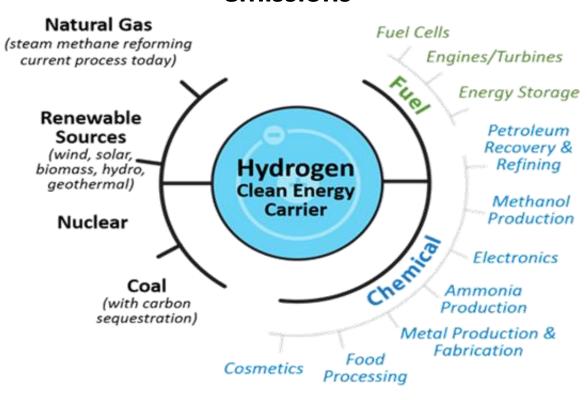
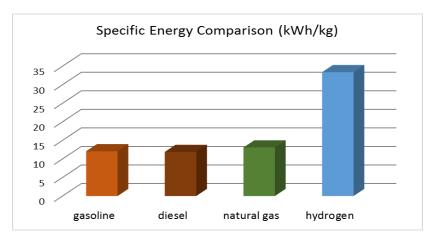


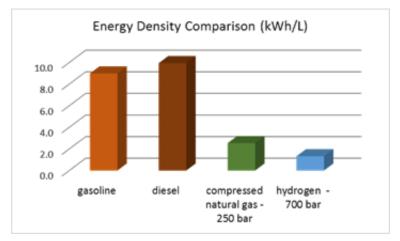
U.S. Department of Energy's Hydrogen and Fuel Cell Perspectives


Dr. Sunita Satyapal, Hydrogen and Fuel Cell Technologies Office Director and Hydrogen Program Coordinator, U.S. Department of Energy

August 24, 2021

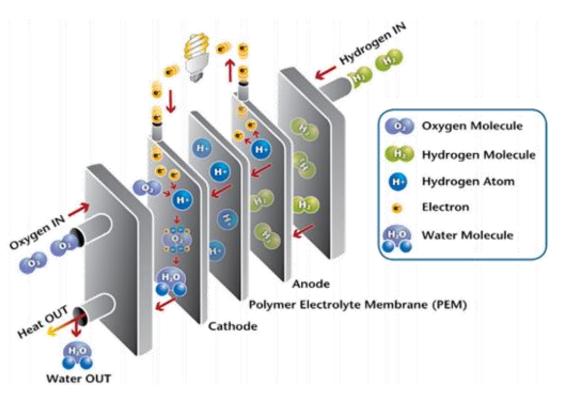

Hydrogen Introduction

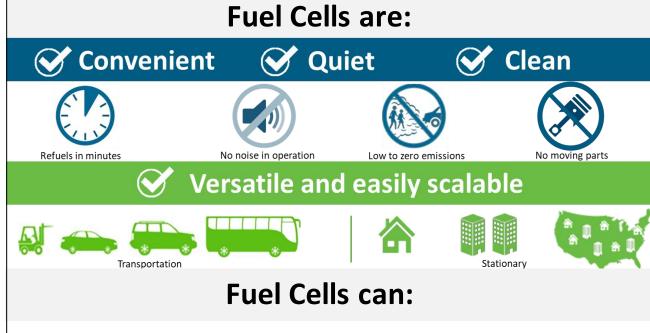
An energy carrier that can be produced from diverse domestic resources and address multiple applications with zero emissions



