

Act 167 Verification Report

PennEast Pipeline Project

February, 2020

PennEast Pipeline Project

Mott MacDonald 111 Wood Avenue South Iselin, NJ 08830-4112 United States of America

T +1 (973) 379 3400 mottmac.com

UGI Energy Services Inc. One Meridian Blvd. Suite 2C01 Wyomissing, PA 19610 610-373-7999

Act 167 Verification Report

PennEast Pipeline Project

February, 2020

Issue and revision record

Revision	Date	Originator	Checker	Approver	Description
0	10/15/2018	W. Clark	J. Dening	M. Wilcox	Issued for PADEP
1	10/2019	W. Clark	J. Dening	M. Wilcox	Issued for PADEP
2	02/2020	J. MacMinn	W. Clark	M. Wilcox	Issued for PADEP

Information class: Standard

This document is issued for the party which commissioned it and for specific purposes connected with the abovecaptioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Contents

Exe	ecutive	e Summa	ary	1
1	Sun	nmary of	Stormwater Recommendations in the Plans	2
2	Pea	k Rate (Controls	3
	2.1	Plan Re	quirement	3
	2.2		ency Verification	4
		2.2.1	Wyoming Interconnect	4
		2.2.2	Springville Interconnect Site	6
		2.2.3	Auburn & Leidy Interconnects	7
		2.2.4	Kidder Compressor Station	8
		2.2.5	TCO & UGI-LEH Interconnects	9
		2.2.6	Hellertown Launcher & Mainline Launcher/Receiver	10
		2.2.7	Blue Mountain Interconnect	11
		2.2.8	Blue Mountain Side Valve	12
		2.2.9	Church Road Interconnects	13
		2.2.10	Mainline Block Valve - 1	14
		2.2.11	Mainline Block Valve - 2	15
		2.2.12	Mainline Block Valve - 3	16
		2.2.13	Mainline Block Valve - 4	17
		2.2.14	Mainline Block Valve - 6	18
		2.2.15	Mainline Block Valve - 7	19
		2.2.16	Mainline Pipe	19
3			er Recharge, Streambank Protection, and Water Quality	
	Star	ndards		20
	3.1	Plan Re	quirement	20
	3.2	Consist	ency Verification	21
		3.2.1	Wyoming Interconnect	21
		3.2.2	Springville Interconnect	21
		3.2.3	Auburn & Leidy Interconnects	21
		3.2.4	Kidder Compressor Station	22
		3.2.5	TCO & UGI-LEH Interconnects	22
		3.2.6	Hellertown Launcher & Mainline Launcher/Receiver	22
		3.2.7	Blue Mountain Interconnect/MLV-5	22
		3.2.8	Blue Mountain Side Valve	23
		3.2.9	Church Road Interconnects	23
		3.2.10	Mainline Block Valve - 1	23
		3.2.11	Mainline Block Valve - 2	24

24

24

3.2.12

3.2.13

Mainline Block Valve - 3

Mainline Block Valve - 4

3.2.14	Mainline Block Valve - 6	24
3.2.15	Mainline Block Valve - 7	25
3.2.16	Mainline Pipe	25

Tables

Table 1: Wyoming Interconnect Site Stormwater Volume Summary	4
Table 2: Wyoming Interconnect Site POI WEST Stormwater Peak Flow Summary	4
Table 3: Wyoming Interconnect Site POI EAST Stormwater Peak Flow Summary	5
Table 4: Wyoming Interconnect Site Total Stormwater Peak Flow Summary	5
Table 5: Springville Interconnect Site Stormwater Volume Summary	6
Table 6: Springville Interconnect Site Stormwater Peak Flow Summary	6
Table 7: Auburn & Leidy Interconnects Stormwater Volume Summary	7
Table 8: Auburn & Leidy Interconnects Stormwater Peak Flow Summary	7
Table 9: Kidder Compressor Station Stormwater Volume Summary	8
Table 10: Kidder Compressor Station Stormwater Peak Flow Summary	8
Table 11: TCO and UGI-LEH Interconnects Stormwater Volume Summary	9
Table 12: TOC & UGI-LEH Interconnects Stormwater Peak Flow Summary	9
Table 13: Hellertown Launcher & Mainline Launcher/Receiver Stormwater Volume	
Summary	10
Table 14: Hellertown Launcher & Mainline Launcher/Receiver Stormwater Peak Flow	
Summary	10
Table 15: Blue Mountain Interconnect Stormwater Volume Summary	11
Table 16: Blue Mountain Interconnect Stormwater Peak Flow Summary	11
Table 17: Blue Mountain Side Valve Stormwater Volume Summary	12
Table 18: Blue Mountain Side Valve Stormwater Peak Flow Summary	12
Table 19: Church Road Interconnects Stormwater Volume Summary	13
Table 20: Church Road Interconnects Stormwater Peak Flow Summary	13
Table 21: MLV-1 Stormwater Volume Summary	14
Table 22: MLV-1 Stormwater Peak Flow Summary	14
Table 23: MLV-2 Stormwater Volume Summary	15
Table 24: MLV-2 Stormwater Peak Flow Summary	15
Table 25: MLV-3 Stormwater Volume Summary	16
Table 26: MLV-3 Stormwater Peak Flow Summary	16
Table 27: MLV-4 Stormwater Volume Summary	17
Table 28: MLV-4 Stormwater Peak Flow Summary	17
Table 29: MLV-6 Stormwater Volume Summary	18
Table 30: MLV-6 Stormwater Peak Flow Summary	18
Table 31: MLV-7 Stormwater Volume Summary	19
Table 32: MLV-7 Stormwater Peak Flow Summary	19

