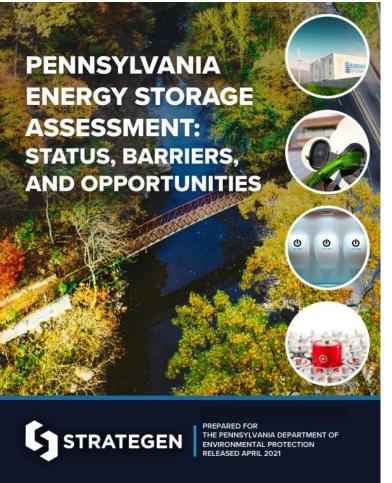


Pennsylvania Energy Storage Assessment: Status, Barriers, and Opportunities

Released April 2021

Agenda

- 1. Introduction
- 2. Energy Storage Technologies and Applications
- 3. Energy Storage in Pennsylvania Today
- 4. Analysis of Energy Storage Potential
 - Standalone behind-the-meter storage
 - Large-scale solar-plus-storage
- 5. Barriers to Energy Storage and Policy Recommendations

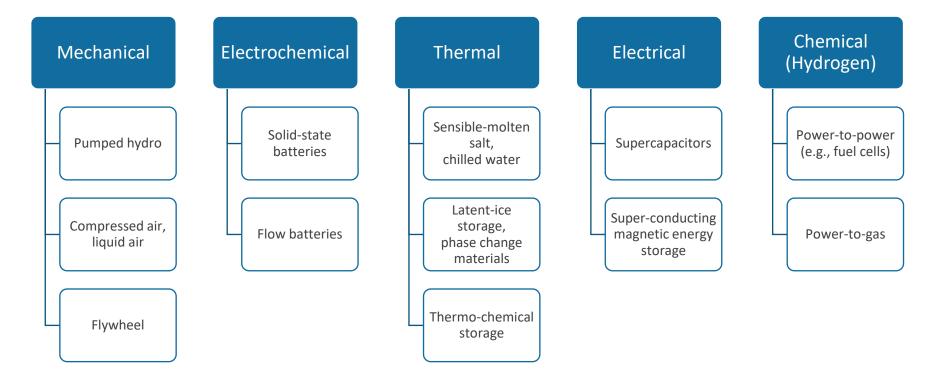

Introduction

+ Purpose of this Report:

- + Assess the current landscape of energy storage in the Commonwealth of Pennsylvania
- + Explore the potential benefits of storage
- + Identify barriers and provide recommendations

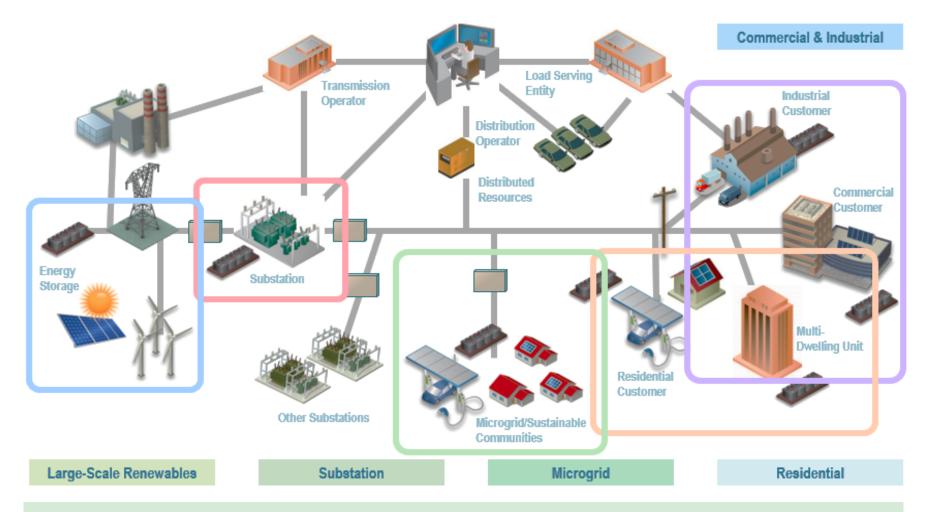
+ Today's Objectives:

- + Provide an overview of the Energy Storage Assessment
- + Discuss results of analysis and policy options