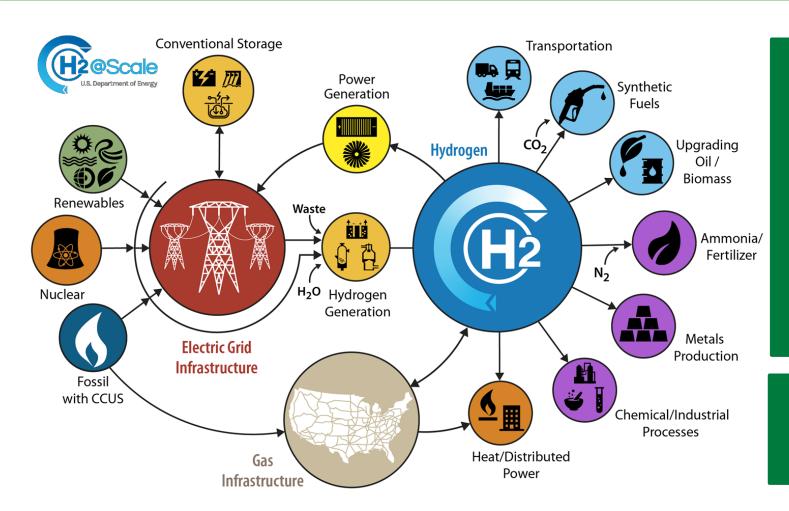
~ \$150 Billion Global Industry

Has high energy content by mass, nearly 3x more than conventional fuels




Has low energy by volume

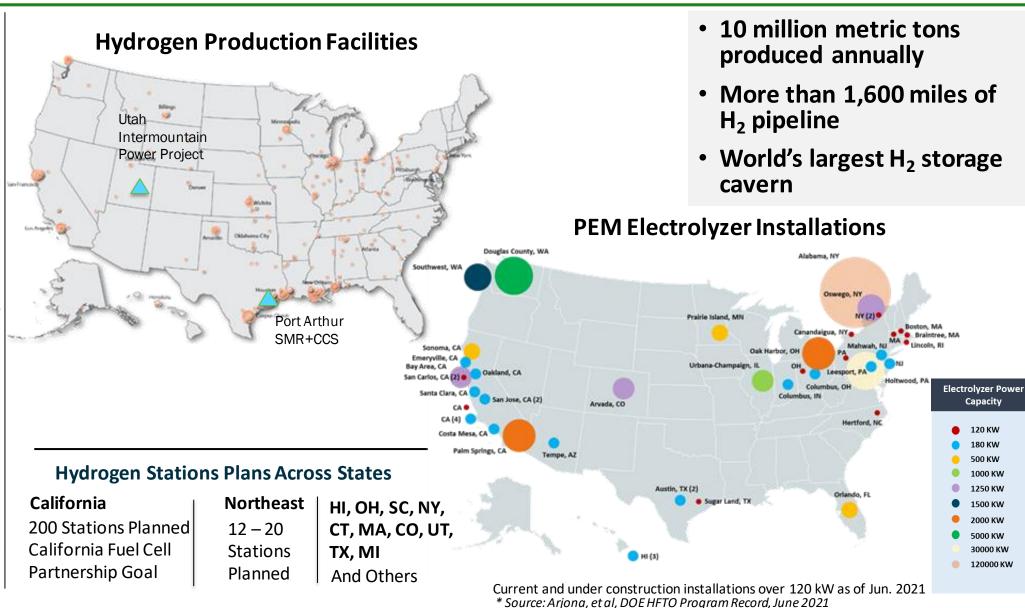
Fuel Cells and Electrolyzers Intro


Fuel cells can operate on hydrogen or other fuels and do not involve combustion, so have high electrical efficiencies. Electrolyzers are like fuel cells 'in reverse' and split water to H₂ and O₂

Have higher efficiencies compared to conventional technologies Reduce life cycle emissions > 90%

H2@Scale: Deep Decarbonization, Economic Growth, Jobs

H₂ is part of a broad portfolio that contributes to Administration goals including:

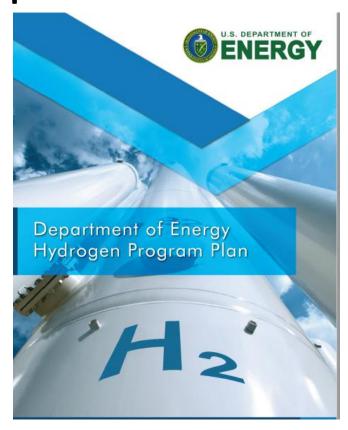

- 100% carbon-pollution-free electric sector by 2035
- Net zero emissions economy by 2050

Environmental Justice (EJ) 40 Initiative: 40% of benefits in disadvantaged communities

10 MMT of H_2 /yr produced today with scenarios for 2-5X growth. +10 MMT H_2 would ~ double today's solar or wind deployment Industry study shows potential for \$140B in revenue, 700K jobs by 2030. 16% GHG reduction. Analysis underway (export, etc.)

