Electric School Bus (ESB) Outreach Session: Electric Vehicle Supply Equipment (EVSE)

- 1. Introductions
- 2. Presentation of materials (part 1)
- 3. Break
- 4. Presentation of materials (part 2)
- 5. Participant questions

Goals of today's session

- Utility coordination
- Overview of electric vehicle supply equipment (EVSE) and installation
- Costs and financial incentives
- Charging best practices
- Alternative charging technology options
- Successes case studies

Working with utilities

• Engage your utility early and often.

- Request a site and fleet assessment to determine charging options and power needs.
- Determine what site or equipment upgrades (if any) are needed.
- Ask about lead times for equipment purchases and installation.
- Ask how vehicle charging may impact your monthly electricity bills.
- Identify funding opportunities, such as utility "make-ready" programs.
 - Make-ready programs are programs offered by utility companies that financially offset a portion of EVSE installation costs.
- Discuss how your ESB plans could be beneficial to the utility.

- ESBs typically have a battery size of 120-250 kWh
- There are 3 kinds of chargers available: Level 1, Level 2, and Level 3, also known as a direct current fast charger (DCFC)

	Level 1	Level 2	Level 3 (DCFC)
Voltage ¹	120 V AC	208 - 240 V AC	480 V – 1,000 V DC
Typical Power Output ²	1 kW	7 kW - 19 kW	50 - 350 kW

- 1. <u>https://www.transportation.gov/rural/ev/toolkit/ev-basics/charging-speeds</u>
- 2. <u>https://www.transportation.gov/rural/ev/toolkit/ev-basics/charging-speeds</u>

Level 1 and 2 charger head

Level 3 (DCFC) charger head CCS

An ESB is capable of receiving electricity from any of the three charger types.

Image: https://www.newark.com/itt-cannon/j2ce3221-25l0a/ev-cable-sae-j1772-plug-free-end/dp/34AK0859?gad_source=1&gclid=EAlalQobChMI0L-j1vmlhAMVuR6tBh11Mw-_EAQYAiABEgI76fD_BwE&mckv=_dc|pcrid||plid||kword||match||slid||product|34AK0859|pgrid||ptaid||&CMP=KNC-GUSA-GEN-Shopping-PMAX-Med-MARGIN-S43

Image: https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Electric_vehicle_charging_station_at_Pippinger_Flur_06.jpg/640px-Electric_vehicle_charging_station_at_Pippinger_Flur_06.jpg

- Networked charging
 - Chargers are connected to the internet and a charging network, also known as "smart" charging.
 - Allows the charger to track energy data (start/stop time, SOC, power draw).
 - Networked charging requires cellular service or wireless/wired connection to the internet.¹
 - Managed charging considers vehicle charging needs against grid impacts and pricing

- Benefits of networked charging include:¹
 - Radio-frequency identification (RFID), smart phone or credit card payment, e.g., use at other school's EVSE during athletic event.
 - Track and analyze usage.
 - Expedite customer service.
 - Chargers with Open Charge Point Protocol (OCPP) allow users to switch charging network providers without changing equipment.
- Non-networked charging alternatively allows for charging capabilities without these added services. This may be suitable for smaller fleets without demand charge concerns. Non-networked EVSE may lower up-front equipment costs.

- Example manufacturers
 - Chargepoint Flo
 - Clipper Creek
- InCharge
 - Heliox Energy
- Evgo

• Proterra

National EV

• EVSE Maintenance

- Conduct regular preventative maintenance checks
 - Perform visual inspection of chargers and cables
 - Listen for unusual sounds/odors
 - Clean surfaces
- Follow manufacturer's component replacement schedule
- More involved charger maintenance is usually provided by the manufacturer / charging service provider.

