional costs for site preparation and building construction/modification:

Site Preparation (SP) =	\$0	* Default value. User should enter actual value, if kno	wn.
Buildings (Bldg) and Ductwork =	\$250,000	Neville estimate - see Section 3.4 of VOC RACT II	I Evaluation for an explanation
Equipment Costs for auxiliary equipment for custom condenser systems (EC _{aux}) =	\$0	* Default value. User should enter actual value, if kno	wn.
Desired dollar-year	2022		
CEPCI* for 2022	833	Enter the CEPCI value for 2022	576.1 2014 CEPCI
Annual Interest Rate (i)	5.00	% (Default value is 4.25%)	

voc	VOC volume Fraction of waste stream entering the condenser (Y _{voc,in})	Heat Capacity (C _{p,voc}) (Btu/lbmole-°F)	Heat of Condensation (ΔH _{ref}) (Btu/lbmole)	
m-Xylene	0.00260	43.82	15360	
Parameter	Equation		Calculated Value	Units
Partial Pressure of m-Xylene VOC in Exit Stream (Pvoc) = Estimated Condensation Temperature for m-Xylene (Tcon) =	$760 \times (M_{voc,out} / (M_{in} - M_{voc, recovered})) = ((B / (A - log (P_{voc}))) - C) \times 1.8 + 32 =$	$760 \times [Y_{voc,in} \times (1 - \eta)] / [1 - (\eta \times Y_{voc,in})] =$	0.2 -13.9	mmHg °F
Parameter	Equation	Calculated Value	Units	Calculated Value Units
Quantities of VOC in Inlet and Outlet streams: Moles of VOC in the inlet stream ($M_{voc,in}$) = Moles of VOC in the outlet stream ($M_{voc,out}$) =	$(Q_{in} / 392) \times (Y_{voc,in}) \times 60 = M_{voc,in} \times (1 - \eta) =$	0.030 0.003	lbmoles/hour lbmoles/hour	3.17 lb/hour
Quantity of VOC Recovered: Moles of VOC Recovered (M _{voc, recovered}) = Quantity of VOC Recovered (W _{voc}) =	$M_{voc,in} \times \eta =$ $M_{voc, recovered} \times MW_{voc} =$	0.027 2.85	lbmoles/hour b./operating hour	12.49 Tons/year
Calculation of Enthalpy of Condensation: Critical Temperature for VOC (T_c) = Reference Temperature for Heat of Condensation (T_1) = Condensation Temperature (T_2) = Enthalpy of condensation of VOC (Δ Hvoc) at -13.9 °F =	T_{con} + 459.67 = ΔH _{ref} × [(1 - T ₂ / T _c) / (1 - T ₁ / T _c)] ^{0.38} =	1111 742 446 19,209	°R °R 9 Btu/lbmole	
Calculation of Condenser Heat Load: Heat capacity of air ($C_{p, air}$) = Mean Temperature (T_{mean}) = Enthalpy change associated with the condensed VOC (ΔH_{con}) = Enthalpy change associated with the uncondensed VOC (ΔH_{uncon}) = Enthalpy change associated with the non-condensable air (Δ Hnoncon) = Condenser Heat Load (H_{load}) =	$ \begin{array}{l} \left(T_{in}+T_{con}\right)/2 = \\ M_{voc,recovered} \times \left[\Delta H_{voc}+C_{p,voc}\left(T_{in}-T_{con}\right)\right] = \\ M_{voc,out} \times C_{p,voc} \times \left(T_{in}-T_{con}\right) = \\ \left[\left(\left(Q_{in}/392\right) \times 60\right) - M_{voc,in}\right] \times C_{p,air} \times \left(T_{in}-T_{con}\right) = \\ \Delta H_{con} + \Delta H_{uncon} + \Delta H_{noncon} = \end{array} $	6.95 181 974 51 30,948 31,973	Btu/lbmole-°F @ 7 °F Btu/hour Btu/hour Btu/hour Btu/hour Btu/hour	7 °F and 1 atm.
Calculation of Surface Area: Temperature of coolant entering the condenser $(T_{cool,in}) =$ Temperature of coolant exiting the condenser $(T_{cool,out}) =$ Logarithmic mean temperature difference $(\Delta T_{im}) =$	$T_{con} - 15 °F =$ $T_{cool,in} + 25 °F =$ $[(T_{in} - T_{cool,out}) - (T_{con} - T_{cool,in})]$ $[In{(T_{in} - T_{cool,out})/(T_{con} - T_{cool,in})]]$	-28.9 -3.9 	°F °F 62	
Collection of Coolant Flow Rate and Refrigeration Capacity: Coolant Flow Rate (W _{cool}) = Refrigeration Capacity (R) =	$H_{load} / (C_{p,cool} \times (T_{cool,out} - T_{cool,in})) =$ $H_{load} / (2,000 \text{ Btu/ton} =$	14.2 1,968 2.66	B lb./hour 5 Tons/hour	
Calculation of Electricity Consumption: Estimated Electricity Consumption (E) = Capital Recovery Factor:	2.7411 × exp(-0.015 × T _{con}) =	3.38	kW/ton	
Capital Recovery Factor (CRF) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Equipment Life and i = Interest Rate	0.0963		

