

Synthomer Jefferson Hills LLC PO Box 545 West Elizabeth, Pennsylvania 15088 USA

BY ELECTRONIC MAIL

December 14, 2022

Ms. JoAnn Truchan, P.E. Program Manager, Engineering & Permitting Allegheny County Health Department 301 39th St., Building 7 Pittsburgh, PA 15201-1891 joann.truchan@alleghenycounty.us

Re: Synthomer Jefferson Hills LLC – West Elizabeth, PA Submission of "RACT III" VOC RACT Evaluation

Dear Ms. Truchan:

Synthomer Jefferson Hills LLC is pleased to submit the attached VOC RACT Evaluation as required by the Pennsylvania Department of Environmental Protection at 25 Pa. Code §§129.111 – 129.115.

If you have any questions or need further information, please don't hesitate to contact me at fred.mullner@synthomer.com or at (412) 813-2250.

Best regards,

Iner, P.E.

Frederick T. Mullner, P.E. Senior Environmental Coordinator

cc: A. Sulava – Synthomer Jefferson Hills LLC (aaron.sulava@synthomer.com) Allegheny County Health Department (aqreports@alleghenycounty.us)

VOC RACT III Evaluation Synthomer Jefferson Hills LLC – West Elizabeth, PA

1. INTRODUCTION

The Synthomer Jefferson Hills LLC (Synthomer) facility (formerly Eastman Chemical Company) located in West Elizabeth, Allegheny County, Pennsylvania, is classified as a major stationary source of volatile organic compounds (VOC) emissions. As such, the facility is subject to the Reasonably Available Control Technology (RACT III) rules enacted in Pennsylvania on November 12, 2022, outlined in 25 Pa. Code §§129.111 – 129.115. The RACT III rule requires all existing major facilities of NOx and VOC emissions to assess the need to install new or additional emission controls, or implement work practice measures to reduce emissions of those two pollutants. This document contains Synthomer's RACT III evaluation of VOC-emitting sources, to be submitted to Allegheny County Health Department (ACHD), Air Quality Control.

Supporting documents for this evaluation include:

Attachment A – RACT III Applicability Tables Attachment B – Economic Analysis Tables

2. RACT III SOURCE APPLICABILITY EVALUATION

The tables included in Attachment 1 form the basis of the RACT III applicability evaluation of all VOC-emitting sources at the Synthomer facility. These tables include:

- Table 1, sorted by RACT III classification, lists all of the VOC sources and includes the source potential to emit (PTE), and the determination of applicability to RACT III.
- Table 2 contains the same information as Table 1, but is sorted by Process Area.
- Table 3 lists all of the storage tanks at the facility, their individual capacities, and an indication of whether they are subject to the RACT III rule.
- Table 4 provides a summary of the sources found to be 'Exempt' from the RACT III requirements, due to having a potential to emit (PTE) of less than one (1) ton/year.
- Table 5 summarizes all the sources classified as 'Presumptive'. These sources have a PTE of equal to greater than 1 ton/year but less than 2.7 tons/year.
- Table 6 shows all of the sources subject to 'Alternative RACT' (aka 'Case-by-Case') technical and economic evaluation, per section §129.114 of the RACT III rules. This table also provides Synthomer's determination of technically-infeasible control options for each of these sources, and an indication of whether the source is subject to economic evaluation.
- Table 7 contains the RACT III economic evaluation results for the Alternative RACT sources that were
 determined to have technically-feasible control options. Per §129.114(i)(1)(i), Alternative RACT sources
 that had control costs equal to or greater than \$12,000/ton of VOC controlled under the previous RACT
 II evaluation are <u>not</u> required to be evaluated economically under RACT III.
- Table 8 contains the economic evaluation results that ACHD used for determining economic feasibility under the RACT II requirements. Note that all of the control options for every source were determined by ACHD to be economically infeasible under RACT II.

3. TECHNICAL FEASIBILITY OF CONTROLLING ALTERNATIVE RACT III SOURCES

As noted above, Table 6 in Attachment 1 includes a determination of technical feasibility of various options for controlling VOC emissions from the Alternative RACT sources. Following are additional explanations for the technical feasibility determinations.

3.1 Wastewater Treatment Plant Tanks 702A, 702B and 702C

All of these tanks are open-top tanks used for pre-treatment prior to the biological treatment operations. There is no reasonable method to capture emissions from these open-top tanks. Pursuant to RACT II, ACHD concurred that capture and control of emissions from these tanks was not technically feasible.

3.2 Wastewater Treatment Plant Biotreatment Aeration Tank

This biological treatment tank is open to the atmosphere. There is no reasonable method to capture the emissions from this operation. Pursuant to RACT II, ACHD concurred that capture and control of emissions from this tank was not technically feasible.

3.3 Fugitive Emissions Control

In its RACT II Evaluation document, ACHD determined that that it was unnecessary to conduct RACT evaluations on the equipment component leak emissions. The facility is subject to the Miscellaneous Organic NESHAPS (MON) rule. Under the MON, the facility is required to have a Leak Detection and Repair (LDAR) program. These requirements are relatively stringent, and ACHD stated that it does not believe more stringent requirements would be considered cost-effective. Finally, ACHD stated that the MON LDAR requirements "are considered RACT II for the emissions from equipment leaks." Synthomer continues to comply with those LDAR requirements and believes that ACHD's RACT II determination is still valid for RACT III.

3.4 VOC Control Technology Search

A search was conducted for VOC technologies that may have been developed subsequent to the evaluation conducted under the RACT II requirements. It has been determined by the facility that no new pollutant specific air cleaning device, air pollution control technology or technique is available at the time of submittal of this analysis. Some of the sites utilized for this search include the following:

• www.epa.gov

- o Ground-level Ozone Pollution
- o Controlling Air Pollution from the Oil and Natural Gas Industry
- o Air Pollution Control Technology Fact Sheet
- o NSCEP
- <u>www.dep.pa.gpv</u>
 - o Control Technique Guidelines
- <u>Choosing the Right VOC Emission Control Technology | Products Finishing (pfonline.com)</u>

4. ECONOMIC ANALYSIS

As stated previously, Table 6 in Attachment 1 lists all of the sources subject to the 'Alternative RACT III' requirements of §129.114. For those sources that have not been modified subsequent to the RACT II submittal, §129.114(i)(1) provides two options for evaluation under RACT III, depending on the cost effectiveness determined under RACT II. The two evaluation options are discussed in the following sections.

4.1 Limited Analysis Option

The option provided in §129.114(i)(1)(i) allows for a 'limited' analysis for sources that had a RACT II cost effectiveness of equal to or greater than \$12,000 per ton of VOC reduced. An economic evaluation is <u>not</u> required under this provision of the rule. The required 'limited' analysis shall include the elements listed below. Synthomer's response to each element is provided in bold type.

- (A) A statement that explains how the owner or operator determined that there is no new pollutant specific air cleaning device, air pollution control technology or technique available. Per Section 3.4 above, Synthomer has determined that no new technologies or techniques are available for VOC reduction.
- (B) A list of the technically feasible air cleaning devices, air pollution control technologies or techniques previously identified and evaluated under RACT II and approved by the Department or appropriate approved local air pollution control agency. A list of technically feasible control technologies evaluated under RACT II is provided in Table 8 in Attachment 1.
- (C) A summary of the economic feasibility analysis performed for each technically feasible air cleaning device, air pollution control technology or technique listed in clause (B) and the cost effectiveness of each technically feasible air cleaning device, air pollution control technology or technique as submitted previously under RACT II. A summary of the economic evaluation conducted under RACT II is provided in Table 8 in Attachment 1.
- (D) A statement that an evaluation of each economic feasibility analysis summarized in clause (C) demonstrates that the cost effectiveness remains equal to or greater than \$12,000 per ton of VOC emissions reduced. Due to the determination that there are no new VOC control technologies and that equipment and operating costs have only increased since the time of the RACT II submittal, Synthomer maintains that cost effectiveness remains above \$12,000/ton for each of these sources.
- (E) Additional information requested by the Department or appropriate approved local air pollution control agency that may be necessary for the evaluation of the analysis. **To be provided upon request.**

4.2 Full Economic Analysis Option

Pursuant to §129.114(i)(1)(ii), an economic analysis <u>is</u> required for all Alternative RACT III sources that had a RACT II cost effectiveness of <u>less</u> than \$12,000 per ton of VOC reduced. An economic evaluation was conducted for the two (2) sources (Hydro Unit vents S004 and S007) subject to this rule provision. A summary of the results is provided in Table 7 in Attachment 1, and the detailed cost analysis tables are provided in Attachment 2. All control cost analyses were conducted pursuant to procedures provided in USEPA's *Air Pollution Control Cost Manual*, 7th Edition (the most recent edition).

5. CONCLUSION AND PROPOSED RACT III

5.1 RACT III Analysis Conclusion

Due to the determination that there are no new VOC control technologies and that equipment and operating costs have only increased since the time of the RACT II submittal, Synthomer maintains that cost effectiveness remains above \$12,000/ton for each of the sources subject to the 'limited' analysis.

Every technically feasible control option for the two Hydro Unit sources subject to 'full' economic evaluation exceeds the RACT III "screening level threshold" value of \$12,000 per ton of VOC removed. Control options with costs above this threshold are considered to be economically infeasible.

Therefore, Synthomer concludes that it is not technically or economically feasible to install additional VOC reduction measures on any of the Alternative RACT III sources.

5.2 RACT III Proposal

Synthomer proposes that no physical, operational, or permit changes are needed in regard to the RACT III requirements, other than incorporating references to the applicable RACT III regulations.

ATTACHMENT 1 RACT III Applicability Tables

Summary of Facility VOC Sources and RACT III Classification - Sorted by Source Classification Synthomer Jefferson Hills LLC - West Elizabeth, PA

Operating Area Stack ID		Description	RACT 2 VOC PTE ¹ (TPY)	RACT 3 VOC PTE ² (TPY)	RACT III Classification
C5 Unit	\$216	Raw Material Tank 50	2.80		Not Applicable 3
C5 Unit	S210	Raw Material Tank 50	2.80	2.79 2.40	Not Applicable ³
C5 Unit	S218	Raw Material Tank 52	<1	0.41	Not Applicable ³ Not Applicable ³
C5 Unit	\$060	Raw Material Tank 55	1.66	1.66	Not Applicable ³
C5 Unit	S061	Raw Material Tank 55	1.00	1.00	
C5 Unit	S058	Raw Material Tank 50			Not Applicable ³
			0.19	0.19	Not Applicable 3
C5 Unit	S274	Raw Material Tank 511	0.10	0.10	Not Applicable 3
C5 Unit	S064,S066,S097,S26 7,S268,S269,S270	Resin Storage Tanks (121, 123, 124, 366, 367, 601 & 602)	1.77	1.77	Not Applicable ³
C5 Unit	S059, S238	Resin Storage Tanks 504 and 161	2.00	2.00	Not Applicable ³
Dresinate	S187	Storage Tank R-1-A	0.01	0.05	Not Applicable ³
Dresinate	S290	Storage Tank 782	0.01	0.05	Not Applicable ³
Hydro Unit	S001	Storage Tanks 100, 101	1.20	1.27	Not Applicable ³
Hydro Unit	S012	Storage Tanks 102, 105, 106	6.30	7.35	Not Applicable ³
MP Poly	S039, S040, S041	Storage Tanks T-301, T-302, T-303	1.37	1.03	Not Applicable ³
Storage Tanks	S190	Storage Tank 4	<1	0.51	Not Applicable ³
Storage Tanks	S232	Storage Tank 78	<1	1.49	Not Applicable ³
Storage Tanks	S091	Storage Tank 80	<1	0.05	Not Applicable ³
Storage Tanks	S236	Storage Tank 151	<1	0.15	Not Applicable ³
Storage Tanks	S244	Storage Tank 208	<1	0.19	Not Applicable ³
Storage Tanks	S248	Storage Tank 252	<1	0.06	Not Applicable ³
Storage Tanks	S256	Storage Tank 252	<1	0.61	Not Applicable ³
Storage Tanks	S038	Storage Tank 262	<1		3
-	\$257	-	<1	0.61	Not Applicable ³
Storage Tanks		Storage Tank 263		0.53	Not Applicable ³
Storage Tanks	S258	Storage Tank 264	<1	0.52	Not Applicable ³
Storage Tanks	S259	Storage Tank 265	<1	0.57	Not Applicable 3
Storage Tanks		Storage Tank 365	<1	<1	Not Applicable ³
Storage Tanks		Storage Tank 761	<1	<1	Not Applicable ³
Storage Tanks		Storage Tank 764	<1	<1	Not Applicable ³
Storage Tanks		Storage Tank 766	<1	<1	Not Applicable ³
Storage Tanks	S287	Storage Tank 775	<1	0.42	Not Applicable ³
Storage Tanks	S160	Storage Tank 783	<1	0.05	Not Applicable ³
WW Poly	S024	Storage Tanks 68, 69, 74	1.37	1.37	Not Applicable ³
WW Poly	S025	Storage Tanks 73, 75, 76, 77	5.45	5.45	Not Applicable ³
WW Poly	S026	Storage Tank 67	0.89	0.89	Not Applicable ³
WW Poly	S228	Storage Tank 66	0.29	0.30	Not Applicable ³
WW Poly	S195	Storage Tank 10	0.03	0.29	Not Applicable ³
WW Poly	S206, S208	Storage Tank 22, 24	0.03	0.03	Not Applicable ³
WW Poly	S207, S209	Storage Tank 23, 25	0.03	0.03	Not Applicable ³
WW Poly	S211	Storage Tank 27	0.04	0.00	Not Applicable ³
WW Poly	S210,S212, S213	Storage Tank 26, 28, 29	0.42	0.42	
WW Poly	S074	Storage Tank 34	0.42	0.42	Not Applicable ³
WW Poly	S075	Storage Tank 35	1.00	1.00	Not Applicable ³
WW Poly	\$230	Storage Tank 33		0.29	
		·	0.29		Not Applicable ³
WW Poly	S231	Storage Tank 72	0.42	0.42	Not Applicable ³
WW Poly	S239,S240,S241	Storage Tank 200, 201, 202	0.18	0.18	Not Applicable 3
WW Poly	S300	Storage Tanks 204, 205, 206, 207	0.04	0.04	Not Applicable ³
Boiler House	S141	Unilex Boiler 1	0.45		Exempt ⁴
Boiler House	S141	Unilex Boiler 2	0.45	0.44	Exempt ⁴
Boiler House	S143	Unilex Boiler 3	0.45	0.44	Exempt ⁴
Boiler House	S142	Unilex Boiler 4	0.45	0.44	Exempt ⁴
Boiler House	S144	Trane Boiler	0.92	0.90	Exempt ⁴
C5 Unit	S044/S044A	Polymerization Operations & Storage Tanks 501,502,503,504,505,506	0.26	0.26	Exempt ⁴
C5 Unit	S052	Resin Kettle #8	0.38	0.38	Exempt ⁴
C5 Unit	S053	Resin Kettle #9	0.74		Exempt ⁴
C5 Unit	S312	Sparkler Filter	0.05	0.05	Exempt ⁴
C5 Unit	N/A	Sprarkler Precoat T-519 A/B	0.01	0.01	Exempt 4
C5 Unit	N/A	Resin Product Loading	0.80		Exempt 4
C5 Unit	S056	Hot Oil Heater B-3000	0.80	0.78	Exempt 4
LTC Unit	\$108	T-301-1 Reclaim Tank	0.25	0.24	Exempt 4
LTC Unit	S111	Resin Kettle #5	0.32	0.16	Exempt ⁴
LTC Unit	S112	Resin Kettle #6	0.24	0.13	Exempt 4
LTC Unit	S113	Resin Kettle #7	0.68	0.35	Exempt 4
LTC Unit	S165	#3 LTC (Berndorf) Pastillator Belt	0.53	0.53	Exempt ⁴
LTC Unit	Load	Truck Loadout	0.37	0.18	Exempt ⁴