Snapshot of Hydrogen and Fuel Cell Applications in the U.S.

Examples of Applications Deployed >500MW **Backup Power** >40,000 **Forklifts** >172 MW PEM* Electrolyzers >60 **Fuel Cell Buses** >45 H₂ Retail Stations ~10,000 **Fuel Cell Cars** * Polymer electrolyte

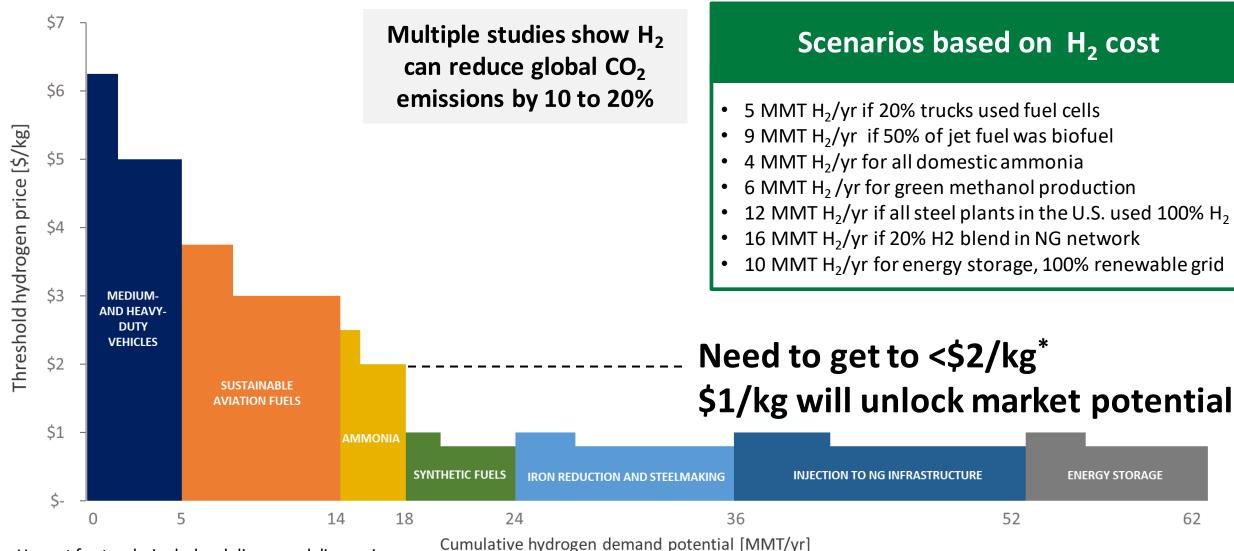


membrane

The U.S. DOE Hydrogen Program

Hydrogen is one part of a broad portfolio of activities

www.hydrogen.energy.gov



Examples of Key DOE Hydrogen Program Targets

DOE targets are application-specific and developed with stakeholder input to enable competitiveness with incumbent and emerging technologies. These targets guide the R&D community and inform the Program's portfolio of activities. Examples include:

- \$2/kg for hydrogen production and \$2/kg for delivery and dispensing for transportation applications
- \$1/kg hydrogen for industrial and stationary power generation applications
- Fuel cell system cost of \$80/kW with 25,000-hour durability for long-haul heavy-duty trucks
- On-board vehicular hydrogen storage at \$8/kWh, 2.2 kWh/kg, and 1.7kWh/l
- Electrolyzer capital cost of \$300/kW, 80,000 hour durability, and 65% system efficiency
- Fuel cell system cost of \$900/kW and 40,000 hour durability for fuel-flexible stationary high-temperature fuel cells