	Control Cost Estimate		
	Capital Costs		
VOC Controlled/Recovered = Refrigeration Capacity (R) = Condensation Temperature for Waste Stream (T _{con}) =	m-Xylene 2.66 tons/hour -14 °F		
Total Capital Investment (TCI) (in 2022 dollars)			
Parameter	Equation	Single Stage	Multi-Stage
Equipment Costs for Single Stage Refrigeration Unit (ECr):	1.611 × exp[9.83 - 0.014 × Tcon + 0.34 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =	\$73,394	
Equipment Costs for Multistage Refrigeration Unit (ECr):	1.611 × exp[9.73 - 0.012 × Tcon + 0.58 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =		\$81,712
Other Equipment Costs for a Packaged Solvent Recovery System (ECp):	1.25 × ECr =	\$91,742	\$20,428
Costs for Refrigerated Condenser (A) =	ECp + ECr =	\$165,135	\$102,140
Instrumentation =	0.10 × A =	Included in A	Included in A
Sales taxes =	0.03 × A =	\$4,954	\$3,064
Freight =	0.05 × A =	\$8,257	\$5,107
	Total Purchased Equipment Costs (B) =	\$178,346	\$110,311
Direct Installation Costs (in 2022 dollars)			
Parameter	Equation	Single Stage	Multi-Stage
Foundations and Supports =	0.14 × B =	Not applicable	Not applicable
Flandling and Erection =	0.08 × B =	Not applicable	Not applicable
Pining =	$0.03 \times B =$	Not applicable	Not applicable
Insulation =	0.10 × B =	Not applicable	Not applicable
Painting =	0.01 × B =	Not applicable	Not applicable
Site Preparation (SP) =		\$0	\$0
Buildings (Bldg) =		\$250,000	\$250,000
	Total Direct Costs (DC) = B + (0.43 × B) + SP + Bldg =	\$428,346	\$360,311
	Total Capital Investment (TCI) = Direct Costs + Contingency = (1.15 × DC) =	\$492,598	\$414,358
	Annual Costs		
Direct Annual Costs			
Parameter	Equation	Single Stage	Multi-Stage
Annual Electricity Cost =	$(R / \eta_{\text{comp}}) \times E \times \Theta_s \times P_e =$	\$9,274	\$9,274
Operating Labor =	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/s hours/shift)	\$24,638	\$24,638
Maintenance Costs =	Jahor = 0.5 hours/shift x Lahor Rate x (Operating Hours/8 hours/shift)	\$3,090	\$3,090
	Materials = 100% of maintenance labor	\$24,638	\$24,638
	Direct Annual Costs (DAC) =	\$86,882	\$86,882
Indirect Annual Costs			
Parameter	Equation	Single Stage	Multi-Stage
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$46,565	\$46,565
Administrative Charges		\$9,852	\$8,287
Insurance	= 1% of TCI	\$4,920	\$4,144 \$4,144
Capital Recovery		\$4,920 \$47.458	\$4,144
	Indirect Annual Costs (IAC) =	\$113 727	\$103.059
VOC Recovery Credit		<i>Ş</i> 115,727	<i>Ş</i> 105,055
Parameter	Equation	Single Stage	Multi-Stage
Annual Recovery Credit for Condensate (RC)	= $W_{voc} \times Credit \times \Theta_s$ =	\$0	\$0
	Total Annual Cost (TAC) = DAC + IAC - RC =	\$200,609	\$189,941
	Cost Effectiveness		
Parameter	Equation	Single Stage	Multi-Stage
Total Annual Cost =	TAC =	\$200,609	\$189,941
Annual Quantity of VOC Removed/Recovered =	W _{voc} =	12.5	12.5
Cost Effectiveness =	Total Annual Cost/Annual Quantity of VOC Removed/Recovered =	\$16,059	\$15,206