Summary of Facility VOC Sources and RACT III Classification - Sorted by Source Classification Synthomer Jefferson Hills LLC - West Elizabeth, PA

Operating Area	Stack	Description	RACT 2	RACT 3	RACT III
	ID	ID V		VOC PTE ² (TPY)	Classification
LTC Unit	Drum	Drumming	(TPY) 0.18	0.09	Exempt ⁴
LTC Unit	\$110A	T-610-1 LTC #2 and #4 Oil Water Separator	0.01	0.01	Exempt 4
LTC Unit	S125	LTC #4 Oil Water Separator	0.01	0.01	Exempt 4
LTC Unit	S107	#2 LTC Heater B-620-1	0.16	0.21	Exempt 4
LTC Unit	S119	#4 LTC Heater B-9020-1	0.24	0.21	Exempt 4
MP Poly	S033	T-800-1 Precoat Tank, T-104-1 Mole Sieve Drain Tank, T-104-3 Contaminated	0.51	0.51	Exempt 4
in i oly	0000	Dryer Solvent Tank	0.51	0.51	Exempt
MP Poly	S035	T-203-1 Pre-Blend Tank	0.99	0.99	Exempt ⁴
, WW Poly	S013a	A-100 Feed Dryers (Regeneration)	0.01	0.01	Exempt ⁴
, WW Poly	S014	T-301-1 East Pre-Blend Tank	0.57	0.10	Exempt ⁴
WW Poly	S015	T-300-1 North Pre-Blend Tank	0.57	0.09	Exempt ⁴
, WW Poly	S016	T-500-1 Slurry Tank	0.02	0.02	Exempt ⁴
WW Poly	S018	T-700-1 North Neutralizer	0.31	0.31	Exempt ⁴
WW Poly	S019	Funda Filter Steam Out	0.01	0.01	Exempt ⁴
WW Poly	S019a	S-800-6 Funda Condensate Tank	0.00	0.00	Exempt ⁴
WW Poly	S021	T-701-1 South Neutralizer	0.31	0.31	Exempt 4
WW Poly	S022	T-1001-1 Reclaim Pot	0.13	0.13	Exempt ⁴
WWTP	S147	Tank 701A, 701B, Back Porch Sumps (T-713-1 Raw Sump, S-302-1 Air Flotation	0.48	0.48	Exempt ⁴
		Tank, T-717-1 Oil Sump, T-714-1 Acid Sump, T-715-1 Final Sump)	0.10	0.10	Exempt
WWTP	F028	Biotreatment Clarifier	0.11	0.11	Exempt ⁴
WWTP	F036	Sludge Batch Tanks	0.00	0.00	Exempt ⁴
WWTP	F037	Sludge Solids Handling	0.00	0.00	Exempt ⁴
C5 Unit	S054	Resin Kettle #10	1.07	1.07	Presumptive 5
Emulsion	S162	RK1, RK2, Blend Tanks 1,2,3,4	0.28	2.16	Presumptive ⁵
LTC Unit	S124	LTC Unit #4 Vacuum System	1.46	1.46	Presumptive ⁵
MP Poly	S029	R-400-1 Reactor	1.65	1.65	Presumptive ⁵
, Pilot Plant	S155	Neutralizer, Reactor, Funda Filters	2.20	2.20	Presumptive ⁵
WW Poly	S017	R-600-1 North Reactor and R-601-1 South Reactor	1.78	1.78	Presumptive ⁵
, C5 Unit	S055	Pastillating Belts #1 and #2 (point and fugitive)	7.44	7.43	Alternative ⁶
Dresinate	S085	L- 500-1 Double Drum Dryer	5.48	5.50	Alternative ⁶
Hydro Unit	S004	Metering Tanks, Tank 103 & 104, Catalyst Catch Tank, Mott Filter, Heel Tank	13.00	12.98	Alternative ⁶
Hydro Unit	S007	Vent Tank, Autoclave #1, Autoclave #2	15.00	15.13	Alternative ⁶
LTC Unit	S109	LTC Unit #1 Vacuum System	3.80	3.80	Alternative ⁶
LTC Unit	S110	LTC Unit #2 Vacuum System	8.09	8.09	Alternative ⁶
LTC Unit	S114	#1 and #2 LTC Pastillator Belt	2.80	2.80	Alternative 6
MP Poly	S034	Filtrate System: R-701-1 Filtrate Receiver, T-500-1 Neutralizer, T-700-1 Solvent	10.33	10.33	Alternative ⁶
		Wash Tank, T-703-1 Heel Tank, S-601-1 and S 602-1 Funda Filters, A-101 Mole			
		Sieve Dryers (Regeneration)			
Other sources	-	Fugitive Emissions from Equipment Leaks (valves, pumps, pipe connectors, etc.)	64.10	70.00	Alternative ⁶
WW Poly	S013	A-100 Feed Dryers (Regeneration)	4.85	4.85	Alternative ⁶
WW Poly	S020	T-900-1 Filtrate Receiver	5.11	5.11	Alternative ⁶
WW Poly	S023	T-903-1 Solvent Wash Receiver	7.52	7.52	Alternative 6
WW Poly	S027	T-901-1 Auxiliary Receiver	5.11	5.11	Alternative ⁶
, WWTP	F033,F034,F035	Tanks T-702A , T-702B, T-702C Pretreated Water Tanks	8.84	8.84	Alternative ⁶
WWTP	F027	T-411-1 Biotreatment Aeration Tank	15.25	15.25	Alternative ⁶

1. RACT2 PTE values taken from the VOC Control Proposal submitted in December 2021

2. RACT3 PTE values taken from the Title V permit application submittal of February 2022

3. Storage tanks with capacity of 2000 gallons or more are Not Applicable to RACT III due to being subject to ACHD storage tank regulations at 2105.12.

4. Exempt from RACT III due to emissions less than 1 tpy, per PADEP regulation 129.111(c).

5. Subject to applicable Presumptive RACT requirements, per PADEP regulation 129.112.

6. Sources with VOC emissions of 2.7 tpy or greater are subject to Alternative RACT (case-by-case) analysis requirements, per PADEP regulation 129.114.

Summary of Facility VOC Sources and RACT III Classification - Sorted by Operating Area Synthomer Jefferson Hills LLC - West Elizabeth, PA

Operating Area	Stack	Description		RACT 3	RACT III	
	ID			VOC PTE ²	Classification ³	
			(TPY)	(TPY)		
LTC Unit	S109	LTC Unit #1 Vacuum System	3.80	3.80	Alternative	
LTC Unit	S110	LTC Unit #2 Vacuum System	8.09	8.09	Alternative	
LTC Unit	S124	LTC Unit #4 Vacuum System	1.46	1.46	Presumptive	
LTC Unit	S108	T-301-1 Reclaim Tank	0.58	0.29	Exempt	
LTC Unit	S111	Resin Kettle #5	0.32		Exempt	
LTC Unit	S112	Resin Kettle #6	0.24		Exempt	
LTC Unit	S113	Resin Kettle #7	0.68		Exempt	
LTC Unit	S114	#1 and #2 LTC Pastillator Belt	2.80	2.80	Alternative	
LTC Unit	S165	#3 LTC (Berndorf) Pastillator Belt	0.53		Exempt	
LTC Unit	Load	Truck Loadout	0.37		Exempt	
LTC Unit	Drum	Drumming	0.18		Exempt	
LTC Unit	S110A	T-610-1 LTC #2 and #4 Oil Water Separator	0.01	0.01	Exempt	
LTC Unit	\$125	LTC #4 Oil Water Separator	0.01	0.01	Exempt	
LTC Unit	\$125 \$107	#2 LTC Heater B-620-1	0.01		Exempt	
LTC Unit	\$107 \$119	#4 LTC Heater B-9020-1	0.10		Exempt	
					Alternative	
WW Poly	S013	A-100 Feed Dryers (Regeneration)	4.85	4.85		
WW Poly	S013a	A-100 Feed Dryers (Regeneration)	0.01		Exempt	
WW Poly	S014	T-301-1 East Pre-Blend Tank	0.57		Exempt	
WW Poly	S015	T-300-1 North Pre-Blend Tank	0.57	0.09	Exempt	
WW Poly	S016	T-500-1 Slurry Tank	0.02	0.02	Exempt	
WW Poly	S017	R-600-1 North Reactor and R-601-1 South Reactor	1.78		Presumptive	
WW Poly	S018	T-700-1 North Neutralizer	0.31	0.31	Exempt	
WW Poly	S019	Funda Filter Steam Out	0.01	0.01	Exempt	
WW Poly	S019a	S-800-6 Funda Condensate Tank	0.00	0.00	Exempt	
WW Poly	S020	T-900-1 Filtrate Receiver	5.11	5.11	Alternative	
WW Poly	S021	T-701-1 South Neutralizer	0.31	0.31	Exempt	
WW Poly	S022	T-1001-1 Reclaim Pot	0.13	0.13	Exempt	
WW Poly	S023	T-903-1 Solvent Wash Receiver	7.52	7.52	Alternative	
WW Poly	S024	Storage Tanks 68, 69, 74	1.37	1.37	Not Applicable	
WW Poly	S025	Storage Tanks 73, 75, 76, 77	5.45	5.45	Not Applicable	
WW Poly	S026	Storage Tank 67	0.89	0.89	Not Applicable	
WW Poly	S027	T-901-1 Auxiliary Receiver	5.11	5.11	Alternative	
WW Poly	S228	Storage Tank 66	0.29	0.30	Not Applicable	
WW Poly	S195	Storage Tank 10	0.03	0.29	Not Applicable	
WW Poly	S206, S208	Storage Tank 22, 24	0.03	0.03	Not Applicable	
WW Poly	S207, S209	Storage Tank 23, 25	0.03	0.03	Not Applicable	
WW Poly	S211	Storage Tank 27	0.04		Not Applicable	
WW Poly	S210,S212, S213	Storage Tank 26, 28, 29	0.42		Not Applicable	
, WW Poly	S074	Storage Tank 34	0.27	0.27	Not Applicable	
WW Poly	S075	Storage Tank 35	1.00		Not Applicable	
WW Poly	S230	Storage Tank 71	0.29		Not Applicable	
WW Poly	S231	Storage Tank 72	0.42		Not Applicable	
WW Poly	\$239,\$240,\$241	Storage Tank 200, 201, 202	0.42		Not Applicable	
WW Poly	S300	Storage Tanks 204, 205, 206, 207	0.04		Not Applicable	
C5 Unit	S044/S044A	Polymerization Operations & Storage Tanks 501,502,503,504,505,506	0.04		Exempt	
C5 Unit	S052	Resin Kettle #8	0.26		Exempt	
C5 Unit	S052	Resin Kettle #9			Exempt	
C5 Unit	S053		0.74		Presumptive	
		Resin Kettle #10	1.07			
C5 Unit	S312	Sparkler Filter	0.05		Exempt	
C5 Unit	N/A	Sprarkler Precoat T-519 A/B	0.01		Exempt	
C5 Unit	S216	Raw Material Tank 50	2.80		Not Applicable	
C5 Unit	S218	Raw Material Tank 52	2.37		Not Applicable	
C5 Unit	S219	Raw Material Tank 53	<1	0.41	Not Applicable	
C5 Unit	S060	Raw Material Tank 54	1.66		Not Applicable	
C5 Unit	S061	Raw Material Tank 55	1.16		Not Applicable	
C5 Unit	S058	Raw Material Tank 500	0.19		Not Applicable	
C5 Unit	S274	Raw Material Tank 511	0.10	0.10	Not Applicable	
C5 Unit		Resin Storage Tanks (121, 123, 124, 366, 367, 601 & 602)	1.77	1.77	Not Applicable	
C5 Unit	\$064,\$066,\$097,\$267, \$268,\$269,\$270	Resin Storage Tanks (121, 123, 124, 366, 367, 601 & 602)	1.77	1.77	Not A	

Summary of Facility VOC Sources and RACT III Classification - Sorted by Operating Area Synthomer Jefferson Hills LLC - West Elizabeth, PA

Operating Area	Stack Description		RACT 2 VOC PTE ¹	RACT 3	RACT III
	ID			VOC PTE ² (TPY)	Classification ³
C5 Unit	S059, S238	Resin Storage Tanks 504 and 161	2.00	2.00	Not Applicable
C5 Unit	S055	Pastillating Belts #1 and #2 (point and fugitive)	7.44	7.43	Alternative
C5 Unit	N/A	Resin Product Loading	0.80	0.78	Exempt
C5 Unit	S056	Hot Oil Heater B-3000	0.25	0.24	Exempt
MP Poly	S029	R-400-1 Reactor	1.65	1.65	Presumptive
MP Poly	S033	T-800-1 Precoat Tank, T-104-1 Mole Sieve Drain Tank, T-104-3 Contaminated Dryer Solvent Tank	0.51	0.51	Exempt
MP Poly	5034	Filtrate System: R-701-1 Filtrate Receiver, T-500-1 Neutralizer, T-700-1 Solvent Wash Tank, T-703-1 Heel Tank, S-601-1 and S 602-1 Funda Filters, A-101 Mole Sieve Dryers (Regeneration)	10.33	10.33	Alternative
MP Poly	S035	T-203-1 Pre-Blend Tank	0.99	0.99	Exempt
MP Poly	S039, S040, S041	Storage Tanks T-301, T-302, T-303	1.37	1.03	Not Applicable
WWTP	S147	Tank 701A, 701B, Back Porch Sumps (T-713-1 Raw Sump, S-302-1 Air Flotation Tank, T-717-1 Oil Sump, T-714-1 Acid Sump, T-715-1 Final Sump)	0.48	0.48	Exempt
WWTP	F033,F034,F035	Tanks T-702A , T-702B, T-702C Pretreated Water Tanks	8.84	8.84	Alternative
WWTP	F027	T-411-1 Biotreatment Aeration Tank	15.25	15.25	Alternative
WWTP	F028	Biotreatment Clarifier	0.11	0.11	Exempt
WWTP	F036	Sludge Batch Tanks	0.00	0.00	Exempt
WWTP	F037	Sludge Solids Handling	0.00	0.00	Exempt
Pilot Plant	S155	Neutralizer, Reactor, Funda Filters	2.20	2.20	Presumptive
Hydro Unit	S004	Metering Tanks, Tank 103 & 104, Catalyst Catch Tank, Mott Filter, Heel Tank	13.00	12.98	Alternative
Hydro Unit	S001	Storage Tanks 100, 101	1.20	1.27	Not Applicable
Hydro Unit	S012	Storage Tanks 102, 105, 106	6.30	7.35	Not Applicable
Hydro Unit	S007	Vent Tank, Autoclave #1, Autoclave #2	15.00	15.13	Alternative
Emulsion	S162	RK1, RK2, Blend Tanks 1,2,3,4	0.28	2.16	Presumptive
Dresinate	S085	L- 500-1 Double Drum Dryer	5.48	5.50	Alternative
Dresinate	S187	Storage Tank R-1-A	0.01	0.05	Not Applicable
Dresinate	S290	Storage Tank 782	0.01	0.05	Not Applicable
Storage Tanks	S190	Storage Tank 4	<1	0.05	Not Applicable
Storage Tanks	\$232	Storage Tank 78	<1	1.49	Not Applicable
Storage Tanks	S091	Storage Tank 80	<1	0.05	Not Applicable
Storage Tanks	\$236	Storage Tank 30		0.05	Not Applicable
Storage Tanks	S244	Storage Tank 208	<1 <1	0.15	Not Applicable
Storage Tanks	S244 S248	Storage Tank 252			Not Applicable
Storage Tanks	S256	Storage Tank 261	<1 <1	0.06 0.61	Not Applicable
Storage Tanks	S038	-			Not Applicable
-	S257	Storage Tank 262 Storage Tank 263	<1	0.61 0.53	Not Applicable
Storage Tanks Storage Tanks	S257	Storage Tank 263 Storage Tank 264	<1		Not Applicable
-	S258 S259	Storage Tank 265	<1	0.52	Not Applicable
Storage Tanks Storage Tanks	5235	Storage Tank 365	<1	0.57	Not Applicable
Storage Tanks	+	Storage Tank 365	<1	<1	Not Applicable
•			<1	<1	Not Applicable
Storage Tanks Storage Tanks	+	Storage Tank 764 Storage Tank 766	<1	<1	Not Applicable
Storage Tanks	S287	Storage Tank 775	<1	<1 0.42	Not Applicable
Storage Tanks	S160	Storage Tank 75	<1		Not Applicable
-		-	<1	0.05	Exempt
Boiler House	S141	Unilex Boiler 1	0.45	0.44	
Boiler House	S141	Unilex Boiler 2	0.45	0.44	Exempt Exempt
Boiler House	S143	Unilex Boiler 3	0.45	0.44	
Boiler House	S142	Unilex Boiler 4	0.45	0.44	Exempt
Boiler House	S144	Trane Boiler	0.92	0.90	Exempt
Other sources	-	Fugitive Emissions from Equipment Leaks (valves, pumps, pipe connectors, etc.)	64.10	70.00	Alternative