Executive Summary

The Pennsylvania Stormwater Management Act (Act 167 of 1978), more commonly referred to as Act 167, enables the regulation of development and activities causing accelerated runoff. A portion of the proposed project is located within watersheds and counties covered by DEP approved and current (from 2005 or later) Act 167 Plans. The following report summarizes the compliance information that is provided in the individual PCSM Reports for the individual sites within the project. This report covers the PennEast mainline piping and following sites:

- Wyoming Interconnect
- Springville Interconnect
- Auburn & Leidy Interconnects
- Kidder Compressor Station
- TCO & UGI-LEH Interconnects
- Hellertown Launcher & Mainline Launcher/Receiver
- Blue Mountain Interconnect
- Blue Mountain Side Valve
- Church Road Interconnects
- Mainline Block Valve 1
- Mainline Block Valve 2
- Mainline Block Valve 3
- Mainline Block Valve 4
- Mainline Block Valve 6
- Mainline Block Valve 7

1 Summary of Stormwater Recommendations in the Plans

The stated purpose of the Plans is to protect human health and safety by addressing the impacts of future land use on the current levels of stormwater runoff and to recommend measures to control accelerated runoff to prevent increased flood damages or additional water quality degradation. The Plans identify four aspects of effective stormwater management as -

- Peak discharge rate standards
- Groundwater Recharge
- Streambank Protection
- Water quality standards

The Plans identify criteria for control of stormwater runoff that are specific to the watersheds within the county. A broad and uniform approach is described for implementation of water quality, volume control, and channel protection controls. Peak discharge rate control standards were developed to achieve watershed specific controls where necessary.

2 Peak Rate Controls

2.1 Plan Requirement

Mathematical modeling of the county's watersheds was performed to analyze the flow patterns of the watersheds, the impact of anticipated development on those patterns, and when necessary, develop a release rate for various sub-basins to control regional peak flows. In some sub-basins, release rates were recommended that require sites to discharge at peak flows lower than those calculated for predevelopment conditions. The recommended release rates from the Plans fall into two categories:

Areas not covered by a Release Rate Map

Post-development discharge rates shall not exceed the predevelopment discharge rates for the 1-, 2-, 5-, 10-, 25-, 50-, and 100-year storms. If it is shown that the peak rates of discharge indicated by the postdevelopment analysis are less than or equal to the peak rates of discharge indicated by the predevelopment analysis for 1, 2, 5, 10, 25, 50, and 100 year, 24-hour storms, then the requirements of this section have been met. Otherwise, the applicant shall provide additional controls as necessary to satisfy the peak rate of discharge requirement.

Areas covered by a Release Rate Map

For the 1-, 2-, 5-, 10-, 25-, 50-, and 100-year storms, the post-development peak discharge rates will follow the applicable approved release rate maps. For any areas not shown on the release rate maps, the post-development discharge rates shall not exceed the predevelopment discharge rates.

2.2 Consistency Verification

2.2.1 Wyoming Interconnect

The site is located in the Toby Creek Watershed and within Luzerne County, which has an Act 167 Stormwater Management Plan, and the Toby Creek Watershed is in an area covered by a Release Rate Map. The plan states that:

"Areas covered by a Stormwater Management District Map contained in Appendix F.1 of the Ordinance: For the 1- through 100-year storms, the post-development peak discharge rates will follow the applicable approved Stormwater Management District Maps."

The Wyoming Interconnect site is in a B2 Management District, where the post-development peak runoff release rate must be a maximum of 60% of the pre-development peak runoff release rate for 1- through 100-year storm. The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 1, 2, 3, and 4 below:

Table 1: Wyoming Interconnect Site Stormwater Volume Summary

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Basin+Berm Total Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	3,930	9, 867	5,937	8,201+10,094=18,295	Yes
2	6,018	12,799	6,781	8,201+10,094=18,295	Yes
Act 167 2" Capture			7,188	8,201+10,094=18,295	Yes

Table 2: Wyoming Interconnect Site POI WEST Stormwater Peak Flow Summary

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Recurrence	Existing	Existing	Reduction	Reduced Site	Maximum	Proposed	Proposed
Interval	Disturbed	Undisturbed	Factor (Per	Flow	Allowable	Q (cfs)	Less than
(yrs)	Conditions	Conditions	Ordinance	Column (2)*	Proposed		Allowable?
	Site Q (cfs)	Offsite Q (cfs)	Sec. 148)	Column (4)	Peak Flow		(Y/N)
				(cfs)	(cfs)		
					(3) + (5)		
1	0.20	0.11	60%	0.12	0.23	0.13	Yes
2	0.37	0.13	60%	0.22	0.35	0.19	Yes
5	0.66	0.16	60%	0.40	0.56	0.30	Yes
10	0.94	0.19	60%	0.56	0.75	0.39	Yes
25	1.44	0.23	60%	0.86	1.09	0.59	Yes
50	1.93	0.27	60%	1.16	1.43	0.72	Yes
100	2.53	0.32	60%	1.52	1.84	0.92	Yes

