Appendix[,] 1

GUIDANCE DOCUMENT ON REASONABLY AVAILABLE CONTROL TECHNOLOGY FOR SOURCES OF NOX EMISSIONS

2/01/94

INTRODUCTION:

Pennsylvania's regulation, Title 25, Environmental Resources, Article III, Chapter 129, Standards for Sources, Section 129.91, requires Reasonably Available Control Technology (RACT) to be determined on a case-by-case basis for major sources or facilities. RACT is defined as: The lowest emission limitation that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility.

Presumptive RACT standards have been established in Section 129.93 for certain select source categories. In many states, presumptive standards are the norm with emission limitations or technologies established for most major categories. However, because Pennsylvania has more sources with a greater degree of diversity, the case-by-case RACT process is preferred.

This document is therefore intended to provide guidance and information needed to examine the case-by-case RACT determinations for the affected sources or facilities. In cases where the regulations have provided presumptive RACT, further details on the rationale for the presumptive standards will be given.

Section I contains a general discussion of the Clean Air Act Amendments (CAAA) and how it affects the Commonwealth. A discussion on the NOx emission inventory is included. Section II describes the RACT submittal process and the subsequent case-by-case NOx RACT determination procedures. Section III contains the criteria for allowing emission averaging. Section IV includes the guidance on the establishment of final RACT limitations using actual emission data.

Attachment 1 provides a general summary of various NOx control strategies, followed by a series of Modules which describe in detail the application of NOx RACT for various source categories. The modules are compilation of available information on these source categories. Depending upon the need, specific Modules may be requested by the interested parties. The Modules available are as follows:

Module 1-	Utility Boilers and Boilers >= 100 MMBtu/hr
Module 2-	Industrial, Commercial, Institutional boilers
	<100 MMBtu/hr
Module 3-	Internal Combustion Engines
Module 4-	Turbines
Module 5-	Glass Furnaces
Module 6-	Process Heaters
Module 7-	Iron and Steel Mills
Module 8-	Cement Manufacturing
Module 9-	Miscellaneous and Presumptive RACT Sources

NOX RACT GUIDANCE

DRAFT

I. GENERAL DISCUSSION:

The Clean Air Act Amendments (CAAA) of 1990 require Pennsylvania to meet the health-related, ground level ozone National Ambient Air Quality Standard (NAAQS). In the presence of sunlight, oxides of nitrogen (NOX), and volatile organic compounds (VOC) react to form ground level ozone. Ozone is a known respiratory irritant, and may significantly reduce the yield of important food crops. Ozone may also cause degradation of paint, plastics, textiles and rubber. NOX is also a precursor to acid deposition. NOX, in the form of Nitrogen Dioxide, (NO2) is known to aggravate symptoms associated with asthma and bronchitis. NO2 can also increase susceptibility to respiratory infections. Ground level ozone should not be confused with stratospheric ozone which is beneficial and needed in the upper levels of the atmosphere to block harmful radiation from the sun.

Attaining the ozone air quality standard is a statewide problem for Pennsylvania. A number of counties are classified as nonattainment for not meeting the NAAQS. The CAAA created a special classification system of ozone nonattainment areas depending on the severity of the ozone levels within a consolidated metropolitan statistical area (CSMA). Figure 1 shows these classifications for Pennsylvania. Some counties are classified as nonattainment but are not part of a CMSA.

The five-county Pennsylvania portion of the Philadelphia CSMA is classified as a severe area. In fact, there are serious region-wide violations of the ozone standard throughout the entire northeastern United States. The CAAA address this problem of regional nonattainment through the establishment of the Ozone Transport Region (OTR), of which Pennsylvania has been designated as one of its 13 states or political entities. At a minimum, this action requires that any major VOC or NOX source in the entire state of Pennsylvania is subject to the requirements that apply to major sources in ozone areas classified as moderate, even though some Pennsylvania counties are achieving the NAAQS attainment levels. The major sources located in the Philadelphia Metropolitan Statistical Area are subject to the requirements of severe ozone nonattainment area.

The CAAA require areas which exceed NAAQS for ozone to implement NOx RACT programs for all major NOx facilities. The RACT programs are to apply to all facilities which emit or have the potential to emit greater than 100 tons per year of NOx. In the case of severe nonattainment areas such as the five-county Pennsylvania portion of Philadelphia CSMA facilities of greater than 25 tons per year of NOx are subject to RACT requirements.

Regarding the applicability, if the facility's "potential to emit" was above the RACT threshold (e.g 100 TPY) but the actual emissions for the year 1990 calendar year and for the subsequent years were below the threshold, the facility has the option to accept a federally enforceable condition to limit the emissions to be under the applicability

NOX R	LACT	GUIDANCE	DRAFT	PAGE	3	02/	'01	/
-------	------	----------	-------	------	---	-----	-----	---

threshold. Such a condition would make the facility "synthetic minor" and would not be subject RACT requirements. Since the Pennsylvania's operating permit is not currently federally enforceable, the permit amendment with such conditions must be incorporated in to Pa's SIP as revisions in order to make them federally enforceable.

