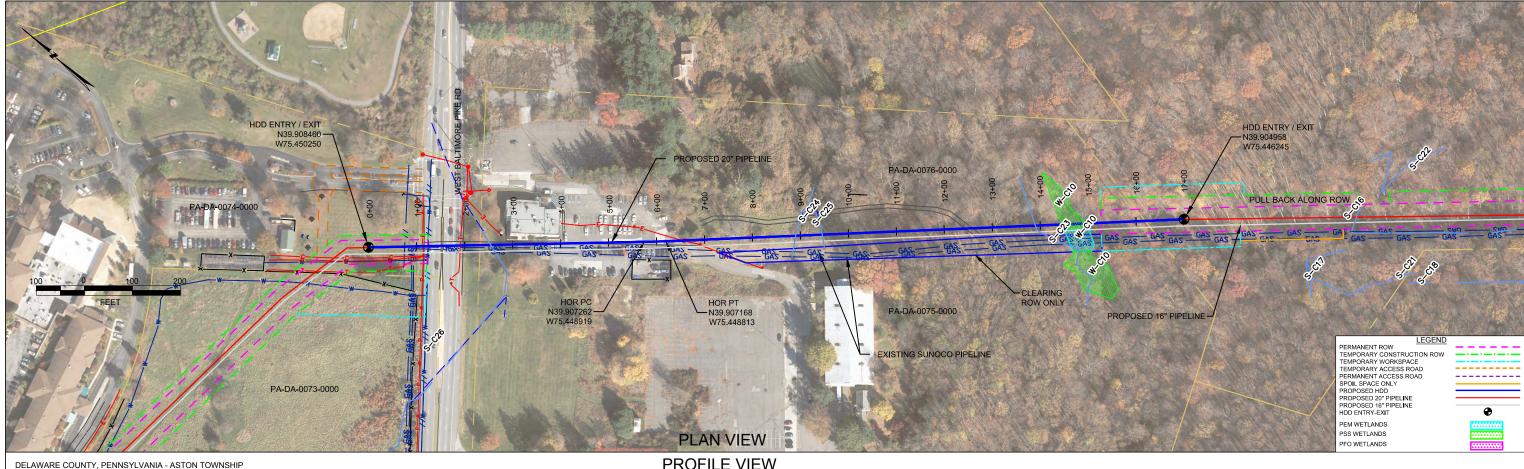
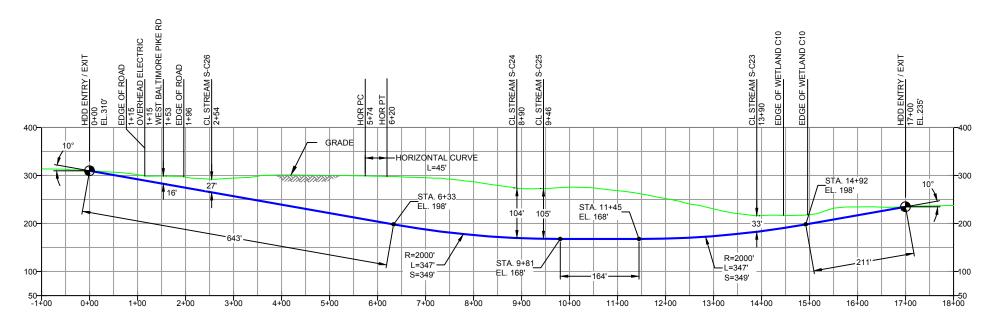
HDD PA-DE-0074.0000-RD (S-C26, S-C24, S-C25 and S-C23)


Given the design, the threat of inadvertent return has been reduced to the maximum extent practicable and in this case that threat is considered to be low. Implementing this design, along with adherence to the Pennsylvania Pipeline Project Inadvertent Return Contingency Plan will ensure inadvertent impacts, if they were to occur, are also minimized to the maximum extent.

The drill will enter/exit 254 feet northwest of stream C26. The drill will pass 27 feet under this stream. Using the results of the geotechnical investigation, as well as several other data points, the entry/exit, angles, and depths have been configured to pass through the best substrates while maintaining pipe integrity (e.g., no large bends). The majority of the substrate that will be passed through is estimated to be silty sand and gneiss.

The drill will enter/exit 890 feet northwest of stream C24. The drill will pass 104 feet under this stream. Using the results of the geotechnical investigation, as well as several other data points, the entry/exit, angles, and depths have been configured to pass through the best substrates while maintaining pipe integrity (e.g., no large bends). The majority of the substrate that will be passed through is estimated to be silty sand and gneiss.