Source Name and ID:	WWT Batch Tanks (P014)
Facility Name:	Neville Chemical Company

Data Inputs

▼

Is the condenser a packaged, custom or gasoline vapor recovery system?

Packaged Condenser System

Enter the design data for the proposed condenser:

Number of operating hours per year and per day (Θ_s)	8,760	hours/year	24 hours/day
Volumetric flow rate of the waste stream (Q _{in})	300	scfm (at 77 °F; 1 atm)	assumed 100 cfm per each of the three batch tanks
Inlet stream temperature (T _{in})	80	°F	
Required VOC removal efficiency (n)	90	%*	* 90% is a default control efficiency. Enter actual value, if known.
Specific heat of the coolant (C _{p,cool})	0.65	Btu/lb-mole-°F*	* 0.65 Btu/lb-mole-°F is a default value. Enter actual value, if known.
Estimated equipment life (n)	15	Years*	* 15 years is a default equipment life. Enter actual value, if known.
Overall heat transfer coefficient (U)	20	Btu/hour-ft²-°F*	* 20 Btu/hour-ft ² -°F is a default coefficient. Enter actual value, if known.
Mechanical efficiency of compressor (η_{comp})	85	%*	* 85% is a default value. Enter actual value, if known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	m-Xylene]		
Molecular Weight of m-Xylene (MW)	106.17	lb./mole		
Density of m-Xylene	9.6	lb./gallon		
Heat Capacity of m-Xylene (Cp,voc)	43.82	Btu/lbmole-°F		
Heat of Condensation of m-Xylene (ΔHref)	15,360	Btu/lbmole		
Boiling Point of m-Xylene	282	°F		
Antoine Equation Constants for m-Xylene	Α	В	С	
	7.00908	1462.266	215.11	based on degrees C and mmHg
Critical Temperature for m-Xylene	1111	°R		_
Volume Fraction of m-Xylene in waste stream entering the condenser (Yvoc, in)	0.00047			

Enter the cost data for the condenser:

Electricity (Cost _{elect})	\$0.1000	per kWh	
Operator Labor Rate	\$45.00	per hour	
Maintenance Labor Rate	\$45.00	per hour	
Re-Sale Value of Recovered VOC (Credit)	\$0.00	per lb	
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value.