94

On the other hand, if the facility's actual emissions for the calendar year 1990 were above the RACT applicability threshold, the facility could never be made "synthetic minor" even if the facility is willing to limit the emissions in the future. Thus such facility would be subject to the RACT.

NOx Emissions Distribution By Source

Statewide, mobile sources make up 31% of the total NOX emissions. The remaining 69% comes from stationary sources. Of the latter, the utility industry accounts for 80% of the total NOX emissions. Natural gas transmission accounts for 5% of the total stationary source NOX emissions while the remaining 15% of NOX is derived from miscellaneous sources. Of these miscellaneous sources, glass manufacturing accounts for slightly greater than 1% of the total NOX emissions and asphalt plants less than 1% of the total. Other industries include miscellaneous utilities at 1%, metallurgical at 3%, chemical industry at less than 1%, refining at 2%, mineral industry at 3%, and all other sources at 5%. (See Figure 2 and Table 1) This information was extracted from Pennsylvania Emission Data System (PEDS). Due to thresholds established for including in the PEDS, all the sources in some source categories such as asphalt plants were not included in the PEDS.

The proposed NOx RACT standards are mandated for the ozone non-attainment areas and are part of the strategy to bring Pennsylvania into attainment of the NAAQS for ozone. Due to the implementation of RACT we anticipate the NOx emissions from stationary sources to be reduced by about 35-40 percent.

Preliminary emissions modeling via ROMNET indicates that the first stage RACT reductions may not be sufficient to achieve NAAQS by the stipulated deadlines. Therefore, additional emission reductions may be necessary to achieve attainment of ozone standard in Pennsylvania.

Other states are in various stages of developing their NOX RACT. A summary of their regulations may be found in Table 2 at the end of this document.

II. GUIDANCE FOR SUBMITTING RACT PROPOSALS FOR MAJOR NOX SOURCES:

The final regulation does establish presumptive RACT requirements for three major classes of NOx emitters. For certain small combustion units and certain other classes of fossil fuel burning equipment, presumptive RACT is determined to be the operation of the sources in accordance with

	NOx	RACT	GUIDANCE	DRAFT	PAGE	4
--	-----	------	----------	-------	------	---

the manufacturer's specifications. For certain larger combustion units, RACT is specified to be an annual tune-up and combustion adjustments to provide for low-NOx emitting operation. For very large coal fired combustion units, presumptive RACT is specified to be a low-NOx burner system with separate overfire air.

Although presumptive RACT requirements are contained in the final regulation for certain NOx sources, a source operator may elect to use a case-by-case analysis to establish RACT requirements.

Facilities which are subject to RACT are required to identify themselves within four months of the date of publication of the final regulations in the Pennsylvania Bulletin. These facilities are required to submit a written proposal for RACT for each source to the Department and EPA within six months of adoption of the regulations. All affected facilities must be in compliance with the NOx RACT regulations by May 31, 1995. This deadline is mandated by the CAAA. Therefore, the owner or operator of a source or facility for which RACT is required must obtain approval for a RACT proposal and implement it by May 31, 1995.

Implementing the plan includes obtaining the required permits, installing the approved NOx control, implementing process changes, and complying with all emission limits established by the Department. An owner or operator seeking a RACT determination, and installing an air pollution control device must also submit an application for a Plan Approval, as specified in Chapter 127.

Because the date of RACT implementation is fixed and not dependent upon intermediate events or other regulation promulgation, some facilities may be tempted to initiate control/process changes in the name of RACT without proper permitting. These industries run the risk of wasting money and time on projects which will not pass the review process. Therefore, facilities should obtain approval prior to proceeding with the implementation of the plan.

The case-by-case RACT determinations will require EPA approval as SIP revisions. The Department will coordinate its review of RACT proposals with EPA. The Department will expedite the SIP hearing and submission to assure EPA action as early as possible. After EPA's approval of the RACT regulation, the RACT program which implements the presumptive RACT requirements will not require SIP approval. Sources meeting the presumptive levels contained in the regulation do not have to prepare an alternative analysis identifying and evaluating different control scenarios.

Presumptive RACT requirements for oil/gas fired combustion units

It was brought to the Department's attention that the language in the regulation (§ 129.93 (b) (4) could be interpreted as the only presumptive RACT requirement for oil, gas and combination oil/gas fired units irrespective of heat input is recordkeeping. As indicated in the

NOX RACT GUIDANCE DRAFT PAGE 5 02/)1/	9	}	4	Ł
------------------------------------	-----	---	----------	---	---

background material provided to EQB, the Department's intent was for the oil/gas fired units with rated heat inputs greater than 50 million Btu per hour to be handled through the case-by-case process. The record keeping requirement was intended to be applicable to the oil/gas fired units with rated heat inputs equal to or greater than 20 million Btu per hour. The regulation should be read as follows:

§129.93 (b) (4) (Add the underlined language)

(4) For oil, gas and combination oil/gas units <u>subject to subsection</u> (2), the owner and operator shall maintain records including a certification from the fuel supplier of the type of fuel and for each shipment of distillate oils number 1 or 2, a certification that the fuel complies with ASTM D396-78 "Standard Specifications for Fuel Oils". For residual oils minimum recordkeeping includes a certification from the fuel supplier, of the nitrogen content of the fuel, and identification of the sampling method and sampling protocol.

