

November 13, 2015 103IP3406

Mr. Uriah Sowell Rooney Engineering 115 Inverness Drive East, Suite 300, Englewood, CO 80112

Subject: Infiltration Testing - Schaefferstown Tie-In Valve Site

Sunoco Pennsylvania Pipeline Project Lebanon County, Heidelberg Township

Dear Mr. Sowell:

Tetra Tech, Inc. (Tetra Tech) performed infiltration testing within proposed stormwater management feature areas at the proposed Schaefferstown Tie-In Valve Site in Heidelberg Township, Commonwealth of Pennsylvania. This letter report summarizes results of the infiltration testing.

Two double-ring constant head infiltration tests were performed at the site on September 15, 2015, in accordance with ASTM International (ASTM) D3385; locations of the tests are shown in Attachment 1. The project Civil Engineer directed that infiltration testing occur near the existing ground surface, below the surficial topsoil horizon. Prior to infiltration testing, a hand auger soil boring was advanced adjacent to each test location to log lithology, inspect for evidence of seasonal high water table, and collect representative soil samples.

Soil borings were advanced by use of a hand-held auger, and subsurface conditions were logged. Boring logs (Attachment 2) include soil data obtained from the explorations. Bedrock and groundwater were not encountered within 2 feet of the infiltration test. The underlying geology is an undifferentiated Limestone fanglomerate, Triassic limestone and dolomite pebbles and fragments in a red, very fine grained quartz matrix. A soil sample was collected at each of the two infiltration test depths. The samples were inspected and described visually in Tetra Tech's geotechnical laboratory. A Percent Finer than a No. 200 Sieve Test (ASTM D1140) was performed to measure the amount of silt and clay particulate in the soil samples. An Atterberg Limit Test (ASTM D4318) was conducted to aid in classification of the soils. Results of the grain-size analysis and Atterberg Limits testing were referenced to determine the Unified Soil Classification System (USCS) designation for the soils encountered at the infiltration test depth. A summary of the laboratory testing results is in Attachment 3.

Infiltration testing via a double-ring, constant head testing method occurred at each test location; the procedure for this test method is described in Attachment 4. Results from the infiltration testing are summarized in the attached Infiltration Testing Tables (Attachment 5). Table 1 summarizes investigation and testing depths, results of the infiltration testing, and USCS classifications and descriptions of soils at the infiltration test depths.

TABLE 1 SUMMARY OF RESULTS FROM INFILTRATION INVESTIGATION

Infiltration Test Location	Infiltration Test Depth (inches)	Off-Set Soil Boring Depth (inches)	Infiltration Testing Results (inches/hour)	USCS Classification ⁽¹⁾ at Test Depth	Generalized Description of Soils at Test Depth
IT-01	5	40	5.51	SM	Reddish brown fine to medium sand, some silt, trace fine to coarse gravel.
IT-02	5	43	3.97	SM	Reddish brown fine to medium sand, some silt, tract fine to coarse gravel.

Tetra Tech's services accorded with generally accepted engineering practice. No warranty, expressed or implied, is given. We appreciate the opportunity to provide our professional services to you. If you have any questions regarding the testing we performed, please contact me at (302) 283-2274, or via E-mail at ralph.boedeker@tetratech.com.

Sincerely,

Ralph Boedeker

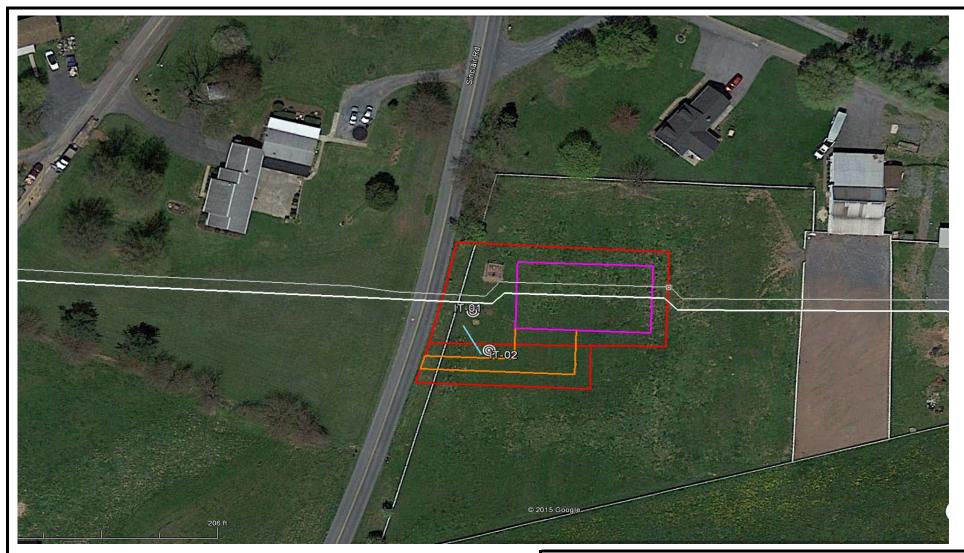
Ralph Boedeker, P.E. Geotechnical Project Manager

cc: Karen Gleason (Tetra Tech - Pittsburgh)