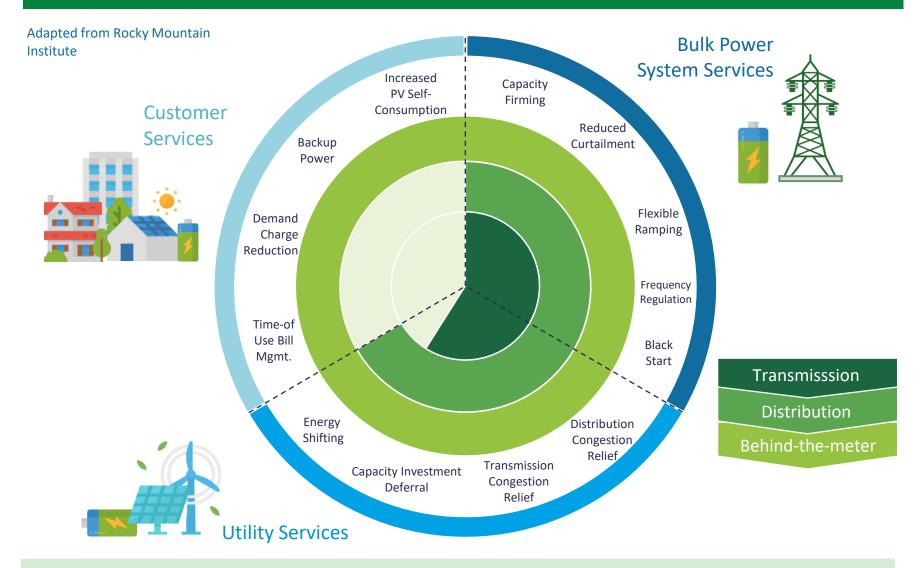
YOUR PARTNER IN THE ENERGY TRANSITION

Energy Storage Technologies and Applications

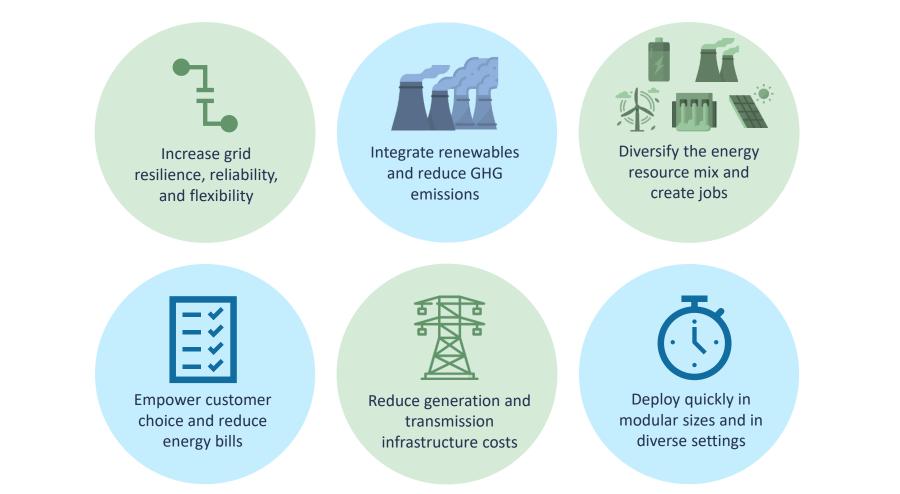


Energy Storage Technologies

Although "energy storage" encompasses a diverse set of technologies, this report focused on the fastest-growing segment: batteries


Widespread Potential for Energy Storage

Energy storage can enhance Pennsylvania's climate and resilience initiatives across the entire electric grid – generation, transmission, and distribution


Source: AECOM. 2015. Energy Storage Study: Funding and Knowledge Sharing Priorities.

Energy Storage Applications

Energy storage can provide value and benefit streams to many stakeholders

Potential Benefits of Energy Storage

Energy storage may play an important role in advancing many of Pennsylvania's energy priorities

Icons made by monkik from www.flaticon.com licensed by creativecommons.org/licenses/by/3.0/ and by Freepik from www.flaticon.com licensed by creativecommons.org/licenses/by/3.0

Energy Storage in Pennsylvania Today

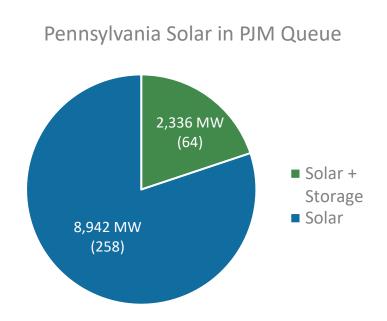
Energy Storage in Pennsylvania Today

- + 22 operational or announced standalone, utility-scale energy storage projects
 Pumped hydro: 1.07 GW
 Lithium-ion batteries: 18 MW
 Lead-carbon batteries: 12.5 MW
 Thermal storage: 8 MW
 Lead-acid batteries: 3 MW
- + Increasing support for renewable energy that can benefit from energy storage as a gridbalancing resource

"Pennsylvania's Solar Future" goal of 10% solar by 2030

Flywheels in Hazle Township

Beyond legacy pumped hydro, new advanced energy storage projects are in the early stages of deployment in the state


Energy Storage in Pennsylvania Today

- + Growing levels of utility-scale solar and solar + storage
- Interest in storage as a distribution grid asset to support resilience and reliability
 PUC Docket No. M-2020-3022877
- + Recent changes to applicable PJM wholesale market rules

FERC Order 841 requires energy storage market participation options

+ RGGI participation

Revenues from RGGI could support and standardize storage projects

The potential for energy storage is a growing topic of discussion in the state and region

Analysis of Energy Storage Potential in Pennsylvania

Overview of Analyses

1. Behind-the-Meter (BTM)

+ Customer-sited, standalone battery energy storage system designed for a typical commercial customer

What are the potential benefits to customers (i.e., electricity bill savings) from installing storage "behind-themeter?"