The Department is planning to clarify the intent of Section 129.93 (b) (4) through an amendment to the regulation. Content of RACT Proposal:

The RACT proposal shall include at a minimum:

1) A list of each unit subject to the NOx RACT regulations;

- 2) The size or capacity of each affected unit and the types of fuel or fuels combusted in each unit;
- 3) A complete description of each source;
- 4) Estimated NOx emissions and associated support documents;
- 5) RACT analysis including technical and economic support documentation for each affected source;
- 6) A schedule for the implementation of RACT including provisions for demonstrating periodic increments of progress and compliance with RACT
- 7) The testing, monitoring, record keeping and reporting procedures to be used to demonstrate compliance with RACT.
- 8) Additional information requested by the Department that is deemed necessary for the determination of RACT.

Guidance for the Case-by-Case RACT analysis:

RACT is defined as the lowest emission limitation that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility.

NOx	RACT	GUIDANCE	DRAFT	PAGE	6	
-----	------	----------	-------	------	---	--

The RACT analysis must include a ranking of all applicable and available control technologies for the affected source in descending order of control effectiveness. The applicant first examines the most stringent or "top" alternative. If it can be shown that this level of control is technically or economically infeasible for the source under review, then the next most stringent level of control is determined and similarly evaluated. The analysis continues until the RACT level under consideration cannot be eliminated by any substantial or unique technical or economic objection.

02/01/94

Step-by-step summary of the RACT analysis process:

STEP 1 : Identify all applicable control technologies

The first step is to identify for each affected source all applicable and available control options. Available control options are those air pollution control technologies or techniques with a practical potential for application to the source. Air pollution control technologies and techniques include the application of production process or methods, control systems, and the fuel combustion techniques for the control of NOx. The control technologies shall include not only existing controls for the source category, but also technology transfer controls applied to similar source categories.

STEP 2: Eliminate technically infeasible options

In the second step, the technical feasibility of the available control options identified in Step 1 is to be evaluated with respect to the source-specific factors. A demonstration of technical infeasibility should be clearly documented based on physical, or chemical and engineering principles, that technical difficulties would preclude the successful use of the control option on the affected source.

Technically infeasible control options are then eliminated from further consideration in the RACT analysis.

Availability of Technically Feasible options: If a technically feasible option cannot be implemented by May 31, 1995 due to temporary inability (for example, manufacturer's inability to supply the equipment on required schedule) such a option cannot be eliminated from RACT consideration. This issue will be dealt as an enforcement issue rather than a RACT determination issue.

STEP 3: Rank remaining control technologies by control effectiveness

In step 3, all remaining control options not eliminated in Step 2 are ranked and then listed in order of overall control effectiveness for the NOx emissions. The list should present the array of control options and should include as a minimum the following information:

1) Baseline (before RACT) emissions

NOX RACT GUIDANCE

DRAFT

PAGE 7

02/01/94

2) control efficiencies

3) expected emissions after the application of the control option

4) economic impacts (both overall cost effectiveness and incremental cost effectiveness)

However, if the proposal selects the top control option the detailed cost analysis is not needed.

Cost-effectiveness:

Cost-effectiveness, in terms of dollars per ton of NOx emissions reduction, is the key criterion to be used in assessing the economic feasibility of a control option. In the economic impacts analysis, primary consideration should be given to quantifying the cost of control and <u>not the economic situation</u> of the affected facility. By expressing costs in terms of the amount of emission reduction achieved, comparisons can be more readily performed among the same type of sources for different facilities.

The cost-effectiveness calculations can be conducted on an average or incremental basis. Average cost-effectiveness is calculated as the annualized cost of the control option being considered divided by the baseline emissions minus the control option emission rate, as shown by the following formula:

Average cost effectiveness (\$/ton removed) =

<u>Control option annualized cost (\$/yr)</u> Baseline emission rate - Control option rate (tons/yr)

The average cost-effectiveness is also referred to as overall or total cost effectiveness.

The baseline emissions rate represents the maximum emissions before the application of the RACT. It should be calculated using either continuous emission monitoring data (CEM), test results or approved emission factors and historic operating data.

The incremental cost effectiveness calculation compares the costs and emission level of a control option to those of the next most stringent option as shown in the following formula:

Incremental Cost (dollars per incremental ton removed) =

<u>Total cost (annualized) of control option - Total cost (annualized) of next option</u> Next control option emission rate - control emission rate

Incremental cost-effectiveness comparisons should focus on annualized cost and mission reduction differences between dominant control options.

NOX RACT GUIDANCE DRAFT PAGE 8 02/01/94

The incremental cost-effectiveness should be examined in conjunction with the total cost effectiveness in order to justify elimination of a control option. The primary focus will be on the total cost effectiveness.