Attachments

Attachment 1: Infiltration Test Locations

Attachment 2: Soil Boring Logs


Attachment 3: Laboratory Testing Summary

Attachment 4: Constant Head Double Ring Infiltration Test Procedures

Attachment 5: Infiltration Testing Tables

Infiltration Test Locations

LEGEND:

(IT) Infiltration Test Locations

INFILTRATION TEST LOCATIONS
SCHAEFFERSTOWN TIE IN VALVE SITE
LEBANON COUNTY, HEIDELBERG TOWNSHIP, PA
SUNOCO PENNSYLVANIA PIPELINE PROJECT

Soil Boring Logs

INFILTRATION TESTING SOIL LOG

Project: <u>S</u>	Sunoco PPP - Schaefferstown Tie I	In Valve Site Equipment Used:	Infiltration Testing Equipment/Hand Auger
Project No.: 1	103IP3406	Weather:	Sunny
Boring/Pit No.: I	T-01	Geology:	
Tested by:	Tetra Tech/Hynes	Land Use:	N/A

	Upper	Lower	Soil Textural		6 110 1	Color	Pores, Roots, Rock	Depth to		
Horizon	Boundary	Boundary	Class	Description	Soil Color	Patterns	Structure	Bedrock	Depth to Water	Comments
	0''	5"	topsoil	topsoil	brown	solid	roots present			
	5"	40"	SIM	fine to medium sand, some silt, trace f-c gravel	reddish brown	solid		Not Encountered	Not Encountered	%<200: 24.1 at test depth

INFILTRATION TESTING SOIL LOG

Project: <u>S</u>	Sunoco PPP - Schaefferstown Tie I	n Valve Site Equipment Used:	Infiltration Testing Equipment/Hand Auger
Project No.: 1	.03IP3406	Weather:	Sunny
Boring/Pit No.: 17	T-02	Geology:	
Tested by: T	etra Tech/Hynes	Land Use:	N/A

Horizon	Upper Boundary	Lower Boundary	Soil Textural Class	Description	Soil Color	Color Patterns	Pores, Roots, Rock Structure	Depth to Bedrock	Depth to Water	Comments
	0''	5"		topsoil	brown	solid	roots present			
	5"	43"	N/I	fine to medium sand, some silt, trace f-c gravel	reddish brown	solid		Not Encountered	Not Encountered	%<200: 23.4 at test depth

Laboratory Testing Summary

GEOTECHNICAL LABORATORY TESTING SUMMARY SUNOCO PENNSYLVANIA PIPELINE PROJECT SCHAEFFERSTOWN TIE IN VALVE SITE

	Soil		Water	Percent	Atterburg	TM D4318)	USCS	
Valve	Boring	Sample	Content, %	Silts/Clays, %	Liquid	Plastic	Plasticity	Classif.
Site	No.	No.	(ASTM D2216)	(ASTM D1140)	Limit, %	Limit, %	Index, %	(ASTM D2487)
Gates Road	IT-01	IT-01	11.8	24.1	29	24	5	SM
Gales Road	IT-02	IT-02	9.8	23.4	NL	NP	NV	SM

Notes:

1) Sample depths based on feet below grade at time of exploration.

UNIFIED SOIL CLASSIFICATION SYSTEM [Casagrande (1948)]

