December 16, 2022

Submitted via OnBase: Reference #79177

Air Quality Program
Pennsylvania Department of Environmental Protection
400 Waterfront Drive
Pittsburgh, PA 15222

Subject: RACT III Notification

Title V Air Permit # 65-00207

OMNOVA Solutions Inc., Jeannette Plant

Dear Sir or Madam:

On behalf of OMNOVA Solutions Inc., Jeannette Plant, attached is the RACT III written notification as required by 25 Pa. Code 129.111 and 129.115(a), including a case-by-case analysis according to 129.114(i). As the analysis demonstrates that there will be no changes to the permit, according to an email correspondence with the PADEP on December 13, 2022, a permit modification is not required at this time and the PADEP will process changes to the regulatory citations during the permit renewal process.

Please contact us if you have any questions regarding this notification or require additional information.

Sincerely,

Monty Saron

Monty Saron

Principal Environmental Scientist II

Mobile: 412-897-1045

Email: msaron@se-env.com

Attachment

Meghan Yingling

Manager Environmental Compliance

Phone: 412-221-1100 ext. 2225 Email: myingling@se-env.com

RACT III NOTIFICATION

CHAPTER 129. STANDARDS FOR SOURCES ADDITIONAL RACT REQUIREMENTS FOR MAJOR SOURCES OF NOx AND VOCs FOR THE 2015 OZONE NAAQS

Written notification, 25 Pa. Code §§129.111 and 129.115(a)

25 Pa. Code Sections 129.111 and 129.115(a) require that the owner and operator of an air contamination source subject to the final-form RACT III regulations submit a notification describing how you intend to comply with the final-form RACT III requirements, and other information spelled out in subsection 129.115(a). The owner or operator may use this template to notify DEP. Notification must be submitted in writing or electronically to the appropriate Regional Manager located at the appropriate DEP regional office. In addition to the notification required by §§ 129.111 and 129.115(a), you also need to submit an applicable analysis or RACT determination as per § 129.114(a) or (i).

Is the facility major for NOx?	Yes □	No ⊠
Is the facility major for VOC?	Yes ⊠	No □

FACILITY INFORMATION									
Facility Name	Iame OMNOVA Solutions, Inc. – Jeannette Plant								
Permit Number		65-00207 PF ID if known							
Address Line1		1001 Chambe	rs Ave	enue					
Address Line2									
City City of Jo	eannette		S	State	PA	A	Zip	15	644
Municipality		Jeannette				Cou	nty	Westi	moreland
		OWNER	INFO	RMA'	ГЮ	N			
Owner	OMNO'	VA Solutions, 1	Inc.						
Address Line1	25435 H	Iarvard Road							
Address Line2									
City	Beachw	ood	State	e O	OH Zip		Zip	44	122
Email				Pł	Phone (216) 682-7000			00	
		CONTAC	ΓINF	ORMA	ATI	ON			
Permit Contact	Name	Curt Panick							
Permit Contact	Permit Contact Title SHE Manager								
Address Line		1001 Chambers Ave.							
City		Jeannette	State	e P	4		Zip	15	644
Email		curt.panick@	omnov	va.com]	Phone	72	4-523-5411

Complete Table 1, including all air contamination sources that commenced operation on or before August 3rd, 2018. Air contamination sources determined to be exempt from permitting requirements also must be included. You may find this information in section A and H of your operating permit.

Table 1 - Source Information

Source ID	Source Name	Make	Model	Physical location of source	Was this source subject to RACT II?
35	New Boiler 1	NA	NA	Plant	Yes
36	New Boiler 2	NA	NA	Plant	Yes
111	Calendar Line 1	NA	NA	Plant	Yes
112	Calendar Line 2	NA	NA	Plant	Yes
114	Calendar Line 4	NA	NA	Plant	Yes
221	Embosser/Laminator 1	NA	NA	Plant	Yes
222	Embosser/Laminator 2	NA	NA	Plant	Yes
232	Liquid Raw Material Storage	NA	NA	Plant	No
241	Resin Silos 1-6	NA	NA	Plant	No
243	Resin Solids Weigh and Handling	NA	NA	Plant	No
251	Powerhouse Generator (50 HP)	NA	NA	Plant	Yes
252	Direct Fired Make Up Air Units 1-3	NA	NA	Plant	Yes
300	AZO Scrap System	NA	NA	Plant	No
301	Misc. Raw Material Handling	NA	NA	Plant	No

Complete Table 2 or 3 if the facility is a major NOx or VOC emitting facility. For the column with the title "How do you intend to comply", compliance options are:

- Presumptive RACT requirement under §129.112 (**PRES**),
- Facility-wide averaging (**FAC**) §129.113,
- System-wide averaging (SYS) §129.113, or
- Case by case determination §129.114 (**CbC**).

Please provide the applicable subsection if source will comply with the presumptive requirement under §129.112.

Table 2 - Method of RACT III Compliance, NOx

Source ID	Source Name	NOx PTE TPY	Exempt from RACT III (yes or no)	How do you intend to comply? (PRES, CbC, FAC or SYS)	Specific citation of rule if presumptive option is chosen
Not Applicable					

Please complete Table 3 if the facility is a major VOC emitting facility. Please provide the applicable section if a source is complying with any RACT regulation listed in 25 Pa Code §§ 129.51, 129.52(a)—(k) and Table I categories 1—11, 129.52a—129.52e, 129.54—129.63a, 129.64—129.69, 129.71—129.73, 129.75 129.71—129.75, 129.77 and 129.101—129.107.

Table 3 – Method of RACT III Compliance, VOC

Source ID	Source Name	VOC PTE TPY (1)	Exempt from RACT III (yes or no)	How do you intend to comply?	Specify citation of rule or subject to 25 Pa Code RACT regulation, (list applicable sections)	Notes
35	New Boiler 1	< 1 TPY	Yes	NA		
36	New Boiler 2	< 1 TPY	Yes	NA		
111	Calendar Line 1	36	No	CbC	129.114(i)(1)(i)	(2)
112	Calendar Line 2	36	No	CbC	129.114(i)(1)(i)	(2)
114	Calendar Line 4	36	No	CbC	129.114(i)(1)(i)	(2)
221	Embosser/Laminator 1	4	No	CbC	129.114(i)(1)(i)	(2)
222	Embosser/Laminator 2	4	No	CbC	129.114(i)(1)(i)	(2)
232	Liquid Raw Material Storage		Yes	NA		Regulated by 129.57
251	Powerhouse Generator (50 HP, 0.13 MMBtu/hr)	< 1 TPY	Yes	NA		
252	Direct Fired Make Up Air Units 1-3 (5.165 MMBtu/hr each)	< 1 TPY	Yes	NA		

Table Footnotes:

- (1) PTE is from the current permit.
- (2) Please see attached Case by Case analyses.
- (3) Only VOC sources are listed in Table 3.

Certification of Truth, Accuracy and Completeness

Note: This certification must be signed by a responsible official.

I certify under penalty of law that, based on information and belief formed after reasonable inquiry, the statements and information contained in this notification and the attached case-by-case analyses are true, accurate, and complete.

(Signed)

Name (Typed): Catherine Williams

Date: 12-14-22

Title: Plant Manager

RACT III CASE-BY-CASE ANALYSES OMNOVA SOLUTIONS INC., JEANNETTE FACILITY, WESTMORELAND COUNTY

The OMNOVA Solutions Jeannette facility ("facility") submitted a Case-by-Case RACT II analyses for the following sources:

Source 111: Calendar Line 1

Source 112 Calendar Line 2

Source 114: Calendar Line 4

Source 221: Embosser/Laminator 1

• Source 222: Embosser/Laminator 2

The previous RACT II application was submitted to the PADEP in November 2019 and a RACT II permit (through a Title V permit) was issued effective February 6, 2020. Since then, there have been no new pollutants emitted nor any modifications made to the RACT II sources.

The facility has not modified or changed any source subject to RACT that commenced operation on or before October 24, 2016, and has not installed and commenced operation of a new source after October 24, 2016. Thus, per Pa. code 129.114(i), the facility is submitting an analysis that demonstrates compliance with the alternative RACT requirement or RACT emission limitation previously approved by the PADEP (RACT II) that assures compliance with RACT III requirements. The following RACT III analyses follows the requirements in Pa. Code 129.114(i)(1)(i).

(A) DETERMINATION OF NO NEW AIR POLLUTION CONTROL DEVICE, CONTROL TECHNOLOGY OR TECHNIQUE AVAILABLE

According to 129.114(i)(1)(i)(A), the facility conducted a search for any new air pollution control devices, control technologies, or techniques available using the following sources of information:

- 1. US EPA RACT/BACT (Best Available Control Technology)/LAER (Lowest Achievable Emission Rate) (Clearinghouse (RBLC)
- 2. US EPA Clean Air Technology Center (CATC) Air Pollution Technology Fact Sheets (FS) and Technical Bulletins (TB)
- 3. US EPA CATC Air Pollution Technical Reports
- 4. US EPA CATC/CTC Information Bulletins and Newsletters

The paragraphs below describe the outcome of the evaluation of each of the four sources listed above.