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Recurrence Interval (yrs)	Existing Disturbed Conditions Site Q (cfs)	Existing Undisturbed Conditions Offsite Q (cfs)	Reduction Factor (Per Ordinance Sec. 148)	Reduced Site Flow Column (2)* Column (4) (cfs)	Maximum Allowable Proposed Peak Flow (cfs) (3) + (5)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	0.69	0.61	60%	0.41	1.02	0.54	Yes
2	1.21	1.14	60%	0.73	1.87	0.74	Yes
5	2.08	2.06	60%	1.25	3.31	1.05	Yes
10	2.91	2.96	60%	1.75	4.71	1.34	Yes
25	4.36	4.53	60%	2.62	7.15	2.60	Yes
50	5.77	6.08	60%	3.46	9.54	5.85	Yes
100	7.50	8.00	60%	4.50	12.50	9.50	Yes

Table 3: Wyoming Interconnect Site POI EAST Stormwater Peak Flow Summary

Table 4: Wyoming Interconnect Site Total Stormwater Peak Flow Summary

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Recurrence	Existing	Existing	Reduction	Reduced Site	Maximum	Proposed Q	Proposed
Interval	Disturbed	Undisturbed	Factor (Per	Flow	Allowable	(cfs)	Less than
(yrs)	Conditions	Conditions	Ordinance	Column (2)*	Proposed		Allowable?
	Site Q (cfs)	Offsite Q (cfs)	Sec. 148)	Column (4)	Peak Flow		(Y/N)
				(cfs)	(cfs)		
					(3) + (5)		
1	0.89	0.62	60%	0.53	1.15	1.14	Yes
2	1.58	1.16	60%	0.95	2.11	1.61	Yes
5	2.73	2.08	60%	1.64	3.72	2.35	Yes
10	3.85	2.99	60%	2.31	5.30	3.04	Yes
25	5.79	4.57	60%	3.47	8.05	4.18	Yes
50	7.70	6.13	60%	4.62	10.75	6.61	Yes
100	10.03	8.05	60%	6.02	14.07	10.79	Yes

See Wyoming Interconnect Post-Construction Stormwater Management Plan Section 4 for calculation narrative and Appendices for calculations.

2.2.2 Springville Interconnect Site

The site is located in the Toby Creek Watershed and within Luzerne County, which has an Act 167 Stormwater Management Plan in place, and Toby Creek Watershed is in an area covered by a Release Rate Map. The plan states that:

"Areas covered by a Stormwater Management District Map contained in Appendix F.1 of the Ordinance: For the 1- through 100-year storms, the post-development peak discharge rates will follow the applicable approved Stormwater Management District Maps."

Springville Interconnect Site is in a B2 Management District, where the post- development peak runoff release rate must be a maximum of 60% of the pre-development peak runoff release rate for 1- through 100-year storm. The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 5 and 6 below:

Table 5: Springville Interconnect Site Stormwater Volume Summary

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Basin+Berm Total Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	4,808	10,175	5,366	3,823+4,028 =7,851	Yes
2	7,349	13,426	6,076	3,823+4,028 =7,851	Yes
Act 167 2" Capture			6,607	3,823+4,028 =7,851	Yes

Table 6: Springville Interconnect Site Stormwater Peak Flow Summary

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Recurrence	Existing	Existing	Reduction	Reduced Site	Maximum	Proposed	Proposed
Interval	Disturbed	Undisturbed	Factor	Flow	Allowable	Q (cfs)	Less than
(yrs)	Conditions	Conditions	(Luzerne	Column (2)*	Proposed		Allowable?
	Site Q (cfs)	Offsite Q (cfs)	County B2	Column (4)	Peak Flow		(Y/N)
			Management	(cfs)	(cfs)		
			District		(3) + (5)		
			Requirement)				
1	6.34	1.68	60%	1.01	7.35	6.67	Yes
2	10.84	2.78	60%	1.67	12.51	11.62	Yes
5	18.30	4.58	60%	2.75	21.05	19.71	Yes
10	25.50	6.32	60%	3.79	29.29	27.45	Yes
25	37.76	9.25	60%	5.55	43.31	40.57	Yes
50	49.76	12.10	60%	7.26	57.02	53.36	Yes
100	64.43	15.56	60%	9.34	73.77	68.95	Yes

See the Springville Interconnect Post-Construction Stormwater Management Plan Section 4 for calculation narrative and Appendices for calculations.

2.2.3 Auburn & Leidy Interconnects

The site is in the Abraham's Creek Watershed and is within Luzerne County, which has an Act 167 Stormwater Management Plan in place, and Abraham's Creek Watershed is in an area covered by a Release Rate Map. The plan states that:

"Areas covered by a Stormwater Management District Map contained in Appendix F.1 of the Ordinance: For the 1- through 100-year storms, the post-development peak discharge rates will follow the applicable approved Stormwater Management District Maps."