What additional rates, incentives, or market revenue streams may be needed to encourage deployment?

2. Solar-plus-Storage

+ Large-scale, hybrid solar-plus-storage system designed as an additive component to a renewable energy power purchase agreement

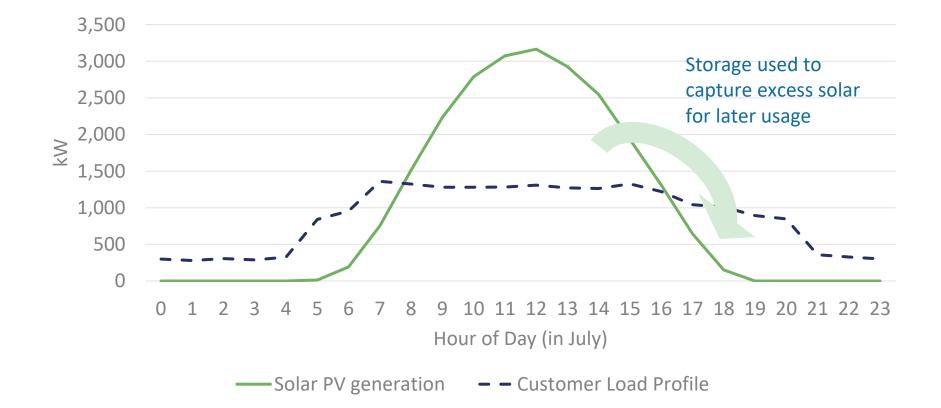
What are the costs and benefits to customers and the grid from including storage as an add-on to a standard solar PPA?

What level of incentive or program support may be needed to encourage this deployment?

Two discrete analyses were conducted in parallel to estimate the benefits from energy storage to Pennsylvania customers

BTM Analysis: Financial Analysis

	Without storage	With storage					
		100 kW, 2-hr	100 kW, 4-hr	150 kW, 2-hr	150 kW, 4-hr	300 kW, 2-hr	300 kW, 4-hr
Energy Consumption (kWh/yr)	6,694,518	6,709,091	6,715,204	6,715,828	6,724,785	6,735,045	6,752,434
Peak Demand (kW)	1,733	1,638	1,638	1,591	1,591	1,557	1,500
Energy Cost (\$/yr)	\$162,468	\$160,304	\$159,660	\$159,300	\$158,398	\$156,255	\$154,662
Demand Charge (\$/yr)	\$81,889	\$77,386	\$77,044	\$76,379	\$74,979	\$74,690	\$71,550
Annual Bill (\$)	\$244,357	\$237,690	\$236,704	\$235,679	\$233,377	\$230,945	\$226,212
Storage System Costs (\$)		\$69,400	\$133,200	\$104,100	\$199,800	\$208,200	\$399,600
Savings from Storage		\$6,667.76	\$7,653.03	\$8,679	\$10,980	\$13,413	\$18,146
		2.7%	3.1%	3.6%	4.5%	5.5%	7.4%
NPV		-\$17,261	-\$80,190	-\$37,918	-\$124,827	-\$111,698	-\$284,326
IRR		4%	-3%	2%	-4%	-2%	-7%


Under current retail rates, BTM energy storage projects generally appear to be uneconomic and suggest that rate reforms could unlock their full value

Solar + Storage Analysis: Results

	Scenario			
	1	2	3	4
Solar Deployment (GW)	11	11	11	11
Solar Paired with Storage	50%	50%	25%	25%
Co-located Storage (GW)	3.1	3.1	1.5	1.5
Storage Duration (hrs)	2.3	2.3	2.3	2.3
Incremental Cost of Storage Component (\$/kW-yr)	\$84.17	\$84.17	\$84.17	\$84.17
Cost Share	50%	25%	50%	25%
Total Program Cost (\$M/yr)	\$129.6	\$64.8	\$64.8	\$32.4
Total Grid & Environmental Value of Solar + Storage Projects (\$M/yr)	\$545.36	\$545.36	\$272.68	\$272.68

Leveraging funding from public programs to buy down the cost of storage could help to accelerate and standardize solar + storage projects

