

Pennsylvania Technical Advisory Committee On Diesel Powered Equipment

Paul Borchick

(724) 485-4414 (Office) (412) 736-9105 (Cell)

Email: paulborchick@consolenergy.com

Ron Bowersox

(724) 726-8987 (Home) (724) 479-8692 (Office)

Email: umwarbowersox@yahoo.com

July 7, 2009

Joseph Sbaffoni, Director Bureau of Mine Safety Fayette County Health Center 100 New Salem Road, Room 167 Uniontown, Pa. 15401

RE: TAC recommendation on Daimler Chrysler Model OM 904 LA – 100 HP diesel engine with a M30 DST Management System using an Air Flow Catalyst System CCCA-100-MB-C catalyst in a Brookville Model 7M100D, Brookville Model 4M100DMV, and a Brookville Model ULPC. The request from Brookville was to replace the catalyst in the previously approved power package that utilized a Syncat Corp. Model M150-301-01 catalyst.

Dear Mr. Sbaffoni:

Chapter 4 of the "Bituminous Coal Mine Safety Act" (the Act) provides for the use of diesel-powered equipment in underground bituminous coal mines. Section 424 of the act created a Technical Advisory Committee ("TAC") for the purpose of advising the Department regarding implementation of Chapter 4 and evaluation of alternative technology or methods for meeting the requirements of Chapter 4.

Background

On June 3 2009, Brookville Equipment Corporation submitted a request to the Bureau of Mine Safety for evaluation and approval pursuant to Chapter 4 of the Act of a modification to the previously approved power package in a Brookville Model 7M100D, Brookville Model 4M100DMV, and a Brookville Model ULPC using the Daimler Chrysler Model OM 904 LA – 100 HP diesel engine with a M30 DST Management System. Brookville requests to change the catalyst on all three models from the previously approved Syncat Corp. Model M150-301-01 catalyst to an Air Flow Catalyst System CCCA-100-MB-C catalyst.

On June 16, 2009 the Director of BMS requested the TAC to evaluate the diesel power package utilizing the Air Flow Catalyst and to advise the Department regarding the TAC's recommendation as to whether the diesel power package meets the requirements of Section 403.

On July 7, 2009 the TAC and DEP traveled to Bailey Mine Crabapple Portal to inspect the Brookville Model 7M100D -7 Man Personnel Carrier with the Air Flow catalyst installed.

Investigation

The Brookville Model 7M100D – 7 Man Personnel Carrier as well as the Model 4M100DMV and the Model ULPC had been previously approved by the TAC and DEP and each was assigned a BOTE-D Number by the DEP. These previous approvals included the following diesel engine and emissions package:

- Daimler Chrysler Model OM 904 LA 100 HP diesel engine (MSHA Certification No.7E-B098-0)(Part 7)
- Syncat Corp. M113-210-02 Catalyst
- Paas Tech M150-301-01 Heat Exchanger
- Dry Systems Technology M30 DPM Filter (96% Efficient)

Brookville's request to modify the power package on all 3 models is to replace the Syncat Corp. catalyst with an Air Flow catalyst.

The following is the new diesel engine and emissions package being evaluated:

- Daimler Chrysler Model OM 904 LA 100 HP diesel engine (MSHA Certification No.7E-B098-0)(Part 7)
- Air Flow Catalyst System CCCA-100-MB-C catalyst
- Paas Tech M150-301-01 Heat Exchanger
- Dry Systems Technology M30 DPM Filter (96% Efficient)

More detailed information on the specifications for the Model 7M100D, Model 4M100DMV, and Model ULPC diesel power packages are included on the General Specification Sheets which are attached. (Attachments 1, 2, 3)

On July 7, 2009 the TAC and DEP representatives traveled to Bailey Mine to inspect the Brookville Model 7M100D personnel carrier. Emissions testing of the engine and after-treatment system were performed, as well as exhaust gas temperature monitoring and stall test procedure.