Analysis Determines Market Potential Scenarios

H₂ cost for trucks includes delivery and dispensing

Results based on preliminary analysis

^{*} H₂ could compete at \$1 to \$2/kg higher cost with a carbon price

President Biden and Energy Secretary Granholm at Climate Summit

Launch of Hydrogen Energy Earthshot
First of the Energy Earthshots
June 7, 2021
at DOE Hydrogen Program Annual Merit Review

Secretary Jennifer Granholm
June 7, 2021

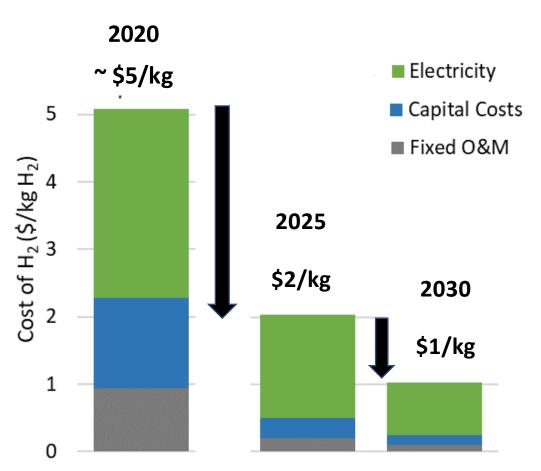
April 23, 2021

Hydrogen Energy Earthshot

"Hydrogen Shot"

"111" \$1 for 1 kg clean hydrogen in 1 decade

Launched June 7, 2021



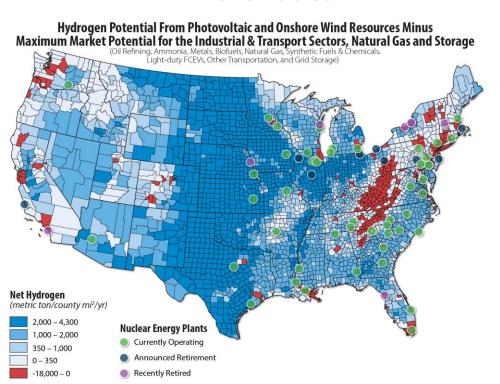
Pathways to Reduce Cost

Example: Cost of Clean H₂ from Electrolysis

One of several pathways

- Reduce electricity cost from >\$50/MWh to
 - \$30/MWh (2025)
 - \$20/MWh (2030)
- Reduce capital cost >80%
- Reduce operating & maintenance cost >90%

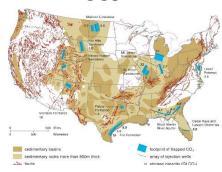
All pathways for clean hydrogen included: Thermal conversion with CCS, advanced water splitting, biological approaches, etc.


2020 Baseline: PEM low volume capital cost ~\$1,500/kW, electricity at \$50/MWh. Need less than \$300/kW by 2025, less than \$150/kW by 2030 (at scale)

Stakeholder Engagement, Production and End-Use Collocation and Environmental Justice to Drive Activities

Renewables

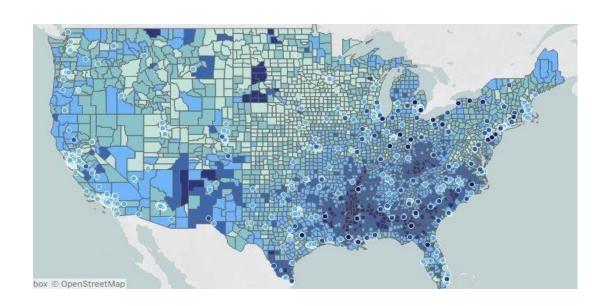
Red: Regions where projected industrial & transportation demand exceeds local supply.