The drill will enter/exit 946 feet northwest of stream C25. The drill will pass 105 feet under this stream. Using the results of the geotechnical investigation, as well as several other data points, the entry/exit, angles, and depths have been configured to pass through the best substrates while maintaining pipe integrity (e.g., no large bends). The majority of the substrate that will be passed through is estimated to be silty sand and gneiss.

The drill will enter/exit 1390 feet northwest of stream C23. The other entry/exit point is 33 feet southeast of this stream. The drill will pass 30 feet under this stream. Using the results of the geotechnical investigation, as well as several other data points, the entry/exit, angles, and depths have been configured to pass through the best substrates while maintaining pipe integrity (e.g., no large bends). The majority of the substrate that will be passed through is estimated to be silty sand and gneiss.

S3-0610

- DESIGN AND CONSTRUCTION:

 1. CONTRACTOR SHALL FIELD VERIFY DEPTH OF ALL EXITING UTILITIES SHOWN OR NOT SHOWN ON THIS DRAWING.

 2. THE MINIMUM SEPARATION DISTANCE FROM EXISTING SUBSURFACE UTILITIES SHALL NOT BE LESS THAN 10 FEET AS MEASURED FROM THE OUTSIDE EDGE OF THE UTILITY TO OUTSIDE OF PROPOSED PIPELINE.