Auburn & Leidy Interconnect site is in an A Management District, where the post-development peak runoff release rate must be a maximum of 100% of the pre-development peak runoff release rate for 1- through 100-year storm. The site location is adjacent to an existing site at the common point discharge. The proposed site incorporates a portion of the existing site PCSM facilities and demonstrates compliance. The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 7 and Table 8 below:

Table 7: Auburn & Leidy Interconnects Stormwater Volume Summary

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Infiltration Capacity from Existing and Proposed UG Infiltration Basins (cf)	Adequate Infiltration Volume? (Y/N)
1	17,064	29,514	12,450	7,135+11,342=18,477	Yes
2	24,505	38,308	13,802	7,135+11,342=18,477	Yes
Act 167 2" Capture			14,520	7,135+11,342=18,477	Yes

Table 8: Auburn & Leidy Interconnects Stormwater Peak Flow Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak Flow (cfs)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	5.18	5.18	2.76	Yes
2	8.26	8.26	3.98	Yes
5	13.21	13.21	10.72	Yes
10	17.78	17.78	16.62	Yes
25	27.72	27.72	22.86	Yes
50	35.35	35.35	28.67	Yes
100	47.76	47.76	37.81	Yes

See Auburn & Leidy Interconnects Post-Construction Stormwater Management Plan Section 4 for calculation narrative, and Appendices for calculations.

2.2.4 Kidder Compressor Station

The site is in the Lehigh River Watershed within Carbon County, which does not have an Act 167 Stormwater Management Plan in place, and therefore the Lehigh River Watershed is in an area not covered by a Release Rate Map. Hence it is subject to the requirements of item (g)(2) of PADEP Code Section 102.8, which states that the post-development peak runoff rate must not exceed pre-development peak runoff rate under any storm condition. The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 9 and Table 10 below:

Table 9: Kidder Compressor Station Stormwater Volume Summary

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Basins Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	77,951	144,981	67,030	97,774	Yes
2	111,794	187,256	75,463	97,774	Yes

Table 10: Kidder Compressor Station Stormwater Peak Flow Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak Flow (cfs)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	63.91	63.91	58.92	Yes
2	91.10	91.10	81.33	Yes
5	133.19	133.19	115.15	Yes
10	172.99	172.99	147.75	Yes
25	239.35	239.35	203.87	Yes
50	302.73	302.73	249.15	Yes
100	379.26	379.26	300.88	Yes

See the Kidder Compressor Station Post Construction Stormwater Management Plan Section 4 for Calculation narrative, and Appendices for calculations.

2.2.5 TCO & UGI-LEH Interconnects

The site is in the Saucon's Creek Watershed and is within Northampton County. The Lehigh Valley Planning Commission has an Act 167 Stormwater Management Plan in place, covering Northampton and Lehigh Counties, which includes the Saucon's Creek watershed, and states:

"The basic goal is no increase in the peak rate of runoff at any point in the watershed...If however, through the use of infiltration or other means, an applicant can demonstrate that neither the peak rate nor the volume of runoff are increasing with the development, additional controls to meet the release rates are not required."

The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 11 and Table 12 below:

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Basin Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	4,051	15,287	11,236	13,750	Yes
2	6,044	19,117	13,073	13,750	Yes
Act 167 2" Capture	-	-	11,413	13,750	Yes

Table 11: TCO and UGI-LEH Interconnects Stormwater Volume Summary

Table 12: TOC & UGI-LEH Interconnects Stormwater Peak Flow Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak Flow (cfs)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	1.84	1.84	1.66	Yes
2	2.91	2.91	2.33	Yes
5	5.14	5.14	3.57	Yes
10	7.33	7.33	4.74	Yes
25	10.81	10.81	7.86	Yes
50	13.99	13.99	11.51	Yes
100	17.72	17.72	15.90	Yes

See TCO & UGI-LEH Interconnects Post-Construction Stormwater Management Plan Section 4 for calculation narrative, and Appendices for calculations.

2.2.6 Hellertown Launcher & Mainline Launcher/Receiver

The site is in the Lehigh River Watershed and is within Northampton County, and the Lehigh River Watershed is in an area not covered by a Release Rate Map. However, the Lehigh Valley Planning Commission has an Act 167 Stormwater Management Plan in place covering Northhampton and Lehigh Counties, which includes the Lehigh River watershed, and states:

"The basic goal is no increase in the peak rate of runoff at any point in the watershed...If however, through the use of infiltration or other means, an applicant can demonstrate that neither the peak rate nor the volume of runoff are increasing with development, additional controls to meet the release rates are not required."