1. US EPA RACT/BACT/LAER Clearinghouse (RBLC)

BACT and LAER (and sometimes RACT) are determined on a case-by-case basis, usually by State or local permitting agencies. EPA established the RACT/BACT/LAER Clearinghouse, or RBLC, to provide a central data base of air pollution technology information (including past RACT, BACT, and LAER decisions contained in NSR permits) to promote the sharing of information among permitting agencies and to aid in future case-by-case determinations. However, data in the RBLC are not limited to sources subject to RACT, BACT, and LAER requirements. Noteworthy prevention and control technology decisions and information are included even if they are not related to past RACT, BACT, or LAER decisions. Thus, the RBLC clearinghouse is a reliable source of the latest control technologies available for controlling VOC emissions.

The RBLC database was searched starting from November 1, 2019, since the facility submitted the RACT II proposal to the PADEP for evaluation. The full output of this search is given in Attachment A to this analysis. A summary of the control technologies listed in the search is given below.

Table 1 Summary of RBLC Search Applicable VOC Control Methods

RBLC ID	Process Name	Control Method	Emission Limit	Basis
TN-0184 (draft)	Polyurethane foam manufacturing	Good work practices and permitted VOC limit		NESHAP
IN-0354 (draft)	Rotogravure Printing Press RGP1	RTO and permanent total enclosure	98% overall VOC control efficiency and 10 ppmv VOC outlet concentration	OTHER CASE-BY- CASE

Most of the VOC controls listed in the RBLC were for combustion sources. The above two items were the only relevant control methods that are applicable to the non-combustion related VOC sources at the facility.

2. US EPA CATC Air Pollution Technology Fact Sheets (FS) and Technical Bulletins (TB)

The most recent CATC Air Pollution Technology Fact Sheets and Technical Bulletins listed on EPA's website¹ are dated from 2005. Thus, no new air pollution technology or technical bulleting has been published since the facility was issued the RACT II permit.

Page 2

¹ https://www.epa.gov/catc/clean-air-technology-center-products#factsheets

3. US EPA CATC Air Pollution Technical Reports

The most recent CATC Air Pollution Technical Reports listed on EPA's website² is dated 2010. Thus, no new CATC Air Pollution Technical Report has been published since the facility was issued the RACT II permit.

4. US EPA CATC/Control Technology Center (CTC) Information Bulletins and Newsletters

The most recent CATC/CTC information bulletin and newsletter listed on EPA's website³ is dated 1998. Thus, no new CATC/CTC information bulletin and newsletter has been published since the facility was issued the RACT II permit.

All the above control technologies were already reviewed in the previously submitted and approved RACT II application. Thus, there is no new pollutant specific air cleaning device, air pollution control technology or technique available.

(B) LIST OF TECHNICALLY FEASIBLE AND APPROVED RACT II OPTIONS

According to 129.114(i)(1)(i)(B), below is a list of the technically feasible air cleaning devices, air pollution control technologies or techniques previously identified and evaluated for the Calendering and embossing operations under RACT II and included in the previously submitted and RACT proposal submitted under § 129.99(d) and approved by the department.

The control technologies are listed in order of overall control effectiveness for VOC removal. The most effective control alternative is ranked at the top of the list. The remaining technologies are ranked in descending order of control effectiveness as shown in table 2 below.

Page 3

² https://www.epa.gov/catc/clean-air-technology-center-products#reports

³ https://www.epa.gov/catc/clean-air-technology-center-products#news

Table 2 Technically Feasible and Approved Control Technologies

Rank	Control Technology	Control Efficiency	To Control Sources
1	Regenerative Thermal Oxidizer (RTO)	99.0%	111, 112, 114, 221, 222
1	Recuperative Thermal Oxidizer	99.0%	111, 112, 114, 221, 222
1	Catalytic Oxidizer – Fixed Bed	99.0%	111, 112, 114, 221, 222
1	Catalytic Oxidizer – Monolith	99.0%	111, 112, 114, 221, 222
1	Catalytic Oxidizer – Fluidized Bed	99.0%	221, 222
2	Fixed Bed Carbon Adsorber with Steam Regeneration	98.0%	111, 112, 114, 221, 222
2	Carbon Canister Adsorber with Carbon/Canister Replacement	98.0%	111, 112, 114

(C) SUMMARY OF ECONOMIC FEASIBILITY ANALYSIS

According to 129.114(i)(1)(i)(C), this is a summary of the economic feasibility analysis performed for each technically feasible air cleaning device, air pollution control technology or technique listed in (B) above and the cost effectiveness of each technically feasible air cleaning device, air pollution control technology or technique as submitted previously under RACT II proposal.

RACT III guidelines recommend a cost per ton of VOC removed to be \$12,000 or less to be economically justifiable. Economic analysis results of each technically feasible control technology submitted in the RACT II proposal and updated for 2022 costs are shown below in Tables 3 and 4 for the three Calender Lines and for the two Embosser/Laminator Lines.

Table 3 Cost Effectiveness for Calender Lines 1, 2, and 4

VOC Control	Control Technology	Number	Estimated	Total Annual	Annual	Control Cost	Total Control	Control Cost	Total Control
Efficiency		of	Control	Cost	Quantity of	Effectiveness	Cost	Effectiveness	Cost
Ranking by		Units	Efficiency	per Control Unit	VOC	per Control Unit	Effectiveness	per Control Unit	Effectiveness
Cost		Required		(\$/yr)	Removed	(\$/ton removed)	(\$/ton removed)	(\$/ton removed)	(\$/ton removed)
Effectiveness				2018 dollars	(TPY)	2018 dollars	2018 dollars	2022 dollars	2022 dollars
				(1), (2)		(1), (2)	(1), (3)	(2), (4)	(3), (4)
1	Fixed-Bed Carbon Adsorber with Steam Regeneration	3	98.0%	\$289,437	34	\$8,438	\$25,315	\$12,379	\$37,137
2	Fixed-Bed Carbon Adsorber with Steam Regeneration	1	98.0%	\$908,826	103	\$8,832	\$8,832	\$12,957	\$12,957
3	Regenerative Thermal Oxidizer	1	99.0%	\$1,237,111	105	\$11,785	\$11,785	\$17,289	\$17,289
4	Carbon Canister Adsorber with Carbon Replacement	3	98.0%	\$443,417	34.3	\$12,927	\$38,781	\$18,964	\$56,892
5	Carbon Canister Adsorber with Canister Replacement	3	98.0%	\$502,615	34	\$14,653	\$43,960	\$21,496	\$64,489
6	Regenerative Thermal Oxidizer	3	99.0%	\$519,069	35	\$14,834	\$44,502	\$21,761	\$65,284
7	Catalytic Oxidizer – Fixed Bed	3	99.0%	\$1,818,935	35	\$51,982	\$155,946	\$76,258	\$228,773
8	Catalytic Oxidizer - Monolith	3	99.0%	\$1,818,935	35	\$51,982	\$155,946	\$76,258	\$228,773
9	Recuperative Thermal Oxidizer	3	99.0%	\$3,193,088	35	\$91,253	\$273,759	\$133,868	\$401,604

- 1. 2018-dollar values are from the RACT II Application
- 2. Indicates whether a single control is used for all three lines or if each line was evaluated with its own individual control device.
- 3. [Total Control Cost Effectiveness] = [Control Cost Effectiveness per Control Unit] x [Number of Units Required]
- 4. 2022-dollar values:

CEPCI = Chemical Engineering Plant Cost Index

CEPCI value for 2018 = 567.5

CEPCI value for 2022 = 832.6

CEPCI ratio = (CEPCI value for 2022) / (CEPCI value for 2018) = 832.6/567.5 = 1.467

2022-dollar values = [2018 dollars] x 1.467

Table 4 Cost Effectiveness for Embosser/Laminator Lines 1 and 2

VOC Control	Control Technology	Number	Estimated	Total Annual	Annual	Control Cost	Total Control	Control Cost	Total Control
Efficiency		of	Control	Cost	Quantity	Effectiveness	Cost	Effectiveness	Cost
Ranking by		Units	Efficiency	per Control Unit	of	per Control Unit	Effectiveness	per Control Unit	Effectiveness
Cost		Required		(\$/yr)	VOC	(\$/ton removed)	(\$/ton removed)	(\$/ton removed)	(\$/ton removed)
Effectiveness				2018 dollars	Removed	2018 dollars	2018 dollars	2022 dollars	2022 dollars
				(1), (2)	(TPY)	(1), (2)	(1), (3)	(2), (4)	(3), (4)
1	Fixed-Bed Carbon Adsorber with Steam Regeneration	1	98.0%	\$147,130	8	\$18,772	\$27,538	\$27,538	\$40,398
2	Regenerative Thermal Oxidizer	1	99.0%	\$318,743	8	\$39,806	\$58,395	\$58,395	\$85,666
3	Catalytic Oxidizer – Fixed Bed	1	99.0%	\$932,095	8	\$116,404	\$170,765	\$170,765	\$250,512
4	Catalytic Oxidizer – Monolith	1	99.0%	\$932,095	8	\$116,404	\$170,765	\$170,765	\$250,512
5	Catalytic Oxidizer – Fluidized Bed	1	99.0%	\$956,120	8	\$119,404	\$175,166	\$175,166	\$256,968
6	Recuperative Thermal Oxidizer	1	99.0%	\$1,576,495	8	\$196,879	\$288,821	\$288,821	\$423,701

- 1. 2018-dollar values are from the RACT II Application
- 2. Indicates whether a single control is used for all three lines or if each line was evaluated with its own individual control device.
- 3. [Total Control Cost Effectiveness] = [Control Cost Effectiveness per Control Unit] x [Number of Units Required]
- 4. 2022-dollar values:

CEPCI = Chemical Engineering Plant Cost Index

CEPCI value for 2018 = 567.5

CEPCI value for 2022 = 832.6

CEPCI ratio = (CEPCI value for 2022) / (CEPCI value for 2018) = 832.6/567.5 = 1.467

2022-dollar values = [2018 dollars] x 1.467

(D) VOC RACT SUMMARY

For Sources 111, 112, and 114, the three Calender Lines, the economic analysis for technically feasible control devices indicated a cost per ton of VOC removed to range from \$133,868 to \$12,957, all of which are above the recommended guidance of \$12,000/ton of VOC controlled.