If known, enter any additional costs for site preparation and building construction/modification:

Site Preparation (SP) =	\$0	* Default value. User should enter actual value, if kno	own.
Buildings (Bldg) and Ductwork =	\$25,000		
Equipment Costs for auxiliary equipment for custom condenser systems (EC _{aux}) =	\$0	* Default value. User should enter actual value, if kno	own.
Desired dollar-year	2022		
CEPCI* for 2022	833	Enter the CEPCI value for 2022	576.1 2014 CEPCI
Annual Interest Rate (i)	5.00	% (Default value is 4.25%)	

voc	VOC volume Fraction of waste stream	Heat Capacity (C _{p,voc}) (Btu/lb_mole_°F)	Heat of Condensation (ΔH _{ref}) (Btu/lbmole)	
m-Xylene	0.00047	43.82	15360	
Parameter	Equation		Calculated Value	Units
Partial Pressure of m-Xylene VOC in Exit Stream (Pvoc) = Estimated Condensation Temperature for m-Xylene (Tcon) =	$760 \times (M_{voc,out} / (M_{in} - M_{voc, recovered})) = ((B / (A - log (P_{voc}))) - C) \times 1.8 + 32 =$	$760 \times [Y_{voc,in} \times (1 - \eta)] / [1 - (\eta \times Y_{voc,in})] =$	0.0 -43.9	mmHg °F
Parameter	Equation	Calculated Value	Units	Calculated Value Units
Quantities of VOC in Inlet and Outlet streams: Moles of VOC in the inlet stream ($M_{voc,in}$) = Moles of VOC in the outlet stream ($M_{voc,out}$) =	(Q _{in} / 392) × (Y _{voc,in}) × 60 = M _{voc,in} × (1 - η) =	0.022 0.002	lbmoles/hour lbmoles/hour	2.29 lb/hour
Quantity of VOC Recovered: Moles of VOC Recovered (M _{voc} , recovered) = Quantity of VOC Recovered (W _{voc}) =	$M_{voc,in} \times \eta =$ $M_{voc, recovered} \times MW_{voc} =$	0.019 2.06	lbmoles/hour lb./operating hour	9.03 Tons/year
Calculation of Enthalpy of Condensation: Critical Temperature for VOC (T_c) = Reference Temperature for Heat of Condensation (T_1) = Condensation Temperature (T_2) = Enthalpy of condensation of VOC (Δ Hvoc) at -43.9 °F =	T_{con} + 459.67 = ΔH _{ref} × [(1 - T ₂ / T _c) / (1 - T ₁ / T _c)] ^{0.38} =	1111 742 416 19,534	°R °R °R Btu/lbmole	
Calculation of Condenser Heat Load: Heat capacity of air ($C_{p, air}$) = Mean Temperature (T_{mean}) = Enthalpy change associated with the condensed VOC (ΔH_{con}) = Enthalpy change associated with the uncondensed VOC (ΔH_{uncon}) = Enthalpy change associated with the non-condensable air (Δ Hnoncon) = Condenser Heat Load (H_{load}) =	$\begin{aligned} \left(T_{in} + T_{con}\right) / 2 &= \\ M_{voc, vecovered} \times \left[\Delta H_{voc} + C_{p,voc} \left(T_{in} - T_{con}\right)\right] &= \\ M_{voc,out} \times C_{p,voc} \times \left(T_{in} - T_{con}\right) &= \\ \left[\left(\left(Q_{in} / 392\right) \times 60\right) - M_{voc,in}\right] \times C_{p,air} \times \left(T_{in} - T_{con}\right) &= \\ \Delta H_{con} + \Delta H_{uncon} + \Delta H_{noncon} &= \end{aligned}$	6.95 18 485 12 39,531 40,028	Btu/lbmole-°F @ 7' °F Btu/hour Btu/hour Btu/hour Btu/hour	7 °F and 1 atm.
Calculation of Surface Area: Temperature of coolant entering the condenser $(T_{cool,in}) =$ Temperature of coolant exiting the condenser $(T_{cool,out}) =$ Logarithmic mean temperature difference $(\Delta T_{im}) =$	$T_{con} - 15 °F = T_{cool,in} + 25 °F = [(T_{in} - T_{cool,out}) - (T_{con} - T_{cool,in})] [In{(T_{in} - T_{cool,out})/(T_{con} - T_{cool,in})]]$	-58.9 -33.9 -48.8	°F	
Condenser Surface Area (A _{con}) = Calculation of Coolant Flow Rate and Refrigeration Capacity: Coolant Flow Rate (W _{cool}) = Refrigeration Capacity (R) =	$\begin{split} H_{load} / (U \times \Delta I_{lm}) = \\ H_{load} / (C_{p,cool} \times (T_{cool,out} - T_{cool,in})) = \\ H_{load} / 12,000 \text{ Btu/ton} = \end{split}$	41.0 2,463 3.34	ft² lb./hour Tons/hour	
Calculation of Electricity Consumption: Estimated Electricity Consumption (E) = Capital Recovery Factor:	$2.7411 \times exp(-0.015 \times T_{con}) =$	5.30	kW/ton	
Capital Recovery Factor (CRF) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Equipment Life and i = Interest Rate	0.0963		