Untrained staff should not perform maintenance on high voltage systems

- EVSE Warranty Options
 - EVSE manufacturer warranties typically 2-3 years
 - Plan ahead to reduce risk of charger/ESB downtime
 - Extended warranty/service options
 - Manufacturer extended warranty
 - Charge management service provider warranty
 - Maintenance/Reliability-as-a-service contracts
 - Full-service fleet operation contracts

Charger installation

- Key stakeholders
 - Electric utility
 - Superintendent
 - Transportation Director
 - Facilities Director
 - Landowner (if applicable)
 - First responders

- Depending on project complexity and power needs, equipping a facility to charge ESBs can take 1 week to 24 months.¹
 - Both ends of this estimate are **extremes.**

Charger installation

- Additional considerations for installation include:
 - Type of EVSE bollard/pedestal vs. wall mount
 - Additional space in layout for EVSE
 - Access to charging ports on ESBs
 - Potential for transformers, new panels

- 1. Images: <u>https://www.chargepoint.com/businesses/ac-stations/cp6000</u>
- 2. <u>https://www.chargepoint.com/drivers/home</u>

EVSE costs

Example charger costs¹

	Dual Port?	Networked?	Cost per Port
Level 1	No	No	\$813
	Yes	No	\$596
	No	No	\$1,182
Level 2	Yes	No	\$938
	No	Yes	\$3,127
	Yes	Yes	\$2,793
Level 3 (DCFC)	No	Yes (50 kW)	\$28,401
	No	Yes (150 kW)	\$75,000
	No	Yes (350 kW)	\$140,000

EVSE Infrastructure Costs

Example installation costs per port for L2 chargers¹

# installed in site	Materials	Labor	Permit	Total
1 Ports	\$1,768	\$2,329	\$103	\$3,370
2 Ports	\$1,563	\$2,595	\$84	\$3,624
3-5 Ports	\$1,685	\$2,181	\$75	\$3,354
6+ Ports	\$547	\$823	\$24	\$2,305

EVSE infrastructure costs

COST ELEMENT	LOWEST COST	HIGHEST COST
Level 2 commercial charger	\$2,500 (7.7 kW)	\$4,900 (16.8 kW); outlier: \$7,210 (14.4 kW)
DCFC (50 kW)	\$20,000	\$35,800
DCFC (150 kW)	\$75,600	\$100,000
DCFC (350 kW)	\$128,000	\$150,000
Transformer (150–300 kVA)	\$35,000	\$53,000
Transformer (500–750 kVA)	\$44,000	\$69,600
Transformer (1,000+ kVA)	\$66,000	\$173,000
Data contracts	\$84/year/charger	\$240/year/charger
Network contracts	\$200/year/charger	\$250/year/charger
Cable cost	\$1,500	\$3,500

Note: DCFC denotes direct-current fast chargers.

RMI – Cost estimates for chargers and associated infrastructure

- Environmental Protection Agency (EPA) Clean School Bus Program¹
 - Includes rebate and grant programs
 - High-need and rural areas prioritized
 - Infrastructure funding for customer-side (behind the meter) expenses
 - Level 2 EVSE must be Energy Star certified and BABAA-compliant
 - Future proofing expenses allowable/encouraged

- Environmental Protection Agency (EPA) Clean School Bus Program
 - 2023 rebate program (current round closes February 14, 2023)¹
 - School districts and contractors are eligible
 - Applications for up to 25 buses
 - Funding per bus varies by bus size and prioritization status
 - Funds are awarded as a lump sum (buses + infrastructure)
 - Funding also available for workforce development

- Environmental Protection Agency (EPA) Clean School Bus Program
 - 2023 grant program (initial round closed Aug 2023)¹
 - School district sub-program 15-50 buses/application
 - Third party sub-program 25 100 buses/application; must serve 4+ districts
 - Funding via lump sum.
 - PA school districts have been awarded \$47,398,350 in grants for 120 ESBs to date.
 - See Section 1 of CSB Rebate Program Guide for other key differences between the grant and rebate programs.²

1. <u>https://electrificationcoalition.org/resource/2023-csb-grant-program/</u>

2. <u>https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1018JIT.pdf</u>

Financial incentives – PA rebate winner

- Northern Potter SD in Pennsylvania was able to fund the purchase of their 2 ESBs and chargers using EPA CSB rebate award money.¹
 - \$375,000 was awarded for each bus. This was the maximum award available.
 - \$34,445 was used for two Level 3 (DCFC) chargers out of the total infrastructure award (\$40,000).