The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 13 and Table 14 below:

Stormwater Volume Summary						
Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Basin+Berm Total Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)	
1	7,322	10,946	3,623	4,876+3,480 = 8,356	Yes	
2	10,367	14,439	4,072	4,876+3,480 = 8,356	Yes	
ACT 167 2" Capture			6,220	4,876+3,480 = 8,356	Yes	

Table 13: Hellertown Launcher & Mainline Launcher/Receiver Stormwater Volume Summary

Table 14: Hellertown Launcher & Mainline Launcher/Receiver Stormwater Peak Flow Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
		Flow (cfs)		
1	2.56	2.56	1.28	Yes
2	3.94	3.94	2.06	Yes
5	6.25	6.25	3.84	Yes
10	8.32	8.32	5.40	Yes
25	11.55	11.55	7.53	Yes
50	14.35	14.35	9.26	Yes
100	17.44	17.44	11.11	Yes

See Hellertown Launcher & Mainline Launcher/Receiver Post-Construction Stormwater Management Plan Section 4 for calculation narrative and Appendices for calculations.

2.2.7 Blue Mountain Interconnect

The site is in the Aquashicola Creek Watershed and is within Carbon County, which does not have an Act 167 Stormwater Management Plan in place, therefore Aquashicola Creek Watershed is in an area not covered by a Release Rate Map. Hence it is subject to the requirements of item (g)(2) of PADEP Code Section 102.8, which states that the post-development peak runoff rate must not exceed pre-development peak runoff rate under any storm condition. The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 15 and Table 16 below:

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Basin and Infiltration Area Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	2,168	3,373	1,204	673 + 914 = 1,587	Yes
2	3,216	4,600	1,384	673 + 914 = 1,587	Yes

Table 16: Blue Mountain Interconnect Stormwater Peak Flow Summary

Table 15: Blue Mountain Interconnect Stormwater Volume Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak Flow (cfs)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	1.21	1.21	1.15	Yes
2	1.78	1.78	1.62	Yes
5	3.19	3.19	2.87	Yes
10	5.17	5.17	4.57	Yes
25	8.95	8.95	7.95	Yes
50	12.92	12.92	11.93	Yes
100	17.83	17.83	17.22	Yes

See Blue Mountain Interconnect Post-Construction Stormwater Management Plan Section 4 for calculation narrative, and Appendices for calculations.

2.2.8 Blue Mountain Side Valve

The site is in the Aquashicola Creek Watershed and is within Carbon County, which does not have an Act 167 Stormwater Management Plan in place, therefore Aquashicola Creek Watershed is in an area not covered by a Release Rate Map. Hence it is subject to the requirements of item (g)(2) of PADEP Code Section 102.8, which states that the post-development peak runoff rate must not exceed pre-development peak runoff rate under any storm condition. The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 17 and Table 18 below:

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Basin Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	764	1,239	476	1,259	Yes
2	1,176	1,723	546	1,259	Yes

Table 17: Blue Mountain Side Valve Stormwater Volume Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak Flow (cfs)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	0.45	0.45	0.22	Yes
2	0.74	0.74	0.34	Yes
5	1.23	1.23	0.56	Yes
10	1.67	1.67	0.75	Yes
25	2.44	2.44	1.11	Yes
50	3.17	3.17	2.18	Yes
100	4.04	4.04	3.50	Yes

Table 18: Blue Mountain Side Valve Stormwater Peak Flow Summary

See Blue Mountain Side Valve Post-Construction Stormwater Management Plan Section 4 for calculation narrative, and Appendices for calculations.

2.2.9 Church Road Interconnects

The site is in the Lehigh River Watershed and is within Northampton County, and the Lehigh River Watershed is in an area not covered by a Release Rate Map. However, the Lehigh Valley Planning Commission has an Act 167 Stormwater Management Plan in place covering Northhampton and Lehigh Counties, which includes the Lehigh River watershed, and states:

"The basic goal is no increase in the peak rate of runoff at any point in the watershed...If however, through the use of infiltration or other means, an applicant can demonstrate that neither the peak rate nor the volume of runoff are increasing with development, additional controls to meet the release rates are not required."

The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 19 and Table 20 below:

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Basin Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	2,381	11,439	9,058	9,853 + 2,027 = 11,880	Yes
2	3,975	14,517	10,543	12,413 + 2,497 = 14,910	Yes
Act 167 2" Capture	-	-	8,930	10,637 + 1,525 = 12,162	Yes

Table 19: Church Road Interconnects Stormwater Volume Summary

Table 20: Church Road Interconnects Stormwater Peak Flow Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak Flow (cfs)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	0.341	0.341	0.247	Yes
2	0.808	0.808	0.632	Yes
5	2.084	2.084	1.629	Yes
10	3.512	3.512	2.703	Yes
25	6.045	6.045	4.582	Yes
50	8.514	8.514	6.386	Yes
100	11.51	11.51	10.05	Yes

See Church Road Interconnects Post-Construction Stormwater Management Plan Section 4 for calculation narrative, and Appendices for calculations.

2.2.10 Mainline Block Valve - 1

The site is located in the Susquehanna-Lackawanna Watershed and within Luzerne County, which has an Act 167 Stormwater Management Plan This site is subject to the requirements of the Luzerne County Act 167 Stormwater Management Plan, which imposes stricter requirements than item (g)(2) of Pennsylvania Code Section 102.8. It states that:

"The basic goal is no increase in the peak rate of runoff at any point in the watershed...If however, through the use of infiltration or other means, an applicant can demonstrate that neither the peak rate nor the volume of runoff are increasing with development, additional controls to meet the release rates are not required."