	Control Cost Estimate		
	Capital Costs		
$\label{eq:VOC Controlled/Recovered} \\ Refrigeration Capacity (R) = \\ Condensation Temperature for Waste Stream \ (T_{con}) = \\ \end{array}$	m-Xylene 3.34 tons/hour -44 °F		
Total Capital Investment (TCI) (in 2022 dollars)			
Parameter	Equation	Single Stage	Multi-Stage
Equipment Costs for Single Stage Refrigeration Unit (ECr):	1.611 × exp[9.83 - 0.014 × Tcon + 0.34 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =	Not applicable*	
Equipment Costs for Multistage Refrigeration Unit (ECr):	1.611 × exp[9.73 - 0.012 × Tcon + 0.58 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =		\$133,449
Other Equipment Costs for a Packaged Solvent Recovery System (ECp):	1.25 × ECr =	Not applicable	\$33,362
Costs for Refrigerated Condenser (A) =	ECp + ECr =	Not applicable	\$166,812
Instrumentation = Sales taxes = Freight =	0.10 × A = 0.03 × A = 0.05 × A =	Included in A Not applicable Not applicable	Included in A \$5,004 \$8,341
	Total Purchased Equipment Costs (B) =	Not applicable	\$180,157
Direct Installation Costs (in 2022 dollars)			
Direct Installation Costs (in 2022 dollars) Parameter Foundations and Supports = Handling and Erection = Electrical = Piping = Insulation = Painting = Site Preparation (SP) = Buildings (Bldg) =	Equation 0.14 × B = 0.08 × B = 0.08 × B = 0.02 × B = 0.10 × B = 0.01 × B =	Single Stage Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable	Multi-Stage Not applicable Not applicable Not applicable Not applicable Not applicable \$0 \$25,000
	Total Direct Costs (DC) = B + (0.43 × B) + SP + Bldg =	Not applicable	\$205,157
	Total Capital Investment (TCI) = Direct Costs + Contingency = (1.15 × DC) =	Not applicable	\$235,930
	Annual Costs		
Direct Annual Costs			
Parameter Annual Electricity Cost = Operating Labor = Maintenance Costs =	Equation $(R / n_{Comp}) \times E \times \Theta_s \times p_e =$ Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) =	Single Stage Not applicable Not applicable Not applicable Not applicable Not applicable	Multi-Stage \$18,213 \$24,638 \$3,696 \$24,638 \$24,638 \$24,638 \$95,821
Indirect Annual Costs			
Parameter Overhead Administrative Charges Property Taxes Insurance Capital Recovery	Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCl = 1% of TCl = 1% of TCl = CRF × TCl	Single Stage Not applicable Not applicable Not applicable Not applicable Not applicable	Multi-Stage \$46,565 \$4,719 \$2,359 \$2,359 \$22,730
	Indirect Annual Costs (IAC) =	Not applicable	\$78,732
VOC Recovery Credit			
Parameter		Single Stage	Multi-Stage
	Total Annual Cost (TAC) = DAC + IAC - RC =	Not applicable	\$0 \$174,553
	Cost Effectiveness		
Parameter	Equation	Single Stage	Multi-Stage
Total Annual Cost = Annual Quantity of VOC Removed/Recovered =	TAC = W _{voc} =	Not applicable Not applicable	\$174,553 9.0
Cost Effectiveness =	Total Annual Cost/Annual Quantity of VOC Removed/Recovered =	Not applicable	\$19,325