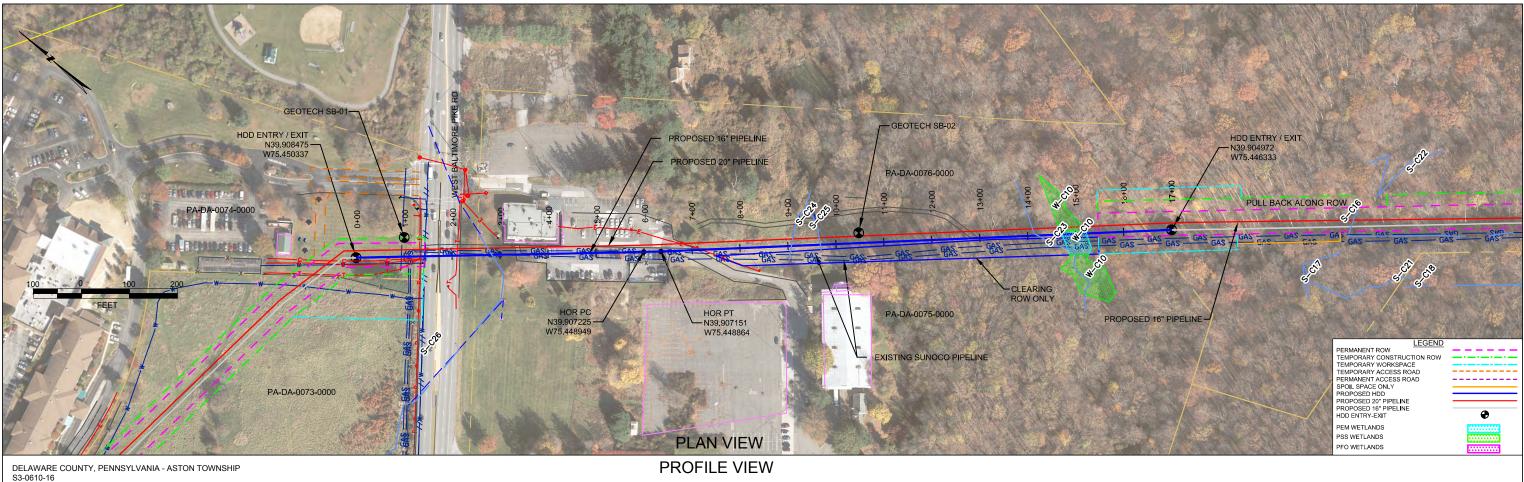
 3. DESIGNED IN ACCORDANCE WITH CFR 49 195 & ASME B31.4

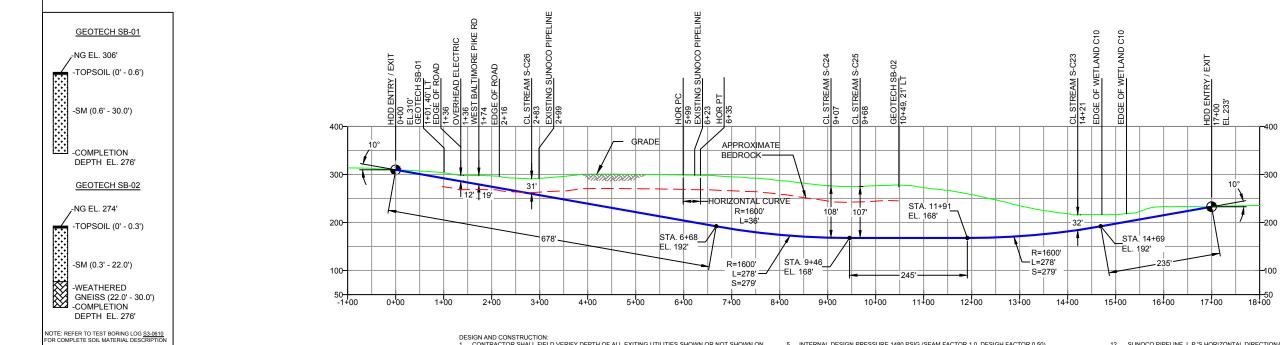
 4. CROSSING PIPE SPECIFICATION:
 HDD HORZ. LENGTH (L=):1700'
 HDD PIPE LENGTH (S=):1716'
 201 Y 0.456' W.T. X-RS APISI SPI 2 FRW REW.
- - 20" x 0.456" W.T., X-65, API5L, PSL2, ERW, BFW

- INTERNAL DESIGN PRESSURE 1480 PSIG (SEAM FACTOR 1.0, DESIGH FACTOR 0.50).
 INSTALLATION METHOD: HORIZONTAL DIRECTIONAL DRILL (HDD).
 PIPIELINE WARNING MARKERS SHALL BE INSTALLED ON BOTH SIDES OF ALL ROAD, RAILWAY, AND STREAM CROSSINGS.
 CARRIER PIPE NOT ENCASED.
 PIPE / AMBIENT TEMPERATURE MUST BE NO LESS THAN 30°F DURING PULLBACK WITHOUT PRIOR WRITTEN APPROVAL FROM THE ENGINEER.
 CONDUCT 4-HOUR PRE-INSTALLATION HYDROTEST OF HDD PIPE STRING TO MINIMUM 1850 PSIG.
 SEE SUNOCO PENNSYLVANIA PIPELINE PROJECT ESRI WEBMAP FOR ACCESS ROAD ALIGNMENT.

- SUNOCO PIPELINE, L.P.'S HORIZONTAL DIRECTIONAL DRILL INADVERTENT RETURN CONTINGENCY PLAN WILL BE IMPLEMENTED AT ALL TIMES.
 SUNOCO PIPELINE, L.P.'S EROSION AND SEDIMENTATION CONTROL PLAN WILL BE IMPLEMENTED AT ALL TIMES.

L	1				COATING: 14-16 MILS FE	BE WITH	30-35 MIL ARO (POWERCRETE R95)							
	NOTES		REF. DRAWING				REVISIONS							
[1. ALL COORDINATES SHOWN ARE IN LATITUDE AND LONGITUDE. ALL MSL ELEVATIONS ARE NAD83	ES-6.16	то	ES-6.17	EROSION & SEDIMENT PLAN									
	STATIONING IS BASED ON HORIZONTAL DISTANCES. ROONEY ENGINEERING, INC. AND SUNOCO PIPELINE, LP ARE NOT RESPONSIBLE FOR LOCATION	SHEET 10	то	SHEET 11	AERIAL SITE PLAN	EP1	REVISED PER PADEP COMMENTS	MRS	05/10/16	RMB	05/10/16	AAW	05/10/16	
	OF FOREIGN UTILITIES SHOWN IN PLOT PLAN OR PROFILE. THE INFORMATION SHOWN HEREON IS FURNISHED WITHOUT LIABILITY ON THE PART OF ROONEY ENGINEERING, INC. AND SUNOCO PIPELINE					EP		MRS	02/26/16	RMB	02/26/16	AAW	02/26/16	
	LP, FOR ANY DAMAGES RESULTING FROM ERRORS OR OMISSIONS THEREIN.					С	ISSUED FOR BID	DLM	08/21/15	RMB	08/21/15	AAW	08/21/15	
	4. CONTRACTOR IS RESPONSIBLE FOR LOCATING ALL UTILITIES. CONTACT ONE CALL AT 811 PRIOR TO DIGGING.					В	ISSUED FOR BID	DLM	07/31/15	RMB	07/31/15	AAW	07/31/15	
	5. SUNOCO EMERGENCY HOTLINE NUMBER IS #1-800-786-7440.		П			Α	ISSUED FOR REVIEW	RTT	03/30/15	RMB	03/30/15	AAW	03/30/15	
	l	DWG NO		DWG NO	DESCRIPTION	NO.	DESCRIPTION	BY	DATE	СНК	DATE	APP	DATE	


20-INCH HORIZONTAL DIRECTIONAL DRILL WEST BALTIMORE PIKE ROAD


SUNOCO PIPELINE, L.P.