- Hydrogen Shot Summit and Stakeholder Engagement Planned Aug 31-Sept 1
- Request for Information on Key Topics Issued

Natural Gas (SMR)

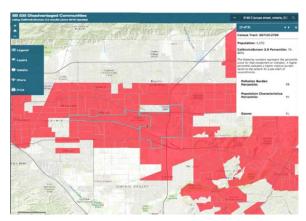
CCS

DOE Request of Information covered key themes:


- Production, Resources, Infrastructure
- End Users, Cost, Value Proposition
- Co-location potential
- Emissions Reduction Potential
- DEI, Jobs, EJ
- Science & Innovation Needs and Challenges

DEI: Diversity, Equity and Inclusion EJ: Environmental Justice

Focus on Benefits in Underserved & Disadvantaged Communities


New index ranks America's 100 most disadvantaged communities

| University of Michigan News (umich.edu)

Funding Opportunities will encourage broader engagement, demonstrating benefits, including DEI (minorities, gender equity, etc.)

Example: DOE project with CTE for UPS Fuel Cell Delivery Vans

Trucks will be demonstrated in Ontario, CA- disadvantaged community

<u>Goal</u>: Demonstrate 15 fuel cell trucks (up to 125-mile range)

Project impact per year: Savings of

- 285 metric tons of CO_{2e}
- 280,000 grams of criteria pollutants
- 56,000 gallons of diesel

*in honor of Bob Rose, founder of US Fuel Cell Council

Global Center for Hydrogen Safety

Global Center for Hydrogen Safety established to share best practices, training resources and information

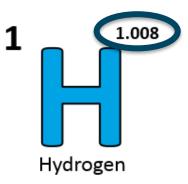
60,000 members

High Priority: Lessons learned and best practices on safety

Encourage membership (industry, govt, universities, labs) to join CHS

Upcoming Opportunities for Engagement

Hydrogen Shot Summit Aug 31 – Sept. 1


Registration is now open!
https://www.energy.gov/eere/fuel
cells/articles/registration-openhydrogen-shot-summit

DOE Annual Merit Review and Peer Evaluation Meeting June 6 -9, 2022

Hydrogen and Fuel Cells Day October 8

- Held on hydrogen's very own atomic weight-day
- DOE EERE comms campaign all week

Join Monthly
H2IQ Hour Webinars

Download H2IQ For Free

Visit H2tools.Org For Hydrogen Safety And Lessons Learned

https://h2tools.org/

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov

Thank you

Sunita Satyapal

Director, Hydrogen and Fuel Cell Technologies Office
Coordinator, DOE Hydrogen Program

<u>Sunita.Satyapal@ee.doe.gov</u>

U.S. Department of Energy

www.energy.gov/fuelcells www.hydrogen.energy.gov

Additional Information

www.energy.gov/fuelcells www.hydrogen.energy.gov

HyBlend and H-Mat

Purpose: To assess and enhance compatibility of key materials with hydrogen, and to accelerate the use of hydrogen in multiple applications (including in natural gas blending)

Labs

Pipeline materials compatibility R&D, technoeconomic analysis, and life cycle analysis to assess the feasibility of hydrogen blending in the US natural gas pipeline infrastructure.

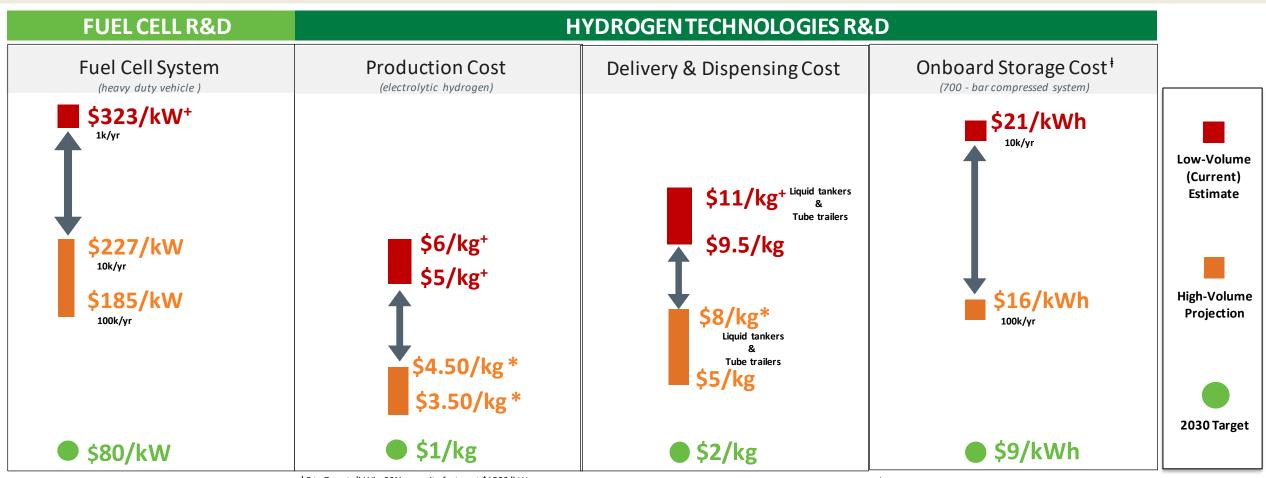
The U.S. has ~3 million miles of natural gas pipeline, and is projected to consume 36 quads of natural gas/year by 2050

