HDD PA-CU-0176.0014-RD

Given the design, the threat of inadvertent return has been reduced to the maximum extent practicable and in this case that threat is considered to be low. Implementing this design, along with adherence to the Pennsylvania Pipeline Project Inadvertent Return Contingency Plan will ensure inadvertent impacts, if they were to occur, are also minimized to the maximum extent.

The drill will enter/exit 410 feet from the western edge of Interstate 76 (I-76) and enter/exit 430 feet from the eastern edge and will pass 85 feet beneath the highway. The geotechnical results, as well as other data points, were used to determine the entry/exit angles, and depths to pass through the best substrates while maintaining the pipe integrity (e.g., no large bends). According to the geotechnical report primary substrates being drilled through are shales and clay-based limestone with layers of shale and silty sand above the drill. Based on the geotechnical report and the drill profile minimal inadvertent returns are expected.

DESCRIPTION

BY DATE CHK DATE APP DATE

DIGGING. 5. SUNOCO EMERGENCY HOTLINE NUMBER IS #1-800-786-7440.

DWG NO

DWG NO

DESCRIPTION

NO.

Sunoco Logistics	SUNOCO PIPELINE, L.P.						
Partners L.P.	20-INCH	20-INCH HORIZONTAL DIRECTIONAL DRILL					
TETRA TECH ROONEY	PENNS	SYLVANIA PIPELINE PROJECT					
(303) 792-5911	SCALE: 1"=150'	DWG. NO: PA-CU-0176.0014-RD					

SUNOCO PIPELINE, L.P.'S HORIZONTAL DIRECTIONAL DRILL INADVERTENT RETURN CONTINGENCY PLAN WILL BE IMPLEMENTED AT ALL TIMES.
SUNOCO PIPELINE, L.P.'S EROSION AND SEDIMENTATION CONTROL PLAN WILL BE IMPLEMENTED AT ALL TIMES.

SUNOCO PIPELINE, L.P.						
16-INCH HORIZONTAL DIRECTIONAL DRILL						
	PENNS	YLVANIA PIPELINE PROJECT				
SCALE:	1"=150'	DWG. NO: PA-CU-0176.0014-RD-16				
	SCALE:	SUI 16-INCH H PENNS SCALE: 1"=150'				

LEGEND:

(6) Geotechnical Soil Boring (SB) Locations

GEOTECHNICAL BORING LOCATIONS HDD S2-0248 CUMBERLAND COUNTY, UPPER ALLEN TOWNSHIP SUNOCO PENNSYLVANIA PIPELINE PROJECT

TETRA TECH

240 Continental Drive, Suite 200 Newark, Delaware 19713 302.738.7551 fax: 302.454.5988

TEST BORING LOG

Project	t Name:		SUNOC	O PENN	SYLVA	NIA P	PELINE PROJECT		Project N	lo.: 1	03IP3	406		
Project	t Locatio	n:	RICHAR	RD LANE	, MEC	HANIC	SBURG, PA		Page 1 o	of 1				
HDD No.: S2-0248 Dates(s) Drilled: 0				Dates(s) Drilled: 02-04-15	Inspector:	E. WATT	-							
Boring	No.:		SB-01				Drilling Method: SPT - ASTM D1586	rilling Method: SPT - ASTM D1586 Driller: S. HOFFER						
Drilling	Contrac	tor:	HAD DR	RILLING	1	1	oundwater Depth (ft): 14 Total Depth (ft): 23.0							1
Sample No.	Sample I From	Depth (ft) To	Strata D From	Depth (ft) To	Recov. (in)	Strata (USCS	Description of Material	ls		6" Increment			Blows *	
			0.0	0.0			NO TOPSOIL							
1	3.0	5.0	0.0		17	<u>∪</u>	BROWN TO GRAY WEATHERED PHYLITIC SHA	LE (BREAKS DOW	N	2	4	9	24	13
						LLT L	LIKE A SANDY SILT W/GRAVEL FRAGS)							
2	8.0	9.3			14	H	BROWN TO GRAY WEATHERED PHYLITIC SHA	LE (BREAKS DOW	N	4	26	50/3"		>50
							LIKE A SANDY SILT W/GRAVEL FRAGS)							
3	13.0	15.0			23	ALE ALE	BROWN TO GRAY WEATHERED PHYLITIC SHA	LE (BREAKS DOW	N	5	27	33	30	60
						LE P	LIKE A SANDY SILT W/GRAVEL FRAGS) (USC	S: ML)						
4	18.0	20.0			24	M	BROWN TO GRAY WEATHERED PHYLITIC SHA	LE (BREAKS DOW	N	3	14	16	27	30
						Ë	LIKE A SILTY SAND W/GRAVEL FRAGS)							
5	22.5	23.0		23.0	6	ЫH	GRAY PHYLITIC SHALE		5	50/6"				0
							AUGER REFUSAL AT 22.5'.							
							WET ON SPOON AT 15'.							
							WATER LEVEL THROUGH AUGERS AT 14'.							
							CAVED AT 20', WATER LEVEL ON CAVE AT 10'.							