T.	TETRA TECH (303) 792-5911	ROONEY
ت	(303) 792-5911	

PENNSYLVANIA PIPELINE PROJECT

SCALE: 1"=200' DWG. NO: PA-DE-0074.0000-RD

- DESIGN AND CONSTRUCTION:

 1. CONTRACTOR SHALL FIELD VERIFY DEPTH OF ALL EXITING UTILITIES SHOWN OR NOT SHOWN ON THIS DRAWING.

 2. THE MINIMUM SEPARATION DISTANCE FROM EXISTING SUBSURFACE UTILITIES SHALL NOT BE LESS THAN 10 FEET AS MEASURED FROM THE OUTSIDE EDGE OF THE UTILITY TO OUTSIDE OF PROPOSED PIPELINE.

 3. DESIGNED IN ACCORDANCE WITH CFR 49 195 & ASME B31.4

 4. CROSSING PIPE SPECIFICATION:
 HDD HORZ. LENGTH (L=):7700'
 HDD PIPE LENGTH (S=):1716'
 16" x 0.439" W.T., X-70, APISL, PSL2, ERW, BFW
 COATING: 14-16 MILS FBE WITH 30-35 MIL ARO (POWERCRETE R95)

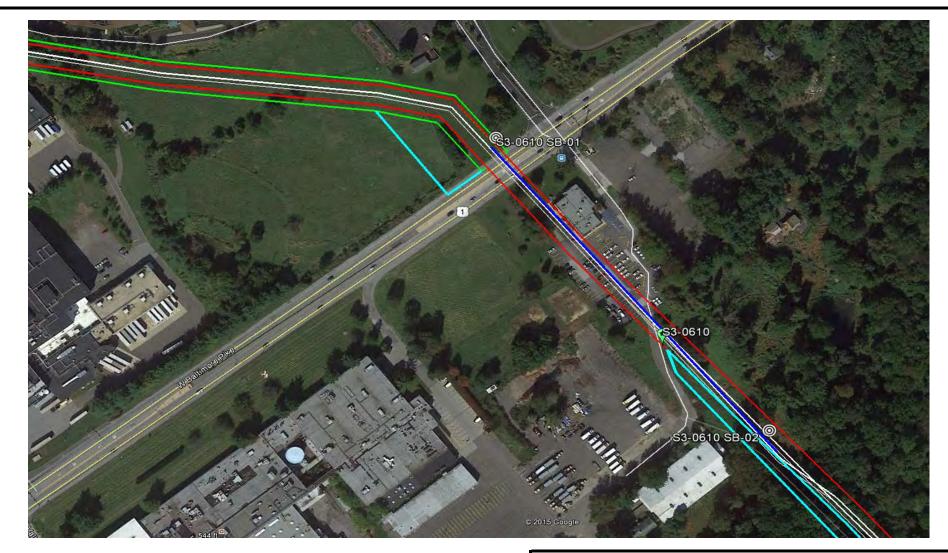
- INTERNAL DESIGN PRESSURE 1480 PSIG (SEAM FACTOR 1.0, DESIGH FACTOR 0.50).
 INSTALLATION METHOD: HORIZONTAL DIRECTIONAL DRILL (HDD).
 PIPELINE WARNING MARKERS SHALL BE INSTALLED ON BOTH SIDES OF ALL ROAD, RAILWAY, AND
 STREAM CROSSINGS.
 CARRIER PIPE NOT ENCASED.
 PIPE / AMBIENT TEMPERATURE MUST BE NO LESS THAN 30°F DURING PULLBACK WITHOUT PRIOR
- WRITTEN APPROVAL FROM THE ENGINEER

 10. CONDUCT 4-HOUR PRE-INSTALLATION HYDROTEST OF HDD PIPE STRING TO MINIMUM 1850 PSIG.

 11. SEE SUNDOCO PENNSYLVANIA PIPELINE PROJECT ESRI WEBMAP FOR ACCESS ROAD ALIGNMENT.

- SUNOCO PIPELINE, L.P.'S HORIZONTAL DIRECTIONAL DRILL INADVERTENT RETURN CONTINGENCY PLAN WILL BE IMPLEMENTED AT ALL TIMES.
 SUNOCO PIPELINE, L.P.'S EROSION AND SEDIMENTATION CONTROL PLAN WILL BE IMPLEMENTED AT ALL TIMES.