- Make-Ready Funding
 - Duquesne Light Company offers a Fleet Charging Program covering costs associated with design, building, and maintenance of EVSE infrastructure from the power grid to the charging station.¹
 - PECO Energy Company offers a Public Benefit Charging Program which includes up to 50% of the project's installation, equipment, and make-ready work costs, or \$60,000 max funding per project. The program also offers funding on a per-port basis.²
 - Other eligible costs include customer-side electric service upgrades, service panels, electrical cabinets, junction boxes, and conduit.

Financial incentives – utility providers in PA

- EPA Diesel Emissions Reduction Act (DERA) Funding¹
 - Program targets diesel engines operating in areas not in attainment of national ambient air quality standards.²
 - The DERA program will provide funding for one charger per ESB.³
 - Eligible costs charger purchase and installation, pedestal, mount, and charging cable
 - As of 2017, matching funding for eligible DERA projects can be provided through the Pennsylvania Environmental Mitigation Trust Agreement (aka the VW settlement).⁴

- 3. <u>https://www.epa.gov/grants/2022-2023-diesel-emissions-reduction-act-dera-national-grants-closed-announcement-fy-23</u>
- 4. https://www.dep.pa.gov/Business/Air/Volkswagen/pages/environmental-mitigation-trust-agreement.aspx

^{1. &}lt;u>https://www.epa.gov/dera</u>

^{2.} https://epa.maps.arcgis.com/apps/MapSeries/index.html?appid=8fbf9bde204944eeb422eb3ae9fde765

- EPA Clean Heavy-Duty Vehicle Program¹
 - \$1 billion available from 2024-2031. \$400 million for nonattainment areas.
 - Will replace current heavy-duty trucks and buses, including school buses, with clean and zero-emission options.
 - Includes funding for chargers and associated infrastructure.
 - Notice of funding opportunity expected this spring.

- State of Pennsylvania (DEP) funding:
 - PA Alternative Fuels Incentive Grants (AFIG) Program¹
 - \$5 million/year funding for alternative fuels limited to \$300,000 per applicant; prioritizes zero-emission transportation projects.
 - Covers vehicle replacement, infrastructure, training, deployment, and vehicle retrofits.
 - To reopen spring of 2024.
 - Driving PA Forward Grant and Rebate Program²
 - Includes the PA State Clean Diesel Grant Program which provides a total of \$9 million in funding for projects that reduce diesel emissions, and the On-Road Rebate Program which provides a total of \$52 million in funding that can be applied towards ESBs.

1. https://www.dep.pa.gov/Citizens/GrantsLoansRebates/Alternative-Fuels-Incentive-Grant/Pages/default.aspx

2. https://storymaps.arcgis.com/stories/6f5db16b8399488a8ef2567e1affa1e2

- IRS tax credit program
 - Alternative Fuel Vehicle Refueling Property Credit (30C): Provides up to \$100,000 "per charging unit" to schools in qualifying low-income and non-urban areas.¹

1. <u>https://electricschoolbusinitiative.org/statement-irs-releases-guidance-tax-credit-electric-vehicle-and-electric-school-bus-charging</u> Image: <u>https://upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Electric_vehicle_charging_station_at_Pippinger_Flur_01.jpg/640px-Electric_vehicle_charging_station_at_Pippinger_Flur_01.jpg</u>

Charging best practices

- Minimize charging ESBs during peak demand hours (8am-9pm) to avoid higher electricity pricing and demand charges.
 - Demand charges incurred due to charging during peak hours can account for up to 90% of a facility's energy bill when using Level 3, or up to 75% for Level 2 charging.¹
- Charging ESBs up to 80% SOC and minimizing the time below 20% promotes long-term battery health and life.²

. <u>https://electricschoolbusinitiative.org/how-electric-school-bus-owners-can-maximize-battery-performance-limiting-aging</u>

^{1. &}lt;u>https://doi.org/10.1016/j.epsr.2020.106694</u>

Smart charging

- Charge management software can schedule when charging begins and ends for buses plugged into chargers.
- Allows for remote control of charging without staff on the premises.
- Districts can take advantage of cheaper energy rates and avoid peak demand charges.