For Sources 221 and 222, the two Embosser/Laminator Lines, the economic analysis for technically feasible control devices indicated a cost per ton of VOC removed to range from \$288,821 to \$27,538, all of which are above the recommended guidance of \$12,000/ton of VOC controlled.

Thus, an evaluation of each economic feasibility analysis summarized in section (C) above demonstrates that the cost effectiveness remains equal to or greater than \$12,000 per ton of VOC emissions reduced. Based on the above analysis, the following is a summary of the facility's RACT III Case-by-Case proposal.

Table 5 Omnova – Jeannette RACT III Case-by-Case Summary

Source ID	Source Description	RACT-III	Implementation Schedule
111	Calender Line 1	Economically unfeasible	Not Applicable
112	Calender Line 2	Economically unfeasible	Not Applicable
114	Calender Line 4	Economically unfeasible	Not Applicable
221	Embosser/Laminator 1	Economically unfeasible	Not Applicable
222	Embosser/Laminator 2	Economically unfeasible	Not Applicable

Based on the above analysis, the facility proposes the following RACT III permit conditions:

- Sources 111, 112, and 114: The Owner/Operator shall install, maintain, and operate the source in accordance with the manufacturer's specifications and with good operating practices.
- Sources 221 and 222: The Owner/Operator shall install, maintain, and operate the source in accordance with the manufacturer's specifications and with good operating practices.

ATTACHMENT A

RBLC DATABASE SEARCH RESULTS FROM 11/1/2019 – 9/29/2022

Previous Page

COMPREHENSIVE REPORT Report Date: 09/29/2022

Facility Information

RBLC ID: AR-0175 (draft) Date Determination

Last Updated: 09/27/2022

Corporate/Company Name: Permit Number: 0463-AOP-R21

Facility Name: GEORGIA-PACIFIC WOOD PRODUCTS SOUTH LLC (GURDON PLYWOOD I

Permit Date: 09/26/2022 (actual)

AND

Facility Contact: JEREMY BOHLEN 870-353-5501 JEREMY.BOHLEN@GAPAC.COM

110017425071

Facility Description:

SIC Code: 2421

Permit Type: C: Modify process at existing facility

NAICS Code: 321113

Permit URL:

EPA Region: 6

COUNTRY:

FRS Number:

USA

Facility County: CLARK

Facility State: AR
Facility ZIP Code: 71743

Permit Issued By: ARKANSAS DEPT OF ENVIRONMENTAL QUALITY (Agency Name)

MR. THOMAS RHEAUME(Agency Contact) (501) 682-0762 rheaume@adeq.state.ar.us

Permit Notes:

Affected Boundaries: Boundary Type: Class 1 Area State: Boundary: Distance:

CLASS1 AR Caney Creek < 100 km

Pollutant Name: Facility-wide Emissions Increase:

Facility-wide Emissions: Pollutant Name: Facility-wide Emiss
Volatile Organic Compounds (VOC) 87.2000 (Tons/Year)

Process/Pollutant Information

PROCESS SN-09 #4 Lumber Kiln

NAME:

Process Type: 30.800 (Wood Lumber Kilns)

Primary Fuel: natural gas
Throughput: 306.60 MMBTU/hr

Process Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))
Emission Limit 1: 3.8000 LB/ 1000 BOARD FEET

Emission Limit 2: 460.9000 T/YR

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

Previous Page

Facility Information

9/29/22, 8:56 AM Format RBLC Report

C: Modify process at existing facility

RBLC ID: TN-0184 (draft) Date Deter

Date Determination Last Updated: 09/28/2022

3086

Corporate/Company Name: ADIENT US LLC

VT US LLC

Permit Number: 980244

Facility Name: ADIENT US LLC - PULASKI Permit Date: 09/22/2022 (actual)

Facility Contact: KRIS FOSTER 931-363-5666 KRIS.PATRICK.FOSTR@ADIENT.COM FRS Number: Not Found

Facility Description: Adient operates three moisture curing, urethane foam injection lines. The foam lines SIC Code:

produce automotive seat cushions and other foam products in clamshell molds.

NAICS Code: 336360

Permit URL: https://dataviewers.tdec.tn.gov/dataviewers/f?p=19031:34051::::34051:P34051_PERMIT_ID:96581

Termit Okt.

EPA Region: 4 COUNTRY: USA

Facility County: GILES
Facility State: TN
Facility ZIP Code: 38478

Permit Issued By: TENN.DEPT. OF ENVIRONMENT & CONSERVATION, DIV OF AIR POLLUTION CONTROL (Agency Name)

LACEY HARDIN(Agency Contact) (615) 532-0545 Lacey.Hardin@tn.gov

Permit Notes:

Permit Type:

Facility-wide Emissions: Pollutant Name: Facility-wide Emissions Increase:

Particulate Matter (PM) 9.9000 (Tons/Year)
Volatile Organic Compounds (VOC) 491.4000 (Tons/Year)

Process/Pollutant Information

PROCESS Polyurethane Foam Manufacturing

NAME:

Process Type: 99.016 (Polyurethane Foam Products Manufacturing)

Primary Fuel:

Throughput: 0

Process Notes: Production of polyurethane foam auromotive seat cushions. Foam cushions or buns are produced on one of theree production lines. Molds are

sprayed with mold release, and/or with hand applied application techniques to prevent the foam from sticking to the mold. VOC emissions from the process are mostly from the use of solvet based mold release agents. Wax in the mold release materials may be emitted as total supended particulates

via process vents.

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: 491.4000 TONS 12 CONSECUTIVE MONTHS

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: N/A
Other Applicable Requirements: NESHAP

Control Method: (P) Good work practices and permitted VOC limit

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, total (TPM)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 3.0000 LB/HR DAILY AERAGE BASIS **Emission Limit 2:** 9.9000 TON 12 CONSECUTIVE MONTHS

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: N/A
Other Applicable Requirements:

Control Method: (N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton **Incremental Cost Effectiveness:** 0 \$/ton **Compliance Verified:** Unknown

Pollutant/Compliance Notes:

Previous Page

Facility Information

TX-0940 (draft) **RBLC ID: Date Determination**

Last Updated: 09/12/2022

1499

Corporate/Company Name: KNAUF INSULATION, INC. 166392, PSDTX1600 Permit Number: FIBERGLASS MANUFACTURING FACILITY Permit Date: 09/06/2022 (actual) **Facility Name:** KEVIN MCHUGH 317-421-4710 NOT FOUND FRS Number: **Facility Contact:**

Facility Description: greenfield fiberglass insulation manufacturing plant. The plant consists of a raw SIC Code:

material receiving area (liquid-tanks and dry-silos) and batch mixing points, gas-

oxy melting furnace, binder application, forming, curing ovens, and finished goods.