				COATING: 14-16 MILS FE	BE WITH	I 30-35 MIL ARO (POWERCRETE R95)						
NOTES		REF. DRAWING				REVISIONS						
1. ALL COORDINATES SHOWN ARE IN LATITUDE AND LONGITUDE. ALL MSL ELEVATIONS ARE NAD83	ES-6.16	то	ES-6.17	EROSION & SEDIMENT PLAN								
STATIONING IS BASED ON HORIZONTAL DISTANCES. ROONEY ENGINEERING, INC. AND SUNOCO PIPELINE, LP ARE NOT RESPONSIBLE FOR LOCATION	SHEET 10	ТО	SHEET 11	AERIAL SITE PLAN								
OF FOREIGN UTILITIES SHOWN IN PLOT PLAN OR PROFILE. THE INFORMATION SHOWN HEREON IS FURNISHED WITHOUT LIABILITY ON THE PART OF ROONEY ENGINEERING, INC. AND SUNOCO PIPELINE					EP1	REVISED PER PADEP COMMENTS	MRS	05/10/16	RMB	05/10/16	AAW	05/10/16
LP, FOR ANY DAMAGES RESULTING FROM ERRORS OR OMISSIONS THEREIN.	L,				EP		MRS	02/26/16	RMB	02/26/16	AAW	02/26/16
4. CONTRACTOR IS RESPONSIBLE FOR LOCATING ALL UTILITIES. CONTACT ONE CALL AT 811 PRIOR TO DIGGING.					В	ADDED GEOTECH INFO	MRS	10/27/15	RMB	10/27/15	AAW	10/27/15
5. SUNOCO EMERGENCY HOTLINE NUMBER IS #1-800-786-7440.					Α	ISSUED FOR BID	MRS	08/31/15	RMB	08/31/15	AAW	08/31/15
	DWG NO		DWG NO	DESCRIPTION	NO.	DESCRIPTION	BY	DATE	CHK	DATE	APP	DATE


Sunoco Logistics

16-INCH HORIZONTAL DIRECTIONAL DRILL WEST BALTIMORE PIKE ROAD PENNSYLVANIA PIPELINE PROJECT

SUNOCO PIPELINE, L.P.

TETRA TECH ROONEY (303) 792-5911

SCALE: 1"=200' DWG. NO: PA-DE-0074.0000-RD-16

LEGEND:

© Geotechnical Soil Boring (SB) Locations

GEOTECHNICAL BORING LOCATIONS
HDD S3-0610
DELAWARE COUNTY, MIDDLETOWN TOWNSHIP, PA
SUNOCO PENNSYLVANIA PIPELINE PROJECT

TETRA TECH

240 Continental Drive, Suite 200 Newark, Delaware 19713 302.738.7551 fax: 302.454.5988

TEST BORING LOG

Project Name:	SUNOCO PENNSYLVANIA PI	UNOCO PENNSYLVANIA PIPELINE PROJECT					
Project Location:	GRANITE FARMS ESTATES,	ROUTE 1, MEDIA, PA	Page 1 of 1				
HDD No.:	S3-0610	Dates(s) Drilled: 10-14-15	Inspector:	E. WATT			
Boring No.:	SB-01	Drilling Method: SPT - ASTM D1586	Driller:	E. ODGEN			
Drilling Contractor:	HAD DRILLING	Groundwater Depth (ft): NOT ENCOUNTERED	Total Depth (ft):	30.0			
Boring Location Coording	nates:	39° 54' 30.01" N	75° 26' 59.91" W				

