Project SP4A

Site Name #5

AMD TREAT AMD TREAT MAIN COST FORM

Water Quality

Costs	ΑN	ID T	REAT MAIN
Passive Treatment	A	<u>s</u>	
Vertical Flow Pond			\$0
Anoxic Limestone Drain			\$0
Anaerobic Wetlands			\$0
Aerobic Wetlands			\$0
Manganese Removal Bed			\$0
Oxic Limestone Channel			\$0
Limestone Bed			\$0
BIO Reactor			\$0
Passive Subtotal:			\$0
Active Treatment			
Caustic Soda	1	0	\$4,887
Hydrated Lime			\$0
Pebble Quick Lime			\$0
Ammonia			\$0
Oxidants			\$0
Soda Ash			\$0
Active Subtotal:		\$0	
Ancillary Cost			
Ponds	1	0	\$5,000
Roads			\$0
Land Access			\$0
Ditching			\$0
Engineering Cost	1	0	\$1,977
Ancillary Subtotal:		\$6,977	
Other Cost (Capital Cost)			\$0
Total Capital Cost:			\$11,864
Annual Costs			
Sampling	2	0	\$1,226
Labor	1	0	\$10,920
Maintenance	1	0	\$147
Pumping			\$0
Chemical Cost	1	0	\$221
Oxidant Chem Cost			\$0
Sludge Removal	1	0	\$16
Other Cost (Annual Cost)			\$0
Land Access (Annual Cost)			\$0
Total Annual Cost:			\$12,530
Other Cost			

Calculated Acidity Alkalinity Calculate Net Acidity (Acid-	0.00	mg/L mg/L
Net Acidity (Hot Acidity)	40.00	mg/L
Design Flow	10.00	gpm
Typical Flow	2.00	gpm
Total Iron	5.00	mg/L
Aluminum	5.00	mg/L
Manganese	5.00	mg/L
рН	5.00	su
Ferric Iron	0.00	mg/L
Ferrous Iron	0.00	mg/L
Sulfate	250.00	mg/L
Filtered Fe	0.00	mg/L
Filtered Al	0.00	mg/L
Filtered Mn	0.00	mg/L
Specific Conductivity	0.00	uS/cm
Total Dissolved Solids	0.00	mg/L
Dissolved Oxygen	0.00	mg/L

Total Annual Cost: per 1000 Gal of H2O Treated \$11.911 Company Name <u>L & B Coal CO</u>
Project <u>SP4A</u>

Site Name #5

Manganese

5.00 mg/L

AMD TREAT CAUSTIC SODA

_							
2	Opening Screen Water Parameters	Caustic Soda Name propose	ed caustic system	1			
	Influent Water	1. Gallons of Caustic per Year	176.84	gal/yr	☐ 17. Automatic Syste	em?	
	Parameters	2. Gallons of Caustic per Month	14.73	gal/mo	18. PID pH Proportional Control	a Ja	\$
	that Affect Caustic Soda	3. Gallons of Caustic per Day	0.48	gal/day	19. pH Probe		\$
	Calculated Acidity	☐ 4. Titration?			20. Chemical Metering Pump		\$
	0.00 mg/L Alkalinity	5. Caustic Titration Volume		gal caustic/gal water treated	☑ 21. Water Wheel D	Dispenser	
	0,00 mg/L	6. Purity of Caustic Solution	99.00	purity of 20%	22. Dispenser Cost	4000.00	\$
_		7. Mixing Efficiency of	80.00	caustic solution %	Caustic Sub-Tota	als	
C	Calculate Net	Caustic Solution 8. Tank Cost	500	\$	23. Number of Tanks Required	1	nbr
	Acidity (Acid-Alkalinity)	9. Tank Volume	500	gal	24. Tank Cost	500	\$
C) Enter Net Acidity manually	10. Delivery Frequency	1	times/yr	25. Automatic System or Wheel	4,000	\$
	Net Acidity	11. Valve Unit Cost	50.00	\$	Dispenser Cost └─ 26. Cost of Valves	100	\$
	(Hot Acidity) 40.00 mg/L	12. Number of Valves	2	nbr	27. Feeder Line Cost	7	\$
L	40.00 mg/L	13. Feeder Line Length	20	ft	28. Labor Cost	280	\$
	Design Flow	14. Feeder Line Unit Cost	0.35	\$/ft			_
	Typical Flow	15. Installation of System Unit Cost	35.00	\$/hr	29. Total Capital Cost	4,887	\$
	2.00 gpm	16. Installation Hours	8	hours		· · · · · · · · · · · · · · · · · · ·	
	Total Iron 5.00 mg/L				<u></u>	- 4	7
	Aluminum				Record Number 1 o	OT 1	
	5.00 mg/L						