Solar + Storage Projects

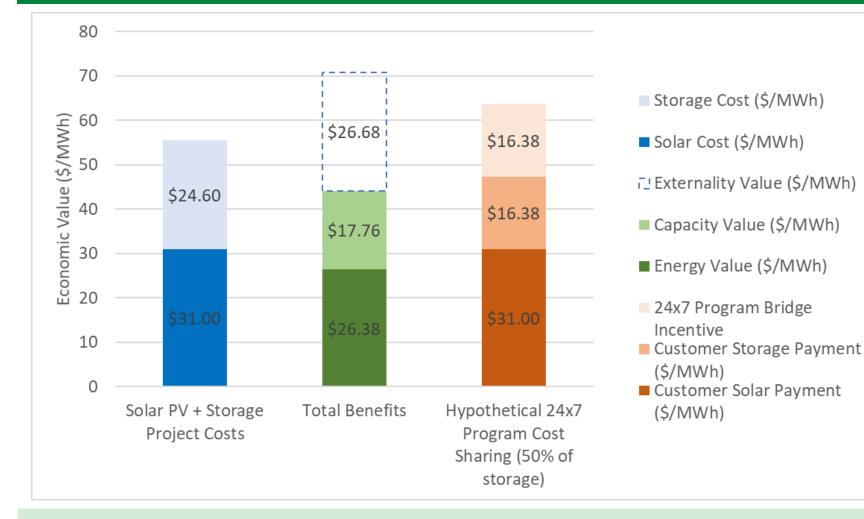
Increasingly, solar PV projects are being paired with battery storage as a means of better matching load of customers and the grid

Solar + Storage Analysis

+ Examined a *hypothetical* "time-matched" renewable power program

Targeted to support more solar + storage PPAs that are more closely matched to customer load, in lieu of traditional REC PPAs

Renewable energy supply purchases are 24x7-style – i.e., generation coincides with end-use demand


E.g., Google's 24x7 carbon-free energy commitment

+ Findings:

A typical C&I customer in southeastern PA could match over 80% of their load from renewable energy by adding storage to a solar PPA at a premium of approximately \$33/MWh

This option provides an innovative approach with unique benefits that could advance the renewable energy PPA market in Pennsylvania

Solar + Storage Analysis: Time-Matched PPA Program



Deploying solar + storage projects could yield significant environmental and energy system benefits, but may benefit from a dedicated solar + storage tariff

Barriers to Energy Storage in Pennsylvania and Policy Recommendations

Barriers and Recommendations

Permitting and Interconnection

Barriers to Energy Storage in Pennsylvania

State Policy

• Lack of storage or clean energy targets or requirements

Retail Tariff Design and Customer Programs

- Lack of retail programs and rates tied to grid services
- Limited pathways for retail customers to provide grid services through DERs

Distribution Utility Planning and Procurement

• Lack of framework and incomplete valuation of storage in procurement and planning

Permitting and Interconnection

- Cumbersome local permitting and interconnection processes
- Limited local industry experience in advanced battery technologies

Wholesale Markets

- Restrictive requirements for participation in PJM energy, capacity, and ancillary services markets
- Unclear market participation rules for hybrid systems, storage as transmission, and DER aggregations
- Limits on market access for multiple uses for storage

Technology

• Potentially high battery costs and technical limitations

State Policy

A storage deployment goal linked to 25% of the Solar Futures goal would equate to 1,500 MW of storage by 2030

Retail Rate Design and Customer Programs

Establish direct incentive programs for storage projects Expand retail customer programs Enact retail rate reforms Develop a tariff for distributionconnected solar + storage

Wholesale Markets

Seek wholesale market improvements through PJM stakeholder processes Consider changes to resource adequacy rules and oversight

Distribution Utility Planning and Procurement

Enhance distribution planning and procurement processes

Permitting and Interconnection

Streamline permitting on state and local levels Update the interconnection process for distributed energy resources

Technology

Support research and development of new energy storage technologies

Summary and Timeline of Recommendations	Near-term	Mid-term	Long-term
1. Establish a storage procurement goal or target			,
2. Convene a statewide "Storage Issues Forum"	-		
3. Designate public funding to accelerate storage deployment	-		
4. Participate in PJM stakeholder processes	_		
5. Consider changes to resource adequacy rules and oversight	-		
6. Accelerate microgrid deployment at critical facilities			
7. Develop a tariff for distribution-connected solar + storage facilities			
8. Establish direct incentive programs for storage projects			
9. Adopt a multiple-use application framework			
10. Update the interconnection process for DERs			
11. Enhance distribution planning and procurement processes			
12. Enact retail rate reforms			
13. Expand retail customer programs			
14. Streamline permitting on state and local levels			
15. Support R&D of new energy storage technologies			

Pennsylvania Energy Storage Assessment: Status, Barriers, and Opportunities

Geoff Bristow DEP – Energy Programs Office Regional Energy Program Manager gbristow@pa.gov 814-332-6681