Domig	70 20 00.01 W											
Sample	Sample	Depth (ft)	Strata D	Depth (ft)	Recov.	E Strata Description of Materials		6" I	ncreme	ent Blo	ws *	N
No.	From	То	From	То	Re	(USCS)	2 cost.pton of materials					<u> </u>
			0.0	0.6			TOPSOIL (7")					<u> </u>
1	3.0	5.0	0.6		13		DR, BROWN AND ORAGNE BROWN MICACEOUS FINE TO MEDIUM	5	6	4	5	10
							SAND WITH SOME SILT.					
2	8.0	10.0			10		DR, GRAY AND WHITE FINE TO MEDIUM MICACEOUS SAND, TRACE	4	9	12	6	21
							SILT, TRACE FINE GRAVEL.					
3	13.0	15.0			19		DR, GRAY AND WHITE FINE TO MEDIUM MICACEOUS SAND, WITH	2	4	7	8	11
						CM	SOME SILT, TRACE FINE GRAVEL. (USCS: SM).					
4	18.0	20.0			20	SM	DR, GRAY AND WHITE FINE TO MEDIUM MICACEOUS SAND, WITH	4	6	9	21	15
							SOME SILT, TRACE FINE GRAVEL.					
5	23.0	24.9			23		DR, BROWN FINE TO MEDIUM MICACEOUS SAND WITH A LITTLE	4	7	22	50/5"	29
							SILT, TRACE FINE GRAVEL.					
6	28.0	30.0			20		DR, BROWN FINE TO MEDIUM MICACEOUS SAND WITH A LITTLE	4	19	44	32	63
				30.0			SILT, TRACE FINE GRAVEL.	1				
								1				
								-				
							CAVED AND DRY AT 25'.	+				-
							S. WES AND SITE AT EC.					
								-				
								+	-	-		
								+				
								+		-		
								 	-	-		-
								-				
								 				
								<u> </u>				
								<u> </u>				
										<u> </u>		
								<u> </u>				
								<u> </u>				

Notes/Comments:

Pocket Pentrometer Testing

DR: DECOMPOSED ROCK

Strata (USCS) Designations are approximated based on visual review, except where indicated in Description of Materials.

* Number of blows of 140 lb. Hammer dropped 30 in. required to drive 2 in. split-spoon sampler in 6 in. increments.

N: Number of blows to drive spoon from 6" to 18" interval.

TETRA TECH

240 Continental Drive, Suite 200 Newark, Delaware 19713 302.738.7551 fax: 302.454.5988

TEST BORING LOG

Project Name:	SUNOCO PENNSYLVANIA PI	UNOCO PENNSYLVANIA PIPELINE PROJECT						
Project Location:	1336 W. BALTIMORE PIKE, M	Page 1 of 1						
HDD No.:	S3-0610	Dates(s) Drilled: 07-08-15	Inspector:	E. WATT				
Boring No.:	SB-02	Drilling Method: SPT - ASTM D1586	Driller:	S. HOFFER				
Drilling Contractor:	HAD DRILLING	Groundwater Depth (ft): NOT ENCOUNTERED	Total Depth (ft):	30.0				
Boring Location Coordi	nates:	39° 54' 22.841" N	75° 26' 52.103" W	I				

Bonning	Location	ii ooolali	iatoo.				10 20 02:100 11					
Sample	Sample	Sample Depth (ft) Strata Depth (ft) Strata Depth (ft) Strata Strata Description of Materials G" Increment Blown G" Incremen		ent Blo	ws *	N						
No.	From	То	From	То	8)	(USCS)		<u> </u>				<u> </u>
			0.0	0.3			TOPSOIL (4")	<u> </u>			<u> </u>	
1	3.0	5.0	0.3		20		DR, BROWN FINE TO MEDIUM MICACEOUS SAND, SOME SILT, TRACE	2	5	7	8	12
							FINE GNEISS ROCK FRAGS.					
2	8.0	10.0			24		DR, BROWN AND LIGHT BROWN FINE TO MEDIUM MICACEOUS SAND,	4	18	12	20	30
						SM	SOME SILT.					
3	13.0	13.8			9	Oivi	DR, BROWN AND LIGHT BROWN FINE TO MEDIUM MICACEOUS SAND,	17	50/4"			>50
							SOME SILT, TRACE FINE GNEISS ROCK FRAGS.					
4	18.0	18.3			3		SAME	50/3"				>50
				22.0								
5	23.0	23.1	22.0		1	≻. 🖫	PARTIALLY WEATHERED GNEISS (F-C SAND AND F-C GRAVEL).	50/1"				>50
						TIALL						
6	28.0	28.0		30.0	<1	PARTIALLY WEATHERED GNEISS	PARTIALLY WEATHERED GNEISS (F-C SAND AND F-C GRAVEL).	50/0"				>50
								1				
								-				
							ABLE TO AUGER TO 30'.	-				
							AUGER GRINDING STARTED AT 15'.	-				
							AUGEN GRINDING STARTED AT 13.		-	-		
							CAVED AND DRAY AT ON	-	-	-		
							CAVED AND DRAY AT 28'.	-				
								<u> </u>			<u> </u>	
								1				
								1				
								+				
									<u> </u>			<u> </u>

Notes/Comments:

Pocket Pentrometer Testing

DR: DECOMPOSED ROCK

Strata (USCS) Designations are approximated based on visual review, except where indicated in Description of Materials.