327993 A: New/Greenfield Facility NAICS Code:

Permit Type: Permit URL:

USA 6 **EPA Region: COUNTRY:**

MCLENNAN **Facility County:**

TX **Facility State:**

Facility ZIP Code:

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY (TCEQ) (Agency Name) Permit Issued By: MS. ANNE INMAN(Agency Contact) (512) 239-1267 anne.inman@tceq.texas.gov

Other Agency Contact Info: Mr. Huy Pham, (512) 239-1358, Huy.Pham@tceq.texas.gov

Permit Notes:

Affected Boundaries: Boundary Type: Class 1 Area State: **Boundary:** Distance:

CLASS1 OK Wichita Mountains > 250 km

Process/Pollutant Information

PROCESS RAW MATERIAL HANDLING

NAME:

Process Type: 90.033 (Wool Fiberglass Manufacturing)

Primary Fuel: Throughput:

Process Notes: RECIEVING, MIXING, AND HANDLING

> **POLLUTANT NAME:** Particulate matter, filterable (FPM)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

BACT-PSD Case-by-Case Basis:

Other Applicable Requirements:

Control Method: (A) BAGHOUSE

99.000 Est. % Efficiency: **Cost Effectiveness:** 0 \$/ton **Incremental Cost Effectiveness:** 0 \$/ton **Compliance Verified:** Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable $\leq 10 \mu$ (FPM10)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) BAGHOUSE

Est. % Efficiency: 99.000
Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable $< 2.5 \mu$ (FPM2.5)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,N\,$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) BAGHOUSE

Est. % Efficiency: 99.000
Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

Process/Pollutant Information

PROCESS MELTING AND REFINING FURNACE

NAME:

Process Type: 90.033 (Wool Fiberglass Manufacturing)

Primary Fuel: NATURAL GAS
Throughput: 30333.00 LB/HR

Process Notes:

POLLUTANT NAME: Nitrogen Oxides (NOx)

CAS Number: 10102
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Nitrogen (NOx), Particulate Matter (PM))

Emission Limit 1: 1.3000 LB/TGP

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis:BACT-PSDOther Applicable Requirements:NESHAP, NSPS

Control Method: (P) Gas-oxy burners and good combustion practices

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC

Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: 0.1500 LB/TGP

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD
Other Applicable Requirements: NSPS, NESHAP

Control Method: (P) Gas-oxy burners and good combustion practices

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Carbon Monoxide

CAS Number: 630-08-0
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds)
Emission Limit 1: 0.0300 LB/TGP

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD
Other Applicable Requirements: NSPS, NESHAP

Control Method: (P) Gas-oxy burners and good combustion practices

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable (FPM)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.5000 LB/TGP

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD
Other Applicable Requirements: NSPS, NESHAP
Control Method: (A) DRY ESP

Est. % Efficiency:

Cost Effectiveness:0 \$/tonIncremental Cost Effectiveness:0 \$/tonCompliance Verified:Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable $< 10 \mu$ (FPM10)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.5000 LB/TGP

Emission Limit 2:

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis:BACT-PSDOther Applicable Requirements:NSPS, NESHAPControl Method:(A) DRY ESP

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable $< 2.5 \mu$ (FPM2.5)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.5000 LB/TGP

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD
Other Applicable Requirements: NSPS, NESHAP
Control Method: (A) DRY ESP

Est. % Efficiency:

Cost Effectiveness:0 \$/tonIncremental Cost Effectiveness:0 \$/tonCompliance Verified:Unknown

Pollutant/Compliance Notes:

Process/Pollutant Information

PROCESS FORMING, CURING AND COOLING OPERATIONS

NAME:

Process Type: 90.033 (Wool Fiberglass Manufacturing)

Primary Fuel: NATURAL GAS
Throughput: 30333.00 LB/HR

Process Notes:

POLLUTANT NAME: Nitrogen Oxides (NOx)

CAS Number: 10102
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Nitrogen (NOx), Particulate Matter (PM))

Emission Limit 1: 1.0500 LB/TGP

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,N\,$

Case-by-Case Basis: BACT-PSD **Other Applicable Requirements:** NSPS

Control Method: (B) Low-NOx burners for curing and cooling. Good combustion techniques and pipeline quality natural gas

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: 1.8800 LB/TGP

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD Other Applicable Requirements: NSPS

Control Method: (P) Good combustion techniques and pipeline quality natural gas

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Carbon Monoxide

CAS Number: 630-08-0
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds)

Emission Limit 1: 3.6000 LB/TGP

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD
Other Applicable Requirements: NSPS

Control Method: (P) Low-NOx burners for curing and cooling. Good combustion techniques and pipeline quality natural gas

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable (FPM)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 2.7800 LB/TGP

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD Other Applicable Requirements: NSPS

Control Method: (A) WET ESP

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable < 10 μ (FPM10)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 2.7800 LB/TGP

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD **Other Applicable Requirements:** NSPS

Control Method: (A) WET ESP

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable \leq 2.5 μ (FPM2.5)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 2.7800 LB/TGP

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD Other Applicable Requirements: NSPS

Control Method: (A) WET ESP

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

Process/Pollutant Information

PROCESS WBW SCRAP DOCK

NAME:

Process Type: 90.033 (Wool Fiberglass Manufacturing)

Primary Fuel:
Throughput: 0
Process Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,{\rm N}$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good housekeeping and use of lower-VOC emitting products where possible.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable (FPM)

CAS Number: PM
Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.0050 GR/DSCF Emission Limit 2:

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,N\,$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) Fabric filter baghouse and emissions exhausted inside a building for additional capture efficiency.

Est. % Efficiency: 85.000
Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable $< 10 \mu$ (FPM10)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.0050 GR/DSCF

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) Fabric filter baghouse and emissions exhausted inside a building for additional capture efficiency.

Est. % Efficiency: 85.000
Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable $\leq 2.5 \mu$ (FPM2.5)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))
Emission Limit 1: 0.0050 GR/DSCF

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,N\,$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) Fabric filter baghouse and emissions exhausted inside a building for additional capture efficiency.

Est. % Efficiency: 85.000
Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

Process/Pollutant Information

PROCESS FACING, SIZING AND PACKAGING

NAME:

Process Type: 90.033 (Wool Fiberglass Manufacturing)

Primary Fuel: Throughput: 0

Process Notes:

POLLUTANT NAME: Particulate matter, filterable (FPM)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))
Emission Limit 1: 0.0050 GR/DSCF

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) Fabric filter baghouse and emissions exhausted inside a building for additional capture efficiency.

Est. % Efficiency: 85.000
Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable $< 10 \mu$ (FPM10)

CAS Number: PM

Test Method: Unspecified

 $Pollutant \ Group(s): \qquad \qquad (\ Particulate \ Matter \ (PM)\)$

Emission Limit 1: 0.0050 GR/DSCF

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) Fabric filter baghouse and emissions exhausted inside a building for additional capture efficiency.

Est. % Efficiency: 85.000
Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, filterable \leq 2.5 μ (FPM2.5)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.0050 GR/DSCF

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,\mathrm{N}$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) Fabric filter baghouse and emissions exhausted inside a building for additional capture efficiency.

Est. % Efficiency: 85.000
Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

Process/Pollutant Information

PROCESS ADHESIVE BACKING OPERATIONS

NAME:

Process Type: 90.033 (Wool Fiberglass Manufacturing)

Primary Fuel:
Throughput: 0

Process Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,N\,$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good housekeeping and use of lower-VOC emitting products where possible.

Est. % Efficiency:

 Cost Effectiveness:
 0 \$/ton

 Incremental Cost Effectiveness:
 0 \$/ton

 Compliance Verified:
 Unknown

Pollutant/Compliance Notes:

Process/Pollutant Information

PROCESS INKING

NAME:

Process Type: 90.033 (Wool Fiberglass Manufacturing)

Primary Fuel: Throughput: 0

Process Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good housekeeping and use of lower-VOC emitting products where possible.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

Process/Pollutant Information

PROCESS COOLING TOWER

NAME:

Process Type: 99.009 (Industrial Process Cooling Towers)

Primary Fuel:

Throughput: 2175.00 GAL/MIN

Process Notes:

POLLUTANT NAME: Particulate matter, total (TPM)

CAS Number: PM

Test Method: Unspecified

 $Pollutant \ Group(s): \qquad \qquad (\ Particulate \ Matter \ (PM)\)$

Emission Limit 1: 0.0010 %

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,N\,$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) DRIFT ELIMINATOR

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, total $< 10 \mu$ (TPM10)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.0010 %

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) DRIFT ELIMINATOR

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, total $< 2.5 \mu$ (TPM2.5)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.0010 %

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) DRIFT ELIMINATOR

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

Previous Page

Facility Information

RBLC ID: IN-0354 (draft) Date Determination

Last Updated: 09/08/2022

Corporate/Company Name: PATRICK INDUSTRIES, INC. DBA GRAVURE INK Permit Number: 45433

Facility Name: PATRICK INDUSTRIES, INC. DBA GRAVURE INK Permit Date: 08/25/2022 (actual)
Facility Contact: FRS Number: Not Found

Facility Contact:FRS Number:Not FoundFacility Description:SIC Code:2754

Permit Type: C: Modify process at existing facility NAICS Code: 323111

Permit URL: https://permits.air.idem.in.gov/45433f

EPA Region: 5 COUNTRY: USA

Facility County: LAPORTE
Facility State: IN
Facility ZIP Code: 46350

Permit Issued By: INDIANA DEPT OF ENV MGMT, OFC OF AIR (Agency Name)

MR. MATT STUCKEY(Agency Contact) (317) 233-0203 mstuckey@idem.in.gov

Permit Notes:

Process/Pollutant Information

9/29/22, 8:56 AM

PROCESS Rotogravure Printing Press RGP1

NAME:

41.999 (Other Surface Coating/Printing/Graphic Arts Sources) **Process Type:**

Primary Fuel:

Throughput: 984.00 feet per minute

Process Notes: maximum printing width of 50 inches

> **POLLUTANT NAME:** Volatile Organic Compounds (VOC)