1. RACT2 PTE values taken from the VOC Control Proposal submitted in December 2021

2. RACT3 PTE values taken from the Title V permit application submittal of February 2022

3. See footnotes at bottom of Table 1

Table 3 List of Storage Tanks and Capacities Synthomer Jefferson Hills LLC - West Elizabeth, PA

Tank ID	Stack ID	Process Area	VOC Controls	Capacity (gallons)	RACT III Classification *
773 (T-203-1)		Emulsion	None		Exempt
T-402-3		Emulsion	None		Exempt
T-405-1		Emulsion	None		Exempt
T-406-1		Emulsion	None		Exempt
T-407-1		Emulsion	None		Exempt
T-408-1		Emulsion	None		Exempt
T-411-1		Emulsion	None		Exempt
T-412-1		Emulsion	None		Exempt
762	S284	Miscellaneous	None		Exempt
763	S285	Miscellaneous	None		Exempt
T-105-2		Miscellaneous	None		Exempt
T-2004-1	S260	Miscellaneous	None		Exempt
T-401-1		Miscellaneous	None		Exempt
T-703-3		Miscellaneous	None		Exempt
T-7065-1		Miscellaneous	None		Exempt
T-801-4		Miscellaneous	None		Exempt
50	S216	C5 Unit	None	528,765	Not Applicable
52	S218	C5 Unit	None	528,765	Not Applicable
53	S219	C5 Unit	None	528,765	Not Applicable
54	S060	C5 Unit	None	1,469,451	Not Applicable
55	S061	C5 Unit	None	579,585	Not Applicable
121	S064	C5 Unit	None	19,432	Not Applicable
123	S066	C5 Unit	None	20,080	Not Applicable
124	S097	C5 Unit	None	24,864	Not Applicable
161	S238	C5 Unit	None	158,630	Not Applicable
365	S266	C5 Unit	None	20,728	Not Applicable
366	S267	C5 Unit	None	20,132	Not Applicable
367	S268	C5 Unit	None	20,132	Not Applicable
500	S058	C5 Unit	None	112,251	Not Applicable
501	S044/S044A	C5 Unit	Thermal Oxidizer	60,914	Not Applicable
502	S044/S044A	C5 Unit	Thermal Oxidizer	60,914	Not Applicable
503	S044/S044A	C5 Unit	Thermal Oxidizer	51,184	Not Applicable
504	S059	C5 Unit	None	62,817	Not Applicable
505	S044/S044A	C5 Unit	Thermal Oxidizer	8,484	Not Applicable
506	S044/S044A	C5 Unit	Thermal Oxidizer	8,484	Not Applicable
511	S274	C5 Unit	None	15,228	Not Applicable
601	S269	C5 Unit	None	108,291	Not Applicable
602	S270	C5 Unit	None	108,291	Not Applicable
80	S091	Dresinate	None	24,881	Not Applicable
782	S290	Dresinate	None	9,518	Not Applicable
783	S160	Dresinate	None	9,518	Not Applicable
R-1-A	S187	Dresinate	None	17,626	Not Applicable
761	S283	Emulsion	None	9,518	Not Applicable
775	S287	Emulsion	None	9,518	Not Applicable
100	S001	Hydro Unit	Condenser E-101-4	6,016	Not Applicable
101	S001	Hydro Unit	Condenser E-101-4	6,016	Not Applicable
102	S012	Hydro Unit	Condenser E-104-1,	6,016	Not Applicable
105	S012	Hydro Unit	Condenser E-104-1,	6,016	Not Applicable
106	S012	Hydro Unit	Condenser E-104-1,	10,282	Not Applicable
			Condenser E-104-2		
2	S189	Miscellaneous	None	169,205	Not Applicable
4	S190	Miscellaneous	None	88,128	Not Applicable
9	S194	Miscellaneous	None	110,159	Not Applicable
12	S197	Miscellaneous	None	110,159	Not Applicable
13	S198	Miscellaneous	None	110,159	Not Applicable
14	S199	Miscellaneous	None	110,159	Not Applicable
15	S200	Miscellaneous	None	110,159	Not Applicable
16	S201	Miscellaneous	None	110,159	Not Applicable
35	\$201 \$075	Miscellaneous	None	169,205	Not Applicable
55	3073	iiiiiicuus	None	105,205	Hor Applicable

Table 3 List of Storage Tanks and Capacities Synthomer Jefferson Hills LLC - West Elizabeth, PA

Tank ID Stack ID		k ID Stack ID Process Area		Capacity (gallons)	RACT III Classification *	
150	S235	Miscellaneous	None	1,504,044	Not Applicable	
151	S236	Miscellaneous	None	1,504,044	Not Applicable	
160		Miscellaneous	None	158,630	Not Applicable	
208	S244	Miscellaneous	None	25,381	Not Applicable	
250	S246	Miscellaneous	None	30,457	Not Applicable	
251	S247	Miscellaneous	None	30,457	Not Applicable	
252	S248	Miscellaneous	None	30,457	Not Applicable	
254	S249	Miscellaneous	None	15,275	Not Applicable	
257	S252	Miscellaneous	None	15,275	Not Applicable	
261	S256	Miscellaneous	None	20,728	Not Applicable	
262	S038	Miscellaneous	None	20,080	Not Applicable	
263	S257	Miscellaneous	None	20,080	Not Applicable	
264	S258	Miscellaneous	None	20,080	Not Applicable	
265	S259	Miscellaneous	None	20,080	Not Applicable	
382	S271	Miscellaneous	None	19,625	Not Applicable	
408	No venting	Miscellaneous	None	9,776	Not Applicable	
510	No venting	Miscellaneous	None	100,000	Not Applicable	
513	S275	Miscellaneous	None	3,714	Not Applicable	
513	S276	Miscellaneous	None	3,714	Not Applicable	
766	S288	Miscellaneous	None	3,760		
	S039			75,202	Not Applicable	
301		MP Poly Unit	None	,	Not Applicable	
302	S040	MP Poly Unit	None	75,202	Not Applicable	
303	S041	MP Poly Unit	None	75,202	Not Applicable	
10	S195	WW Poly Unit	None	110,159	Not Applicable	
22	S206	WW Poly Unit	None	15,863	Not Applicable	
23	S207	WW Poly Unit	None	15,863	Not Applicable	
24	S208	WW Poly Unit	None	15,863	Not Applicable	
25	S209	WW Poly Unit	None	15,863	Not Applicable	
26	S210	WW Poly Unit	None	16,257	Not Applicable	
28	S212	WW Poly Unit	None	16,257	Not Applicable	
29	S213	WW Poly Unit	None	16,257	Not Applicable	
34	S074	WW Poly Unit	None	169,205	Not Applicable	
66	S228	WW Poly Unit	None	75,202	Not Applicable	
67	S026	WW Poly Unit	Condenser E-67-3	75,202	Not Applicable	
68	S024	WW Poly Unit	Condenser E-201-1	75,202	Not Applicable	
69	S024	WW Poly Unit	Condenser E-201-1	75,202	Not Applicable	
71	S230	WW Poly Unit	None	75,202	Not Applicable	
72	S231	WW Poly Unit	None	75,202	Not Applicable	
73	S025	WW Poly Unit	Condenser E-202-1	75,202	Not Applicable	
74	S024	WW Poly Unit	Condenser E-202-1	75,202	Not Applicable	
75	S025	WW Poly Unit	Condenser E-202-1	75,202	Not Applicable	
76	S025	WW Poly Unit	Condenser E-202-1	75,202	Not Applicable	
77	S025	WW Poly Unit	Condenser E-202-1	75,202	Not Applicable	
200	S239	WW Poly Unit	None	25,381	Not Applicable	
201	S240	WW Poly Unit	None	25,381	Not Applicable	
202	S202	WW Poly Unit	None	25,381	Not Applicable	
202	\$300 \$300	WW Poly Unit	Condenser E-204-4, Carbon	41,878	Not Applicable	
		·	Adsorber A-204-5A or 5B			
205	S300	WW Poly Unit	Condenser E-205-4, Carbon Adsorber A-204-5A or 5B	25,381	Not Applicable	
206	\$300	WW Poly Unit	Condenser E-206-4, Carbon Adsorber A-204-5A or 5B	25,381	Not Applicable	
207	\$300	WW Poly Unit	Condenser E-207-4, Carbon Adsorber A-204-5A or 5B	25,381	Not Applicable	

* Storage tanks with capacity of 2000 gallons or more are 'Not Applicable' to RACT III due to being subject to ACHD storage tank regulations at 2105.12. The tanks in this list marked as "Exempt" have emissions of less than 1 tpy.

Facility Sources Exempt from RACT III (PA Code 129.111(c) [< 1 TPY VOC]) Synthomer Jefferson Hills LLC - West Elizabeth, PA

Operating Area Source ID		Description	
LTC Unit	S108	T-301-1 Reclaim Tank	0.29
LTC Unit	S111	Resin Kettle #5	0.16
LTC Unit	S112	Resin Kettle #6	0.13
LTC Unit	S113	Resin Kettle #7	0.35
LTC Unit	S165	#3 LTC (Berndorf) Pastillator Belt	0.53
LTC Unit	Load	Truck Loadout	0.18
LTC Unit	Drum	Drumming	0.09
LTC Unit	S110A	T-610-1 LTC #2 and #4 Oil Water Separator	0.01
LTC Unit	S125	LTC #4 Oil Water Separator	0.01
LTC Unit	S107	#2 LTC Heater B-620-1	0.21
LTC Unit	S119	#4 LTC Heater B-9020-1	0.24
WW Poly	S013a	A-100 Feed Dryers (Regeneration)	0.01
WW Poly	S014	T-301-1 East Pre-Blend Tank	0.10
WW Poly	S015	T-300-1 North Pre-Blend Tank	0.09
WW Poly	S016	T-500-1 Slurry Tank	0.02
WW Poly	S018	T-700-1 North Neutralizer	0.31
WW Poly	S019	Funda Filter Steam Out	0.01
WW Poly	S019a	S-800-6 Funda Condensate Tank	0.00
WW Poly	S021	T-701-1 South Neutralizer	0.31
WW Poly	S022	T-1001-1 Reclaim Pot	0.13
C5 unit	S044/S044A	Polymerization Operations	0.26
C5 unit	S052	Resin Kettle #8	0.38
C5 unit	S053	Resin Kettle #9	0.74
C5 unit	S312	Sparkler Filters S-519 A/B	0.05
C5 unit	N/A	Sprarkler Precoat T-519-2	0.01
C5 unit	N/A	Resin Product Loading	0.78
C5 unit	S056	Hot Oil Heater B-3000	0.24
MP Poly	S033	T-800-1 Precoat Tank, T-104-1 Mole Sieve Drain Tank, T-104-3 Contaminated Dryer Solvent Tank	0.51
MP Poly	S035	T-203-1 Preblend Tank	0.99
WWTP	S147	Tank 701A, 701B, Back Porch Sumps (T-713-1 Raw Sump, S-302-1 Air Flotation Tank, T-717-1 Oil Sump, T-714-1 Acid Sump, T-715-1 Final Sump)	0.48
WWTP	F028	Biotreatment Clarifier	0.11
WWTP	F036	Sludge Batch Tanks	0.00
WWTP	F037	Sludge Solids Handling	0.00
Boiler House	S141	Unilex Boiler 1	0.44
Boiler House	S141	Unilex Boiler 2	0.44
Boiler House	S143	Unilex Boiler 3	0.44
Boiler House	S143	Unilex Boiler 4	0.44
Boiler House	S144	Trane Boiler	0.90
Emulsion	1	773 (T-203-1)	< 1
Emulsion		T-402-3	< 1
Emulsion		T-405-1	< 1
Emulsion	1	T-406-1	<1
Emulsion	1	T-407-1	<1

Facility Sources Exempt from RACT III (PA Code 129.111(c) [< 1 TPY VOC]) Synthomer Jefferson Hills LLC - West Elizabeth, PA

Operating Area	Source ID	Description	VOC PTE * (TPY)
Emulsion		T-408-1	< 1
Emulsion		T-411-1	< 1
Emulsion		T-412-1	< 1
Miscellaneous	S284	762	< 1
Miscellaneous	S285	763	< 1
Miscellaneous		T-105-2	< 1
Miscellaneous	S260	T-2004-1 (formerly 278)	< 1
Miscellaneous		T-401-1	< 1
Miscellaneous		T-703-3	< 1
Miscellaneous		T-7065-1	< 1
Miscellaneous		T-801-4	< 1

* PTE values taken from the Title V permit application submittal of February 2022

Table 5 Facility Sources Subject to Presumptive RACT III (PA Code 129.112) Synthomer Jefferson Hills LLC - West Elizabeth, PA

Operating Area	Source	Description	VOC PTE*	Basis for	Presumptive RACT Requirement		
	ID		(TPY)	Presumptive			
C5 Unit	S054	Resin Kettle #10	1.07	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the		
					manufacturer's specifications and with good operating practices		
Emulsion	S162	RK1, RK2, Blend Tanks 1,2,3,4	2.16	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the		
					manufacturer's specifications and with good operating practices		
LTC Unit	S124	LTC Unit #4 Vacuum System	1.46	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the		
					manufacturer's specifications and with good operating practices		
MP Poly	S029	R-400-1 Reactor	1.65	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the		
					manufacturer's specifications and with good operating practices		
Pilot Plant	S155	Neutralizer, Reactor, Funda Filters	2.20	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the		
					manufacturer's specifications and with good operating practices		
WW Poly	S017	R-600-1 North Reactor and R-601-1 South Reactor	1.78	1 ≤ TPY < 2.7	Install, maintain and operate the source in accordance with the		
					manufacturer's specifications and with good operating practices		

 \ast PTE values taken from the Title V permit application submittal of February 2022

Table 6 Facility Sources Subject to Alternative (Case-by-Case) RACT III (PA Code 129.114) Synthomer Jefferson Hills LLC - West Elizabeth, PA