Notes/Comments:

Pocket Pentrometer Testing

Strata (USCS) Designations are approximated based on visual review, except where indicated in Description of Materials.

* Number of blows of 140 lb. Hammer dropped 30 in. required to drive 2 in. split-spoon sampler in 6 in. increments. N: Number of blows to drive spoon from 6" to 18" interval.

TETRA TECH

240 Continental Drive, Suite 200 Newark, Delaware 19713 302.738.7551 fax: 302.454.5988

TEST BORING LOG

<u> </u>															
Projec	t Name:		SUNOC	O PENN	SYLVA	NIA P	ELINE PROJECT		Project	No.: 1	03IP34	406			
Projec	t Locatio	n:	CONNE	LL STRE	EET, M	ECHAI	CSBURG, PA (ORCHARD GELN SUBDIV	(ISION)	Page 1	ge 1 of 1 WATT					
HDD N	lo.:		S2-0248				Dates(s) Drilled: 02-04-15	Inspector:	E. WAT	Т					
Boring	No.:		SB-02				Drilling Method: SPT - ASTM D1586	Driller:	S. HOFI	FER					
Drilling	g Contrac	tor:	HAD DR	ILLING	Γ.	1	Groundwater Depth (ft): 22	Total Depth (ft):	28.2						
Sample No.	Sample I From	Depth (ft) To	Strata D From	epth (ft) To	Recov. (in)	Strata (USCS	Description of Mate	erials		6" l	ncreme	ent Blo	ws *	Ν	
			0.0	0.1			NO TOPSOIL (1")								
1	3.0	5.0	0.1		17	SC/	DRANGE BROWN FINE TO MEDIUM SAND W	VITH SOME SILT/CLAY	ŕ,	2	2	4	6	6	
				7.5		SM	TRACE WEATHERED PHYLITIC SHALE GR	AVEL.							
2	8.0	10.0	7.5		11	5 5	BROWN TO GRAY WEATHERED PHYLITIC S	HALE (BREAKS DOW	N	1	11	18	12	29	
						Γ.	LIKE A F-M SAND, SOME SILT/CLAY, SOME	E F-GRAVEL. USCS: S	SC/SM)						
3	13.0	15.0			20	H	BROWN TO GRAY HIGHLY WEATHERED PH	YLICIT SHALE (BREA	KS	8	12	12	17	24	
						ШШ	DOWN LIKE A SILTY SAND AND F-GRAVEL	-							
4	18.0	20.0			20	E	BROWN TO GRAY HIGHLY WEATHERED PH	YLICIT SHALE (BREA	KS	3	13	21	50/3"	34	
						'EA' S	DOWN LIKE A SILTY SAND AND F-GRAVEL	(USCS: SM).							
5	23.0	24.0			11	× ≻	BROWN TO GRAY HIGHLY WEATHERED PH	YLICIT SHALE (BREA	KS	14	50/6"			>50	
						E	DOWN LIKE A SILTY SAND AND F-GRAVEL.								
6	28.0	28.2		28.2	2	Ŧ	GRAY WEATHERED PHYLITIC SHALE.		50/2"						
							VET ON SPOON AT 17'.								
							NO WATER LEVEL THROUGH AUGERS.								
							CAVED AT 29', WATER LEVEL ON CAVE AT 2	22'.							

Notes/Comments:

Pocket Pentrometer Testing

Strata (USCS) Designations are approximated based on visual review, except where indicated in Description of Materials.

* Number of blows of 140 lb. Hammer dropped 30 in. required to drive 2 in. split-spoon sampler in 6 in. increments. N: Number of blows to drive spoon from 6" to 18" interval.