For the cost estimates to be used in the economic analysis the data supplied by an equipment vendor (i.e., budget estimates or bids) must be used as much as possible. The basis of the estimates must be thoroughly documented in the RACT analysis. The cost analysis must be consistent with <u>OAOPS Control Cost Manual</u>, (Fourth Edition), EPA 450/3-90-006, January 1990 or as revised.

STEP 4 : Selection of RACT

The Department will generally consider the control option to be cost effective if the total cost effectiveness is no greater than \$1500 per ton of NOx reduced.

In addition to the average cost effectiveness of \$1500/ton, other factors such as the incremental cost effectiveness and other environmental impacts will also be considered in the RACT determination. For example, a control option with average cost effectiveness less than \$1500/ton would not be automatically considered as a RACT option if it causes significant adverse impact on the other media. The adverse side effects of each control option must be factored in the RACT determination process.

We should caution that US EPA Region III has stated that establishing **any** dollar figure in RACT guidance will not provide for an "automatic" selection or rejection of a control technology or emission limitation as RACT for a source or source category. We also understand that EPA headquarters is planning to finalize a guidance document on cost effectiveness for NOX RACT analysis. The document will suggest that a cost effectiveness of up to \$2,500 is reasonable.

Rationale for selection of cost effectiveness criteria:

It should be noted that in Pennsylvania the number of affected sources and the types of sources are substantially greater than most of the states in Ozone Transport Region (OTR). Also, the baseline emissions of these sources vary widely. Thus, there is a need for a case-by-case RACT determination as opposed to one set of presumptive limits. While it is appropriate to establish site specific limits the degree of control must be comparable to the other states in OTR.

We applied the following criteria in establishing the cost-effectiveness level. First, the cost of control should be fair and equitable to all. Second, the acceptable control costs should be comparable to costs required to employ the presumptive technology requirements for the large coal fired boilers. Third, the cost effectiveness should be reasonable when compared to the acceptable costs

NOx	RACT	GUIDANCE	DRAFT	PAGE	9	02/01/94
						•

established in the existing permitting or regulatory process such as the acceptable costs for BACT determination for new NOx sources and control cost for sources of volatile organic compounds (the other major ozone precursor) to comply with existing RACT regulations based on EPA's guidelines. Finally, the cost-effectiveness should be comparable to that established in other states in the OTR.

The presumptive RACT requirements included in our regulations for coal-fired combustion units with a rated heat input equal to or greater than 100 million Btus per hour, are the installation and operation of low-Nox burners with separated overfire air (LNB-SOFA). As per EPA document "Evaluation and Costing of NOx Controls for Existing Utility Boilers in the NESCAUM Region", the control costs for LNB-SOFA vary from \$270 to \$1,590 per ton of NOx removed depending on site specific factors (such as the type of boiler, size of the boiler and the amount of utilization). The control measures available to achieve the levels established as presumptive RACT for utility boilers by other states show a range of cost-effectiveness from about \$570-\$1500 per ton. In fact, two NOX RACT proposals using LNB-SOFA have documented cost of \$1,222 and \$1,298 per ton.

Therefore, we decided to apply an target limit of one level to all source categories and the level will be set at \$1500 per ton.

The Department suggests using \$1,500 because it is comparable, out, lower than the control cost for sources of volatile organic compounds (the other major ozone precursor) to comply with existing RACT regulations based on EPA's guidelines. For volatile organic compounds, required controls for existing sources are estimated to cost as much as \$3,000 per ton removed.

Also, the cost of presumptive RACT emission limitations for utility boilers in other states have been estimated as \$570 to \$1,500. Finally, the costs to comply with the presumptive NOX RACT emission levels for other sources in other states is as much as \$2,000 per ton removed. It should be noted for BACT determination for NOX emission sources the acceptable cost effectiveness have been as much as \$4,000.

In addition to the average cost effectiveness of \$1500/ton, the other factors such as the incremental cost effectiveness and other environmental impacts will also be considered in the RACT determination.

Therefore, the use of \$1,500 as a target value for one of criteria in the determination of RACT is reasonable.

STEP 5 : Establishment of RACT Emission Limit

If enough uncertainty exists in establishing a final RACT emission limit with the control option chosen by the above procedure, the Department may establish a never-to-exceed preliminary emission limit. The