Source Name and ID:	Product Loading to Tankcars and Tankwagons (P016)	
Facility Name:	Neville Chemical Company	

	Data Inputs
Is the condenser a packaged, custom or gasoline vapor recovery system?	Packaged Condenser System

Enter the design data for the proposed condenser:

Number of operating hours per year and per day (Θ_s)	8,760	hours/year	24 hours/day
Volumetric flow rate of the waste stream (Q _{in})	1,000	scfm (at 77 °F; 1 atm)	
Inlet stream temperature (T _{in})	120	°F	
Required VOC removal efficiency (n)	90 9	%*	* 90% is a default control efficiency. Enter actual value, if known.
Specific heat of the coolant (C _{p,cool})	0.65	Btu/lb-mole-°F*	* 0.65 Btu/lb-mole-°F is a default value. Enter actual value, if known.
Estimated equipment life (n)	15	Years*	* 15 years is a default equipment life. Enter actual value, if known.
Overall heat transfer coefficient (U)	20	Btu/hour-ft²-°F*	* 20 Btu/hour-ft ² -°F is a default coefficient. Enter actual value, if known.
Mechanical efficiency of compressor (η_{comp})	85	%*	* 85% is a default value. Enter actual value, if known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	m-Xylene			
Molecular Weight of m-Xylene (MW)	106.17	lb./mole		
Density of m-Xylene	9.6	lb./gallon		
Heat Capacity of m-Xylene (Cp,voc)	43.82	Btu/lbmole-°F		
Heat of Condensation of m-Xylene (ΔHref)	15,360	Btu/lbmole		
Boiling Point of m-Xylene	282	°F		
Antoine Equation Constants for m-Xylene	Α	В	С]
	7.00908	1462.266	215.11	based on degrees C and mmHg
Critical Temperature for m-Xylene	1111	°R		-
Volume Fraction of m-Xylene in waste stream entering the condenser (Yvoc,in)	0.0003			

Enter the cost data for the condenser:

Electricity (Cost _{elect})	\$0.1000	per kWh	
Operator Labor Rate	\$45.00	per hour	
Maintenance Labor Rate	\$45.00	per hour	
Re-Sale Value of Recovered VOC (Credit)	\$0.00	per lb	
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value.

If known, enter any additional costs for site preparation and building construction/modification:

Site Preparation (SP) =	\$0	* Default value. User should enter actual value, if kno	own.
Buildings (Bldg) and Ductwork =	\$25,000		
Equipment Costs for auxiliary equipment for custom condenser systems (EC _{aux}) =	\$0	* Default value. User should enter actual value, if kno	own.
Desired dollar-year	2022		
CEPCI* for 2022	833	Enter the CEPCI value for 2022	576.1 2014 CEPCI
Annual Interest Rate (i)	5.00	% (Default value is 4.25%)	