GEOTECHNICAL LABORATORY TESTING SUMMARY SUNOCO PENNSYLVANIA PIPELINE PROJECT HDD S2-0248

	Test				Water	/ater Percent Atterburg Limits (ASTM D4318				USCS		
HDD	Boring	Sample	Depth of S	Depth of Sample (ft.) C		Depth of Sample (ft.)		Silts/Clays, %	Liquid	Plastic	Plasticity	Classif.
No.	No.	No.	From	From To (/		(ASTM D1140)	Limit, %	Limit, %	Index, %	(ASTM D2487)		
		1	3.0	5.0	20.2	55.5	-	-	-	-		
	SB-01	2	8.0	9.3	17.3	53.2	-	-	-	-		
		3	13.0	15.0	18.4	56.8	38	26	12	ML		
		4	18.0	20.0	18.3	43.4	-	-	-	-		
S2-0248		5	22.5	23.0	10.8	25.2	-	-	-	-		
		2	8.0	10.0	10.7	25.6	31	23	8	SC/SM		
	6B 03	3	13.0	15.0	11.5	18.4	-	-	-	-		
	30-02	4	18.0	20.0	13.3	44.2	28	23	5	SM		
		5	23.0	24.0	5.2	12.4	-	-	-	-		

Notes:

1) Sample depths based on feet below grade at time of exploration.

REGIONAL GEOLOGY SUMMARY SUNOCO PENNSYLVANIA PIPELINE PROJECT HDD S2-0248

HDD No.	NAME	BORING NO.	REGIONAL GEOLOGY DESCRIPTION	GENERAL TOPOGRAPHIC SETTING	BEDROCK FORMATION	GENERAL ROCK TYPE	APPROX MAX FM THICKNESS (FT)	DEPTH TO ROCK (Ft bgs) based on nearby well drilling logs	NOTES / COMMENTS
		SB-01	Hamburg sequence- shale of the sequence is predominantly greenish- gray, gray, purple, and maroon phyllitic shale that is silty and siliceous.		Hamburg Sequence	Greenish-gray, gray, purple, and maroon phyllitic shale			Predominantly greenish gray, gray, purple, and maroon shale, siltstone, and graywacke. Yields 1- 15 gpm
S2-0248	I-76	SB-02	Hershey and MyerstownFormation (undivided) -consists of dark-gray to black, argillaceous limestone.	Gently sloping to the east	Hershey- Myerstown	Dark-gray to blue to black, argillaceous limestone.	Hershey < 50- 200, Myerstown <50 to 200	36-64	<u>Hershey</u> dark-gray to blue to black, thin- bedded, argillaceous limestone. Base of Hershey contains conglomerate beds; <u>Myerstown</u> medium- to dark-gray, platy, medium- crystalline limestone; carbonaceous at base.

<u>Note</u> : Source of well log data - http://www.dcnr.state.pa.us/topogeo/groundwater/pagwis/records/index.htm. All other sources as referenced in comments section.

FIELD DESCRIPTION AND LOGGING SYSTEM FOR SOIL EXPLORATION

GRANULAR SOILS

(Sand, Gravel & Combinations)

<u>Density</u>	<u>N (blows)*</u>			
Very Loose	5 or less	<u>Particle Si</u>	ze Identifica	tion
Loose	6 to 10	Boulders	8 in. diamet	ter or more
Medium Dense	11 to 30	Cobbles	3 to 8 in. di	ameter
Dense	31to 50	Gravel	Coarse (C)	3 in. to ¾ in. sieve
Very Dense	51 or more		Fine (F)	¾ in. to No. 4 sieve
very bende		Sand	Coarse (C)	No. 4 to No. 10 sieve
				(4.75mm-2.00mm)
Relative Proporti	ons		Medium	No. 10 to No. 40 sieve
Description Term	<u>Percent</u>		(M)	(2.00mm – 0.425mm)
Trace	1 - 10		Fine (F)	No. 40 to No. 200 sieve
Little	11 - 20			(0.425 – 0.074mm)
Some	21 - 35	Silt/Clay	Less Than a	No. 200 sieve (<0.074mm)
And	36 - 50			ζ ,

COHESIVE SOILS

(Silt, Clay & Combinations)

<u>Consistency</u>	<u>N (blows)*</u>	Plasticity	
Very Soft	3 or less	Degree of Plasticity	Plasticity Index
Soft	4 to 5	None to Slight	0 - 4
Medium Stiff	6 to 10	Slight	5 - 7
Stiff	11 to 15	Medium	8- 22
Very Stiff	16 to 30	High to Very High	> 22
Hard	31 or more	с , с	

ROCK

(Rock Cores)

Rock	Rock					
Quality Designation	Quality <u>Descripti</u>					
<u>(RQD), %</u>	<u>on</u>					
0-25	Very Poor					
25-50	Poor					
50-75	Fair					
75-90	Good					
90-100	Excellent					

*N - Standard Penetration Resistance. Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 18 inches into undisturbed soil with a 140 pound hammer free falling a distance of 30.0 inches. The number of hammer blows to drive the sampler through each 6 inch interval is recorded; the number of blows required to drive the sampler through the final 12 inch interval is termed the Standard Penetration Resistance (SPR) N-value. For example, blow counts of 6/8/9 (through three 6-inch intervals) results in an SPR N-value of 17 (8+9).