Operating Area	Stack	Description	VOC PTE ¹	Exhaust Flow ¹	Technically Infeasible Controls ²	RACT III Economic
	ID		(TPY)	(acfm)		Evaluation Required? ³
LTC Unit	S109	LTC Unit #1 Vacuum System	3.80	1	Rotary Concentrator	NO
LTC Unit	S110	LTC Unit #2 Vacuum System	8.09	3	Rotary Concentrator	NO
LTC Unit	S114	#1 and #2 LTC Pastillator Belt	2.80	3,100	Rotary Concentrator	NO
WW Poly	S013	A-100 Feed Dryers (Regeneration)	4.85	4	Rotary Concentrator	NO
WW Poly	S020	T-900-1 Filtrate Receiver	5.11	186	Rotary Concentrator	NO
WW Poly	S023	T- 903-1 Solvent Wash Receiver	7.52	186	Rotary Concentrator	NO
WW Poly	S027	T-901-1 Auxiliary Receiver	5.11	186	Rotary Concentrator	NO
C5 unit	S055	Pastillating Belts #1 and #2 (Point and Fugitive)	7.43	9,000	Condensation	NO
MP Poly	S034	Filtrate System: R-701-1 Filtrate Receiver, T-500-1 Neutralizer, T-700-1 Solvent Wash Tank, T-703-1 Heel Tank, S-601-1 and S 602-1 Funda Filters,	10.33	223	Rotary Concentrator	NO
WWTP	F033,F034,F035	T-702A , T-702B, T-702C Pretreated Water Tanks	8.84	N/A	All infeasible - see Section 3.1 of VOC RACT III Evaluation report	NO
WWTP	F027	T-411-1 Biotreatment Aeration Tank	15.25	N/A	All infeasible - see Section 3.2 of VOC RACT III Evaluation report	NO
Hydro Unit	S004	Metering Tank, Tanks 103&104, Catalyst Catch Tank, Mott Filter, Heel Tank	12.98	28	Rotary Concentrator	YES
Hydro Unit	S007	Vent Tank, Autoclave #1, Autoclave #2	15.13	200	Rotary Concentrator	YES
Dresinate	S085	L-500-1 Double Drum Dryer	5.50	2,000	Rotary Concentrator	NO
Other Sources	N/A	Fugitive Emissions from Equipment Leaks (valves, pumps, pipe connectors, etc.)	70.00	N/A	All infeasible - see Section 3.3 of VOC RACT III Evaluation report	NO

1. PTE values and exhaust flow rates taken from the Title V permit application submittal of February 2022

2. Rotary Concentrators are for large flow streams (> 7500 cfm); Vapor Condensers are suited for low flow streams

3. Per 129.114(i)(1)(i), RACT II sources that had a cost effectiveness of equal to or greater than \$12,000 per ton reduced are not required to undergo an economic evaluation for RACT III. Refer to Table 8 for the RACT II cost effectiveness values.

VOC Control Costs of Technically Feasible Control Options for Alternative RACT III Sources* Synthomer Jefferson Hills LLC - West Elizabeth, PA

Control Option		S004 Hydro	S007 Hydro
Recuperative	tpy VOC Removed	12.6	14.7
Oxidation (98%)	Annual Cost	\$187,768	\$212,285
(30%)	\$/ton	\$14,910	\$14,462
Regenerative Oxidation	tpy VOC Removed	12.6	14.7
(98%)	Annual Cost	\$251,046	\$258,716
(58%)	\$/ton	\$19,935	\$17,625
Catalytic Oxidation	tpy VOC Removed	12.6	14.7
(98%)	Annual Cost	\$175,745	\$189,025
	\$/ton	\$13,956	\$12,877
Rotary Concentrator/	tpy VOC Removed	N/A	N/A
Oxidation	Annual Cost	N/A	N/A
(90-98%)	\$/ton	N/A	N/A
Carbon Adsorption	tpy VOC Removed	12.3	14.4
(fixed bed) (90-95%)	Annual Cost	\$422,415	\$598,354
(30-3376)	\$/ton	\$34,297	\$41,681
Refrigerated Condenser	tpy VOC Removed	11.7	13.7
(90 - 95%)	Annual Cost	\$168,806	\$223,573
(30 - 33/6)	\$/ton	\$14,485	\$16,307

Minimum \$/ton:

\$12,877

* Only required for those sources that had a cost effectiveness less than \$12,000/ton under the RACT II analysis (see Table 8 for those cost effectiveness values)

\$13,956

N/A - the control type is not technically feasible for this process (see Table 6)

 Table 8
 VOC Control Cost Comparisons for Alternative (Case-by-Case) RACT II Sources*

 Synthomer Jefferson Hills LLC - West Elizabeth, PA

Control Option		S109 LTC	S110 LTC	S114 LTC	S013 & S013a WW Poly	S020 WW Poly	S023 WW Poly	S027 WW Poly
Thermal	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation (98%)	Annual Cost	\$143,908	\$148,047	\$311,632	\$156,264	\$183,607	\$175,518	\$175,934
	\$/ton	\$40,137	\$19,443	\$118,251	\$34,162	\$38,176	\$24,798	\$36,653
Catalytic	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation (98%)	Annual Cost	\$134,852	\$135,637	\$254,524	\$138,270	\$154,741	\$148,790	\$149,202
	\$/ton	\$37,705	\$17,814	\$96,581	\$30,228	\$32,174	\$21,022	\$31,084
Rotary	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Concentrator/ Oxidation (98%)	Annual Cost	\$184,606	\$184,634	\$219,307	\$184,832	\$187,503	\$186,464	\$186,464
	\$/ton	\$51,616	\$24,249	\$83,218	\$40,408	\$38,986	\$26,345	\$38,847
Carbon Adsorption	tpy VOC Removed	3.5	7.4	2.4	4.4	4.7	6.9	4.7
(fixed bed)	Annual Cost	\$181,762	\$179,679	\$180,804	\$154,297	\$156,903	\$156,790	\$155,442
(90-95%)	\$/ton	\$52,426	\$24,343	\$74,706	\$34,797	\$33,654	\$22,852	\$33,073
Refrigerated	tpy VOC Removed	3.5	7.4	2.6	4.4	4.7	6.9	4.7
Condenser (95%)	Annual Cost	\$136,399	\$138,457	\$1,296,659	\$149,704	\$219,179	\$189,142	\$192,802
	\$/ton	\$39,342	\$18,758	\$507,565	\$33,761	\$47,011	\$27,567	\$41,022
Mi	nimum \$/ton:	37,705	17,814	74,706	30,228	32,174	21,022	31,084

Control Option		S025 WW Poly	S055 C-5	S034 MP Poly	S004 Hydro	S007 Hydro	S012 Hydro	S085 Dresinate
Thermal	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation (98%)	Annual Cost	\$154,798	\$526,415	\$177,803	\$165,140	\$174,148	\$146,413	\$345,875
	\$/ton	\$30,178	\$90,761	\$18,288	\$13,536	\$12,335	\$24,692	\$66,816
Catalytic	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation (98%)	Annual Cost	\$137,691	\$412,727	\$150,236	\$142,844	\$147,584	\$135,286	\$280,531
	\$/ton	\$26,843	\$71,160	\$15,452	\$11,708	\$10,454	\$22,816	\$54,193
Rotary Concentrator/	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation (98%)	Annual Cost	\$184,776	\$285,728	\$186,833	\$185,480	\$186,486	\$184,620	\$229,409
	\$/ton	\$36,022	\$49,263	\$19,216	\$15,203	\$13,209	\$31,136	\$44,317
Carbon Adsorption	tpy VOC Removed	5	5.4	8.9	10.3	13	5.4	4.8
(fixed bed)	Annual Cost	\$156,423	\$207,403	\$158,992	\$161,638	\$161,521	\$180,771	\$186,358
(90-95%)	\$/ton	\$31,458	\$38,408	\$17,807	\$15,693	\$12,458	\$33,197	\$39,200
Refrigerated	tpy VOC Removed	5	5.7	9.4	11.5	13.7	5.7	5
Condenser	Annual Cost	\$146,875	\$2,920,397	\$193,751	\$160,986	\$182,016	\$137,554	\$1,504,896
(95%)	\$/ton	\$29,538	\$512,350	\$20,557	\$13,999	\$13,300	\$23,931	\$299,894
Mi	nimum \$/ton:	26,843	38,408	15,452	11,708	10,454	22,816	39,200

* All information taken from the ACHD Technical Support Document for RACT2 Installation Permit #0058-I026, dated 4/21/2020

ATTACHMENT 2 Economic Analysis Tables

Oxidation Cost Tables

Table 1.	Cost Summary of RACT III VOC Oxidation Control Options	Source Name:	Hydro Unit
	Synthomer Jefferson Hills, LLC - West Elizabeth, PA	Stack ID:	S004

1a. - Ranking of VOC Oxidation Control Options, by Reduction Efficiency

Ranking	Control Technology	Destruction Efficiency (%)	Capture Efficiency (%)	Reduction ¹ Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Recuperative Thermal Oxidizer	98.0	99.0	97.0	12.98	12.59
2.	Catalytic Oxidizer	98.0	99.0	97.0	12.98	12.59
3.	Regenerative Thermal Oxidizer	98.0	99.0	97.0	12.98	12.59

1b. - Ranking of Annual Control Costs per Ton of Pollutant Reduced

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital-Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	VOC Control Cost (\$/ton/yr)
1.	Catalytic Oxidizer	317,476	25,472	2,023	175,745	13,956
2.	Recuperative Thermal Oxidizer	409,179	32,834	2,607	187,768	14,910
3.	Regenerative Thermal Oxidizer	896,238	71,916	5,711	251,046	19,935

¹ Overall reduction based on product of Control efficiency and Capture efficiency

Table 2. INPUT PARAMETERS FOR CONTROL TECHNOLOGY ANALYSIS Synthomer Jefferson Hills, LLC - West Elizabeth, PA

Emissions Data		
VOC emissions, tpy:	12.98	From Title V application, 2/2022
Operating hours per year:	8,760	
Collection System Data		
	Expected	Expected
Units Controlled	<u>Capture Eff.</u>	<u>Air Flow, cfm</u>
Vent S004	99%	30
		Total: 30

Control System Data

	Removal	Heat
	Efficiency, %	Recovery, %
Recuperative Thermal Oxidizer	98	50
Catalytic Oxidizer (fixed bed)	98	50
Regenerative Thermal Oxidizer (RTO)	98	85

Auxiliary Equipment and Costs

	<u>Cost</u>	<u>Year Basis</u>	CEPCI at Basis**
Accumulator, piping, & ductwork***	153,000	2012	584.6
Other equipment	0		

Total Auxiliary Equipment Costs: 153,000

* USEPA-developed spreadsheet, named:

US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm

(available at https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution)

** Chemical Engineering Plant Cost Index , updated monthly in "Chemical Engineering Magazine"

*** Accumulator, piping, & ductwork costs, taken from QSEM thermal control study (in 2012 dollars).

Source & Stack: Hydro Unit S004

Facility-specific Economic Data

Operator labor cost, \$/hr	48.00
Maintenance labor cost, \$/hr	49.00
Electricity cost, \$/kwh	0.075
Natural Gas cost, \$/mcf	6.87
Debt Interest rate, fraction	0.05

Other Economic Data

Taxes, insurance, admin, fraction	0.05	EPA spreadsheet*
Catalyst cost, \$/ft3	350	EPA spreadsheet*
Catalyst life (years):	4	EPA spreadsheet*
Control system life (years):	20	EPA spreadsheet*
Operating labor factor (hr/sh):	0.5	EPA spreadsheet*
Maintenance labor factor (hr/sh):	0.5	EPA spreadsheet*
Current CEPCI (cost inflation factor)**	832.6	Final value, June 2022

Table 3. Total Annual Cost Spreadsheet - Recuperative Thermal Oxidizer Synthomer Jefferson Hills, LLC - West Elizabeth, PA

Source & Stack: Hydro Unit S004

8,760

48.00

49.00 0.50

0.50

0.075

6.87

0.05 20

0.0802

Cost (\$/yr) 26,280 3,942 Table 2.10 26,828

0.05

230

187,768

43 Equation 2.42 50,326 Table 2.10

20,459 Table 2.10 32,834 Table 2.10

26,828 Table 2.10, equals maintenance labor cost

COST REFERENCE DATE*:	1999		
Reference Date CEPCI value*	390.6		
Most recent CEPCI value**	832.6	Final value, June 2022	
Cost Escalation Factor	2.13	1	
INPUT PARAMETERS			ANNUAL COST INPUTS
Gas flowrate (scfm):	30		Operating factor (hr/yr):
Reference temperature (oF):	77		Operating labor rate (\$/hr):
Inlet gas temperature (oF):	40		Maintenance labor rate (\$/hr):
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):
Primary heat recovery (fraction):	0.5		Maintenance labor factor (hr/sh):
Pollutant heat of combustion (Btu/scf):		based on Cyclohexane	Electricity price (\$/kwh):
Pollutant molecular weight (lb/lb-mole)	84.2	based on Cyclohexane	Natural gas price (\$/mscf):
Pollutant concentration (ppmv):	7,137	based on Cyclohexane	Annual interest rate (fraction):
Waste gas heat content (BTU/scf):	27.6		Control system life (years):
Waste gas heat content (BTU/lb):	374	Ļ	Capital recovery factor:
Gas heat capacity (BTU/Ib-oF):	0.38		Taxes, insurance, admin. factor:
Combustion temperature (oF):	1,400		
Preheat temperature (oF):	720	Equation 2.18	
Fuel heat of combustion (BTU/lb):	21,502	methane	
Fuel density (lb/ft3):	0.0408	methane	
Pressure drop (in. w.c.):	11.0	Table 2.11	CALCULATED ANNUAL COSTS
CALCULATED UTILITY USAGES			Item
Auxiliary Fuel Regrmnt (lb/min):		Equation 2.21	
(scfm):	0.06		Operating labor
Total Gas Flowrate (scfm):	30		Supervisory labor
			Maintenance labor
CALCULATED CAPITAL COSTS			Maintenance materials
Equipment Costs (EC):			Natural gas
Incinerator:			Electricity
@ 0 % heat recovery:	0	Equation 2.29	Overhead
@ 35 % heat recovery:	0	Equation 2.30	Taxes, insurance, administrative
@ 50 % heat recovery:	39,965	Equation 2.31	Capital recovery
@ 70 % heat recovery:	0	Equation 2.32	
			Total Annual Cost
Auxiliary equipment***:		converted to 1999 dollars	
Total Equipment Costbase:		Sum of EC and auxiliary equipment	
Total Equipment Costescalated (A):		Base cost times escalation factor	
Purchased Equipment Cost (B = 1.08A):	- ,	Table 2.8	
Total Capital Investment (TCI = 1.25B):	409,179	Table 2.8	

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition.

** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

*** Accumulator, piping, & ductwork costs, taken from QSEM thermal control study (see Table 2)

Table 4.	Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
	Synthomer Jefferson Hills, LLC - West Elizabeth, PA

Source & Stack:

COST REFERENCE DATE*:		2016			
Reference Date CEPCI value*		541.7			
Most recent CEPCI value**			Final value, June 2022		
Cost Escalation Factor		1.54			
Exhaust Gas flowrate (scfm):		30		Operating factor (hr/yr):	8,760
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00
Waste gas inlet temperature, Tw _i (oF):		40		Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):		0.0739		Operating labor factor (hr/sh):	0.50
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.50
Waste gas heat content, annual avg. (BTU/scf):		27.6	based on Cyclohexane	Electricity price (\$/kwh):	0.075
Waste gas heat content (BTU/lb):		374	based on Cyclohexane	Natural gas price (\$/mscf):	6.87
Gas heat capacity (BTU/Ib-oF):		0.381	based on Cyclohexane	Annual interest rate (fraction):	0.05
Combustion temperature (oF):		1,800		Control system life (years):	20
Temperature leaving heat exchanger, Tw _o (oF):		1536	Equation 2.18	Capital recovery factor:	0.0802
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05
Fuel density (lb/ft3):		0.0408	methane		
Pressure drop (in. w.c.):		30.4	Table 2.11		
CALCULATED UTILITY USAGES				ANNUAL COSTS	
Auxiliary Fuel Requirement:	(lb/min):	-0.022	Equation 2.45		
	(scfm):	-0.54		Item	Cost (\$/yr)
	(mcf/yr):	(285.6))	Operating labor	26,280
Total Maximum Exhaust Gas Flowrate:	(scfm):	29		Supervisory labor	3,942 Table 2.10
				Maintenance labor	26,828
CALCULATED CAPITAL COSTS				Maintenance materials	26,828 Table 2.10, equals maintenance labor cost
Oxidizer Equipment Cost (EC):				Natural gas	0
@ 85% heat recovery:		266,812	Equation 2.33	Electricity	115 Equation 2.42
@ 95% heat recovery:		0	Equation 2.33	Overhead	50,326 Table 2.10
				Taxes, insurance, administrative	44,812 Table 2.10
Auxiliary equipment***:		165,117	converted to 2016 dollars	Capital recovery	71,916 Table 2.10
Total Equipment Costbase:		431,929	Sum of EC and auxiliary equipment		
Total Equipment Costescalated (A):		663,880	Base cost times escalation factor	Total Annual Cost	251,046
Durahasad Faultaneart Cost (D. 1004)		716 000	Table 2.8		
Purchased Equipment Cost (B = 1.08A):		/10,990			

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition.

** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

*** Accumulator, piping, & ductwork costs, taken from QSEM thermal control study in 2012 and expressed in 2016 dollars.

Table 5. Total Annual Cost Spreadsheet - Catalytic Oxidizer (Fixed Bed) Synthomer Jefferson Hills, LLC - West Elizabeth, PA

Source & Stack: Hydro Unit S004

COST REFERENCE DATE*:	1999				
Reference Date CEPCI value*	390.6				
Most recent CEPCI value**	832.6	Final value, June 2022			
Cost Escalation Factor	2.13				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	30		Operating factor (hr/yr):	8760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	
Inlet gas temperature (oF):	40		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.50	
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.50	
Waste gas heat content (BTU/scf):	27.6	based on Cyclohexane	Electricity price (\$/kwh):	0.075	
Waste gas heat content (BTU/lb):	374	based on Cyclohexane	Catalyst price (\$/ft3):	650	
Gas heat capacity (BTU/lb-oF):		based on Cyclohexane	Natural gas price (\$/mscf):	6.87	
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Preheat temperature (oF):	445	Equation 2.18	Control system life (years):	20	
Fuel heat of combustion (BTU/lb):	21,502	methane	Catalyst life (years):	4	
Fuel density (lb/ft3):	0.0408	methane	Capital recovery factor (system):	0.0802	
Pressure drop (in. w.c.):	13.0	Table 2.11	Capital recovery factor (catalyst):	0.2820	
			Taxes, insurance, admin. factor:	0.05	
CALCULATED UTILITY USAGES					
Auxiliary Fuel Regrmnt (lb/min):	0.002	Equation 2.21			
(scfm):	0.0		CALCULATED ANNUAL COSTS		
Total Gas Flowrate (scfm):	30				
Catalyst Volume (ft3):	0.1	Equation 2.28	Item	Cost (\$/yr)	_
			Operating labor	26,280	
CALCULATED CAPITAL COSTS			Supervisory labor	,	Table 2.10
Equipment Costs (EC):			Maintenance labor	26,828	
@ 0 % heat recovery:	0	Equation 2.34	Maintenance materials	-	Table 2.10, equals maintenance labor cost
@ 35 % heat recovery:		Equation 2.35	Natural gas	134	
@ 50 % heat recovery:		Equation 2.36	Electricity		Equation 2.42
@ 70 % heat recovery:		Equation 2.37	Catalyst replacement		Table 2.10
	Ū	244461 2.57	Overhead		Table 2.10
Auxiliary equipment***:	102,227	converted to 1999 dollars	Taxes, insurance, administrative	-	Table 2.10
Total Equipment Costbase:		Sum of EC and auxiliary equipment	Capital recovery	25,472	
Total Equipment Costescalated (A):	-	Base cost times escalation factor		23,472	-
Purchased Equipment Cost (B = 1.08A):	,	Table 2.8	Total Annual Cost	175,745	
Total Capital Investment (TCI = 1.25B):	-	Table 2.8		2. 0,. 10	
	,470				

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition.

** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

*** Accumulator, piping, & ductwork costs, taken from QSEM thermal control study in 2012 and expressed in 1999 dollars.

Table 1.	Cost Summary of RACT III VOC Oxidation Control Options	Source Name:	Hydro Unit
	Synthomer Jefferson Hills, LLC - West Elizabeth, PA	Stack ID:	S007

1a. - Ranking of VOC Oxidation Control Options, by Reduction Efficiency

Ranking	Control Technology	Destruction Efficiency (%)	Capture Efficiency (%)	Reduction ¹ Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Recuperative Thermal Oxidizer	98.0	99.0	97.0	15.13	14.68
2.	Catalytic Oxidizer	98.0	99.0	97.0	15.13	14.68
3.	Regenerative Thermal Oxidizer	98.0	99.0	97.0	15.13	14.68

1b. - Ranking of Annual Control Costs per Ton of Pollutant Reduced

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital-Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	VOC Control Cost (\$/ton/yr)
1.	Catalytic Oxidizer	361,608	28,994	1,975	189,025	12,877
2.	Recuperative Thermal Oxidizer	479,914	38,510	2,623	212,285	14,462
3.	Regenerative Thermal Oxidizer	901,236	72,318	4,927	258,716	17,625

¹ Overall reduction based on product of Control efficiency and Capture efficiency

Table 2. INPUT PARAMETERS FOR CONTROL TECHNOLOGY ANALYSIS Synthomer Jefferson Hills, LLC - West Elizabeth, PA

Emissions Data				
VOC emissions, tpy:	15.13 From Title V app		blication, 2/2022	
Operating hours per year:	8,760			
Collection System Data				
	Expected		Expected	
Units Controlled	<u>Capture Eff.</u>	<u>A</u>	<u>ir Flow, cfm</u>	
Vent S007	99%		200	
	3370		200	
	3370		200	
	5576	Total:	200	

Control System Data

	Removal	Heat
	Efficiency, %	<u>Recovery, %</u>
Recuperative Thermal Oxidizer	98	50
Catalytic Oxidizer (fixed bed)	98	50
Regenerative Thermal Oxidizer (RTO)	98	85

Auxiliary Equipment and Costs

	<u>Cost</u>	<u>Year Basis</u>	CEPCI at Basis**
Accumulator, piping, & ductwork***	153,000	2012	584.6
Other equipment	0		

Total Auxiliary Equipment Costs: 153,000

* USEPA-developed spreadsheet, named:

US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm

(available at https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution)

** Chemical Engineering Plant Cost Index , updated monthly in "Chemical Engineering Magazine"

*** Accumulator, piping, & ductwork costs, taken from QSEM thermal control study (in 2012 dollars).

Source & Stack: Hydro Unit S007

Facility-specific Economic Data

Operator labor cost, \$/hr 48.	JU
Maintenance labor cost, \$/hr 49.	00
Electricity cost, \$/kwh 0.0	75
Natural Gas cost, \$/mcf 6.	87
Debt Interest rate, fraction 0.	05

Other Economic Data

Taxes, insurance, admin, fraction	0.05	EPA spreadsheet*
Catalyst cost, \$/ft3	350	EPA spreadsheet*
Catalyst life (years):	4	EPA spreadsheet*
Control system life (years):	20	EPA spreadsheet*
Operating labor factor (hr/sh):	0.5	EPA spreadsheet*
Maintenance labor factor (hr/sh):	0.5	EPA spreadsheet*
Current CEPCI (cost inflation factor)**	832.6	Final value, June 2022

Table 3. Total Annual Cost Spreadsheet - Recuperative Thermal Oxidizer Synthomer Jefferson Hills, LLC - West Elizabeth, PA

Source & Stack: Hydro Unit S007

8,760

48.00

49.00

0.50

0.50 0.075

6.87

0.05 20

0.0802

Cost (\$/yr) 26,280 3,942 Table 2.10 26,828

15,287

212,285

289 Equation 2.42 50,326 Table 2.10

23,996 Table 2.10 38,510 Table 2.10

0.05

26,828 Table 2.10, equals maintenance labor cost

COST REFERENCE DATE*:	1999		
Reference Date CEPCI value*	390.6		
Most recent CEPCI value**	832.6	Final value, June 2022	
Cost Escalation Factor	2.13		
INPUT PARAMETERS			ANNUAL COST INPUTS
Gas flowrate (scfm):	200		Operating factor (hr/yr):
Reference temperature (oF):	77		Operating labor rate (\$/hr):
Inlet gas temperature (oF):	40		Maintenance labor rate (\$/hr):
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):
Primary heat recovery (fraction):	0.5		Maintenance labor factor (hr/sh):
Pollutant heat of combustion (Btu/scf):		based on Cyclohexane	Electricity price (\$/kwh):
Pollutant molecular weight (lb/lb-mole)		based on Cyclohexane	Natural gas price (\$/mscf):
Pollutant concentration (ppmv):			
		based on Cyclohexane	Annual interest rate (fraction):
Waste gas heat content (BTU/scf):	4.8		Control system life (years):
Waste gas heat content (BTU/lb):	65		Capital recovery factor:
Gas heat capacity (BTU/lb-oF):	0.38		Taxes, insurance, admin. factor:
Combustion temperature (oF):	1,400	5	
Preheat temperature (oF):		Equation 2.18	
Fuel heat of combustion (BTU/lb):		methane methane	
Fuel density (lb/ft3):		Table 2.11	CALCULATED ANNUAL COSTS
Pressure drop (in. w.c.):	11.0	Table 2.11	CALCULATED ANNUAL COSTS
CALCULATED UTILITY USAGES			Item
Auxiliary Fuel Reqrmnt (lb/min):	0.173	Equation 2.21	
(scfm):	4.23		Operating labor
Total Gas Flowrate (scfm):	204		Supervisory labor
			Maintenance labor
CALCULATED CAPITAL COSTS			Maintenance materials
Equipment Costs (EC):			Natural gas
Equipment Costs (EC): Incinerator:			Natural gas Electricity
••••••	0	Equation 2.29	e e
Incinerator:		Equation 2.29 Equation 2.30	Electricity
Incinerator: @ 0 % heat recovery:	0		Electricity Overhead
Incinerator: @ 0 % heat recovery: @ 35 % heat recovery:	0 64,546	Equation 2.30	Electricity Overhead Taxes, insurance, administrative
Incinerator: @ 0 % heat recovery: @ 35 % heat recovery: @ 50 % heat recovery:	0 64,546	Equation 2.30 Equation 2.31	Electricity Overhead Taxes, insurance, administrative
Incinerator: @ 0 % heat recovery: @ 35 % heat recovery: @ 50 % heat recovery:	0 64,546 0	Equation 2.30 Equation 2.31	Electricity Overhead Taxes, insurance, administrative Capital recovery
Incinerator: @ 0 % heat recovery: @ 35 % heat recovery: @ 50 % heat recovery: @ 70 % heat recovery:	0 64,546 0 102,227	Equation 2.30 Equation 2.31 Equation 2.32	Electricity Overhead Taxes, insurance, administrative Capital recovery
Incinerator: @ 0 % heat recovery: @ 35 % heat recovery: @ 50 % heat recovery: @ 70 % heat recovery: Auxiliary equipment***:	0 64,546 0 102,227 166,773	Equation 2.30 Equation 2.31 Equation 2.32 converted to 1999 dollars	Electricity Overhead Taxes, insurance, administrative Capital recovery
Incinerator: @ 0 % heat recovery: @ 35 % heat recovery: @ 50 % heat recovery: @ 70 % heat recovery: Auxiliary equipment***: Total Equipment Costbase:	0 64,546 0 102,227 166,773 355,492	Equation 2.30 Equation 2.31 Equation 2.32 converted to 1999 dollars Sum of EC and auxiliary equipment	Electricity Overhead Taxes, insurance, administrative Capital recovery
Incinerator: @ 0 % heat recovery: @ 35 % heat recovery: @ 50 % heat recovery: @ 70 % heat recovery: Auxiliary equipment***: Total Equipment Costbase: Total Equipment Costescalated (A):	0 64,546 0 102,227 166,773 355,492 383,932	Equation 2.30 Equation 2.31 Equation 2.32 converted to 1999 dollars Sum of EC and auxiliary equipment Base cost times escalation factor	Electricity Overhead Taxes, insurance, administrative Capital recovery

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition.

** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

*** Accumulator, piping, & ductwork costs, taken from QSEM thermal control study (see Table 2)

Table 4.	Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
	Synthomer Jefferson Hills, LLC - West Elizabeth, PA

Source & Stack:

COST REFERENCE DATE*:		2016				
Reference Date CEPCI value*		541.7				
Most recent CEPCI value**			Final value, June 2022			
Cost Escalation Factor		1.54	,			
		1.5-	•			
INPUT PARAMETERS				ANNUAL COST INPUTS		
Exhaust Gas flowrate (scfm):		200		Operating factor (hr/yr):	8,760	
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00	
Waste gas inlet temperature, Tw _i (oF):		40		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.50	
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.50	
Waste gas heat content, annual avg. (BTU/scf):		4.8	based on Cyclohexane	Electricity price (\$/kwh):	0.075	
Waste gas heat content (BTU/lb):		65	based on Cyclohexane	Natural gas price (\$/mscf):	6.87	
Gas heat capacity (BTU/lb-oF):		0.381	based on Cyclohexane	Annual interest rate (fraction):	0.05	
Combustion temperature (oF):		1,800		Control system life (years):	20	
Temperature leaving heat exchanger, Tw_{o} (oF):		1536	Equation 2.18	Capital recovery factor:	0.0802	
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05	
Fuel density (lb/ft3):		0.0408	methane			
Pressure drop (in. w.c.):		30.4	Table 2.11			
CALCULATED UTILITY USAGES				ANNUAL COSTS		
Auxiliary Fuel Requirement:	(lb/min):	0.072	Equation 2.45			
	(scfm):	1.76		Item	Cost (\$/yr)	
	(mcf/yr):	923.9		Operating labor	26,280	_
Total Maximum Exhaust Gas Flowrate:	(scfm):	202		Supervisory labor	3,942	Table 2.10
				Maintenance labor	26,828	
CALCULATED CAPITAL COSTS				Maintenance materials	26,828	Table 2.10, equals maintenance labor cost
Oxidizer Equipment Cost (EC):				Natural gas	6,347	
@ 85% heat recovery:		269,221	Equation 2.33	Electricity	787	Equation 2.42
@ 95% heat recovery:		0	Equation 2.33	Overhead	50,326	Table 2.10
				Taxes, insurance, administrative	45,062	Table 2.10
Auxiliary equipment***:		165,117	converted to 2016 dollars	Capital recovery	72,318	Table 2.10
Total Equipment Costbase:		434,337	Sum of EC and auxiliary equipment			
Total Equipment Costescalated (A):		,	Base cost times escalation factor	Total Annual Cost	258,716	
Purchased Equipment Cost (B = 1.08A):			Table 2.8			
Total Capital Investment (TCI = 1.25B):		901,236	Table 2.8			

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition.

** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

*** Accumulator, piping, & ductwork costs, taken from QSEM thermal control study in 2012 and expressed in 2016 dollars.

Table 5. Total Annual Cost Spreadsheet - Catalytic Oxidizer (Fixed Bed) Synthomer Jefferson Hills, LLC - West Elizabeth, PA

Source & Stack: Hydro Unit S007

COST REFERENCE DATE*:	1999				
Reference Date CEPCI value*	390.6				
Most recent CEPCI value**	832.6	Final value, June 2022			
Cost Escalation Factor	2.13	,			
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	200		Operating factor (hr/yr):	8760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	
Inlet gas temperature (oF):	40		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.50	
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.50	
Waste gas heat content (BTU/scf):	4.8	based on Cyclohexane	Electricity price (\$/kwh):	0.075	
Waste gas heat content (BTU/lb):	65	based on Cyclohexane	Catalyst price (\$/ft3):	650	
Gas heat capacity (BTU/Ib-oF):	0.381	based on Cyclohexane	Natural gas price (\$/mscf):	6.87	
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Preheat temperature (oF):	445	Equation 2.18	Control system life (years):	20	
Fuel heat of combustion (BTU/lb):	21,502	methane	Catalyst life (years):	4	
Fuel density (lb/ft3):	0.0408	methane	Capital recovery factor (system):	0.0802	
Pressure drop (in. w.c.):	13.0	Table 2.11	Capital recovery factor (catalyst):	0.2820	
			Taxes, insurance, admin. factor:	0.05	
CALCULATED UTILITY USAGES					
Auxiliary Fuel Reqrmnt (lb/min):	0.083	Equation 2.21			
(scfm):	2.0		CALCULATED ANNUAL COSTS		
Total Gas Flowrate (scfm):	202				
Catalyst Volume (ft3):	0.4	Equation 2.28	Item	Cost (\$/yr)	_
			Operating labor	26,280	
CALCULATED CAPITAL COSTS			Supervisory labor	,	Table 2.10
			Maintenance labor	,	
Equipment Costs (EC):	0	5		26,828	
@ 0 % heat recovery:		Equation 2.34	Maintenance materials		Table 2.10, equals maintenance labor cost
@ 35 % heat recovery:		Equation 2.35	Natural gas	7,332	
@ 50 % heat recovery:	-	Equation 2.36	Electricity		Equation 2.42
@ 70 % heat recovery:	0	Equation 2.37	Catalyst replacement		Table 2.10
			Overhead	,	Table 2.10
Auxiliary equipment***:	- /	converted to 1999 dollars	Taxes, insurance, administrative	-	Table 2.10
Total Equipment Costbase:		Sum of EC and auxiliary equipment	Capital recovery	28,994	_
Total Equipment Costescalated (A):	- /	Base cost times escalation factor			
Purchased Equipment Cost (B = 1.08A):	,	Table 2.8	Total Annual Cost	189,025	
Total Capital Investment (TCI = 1.25B):	361,608	Table 2.8			

* Reference date and corresponding CEPCI value taken from USEPA cost estimating spreadsheet 'US EPA_OAQPS_IncineratorsOxidizers_Calc_Sheet_september_2022.xlsm', based on OAQPS Cost Manual, 7th Edition.

** Chemical Engineering Plant Cost Index (CEPCI) values are published in Chemical Engineering monthly journals

*** Accumulator, piping, & ductwork costs, taken from QSEM thermal control study in 2012 and expressed in 1999 dollars.

Carbon Adsorption Tables

Source Name and ID:	Hydro Unit (S004)			
Facility Name:	Synthomer Jefferson Hills LLC			

Data Inputs					
Select the type of carbon adsorber system:		Carbon Canist	er Adsorber with Carbon Replacement		
For fixed-bed carbon adsorbers, provide the following information:					
Select the type of operation:		Not Applicable			
Select the type of material used to fabricate the carbon adsorber vessels:		Not Applicable			
Select the orientation for the adsorber vessels:		Not Applicable			
Enter the design data for the proposed Carbon Canister Adsorber wi	th Carbon Replac	ement			
Number of operating hours per year (Θ_s)	8,760	hours/year			
Waste Gas Flow Rate (Q)	30	acfm*	*acfm is actual cubic feet/min		
VOC Emission Rate (m _{voc})	2.96	lbs/hour			
Required VOC removal efficiency (E)	05	percent	ī		
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)		Years*	* 15 years is a default equipment life. User should enter actual value, if known.		
Estimated Carbon life (n)		Years	15 years is a derault equipment me. Oser should enter actual value, it known.		
Estimated Carbon Replacement Rate (CRR)		lbs/hour*	* 379 lbs./hour is a default value. User should enter actual value, if known.		
Carbon Canister Size		lbs of carbon per canister			
Enter the Characteristics of the VOC/HAP:	_,				
•					
Name of VOC/HAP	Cyclohexane		1		
Partial Pressure of Cyclohexane in waste gas stream Parameter "k" for Cyclohexane	0.0114	psia Note:			
	0.303	Typical values of "k" and "m"	for some common		
Parameter "m" for Cyclohexane	0.210	VOCs are shown in Table A.			
Enter the cost data for the carbon adsorber:		_			
Desired dollar-year	2022				
CEPCI* for 2022	833	CEPCI value for 2022	603.1 2018		
Annual Interest Rate (i)	5.00	percent*	* 5 percent is a default value. User should enter current prime bank rate.		
* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S)		t of the index for purpose of o	ost escalation or de-escalation, but is there merely to allow for availability of a well-		
Carbon Canister Cost	\$9,688	per canister (in 2022 dolla	Note: Typical costs for carbon canisters are shown in Table B.		
Operator Labor Rate	\$48.00	per hour]		
Maintenance Labor Rate	-	per hour			
Carbon Cost (CC)	\$4.20	per lb	* \$4.20/lb is a default value based on 2018 market price. User should enter actual value, if known.		
If known, enter any additional costs for site preparation and building construction		wooden and the second second	enter estad active 10 to sure		
Site Preparation (SP) = Buildings (Bldg) =	 \$0 * Default value. User should enter actual value, if known. \$0 * Default value. User should enter actual value, if known. 				
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack) (EC _{aux}) =			oment design study from 2012, converted to 2018 dollars		
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value. The contingency factor should be between 5 and 15 percent.		

Design Parameters

The following design parameters for the carbon adsorber were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Type of Carbon Adsorber:	Carbon Canister Adsorber with Carbon Replacement		
Name of VOC Controlled:	Cyclohexane		
Parameter	Equation	Calculated Value	Units
Quantity of Cyclohexane Removed:			
Quantity of Cyclohexane Removed (Wvoc) =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	12.317	tons/year
Number of times canister(s) replaced per year =	$\Theta_s / \Theta_A =$	2	
Adsorber Parameters for Carbon Canisters:			
Time for Adsorption (Θ_A) =	Number of operating hours before carbon canister replacement =	4,380	hours
Equilibrium Capacity at the Inlet (W _{e(max)}) =	$k \times P^m =$	0.197	lb. VOC/lb. Carbon
Working Capacity (w _c) =	0.5 x w _{e(max)} =	0.099	lb. VOC/lb. Carbon
Estimated Total Carbon Required (M _c) =	$(m_{voc}/w_c) \times \Theta_A =$	65,679	lbs.
Number of Carbon Canisters Required =	M _c /Carbon Canister Capacity	66	canisters
Total Quantity of Carbon Required for 66 Canisters =	Number of Carbon Canisters * Carbon Capacity per Canister =	66,000	lbs.
Capital Recovery Factor:			
Capital Recovery Factor for adsorber vessels and auxiliary	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.0963	
equipment (CFRabsorber)=	Where n = Equipment Life and i = Interest Rate		
Capital Recovery Factor for carbon (CRF _{Carbon}) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Carbon Life and i = Interest Rate	0.5378	

Cost Estimate

	Cost Estimate		
	Capital Costs		
Estimated capital costs for a Carbon Canister Adsorber with Ca VOC Controlled/Recovered Adsorber Vessel Orientation Operating Schedule	l = Cyclohexane = Not Applicable		
Total Capital Investment (TCI) (in 2022 dollars:)			
Parameter	Equation	Cost	
Total Cost for All Carbon Adsorber Canisters (EC _{Adsorb}) =	Canister Cost x Number of Canisters Required =	\$639,392	
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$157,842	
Total Purchased Equipment Costs for Carbon Adsorber (A) =	EC _{Adsorb} + EC _{aux} =	\$797,233	
Instrumentation =	0.10 × A =	\$79,723	
Sales taxes =	0.03 × A =	\$23,917	
Freight =	0.05 × A =	\$39,862	
	Total Purchased Equipment Costs (B) =	\$940,736	
Installation Costs (in 2022 dollars:)			
Parameter	Equation	Cost	
Direct and Indirect Installation = Site Preparation (SP) =	0.20 × B =	\$75,259 \$0	
Buildings (Bldg) =		\$0 \$0	
	Total Direct and Indirect Installation Costs =	\$75,259	
Contingency Cost (C) =	CF x (Purchase Equipment Cost + Installation costs) =	\$101,599	
	ital Investment (TCI) = Purchace Equipment + Installation + Contingency Costs =	\$1,117,594	in 2022 dollars
	Annual Costs		
Direct Annual Costs			
Parameter	Equation	Cost	
Operating Labor Costs:	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$26,280	
	Supervisor = 15% of Operator	\$3,942	
Maintenance Costs:	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$26,828	
Carbon Replacement Costs:	Materials = 100% of maintenance labor Labor = CFR _{carbon} [Labor Rate × T _C /CRR] =	\$26,828 \$4,495	
	Carbon = $CRF_{carbon}[CC \times T_c \times 1.08] =$	\$161,006	
	Direct Annual Costs (DAC) =	\$249,378	in 2022 dollars
Indirect Annual Costs		, ,, ,,	
Parameter	Equation	Cost	
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$50,326	
Administrative Charges	= 2% of TCI	\$22,352	
Property Taxes	= 1% of TCI	\$11,176	
Insurance	= 1% of TCI	\$11,176	
Capital Recovery	= CRF _{Adsorber} × [TCI - [(1.08 *CC *Tc) + (LR*Tc/CRR)] =	\$78,007	
	Indirect Annual Costs (IAC) =	\$173,037	in 2022 dollars
	Total Annual Cost (TAC) = DAC + IAC =	\$422,415	in 2022 dollars
	Cost Effectiveness		
Parameter	Equation	Cost	
Total Annual Cost =	TAC =	\$422,415	per year in 2022 doll
Annual Quantity of VOC Removed =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	12.32	tons/year

Cost Effectiveness =

\$34,297

per ton of pollutants removed

Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =

Source Name and ID:	Hydro Unit (S004)			
Facility Name:	Synthomer Jefferson Hills LLC			

Data Inputs					
Select the type of carbon adsorber system:		Carbon Canis	ter Adsorber with Carbon Replacement		
For fixed-bed carbon adsorbers, provide the following information:					
Select the type of operation:		Not Applicabl	e 🗸		
Select the type of material used to fabricate the carbon adsorber vessels:		Not Applicabl			
Select the orientation for the adsorber vessels:		Not Applicable			
Enter the design data for the proposed Carbon Canister Adsorber wi	th Carbon Replac	ement			
Number of operating hours per year (Θ_s)	8,760	hours/year			
Waste Gas Flow Rate (Q)	200	acfm*	*acfm is actual cubic feet/min		
VOC Emission Rate (m _{voc})	3.45	lbs/hour			
Required VOC removal efficiency (E)	05	percent	7		
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)		Years*	* 15 years is a default equipment life. User should enter actual value, if known.		
Estimated Carbon life (n)		Years	15 years is a default equipment me. Oser should enter actual value, it known.		
Estimated Carbon Replacement Rate (CRR)		lbs/hour*	* 379 lbs./hour is a default value. User should enter actual value, if known.		
Carbon Canister Size		lbs of carbon per canister			
Enter the Characteristics of the VOC/HAP:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	Custakawara				
Name of VOC/HAP	Cyclohexane 0.0020		7		
Partial Pressure of Cyclohexane in waste gas stream Parameter "k" for Cyclohexane		Note:			
	0.000	Typical values of "k" and "m	for some common		
Parameter "m" for Cyclohexane	0.210	VOCs are shown in Table A.			
Enter the cost data for the carbon adsorber:					
Desired dollar-year	2022				
CEPCI* for 2022		CEPCI value for 2022	603.1 2018		
Annual Interest Rate (i)	5.00	percent*	* 5 percent is a default value. User should enter current prime bank rate.		
* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S)		t of the index for purpose of	cost escalation or de-escalation, but is there merely to allow for availability of a well-		
Carbon Canister Cost	\$9,688	per canister (in 2022 dolla	r Note: Typical costs for carbon canisters are shown in Table B.		
Operator Labor Rate		per hour			
Maintenance Labor Rate		per hour	* ć4 20 //h is a dafaultushua haand an 2010 maylaturina. Una shauld antar artushushus if harum		
Carbon Cost (CC)		per lb	* \$4.20/lb is a default value based on 2018 market price. User should enter actual value, if known.		
If known, enter any additional costs for site preparation and building construction		* Dofault value, User should	enter actual value, if known		
Site Preparation (SP) = Buildings (Bldg) =	 \$0 * Default value. User should enter actual value, if known. \$0 * Default value. User should enter actual value, if known. 				
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack) (EC _{aux}) =			pment design study from 2012, converted to 2018 dollars		
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value. The contingency factor should be between 5 and 15 percent.		