VOC	VOC volume Fraction of waste stream	Heat Capacity (C _{p,voc})	Heat of Condensation (ΔH _{ref})		
m-Xylene	0.00025	43.82	15360		
Parameter	Equation		Calculated Value	Units	
Partial Pressure of m-Xylene VOC in Exit Stream (Pvoc) =	760 × (M _{voc,out} / (M _{in} - M _{voc, recovered})) =	$760 \times [Y_{voc,in} \times (1 - \eta)] / [1 - (\eta \times Y_{voc,in})] =$	0.0	mmHg	
Estimated Condensation Temperature for m-Xylene (Tcon) =	$((B / (A - log (P_{voc}))) - C) \times 1.8 + 32 =$		-53.7	′°F	
Parameter	Equation	Calculated Value	Units	Calculated Value	Units
Quantities of VOC in Inlet and Outlet streams:					
Moles of VOC in the inlet stream $(M_{voc,in}) =$	$(Q_{in} / 392) \times (Y_{voc,in}) \times 60 =$	0.038	lbmoles/hour	4.06	b/hour
Moles of VOC in the outlet stream ($M_{voc,out}$) =	$M_{voc,in} \times (1 - \eta) =$	0.004	lbmoles/hour		
Quantity of VOC Recovered:					
Moles of VOC Recovered (M _{voc, recovered}) =	$M_{voc,in} \times \eta =$	0.034	lbmoles/hour		
Quantity of VOC Recovered (W _{voc}) =	$M_{voc, recovered} \times MW_{voc} =$	3.66	lb./operating hour	16.01	. Tons/year
Calculation of Enthalpy of Condensation:					
Critical Temperature for VOC (T_c) =		1111	°R		
Reference Temperature for Heat of Condensation (T ₁) =		742	°R		
Condensation Temperature (T ₂) =	T _{con} + 459.67 =	406	°R		
Enthalpy of condensation of VOC (Δ Hvoc) at -53.7 °F =	$\Delta H_{ref} \times [(1 - T_2 / T_c) / (1 - T_1 / T_c)]^{0.38} =$	19,638	Btu/lbmole		
Calculation of Condenser Heat Load:					
Heat capacity of air $(C_{p, air}) =$		6.95	Btu/lbmole-°F @ 7	7°F and 1 atm.	
Mean Temperature (T _{mean}) =	$(T_{in} + T_{con}) / 2 =$	33	°F		
Enthalpy change associated with the condensed VOC (ΔH_{con}) =	$M_{voc,recovered} \times [\Delta H_{voc} + C_{p,voc} (T_{in} - T_{con})] =$	938	Btu/hour		
Enthalpy change associated with the uncondensed VOC (ΔH_{uncon}) =	$M_{voc,out} \times C_{p,voc} \times (T_{in} - T_{con}) =$	29	Btu/hour		
Enthalpy change associated with the non-condensable air (Δ Hnoncon) =	$[((Q_{in} / 392) \times 60) - M_{voc,in}] \times C_{p,air} \times (T_{in} - T_{con}) =$	184,740	Btu/hour		
Condenser Heat Load (H _{load}) =	$\Delta H_{con} + \Delta H_{uncon} + \Delta H_{noncon} =$	185,707	Btu/hour		
Calculation of Surface Area:					
Temperature of coolant entering the condenser (T _{cool,in}) =	T _{con} - 15 °F =	-68.7	°F		
Temperature of coolant exiting the condenser (T _{cool,out}) =	T _{cool,in} + 25 °F =	-43.7	°F		
	[(T _{in} - T _{cool.out}) - (T _{con} -T _{cool.in})]				
Logarithmic mean temperature difference (ΔT_{lm}) =	[In{(Tin - Transl out)/(Trans - Translin)}]	- 62.2	°F		
Condenser Surface Area (A _{con}) =	$H_{load} / (U \times \Delta T_{lm}) =$	149.2	ft²		
Colculation of Coolant Flow Pate and Polyigeration Conscitu					
Coolant Flow Rate (W) =	H_{1} (C $X(T - T - T)$) =	11 / 79	lb /bour		
Refrigeration Capacity (B) =	$H_{\text{load}} = \frac{12000 \text{ Btu}}{12000 \text{ Btu}}$	15.48	Tons/hour		
	fload / 12,000 Dtd/ton =	13.40	ions, nour		
Calculation of Electricity Consumption:	$2.7/11 \times exp(-0.015 \times T) =$	6 13	kW//top		
	2.7411 ~ CAP(-0.013 ~ 1 _{con}) -	0.13	KVV/LUII		
Capital Recovery Factor:					
Capital Recovery Factor (CRF) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Equipment Life and I = Interest Rate	0.0963			