Project SP4A

Site Name #5

1 of 1

AMD TREAT PONDS

	1 01100	RMOTR	EAT
Pond Name			
	Pond Design Based On:	23. Revegetation Cost	1500.00 \$/acre
	Retention Time	24. Number of Ponds for this Design	2 number
	1. Desired Retention Time 16.0 hours	25. Cost of Baffles	0 \$
☑ Opening Screen	2. Include Sludge Removal? 3. Sludge Removal Frequency times/year	Calculated Pond Dimensio	
Water Parameters	4. Titration?	26. Length at Top of Freeboard	44 ft
Influent Mater	5. Sludge Rate gal sludge/ gal H2O	27. Width at Top of Freeboard	26 ft
Influent Water Parameters	6. Percent Solids %	28. Freeboard Volume	115 yd3
that Affect	7.Sludge Density Ibs./gal	29. Water Volume	47 yd3
Ponds Calculated Acidity	C Pond Size	30. Estimated Annual Sludge 31. Volume of Sludge	0 yd3/yr 0 yd3/
0.00 mg/L	8. Pond Length at Top of Freeboard ft	per Removal 32. Excavation Volume	0.02 acre ft
Alkalinity 0.00 mg/L	9. Pond Width at Top of Freeboard ft	33. Excavation Volume	47 yd3
	Run Rise	34. Clear and Grub Area	0.04 acres
C Calculate Net	10. Slope Ratio of Pond Sides 2.0 : 1	35. Liner Area	0 yd2
Acidity	11. Freeboard Depth 2.0 ft	36. Calculated Retention Time	16 hours
(Acid-Alkalinity) Enter Net Acidity	12. Water Depth 4.3 ft	Ponds Sub-To	als per Pond
manually		37. Excavation Cost	237 \$
Net Acidity (Hot Acidity)	14 Total Length of Effluent	38. Pipe Cost	0 \$
40.00 mg/L	/ Influent Pipe	39. Liner Cost	0 \$
	15. Unit Cost of Pipe 0.00 \$/ft Liner Cost	40. Clearing and Grubbing Cost	0 \$
Design Flow		41. Revegetation Cost	40 \$
10.00 gpm Typical Flow	C Clay Liner 16. Clay Liner Unit Cost \$/yd3	42. Baffle Cost	0 \$
2.00 gpm Total Iron	17. Thickness of Clay Liner ft	✓ 43. Estimated Cost	278 \$
5.00 mg/L	C Synthetic Liner	43. Estillated Cost	
Aluminum	18. Synthetic Liner Unit Cost \$/yd2	☑ 44. Accept Minimum	
5.00 mg/L Manganese	☐ 19. Clearing and Grubbing?	The Recommended Minimum Const Cost of Building a Pond is \$ 5,000	
5.00 mg/L	O 20. Land Multiplier ratio	5. Recommended Minimum Cost	5,000 \$
Record Number	21. Clear/Grub Acres acres 22. Clear and Grub Unit Cost	46. Total Cost	5,000 \$

\$/acre

Project SP4A

Site Name #5

AMD TREAT ENGINEERING COST

* Total Capital Cost minus Engineering and Land Access Capital Cost Printed on 03/11/2008

Project SP4A

Site Name #5

AMD TREAT SAMPLING

Sampling Name	monthly - final
---------------	-----------------

€ Estimate Sampling Cost				
1. Unit Labor Cost	35.00 \$/hr			
2. Collection Time per Sample	0.25 hours/sample			
3. Travel Time	1.00 hr			
4. Sample Frequency	1.00 samples/mo			
5. Lab Cost Per Sample	25.00 \$/sample			
6. Number of Sample Points	1 points			
C Enter Established Annual Sampling Cost				
7. Actual Annual Sampling Cost	\$			