Monitoring of the exhaust gas temperature produced a high exhaust gas temperature reading of 178° F, which is well below the 302° F allowed by Section 403. The maximum surface temperature detected was 249 ° F which is also below 302° F. The maximum engine oil temperature measured was 200° F.

The 90 second emission stall test was performed. The results of the emission tests showed the engine was performing within MSHA's approval specifications. The results of that testing are included in Attachment 4. The emissions showed an increase in the NO2 emissions. This would be expected with the platinum and Activex washcoat used in the new catalyst. The passenger compartment of the equipment should be periodically checked with a handheld detector for NO2 concentration to assure that the exhaust is not

being directed into the passenger compartment. Deflectors may need to be added over the exhaust tailpipe to direct the exhaust away from the passengers. Some newer models of the Brookville Models 7M100D, 4M100DMV and ULPC are equipped with these deflectors, while the Model 7M100D tested does not have the deflector installed.

Recommendation

In addition to the testing that was conducted, our investigation and our observations confirmed that the diesel power package is capable of meeting all requirements of Section 403 of Chapter 4 of the act without reducing or compromising the level of health or safety afforded by the act. As such, we are recommending approval of the above described diesel power package. This recommendation is provided with the understanding that the General Specification Sheets (Attachments 1, 2, and 3) be strictly adhered to.

The TAC recommends that care should be given to assure that the MSHA/DEP vent rate for this engine (4,500 cfm) is strictly followed, especially in the case of multiple units on the same air split, as addressed in Section 404(c) and 404(d) of the Act. Since this is rail mounted transportation equipment, care should also be given to assure that no excessive idling occurs as addressed in Section 423(c) of the Act.

The TAC recommends that the passenger compartment of the equipment should be periodically checked with a handheld detector for NO2 concentration to assure that the exhaust is not being directed into the passenger compartment. Air deflectors may need to be added to direct the exhaust away from the passengers. Some newer models of the Brookville Models 7M100D, 4M100DMV and ULPC are equipped with deflectors.

Our recommendation is based upon the data supplied by Brookville Equipment Corporation; the results of the tests conducted on July 7, 2009; as well as the data acquired and observations made during our investigation.

Paul Borchick

BROOKVILLE EQUIPMENT CORP. MODEL 7M100D 7 Man / 8 Ton Diesel Locomotive

General Specifications of the Diesel-Powered Equipment Package

facturer		Daimler Chrysler								
		OM 904 LA								
		100 HP								
		2200 RPM								
	mended Exhaust	41 Inches Water Gauge								
։ (In H₂O) naust Out Temperatu	ıre	302 deg F								
duon 140.		, ,								
		2200 RPM								
ower		100 HP								
Flow (SCFM)		318 CFM @ 25 deg C								
verage DPM (gr/hr)		4.14 gr/hr								
ient DPM Level (mg/	m3)	0.022 mg/m3								
ition Rate (CFM)		4,500 CFM (Part 7)	CFM (Part 32)							
tilation Rate (CFM)										
ontrol System		DST Management System								
Make	Bosch									
P/N										
Make										
D/N	1 -									
			·							
Make	Paas Tech.									
P/N	M150-301-01									
Make	Dry Systems	Model	M 30							
P/N	Technology M 30	Outer Filter Size	16 x 12 in Diameter							
Air Rating (CFM)	2100 CFM	Inner Filter Size	10 x 6 in Diameter							
Surface Area (in3)	42,231 in3	Filter Length	20 in							
Efficiency			96%							
Recommended Exha	ust Back-Pressure		25 Inches Water Gauge							
	s Maximum Recomme (In H ₂ O) naust Out Temperature Approval cation No. cower Flow (SCFM) verage DPM (gr/hr) ient DPM Level (mg/ ation Rate (CFM) tilation Rate (CFM) ontrol System Make P/N Surface Area (in3) Efficiency	S Maximum Recommended Exhaust (In H ₂ O) naust Out Temperature e Approval cation No. cower Flow (SCFM) verage DPM (gr/hr) ient DPM Level (mg/m3) ation Rate (CFM) tilation Rate (CFM) ontrol System Make Bosch P/N 0280746902 Make Air-Flow Catalyst System P/N CCCA-100-MB-C Make Paas Tech. P/N M150-301-01 Make Dry Systems Technology M 30 Air Rating (CFM) Surface Area (in3) 42,231 in3	OM 904 LA 100 HP 2200 RPM 41 Inches Water Gauge 302 deg F e Approval aution No. 7E-B098-0 (Part 7) 2200 RPM 100 HP 318 CFM @ 25 deg C 4.14 gr/hr 316 CFM (20) 318 CFM (20							