VOC **CAS Number: Test Method:** Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: 98.0000 PERCENT OVERALL VOC CONTROL EFFICIENCY

10.0000 PPMV VOC OUTLET CONCENTRATION **Emission Limit 2:**

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: OTHER CASE-BY-CASE

Other Applicable Requirements:

Control Method: (A) RTO and permanent total enclosure

98.000 Est. % Efficiency: **Cost Effectiveness:** 0 \$/ton **Incremental Cost Effectiveness:** 0 \$/ton **Compliance Verified:** Unknown

Pollutant/Compliance Notes:

Previous Page

Facility Information

RBLC ID: IN-0355 (draft) **Date Determination**

Last Updated: 09/15/2022

FULCRUM CENTERPOINT, LLC Corporate/Company Name: **Facility Name:** FULCRUM CENTERPOINT, LLC

Permit Date: 08/16/2022 (actual)

FRS Number: 110071219870

FLYN VAN EWIJK (925) 224-8241 FVANEWIJK@FULCRUM-**Facility Contact:** BIOENERGY.COM

SIC Code:

Permit Number:

2999

F089-44042-00660

Facility Description: A: New/Greenfield Facility **Permit Type:**

324199 **NAICS Code:**

USA COUNTRY:

https://permits.air.idem.in.gov/44042f.pdf Permit URL:

Stationary biorefinery

EPA Region:

LAKE **Facility County:** ΙN **Facility State:** 46406 **Facility ZIP Code:**

INDIANA DEPT OF ENV MGMT, OFC OF AIR (Agency Name) Permit Issued By:

MR. MATT STUCKEY(Agency Contact) (317) 233-0203 mstuckey@idem.in.gov

Permit Notes:

Boundary Type: Class 1 Area State: **Boundary:** Distance: **Affected Boundaries:**

INTL BORDER US/Canada Border 100km - 50km

Pollutant Name: Facility-wide Emissions Increase: Facility-wide Emissions:

Carbon Monoxide 131.8200 (Tons/Year) Nitrogen Oxides (NOx) 170.3500 (Tons/Year) 1182.9600 (Tons/Year) Particulate Matter (PM) Sulfur Oxides (SOx) 13.7200 (Tons/Year) Volatile Organic Compounds (VOC) 1429.1000 (Tons/Year)

Process/Pollutant Information

PROCESS Fixed Bed Tubular Fischer Tropsch (FT) Synthesis Reactor

NAME:

Process Type: 11.290 (Other Liquid Fuel & Liquid Fuel Mixtures) 9/29/22, 8:56 AM

Primary Fuel: Purge Gas Throughput: 1650.00 tons/day

Process Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC **Test Method:** Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

10.0000 PPMVD **Emission Limit 1: Emission Limit 2:** 1.2300 LB/HR

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: OTHER CASE-BY-CASE

Other Applicable Requirements:

Control Method: (A) The VOC emissions from the fixed bed tubular Fischer Tropsch (FT) Synthesis reactor shall be controlled by

the utility boiler (BOIL) except when flaring the VOC emissions during startup and shutdown. The utility boiler (BOIL) shall operate with an overall VOC control efficiency (including the capture efficiency and destruction efficiency) of not less than 98.0% or the VOC outlet concentration shall not exceed 10 ppmvd of VOC at 100%

capture. VOC emissions from the utility boiler stack (SV10) shall not exceed 1.23 lb/hr.

98.000 Est. % Efficiency: **Cost Effectiveness:** 0 \$/ton **Incremental Cost Effectiveness:** 0 \$/ton **Compliance Verified:** Unknown

Pollutant/Compliance Notes:

Previous Page

Facility Information

RBLC ID: IN-0350 (draft) **Date Determination**

> 08/11/2022 Last Updated:

GENERAL ALUMINUM MANUFACTURING COMPANY Corporate/Company Name: GENERAL ALUMINUM MANUFACTURING COMPANY **Facility Name:**

Permit Number: 069-44829-00048 08/11/2022 (actual) **Permit Date:**

Not Found

USA

GARY APPLEGATE **Facility Contact:** A stationary aluminum foundry, melting only clean charge. **Facility Description:**

FRS Number: 3365 SIC Code:

C: Modify process at existing facility **Permit Type:**

331524 **NAICS Code:**

COUNTRY:

EPA Region:

HUNTINGTON **Facility County:**

ΙN **Facility State:** 46750 **Facility ZIP Code:**

INDIANA DEPT OF ENV MGMT, OFC OF AIR (Agency Name) Permit Issued By:

MR. MATT STUCKEY(Agency Contact) (317) 233-0203 mstuckey@idem.in.gov

Permit Notes:

Permit URL:

Boundary Type: Class 1 Area State: **Boundary:** Distance: **Affected Boundaries:** > 250 kmINTL BORDER US/Canada Border

Pollutant Name: Facility-wide Emissions Increase: **Facility-wide Emissions:**

Volatile Organic Compounds (VOC) 17.0000 (Tons/Year)

Process/Pollutant Information

PROCESS Lost Foam Casting Process

NAME:

82.123 (Secondary AL Casting Lines)

Process Type: Primary Fuel:

Throughput:

Process Notes: VOC emissions from the lost foam casting process shall not exceed 26.82 tons per twelve (12) consecutive month period, with compliance

determined at the end of each month.

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: OTHER CASE-BY-CASE

 $\label{eq:control} \begin{tabular}{ll} \textbf{Other Applicable Requirements:} \\ \textbf{Control Method:} \end{tabular} \begin{tabular}{ll} (N) \end{tabular}$

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: OTHER CASE-BY-CASE

Other Applicable Requirements:
Control Method: (N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

Previous Page

Facility Information

RBLC ID: AR-0174 (draft) **Date Determination** Last Updated: 09/07/2022 POTLATCHDELTIC LAND & LUMBER, LLC 0356-AOP-R14 Corporate/Company Name: **Permit Number:** POTLATCHDELTIC LAND AND LUMBER, LLC - WARREN LUMBER MILL 08/01/2022 (actual) **Facility Name: Permit Date:** MAE 110000780511 **Facility Contact:** FRS Number: DINIVAHI 8702261174 MANGALAA.DINIVAHI@POTLATCHDELTIC.COM PotlatchDeltic Warren Lumber Mill has a sawmill and planer mill that produce SIC Code: 2411 **Facility Description:** softwood lumber and chips. Permit Type: C: Modify process at existing facility NAICS Code: 321113 https://www.adeq.state.ar.us/downloads/WebDatabases/PermitsOnline/Air/0356-AOP-R14.pdf Permit URL: USA **EPA Region:** COUNTRY: BRADLEY **Facility County:** AR **Facility State:** 71671

Facility ZIP Code: 71671

Permit Issued By: ARKANSAS DEPT OF ENVIRONMENTAL QUALITY (Agency Name)

MR. THOMAS RHEAUME(Agency Contact) (501) 682-0762 rheaume@adeq.state.ar.us

Permit Notes: PotlatchDelteic will add a fourth continuous steam-heated lumber kiln, increase their annual production limit from 360,000 to 400,000

MBF/yr, replace the existing planer mill baghouse and planer mill cyclone, increase gasoline throughput at a tank, construct an additional

1.0 mile of paved haul road, increase vehicle miles traveled per year, replace a diesel-fired emergency engine, and add

equipment/facilities to support lumber production (a trimmer/sort line, a stacker line, and a second log line including a merchandiser).

Affected Boundaries:

Boundary Type:

Class 1 Area State:

Boundary:

Distance:

CLASS1

AR

Caney Creek 100km - 50km

Pollutant Name: Facility-wide Emissions Increase: Facility-wide Emissions:

Nitrogen Oxides (NOx) 10.7000 (Tons/Year) Particulate Matter (PM) 5.6000 (Tons/Year) Volatile Organic Compounds (VOC) 71.2000 (Tons/Year)

Process/Pollutant Information

PROCESS

Continuous Drying Kilns

NAME:

Process Type: 30.800 (Wood Lumber Kilns)

Primary Fuel:

Throughput: 400.00 MMBF

Process Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC)

Emission Limit 1: 3.5000 LB/MBF **Emission Limit 2:** 727.3000 T/YR

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: **BACT-PSD**

Other Applicable Requirements: **Control Method:** (N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton **Incremental Cost Effectiveness:** 0 \$/ton **Compliance Verified:** Unknown

Pollutant/Compliance Notes:

Previous Page

Facility Information

Corporate/Company Name:

Permit Type:

RBLC ID: IL-0133 (draft) **Date Determination**

Last Updated: 08/26/2022 LINCOLN LAND ENERGY CENTER (A/K/A EMBERCLEAR) 18040008 **Permit Number:**

Facility Name: LINCOLN LAND ENERGY CENTER

Permit Date: 07/29/2022 (actual)

JIM PALUMBO 888-582-4460 X 55 JPALUMBO@EMBERCLEAR.COM **Facility Contact: Facility Description:** The proposed facility is designed to generate baseload power. It will consist of two

Not Found FRS Number:

combined-cycle generating units, with each a Siemens combustion turbine (3,647

SIC Code: 4911

mmBtu/hr) and a heat recovery steam generator (HRSG) with duct burners (35 mmBtu/hr); fired by natural gas only. Other units at the facility include an auxiliary

boiler, engines, piping and piping components, circuit breakers and roadways.