Design Parameters

The following design parameters for the carbon adsorber were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Type of Carbon Adsorber:	Carbon Canister Adsorber with Carbon Replacement		
Name of VOC Controlled:	Cyclohexane		
Parameter	Equation	Calculated Value	Units
Quantity of Cyclohexane Removed:			
Quantity of Cyclohexane Removed (Wvoc) =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	14.355	tons/year
Number of times canister(s) replaced per year =	$\Theta_s / \Theta_A =$	2	
Adsorber Parameters for Carbon Canisters:			
Time for Adsorption (Θ_A) =	Number of operating hours before carbon canister replacement =	4,380	hours
Equilibrium Capacity at the Inlet $(W_{e(max)})$ =	$k \ge P^m =$	0.137	lb. VOC/lb. Carbon
Working Capacity (w _c) =	$0.5 \times w_{e(max)} =$	0.068	lb. VOC/lb. Carbon
Estimated Total Carbon Required (M _c) =	$(m_{voc}/w_c) \times \Theta_A =$	110,444	lbs.
Number of Carbon Canisters Required =	M _c /Carbon Canister Capacity	111	canisters
Total Quantity of Carbon Required for 111 Canisters =	Number of Carbon Canisters * Carbon Capacity per Canister =	111,000	lbs.
Capital Recovery Factor:			
Capital Recovery Factor for adsorber vessels and auxiliary	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.0963	
equipment (CFRabsorber)=	Where n = Equipment Life and i = Interest Rate		
Capital Recovery Factor for carbon (CRF _{Carbon}) =	$[i \times (1 + i)^{n}] / [(1 + i)^{n} - 1] =$	0.5378	
	Where n = Carbon Life and i = Interest Rate		

Cost Estimate

	Cost Estimate		
	Capital Costs		
Estimated capital costs for a Carbon Canister Adsorber with C VOC Controlled/Recovered Adsorber Vessel Orientation Operating Schedule	d = Cyclohexane n = Not Applicable		
Total Capital Investment (TCI) (in 2022 dollars:)			
Parameter	Equation	Cost	
Total Cost for All Carbon Adsorber Canisters (EC _{Adsorb}) =	Canister Cost x Number of Canisters Required =	\$1,075,341	
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$157,842	
Total Purchased Equipment Costs for Carbon Adsorber (A) =	EC _{Adsorb} + EC _{aux} =	\$1,233,182	
Instrumentation =	0.10 × A =	\$123,318	
Sales taxes =	0.03 × A =	\$36,995	
Freight =	0.05 × A =	\$61,659	
	Total Purchased Equipment Costs (B) =	\$1,455,155	
Installation Costs (in 2022 dollars:)			
Parameter	Equation	Cost	
Direct and Indirect Installation =	0.20 × B =	\$116,412	
Site Preparation (SP) =		\$0	
Buildings (Bldg) =		\$0	
Contingency Cost (C) =	Total Direct and Indirect Installation Costs = CF x (Purchase Equipment Cost + Installation costs) =	\$116,412 \$157,157	
	ital Investment (TCI) = Purchace Equipment + Installation + Contingency Costs =	\$1,728,724	in 2022 dollars
	Annual Costs	<i>~_,</i> , <i></i> , <i></i> .	
Direct Annual Costs			
Parameter	Equation	Cost	
Operating Labor Costs:	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$26,280	
	Supervisor = 15% of Operator	\$3,942	
Maintenance Costs:	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$26,828	
	Materials = 100% of maintenance labor	\$26,828	
Carbon Replacement Costs:	Labor = CFR _{carbon} [Labor Rate $\times T_c/CRR$] =	\$7,560 \$270,783	
	Carbon = $CRF_{carbon}[CC \times T_c \times 1.08] =$		
	Direct Annual Costs (DAC) =	\$362,220	in 2022 dollars
Indirect Annual Costs Parameter	Equation	Cost	
Overhead	Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$50,326	
overnead		<i>\$</i> 50,520	
Administrative Charges	= 2% of TCI	\$34,574	
Property Taxes	= 1% of TCI	\$17,287	
Insurance	= 1% of TCI	\$17,287	
Capital Recovery	= CRF _{Adsorber} × [TCI - [(1.08 *CC *Tc) + (LR*Tc/CRR)] =	\$116,659	
	Indirect Annual Costs (IAC) =	\$236,134	in 2022 dollars
	Total Annual Cost (TAC) = DAC + IAC =	\$598,354	in 2022 dollars
	Cost Effectiveness		
Parameter	Equation	Cost	
Total Annual Cost =	TAC =	\$598,354	per year in 2022 dollars
Annual Quantity of VOC Removed =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	14.36	tons/year
Cost Effectiveness =	Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =	\$41,681	per ton of pollutants remove

per ton of pollutants removed

Condensation Cost Tables

Source Name and ID:	Hydro Unit (S004)			
Facility Name:	Synthomer Jefferson Hills LLC			

	Data Input	s
Is the condenser a packaged, custom or gasoline vapor recovery system?	Packaged Condenser System	•
Enter the design data for the proposed conde	nser:	

Enter the design data for the proposed condenser:

Number of operating hours per year and per day (Θ_s)	8,760 hours/year	24 hours/day	
Volumetric flow rate of the waste stream (Q _{in})	30 scfm (at 77 °F	F; 1 atm)	
Inlet stream temperature (T _{in})	40 °F		
Required VOC removal efficiency (ŋ)	90 %*	* 90% is a default control efficiency. Enter ac	tual value, if known.
Specific heat of the coolant (C _{p,cool})	0.65 Btu/lb-mole-	*F* * 0.65 Btu/lb-mole-*F is a default value. Enter	er actual value, if known.
Estimated equipment life (n)	15 Years*	* 15 years is a default equipment life. Enter a	actual value, if known.
Overall heat transfer coefficient (U)	20 Btu/hour-ft²-	*F* * 20 Btu/hour-ft ² -°F is a default coefficient. E	Inter actual value, if known.
Mechanical efficiency of compressor (η_{comp})	<mark>85</mark> %*	* 85% is a default value. Enter actual value, in	f known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	Cyclohexane			
Molecular Weight of Cyclohexane (MW)	84.16	lb./mole		
Density of Cyclohexane	9.6	lb./gallon		
Heat Capacity of Cyclohexane (Cp,voc)	37.03	Btu/lbmole-°F		
Heat of Condensation of Cyclohexane (Δ Href)	12,910	Btu/lbmole		
Boiling Point of Cyclohexane	177	°F		
Antoine Equation Constants for Cyclohexane	Α	В	С	
	6.8413	1201.53	222.65	based on degrees C and mmHg
Critical Temperature for Cyclohexane	996	°R		
Volume Fraction of Cyclohexane in waste stream entering the condenser (Yvoc,in)	0.00765			

Enter the cost data for the condenser:

Electricity (Cost _{elect})	\$0.0750	per kWh	
Operator Labor Rate	\$48.00	per hour	
Maintenance Labor Rate	\$49.00	per hour	
Re-Sale Value of Recovered VOC (Credit)	\$0.00	per lb	
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value.

If known, enter any additional costs for site preparation and building construction/modification:

Site Preparation (SP) =	\$0	* Default value. User should enter actual value, if known.			
Buildings (Bldg) and Ductwork =	\$150,775	based on QSEM control equipment design study from 2012, converted to 2014			
Equipment Costs for auxiliary equipment for custom condenser systems (EC _{aux}) =	\$0	* Default value. User should enter actual value, if kn	own.		
Desired dollar-year	2022				
CEPCI* for 2022	833	Enter the CEPCI value for 2022	576.1 2014 CEPCI		
Annual Interest Rate (i)	5.00	% (Default value is 4.25%)			

* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet is not an endorsement of the index for purpose of cost escalation or de-escalation, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Design Parameters

The following design parameters for the condenser were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

voc	VOC volume Fraction of waste stream entering the condenser (Y _{voc,in})	Heat Capacity (C _{p,voc}) (Btu/lbmole-°F)	Heat of Condensation (ΔH _{ref}) (Btu/lbmole)	
Cyclohexane	0.00765	37.03	12910	
Parameter	Equation		Calculated Value	Units
Partial Pressure of Cyclohexane VOC in Exit Stream (Pvoc) = Estimated Condensation Temperature for Cyclohexane (Tcon) =	$\label{eq:masses} \begin{split} 760 \times (M_{voc,out} / (M_{in} - M_{voc,recovered})) = \\ ((B / (A - log (P_{voc}))) - C) \times 1.8 + 32 = \end{split}$	$760 \times [Y_{voc,in} \times (1 - \eta)] / [1 - (\eta \times Y_{voc,in})] =$	0.585 -63.0	6 mmHg) °F
Parameter	Equation	Calculated Value	Units	Calculated Value Units
Quantities of VOC in Inlet and Outlet streams: Moles of VOC in the inlet stream ($M_{voc,in}$) = Moles of VOC in the outlet stream ($M_{voc,out}$) =	$(Q_{in} / 392) \times (Y_{voc,in}) \times 60 = M_{voc,in} \times (1 - \eta) =$		lbmoles/hour lbmoles/hour	2.96 lb/hour
Quantity of VOC Recovered: Moles of VOC Recovered (M _{voc, recovered}) = Quantity of VOC Recovered (W _{voc}) =	$M_{voc,in} imes \eta =$ $M_{voc, recovered} imes MW_{voc} =$		lbmoles/hour lb./operating hour	11.65 Tons/year
Calculation of Enthalpy of Condensation: Critical Temperature for VOC (T_c) = Reference Temperature for Heat of Condensation (T_1) = Condensation Temperature (T_2) = Enthalpy of condensation of VOC (Δ Hvoc) at -63 °F =	T_{con} + 459.67 = ΔH _{ref} × [(1 - T ₂ / T _c) / (1 - T ₁ / T _c)] ^{0.38} =	996 637 397 15,681	°R	
Calculation of Condenser Heat Load: Heat capacity of air ($C_{p, air}$) = Mean Temperature (T_{mean}) = Enthalpy change associated with the condensed VOC (ΔH_{con}) = Enthalpy change associated with the uncondensed VOC (ΔH_{uncon}) = Enthalpy change associated with the non-condensable air (Δ Hnoncon) = Condenser Heat Load (H_{load}) =	$ \begin{array}{l} \left(T_{in} + T_{con} \right) / 2 = \\ M_{voc,recovered} \times \left[\Delta H_{voc} + C_{p,voc} \left(T_{in} - T_{con} \right) \right] = \\ M_{voc,out} \times C_{p,voc} \times \left(T_{in} - T_{con} \right) = \\ \left[\left(\left(Q_{in} / 392 \right) \times 60 \right) - M_{voc,in} \right] \times C_{p,air} \times \left(T_{in} - T_{con} \right) = \\ \Delta H_{con} + \Delta H_{uncon} + \Delta H_{noncon} = \\ \end{array} $	-12 616 13 3,263	Btu/lbmole-°F @ 7 °F Btu/hour Btu/hour Btu/hour Btu/hour	'7 °F and 1 atm.
Calculation of Surface Area: Temperature of coolant entering the condenser ($T_{cool,in}$) = Temperature of coolant exiting the condenser ($T_{cool,out}$) = Logarithmic mean temperature difference (ΔT_{im}) =	T _{con} - 15 °F = T _{cool,in} + 25 °F = [(T _{in} - T _{cool,out}) - (T _{con} -T _{cool,in})] [In{(T _{in} - T _{cool,out})/(T _{con} - T _{cool,in})]]	-78.0 -53.0 -	°F	
Condenser Surface Area (A _{con}) = Calculation of Coolant Flow Rate and Refrigeration Capacity:	$H_{load} / (U \times \Delta T_{lm}) =$	4.6	ft²	
Coolant Flow Rate (W _{cool}) = Refrigeration Capacity (R) =	$\begin{split} H_{load} \ / \ (C_{p,cool} \times (T_{cool,out} - T_{cool,in})) = \\ H_{load} \ / \ 12,000 \ Btu/ton = \end{split}$		lb./hour Tons/hour	
Calculation of Electricity Consumption: Estimated Electricity Consumption (E) =	$2.7411 \times exp(-0.015 \times T_{con}) =$	7.06	kW/ton	
Capital Recovery Factor: Capital Recovery Factor (CRF) =	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$ Where n = Equipment Lite and i = Interest Rate	0.0963		

	Control Cost Estimate		
	Capital Costs		
VOC Controlled/Recovere	d = Cyclohexane		
Refrigeration Capacity (F Condensation Temperature for Waste Stream $(T_{co}$			
Fotal Capital Investment (TCI) (in 2022 dollars)			
Parameter	Equation	Single Stage	Multi-Stage
Equipment Costs for Single Stage Refrigeration Unit (ECr):	1.611 × exp[9.83 - 0.014 × Tcon + 0.34 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =	Not applicable*	
Equipment Costs for Multistage Refrigeration Unit (ECr):	1.611 × exp[9.73 - 0.012 × Tcon + 0.58 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =		\$43,433
Other Equipment Costs for a Packaged Solvent Recovery System (ECp):	1.25 × ECr =	Not applicable	\$10,858
Costs for Refrigerated Condenser (A) =	ECp + ECr =	Not applicable	\$54,292
Instrumentation =	0.10 × A =	Included in A	Included in A
Sales taxes =	0.03 × A =	Not applicable	\$1,629
Freight =	0.05 × A =	Not applicable	\$2,715
	Total Purchased Equipment Costs (B) =	Not applicable	\$58,635
Direct Installation Costs (in 2022 dollars)		a 1 a	
Parameter	Equation	Single Stage	Multi-Stage
Foundations and Supports =	0.14 × B =	Not applicable	Not applicabl
Handling and Erection = Electrical =	0.08 × B = 0.08 × B =	Not applicable Not applicable	Not applicabl Not applicabl
Piping =	0.02 × B =	Not applicable	Not applicabl
insulation =	0.10 × B =	Not applicable	Not applicabl
Painting =	0.01 × B =	Not applicable	Not applicable
Site Preparation (SP) =		Not applicable	\$0
Buildings (Bldg) =		Not applicable	\$150,775
	Total Direct Costs (DC) = B + (0.43 × B) + SP + Bldg =	Not applicable	\$209,410
	Total Capital Investment (TCI) = Direct Costs + Contingency = (1.15 × DC) =	Not applicable	\$240,822
	Annual Costs		
Direct Annual Costs			
Parameter	Equation	Single Stage	Multi-Stage
Annual Electricity Cost =	$(R / \eta_{Comp}) \times E \times \Theta_s \times p_e =$	Not applicable	\$1,769
Operating Labor =	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	Not applicable	\$26,280
	Supervisor = 15% of Operator	Not applicable	\$3,942
Maintenance Costs =	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	Not applicable	\$26,828
	Materials = 100% of maintenance labor	Not applicable	\$26,828
	Direct Annual Costs (DAC) =	Not applicable	\$85,646
ndirect Annual Costs	Equation	Single Stars	Multi Chart
Parameter Overhead	Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	Single Stage Not applicable	Multi-Stage \$50,326
	= 2% of TCI		\$50,326 \$4,816
Administrative Charges Property Taxes	= 1% of TCl	Not applicable Not applicable	\$4,810 \$2,408
Insurance	= 1% of TCI	Not applicable	\$2,408
Capital Recovery	= CRF × TCI	Not applicable	\$23,201
	Indirect Annual Costs (IAC) =	Not applicable	\$83,160
VOC Recovery Credit	Franking	Circle Ci	No. lut et
Parameter Annual Recovery Credit for Condensate (RC)	Equation = $W_{voc} \times Credit \times \Theta_s =$	Single Stage Not applicable	Multi-Stage \$0
	Total Annual Cost (TAC) = DAC + IAC - RC =	Not applicable	\$168,806
	Cost Effectiveness		
Parameter	Equation	Single Stage	Multi-Stage
Total Annual Cost =	TAC =	Not applicable	\$168,806
Annual Quantity of VOC Removed/Recovered =	W _{voc} =	Not applicable	11.7
Cost Effectiveness =	Total Annual Cost/Annual Quantity of VOC Removed/Recovered =	Not applicable	\$14,485

Source Name and ID:	Hydro Unit (S007)
Facility Name:	Synthomer Jefferson Hills LLC

Data Inputs			
Is the condenser a packaged, custom or gasoline vapor recovery system?	Packaged Condenser System	•	
Enter the design data for the proposed conde	nser:		

Enter the design data for the proposed condenser:

Number of operating hours per year and per day (Θ_s)	8,760 ho	urs/year	24 hours/day	
Volumetric flow rate of the waste stream (Q _{in})	200 scf	m (at 77 °F; 1 atm)		
Inlet stream temperature (T _{in})	50 °F		7	
Required VOC removal efficiency (ŋ)	90 %*	¢	* 90% is a default control efficiency. Ente	r actual value, if known.
Specific heat of the coolant (C _{p,cool})	0.65 Btu	u/lb-mole-°F*	* 0.65 Btu/lb-mole-°F is a default value. I	Enter actual value, if known.
Estimated equipment life (n)	15 Yea	ars*	* 15 years is a default equipment life. En	ter actual value, if known.
Overall heat transfer coefficient (U)	20 Btu	u/hour-ft²-°F*	* 20 Btu/hour-ft ² -°F is a default coefficien	nt. Enter actual value, if known.
Mechanical efficiency of compressor (η_{comp})	<mark>85</mark> %*	¢	* 85% is a default value. Enter actual value	ie, if known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	Cyclohexane			
Molecular Weight of Cyclohexane (MW)	84.16 l	b./mole]	
Density of Cyclohexane	9.6	b./gallon		
Heat Capacity of Cyclohexane (Cp,voc)	37.03 E	Btu/lbmole-°F		
Heat of Condensation of Cyclohexane (Δ Href)	12,910	Btu/lbmole		
Boiling Point of Cyclohexane	177 °	Ϋ́F		
Antoine Equation Constants for Cyclohexane	Α	В	С	
	6.8413	1201.53	222.65	based on degrees C and mmHg
Critical Temperature for Cyclohexane	996 °	°R		
Volume Fraction of Cyclohexane in waste stream entering the condenser (Yvoc, in)	0.00135			