NOX RACT GUIDANCE

DRAFT

preliminary emission limits for the electric utilities must generally not be less stringent than the emission limits recommended in the EPA's preliminary presumptive RACT levels for electric utility boilers. The final limit is established after adequate actual data is collected with the application of approved technology. The presumptive RACT technology for the coal-fired units with a heat input greater than or equal to 100 Million BTU per hour is "low-NOx burner with a separate OFA". The final limit will be established prior to issuing an operating permit based on the CEM or predictive modeling system or periodic stack test results. In the case of combustion units with a heat input greater than or equal to 250 Million BTU per hour, only a Department-approved CEM system is acceptable for the establishment of the final limit. The CEM system is intended to be any system which meets the performance specification included in the Department's Continuous Source Monitoring Manual. In the case of combustion units with a heat input greater than 100 Million BTU per hour but less than 250 Million BTU per hour source test results may be used in the establishment of limits and the compliance with such limit will be based on the average of three consecutive test runs. A periodic source testing will be required for the verification of the limit. As a minimum, the source testing will be required on annual basis. As the emission data base is established and the data consistently show compliance by a significant margin the testing frequency may be altered. However, the source owner/operator may opt for a predictive modeling program or a CEM system in lieu of periodic testing. The predictive modeling system shall identify and correlate various operating parameters with NOx emission levels through source testing. This predictive modeling program must be approved by the Department. The final limit will be set based upon the available data with an adequate margin for the normal fluctuation of emission levels. The averaging period is generally limited to a 24-hour average in order to protect the hourly ozone standard. Especially for larger sources, a daily averaging may be necessary to accommodate the normal fluctuations of the emission levels. However, the Department may establish a 30-day rolling average in addition to a daily The 30-day rolling average may be used to calculate annual average. baseline emissions for future offset generation. In certain cases the Department may accept the averaging period of 24-hour during the ozone season and a 30 day averaging period during the non-ozone season provided a satisfactory technical/economic justification was made. For the purpose of RACT compliance, the ozone season is defined as the period between April 1 to October 31. The detailed procedure can be found in section IV of this document.

Guidance for coal-fired units proposing to employ the presumptive RACT

For coal-fired combustion units with a rated heat input equal to or greater than 100 million Btus per hour, presumptive RACT requirements are the installation and operation of low-Nox burners with separated overfire air. A low-NOx burner with separated overfire air is defined as a burner design capable of reducing the formation of oxides of nitrogen (NOx) emissions through sub-stoichiometric combustion of fuel by means of a burner assembly consisting of two or more stages and the addition of

NOX RACT GUIDANCE DRAFT PAGE 11

02/01/94

secondary combustion air introduced downstream of the burner location. It is intended that the system be designed to employ the highest degree of staging practicable.

For example, in the case of a tangentially fired (T-fired) combustion unit proposing ABB's Low-NOx Concentric Firing System (LNCFS), presumptive RACT technology is the LNCFS III version unless it is shown that LNCFS III is not feasible either technically or economically. If a LNCFS system or an equivalent low-NOx burner with a SOFA, is proposed as RACT for a T-fired unit the RACT analysis need not address the feasibility of post combustion technologies. However, if LNCFS III is not proposed as RACT the RACT analysis must demonstrate satisfactorily that LNCFS III is not feasible.

Procedure to generate Emission Reduction Credits:

Emission reduction credit (ERC) is defined as a permanent, enforceable, quantifiable and specific reduction which can be considered as a reduction for the purpose of offsetting increases.

"Surplus" emission reductions are reductions not otherwise required by the applicable state implementation plan (SIP) and not already relied upon for SIP planning purposes, and not used by the source to meet any other regulatory requirements. Thus, emission reductions necessary to meet RACT or other statutory requirements such as acid rain limitations are not considered surplus and may not be creditable for emission offsets. in order for NOx emission reductions to be creditable, a federally enforceable RACT determination must have been made. Any reduction beyond the reductions required by RACT is eligible as surplus and thus available for netting or ERC banking purposes. As stated earlier RACT is defined as the lowest emission limitation that a particular source is capable of meeting by application of a control technology that is reasonably Therefore, "surplus" cannot be created with the approved RACT available. control option by merely achieving a lower emission level than the final limit without implementing additional control measures (not including the measures needed to optimize the selected RACT control option) or curtailment of operation. The "surplus" reductions can be achieved by any method, including curtailment of operation (operational limitation, production limits), improved control technologies or measures, shutdown or some combination thereof.

The following procedures will be followed to quantify creditable ERC's generated through the installation of control measures which are determined by the Department to be clearly more stringent than the RACT requirements. The emission reductions achieved via this "overcontrol" must necessarily be greater than reductions that would reasonably be expected from RACT measures.

1. The initial and most important task is to determine the appropriate RACT control technology and estimated emission level reflecting the application of the chosen RACT technology. The Department will use the available technical information in defining this technology and estimating

NOX RACT GUIDANCE DRAFT PAGE 12

02/01/94

the corresponding emission levels. RACT level will be the <u>lowest</u> emission limitation that a particular source is capable of meeting by application of a control technology that is reasonably available. It is also important that these estimated emission levels accurately reflect the maximum degree of control achieved or capable of achievement by similar sources that actually employ similar controls as RACT.

2. After the installation and emission testing of the "overcontrol" technology and establishment of the final NOx emission limit, the comparison will be made between this final emission limit achieved through "overcontrol" and the emission level previously determined for the Department-approved RACT control system. The difference between these two emission rates will be the emission rate used with the fuel consumption data to calculate creditable emission reductions.

3. If an applicant wishes to bank the ERCs due to "overcontrol" prior to installation of "overcontrol" technology, a federally enforceable NOx emission limit reflecting the "overcontrol" will be included in the plan approval. The difference between the NOx limit and the emission level previously determined for the Department-approved RACT control system will be the emission rate used with the fuel consumption data to calculate creditable emission reductions.