The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 21 and 22 below:

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Trench Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	133	199	66	128	Yes
2	189	263	75	159	Yes
Act 167 2" Capture			73	378	Yes

Table 21: MLV-1 Stormwater Volume Summary

Table 22: MLV-1 Stormwater Peak Flow Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak Flow (cfs)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	0.233	0.233	0.201	Yes
2	0.324	0.324	0.281	Yes
5	0.467	0.467	0.409	Yes
10	0.599	0.599	0.527	Yes
25	0.820	0.820	0.726	Yes
50	1.030	1.030	0.913	Yes
100	1.282	1.282	1.140	Yes

See MLV-1 Post-Construction Stormwater Management Plan Section 4 for calculation narrative, and Appendices for calculations.

2.2.11 Mainline Block Valve - 2

The site is located in the Susquehanna-Lackawanna Watershed and within Luzerne County, which has an Act 167 Stormwater Management Plan This site is subject to the requirements of the Luzerne County Act 167 Stormwater Management Plan, which imposes stricter requirements than item (g)(2) of Pennsylvania Code Section 102.8. It states that:

"The basic goal is no increase in the peak rate of runoff at any point in the watershed...If however, through the use of infiltration or other means, an applicant can demonstrate that neither the peak rate nor the volume of runoff are increasing with development, additional controls to meet the release rates are not required."

The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 23 and 24 below:

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Trench Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	376	684	308	430	Yes
2	533	879	347	430	Yes
Act 167 2" Capture			306	352	Yes

Table 23: MLV-2 Stormwater Volume Summary

Table 24: MLV-2 Stormwater Peak Flow Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs) Existing Disturbed Conditions Site Q (cfs)	Existing Undisturbed Conditions Offsite Q (cfs)	Maximum Allowable Proposed Peak Flow (cfs)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	0.119	0.175	0.271	0.185	Yes
2	0.172	0.260	0.403	0.297	Yes
5	0.258	0.399	0.618	0.525	Yes
10	0.338	0.529	0.819	0.718	Yes
25	0.471	0.746	1.154	1.025	Yes
50	0.599	0.959	1.481	1.308	Yes
100	0.757	1.221	1.882	1.630	Yes

See MLV-2 Post-Construction Stormwater Management Plan Section 4 for calculation narrative, and Appendices for calculations.

2.2.12 Mainline Block Valve - 3

The site is in the Lehigh River Watershed within Carbon County, which does not have an Act 167 Stormwater Management Plan in place, and therefore the Lehigh River Watershed is in an area not covered by a Release Rate Map. Hence it is subject to the requirements of item (g)(2) of PADEP Code Section 102.8, which states that the post-development peak runoff rate must not exceed pre-development peak runoff rate under any storm condition. The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 25 and Table 26 below:

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Trench Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	0	387	387	393	Yes
2	0	478	478	491	Yes
Act 167 2" Capture			261	382	Yes

Table 25: MLV-3 Stormwater Volume Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak Flow (cfs)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)				
1	0.000	0.000	0.000	Yes				
2	0.000	0.000	0.000	Yes				
5	0.000	0.000	0.000	Yes				
10	0.000	0.000	0.000	Yes				
25	0.001	0.001	0.000	Yes				
50	0.004	0.004	0.002	Yes				
100	0.031	0.031	0.020	Yes				

Table 26: MLV-3 Stormwater Peak Flow Summary

See MLV-3 Post-Construction Stormwater Management Plan Section 4 for calculation narrative, and Appendices for calculations.

2.2.13 Mainline Block Valve - 4

The site is in the Lehigh River Watershed within Carbon County, which does not have an Act 167 Stormwater Management Plan in place, and therefore the Lehigh River Watershed is in an area not covered by a Release Rate Map. Hence it is subject to the requirements of item (g)(2) of PADEP Code Section 102.8, which states that the post-development peak runoff rate must not exceed pre-development peak runoff rate under any storm condition. The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 27 and Table 28 below:

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Trench Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	376	803	427	439	Yes
2	691	1,192	501	543	Yes

Table 27: MLV-4 Stormwater Volume Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak Flow	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	0.066	(cfs) 0.066	0.065	Yes
2	0.185	0.185	0.180	Yes
5	0.442	0.442	0.426	Yes
10	0.715	0.715	0.688	Yes
25	1.213	1.213	1.157	Yes
50	1.722	1.722	1.667	Yes
100	2.358	2.358	2.315	Yes

Table 28: MLV-4 Stormwater Peak Flow Summary

See MLV-4 Post-Construction Stormwater Management Plan Section 4 for calculation narrative, and Appendices for calculations.

2.2.14 Mainline Block Valve - 6

The site is in the Lehigh River Watershed and is within Northampton County, and the Lehigh River Watershed is in an area not covered by a Release Rate Map. However, the Lehigh Valley Planning Commission has an Act 167 Stormwater Management Plan in place covering Northhampton and Lehigh Counties, which includes the Lehigh River watershed, and states:

"The basic goal is no increase in the peak rate of runoff at any point in the watershed...If however, through the use of infiltration or other means, an applicant can demonstrate that neither the peak rate nor the volume of runoff are increasing with development, additional controls to meet the release rates are not required."