221112 **NAICS Code:**

A: New/Greenfield Facility www2.illinois.gov/epa/public-notices/boa-notices/pages/archive.aspx Permit URL:

5 **EPA Region:**

USA COUNTRY:

SANGAMON **Facility County:**

П. **Facility State:** 62558 **Facility ZIP Code:**

ILLINOIS EPA, BUREAU OF AIR (Agency Name) Permit Issued By:

MR. RAY PILAPIL(Agency Contact) (217) 782-2113 ray.pilapil@illinois.gov

Additional facility-wide pollutants, in tons/year: PM10/PM 2.5: 131.7 and 131.6 (respectively); sulfuric acid mist (SAM): 17.2; **Permit Notes:**

greenhouse gasses (GHG): 3,586,918

9/29/22, 8:56 AM Format RBLC Report

Facility-wide Emissions: Pollutant Name: Facility-wide Emissions Increase:

Carbon Monoxide 327.5000 (Tons/Year)
Nitrogen Oxides (NOx) 273.9000 (Tons/Year)
Particulate Matter (PM) 101.5000 (Tons/Year)
Sulfur Oxides (SOx) 47.4000 (Tons/Year)
Volatile Organic Compounds (VOC) 63.9000 (Tons/Year)

Process/Pollutant Information

PROCESS Combined-Cycle Combustion Turbines

NAME:

Process Type: 15.210 (Natural Gas (includes propane & liquified petroleum gas))

Primary Fuel: Natural Gas

Throughput: 3647.00 mmBtu/hour

Process Notes: Combined-cycle comustion turbines and heat recovery steam generators (HRSG) with a 35 mmBtu/hr duct burner. Turbine inlets would have

evaporative cooling systems to cool the inlet air during warm weather to increase power output.

POLLUTANT NAME: Carbon Monoxide

CAS Number: 630-08-0
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds)

Emission Limit 1: 1.5000 PPMV @ 15% O2 TURBINE LOAD > OR = 60% W/O DUCT BURNERS **Emission Limit 2:** 1.8000 PPMV @ 15% O2 TURBINE LOAD > OR=60% WITH DUCT BURNERS

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (B) Oxidation catalyst and good combustion practices

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Emission Limit 3: 2.0 ppmv @ 15%

O2 for turbine load < 60% on a rolling 3-operating hour operating basis. Emission Limits 1, 2 and 3 do not include startup, shutdown or breakdown. Emission Limit 4: During any clock hour, including startup, shutdown and breakdown, emissions shall not exceed 923 pounds/hour (cold start/shakedown); 325 pounds/hour (non-cold start); 216 pounds/hour (shutdown). Compliance is demonstrated using a continuous emissions monitoring

system (CEMS).

POLLUTANT NAME: Nitrogen Oxides (NOx)

CAS Number: 10102
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Nitrogen (NOx), Particulate Matter (PM))

Emission Limit 1: 2.0000 PPMV @ 15% O2 SEE NOTES

Emission Limit 2: SEE NOTES

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD **Other Applicable Requirements:** NSPS

Control Method: (A) Dry low-NOx combustion with ultra-low NOx combustors; low-NOx duct burners; and selective catalytic

reduction (SCR)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Emission limit 1 is applicable during normal operation, excluding startup and shutdown; averaging time: 3-

operating hour, rolled hourly. Beginning 36 months after completion of shakedown, the averaging time: 1-operating hour. Emission Limit 2 is applicable during startup and shutdown: 130 pounds/hour (cold

start/shakedown); 71 pounds/hour (non-cold start); 55 pounds/hour (shutdown). Limits for startup and shutdown are applicable for each clock hour that includes a startup, shutdown or shakedown. Compliance demonstrated

using a continuous emissions monitoring system (CEMS)

POLLUTANT NAME: Particulate matter, total (TPM)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.0032 POUNDS/MMBTU WITH DUCT BURNER; ROLLING 3-OPERATING HR
Emission Limit 2: 0.0031 POUNDS/MMBTU W/O DUCT BURNER; ROLLING 3-OPERATING HR

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,U\,$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good combustion practices

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Compliance is determined by performance testing.

POLLUTANT NAME: Sulfur Dioxide (SO2)

CAS Number: 7446-09-5
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Sulfur (SOx))

Emission Limit 1: 5.5000 POUNDS/HOUR ROLLING 3-OPERATING HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD Other Applicable Requirements: NSPS

Control Method: (P) Good combustion practices and use of natural gas with a sulfur content of no more than 0.5 grains (gr)/100

standard cubic feet (scf).

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Compliance is determined by performance testing.

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: 1.0000 PPMV, ADJ. TO 15% O2 ROLLING 3-OPERATING HOUR **Emission Limit 2:** 1.1000 PPMV, ADJ. TO 15% O2 ROLLING 3-OPERATING HOUR

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (B) Oxidation catalyst and good combustion practices.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Emission Limits 1 and 2 exclude startup and shutdown. Emission Limit 3: 56 pounds/hour (cold start); 48

pounds/hour (non-cold start); and 44 pounds/hour (shutdown) during each hour that includes a startup or

shutdown and shakedown.

POLLUTANT NAME: Particulate matter, total $\leq 10 \mu$ (TPM10)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.0041 POUNDS/MMBTU ROLLING 3-OPERATING HOUR

Emission Limit 2:

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good combustion practices.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Limit for PM10 also includes PM2.5, i.e., PM10/PM2.5. Compliance is demonstrated by performance testing.

POLLUTANT NAME: Sulfuric Acid (mist, vapors, etc)

CAS Number: 7664-93-9
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Particulate Matter (PM))

Emission Limit 1: 2.0000 POUNDS/MMBTU ROLLING 3-OPERATING HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good combustion practices and use of only natural gas with a sulfur content no greater than 0.5 grains

(gr)/100 standard cubic feet (scf).

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Compliance to be determined by performance testing.

POLLUTANT NAME: Carbon Dioxide Equivalent (CO2e)

CAS Number: CO2e
Test Method: Unspecified

Pollutant Group(s): (Greenhouse Gasses (GHG))

Emission Limit 1: 850.0000 LB/MW-HR (GROSS) 12 CONSECUTIVE OPERATING MONTHS

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Inherently lower-polluting design, good combustion practices and operational energy efficiency

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Compliance is based on quantification procedures of 40 CFR 98 Subpart D except where testing for nitrous oxide

(N2O) and methane (CH4) are higher than in 40 CFR 98 Subpart D, emission factors based on these tests shall be

used.

Process/Pollutant Information

PROCESS Auxiliary Boiler

NAME:

Process Type: 13.310 (Natural Gas (includes propane and liquefied petroleum gas))

Primary Fuel: Natural Gas
Throughput: 80.00 mmBtu/hour

Process Notes: The Auxiliary Boiler is used on an intermittent basis to produce intermediate pressure steam for heating the heat recovery steam generator (HRSG)

and combined-cycle combustion turbines

POLLUTANT NAME: Nitrogen Oxides (NOx)

CAS Number: 10102

Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Nitrogen (NOx), Particulate Matter (PM))

Emission Limit 1: 0.0100 POUNDS/MMBTU ROLLING 3-OPERATING HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (B) Ultra low-NOx burners and flue gas recirculation, air preheater, automated combustion management system,

with an oxygen trim system and an automated water blowdown system.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Carbon Monoxide

CAS Number: 630-08-0
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds)

Emission Limit 1: 0.0370 POUNDS/MMBTU ROLLING 3-OPERATING HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good burner design and good combustion practices.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: 0.0015 POUNDS/MMBTU ROLLING 3-OPERATING HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,U\,$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good burner design and good combustion practices

Est. % Efficiency:

 Cost Effectiveness:
 0 \$/ton

 Incremental Cost Effectiveness:
 0 \$/ton

 Compliance Verified:
 Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, total (TPM)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.0019 POUNDS/MMBTU ROLLING 3-OPERATING HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,U\,$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements: NSPS

Control Method: (P) Good combustion practices.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, total $< 10 \mu$ (TPM10)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.0075 POUNDS/MMBTU ROLLING 3-OPERATING HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD Other Applicable Requirements: NSPS

Control Method: (P) Good combustion practices.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Emission Limit 1 includes PM2.5, i.e., PM10/PM2.5.

POLLUTANT NAME: Sulfur Dioxide (SO2)

CAS Number: 7446-09-5
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Sulfur (SOx))

Emission Limit 1: 0.0014 POUNDS/MMBTU ROLLING 3-OPERATING HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Use of only natural gas with a sulfur content of no greater than 0.5 grains (gr)/100 standard cubic feet (scf).

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Sulfuric Acid (mist, vapors, etc)

CAS Number: 7664-93-9
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Particulate Matter (PM))

Emission Limit 1: 0.0200 POUNDS/MMBTU ROLLING 3-OPERATING HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\,U\,$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Use of only natural gas with a sulfur content of no greater than 0.5 grains (gr)/100 standard cubic feet (scf).