BROOKVILLE EQUIPMENT CORP. MODEL 4M100DMV 4 Man Diesel Maintenance Vehicle

General Specifications of the Diesel-Powered Equipment Package

Engine Manu	facturer	···•	Daimler Chrysler									
Engine Mode			OM 904 LA									
Horsepower			100 HP									
Rated Speed			2200 RPM									
	s Maximum Recomn	nended Exhaust	41 Inches Water Gauge									
Backpressure Maximum Ext	e (In H₂O) naust Out Temperatu	re	302 deg F									
MSHA Engin	e Approval		MSHA Part 7									
MSHA Certific	cation No.		7E-B098-0 (Part 7)									
Rated Speed		·	2200 RPM									
Rated Horsep	oower		100 HP									
Exhaust GAS	Flow (SCFM)		318 CFM @ 25 deg C									
ISO 8178-1 A	verage DPM (gr/hr)		4.14 gr/hr									
Average Amb	ient DPM Level (mg/	m3)	0.022 mg/m3									
MSHA Ventila	ition Rate (CFM)		4,500 CFM (Part 7)	CFM (Part 32)								
Pa. State Ven	tilation Rate (CFM)		<u> </u>									
Emissions C	ontrol System		DST Management System									
Fuel Injection	Make	Bosch										
Pump		0000740000										
	P/N	0280746902										
Oxidation	Make	Air-Flow Catalyst										
Catalyst	P/N	System CCCA-100-MB-C										
11												
Heat Exchanger	Make	Paas Tech.		· .								
	P/N	M150-301-01	· .									
DPM Filter	Make	Dry Systems	Model	M 30								
	P/N	Technology M 30	Outer Filter Size	16 x 12 in Diameter								
	Air Rating (CFM)	2100 CFM	Inner Filter Size	10 x 6 in Diameter								
	Surface Area (in3)	42,231 in3	Filter Length	20 in								
	Efficiency	<u> </u>		96%								
	Recommended Exha	ust Back-Pressure		25 Inches Water Gauge								

BROOKVILLE EQUIPMENT CORP. MODEL ULPC Diesel 9-Ton Loco / 15-Man Personnel Carrier