* Number of blows of 140 lb. Hammer dropped 30 in. required to drive 2 in. split-spoon sampler in 6 in. increments.

N: Number of blows to drive spoon from 6" to 18" interval.

GEOTECHNICAL LABORATORY TESTING SUMMARY SUNOCO PENNSYLVANIA PIPELINE PROJECT HDD \$3-0610

	Test				Water	Percent	Atterburg	Limits (AS	STM D4318)	USCS
HDD	Boring	Sample	Depth of S	ample (ft.)	Content, %	Silts/Clays, %	Liquid	Plastic	Plasticity	Classif.
No.	No.	No.	From	To	(ASTM D2216)	(ASTM D1140)	Limit, %	Limit, %	Index, %	(ASTM D2487)
		1	3.0	5.0	11.3	24.6	-	-	-	-
	SB-01	2	8.0	10.0	6.3	9.1	-	-	-	-
		3	13.0	15.0	11.8	21.7	NL	NP	NV	SM
		5	23.0	24.9	9.5	18.1	-	-	-	-
S3-0610		6	28.0	30.0	8.3	16.0	-	-	-	-
		2	8.0	10.0	9.1	25.2	-	-	-	-
	SB-02	3	13.0	13.8	5.4	29.1	-	-	-	-
	36-02	4	18.0	18.3	4.9	23.2	-	-	-	-
		5	23.0	23.1	9.4	23.6	-	-	-	-

¹⁾ Sample depths based on feet below grade at time of exploration.

REGIONAL GEOLOGY SUMMARY SUNOCO PENNSYLVANIA PIPELINE PROJECT HDD S3-0610

HDD No.	BORING NO.	REGIONAL GEOLOGY DESCRIPTION	GENERAL TOPOGRAPHIC SETTING	BEDROCK FORMATION	GENERAL ROCK TYPE	APPROX MAX FM THICKNESS (FT)	DEPTH TO ROCK (Ft bgs) based on nearby well drilling logs	NOTES /
\$3-0610	SB-01	Felsic gneiss - Light, medium	Gently sloping to the south	Felsic gneiss (Precambrian	Felsic gneiss; Secondary -	Unknown	Ranges from 8 to 24 ft bgs,	
33-0010	SB-02	grained; includes rocks of probable sedimentary origin.	Gently sloping to the west	age)	paragneiss		Avg. 12 ft bgs (.5 mile radius)	

<u>Note</u>: Source of well log data - http://www.dcnr.state.pa.us/topogeo/groundwater/pagwis/records/index.htm. All other sources as referenced in comments section.

FIELD DESCRIPTION AND LOGGING SYSTEM FOR SOIL EXPLORATION

GRANULAR SOILS

(Sand, Gravel & Combinations)

<u>Density</u>	N (blows)*	Particle S	ize Identifica	tion
Very Loose	5 or less	Boulders	8 in. diame	
Loose	6 to 10			
Medium Dense	11 to 30	Cobbles	3 to 8 in. di	
Dense	31to 50	Gravel	Coarse (C)	3 in. to ¾ in. sieve
Very Dense	51 or more		Fine (F)	¾ in. to No. 4 sieve
very bense	51 01 more	Sand	Coarse (C)	No. 4 to No. 10 sieve
				(4.75mm-2.00mm)
Relative Proporti	ons		Medium	No. 10 to No. 40 sieve
Description Term	<u>Percent</u>		(M)	(2.00mm – 0.425mm)
Trace	1 - 10		Fine (F)	No. 40 to No. 200 sieve
Little	11 - 20		(. /	(0.425 – 0.074mm)
Some	21 - 35	Silt/Clay	Less Than a	No. 200 sieve (<0.074mm)
And	36 - 50	Site, ciay	2000 111011 0	110. 200 5.616 (10.07 11111)

COHESIVE SOILS

(Silt, Clay & Combinations)

Consistency	N (blows)*	Plasticity	
Very Soft	3 or less	<u>Degree of Plasticity</u>	Plasticity Index
Soft	4 to 5	None to Slight	0 - 4
Medium Stiff	6 to 10	Slight	5 - 7
Stiff	11 to 15	Medium	8- 22
Very Stiff	16 to 30	High to Very High	> 22
Hard	31 or more	, ,	

ROCK (Rock Cores)

Rock	Rock
Quality Designation	Quality <u>Descripti</u>
(RQD), %	<u>on</u>
0-25	Very Poor
25-50	Poor
50-75	Fair
75-90	Good
90-100	Excellent

*N - Standard Penetration Resistance. Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 18 inches into undisturbed soil with a 140 pound hammer free falling a distance of 30.0 inches. The number of hammer blows to drive the sampler through each 6 inch interval is recorded; the number of blows required to drive the sampler through the final 12 inch interval is termed the Standard Penetration Resistance (SPR) N-value. For example, blow counts of 6/8/9 (through three 6-inch intervals) results in an SPR N-value of 17 (8+9).