	Major Divisi	ons	Group Symbols	Typical Descriptions			Laboratory Classification	ons				
	n is larger	Clean gravel (Little or no fines)	GW	Well-graded gravels, gravel- sand mixtures, little or no fines		$C_{u=\frac{D_{60}}{D_{10}}} \text{ greater than 4: } C_{c=\frac{(D_{30})2}{D_{10} \times D_{60}}} \text{ between}$						
(6)	Gravels More than half of coarse fraction is larger than No. 4 sieve size	Clean (Little or	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	curve. 00 sieve),	Gw, GP, Sw, SP GM. GC, SM, SC Borderline cases requiring dual symbols ⁽¹⁾	Not meeting C _u or C _c requiren	nents for GW				
o. 200 sieve	Gra n half of co than No. 4	Gravel with fines (Appreciable amount of fines)	GM	Silty gravels, gravel-sand-silt mixtures	grain size (than No. 2	/, SP , SC ases requiri	Atterberg limits below A Line or I p less than 4	Limits plotting in hatched zone with 1 p between 4 and 7 are				
d Soils ger than No	More tha	Gravel v (Appre amount	GC	Clayey gravels, gravel-sand-clay mixtures	gravel from tion smaller assified as fo	W, GP, SW M. GC, SM orderline ca	Atterberg limits above A line with I p greater than 7	borderline cases requiring use of dual symbols				
Coarse Grained Soils f material is larger tha	Sands (More than half of coarse fraction is smaller than No. 4 Sieve)	ands io fines)	sw	Well graded sands, gravely sands, little or no fines	of sand and of fines (fraced soils are cla		$C_{u=\frac{D_{60}}{D_{10}}}$ greater than 6: $C_{c=\frac{1}{L}}$	(D ₃₀)2 D ₁₀ x D ₆₀ between 1 and 3				
Coarse Grained Soils (More than half of material is larger than No. 200 sieve)		Clean sands (Little or no fines)	SP	Poorly graded sands, gravelly sands, little or no fines	Determine Percentage of sand and gravel from grain size curve. Depending on Percentage of fines (fraction smaller than No. 200 sieve), coarse-grained soils are classified as follows:	Less than 5 percent More than 12 percent 5 to 12 percent	Not meeting C_u or C_c requirements for SW					
N)		n fines able fines)	SM	Silty sands, sand- silt mixtures	Determ Jepending		Atterberg limits below A Line or I p less than 4	Limits Plotting in hatched				
		Sands with fines (Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures			Atterberg limits above A line with I p greater than 7	zone with I p between 4 and 7 are borderline cases requiring use of dual symbols				
Major	Divisions	Group Symbols	Туріса	Descriptions	For soils p When w _{l.}	lotting nearly is near 50 us	on A line use dual symbols i.e ., l p e CL-CH or ML-MH. Take near as	= 29.5, w _L =60 gives CH-MH. ± 2 percent.				
	ıys han 50)	ML	sands, rock fi	s and very fine lour, silty or clayey r clayey silts with iy	60	O A Line:						
200 sieve)	Silts and clays Jimit less than 50)	CL	plasticity, gra	ys of low to medium velly clays , sandy ays, lean clays	5(U Line:	1 1	Or I				
is r than No.	Silt (Liquid li	OL	Organic silts clays of low	and organic silty plasticity	% (PI), %	0		, or Or				
Fine-grained soils (More than half of material is smaller than No. 200 sieve)	iquid limit 50)	мн		s, micaceous or s fine sandy or silty silts	Plasticity Index (PI), %		Juge / F	MH or OH				
Fin half of mat	Silts and Clays (Liquid limit greater than 50)	СН	Inorganic clar	ys of high plasticity,	Plasi		Cretor					
(More than	Silts ar 9	ОН	Organic clays	s of medium to high anic silts	7		ML or OL	0 70 80 90 100				
	Highly organic soils	Pt	Peat and othe	er highly organic			Liquid Limit (LL					

⁽¹⁾ Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC. well-graded gravel-sand mixture with clay binder.

Constant Head Double Ring Infiltration Test Procedures

Constant Head Double Ring Infiltration Test

Tools and Supplies:	Tools	and	Sup	plies:
----------------------------	--------------	-----	-----	--------

125 gallons of clean water per test	Driving Block and Cap
Two infiltrometers per test	Purge Pump and tubing
One 12" ring per test	Battery
One 24" ring per test	Backhoe (for tests greater than 2 feet)
Splash Guard	Gator/ATV (as necessary
Shovels Flat/Round	Hand Auger (with extensions)
Hand Rake	Thermometer
Sledge Hammer	Supply bucket (1/2 inch PVC, tubing,
	funnel extra valves)

Procedure:

- **A.** Unless directed otherwise, advance one soil boring at each test location. The boring should extend to groundwater. Accurately measure depth to groundwater and depth of each soil change. Pay close attention to soils for mottling. Contact office to determine test depth. Note this step can be omitted if test borings were advanced during a previous site visit.
- **B.** Excavate test pit to specified test depth. Test pit should be sloped or benched in accordance with OSHA standards. (For safety two people will be onsite for tests deeper than 4 feet).
- C. Use Flat point shovel to grade bottom of test pit. Bottom of excavation should be flat but not compacted. Check boring log to ensure that soil at bottom of excavation is soil type to be tested. (Collect and bag sample of soil at the bottom of the excavation) Include soil description and classification on worksheet.