Enter the cost data for the condenser:

Electricity (Cost _{elect})	\$0.0750	per kWh
Operator Labor Rate	\$48.00	per hour
Maintenance Labor Rate	\$49.00	per hour
Re-Sale Value of Recovered VOC (Credit)	\$0.00	per lb
Contingency Factor (CF)	10.0	percent*

If known, enter any additional costs for site preparation and building construction/modification:

Site Preparation (SP) =	<u>ć</u> 0	* Default value. User should enter actual value, if kno	2000	
,				
Buildings (Bldg) and Ductwork =	\$150,775	based on QSEM control equipment design study from 2012, converted to 201		
Equipment Costs for auxiliary equipment for custom condenser systems (EC _{aux}) =	\$0	* Default value. User should enter actual value, if kno	own.	
Desired dollar-year	2022			
CEPCI* for 2022	833	Enter the CEPCI value for 2022	576.1 2014 CEPCI	
Annual Interest Rate (i)	5.00	% (Default value is 4.25%)		

* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet is not an endorsement of the index for purpose of cost escalation or de-escalation, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Design Parameters

The following design parameters for the condenser were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

νος	VOC volume Fraction of waste stream entering the condenser (Y _{voc.in})	Heat Capacity (C _{p,voc}) (Btu/lbmole_°F)	Heat of Condensation (ΔH _{ref}) (Btu/lbmole)		
Cyclohexane	0.0013	5 37.03	12910	1	
Parameter	Equation		Calculated Value	Units	
Partial Pressure of Cyclohexane VOC in Exit Stream (Pvoc) = Estimated Condensation Temperature for Cyclohexane (Tcon) =	$\begin{aligned} 760 \times (M_{voc,out} / (M_{in} - M_{voc, recovered})) = \\ ((B / (A - log (P_{voc}))) - C) \times 1.8 + 32 = \end{aligned}$	760 × $[Y_{voc,in} \times (1 - \eta)] / [1 - (\eta \times Y_{voc,in})] =$	0.103 -92.5	mmHg °F	
Parameter	Equation	Calculated Value	Units	Calculated Value	Units
Quantities of VOC in Inlet and Outlet streams: Moles of VOC in the inlet stream ($M_{voc,in}$) = Moles of VOC in the outlet stream ($M_{voc,out}$) =	$(Q_{in} / 392) \times (Y_{voc,in}) \times 60 =$ $M_{voc,in} \times (1 - \eta) =$		lbmoles/hour lbmoles/hour	3.48	b/hour
Quantity of VOC Recovered: Moles of VOC Recovered (M _{voc, recovered}) = Quantity of VOC Recovered (W _{voc}) =	$M_{voc,in} \times \eta =$ $M_{voc, recovered} \times MW_{voc} =$		lbmoles/hour lb./operating hour	13.71	. Tons/yea
Calculation of Enthalpy of Condensation: Critical Temperature for VOC (T_c) = Reference Temperature for Heat of Condensation (T_1) = Condensation Temperature (T_2) = Enthalpy of condensation of VOC (Δ Hvoc) at -92.5 °F =	T_{con} + 459.67 = ΔH _{ref} × [(1 - T ₂ / T _c) / (1 - T ₁ / T _c)] ^{0.38} =	996 637 367 15,970	°R		
Calculation of Condenser Heat Load: Heat capacity of air ($C_{p, air}$) = Mean Temperature (T_{mean}) = Enthalpy change associated with the condensed VOC (ΔH_{con}) = Enthalpy change associated with the uncondensed VOC (ΔH_{uncon}) = Enthalpy change associated with the non-condensable air (Δ Hnoncon) = Condenser Heat Load (H_{load}) =		-21 790 22 30,286	Btu/lbmole-°F @ 7 °F Btu/hour Btu/hour Btu/hour Btu/hour	7°F and 1 atm.	
Calculation of Surface Area: Temperature of coolant entering the condenser $(T_{cool,in}) =$ Temperature of coolant exiting the condenser $(T_{cool,out}) =$	$T_{con} - 15 °F =$ $T_{cool,in} + 25 °F =$ $[(T_{in} - T_{cool,out}) - (T_{con} - T_{cool,in})]$ $[Inf(T_{cool}, out) - (T_{cool}, T_{cool}, out)]$	-107.5 -82.5 	°F		
Logarithmic mean temperature difference (ΔT_{im}) = Condenser Surface Area (A _{con}) =	$[In{(Tin - Tcool, out)/(Tcon - Tcool,in)}]Hload / (U × \Delta Tim) =$	28.8			
Calculation of Coolant Flow Rate and Refrigeration Capacity: Coolant Flow Rate (W _{cool}) = Refrigeration Capacity (R) =	$ \begin{array}{l} H_{load} \ / \ (C_{p,cool} \times (T_{cool,out} - T_{cool,in})) = \\ H_{load} \ / \ 12,000 \ Btu/ton = \end{array} $		lb./hour Tons/hour		
Calculation of Electricity Consumption: Estimated Electricity Consumption (E) =	$2.7411 \times exp(-0.015 \times T_{con}) =$	10.98	kW/ton		
Capital Recovery Factor: Capital Recovery Factor (CRF) =	[i × (1 + i) ⁿ] / [(1 + i) ⁿ - 1] = Where n = Equipment Life and i = Interest Kate	0.0963			

	Control Cost Estimate		
	Capital Costs		
VOC Controlled/Recovered = Refrigeration Capacity (R) =	= 2.59 tons/hour		
Condensation Temperature for Waste Stream (T _{con}) =	-93 °F		
Total Capital Investment (TCI) (in 2022 dollars)			
Parameter	Equation	Single Stage	Multi-Stage
Equipment Costs for Single Stage Refrigeration Unit (ECr):	1.611 × exp[9.83 - 0.014 × Tcon + 0.34 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =	Not applicable*	
Equipment Costs for Multistage Refrigeration Unit (ECr):	1.611 × exp[9.73 - 0.012 × Tcon + 0.58 × ln(R)] × [2022 CEPCI / 2014 CEPCI] =		\$206,575
Other Equipment Costs for a Packaged Solvent Recovery System (ECp):	1.25 × ECr =	Not applicable	\$51,644
Costs for Refrigerated Condenser (A) =	ECp + ECr =	Not applicable	\$258,219
Instrumentation =	0.10 × A =	Included in A	Included in A
Sales taxes =	0.03 × A =	Not applicable	\$7,747
Freight =	0.05 × A =	Not applicable	\$12,911
	Total Purchased Equipment Costs (B) =	Not applicable	\$278,876
Direct Installation Costs (in 2022 dollars)			
Parameter	Equation	Single Stage	Multi-Stage
Foundations and Supports =	0.14 × B =	Not applicable	Not applicable
Handling and Erection =	0.08 × B =	Not applicable	Not applicable
Electrical = Piping =	0.08 × B = 0.02 × B =	Not applicable Not applicable	Not applicable Not applicable
Insulation =	0.10 × B =	Not applicable	Not applicable
Painting =	0.01 × B =	Not applicable	Not applicable
Site Preparation (SP) =		Not applicable	\$0
Buildings (Bldg) =		Not applicable	\$150,775
	Total Direct Costs (DC) = B + (0.43 × B) + SP + Bldg =	Not applicable	\$429,652
	Total Capital Investment (TCI) = Direct Costs + Contingency = (1.15 × DC) =	Not applicable	\$494,099
	Annual Costs		
	Annual Costs		
Direct Annual Costs		Cited a Cited	
Parameter	Equation (R / η_{com_0}) × E × Θ_s × p_e =	Single Stage	Multi-Stage
Annual Electricity Cost =			¢22.002
Operating Labor -		Not applicable	\$22,003
Operating Labor =	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	Not applicable	\$26,280
		Not applicable Not applicable	\$26,280 \$3,942
Operating Labor = Maintenance Costs =	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator	Not applicable	\$26,280
	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	Not applicable Not applicable Not applicable	\$26,280 \$3,942 \$26,828
Maintenance Costs =	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor	Not applicable Not applicable Not applicable Not applicable	\$26,280 \$3,942 \$26,828 \$26,828
Maintenance Costs = Indirect Annual Costs Parameter	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation	Not applicable Not applicable Not applicable Not applicable Not applicable	\$26,280 \$3,942 \$26,828 \$26,828 \$105,880 Multi-Stage
Maintenance Costs = Indirect Annual Costs Parameter Overhead	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	Not applicable Not applicable Not applicable Not applicable Single Stage Not applicable	\$26,280 \$3,942 \$26,828 \$26,828 \$105,880 Multi-Stage \$50,326
Maintenance Costs = Indirect Annual Costs Parameter Overhead Administrative Charges	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCI	Not applicable Not applicable Not applicable Not applicable Single Stage Not applicable Not applicable	\$26,280 \$3,942 \$26,828 \$26,828 \$105,880 Multi-Stage \$50,326 \$9,882
Maintenance Costs = Indirect Annual Costs Parameter Overhead Administrative Charges Property Taxes	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCI = 1% of TCI	Not applicable Not applicable Not applicable Not applicable Single Stage Not applicable Not applicable Not applicable Not applicable	\$26,280 \$3,942 \$26,828 \$26,828 \$105,880 Multi-Stage \$50,326 \$9,882 \$4,941
Maintenance Costs = Indirect Annual Costs Parameter Overhead Administrative Charges Property Taxes Insurance	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCl = 1% of TCl = 1% of TCl	Not applicable Not applicable Not applicable Not applicable Single Stage Not applicable Not applicable Not applicable Not applicable Not applicable	\$26,280 \$3,942 \$26,828 \$26,828 \$105,880 Multi-Stage \$50,326 \$9,882 \$4,941 \$4,941
Maintenance Costs = Indirect Annual Costs Parameter Overhead Administrative Charges Property Taxes Insurance	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCI = 1% of TCI	Not applicable Not applicable Not applicable Not applicable Single Stage Not applicable Not applicable Not applicable Not applicable	\$26,280 \$3,942 \$26,828 \$26,828 \$105,880 Multi-Stage \$50,326 \$9,882 \$4,941
Maintenance Costs = Indirect Annual Costs Parameter Overhead Administrative Charges Property Taxes Insurance	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCl = 1% of TCl = 1% of TCl = 1% of TCl = CRF × TCl	Not applicable Not applicable Not applicable Not applicable Single Stage Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable	\$26,280 \$3,942 \$26,828 \$26,828 \$105,880 Multi-Stage \$50,326 \$9,882 \$4,941 \$4,941 \$47,603
Maintenance Costs = Indirect Annual Costs Parameter Overhead Administrative Charges Property Taxes Insurance Capital Recovery VOC Recovery Credit	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCl = 1% of TCl = 1% of TCl = 1% of TCl = CRF × TCl Indirect Annual Costs (IAC) = Equation	Not applicable Not applicable Not applicable Not applicable Single Stage Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable	\$26,280 \$3,942 \$26,828 \$105,880 Multi-Stage \$50,326 \$9,882 \$4,941 \$4,941 \$47,603 \$117,693
Indirect Annual Costs Parameter Overhead Administrative Charges Property Taxes Insurance Capital Recovery	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCl = 1% of TCl = 1% of TCl = 1% of TCl = CRF × TCl Indirect Annual Costs (IAC) =	Not applicable Not applicable	\$26,280 \$3,942 \$26,828 \$105,880 Multi-Stage \$50,326 \$9,882 \$4,941 \$4,941 \$47,603 \$117,693
Maintenance Costs = Indirect Annual Costs Parameter Overhead Administrative Charges Property Taxes Insurance Capital Recovery VOC Recovery Credit Parameter	$\begin{array}{l} \label{eq:constraint} Operator = 0.5 hours/shift \times Labor Rate \times (Operating hours/8 hours/shift) \\ \mbox{Supervisor} = 15\% of Operator \\ \mbox{Labor} = 0.5 hours/shift \times Labor Rate \times (Operating Hours/8 hours/shift) \\ \mbox{Materials} = 100\% of maintenance labor \\ \mbox{Direct Annual Costs (DAC)} = \\ \hline \mbox{Equation} \\ = 60\% of sum of operator, supervisor, maintenance labor Plus maintenance materials \\ = 2\% of TCl \\ = 1\% of TCl \\ = 1\% of TCl \\ = 1\% of TCl \\ = 2RF \times TCl \\ \hline \mbox{Indirect Annual Costs (IAC)} = \\ \hline \mbox{Equation} \\ = W_{voc} \times Credit \times \Theta_{s} = \\ \hline \mbox{Total Annual Cost (TAC)} = DAC + IAC - RC = \\ \hline \end{array}$	Not applicable Not applicable Single Stage	\$26,280 \$3,942 \$26,828 \$26,828 \$105,880 Multi-Stage \$50,326 \$9,882 \$4,941 \$4,941 \$47,603 \$117,693
Maintenance Costs = Indirect Annual Costs Parameter Overhead Administrative Charges Property Taxes Insurance Capital Recovery VOC Recovery Credit Parameter Annual Recovery Credit for Condensate (RC)	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCl = 1% of TCl = 1% of TCl = 1% of TCl = 1% of TCl = CRF × TCl Indirect Annual Costs (IAC) = Equation = $W_{voc} \times Credit \times \Theta_s =$ Total Annual Cost (TAC) = DAC + IAC - RC = Cost Effectiveness	Not applicable Not applicable	\$26,280 \$3,942 \$26,828 \$105,880 Multi-Stage \$50,326 \$9,882 \$4,941 \$4,941 \$47,603 \$117,693 \$117,693 Multi-Stage \$0 \$223,573
Maintenance Costs = Indirect Annual Costs Parameter Overhead Administrative Charges Property Taxes Insurance Capital Recovery VOC Recovery Credit Parameter Annual Recovery Credit for Condensate (RC) Parameter Parameter	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCl = 1% of TCl = 1% of TCl = 1% of TCl = 1% of TCl = CRF × TCl Indirect Annual Costs (IAC) = Equation = $W_{voc} \times Credit \times \Theta_s =$ Total Annual Cost (TAC) = DAC + IAC - RC = Cost Effectiveness Equation	Not applicable Not applicable Single Stage Not applicable	\$26,280 \$3,942 \$26,828 \$26,828 \$105,880 Multi-Stage \$50,326 \$9,882 \$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,941\$\$4,94
Maintenance Costs = Indirect Annual Costs Parameter Overhead Administrative Charges Property Taxes Insurance Capital Recovery VOC Recovery Credit Parameter Annual Recovery Credit for Condensate (RC)	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) Supervisor = 15% of Operator Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) Materials = 100% of maintenance labor Direct Annual Costs (DAC) = Equation = 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials = 2% of TCl = 1% of TCl = 1% of TCl = 1% of TCl = 1% of TCl = CRF × TCl Indirect Annual Costs (IAC) = Equation = $W_{voc} \times Credit \times \Theta_s =$ Total Annual Cost (TAC) = DAC + IAC - RC = Cost Effectiveness	Not applicable Not applicable	\$26,280 \$3,942 \$26,828 \$26,828 \$105,880 Multi-Stage \$50,326 \$9,882 \$4,941\$\$4,941\$\$4,94