It should be noted that the new source which intends to use the ERCs created by the "overcontrol" of this existing source cannot commence <u>operation</u> until the successful implementation of the "overcontrol" technology.

Example: A utility might opt to install an SCR system in lieu of the presumptive RACT technology of LNB-SOFA system on a tangentially-fired boiler with a baseline emission rate of 0.80lb NOx/MMBtu. The existing data on LNB-SOFA on T-fired boilers indicate that up to 50% emission reduction could be achieved by this system. Therefore the the projected emission level after the application of RACT technology is 0.40lb NOx/MMBtu. After the SCR retrofit, the unit achieves an emission rate of 0.13 lb NOx/MMBtu. The difference between 0.40 and 0.13 or 0.27 lb NOx/MMBtu is the rate used with the fuel analysis and consumption data to calculate the creditable NOx ERC's.

III. NOX EMISSION AVERAGING FOR RACT COMPLIANCE:

The Department may approve emission averaging among facilities to provide flexibility in complying with the RACT requirements provided the following criteria are met:

1) The NOx emission reductions achieved through the RACT averaging plan must be no less than the emission reductions that would be achieved by complying with the RACT requirement on a source specific basis.

2) The averaging program shall include a tons per year emission

NOX RACT GUIDANCE DRAFT PAGE 13

02/01/94

cap for each facility that in the aggregate is less than the aggregate of the emissions that would occur from each facility complying individually. In addition, each source shall have an emission rate limit such as lb/mmBTU to provide for independent verification and enforcement of the averaging program.

3) No credit shall be given for emission reductions that are achieved through the shutdown or curtailment of an operation included in the averaging program.

4) The ambient impact from the averaging program must be less than or equivalent to the impact from each source complying individually. This equivalence must be demonstrated both spatially and temporally.

5) The averaging program must be approved as a SIP revision prior to becoming effective.

6) The sources involved in the averaging program shall be required to continuously monitor and record the emissions. In addition the participating facilities are required to establish telemetry links between the facilities to provide real time emission data to all facilities affected by the averaging. For an averaging proposal involving sources at a single facility, the Department may approve alternate requirements provided the proposal demonstrates that the alternate methodologies are credible, workable, replicable and fully enforceable and adequately juantify emissions from all sources participating in the averaging program.

7) The emission averaging programs must be subject to an adequate enforcement mechanism. All the parties involved in the averaging should be held responsible for exceedances of the final RACT requirements.

Emission Averaging:

The emission averaging program may allow some emission sources to emit at a rate that is higher than the RACT rate (which was determined on a case-by-basis) as long as there is a compensating population of emission sources emitting at a rate that is lower than the RACT emission limitation. The allowable emission rate is proportional to the production level. The aggregate of actual emissions from the sources participating in the program must not exceed the aggregate of allowable emissions of those sources.

Air Quality Equivalence:

Traditionally, demonstrations of air quality equivalence required modeling. The modeling demonstrations may be waived, if:

1) the credit generating source in the averaging plan is located in an area with an equal or higher non-attainment designation than the redit consuming source; or,

NOX RACT GUIDANCE DRAFT PAGE 14

2) all sources included in the averaging plan are located within the attainment areas and located in the same broad vicinity; or,

02/01/94

3) all the sources included in the averaging plan are located within the same non-attainment area.

4) all the sources included in the averaging proposal which are not located within the same nonattainment area but are located less than 200 kilometers from any other source involved in the averaging proposal.

Step-by-Step Procedure:

1) Identify the RACT allowable emission levels for each source participating in the averaging plan through case-by-case analysis.

2) The Department sets an allowable source-specific emission rate for each source so that the following equation is met for the maximum allowable averaging period of 24 hours.

 $\Sigma_{i=1-N}$ (Case-by-case RACT Allowable ER_i) x (Projected Activity Level_i) $\geq \Sigma_{i=1-N}$ (Source Specific Allowable ER_i) x (Projected Activity Level_i)

Where i = each emission source participating in the averaging plan
N = the total number of emission units participating in the
averaging plan.
Source Specific Allowable ER_i = Department imposed emission rate
limit for emission source_i.

Projected activity level_i = Estimate of future activity level for emission source_i

3) The aggregate of actual emissions from the sources participating in the plan must not exceed the aggregate of allowable emissions of those sources. The compliance will be verified by the following equation:

 $\Sigma_{i=1-N}$ (Source Specific Allowable ER_i) x (Actual Activity Level_i) $\geq \Sigma_{i=1-N}$ (Actual Emission Rate_i) x (Actual Activity Level_i)

IV. ESTABLISHMENT OF EMISSION LIMITATIONS FOR COAL-FIRED COMBUSTION UNITS WITH RATED HEAT INPUT GREATER THAN 100 MMBTU/HR:

Following the installation of approved RACT technology, Section 129.91 (j) requires the Department to determine the RACT emission limitation for combustion units with rated heat inputs greater than 100 MMBtu/hr. The determination of this maximum limit is to be based upon emissions data obtained either from approved continuous emission monitoring system or an alternate approved methodology. The following

NOx	RACT	GUIDANCE	DRAFT	PAGE	15
-----	------	----------	-------	------	----

procedure shall be used for establishing the final RACT emission limit. The Department may approve an alternate methodology if it was demonstrated that the alternate methodology is more appropriate than the one included in the guidance document. In cases involving multiple sources emitting through a single stack, the methodology to establish the individual emission limits will be approved on a case-by-case basis.