D. Set up infiltrometer:

- 1. Set 24" ring at bottom of excavation.
- 2. Using driving block drive (ring) 3 to 4 inches into the ground (Record penetration depth).
- 3. Set 12" ring at bottom of excavation centered in 24" ring.
- 4. Using driving block drive (ring) 2 to 3 inches into the ground (Leave 12" ring approximately 1 inch higher than 24" ring.) (Record penetration depth)
- 5. Lightly tamp disturbed soil along inside and outside edges of rings. Do not compact soil at the bottom of the hole.
- 6. Use hand rake to scarify soils within the test rings.
- 7. Install drop tubes on infiltrometers.
- 8. Measure distance from bottom of drop tube to soil. Should be 5 to 6 inches. Record on attached form. Should be $\pm \frac{1}{4}$ inch between two rings

Constant Head Double Ring Infiltration Test

- 9. Set stand and infiltrometer on each ring.
 - a. Make sure infiltrometers are oriented so that bottom valve is easy to reach.
 - b. Measure distance from bottom of drop tube to soil. Should be 5 to 6 inches. Record as Hc on attached form.

E. Fill infiltrometer and ring.

- 1. Use pump, battery to transfer water to test set up as necessary.
- 2. Be sure bottom valves are closed and all top valves are open.
- 3. Fill infiltrometers through top valve to 0 L mark.
- 4. Place splash guard within rings to prevent soil scouring.
- 5. Fill rings until water reaches the bottom of the drop tube.
- 6. Water level should be $+\frac{1}{4}$ inch between two rings.
- 7. Remove splash guard.

F. Start Test

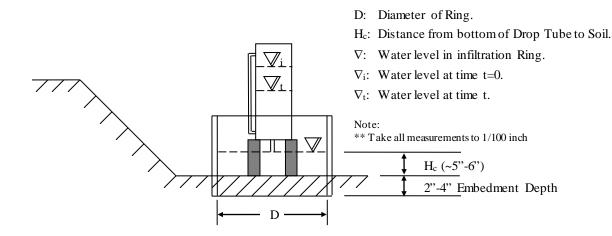
- 1. Close all upper valves.
- 2. Open bottom valves.
- 3. Record water level (in milliliters) in sight windows on attached form. Observe water from vantage point that is approximately level with the water in the sight glass. Please note that markings on PVC casing are for reference only. Do not use these marks when observing water level.
- 4. Record time on attached form.

G. Monitor Test

- 1. Record water level in sight window and time on attached form.
- 2. Readings should be taken every 15 minutes for the 1st hour, 30 minutes for the second hour and every hour there after.
- 3. Do not allow water to drop below sight window at any time during testing.
- 4. Test duration is a minimum of 5 hours.
- 5. Refill test set up as necessary (When the water level reaches a point which will not allow another reading without running out.)
 - a. Close bottom valves.
 - b. Open top valves.
 - c. Fill infiltrometers through top valve to 0 L mark.
 - d. Record time and water level before and after filling.
 - e. Close top two valves.
 - f. Open bottom valve.
- 6. Test can be terminated when two successive permeability rates do not vary by more than 10%.

Constant Head Double Ring Infiltration Test

H. Calculations


Inner Ring: $V_{IR} = \Delta V_{IR} / (A_{IR} * \Delta T)$ Annular Space: $V_A = \Delta V_A / (A_A * \Delta T)$

V= infiltration velocity (cm/h)

 ΔV = volume of liquid used during time interval (cm³)

 ΔT = time interval in h

A= internal area of ring or annular space (cm²)

Infiltration Testing Tables

Tt Double Ring Infiltration Test												
Location:		IT-01		Project Name	e:	PPP-Schaeffer	stown Tie In	Valve Site	Date:	Septembe	r 15, 2015	
Inner Ring D	Diameter:	12	inch	Soil Tempera				degrees	Outer Ring I		2.00	inches
Inner Ring A		729.7	cm^2	Water Tempo				degrees	Inner Ring F		3.00	inches
Outer Ring I	Diameter:	24	inch	Inner Ring Li	quid Depth:		3.00	inches	Test Depth:		0.5	feet
Annular Spa		2189	cm^2		nular Space Liquid Depth: 2.50 inches						JR/AB	
				=					8			
Trial	Start/End	Date	Time	delta-Time				Incrementa	l Infiltration	Notes		
					Time	Inner	Ring	Annula	r Space	Inner	Outer]
						Reading	Flow	Reading	Flow	Ring	Ring	
				(min)	(min)	(ml)	(ml)	(ml)	(ml)	(in/hr)	(in/hr)	
1	S	9/15/15	7:30	15	15	8250	1750	11750	3,750	0.00	0.00	
'	Е	9/15/15	7:45	15	13	10,000	1730	15,500	3,730	0.00	0.00	
2	S	9/15/15	7:45	15	30	10,000	3,250	15,500	3,750	7.0144	2.6978	
	E	9/15/15	8:00	,,		13,250	0,200	19,250	3,700	7.0144	2.0070	
3	S	9/15/15	8:00	15	45	13,250	2,500	0	9,000	5.3957	6.4748	Refilled Outer Annulus to
	E	9/15/15	8:15	,,,		15,750	_,500	9,000	3,300	0.0007	0	0 mL
4	S	9/15/15	8:15	15	60	15,750	2,750	9,000	7,500	5.9353	5.3957	
	E	9/15/15	8:30			18,500	,	16,500	,			
5	S	9/15/15	8:30	15	75	0	2,750	16,500	3,250	5.9353	2.3381	Refilled Inner Ring to 0
	E	9/15/15	8:45			2,750		19,750	-			mL Defilled Outer Associate
6	S E	9/15/15	8:45	15	90	2,750	4,000	2,500	2,500	8.6331	1.7986	Refilled Outer Annulus to 0 mL
	S	9/15/15 9/15/15	9:00 9:00			6,750 6,750		2,500				U ML
7	E	9/15/15	9:00	15	105	8,500	1,750	8,750	6,250	3.7770	4.4964	
	S	9/15/15	9:15			8,500		8,750				
8	E	9/15/15	9:30	15	120	9,250	750	19,000	10,250	1.6187	7.3741	
	S	9/15/15	9:30			9,250		0				Refilled Outer Annulus to
9	E	9/15/15	9:45	15	135	10,250	1,000	4,000	4,000	2.1583	2.8777	0 mL
	S	9/15/15	9:45			10,250		4,000				
10	E	9/15/15	10:00	15	150	13,750	3,500	9,750	5,750	7.5540	4.1367	
4.4	S	9/15/15	10:00	45	405	13,750	2.050	9,750	0.050	7.04.44	4.4004	
11	E	9/15/15	10:15	15	165	17,000	3,250	16,000	6,250	7.0144	4.4964	
12	S	9/15/15	10:15	15	180	17,000	2,500	16,000	3,000	5.3957	2.1583	
12	Е	9/15/15	10:30	13	100	19,500	2,300	19,000	3,000	5.5957	2.1303	
13	S	9/15/15	10:30	15	195	0	1,250	0	1,500	2.6978	1.0791	Refilled Inner Ring to 0 mL,
10	E	9/15/15	10:45	10	100	1,250	1,200	1,500	1,500	2.0070	1.0701	Outer Annulus to 0 mL
14	S	9/15/15	10:45	15	210	1,250	2,750	1,500	6,750	5.9353	4.8561	
	E	9/15/15	11:00	'-		4,000	_,. ••	8,250	=,,.00	111000		
15	8	9/15/15	11:00	15	225	4,000	2,500	8,250	5,000	5.3957	3.5971	
	E	9/15/15	11:15			6,500	,,,,,	13,250	-,			
16	S	9/15/15	11:15	16	241	6,500	3,000	13,250	6,250	6.0701	4.2154	
	E S	9/15/15	11:30			9,500	•	19,500				Pofillad Outer Associate
17	S E	9/15/15	11:30 11:45	15	256	9,500 13,000	3,500	0 5,250	5,250	7.5540	3.7770	Refilled Outer Annulus to
-	S	9/15/15 9/15/15		+				5,250	-			0 mL
18	E E	9/15/15	11:45 12:00	15	271	13,000 16,250	3,250	9,500	4,250	7.0144	3.0576	
	S	9/15/15	12:00	+		16,250		9,500	+	+		+
19	E	9/15/15	12:00	15	286	18,750	2,500	14,750	5,250	5.3957	3.7770	
	S	9/15/15	12:15			18,750		14,750				
20	E	9/15/15	12:13	15	301	19,250	500	17,750	3,000	1.0791	2.1583	
		0/10/10	12.00			10,200		17,700	<u> </u>	<u> </u>		

S	Tt Double Ring Infiltration Test												
Inner Ring Area:	Location:		IT-02		Project Nam	e:	PPP-Schaeffer	rstown Tie In	Valve Site	Date:	Septembe	r 15, 2015	
Inner Ring Area:	Inner Ring [Diameter:	12	inch						Outer Ring I		•	inches
Duter Ring Diameter: Annular Space Area: 2189 cm² Annular Space Liquid Depth: 4.00 nches Test Depth: Technician: JR/AB				cm^2	Water Temperature: degrees In				Inner Ring F	enetration:		inches	
Annular Space Area: 2189 cm²2 Annular Space Liquid Depth: 4.00 Inches Technician: JRAB	Outer Ring	Diameter:	24		Inner Ring Liquid Depth: 3.00 inches To				Test Depth:		0.5	feet	
Time Inner Ring Annular Space Inner Outer Ring			2189	cm^2	Annular Spa	Annular Space Liquid Depth: 4.00 inches Te						JR/AB	
Time Inner Ring Annular Space Inner Outer Ring					-					-			
Time Inner Ring Annular Space Inner Outer Ring	Trial	Start/End	Date	Time	delta-Time	delta-Time Elapsed		Flow R	Readings		Incrementa	l Infiltration	Notes
1 S 9/15/15 7.30 15 15 15 15 15 10,250 750 7500 9,500 0.00 0.00 2 E 9/15/15 7.45 15 30 12,500 17,000 9,500 0.00 3.7770 8.9928 Refilled annulus to 0 ml 3 S 9/15/15 8.00 15 30 12,000 1,750 0 12,500 3.7770 8.9928 Refilled annulus to 0 ml 3 S 9/15/15 8.15 15 45 13,500 1,500 19,750 7,250 3.2374 14,0288 Refilled annulus to 0 ml 4 S 9/15/15 8.35 15 45 13,500 1,500 19,500 19,500 3.2374 14,0288 Refilled annulus to 0 ml 5 S 9/15/15 8.35 15 75 15,000 2,000 19,750 4.3165 14,2086 Refilled annulus to 0 ml 6 S 9/15/15 8.35 15 90 17,000 1,500 19,750 0.2000 3.2374 1.4388 Refilled annulus to 0 ml 7 S 9/15/15 9.00 15 10 15 250 250 2,000 4,250 0.5396 3.0576 Refilled inner ring to 0 ml 8 S 9/15/15 9.35 15 120 250 750 6,250 11,000 8,000 1.0791 5,7554 9 S 9/15/15 9.45 15 15 15 15 15 15 15						Time	Inner	Ring		r Space	Inner	Outer	
S							Reading	Flow	Reading	Flow	Ring	Ring	
The control of the					(min)	(min)		(ml)		(ml)	(in/hr)	(in/hr)	
2 S 9/15/15 7-45 15 30 10,250 1,750 12,500 3,7770 8,9928 Refilled annulus to 0 ml 3 S 9/15/15 8:00 15 45 12,000 1,500 12,500 7,250 3,2374 5,2158 4 S 9/15/15 8:30 15 60 13,500 1,500 19,750 3,2374 14,0288 Refilled annulus to 0 ml 5 S 9/15/15 8:45 15 75 15,000 2,000 19,750 4,3165 14,2086 Refilled annulus to 0 ml 6 S 9/15/15 8:45 15 75 17,000 2,000 19,750 4,3165 14,2086 Refilled annulus to 0 ml 7 S 9/15/15 9:00 15 90 16,500 1,500 2,000 3,2374 1,4388 Refilled annulus to 0 ml 7 S 9/15/15 9:00 15 90 16,500 1,500 2,000 3,2374 1,4388 Refilled annulus to 0 ml 8 S 9/15/15 9:00 15 90 16,500 1,500 2,000 3,2374 1,4388 Refilled annulus to 0 ml 8 S 9/15/15 9:00 15 90 16,500 1,500 2,000 3,2374 1,4388 Refilled annulus to 0 ml 9 S 9/15/15 9:15 15 105 0 0 2,000 3,2374 1,4388 Refilled annulus to 0 ml 8 S 9/15/15 9:15 15 105 0 0 2,000 4,250 0,5396 3,0576 Refilled inner ring to 0 ml 8 S 9/15/15 9:15 15 105 0 0 2,000 11,000 4,750 1,6187 3,4173 1,6187 3,4187 3,4187 3,4187 3,4187 3,4187 3,4187 3,4187 3,4187 3,4187 3,4187	1				15	15		750		9 500	0.00	0.00	
2					10	10		700		0,000	0.00	0.00	
S 9/15/15 8:00 12,000 12,500	2			7:45	15	30		1.750	0	12.500	3.7770	8.9928	Refilled annulus to 0 mL
S									12,500	,			
4 S 916/15 8:15 15 60 13,500 1,500 19,500 19,500 3,2374 14,0288 Refilled annulus to 0 ml 5 S 916/15 8:30 15 75 15,000 2,000 19,750 4,3165 14,2086 Refilled annulus to 0 ml 6 S 916/15 8:45 15 90 17,000 1,500 1,500 2,000 2,000 3,2374 14,0288 Refilled annulus to 0 ml 7 S 916/15 9:00 15 90 17,000 2,000 1,500 2,000 3,2374 1,4388 Refilled annulus to 0 ml 8 S 916/15 9:00 15 90 250 2,000 2,000 3,2374 1,4388 Refilled annulus to 0 ml 7 S 916/15 9:00 15 105 0 250 2,000 4,250 0,5396 3,0576 Refilled inner ring to 0 m 8 S 916/15 9:15 15 105 250 750 1,1000 1,000	3				15	45		1.500	12,500	7.250	3.2374	5.2158	
Fig.					_			,		,			
S	4				15	60		1,500	0	19,500	3.2374	14.0288	Refilled annulus to 0 mL
S										•			
6 S 9/15/15 8.45 15 90 17,000 1,500 0 2,000 3,2374 1,4388 Refilled annulus to 0 ml 7 S 9/15/15 9:00 15 105 0 250 2,000 4,250 0,5396 3,0576 Refilled inner ring to 0 ml 8 S 9/15/15 9:15 15 120 250 6,250 4,250 0,5396 3,0576 Refilled inner ring to 0 ml 9 S 9/15/15 9:30 15 120 250 6,250 4,750 1,6187 3,4173 9 S 9/15/15 9:30 15 135 1,000 500 11,000 4,750 1,6187 3,4173 10 S 9/15/15 9:30 15 135 1,500 0 11,000 1,0791 5,7554 10 E 9/15/15 9:45 15 15 15 15 15 15 15 15 15 1	5				15	75		2,000		19,750	4.3165	14.2086	Refilled annulus to 0 mL
The color of the													
7 S 9/15/15 9:00 15 105 250 250 2,000 4,250 0.5396 3.0576 Refilled inner ring to 0 m 8 S 9/15/15 9:15 15 120 250 750 6,250 4,750 1.6187 3.4173 9 S 9/15/15 9:30 15 120 250 750 11,000 4,750 1.6187 3.4173 9 S 9/15/15 9:30 15 135 1,000 500 11,000 8,000 1.0791 5.7554 10 S 9/15/15 9:45 15 15 1,500 0 0 8,250 0.0000 5.9353 Refilled annulus to 0 ml 11 S 9/15/15 10:00 15 165 1,500 1,000 8,250 8,250 0.0000 5.9353 Refilled annulus to 0 ml 12 S 9/15/15 10:15 15 180 2,500 2,500 10,700 7,000	6				15	90	17,000	1,500	2,000	2,000	3.2374	1.4388	Refilled annulus to 0 mL
Refilled annulus to 0 ml S 9/15/15 10:30 15 15 120 250 250 6.250 4,250 0.5396 3.0576 Refilled inner ring to 1 ml													
8 S 9/15/15 9:15 15 120 250 750 6,250 4,750 1.6187 3.4173 9 S 9/15/15 9:30 15 135 1,000 500 11,000 8,000 1.0791 5.7554 10 S 9/15/15 9:45 15 150 1,500 0 0 8,250 0.0000 5.9353 Refilled annulus to 0 ml 11 S 9/15/15 10:00 15 165 1,500 1,000 8,250 0.0000 5.9353 Refilled annulus to 0 ml 11 S 9/15/15 10:00 15 165 1,500 1,000 8,250 0.0000 5.9353 Refilled annulus to 0 ml 12 E 9/15/15 10:10 15 165 2,500 1,000 19,000 10,750 2.1583 7.7338 12 E 9/15/15 10:35 15 180 5,000 7,000 7,000 5.9567 5.0360	7				15	105	250	250		4,250	0.5396	3.0576	Refilled inner ring to 0 mL
S				9:15					6.250				
9 S 9/15/15 9:30 15 135 1,000 500 11,000 8,000 1.0791 5.7554 10 S 9/15/15 9:45 15 15 15 15 15 15 15 15 15 15 15 15 15	8				15	120		750		4,750	1.6187	3.4173	
S 9/15/15 9:45 15 150 1,500 0 0,000 1.0/91 5.794	_												
10	9			9:45	15	135		500		8,000	1.0791	5.7554	
11	40				45	450		0		0.050	0.0000	5 0050	Defilled envilve to 0 ml
11	10		9/15/15	10:00	15	150		0	8,250	8,250	0.0000	5.9353	Refilled annulus to 0 mL
12 S 9/15/15 10:15 10:15 15 256 18,000 2,500 7,000 7,000 5.3957 5.0360 Refilled annulus to 0 ml 13 S 9/15/15 10:30 15 195 5,000 1,000 7,000 12,000 2.1583 8.6331 14 S 9/15/15 10:45 15 210 7,000 1,500 6,000 6,000 3.2374 4.3165 Refilled annulus to 0 ml 15 S 9/15/15 11:15 15 225 8,500 4,500 6,000 6,000 3.2374 4.3165 Refilled annulus to 0 ml 16 S 9/15/15 11:15 15 225 8,500 4,500 6,000 6,000 12,250 9.7122 4.4964 17 S 9/15/15 11:30 16 241 13,000 18,750 6,500 10.1169 4.3840 18,000 10.2518 2.8777 Refilled inner ring to 11000 ml 18 S 9/15/15 11:45 15 226 18,250 2,500 4,000 4,000 10.2518 2.8777 Refilled inner ring to 11000 ml 18 S 9/15/15 11:45 15 286 18,250 500 9,250 5,250 5.3957 3.7770 Refilled inner ring to 11000 ml 19 S 9/15/15 12:15 15 286 18,250 500 9,250 5,250 1.0791 3.7770 Refilled inner ring to 11,250 14,500 5,250 14,500 5,250 Refilled inner ring to 11,250 500 14,500 5,250 1.0791 3.7770 Refilled inner ring to 11,250 500 14,500 5,250 1.0791 3.7770 Refilled inner ring to 11,250 500 14,500 5,250 1.0791 3.7770 Refilled inner ring to 11,250 500 14,500 5,250 1.0791 3.7770 Refilled inner ring to 11,250 500 14,500 3.500 7.50	11		9/15/15	10:00	15	165	1,500	1 000	8,250	10.750	2.1502	7 7220	
13	11		9/15/15		15	100	2,500	1,000	19,000	10,750	2.1563	7.7336	
13	12			10:15	15	180	2,500	2 500	0	7 000	5 3057	5.0360	Petilled appulue to 0 ml
13	12			10:30	13	100		2,300	7,000	7,000	3.3937	3.0300	Refilled affiliates to 0 file
14 S 9/15/15 10:45	13				15	195		1 000		12 000	2 1583	8 6331	
The image of the	10				10			1,000		12,000	2000	0.0001	
15	14				15	210		1.500		6.000	3.2374	4.3165	Refilled annulus to 0 mL
15				11:00		•		.,500		-,500	1		
E 9/15/15 11:15 13,000 12,250 16 S 9/15/15 11:15 16 241 13,000 5,000 12,250 6,500 10.1169 4.3840 17 S 9/15/15 11:30 15 256 11,000 4,750 0 4,000 10.2518 2.8777 Refilled inner ring to 11000 minor ring to	15			11:00	15	225	8,500	4,500	6,000	6,250	9.7122	4.4964	
The latest color of the							+	,		-,			
17 S 9/15/15 11:30 15 256 11,000 4,750 0 4,000 10.2518 2.8777 Refilled inner ring to 11000 m 4,000 10.2518 2.8777 Refilled inner ring to 11000 m 4,000 10.2518 2.8777 Refilled inner ring to 11000 m 4,000 10.2518 2.8777 Refilled inner ring to 11000 m 4,000 5,250 5.3957 3.7770 19 S 9/15/15 12:00 15 286 18,250 500 9,250 5,250 5.3957 3.7770 19 E 9/15/15 12:15 15 286 18,750 500 14,500 5,250 1.0791 3.7770 Refilled inner ring to 11000 m 4,000 10.2518 2.8777 Refilled inner ring to 11000 m 1	16	S	9/15/15	11:15	16	241		5,000	12,250	6,500	10.1169	4.3840	
The color of the			9/15/15	11:30									5 fm 1:
18 S 9/15/15 11:45 15 271 15,750 2,500 4,000 5,250 5.3957 3.7770 19 S 9/15/15 12:00 15 286 18,250 500 9,250 5,250 1.0791 3.7770 20 S 9/15/15 12:15 15 286 18,250 500 14,500 5,250 1.0791 3.7770 30 S 9/15/15 12:15 15 204 11,250 0 14,500 3.500 0.0000 3.5400 Refilled inner ring to	17			11:30	15	256		4,750	4.000	4,000	10.2518	2.8777	
In Section 10 E 9/15/15 12:00 15 271 18,250 2,500 9,250 5,250 3.7770 19 S 9/15/15 12:00 15 286 18,250 500 9,250 1,0791 3.7770 20 S 9/15/15 12:15 45 204 11,250 0 14,500 3.500 0.0000 3.5400 Refilled inner ring to				11.40	+					+	+		/ Williams to o file
19 S 9/15/15 12:00 15 286 18,250 500 9,250 1.0791 3.7770 E 9/15/15 12:15 15 286 18,750 500 14,500 5,250 1.0791 3.7770 S 9/15/15 12:15 45 204 11,250 0 14,500 2.500 0.0000 2.5400 Refilled inner ring to	18				15	271		2,500	9 250	5,250	5.3957	3.7770	
E 9/15/15 12:15 15 286 18,750 500 14,500 5,250 1.0791 3.7770 3.7770 S 9/15/15 12:15 45 204 11,250 0 14,500 3.500 0.0000 3.5400 Refilled inner ring to					+		18 250						
S 9/15/15 12:15 45 304 11,250 0 14,500 3.500 0.000 3.5400 Refilled inner ring to	19				15	286		500	14 500	5,250	1.0791	3.7770	
20 E 9/15/15 12:30 15 301 11:250 0 13:00 3,500 0.0000 2.5180 14:250 ml													Refilled inner ring to
■ U/U/U 12:00 U/U/U	20	E	9/15/15	12:30	15	301	11,250	0	18,000	3,500	0.0000	2.5180	11250 mL