The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 29 and Table 30 below:

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Trench Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	494	701	208	661	Yes
2	955	1,200	246	1,024	Yes
Act 167 2" Capture			290	1,024	Yes

Table 29: MLV-6 Stormwater Volume Summary

Table 30: MLV-6 Stormwater Peak Flow Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak Flow (cfs)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	0.058	0.058	0.052	Yes
2	0.212	0.212	0.081	Yes
5	0.589	0.589	0.173	Yes
10	1.006	1.006	0.283	Yes
25	1.741	1.741	0.492	Yes
50	2.478	2.478	1.951	Yes
100	3.380	3.380	3.338	Yes

See MLV-6 Post-Construction Stormwater Management Plan Section 4 for calculation narrative, and Appendices for calculations.

2.2.15 Mainline Block Valve - 7

The site is in the Lehigh River Watershed and is within Northampton County, and the Lehigh River Watershed is in an area not covered by a Release Rate Map. However, the Lehigh Valley Planning Commission has an Act 167 Stormwater Management Plan in place covering Northhampton and Lehigh Counties, which includes the Lehigh River watershed, and states:

"The basic goal is no increase in the peak rate of runoff at any point in the watershed...If however, through the use of infiltration or other means, an applicant can demonstrate that neither the peak rate nor the volume of runoff are increasing with development, additional controls to meet the release rates are not required."

The stormwater volume and peak runoff rate requirements are achieved as demonstrated in Tables 31 and Table 32 below:

Recurrence Interval (yrs)	Existing Volume (cf)	Proposed Unmitigated Volume from Model (cf)	Difference between Proposed and Existing (cf)	Proposed Trench Infiltration Capacity (cf)	Adequate Infiltration Volume? (Y/N)
1	152	373	221	299	Yes
2	230	480	250	370	Yes
Act 167 2" Capture			156	576	Yes

Table 31: MLV-7 Stormwater Volume Summary

Table 32: MLV-7 Stormwater Peak Flow Summary

Recurrence Interval (yrs)	Existing Conditions Q (cfs)	Maximum Allowable Proposed Peak Flow (cfs)	Proposed Q (cfs)	Proposed Less than Allowable? (Y/N)
1	0.259	0.259	0.228	Yes
2	0.354	0.354	0.303	Yes
5	0.504	0.504	0.421	Yes
10	0.638	0.638	0.526	Yes
25	0.847	0.847	0.689	Yes
50	1.031	1.031	0.832	Yes
100	1.243	1.243	1.071	Yes

See MLV-7 Post-Construction Stormwater Management Plan Section 4 for calculation narrative, and Appendices for calculations.

2.2.16 Mainline Pipe

Areas of disturbance associated with mainline pipe right-of-way will be restored to preconstruction grade and revegetated to meadow in good condition. Thus, these areas will be compliant with Post-Construction Stormwater Requirements for linear utilities.

3 Groundwater Recharge, Streambank Protection, and Water Quality Standards

3.1 Plan Requirement

The Plans identify meeting the goals of Groundwater Recharge, Streambank Protection, and Water Quality through the use of structural and non-structural Best Management Practices (BMPs).

The five sites in Luzerne County are covered by the Luzerne County Act 167 Stormwater Management Plan, which complies with the PA DEP BMP Manual Volume Control Guideline 1 (CG-1) and/or CG-2 as follows:

"For all regulated activities that require submission of a formal SWM Site Plan, both the Design Storm Method and the Simplified Method shall be calculated; the larger control volume based on the two calculations shall be controlled.

The sites located within Luzerne County are as follows:

- Wyoming Interconnect
- Springville Interconnect
- Auburn & Leidy Interconnects
- Mainline Block Valve 1
- Mainline Block Valve 2

The Design Storm Method (CG-1 in the BMP Manual): Do not increase the post-development total runoff volume for all storms equal to or less than the 2-year 24-hour duration precipitation.

The Simplified Method (CG-2 in the BMP Manual): Accommodate 2" of permanently removed runoff volume. At least the first 0.5 inch of the permanently removed runoff should be infiltrated."

The five sites in Carbon County that do not have Act 167 plans meet the requirements of PADEP Code Section 102.8, to manage the net change in volume between pre-construction and postconstruction for storms up to and including the 2-year/24-hour storm event. The sites located within Carbon County are as follows:

- Kidder Compressor Station
- Blue Mountain Interconnect
- Blue Mountain Side Valve
- Mainline Block Valve 3
- Mainline Block Valve 4

The five sites in Northampton County meet the requirements of the Lehigh Valley Planning Commission Act 167 Stormwater Management Plan, which indicates that volume must be provided as the larger of the difference between the post-development and pre-development 2-year runoff volume, or 1.25 inches of precipitation over the site area based on the Rational Method. The sites located within Northampton County are as follows:

- TCO & UGI-LEH Interconnects
- Hellertown Launcher & Mainline Launcher/Receiver
- Church road Interconnects
- Mainline Block Valve 6
- Mainline Block Valve 7

3.2 Consistency Verification

3.2.1 Wyoming Interconnect

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project is consistent with the Luzerne County Act 167 County-Wide Stormwater Management Plan (Plan). The Plan was adopted by the County and approved by the Pennsylvania Department of Environmental Protection. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the Act 167 standards for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Wyoming Interconnect Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 16 through 22.