Groundwater observations were made at the times indicated. Groundwater elevations fluctuate throughout a given year, depending on actual field porosity and variations in seasonal and annual precipitation.

UNIFIED SOIL CLASSIFICATION SYSTEM [Casagrande (1948)]

Major Divisions			Group Symbols	Typical Descriptions			Laboratory Classification	ons	
	n is larger	gravel no fines)	GW	Well-graded gravels, gravel- sand mixtures, little or no fines		mbols ⁽¹⁾	$C_{u=\frac{D_{60}}{D_{10}}}$ greater than 4: $C_{c=\frac{1}{D}}$	$(D_{30})^2$ to x D ₆₀ between 1 and 3	
(e	avels arse fractio 4 sieve size	Clean (Little or	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	curve. curve. 200 sieve), 200 sieve), 200 sieve), 201 sieve, 201 s		Not meeting C_u or C_c requirem	ients for GW	
o. 200 sieve	Gra n half of co than No. 4	with fines eciable of fines)	GM	Silty gravels, gravel-sand-silt mixtures	grain size than No. 2 blows:	/, SP I, SC ases requiri	Atterberg limits below A Line or I _p less than 4	Limits plotting in hatched zone with I p between 4 and 7 are	
d Soils rger than N	More tha	Gravel v (Appri amount	GC	Clayey gravels, gravel-sand-clay mixtures	gravel from tion smaller assified as fr iW, GP, SW iM, GC, SM orderline co		Atterberg limits above A line with I _P greater than 7	borderline cases requiring use of dual symbols	
coarse Graine material is la	maller than	sands to fines)	sw	Well graded sands, gravely sands, little or no fines	of sand and of fines (frac ied soils are cl	percent G percent G percent B	$C_{u=\frac{D_{60}}{D_{10}}}$ greater than 6: $C_{c=\frac{(D_{30})2}{D_{10} \times D_{60}}}$ between 1 and 3		
Co Dre than half of r ands ands 4 Sieve)	Sands Irse fraction is s 4 Sieve)	Clean s (Little or r	SP	Poorly graded sands, gravelly sands, little or no fines	iine Percentage on Percentage coarse-grain	Less than 5 More than 12 5 to 12	Not meeting C_u or C_c requirer	nents for SW	
W)	(Mo S half of coal	(More than half of cos No. Sands with fines (Appreciable amount of fines)	SM	Silty sands, sand- silt mixtures	Determ		Atterberg limits below A Line or I _P less than 4	Limits Plotting in hatched zone with I _p between 4 and 7 are borderline cases requiring use of dual symbols	
	(More than		SC	Clayey sands, sand-clay mixtures			Atterberg limits above A line with I _p greater than 7		
Major	Divisions	Group Symbols	Туріса	Descriptions	For soils p When w _L	blotting nearly is near 50 use	on A line use dual symbols i.e ., I _p e CL-CH or ML-MH. Take near as	= 29.5, w _L =60 gives CH-MH. ± 2 percent.	
	tys than 50)	ML	Inorganic silts sands, rock fl fine sands, or slight plasticit	and very fine our, silty or clayey r clayey silts with y	6	O <mark>rtition</mark> - A Line:			
200 sieve)	Silts and cle	CL	Inorganic clay plasticity, gra clays, silty cla	vs of low to medium velly clays , sandy iys, lean clays	5	0).73(LL - 20)).9(LL - 8)	ON I	
iis ir than No.	(Liquid	OL	Organic silts a clays of low p	and organic silty plasticity	x (PI), %	.0		^{od}	
e-grained so erial is smalle	quid limit 50)	МН	Inorganic silts diatomaceous soils, elastic s	s, micaceous or s fine sandy or silty silts	ticity Inde		NUT I	MH or OH	
Fine half of mate	nd Clays (Li greater than	СН	Inorganic clay fat clays	vs of high plasticity,	L Plast	.0			
(More than	More than Silts an gi		Organic clays plasticity, org	s of medium to high anic silts	4		20 30 40 50 60		
	Highly organic soils	Pt	Peat and othe soils	er highly organic		10	Liquid Limit (LL),%	

(1) Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC. well-graded gravel-sand mixture with clay binder.