General Specifications of the Diesel-Powered Equipment Package

Engine Manuf	acturer		Daimler Chrysler									
Engine Model			OM 904 LA									
Horsepower			100 HP									
Rated Speed			2200 RPM									
	s Maximum Recomn	nended Exhaust	41 Inches Water Gauge									
Backpressure Maximum Exh	(In H₂O) aust Out Temperatu	re	302 deg F									
MSHA Engine	e Approval		MSHA Part 7									
MSHA Certific	ation No.		7E-B098-0 (Part 7)									
Rated Speed			2200 RPM									
Rated Horsep	ower		100 HP									
Exhaust GAS	Flow (SCFM)		318 CFM @ 25 deg C									
ISO 8178-1 A	verage DPM (gr/hr)		4.14 gr/hr									
Average Amb	ient DPM Level (mg/	m3)	0.022 mg/m3									
MSHA Ventila	tion Rate (CFM)		4,500 CFM (Part 7) CFM (Part 32)									
Pa. State Ven	tilation Rate (CFM)			<u> </u>								
Emissions C	ontrol System		DST Management System									
Fuel Injection	Make	Bosch										
Pump	P/N	0280746902										
Oxidation	Make	Air-Flow Catalyst										
Catalyst	D/N	System CCCA-100-MB-C										
	P/N	CCCA-100-WB-C	· ·									
Heat	Make	Paas Tech.										
Exchanger												
	P/N	M150-301-01										
DPM Filter	Make	Dry Systems	Model	M 30								
	P/N	Technology M 30	Outer Filter Size	16 x 12 in Diameter								
	Air Rating (CFM)	2100 CFM	Inner Filter Size	10 x 6 in Diameter								
	Surface Area (in3)	42,231 in3	Filter Length	20 in								
	Efficiency			96%								
	Recommended Exha	ust Back-Pressure		25 Inches Water Gauge								
	l											

Brookville 7M100D Personnel Carrier with Daimler Chrysler OM904LA 100 HP Diesel Engine with Air Flow Catalyst

		start								-						n start														
	Lambda Comments:	8.75 90 sec Raw start	6.77	2.88	2.84	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.76	2.76 End	10 90 sec clean start	8.75	3.39	3.23	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	4.47	5.53 end
	Lam	8.86	99.1	9.66	9.66	9.66	9.66	9.66	9.66	9.66	9.66	9.66	9.66	9.66	9.66	98.7	98.8	9.66	9.66	9.66	9.66	9.66	9.66	9.66	9.66	9.66	9.66	9.66	99.4	99.3
	ETA																													
-	T Amb(F)	6.19	61.9	61.9	61.8	61.8	61.8	61.8	61.8	61.8	61.9	61.9	61.9	61.9	61.9	61.7	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8
	T Gas(F) 1	69	69	2	69	2	69	69	2	69	70	2	2	69	2	69	69	69	69	69	69	69	69	69	99	69	69	69	69	69
	CO2(%) T	1.8	2.3	5.4	5.4	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.6	5.6	1.5	1.8	4.5	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	3.4	2.8
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	CxHy(%)	0	0	0	0	0	_	•		0	0	0	0	_	0	0	. 0		0	0		0	0	0	0	:	0	0	0	0
	SO2(ppm)	J	Ŭ	Ŭ	J	_	J	J	J	_		•	•	•	J	Ū	Ū	_	_					_		_	_			
	NOx(ppm) SO2(ppm) CxHy(%)	181	348	331	326	327	329	333	338	340	343	347	348	350	353	163	274	304	291	291	294	297	301	303	306	308	310	312	499	541
-	NO2(ppm) N	27	78	35	36	37	38	38	38	38	38	33	33	39	39	39	39	36	41	47	23	23	64	67	70	72	74	9/	95.	66
	(bpm) NC	154	320	596	290	290	291	295	300	302	305	308	309	311	314	124	235	268	250	244	241	238	237	236	236	236	236	236	404	442
	CO(ppm) NO(ppm)	116	104	183	138	106	93	68	87	82	84	84	84	84	82	7	7	22	21	12	7	ភ	4	ന	က	7	7	7	7	7
0:35:37#	_	18.6	17.9	13.7	13.6	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.4	13.4	18.9	18.6	14.8	14.5	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	16.3	17.2
#2009-07-07 10:35:37#	Time(h:m:s 02(%)	0:13:54	0:14:03	0:14:14	0:14:24	0:14:33	0:14:44	0:14:54	0:15:03	0:15:13	0:15:24	0:15:34	0:15:43	0:15:54	0:16:04	0:23:24	0:23:33	0:23:43	0:23:54	0:24:04	0:24:13	0:24:24	0:24:34	0:24:43	0:24:53	0:25:04	0:25:14	0:25:23	0:25:33	0:25:44