02/01/94

1. A minimum of 90% valid daily averages for a period not less than six months and no more than a year is required. Conventionally, arithmetic average of hourly emission rate (lb/mmBTU) is used calculate the daily average. As an alternate, the facility may use the mass-weighted method, i.e. dividing the total mass of NOx emitted for the day by the total heat input over the same period. The CEM must be certified for the approved method.

A longer period (longer than a year) may be approved if it is demonstrated that a longer period is necessary to represent the normal operation.

2. The data from step one is to be subjected to the Shapiro-Wilk Test of Normality. In this test, data is to be subjected to analysis in two formats. First, the raw data is tested for normal distribution. Second, the existing data is converted to natural logs and tested for log-normal distribution. Based upon these two analysis, the distribution with the highest resulting Shapiro-Wilk statistic will become the listribution for determining the emission limit.

Note: Shapiro-Wilk routines are available through the SAS statistical programs.

3. If the Shapiro-Wilk's test indicates normal distribution, the arithmetic mean of daily average of the data will be used in the final emission limit calculation. The arithmetic mean of the data is defined as follows:

Arithmetic mean = $\sum_{i=1}^{n} X_i/n$ Where n = number of data points i=1 and X_i = ith data point

If the Shapiro-Wilk's test indicates log-normal is the best distribution, then the geometric mean of the data will be used in the final emission calculation. The geometric mean is defined as:

Geometric mean= exp[$\sum_{n=1}^{n} \frac{(\ln Xi)}{n}$]

Where exp = the natural antilog of the expression

4. The final emission limit is then determined from the following equation (based on one exceedence per year):

NOX RACT GUIDANCE DRAFT

For normally distributed data:

Emission rate = Arithmetic mean + (2.777 * Standard Deviation) *

For log normally distributed data:

Emission rate = Median * (Geometric dispersion)2.777

Where Geometric dispersion = antilogarithm of standard deviation of the logarithm of data.

Median = 50th percentile of the distribution of x_1

The calculated emission limit must not generally exceed the preliminary limit imposed in the RACT approval.

Reference: Municipal Waste Combustion: Background Information for Promulgated Standards and Guidelines-Summary of Rublic Comments and Responses Appendices A to C, U.S. EPA, EPA-450/3-91-004, December 1990.

NORTHEAST STATES FOR COORDINATED AIR USE MANAGEMENT (NESCAUM)

MEMBERS:

CONNECTICUT BUREAU OF AIR MANAGEMENT MAINE BUREAU OF AIR QUALITY CONTROL MASSACHUSETTS DIVISION OF AIR QUALITY CONTROL NEW HAMPSHIRE AIR RESOURCES DIVISION NEW JERSEY OFFICE OF ENERGY NEW YORK DIVISION OF AIR RESOURCES RHODE ISLAND DIVISION OF AIR AND HAZARDOUS MATERIALS VERMONT AIR POLLUTION CONTROL DIVISION

NESCAUM Stationary Source Committee Recommendation On NOx RACT for Industrial Boilers, Internal Combustion Engines and Combustion Turbines

September 18, 1992

The NESCAUM Stationary Source Review Committee is one of nine technical Committees established by the NESCAUM Board of Directors. The purpose of the committee is to provide an opportunity for engineers who review permits for new and existing sources to discuss common technical issues and provide some measure of consistency in the review of permits in the region. This recommendation has been developed in response to Sections 182(f) and 182(b)(2) of the Clean Air Act Amendments of 1990 (CAAA), which require states to impose Reasonably Available Control Technology (RACT) for sources that have the potential to emit nitrogen oxides (NOx) in excess of specified threshold amounts and are located in ozone nonattainment areas or in the ozone transport region. RACT is defined as follows:

"the lowest emission limit that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility"

The CAAA requires states to develop and submit NOx RACT regulations to the US EPA by November 15, 1992. All regulated sources must be in compliance with the NOx RACT regulations by May 31, 1995.

In the Northeast, approximately 40 percent of the annual NOx emissions are from stationary sources and 60 percent are from mobile sources. NOx emissions react photochemically with volatile organic compounds (VOC) to form ground-level ozone. NOx emissions also react to form gaseous and particulate acids and other toxic air pollutants. Large portions of the NESCAUM region are currently in nonattainment for ozone, and up to 35 million people are exposed to unhealthy ozone levels each summer in the Northeast. The US EPA's Regional Oxidant Modeling for Northeast Transport (ROMNET) Report (June 1991), which is regarded as the most sophisticated analysis of the regional ozone problem, indicates that a NOx emission reduction of more than 55%, in conjunction with substantial VOC emissions from all sources in the NESCAUM region totaled approximately 1.6 million tons. NOx emissions from the three source categories addressed in this recommendation constitute a large fraction of total NOx emissions in the NESCAUM region (ranging from 10 to 15% of total NOx emissions for individual states).