• Non-permanent charging¹

- Movable charging units are available.
- These units can be brought to a site and then moved later.
- These can serve as a temporary strategy for EVSE if necessary due to construction delays or other factors. Permanent installation will lower TCO.

1. <u>https://bppulsefleet.com/fleet/products/non-permanent-and-mobile-charging/</u> Image: <u>https://bppulsefleet.com/fleet/products/non-permanent-and-mobile-charging/</u>

1. <u>https://www.pairedpower.com/</u> Image: <u>https://www.pairedpower.com/</u>

1. <u>https://beamforall.com/product/ev-arc-2020/</u> Image: <u>https://beamforall.com/product/ev-arc-2020/</u>

- Future Considerations: V2X
 - V2X refers to the capacity of vehicles to serve as a power source.
 - Some options include selling energy back to the grid at peak demand hours and connecting to buildings to provide electricity during power outages.
 - The EVSE and the bus must both be V2X capable (bi-directional).

- Integrating distributed energy resources (DER)
 - Electricity from solar canopies or other on-site power generating units can charge ESB batteries.
 - Reduces utility bills.
 - Reduces reliance on the grid during power outages.
 - Through V2X and V2G technology, power generated on-site and stored in ESBs can be sold back to the grid during peak demand periods.

Case Study #1

- Fairfax County Public Schools¹
 - Dominion Energy helped school districts procure 50 ESBs and EVSE infrastructure.
 - Provided technical support, covered incremental bus costs, and funded installation.
 - Dominion also maintains the charging infrastructure.
 - In return, the utility owns the bus batteries and the propulsion system. Hopes to take advantage of V2G capabilities in the future.

Case Study #2

- Cajon Valley Union School District¹
 - The district is piloting vehicle to grid technology.
 - Current ESBs can send 24-45 kW to the grid.
 - Use managed charging to charge during off-peak hours.
 - Eligible for their utility's Emergency Load Reduction Program (ELRP) which pays \$2/kWh for energy sent to the grid or reduced energy use during emergency situations between May and October.

References

- Bppulse: Inrush More information on a provider of mobile charging units.
- Department of Energy Alternative Fuels Data Center: <u>ESB Education</u> A video series focused on everything ESBs including cost factors and vehicle requirements.
- Duquesne Light Company: <u>Fleet Charging Program</u> Make-ready funding from Duquesne Light Company.
- Environmental Protection Agency: <u>DERA Program</u> An overview of EPA's DERA program.
- Environmental Protection Agency: <u>Clean Heavy Duty Vehicle Program</u> An overview of EPA's clean heavy duty vehicle program.
- Environmental Protection Agency: <u>Clean School Bus Program</u> An overview of EPA's clean school bus program.
- PECO Energy Company: <u>Public Charging Program</u> Make-ready funding from PECO energy company.

References

- Pennsylvania Department of Environmental Protection: <u>Alternative Fuels Incentives Grants</u> Information on one of Pennsylvania's clean vehicle grants.
- Pennsylvania Department of Environmental Protection: <u>Driving PA Forward</u> Information on one of Pennsylvania's clean vehicle grants.
- World Resources Institute Electric School Bus Initiative: <u>An Electrifying Partnership in Fairfax County</u>, <u>Virginia</u> – Fairfax County's experience utilizing utility provider funds.
- World Resources Institute Electric School Bus Initiative: <u>IRS Tax Credits</u> A summary of the available IRS charging credits.
- World Resources Institute Electric School Bus Initiative: <u>How Electric School Bus Owners Can Maximize</u> <u>Battery Performance by Limiting Aging</u> – A resource for maintain good battery health.
- World Resources Institute Electric School Bus Initiative: <u>Powering the Grid with Cajon Valley Union</u> <u>School District</u> – Cajon Valley's pilot program for vehicle to grid.

Thank you for attending

Please fill out our bus operator survey <u>https://erg.qualtrics.com/jfe/form/SV_1TSWbJ9oxxD0EBM</u>

Jonathan Ells: Jonathan.Ells@erg.com