Groundwater observations were made at the times indicated. Groundwater elevations fluctuate throughout a given year, depending on actual field porosity and variations in seasonal and annual precipitation.

UNIFIED SOIL CLASSIFICATION SYSTEM [Casagrande (1948)]

Major Divisions			Group Symbols	Typical Descriptions	Laboratory Classifications			
Coarse Grained Soils (More than half of material is larger than No. 200 sieve)	Gravels More than half of coarse fraction is larger than No. 4 sieve size	Clean gravel (Little or no fines)	GW	Well-graded gravels, gravel- sand mixtures, little or no fines	Determine Percentage of sand and gravel from grain size curve. Depending on Percentage of fines (fraction smaller than No. 200 sieve), coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP More than 12 percent GM. GC, SM, SC 5 to 12 percent Borderline cases requiring dual symbols ⁽¹⁾	nbols ⁽¹⁾	$C_{u=\frac{D_{60}}{D_{10}}} \text{ greater than 4:} C_{c=\frac{(D_{30})2}{D_{10} \times D_{60}}} \text{ between 1 and 3}$	
			GP	Poorly graded gravels, gravel- sand mixtures, little or no fines		ng dual syr	Not meeting C_u or C_c requirements for GW	
		Gravel with fines (Appreciable amount of fines)	GM	Silty gravels, gravel-sand-silt mixtures		W, GP, SW, SP M. GC, SM, SC forderline cases requiri	Atterberg limits below A Line or I p less than 4	Limits plotting in hatched zone with I p between 4 and 7 are borderline cases requiring use of dual symbols
			GC	Clayey gravels, gravel-sand-clay mixtures			Atterberg limits above A line with I p greater than 7	
	Sands (More than half of coarse fraction is smaller than No. 4 Sieve)	Clean sands (Little or no fines)	sw	Well graded sands, gravely sands, little or no fines			$C_{u=\frac{D_{60}}{D_{10}}}$ greater than 6: $C_{c=\frac{1}{L}}$	(D ₃₀)2 D ₁₀ x D ₆₀ between 1 and 3
			SP	Poorly graded sands, gravelly sands, little or no fines		Less than 5 More than 12 5 to 12	Not meeting C_u or C_c require	ments for SW
		Sands with fines (Appreciable amount of fines)	SM	Silty sands, sand- silt mixtures	Determ Jepending		Atterberg limits below A Line or I p less than 4	Limits Plotting in hatched
			SC	Clayey sands, sand-clay mixtures			Atterberg limits above A line with I p greater than 7	
Major Divisions		Group Symbols	Typical Descriptions		For soils p When w _{l.}	lotting nearly is near 50 us	on A line use dual symbols i.e ., l p e CL-CH or ML-MH. Take near as	= 29.5, w _L =60 gives CH-MH. ± 2 percent.
Fine-grained soils (More than half of material is smaller than No. 200 sieve)	Silts and clays (Liquid limit less than 50)	ML	sands, rock fl	s and very fine lour, silty or clayey r clayey silts with iy	60 A Line:			
		CL	Inorganic clays of low to medium plasticity, gravelly clays , sandy clays, silty clays, lean clays		PI = 0.73(LL - 20) U Line: PI = 0.9(LL - 8)			
		OL	Organic silts clays of low	and organic silty plasticity	% (PI), %	0		, or Or
	Silts and Clays (Liquid limit greater than 50)	мн		s, micaceous or s fine sandy or silty silts	Plasticity Index (PI), %		Juge / F	MH or OH
		СН	Inorganic clays of high plasticity, fat clays		Plasi		Character	
		ОН	Organic clays of medium to high plasticity, organic silts		7		ML or OL	0 70 80 90 100
	Highly organic soils	Pt	Peat and othe	er highly organic			Liquid Limit (LL	

⁽¹⁾ Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC. well-graded gravel-sand mixture with clay binder.