Sampling Sub-Totals

- 8. Yearly Sample Analysis Cost 300 \$
 - 9. Yearly Travel Cost 420 \$
 - 10. Yearly Collection Cost 105 \$

11. Sampling Cost 825 \$

Record Number 1 of 2

Project SP4A

Site Name #5

AMD TREAT SAMPLING

Sampling Name	quarterly - raw, upstr, downstr

Estimate Sampling Cost			
1. Unit Labor Cost	35.00 \$/hr		
Collection Time per Sample	0.25 hours/sample		
3. Travel Time	0.00 hr		
4. Sample Frequency	0.33 samples/mo		
5. Lab Cost Per Sample	25.00 \$/sample		
6. Number of Sample Points	3 points		
C Enter Established Annual Sampling Cost			
7. Actual Annual Sampling Cost	\$		

Sampling Sub-Totals

- 8. Yearly Sample Analysis Cost 297 \$
 - 9. Yearly Travel Cost 0 \$
 - 10. Yearly Collection Cost 104 \$

11. Sampling Cost 401 \$

Record Number 2 of 2

Company Name L & B Coal CO

Project SP4A

Site Name #5

AMD TREAT LABOR

Labor Name weekly

e	Estimate Labor Cost
	1. Site Visits per Week 3.00
	2. Site Labor Time per Visit 1.00 hours
	3. Travel Time per Visit 1.00 hours
	4. Unit Labor Cost 35.00 \$/hour
r	Enter Established Annual Labor Cost
	5. Actual Annual Labor Cost \$

6. Total Cost 10,920 \$

Record Number 1 of 1

Project SP4A

Site Name #5

AMD TREAT

MAINTANENCE

Estimate Maintenance Cost

 Percent of Active Cost 	3.00 9
2. Percent of Passive Cost	1.00 %
3. Percent of Ancillary Cost *	0.00 %
4. Percent of Other Capital Cost	0.00 9

C Enter Established Annual Maintenance Cost

5. Annual Maintenance Cost

Maintenance Sub-Totals

6 Total Maintenance Active Cost
7. Total Maintenance Passive Cost
8. Total Maintenance Ancillary Cost
9. Total Maintenance Other Capital Cost
0 \$

10. Total Maintenance Cost	147 \$
----------------------------	--------

^{*} Ancillary Cost does int include Cost for Land Access and Engineering Cost

Project <u>SP4A</u>

Site Name #5

AMD TREAT CHEMICAL COST

Chemical Cost Name: E. Anhydrous Ammonia? A. Hydrated Lime? **Opening Screen** 21. Titration? 1 Titration? **Water Parameters** lbs of ammonia lbs of hydrated 22. AmmoniaTitration Amount / gal H2O 2. Hydrated Lime Titration Amount lime / gal of H2O Influent Water % 23. Ammonia Purity 3. Hydrated Lime Purity **Parameters** % 24. Mixing Efficiency of Ammonia that Affect 4. Mixing Efficiency of Hydrated Lime **Chemical Cost** () Non-Bulk Delivery 5. Hydrated Lime Unit Cost \$/lb Calculated Acidity \$/lb 25. Ammonia Non-Bulk Unit Cost 0.00 | mg/L B. Pebble Quick Lime ? Bulk Delivery Alkalinity \$/lb 6. Titration? 26. Ammonia Bulk Unit Cost 0.00 mg/L lbs of Pebble 7. Pebble Lime Titration Amount Lime / gal of H2O F. Soda Ash? 8. Pebble Lime Purity Calculate Net 27. Titration? - Acidity 9. Mixing Efficiency of Pebble Lime lbs of soda ash 28 Soda Ash Titration Amount (Acid-Alkalinity) gal of H2O O Delivered in Bags 29. Soda Ash Purity Enter Net Acidity \$/lb 10. Pebble Lime Bag Unit Cost manually 30. Mixing Efficiency of Soda Ash Bulk Delivery Net Acidity (Hot Acidity) \$/lb 31 Soda Ash Unit Cost \$/lb 11. Pebble Lime Bulk Unit Cost 40.00 mg/L C. Caustic Soda? G. Known Chemical Cost? 32. Known Annual Chemical Cost ☐ 12. Titration? Design Flow gal ofcaustic **Annual Amount of** 13. Caustic Titration Amount / gal H2O **Chemical Cost Sub-Totals** 10.00 gpm **Chemicals Consumed** purity of 20% lbs Typical Flow 14. Caustic Purity 0 \$ ol 33. Total Hydrated Lime Cost caustic solution 2.00 gpm lbs 80.00 % \$ 0 15. Mixing Efficiency of Caustic 34. Total Pebble Lime Cost Total Iron gals 35. Total Caustic Soda Cost 221 176 C Non-Bulk Delivery 5.00 mg/L \$/gal 16. Caustic Non-Bulk Unit Cost tons \$ 36. Total Limestone Cost 0 Aluminum Bulk Delivery lbs \$ 0 5.00 mg/L 37. Total Anhydrous Ammonia Cost ol 1.25 \$/gal 17. Caustic Bulk Unit Cost Manganese lbs 0 38. Total Soda Ash Cost 5.00 mg/L C D. Limestone? \$ 39. Total Known Chemical Cost 18. Limestone Purity % 40. Selected Chemical: CAUSTIC SODA **Record Number** % 19. Limestone Efficiency Annual Chemical Cost \$ 221 20 Limestone Unit Cost \$/ton 1 of 1