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Carbon Dioxide Equivalent (CO2e)

CAS Number: CO2e
Test Method: Unspecified

Pollutant Group(s): (Greenhouse Gasses (GHG))

Emission Limit 1: 5059.0000 TONS/YEAR 12 MONTH ROLLING

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good combustion practices.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

Process/Pollutant Information

PROCESS Emergency Engines

NAME:

Process Type: 17.110 (Fuel Oil (ASTM # 1,2, includes kerosene, aviation, diesel fuel))

Primary Fuel: Ultra-Low Sulfur Diesel

Throughput: 1250.00 kW

Process Notes: Two engine-generators will power an electrical generator to provide power to critical equipment during power outages. Ultra-low sulfur diesel fuel

(sulfur content <15 part per million (ppm)) will be used as fuel

POLLUTANT NAME: Nitrogen Oxides (NOx)

CAS Number: 10102
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Nitrogen (NOx), Particulate Matter (PM))

Emission Limit 1: 6.4000 GRAMS KILOWATT-HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis:BACT-PSDOther Applicable Requirements:NSPSControl Method:(N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Limit 1 includes non-methane hydrocarbons (NMHC), i.e. NOx + NMHC, consistent with the NSPS, 40 CFR 60

Subpart IIII.

POLLUTANT NAME: Carbon Monoxide

CAS Number: 630-08-0
Test Method: Unspecified

 $Pollutant \ Group(s): \ \hspace{1.5cm} (\ In Organic \ Compounds\) \\$

Emission Limit 1: 3.5000 GRAMS KILOWATT-HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD
Other Applicable Requirements: NSPS
Control Method: (N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton

Incremental Cost Effectiveness: 0 \$/ton **Compliance Verified:** Unknown

Pollutant/Compliance Notes: Emission Limit 1 is consistent with the NSPS, 40 CFR 60 Subpart IIII.

POLLUTANT NAME: Particulate matter, total (TPM)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.2000 GRAMS KILOWATT-HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis:BACT-PSDOther Applicable Requirements:NSPSControl Method:(N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Emission Limit 1 includes PM10 and PM2.5, i.e., PM/PM10/PM2.5.

POLLUTANT NAME: Sulfur Dioxide (SO2)

CAS Number: 7446-09-5
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Sulfur (SOx))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Use of ultra-low sulfur diesel, with a sulfur content < 15 ppm sulfur.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Use of ultra-low sulfur diesel represents BACT.

POLLUTANT NAME: Carbon Dioxide Equivalent (CO2e)

CAS Number: CO2e
Test Method: Unspecified

Pollutant Group(s):(Greenhouse Gasses (GHG))Emission Limit 1:508.0000 TONS/YEAR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (N)

Est. % Efficiency:

Cost Effectiveness:0 \$/tonIncremental Cost Effectiveness:0 \$/tonCompliance Verified:Unknown

Pollutant/Compliance Notes: Limit 1 is applicable to each engine.

POLLUTANT NAME: Sulfuric Acid (mist, vapors, etc)

CAS Number: 7664-93-9
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Particulate Matter (PM))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Use of ultra-low sulfur diesel, with a sulfur content < 15 ppm sulfur.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Use of ultra-low sulfur diesel represents BACT.

Process/Pollutant Information

PROCESS Fire Water Pump Engine

NAME:

Process Type: 17.210 (Fuel Oil (ASTM # 1,2, includes kerosene, aviation, diesel fuel))

Primary Fuel: Ultra-Low Sulfur Diesel
Throughput: 320.00 horsepower

Process Notes: The fire water pump engine will power the pump in the plant's fire water system

POLLUTANT NAME: Nitrogen Oxides (NOx)

CAS Number: 10102
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Nitrogen (NOx), Particulate Matter (PM))

Emission Limit 1: 4.0000 GRAMS KILOWATT-HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis:BACT-PSDOther Applicable Requirements:NSPSControl Method:(N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Limit 1 includes non-methane hydrocarbons (NMHC), i.e., NOx + NMHC, consistent with the NSPS, 40 CFR 60

Subpart IIII.

POLLUTANT NAME: Carbon Monoxide

CAS Number: 630-08-0
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds)

Emission Limit 1: 3.5000 GRAMS KILOWATT-HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis:BACT-PSDOther Applicable Requirements:NSPSControl Method:(N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Emission Limit 1 is consistent with the NSPS, 40 CFR 60 Subpart IIII.

POLLUTANT NAME: Particulate matter, total (TPM)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 0.2000 GRAMS KILOWATT-HOUR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis:BACT-PSDOther Applicable Requirements:NSPSControl Method:(N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Emission Limit 1 includes PM10 and PM2.5, i.e., PM/PM10/PM2.5.

POLLUTANT NAME: Sulfur Dioxide (SO2)

CAS Number: 7446-09-5
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Sulfur (SOx))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Use of ultra-low sulfur diesel, with a sulfur content < 15 ppm sulfur.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Use of ultra-low sulfur diesel represents BACT.

POLLUTANT NAME: Sulfuric Acid (mist, vapors, etc)

CAS Number: 7664-93-9
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Particulate Matter (PM))

Emission Limit 1: Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\ U$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Use of ultra-low sulfur diesel, with a sulfur content < 15 ppm sulfur.

Est. % Efficiency:

Cost Effectiveness:0 \$/tonIncremental Cost Effectiveness:0 \$/tonCompliance Verified:Unknown

Pollutant/Compliance Notes: Use of ultra-low sulfur diesel represents BACT.

POLLUTANT NAME: Carbon Dioxide Equivalent (CO2e)

CAS Number: CO2e
Test Method: Unspecified

Pollutant Group(s): (Greenhouse Gasses (GHG))
Emission Limit 1: 92.0000 TONS/YEAR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: $\ U$

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:
Control Method: (N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

Process/Pollutant Information

PROCESS Natural Gas Piping and Piping Components

NAME:

Process Type: 50.007 (Petroleum Refining Equipment Leaks/Fugitive Emissions)

Primary Fuel:

Throughput: 0

Process Notes: Methane may leak from piping components, such as flanges, valves, etc.

POLLUTANT NAME: Methane
CAS Number: 74-82-8
Test Method: Unspecified

Pollutant Group(s): (Greenhouse Gasses (GHG), Organic Compounds (all), Organic Non-HAP Compounds)

Emission Limit 1: 1.5300 TONS/YEAR

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: N

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Leakless valves and pumps where possible, otherwise high-quality components; non-instrumental leak

detection and repair (LDAR) (e.g., auditory, visual and olfactory inspections monthly); instrument-based LDAR

(e.g., optical gas imaging); and 40 CFR 60 Subpart OOOOa as relevant.

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Emission Limit 1 is a permit limit, not a BACT limit.

Process/Pollutant Information

PROCESS Circuit Breakers

NAME:

Process Type: 99.999 (Other Miscellaneous Sources)

Primary Fuel:
Throughput: 0

Process Notes: Electrical switchgear includes circuit breakers that use gasseous sulfur hexafluoride (SF6) as a dielectric or insulating material. Emissions may result

from SF6 leaks.

POLLUTANT NAME: Sulfur Hexafluoride

CAS Number: 2551-62-4
Test Method: Unspecified

Pollutant Group(s): (Greenhouse Gasses (GHG))

Emission Limit 1: 0.5000 PERCENT LEAK RATE 12-MONTH ROLLING AVERAGE 12.0000 POUNDS/YEAR 12-MONTH ROLLING AVERAGE

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:
Control Method: (N)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton

Incremental Cost Effectiveness: 0 \$/ton **Compliance Verified:** Unknown

Pollutant/Compliance Notes: BACT also includes implementation of a Leak Detection and Repair (LDAR) program, systematic operations

tracking and procedures for quantification of GHG pursuant to 40 CFR 98 Subpart DD.

Process/Pollutant Information

PROCESS

Roadways

NAME:

Process Type: 99.140 (Paved Roads)

Primary Fuel:

Throughput:

Roadways will serve trucks delivering bulk materials (e.g., selective catalytic reduction (SCR) reagent) **Process Notes:**

POLLUTANT NAME: Particulate matter, total (TPM)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))

Emission Limit 1: 10.0000 PERCENT OPACITY FROM FUGITIVE EMISSIONS

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

BACT-PSD Case-by-Case Basis:

Other Applicable Requirements: **Control Method:** (N)

Est. % Efficiency:

0 \$/ton **Cost Effectiveness: Incremental Cost Effectiveness:** 0 \$/ton **Compliance Verified:** Unknown

Pollutant/Compliance Notes: All roadways subject to regular travel must be paved. Must also implement a Fugitive Dust Program, including

such measures as sweeping, water spray and prompt cleanups.