Blending 20% H₂ by 2050 would enable doubling of current renewable consumption

Partners Across Industry and 5 National Labs National lab consortium to assess and improve performance and reliability of materials in hydrogen, reduce costs, and inform codes & standards.

Materials R&D aims to lower cost of components in H₂ infrastructure and enhance life by 50%

Online data portal shares information with R&D community worldwide, and international MOUs enable coordination



Comprehensive Strategy Across the Hydrogen Value Chain

	NEAR-TERM		LONGER-TERM	
Production	Gasification of coal, biomass, and waste with carbon capture, utilization, and storage Advanced fossil and biomass reforming/conversion Advanced biological/microbial conversion Electrolysis (low-temperature, high-temperature) Advanced thermo/photoelectrons			robial conversion photoelectro-chemical H ₂ O splitting
Delivery	Distribution from on-site production Tube trailers (gaseous H_2) Cryogenic trucks (liquid H_2) Widespread pipeline transmission and distribution Chemical H_2 carriers			
Storage	Pressurized tanks (gaseous H ₂) Cryogenic vessels (liquid H ₂)	Cry	orage (e.g., caverns, depleted yo-compressed nical H ₂ carriers	oil/gas reservoirs) Materials-based H ₂ storage
Conversion	Turbine combustion Fuel cells	Advanced combustion Next generation fuel cells		Fuel cell/combustion hybrids Reversible fuel cells
Applications	Fuel refining Space applications Portable power	Blending in natural gas pipelines Distributed stationary power Transportation Distributed CHP Industrial and chemical processes Defense, security, and logistics applications		Utility systems Integrated energy systems

Technology Targets Guide Research and Development Activities

Key Goals: Reduce the cost of fuel cells and hydrogen production, delivery, storage, and meet performance and durability requirements – guided by applications specific targets

[†]Based on 275 kW Heavy Duty Fuel Cell System Cost Analysis (2021), adjusted to reflect cost of system that meets 25,000 hours durability

Note: Graph is not at scale. For illustrative purposes only

[‡] 5 to 7 cents/kWh, 90% capacity factor at \$1500/kW *5 to 7 cents/kWh, 90% capacity factor at \$460/kW

¹For range: Delivery and dispensing at today's (2020) stations with capacity ⁻⁴50 kg/day ⁻¹For range: Delivery and dispensing at today's (2020) stations with

^{*}For range: Delivery and dispensing at today's (2020) stations with capacity 450-1,000 kg/day at high volume manufacturing

[‡] Storage costs based on 2019 storage cost record

All costs based on \$2016

International Early Career Network through IPHE

- Established by IPHE's Education & Outreach (E&O) Working Group to promote international H₂ and fuel cell awareness and launch a platform for the next generation of H₂ and fuel cell leaders
- Open to students, post-docs and early career professionals

Stephanie Azubike Chair

Learn more: iphe.net/early-career-chapter

Membership form: https://forms.gle/gUnWyV7gU4QqoHLm7

FOLLOW US

Priya Buddhavarapu Co-Chair