3.2.2 Springville Interconnect

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project is consistent with the Luzerne County Act 167 County-Wide Stormwater Management Plan (Plan). The Plan was adopted by the County and approved by the Pennsylvania Department of Environmental Protection. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the Act 167 standards for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Springville Interconnect Site Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 15 through 19.

3.2.3 Auburn & Leidy Interconnects

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project is consistent with the Luzerne County Act 167 County-Wide Stormwater Management Plan (Plan). The Plan was adopted by the County and approved by the Pennsylvania Department of Environmental Protection. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the Act 167 standards for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Springville Interconnect Site Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 8 through 13.

3.2.4 Kidder Compressor Station

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project in Carbon County is consistent with PADEP Code Section 102.8 requirements. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post-Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the PADEP Code Section 102.8 requirements for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Kidder Compressor Station Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 15 through 19.

3.2.5 TCO & UGI-LEH Interconnects

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project is consistent with the Lehigh Valley Planning Commission Act 167 Stormwater Management Plan. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the Act 167 standards for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in TCO & UGI-LEH Interconnects Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 14 through 18.

3.2.6 Hellertown Launcher & Mainline Launcher/Receiver

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project is consistent with the Lehigh Valley Planning Commission Act 167 Stormwater Management Plan. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the Act 167 standards for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Hellertown Launcher & Mainline Launcher/Receiver Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 14 through 18.

3.2.7 Blue Mountain Interconnect/MLV-5

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project in Carbon County is consistent with PADEP Code Section 102.8 requirements. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post-Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the PADEP Code Section 102.8 requirements for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Blue Mountain Interconnect/MLV-5 Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 13 through 16.

3.2.8 Blue Mountain Side Valve

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project in Carbon County is consistent with PADEP Code Section 102.8 requirements. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post-Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the PADEP Code Section 102.8 requirements for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Blue Mountain Side Valve Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 12 through 16.

3.2.9 Church Road Interconnects

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project is consistent with the Lehigh Valley Planning Commission Act 167 Stormwater Management Plan. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the PADEP Code Section 102.8 requirements for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Church Road Interconnects Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 14 through 18.

3.2.10 Mainline Block Valve - 1

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project is consistent with the Luzerne County Act 167 County-Wide Stormwater Management Plan (Plan). The Plan was adopted by the County and approved by the Pennsylvania Department of Environmental Protection. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the PADEP Code Section 102.8 requirements for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Mainline Block Valve -1 Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 13 through 16.

3.2.11 Mainline Block Valve - 2

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project is consistent with the Luzerne County Act 167 County-Wide Stormwater Management Plan (Plan). The Plan was adopted by the County and approved by the Pennsylvania Department of Environmental Protection. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the PADEP Code Section 102.8 requirements for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Mainline Block Valve - 2 Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 14 through 17.

3.2.12 Mainline Block Valve - 3

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project in Carbon County is consistent with PADEP Code Section 102.8 requirements. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post-Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the PADEP Code Section 102.8 requirements for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Mainline Block Valve - 3 Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 13 through 16.

3.2.13 Mainline Block Valve - 4

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project in Carbon County is consistent with PADEP Code Section 102.8 requirements. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post-Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the PADEP Code Section 102.8 requirements for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Mainline Block Valve – 4 Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 13 through 16.

3.2.14 Mainline Block Valve - 6

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project is consistent with the Lehigh Valley Planning Commission Act 167 Stormwater Management Plan. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the PADEP Code Section 102.8 requirements for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Mainline Block Valve - 6 Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 13 through 16.

3.2.15 Mainline Block Valve - 7

The Site Restoration Plan and/or Post Construction Stormwater Management Plan for this project is consistent with the Lehigh Valley Planning Commission Act 167 Stormwater Management Plan. The Erosion and Sediment Control Plan, Site Restoration Plan, and Post Construction Stormwater Management Plan (SR/PCSM Plan) for this project were prepared by Mott MacDonald and AECOM personnel, under the direct supervision of a Pennsylvania licensed Professional Engineer trained and experienced in E&S control methods and techniques and stormwater management design methods and techniques.

The PCSM report provides evidence that the PADEP Code Section 102.8 requirements for groundwater recharge, streambank protection and water quality are met or exceeded as demonstrated in Mainline Block Valve - 7 Post-Construction Stormwater Management Plan 3.1.2 Post-Construction Stormwater Management Plan Analysis Page 14 through 18.

3.2.16 Mainline Pipe

Areas of disturbance associated with mainline pipe right-of-way will be restored to pre-construction grade and revegetated to meadow in good condition. Therefore, these areas will be compliant with Groundwater Recharge, Streambank Protection, and Water Quality Standards.

mottmac.com