Company Name <u>L & B Coal CO</u>
Project <u>SP4A</u>

Site Name #5

AMD TREAT SLUDGE REMOVAL

Opening Screen
Water Parameters

Influent Water
Parameters
that Affect
Sludge Removal
Calculated Acidity
0.00 mg/L

Alkalinity

C Calculate Net
Acidity
(Acid-Alkalinity)

Enter Net Acidity
manually
Net Acidity
(Hot Acidity)

40.00 mg/L

Design Flow

Typical Flow 2.00

Total Iron

Aluminum

Manganese

10.00 gpm

5 mg/L

5 mg/L

gpm

5 mg/L

0.00 mg/L

Sludge Removal Name				
1. Select One	Selection for Method of Removing Sludge	14. Iron Concentration	5.00	mg/L
Sludge Removal		15. Manganese Concentration	5.00	mg/L
2. Sludge Remova	al Unit Cost 0.05 \$/gal	16. Aluminum Concentration	5.00	mg/L
○ Sludge Removal	by Vacuum Truck	17. Total Miscellaneous Concentration	0	mg/L
3. Vacuum Truc	sk Unit Cost \$/hr	18. Percent Solids	5.00	%
4. Mobili.	zation Cost \$	19. Sludge Density	8.33	lbs/gal
1	to be Used hr	☐ 20 Titration?		
	I by Mechanical Excavation	21. Gal. of Sludge per Gal of Water Treated		gal
6. Mechanical Excavatio	on Unit Rate \$/hr	21. Gai. of Gladge per Gai of Water Freded		
7. Mobili	ization Cost \$	22. Estimated Sludge Volume	1] yd3/yr
8. Hours	to be Used hr		Demond To]
C Sludge Remova	al by Lagoon Cleaner	Cost for Sludge		_
9. Lagoon Cleanir	ng Unit Rate \$/hr	23. Removal by \$ per Gallon] \$] e
10. Mobil	lization Cost \$	24. Removal by Vacuum Truck	0]] _
	s to be Used hr	25. Removal by Mechanical Excavation	0] _]
C Actual Sludge R		26. Removal by Lagoon Cleaner	0	ፈ ገ .
		27. Actual Sludge Removal Cost	0	\$
12. Actual Sludge Re	emoval Cost \$	Sludge Removal Su	ıb-Totals	_
13. Off Site D	isposal Cost 0.00 \$	28. Currently Selected Removal Cost Plus Off Site Disposal Cost	16	
Pacard Nun	mbor 1 of 1			

Company Name L & B Coal CO

Project SP4A

Site Name #5

AMD TREAT RECAPITIZALITION COST

75 yrs 3.10 % 6.00 % Calculation Period Inflation Rate Net Return Rate

Total Capital Cost 9,887 \$	PV Grand Total	8,646
-----------------------------	----------------	-------