Control Cost Estimate					
	Capital Costs				
VOC Controlled/Recovered = Refrigeration Capacity (R) = Condensation Temperature for Waste Stream (T _{con})	= m-Xylene = 15.48 tons/hour = -54 °F				
Total Capital Investment (TCI) (in 2022 dollars)					
Parameter	Equation	Single Stage	Multi-Stage		
Equipment Costs for Single Stage Refrigeration Unit (ECr):	1.611 × exp[9.26 - 0.007 × Tcon + 0.627 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =	Not applicable*			
Equipment Costs for Multistage Refrigeration Unit (ECr):	1.611 × exp[9.73 - 0.012 × Tcon + 0.58 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =		\$365,446		
Other Equipment Costs for a Packaged Solvent Recovery System (ECp):	1.25 × ECr =	Not applicable	\$91,362		
Costs for Refrigerated Condenser (A) =	ECp + ECr =	Not applicable	\$456,808		
Instrumentation =	0 10 × A =	Included in A	Included in A		
Sales taxes =	0.03 × A =	Not applicable	\$13.704		
Freight =	0.05 × A =	Not applicable	\$22,840		
	Total Purchased Equipment Costs (B) =	Not applicable	\$493,353		
Direct Installation Costs (in 2022 dollars)					
Parameter	Equation	Single Stage	Multi-Stage		
Foundations and Supports =	0.14 × B =	Not applicable	Not applicable		
Handling and Erection =	0.08 × B =	Not applicable	Not applicable		
Electrical =	U.U8 × B =	Not applicable	Not applicable		
riping – Insulation =	0.02 × B =	Not applicable	Not applicable		
Painting =	0.01 × B =	Not applicable	Not applicable		
Site Preparation (SP) =		Not applicable	\$0		
Buildings (Bldg) =		Not applicable	\$25,000		
	Total Direct Costs (DC) = B + (0.43 × B) + SP + Bldg =	Not applicable	\$518,353		
	Total Capital Investment (TCI) = Direct Costs + Contingency = (1.15 × DC) =	Not applicable	\$596,105		
	Annual Costs				
Direct Annual Costs					
Parameter	Fquation	Single Stage	Multi-Stage		
Annual Electricity Cost =	$(R / n_{crue}) \times E \times \Theta_c \times p_c =$	Not applicable	\$97.844		
Operating Labor =	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	Not applicable	\$24,638		
	Supervisor = 15% of Operator	Not applicable	\$3,696		
Maintenance Costs =	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	Not applicable	\$24,638		
	Materials = 100% of maintenance labor	Not applicable	\$24,638		
	Direct Annual Costs (DAC) =	Not applicable	\$175,452		
Indirect Annual Costs					
Parameter	Equation	Single Stage	Multi-Stage		
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	Not applicable	\$46,565		
Administrative Charges	= 2% of TCI	Not applicable	\$11,922		
Property Taxes	= 1% of TCI	Not applicable	\$5,961		
Insurance	= 1% of TCI	Not applicable	\$5,961		
Capital Recovery	= CRF × TCI	Not applicable	\$57,430		
	Indirect Annual Costs (IAC) =	Not applicable	\$127,839		
VOC Recovery Credit	Faustion	Cingle Stege	Multi Stage		
Annual Recovery Credit for Condensate (RC)	$= W_{were} \times Credit \times \Theta_e =$	Not applicable	\$0		
	Total Annual Cost (TAC) = DAC + IAC - RC =	Not applicable	\$303,291		
	Cost Effectiveness				
Parameter		Single Stage	Multi-Stage		
Total Annual Cost =	Equation	ongie other			
	Equation TAC =	Not applicable	\$303,291		
Annual Quantity of VOC Removed/Recovered =	Equation TAC = W _{voc} =	Not applicable Not applicable	\$303,291 16.0		