Previous Page

Facility Information

IN-0353 (draft) **RBLC ID: Date Determination**

Last Updated:

09/07/2022

Corporate/Company Name: FOREST RIVER, INC. PLANT 508 **Facility Name:**

Permit Number:

039-45277-00946

Permit Date:

07/28/2022 (actual)

WILLIAM CONWAY, JR. (574) 534-6913 **Facility Contact:**

FRS Number:

Not Found

Facility Description:

SIC Code:

3792

U: Unspecified Permit Type:

NAICS Code:

336214

Permit URL:

COUNTRY:

USA

5 **EPA Region:**

Facility County:

ELKHART

ΙN

46516

INDIANA DEPT OF ENV MGMT, OFC OF AIR (Agency Name)

MR. MATT STUCKEY(Agency Contact) (317) 233-0203 mstuckey@idem.in.gov

Permit Notes:

Facility State:

Facility ZIP Code:

Permit Issued By:

Process/Pollutant Information

PROCESS RV Assembly (EU-01)

NAME:

Process Type:

49.999 (Other Organic Evaporative Loss Sources)

https://cfpub.epa.gov/rblc/index.cfm?action=Reports.ReportComprehensiveReport&ReportFormat=txt

Primary Fuel:

Throughput: 2.75 vehicles/hr

Process Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))

Emission Limit 1: 75.0000 TONS PER TWELVE (12) CONSECUTIVE MONTH PERIOD

Emission Limit 2: 6.6000 POUNDS VOC PER GALLON OF COATING

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: OTHER CASE-BY-CASE

Other Applicable Requirements:

Control Method: (P) Cleaners and solvents limit: 6.6 lbs/gal and use non-HAP based cleaners and solvents; Good housekeeping

practices for VOC

Est. % Efficiency:

Cost Effectiveness: 370748 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: The total VOC input for RV assembly operation, identified as EU-1, including the use of sealants, adhesives,

lubricant, stains, spray paint, epoxy, and clean-up solvents, shall not exceed seventy five (75) tons per twelve (12) consecutive month period with compliance determined at the end of each month. The cleaners and solvent applied at EU-01 shall not exceed a VOC content of 6.6 pounds of VOC per gallon of coating as applied. All cleaners and solvents that exceed 6.5 pounds of VOC per gallon of coating shall not contain HAPs. (c) Good housekeeping practices to minimize spills and evaporative losses shall be used. This includes: (1) Sealed lids on containers of VOC containing materials not in use or in storage; (2) Gun and line purging of VOC containing cleaning solvents into approved containers and at the minimum cleaning pressure required to prevent excess atomization; (3) Organized spill response and immediate cleanup for spills of VOC containing materials; (4) Disposal of VOC containing materials may not be performed by allowing solvents to evaporate; and (5) Preventive maintenance procedures for application equipment to prevent spills and releases of VOC containing

materials.

Previous Page

Facility Information

RBLC ID: AK-0088 (final)

-0088 (final) Date Determination
Last Updated:

Corporate/Company Name:ALASKA GASLINE DEVELOPMENT CORPORATIONPermit Number:AQ1539CPT01Facility Name:LIQUEFACTION PLANTPermit Date:07/07/2022 (actual)

Facility Contact: LISA HAAS LHAAS@AGDC.US FRS Number: Not Found Facility Description: The Liquefaction Plant is planned to encompass 921 acres, including 901 acres SIC Code: 4922

Facility Description: The Liquefaction Plant is planned to encompass 921 acres, including 901 acres onshore for the liquefied natural gas (LNG) Plant as well as 20 acres offshore for

the Marine Terminal. The Liquefaction Plant will be the terminus of an approximately 807-mile gas pipeline, allowing natural gas from Alaska's North Slope to be shipped to outside markets. The stationary source will consist of structures and equipment associated with processing, storage, and loading of LNG. There will be three liquefaction trains combining to process up to approximately 20

million metric tons per annun of LNG.

Permit Type: A: New/Greenfield Facility NAICS Code: 488999

Permit URL: https://dec.alaska.gov/Applications/Air/airtoolsweb/AirPermitsApprovalsAndPublicNotices

EPA Region: 10 COUNTRY: USA

Facility County: KENAI PENNINSULA BOROUGH

Facility State: AK
Facility ZIP Code: 99635

Permit Issued By: ALASKA DEPT OF ENVIRONMENTAL CONS (Agency Name)

MR. JIM PLOSAY(Agency Contact) (907) 465-5103 JOHN.KUTERBACH@ALASKA.GOV

Other Agency Contact Info:

D------:4 N-4---

Dave Jones - Permit Writer - dave.jones2@alaska.gov

Permit Notes:

08/16/2022

9/29/22, 8:56 AM

Boundary Type: Class 1 Area State: **Boundary:** Distance: CLASS1 Denali NP 100km - 50km ΑK CLASS1 ΑK Tuxedni < 100 km

Pollutant Name: Facility-wide Emissions Increase: Facility-wide Emissions:

11891.0000 (Tons/Year) Carbon Monoxide 2793.0000 (Tons/Year) Nitrogen Oxides (NOx) Particulate Matter (PM) 1303.0000 (Tons/Year) Sulfur Oxides (SOx) 183.0000 (Tons/Year) Volatile Organic Compounds (VOC) 24657.0000 (Tons/Year)

Process/Pollutant Information

Affected Boundaries:

PROCESS Six Simle Cycle Gas-Fired Turbines

NAME:

Process Type: 15.110 (Natural Gas (includes propane & liquified petroleum gas))

Primary Fuel: Natural Gas Throughput: 1113.00 MMBtu/hr

Process Notes: EUs 1 - 6 are simple cycle gas turbines used for gas compression at LNG facility

POLLUTANT NAME: Carbon Monoxide

CAS Number: 630-08-0 **Test Method:** Unspecified

Pollutant Group(s): (InOrganic Compounds)

5.0000 PPMV @ 15% O2 3-HOURS **Emission Limit 1:**

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: **BACT-PSD**

Other Applicable Requirements:

Control Method: (A) Oxidation Catalyst and good combustion practices

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton **Incremental Cost Effectiveness:** 0 \$/ton **Compliance Verified:** Unknown

Pollutant/Compliance Notes: Allowed 40 hours per year per turbine of operation without SCR and OxCat.

POLLUTANT NAME: Carbon Dioxide Equivalent (CO2e)

CAS Number: CO2e Test Method: Unspecified

Pollutant Group(s): (Greenhouse Gasses (GHG)) **Emission Limit 1:** 117.1000 LB/MMBTU 3-HOURS

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: **BACT-PSD**

Other Applicable Requirements:

Control Method: (P) Good combustion practices and burning clean fuels (natural gas)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton **Incremental Cost Effectiveness:** 0 \$/ton **Compliance Verified:** Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Nitrogen Oxides (NOx)

10102 **CAS Number: Test Method:** Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Nitrogen (NOx), Particulate Matter (PM))

Emission Limit 1: 2.0000 PPMV @ 15% O2 3-HOURS

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD
Other Applicable Requirements: NSPS

Control Method: (A) SCR, DLN combustors, and good combustion practices

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Allowed 40 hours per year per turbine of operation without SCR and OxCat.

POLLUTANT NAME: Particulate matter, total (TPM)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))
Emission Limit 1: 0.0070 LB/MMBTU 3-HOURS

Emission Limit 2: 10.0000 % OPACITY 6 CONSECUTIVE MINUTES

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good combustion practices and burning clean fuel (natural gas)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Volatile Organic Compounds (VOC)

CAS Number: VOC
Test Method: Unspecified

Pollutant Group(s): (Volatile Organic Compounds (VOC))
Emission Limit 1: 2.0000 PPMV @ 15% O2 3-HOURS

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (A) Oxidation catalyst and good combustion practices

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes: Allowed 40 hours per year per turbine of operation without SCR and OxCat.

POLLUTANT NAME: Particulate matter, total $\leq 10 \mu$ (TPM10)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))
Emission Limit 1: 0.0070 LB/MMBTU 3-HOURS

Emission Limit 2: 10.0000 % OPACITY 6 CONSECUTIVE MINUTES

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good combustion practices and burning clean fuel (natural gas)

Est. % Efficiency:

 Cost Effectiveness:
 0 \$/ton

 Incremental Cost Effectiveness:
 0 \$/ton

 Compliance Verified:
 Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Particulate matter, total $< 2.5 \mu$ (TPM2.5)

CAS Number: PM

Test Method: Unspecified

Pollutant Group(s): (Particulate Matter (PM))
Emission Limit 1: 0.0070 LB/MMBTU 3-HOURS

Emission Limit 2: 10.0000 % OPACITY 6 CONSECUTIVE MINUTES

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD

Other Applicable Requirements:

Control Method: (P) Good combustion practices and burning clean fuel (natural gas)

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton
Compliance Verified: Unknown

Pollutant/Compliance Notes:

POLLUTANT NAME: Sulfur Dioxide (SO2)

CAS Number: 7446-09-5
Test Method: Unspecified

Pollutant Group(s): (InOrganic Compounds, Oxides of Sulfur (SOx))

Emission Limit 1: 16.0000 PPMV SULFUR IN FUEL

Emission Limit 2: Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis: BACT-PSD Other Applicable Requirements: NSPS

Control Method: