

November 13, 2015 103IP3406

Mr. Uriah Sowell Rooney Engineering 115 Inverness Drive East, Suite 300, Englewood, CO 80112

Subject: Infiltration Testing – Blainsport Station Valve Site Sunoco Pennsylvania Pipeline Project Lancaster County, West Cocalico Township

Dear Mr. Sowell:

Tetra Tech, Inc. (Tetra Tech) performed infiltration testing within proposed stormwater management feature areas at the proposed Blainsport Station Valve Site in West Cocalico Township, Commonwealth of Pennsylvania. This letter report summarizes results of the infiltration testing.

The intended method for infiltration testing was the double-ring constant head test; however, the field water truck used to supply water for testing could not access test locations within reasonable distance because of steep grades and fencing along the access route around the existing Blainsport Station. Therefore, the method used to conduct infiltration testing was the single-ring falling head test. This commonly accepted test method utilizes a considerable amount less water, and the water was reasonably hauled to the test locations with buckets. Two single-ring falling head infiltration tests were performed at the site on September 16, 2015, in accordance with ASTM International (ASTM) D5126; locations of the tests are shown in Attachment 1.

Prior to infiltration testing, a hand auger soil boring was advanced adjacent to each test location to log lithology, inspect for evidence of seasonal high water table, and collect representative soil samples. Soil borings were advanced by use of a hand-held auger, and subsurface conditions were logged. Boring logs (Attachment 2) include soil data obtained from the explorations. Soil borings could not be advanced to at least 2 feet below the infiltration test depths because of encounter with gravel and the very dense condition of the soils (believed to be fill material placed as part of construction of the adjacent Blainsport Station). However, Standard Penetration Test (SPT) borings were advanced at the existing Blainsport Station in April 2014. Bedrock was not encountered within the SPT borings at their termination depths of 20 and 25 feet below ground surface. The underlying geology is the Hammer Creek Formation, a reddish-brown Triassic coarse-grained sandstone with interbeds of red shale and quartz-pebble conglomerates. Groundwater was encountered within the SPT borings at depths ranging from 7 to 13 feet below ground surface. Soils within the infiltration test off-set borings did not exhibit mottling. Based on this, and depths to groundwater encountered in the SPT borings, groundwater is not anticipated to be present within two feet of the infiltration test depths.

A soil sample was collected at each of the two infiltration test depths. The samples were inspected and described visually in Tetra Tech's geotechnical laboratory. A Percent Finer than a No. 200 Sieve Test (ASTM D1140) was performed to measure the amount of silt and clay particulate in the soil samples. An Atterberg Limit Test (ASTM D4318) was conducted to aid in classification of the soils. Results of the grain-size analysis and Atterberg Limits testing were referenced to determine the Unified Soil Classification System (USCS) designation for the soils encountered at the infiltration test depth. A summary of the laboratory testing results is in Attachment 3.

Infiltration testing via a single-ring, falling head testing method occurred at each test location; the procedure for this test method is described in Attachment 4. Results from the infiltration testing are summarized in the attached Infiltration Testing Tables (Attachment 5). Table 1 summarizes investigation and testing depths, results of the infiltration testing, and USCS classifications and descriptions of soils at the infiltration test depths.

TABLE 1 SUMMARY OF RESULTS FROM INFILTRATION INVESTIGATION

Infiltration Test Location	Infiltration Test Depth (inches)	Off-Set Soil Boring Depth (inches)	Infiltration Testing Results (inches/hour)	USCS Classification ⁽¹⁾ at Test Depth	Generalized Description of Soils at Test Depth
IT-01	11	12	0.03 (0.00 final test hour)	CL	Reddish brown silty clay with a little fine sand, trace fine to coarse gravel.
IT-02	22	36	0.09 (0.00 final test hour)	CL	Reddish brown silty clay with a little fine sand, trace fine to coarse gravel.

Tetra Tech's services accorded with generally accepted engineering practice. No warranty, expressed or implied, is given. We appreciate the opportunity to provide our professional services to you. If you have any questions regarding the testing we performed, please contact me at (302) 283-2274, or via E-mail at ralph.boedeker@tetratech.com.

Sincerely,

Ralph Boedeker

Ralph Boedeker, P.E. Geotechnical Project Manager

cc: Karen Gleason (Tetra Tech – Pittsburgh)

AttachmentsAttachment 1:Infiltration Test LocationsAttachment 2:Soil Boring LogsAttachment 3:Laboratory Testing SummaryAttachment 4:Falling Head Singe Ring Infiltration Test ProceduresAttachment 5:Infiltration Testing Tables

Infiltration Testing – Blainsport Station Sunoco PPP November 13, 2015

Infiltration Test Locations

LEGEND:

Infiltration Test Locations (IT)

Standard Penetration Test Borings (GB)

TETRA TECH

INFILTRATION TEST LOCATIONS BLAINSPORT STATION VALVE SITE LANCASTER COUNTY, WEST COCALICO TOWNSHIP, PA SUNOCO PENNSYLVANIA PIPELINE PROJECT

Soil Boring Logs

Tested by: Tetra Tech/Hynes

INFILTRATION TESTING SOIL LOG

Project: Sunoco PPP - Blainsport Valve Site

Equipment Used: Infiltration Testing Equipment/Hand Auger

Project No.: 103IP3406

Boring/Pit No.: IT-01

Weather: Sunny

Geology:

Land Use: N/A

Horizon	Upper Boundary	Lower Boundary	Soil Textural Class	Description	Soil Color	Color Patterns	Pores, Roots, Rock Structure	Depth to Bedrock	Depth to Water	Comments
	0''	3"	topsoil	topsoil	dark brown	Solid				
	3"	12"	CL	silty clay with a little fine sand, trace f-c gravel	reddish brown	solid		(see note 1)	Not Encountered	%<200: 85.6 at test depth

1) Could not penetrate deeper than 12" bgs with hand auger due to presense of gravel and dense compaction of fill. Hand auger refusal not suspected to be a result of bedrock. Many off-set attempts were made.

Tested by: Tetra Tech/Hynes

INFILTRATION TESTING SOIL LOG

Project: Sunoco PPP - Blainsport Valve Site

Equipment Used: Infiltration Testing Equipment/Hand Auger

Project No.: 103IP3406

Boring/Pit No.: IT-02

Weather: Sunny

Geology:

Land Use: N/A

Horizon	Upper Boundary	Lower Boundary	Soil Textural Class	Description	Soil Color	Color Patterns	Pores, Roots, Rock Structure	Depth to Bedrock	Depth to Water	Comments
	0''	6"	topsoil	topsoil	brown	Solid				
	6"	36"	CL	silty clay with a little fine sand, trace f-c gravel	reddish brown	solid		(see note 1)	Not Encountered	%<200: 83.2 at test depth

1) Could not penetrate deeper than 36" bgs with hand auger due to presense of gravel and dense compaction of fill. Hand auger refusal not suspected to be a result of bedrock. Many off-set attempts were made.

TETRA TECH

240 Continental Drive, Suite 200 Newark, Delaware 19713 302.738.7551 fax: 302.454.5988

TEST BORING LOG

Projec	t Name:	SUNOC	O MARII	NER EAS	ST				Project N	lo .: 1	03IP27	762	
Projec	t Locatio	on: BLAI	NSPORT	STATIC	N				Page 1 d	of 1			
Test B	oring No) .:	GB-01				Dates(s) Drilled: 04-18-14	Inspector:	E. WAT	Г			
Drilling	g Contra	ctor:	HYNES				Drilling Method: SPT - ASTM D1586	Driller:	Justin				
Surfac	e Elevat	ion (ft):	•	~499.3	1	1	Groundwater Depth (ft): 7.0	Total Depth (ft):	20.0				1
Sample No.	Sample From	Depth (ft) To	Strata E From	Depth (ft) To	Recov. (in)	Strata (USCS)	Description of Materia	ls		6"	Increm Blows *	ent	Ν
			0.0	0.5			TOPSOIL (6")						
1	1.0	2.5	0.5		16		DR HIGHLY WEATHERED TO A REDDISH BROW	WN SANDY CLAY	,	1	3	2	5
							TRACE FINE GRAVEL						
	25	5.0			10	-				2	1	5	0
2	5.5	5.0			10	-			,	Z	4	5	9
						A							
3	6.0	7.5			16	-	R HIGHLY WEATHERED TO A REDDISH BROWN SILTY CLAY 2 3						8
						-	WITH TRACE FINE SAND (USCS: CL).						
4	9.0	10.5			13		DR HIGHLY WEATHERED TO A REDDISH BROW	WN SILTY CLAY		1	4	5	9
				12.0			WITH TRACE FINE SAND.						
5	14.0	15.5	12.0		14		DR WEATHERED TO A REDDISH BROWN FINE	SAND WITH SOM	ΛE	2	6	10	16
				17.0		В	SILTY CLAY, TRACE FINE GRAVEL. (USCS: S	C).					
6	19.0	19.8	17.0		7		DR. WEATHEED TO A REDDISH BROWN FINE	TO MEDIUM SANI	C	15	50/3"		>50
				20.0		С	WITH SOME SILTY CLAY, AND A LITTLE F-C (GRAVEL.		-			
				20.0									
							AUGER REFUSAL AT 20.0'. AUGER REFUSAL	MATEIAL APPEAR	S				
							TO BE SANDSTONE.						
							WET ON SPOON AT 9'.						
							WATER LEVEL THROUGH AUGERS AT 7'.						
							CAVED AT 15'. WATER LEVEL ON TOP OF CAV	ΈΑΤ 5'.					
Not	es/Comr	nents:			1	I	1						I
	Pocket	Pentrome	eter Test	ing F			DR: DECOMPOSED ROCK						
	S1: 2.25 S2: 3.0 to	tSI Sf	54: 3 TS	F									
	S3: 2.0 ts	sf											
Strata	(11000)	Designe	tions are	annrovir	natod	haend -	on visual review, execut where indicated in De	scription of Moto	riale				
Suala	(0303)	Designa	uons ale	αμμισχιί	nateu l	Jaseu	on visual review, except where indicated in De		11013.				
* Numt N: Num	per of blow ober of blo	ws of 140 ows to driv	lb. Hamm /e spoon f	er droppe from 6" to	d 30 in. 18" inte	require erval.	d to drive 2 in. split-spoon sampler in 6 in. incremen	nts.					

TETRA TECH

240 Continental Drive, Suite 200 Newark, Delaware 19713 302.738.7551 fax: 302.454.5988

TEST BORING LOG

Projec	t Name:	SUNOC	O MARII	NER EAS	ST				Project N	No.: 1	03IP2	762	
Projec	t Locatio	n: BLAII	NSPORT	STATIC	N				Page 1 d	of 1			
Test B	oring No).:	GB-02				Dates(s) Drilled: 04-18-14	Inspector:	E. WAT	Г			
Drilling	Contrac	ctor:	HYNES				Drilling Method: SPT - ASTM D1586	Driller:	Justin				
Surfac	e Elevat	ion (ft):		~497.0			Groundwater Depth (ft): 13.0	Total Depth (ft):	25.5				1
Sample No.	Sample I From	Depth (ft) To	Strata L From	To	Recov (in)	Strata (USCS)	Description of Mate	Description of Materials			Increm Blows	ent *	Ν
			0.0	0.5			TOPSOIL (6")						
1	1.0	2.5	0.5		18		DR HIGHLY WEATHERED TO A REDDISH BR	ROWN SILTY CLAY		2	2	3	5
							WITH TRACE FINE SAND, TRACE FINE GR	AVEL.					
2*	3.5	5.0			18	A	DR HIGHLY WEATHERED TO A REDDISH BR	ROWN SANDY CLAY	΄,	2	4	6	10
				5.5		-	TRACE FINE GRAVEL.						
3	6.0	7.5	5.5		14		DR WEATHERED TO A REDDISH BROWN FI	NE SAND WITH A		2	5	6	11
							LITTLE SILTY CLAY, TRACE FINE GRAVEL						
4	9.0	10.5			6		DR WEATHERED TO A REDDISH BROWN FI	NE TO MEDIUM SAM	ND,	6	6	8	14
				12.0			WITH A LITTLE SILTY CLAY, TRACE FINE O	GRAVEL.					
5	14.0	15.5	12.0		11		DR WEATHERED TO A FINE TO MEDIUM SA	ND WITH SOME SIL	TY	14	18	21	39
							CLAY, TRACE TO LITTLE FINE GRAVEL. (U	ISCS: SC).					
6	19.0	20.5			6		R WEATHERED TO A FINE TO MEDIUM SAND WITH SOME SILTY			15	16	20	36
							CLAY, TRACE TO LITTLE FINE GRAVEL.						
7	24.0	25.5			12		DR WEATHERED TO A FINE TO MEDIUM SA	ND WITH SOME SIL	TY	15	18	22	40
				25.5			CLAY, TRACE TO LITTLE FINE TO COARSE	E GRAVEL.					
							WET ON SPOON AT 13.0' BGS.						
							WATER LEVEL THROUGH AUGERS AT 14' B	GS.					
							CAVED AT 19', WATER LEVEL ON CAVE AT	18'.					
			1	1	1	1			1			, I	1

No	otes/Comr	nents:							
	Pocket	Pentrome	eter Test	ing			DR: DECOMPOSED ROCK		
	S1: 2.25	tsf							
	S2: 3.0 ts	sf							
Strat	a (USCS)	Designa	tions are	approxir	nated t	based o	on visual review, except where indicated in Description of Materials.		
* Nur N: Nu	nber of blov Imber of blo	ws of 140 ows to driv	lb. Hamm /e spoon f	er droppe from 6" to	d 30 in. 18" inte	require rval.	d to drive 2 in. split-spoon sampler in 6 in. increments.		

Laboratory Testing Summary

GEOTECHNICAL LABORATORY TESTING SUMMARY SUNOCO PENNSYLVANIA PIPELINE PROJECT BLAINSPORT VALVE SITE

	Soil		Water	Percent	Atterburg	Limits (AS	TM D4318)	USCS
Valve	Boring	Sample	Content, %	Silts/Clays, %	Liquid	Plastic	Plasticity	Classif.
Site	No.	No.	(ASTM D2216)	(ASTM D1140)	Limit, %	Limit, %	Index, %	(ASTM D2487)
Plainapart	IT-01	IT-01	7.2	85.6	43	20	23	CL
ыантэрон	IT-02	IT-02	9.6	83.2	44	21	23	CL

Notes:

1) Sample depths based on feet below grade at time of exploration.

UNIFIED SOIL CLASSIFICATION SYSTEM [Casagrande (1948)]

	Major Divisi	ons	Group Symbols	Typical Descriptions			Laboratory Classification	ons	
	n is larger	gravel no fines)	GW	Well-graded gravels, gravel- sand mixtures, little or no fines		mbols ⁽¹⁾	$C_{u=\frac{D_{60}}{D_{10}}}$ greater than 4: $C_{c=\frac{1}{D}}$	(D ₃₀)2 P10 X D ₆₀ between 1 and 3	
(6	rvels arse fractio I sieve size	Clean (Little or	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	curve. 00 sieve),	ng dual syr	Not meeting C_u or C_c requirem	nents for GW	
o. 200 sieve	Gr Gr Cr than half of cr than No. Travel with fines (Appreciable (Appreciable		GM	Silty gravels, gravel-sand-silt mixtures	grain size than No. 2 blows:	/, SP I, SC ases requiri	Atterberg limits below A Line or I _p less than 4	Limits plotting in hatched zone with I p between 4 and 7 are	
d Soils rger than N	More tha	Gravel v (Appri amount	GC	Clayey gravels, gravel-sand-clay mixtures	Atterberg limits above A of d of d line with I p greater than 7			borderline cases requiring use of dual symbols	
coarse Graine material is la	maller than	sands to fines)	SW Well graded sands, gravely fines (fract for some call sare calls are calls sare calls are calls sare call sare calls sare calls sare calls sare calls s		percent G percent G percent B	$C_{u=\frac{D_{60}}{D_{10}}}$ greater than 6: $C_{c=} \frac{(D_{30})2}{D_{10} \times D_{60}}$ between 1 and 3			
C ore than half of	Sands Irse fraction is s 4 Sieve)	Clean s (Little or r	SP	Poorly graded sands, gravelly sands, little or no fines	ine Percentage on Percentage coarse-grain	Less than 5 More than 12 5 to 12	Not meeting C_u or C_c requirer	nents for SW	
W)	s half of coa No.	n fines able fines)	SM	Silty sands, sand- silt mixtures	Determ		Atterberg limits below A Line or I _P less than 4	Limits Plotting in hatched	
	(More than	Sands with (Appreci amount of	SC	Clayey sands, sand-clay mixtures			Atterberg limits above A line with I _p greater than 7	zone with I p between 4 and 7 are borderline cases requiring use of dual symbols	
Major	Divisions	Group Symbols	Туріса	Descriptions	For soils p When w _L	olotting nearly , is near 50 use	on A line use dual symbols i.e ., I _p e CL-CH or ML-MH. Take near as	= 29.5, w _L =60 gives CH-MH. ± 2 percent.	
	lys (han 50)	ML	Inorganic silts sands, rock fl fine sands, or slight plasticit	s and very fine our, silty or clayey r clayey silts with y	6	0 - A Line:			
200 sieve)	Silts and cla	CL	Inorganic clay plasticity, gra clays, silty cla	ys of low to medium velly clays , sandy ays, lean clays	5	0 U Line: PI = 0	0.73(LL - 20) 0.9(LL - 8)	ON I	
lis r than No.	(Liquia	OL	Organic silts clays of low p	and organic silty plasticity	× (PI), %			R ^{ot}	
e-grained so erial is smalle	quid limit 50)	мн	Inorganic silts diatomaceous soils, elastic s	s, micaceous or s fine sandy or silty silts	ticity Inde		NUT I	MH or OH	
Fin half of mat	nd Clays (Li greater than	СН	Inorganic clay fat clays	ys of high plasticity,	L Plast	.0			
(More than	Silts a	ОН	Organic clays plasticity, org	s of medium to high anic silts			20 30 40 50 6		
	Highly organic soils	Pt	Peat and othe soils	er highly organic		10	Liquid Limit (LL),%	

(1) Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC. well-graded gravel-sand mixture with clay binder.

Falling Head Singe Ring Infiltration Test Procedures

Falling Head Singe Ring Infiltration Test Procedure

Procedure

- A. Unless directed otherwise, advance one soil boring at each test location. The boring should extend to groundwater. Accurately measure depth to groundwater and depth of each soil change. Pay close attention to soils for mottling. Contact office to determine test depth. Note: This step can be omitted if test borings were advanced during a previous site visit.
- B. Advance a 4-inch diameter soil boring to the specified test depth. Check boring log to ensure that soil at bottom of excavation is soil type to be tested.
- C. Cut thin wall PVC to length (approximately 1 to 2' longer than desired test depth).
- D. Push/drive PVC to bottom of soil boring.
- E. Using 3-inch auger, clean out bottom of test hole to remove any soils that caved in during PVC placement. Drive PVC casing an additional 2 inches to ensure that bottom of test hole does not extend beyond the bottom of the PVC pipe.
- F. Collect initial test information using water level indicator
 - 1. Determine the total depth to the bottom of the hole from top of pipe and record.
 - 2. Determine riser height above ground and .record.
 - 3. Subtract 2 feet from total depth (See F.1.) and record.
- G. Start Test\
 - 1. Set up water level indicator at depth determined in F.3.
 - 2. Fill tube with water until water level indicator alarms. To minimize soil scouring, slowly pour water down the inside of the casing wall.
 - 3. Record exact depth to water with level indicator
- H. Run Test:
 - 1. Pre-soak (1 hour or less).
 - a. Record depth to water every 15 minutes for first hour (pre-soak).
 - b. At the end of first hour refill pipe with water to level determined Step F.3.

Falling Head Singe Ring Infiltration Test Procedure

- 2. Infiltration testing (four, one Hour tests)
 - a. Tests starts after completing Step H.1.b
 - b. Record depth of water every 15 minutes (or more frequently) for one hour or until water drains from pipe.
 - c. Refill pipe with water to level determined in Step F.3
 - d. Repeat Step H.2.b. and c. three additional times (four test runs)
 - e. Testing concludes after pre-soak and four test runs are completed
- I. Calculations

Infiltration rate is calculated as inches per hour.

Determine the water level drop recorded during each one hour test (note that the water level indicator is marked in tenths of a foot. A conversion to inches is required). Multiply the water level drop recorded in tenths of a foot by 1.2 to get water level drop in inches.

All data should be recorded on pre-made forms.

Falling Head Singe Ring Infiltration Test Procedure

Date: Test Location:

___ Test Location:

Depth from top of Casing to Bottom of Boring (D):

Height of Casing above Ground Surface (h_c):

Tester/ Technician Performing Test:

		Depth to Water (d _t)	
Time (t)	Time Elapsed	Measured from top of casing to water to nearest 1/100 foot	Change

Infiltration Testing Tables

INFILTRATION TEST DATA SHEET

JOB NAME:

PPP - Blainsport Station Valve Site

PROJECT NUMBER: TEST DATE: 103IP3406

TEST LOCATION: IT-01

ST DATE:	September 16, 2015
	DEPTH TO WATE

TEST DEPTH: 0.90 ft

	TIME	DEPTH TO WATER BELOW GROUND SURFACE	HYDRAULIC HEAD	Δ HYDRAULIC HEAD	PERMEABIL	-ITY (K _{m)}	COMMENTS
Å	15:30	-1.23 ft	2.13 ft				Presoaked on 9/15
Pre							
lour soa							
24 H							
	7:00	-1.16 ft	2.06 ft	0.07 ft	0.07 ft/hr 0).84 in/hr	
r 2	7:15	-1.16 ft	2.06 ft	0.00 ft			
пор	7:30	-1.16 ft	2.06 ft	0.00 ft			
est F	7:45	-1.16 ft	2.06 ft	0.00 ft			
Τe	8:00	-1.16 ft	2.06 ft	0.00 ft	0.00 ft/hr 0).00 in/hr	
3	8:15	-1.16 ft	2.06 ft	0.00 ft			
Inop	8:30	-1.16 ft	2.06 ft	0.00 ft			
est F	8:45	-1.15 ft	2.05 ft	0.01 ft			
Τe	9:00	-1.15 ft	2.05 ft	0.00 ft	0.01 ft/hr 0).12 in/hr	
4	9:15	-1.15 ft	2.05 ft	0.00 ft			
Inop	9:30	-1.15 ft	2.05 ft	0.00 ft			
est F	9:45	-1.15 ft	2.05 ft	0.00 ft			
Те	10:00	-1.15 ft	2.05 ft	0.00 ft	0.00 ft/hr 0).00 in/hr	
- 5	10:15	-1.15 ft	2.05 ft	0.00 ft			
lour	10:30	-1.15 ft	2.05 ft	0.00 ft			
est F	10:45	-1.15 ft	2.05 ft	0.00 ft			
Te	11:00	-1.15 ft	2.05 ft	0.00 ft	0.00 ft/hr 0).00 in/hr	

There are generally two acceptable methods to calculate steady state infiltration rates:

1. Time Weighted Average: 0.03 in/hr

2. Final Test Hour Reading: 0.00 in/hr

INFILTRATION TEST DATA SHEET

JOB NAME:

PPP - Blainsport Station Valve Site

PROJECT NUMBER:

103IP3406 September 16, 2015 TEST LOCATION: IT-02

1.82 ft

IESI	DAI	E:
		r

TEST DEPTH:

	TIME	DEPTH TO WATER BELOW GROUND SURFACE	HYDRAULIC HEAD	Δ HYDRAULIC HEAD	PERMEABILITY (K _{m)}		COMMENTS
our Pre- soak	15:30	-0.20 ft	2.02 ft				Presoaked on 9/15
4 H v							
	7:00	0.48 ft	1.34 ft	0.68 ft	0.68 ft/hr	8.16 in/hr	
Test Hour 2	7:15	0.48 ft	1.34 ft	0.00 ft			
	7:30	0.48 ft	1.34 ft	0.00 ft			
	7:45	0.48 ft	1.34 ft	0.00 ft			
	8:00	0.49 ft	1.33 ft	0.01 ft	0.01 ft/hr	0.12 in/hr	
Test Hour 3	8:15	0.49 ft	1.33 ft	0.00 ft			
	8:30	0.49 ft	1.33 ft	0.00 ft			
	8:45	0.50 ft	1.32 ft	0.01 ft			
	9:00	0.50 ft	1.32 ft	0.00 ft	0.01 ft/hr	0.12 in/hr	
Test Hour 4	9:15	0.50 ft	1.32 ft	0.00 ft			
	9:30	0.51 ft	1.31 ft	0.01 ft			
	9:45	0.51 ft	1.31 ft	0.00 ft			
	10:00	0.51 ft	1.31 ft	0.00 ft	0.01 ft/hr	0.12 in/hr	
Test Hour 5	10:15	0.51 ft	1.31 ft	0.00 ft			
	10:30	0.51 ft	1.31 ft	0.00 ft			
	10:45	0.51 ft	1.31 ft	0.00 ft			
	11:00	0.51 ft	1.31 ft	0.00 ft	0.00 ft/hr	0.00 in/hr	

There are generally two acceptable methods to calculate steady state infiltration rates:

1. Time Weighted Average: 0.09 in/hr

2. Final Test Hour Reading: 0.00 in/hr