Based on this information and the requirement of 1990 CAAA, the committee has developed NOx RACT recommendations for: (1) Industrial Boilers, (2) Internal

Combustion Engines, and (3) Combustion Turbines. The NOx RACT limits presented here attempt to account for variations in fuel type, design of combustion units and heat input rate.

For all units (industrial boilers, internal combustion engines, and combustion turbines) with high uncontrolled emission rates, which make a clear technical demonstration that NOx RACT emission limits are not feasible, states may set higher unitspecific alternative emission limitations. Such limitations would be based on the capabilities of all available and applicable technology for combustion modification.

NOx RACT for Industrial Boilers

Industrial boilers are steam-generating units that supply electric power and/or heat to an industrial, institutional or commercial operation, excluding boilers used by electric utilities to generate electricity.

The recommendation for NOx RACT for industrial boilers takes into account the maximum heat input rate of the boilers (in million of Btus/hour) and is as follows.

1. Small Boilers (Boilers < 50 MMBtu/hr)

NOx RACT for small boilers will require appropriate adjustment of combustion process to minimize NOx emissions. The requirements for combustion adjustment will be developed by the individual states.

- 2. Medium-Size Boilers (Heat Input Rate \geq 50 MMBtu/hr but less than 100 MMBtu/hr)
 - a. For boilers in this size range burning wood, coal or some fuel other than oil or gas, NOx RACT will be determined by the individual states on a case-by-case basis.
 - b. For boilers in this size range burning natural gas, the recommended NOx RACT limit is a performance-based standard of 0.10 lb/MMBtu, to be met on a 1-hour averaging basis.
 - c. For boilers in this size range burning #2 oil, the recommended NOx RACT limit is a performance-based standard of 0.12 lb/MMBtu, to be met on a 1-hour averaging basis.
 - d. For boilers in this size range burning #4, #5, or #6 oil, the recommended NOx RACT is a technology-based standard requiring joint application of low-NOx burners and flue gas recirculation (with minimum circulation of 10 percent). In addition, sources will be required periodically to provide the states with data on nitrogen content of #4, #5 or #6 oil (percent weight basis).
 - e. For b) and c) above, the performance-based standards are to be met on an annual, one-hour source test basis at steady state, maximum load conditions (average of three, one-hour stack tests).

3. Large Boilers (Boilers ≥ 100 MMBtu/hr)

The Committee recommends that all large industrial boilers, burning oil, gas coal or other fuels (for example wood), be treated the same as electric utility boilers and must

comply with NOx RACT for electric utilities boilers, as published by NESCAUM ("NESCAUM Stationary Source Committee Recommendation on NOx RACT for Utility Boilers," August 12, 1992).

NOx RACT for Internal Combustion Engines

The emission standards for internal combustion engines are for the control of NOx from existing internal combustion engines with a maximum heat input rate exceeding 3 MMBtu/hr. All proposed levels are based on a one-hour averaging period. Lean-Burn engines are those in which the amount of oxygen in the engine exhaust gases is 1.0% or more, by weight. Rich-burn engines are those in which the amount of oxygen in the engine exhaust gases is less than 1.0%, by weight. Rated brake horsepower (bhp) is as specified by the manufacturer and listed on the nameplate.

- 1. Rich-Burn Engines
 - a. 1.5 grams per bhp-hr for gas-fired units
- 2. Lean-Burn Engines
 - a. 2.5 grams per bhp-hr for gas-fired units
 - b. 8 grams per bhp-hr for oil-fired units

The Stationary Source Review Committee believes that these NOx RACT limits are achievable through the application of three-way catalysts for rich-burn engines, and through the use of retarded engine timing or separate circuit after-cooling for lean-burn engines.

NOx RACT for Combustion Turbines

The emission standards outlined below are for the control of NOx from existing combustion turbines. The recommendation applies to combustion turbines rated at 25 MMBtu/hr or above (maximum heat input rate).

The proposed levels are based on a one-hour averaging period.

- 1. Simple Cycle Combustion Turbines
 - a. 55 parts per million volume dry (ppvmd) (corrected to 15% oxygen) for gas-fired turbines without oil back-up.
 - b. 75 ppmvd (corrected to 15% oxygen) for oil-fired turbines
 - c. for gas-fired turbines with oil back-up:
 - 1. 55 ppmvd (15% oxygen) when operating on gas
 - 2. 75 ppmvd (15% oxygen) when operating on oil
- 2. Combined Cycle Combustion Turbines
 - a. 42 ppmvd (corrected to 15 % oxygen) for gas-fired turbines without oil back-up

- b. 65 ppmvd (corrected to 15% oxygen) for oil-fired turbines
- c. For gas-fired turbines with oil back-up:
 - 1. 42 ppmvd (15% oxygen) when operating on gas
 - 2. 65 ppmvd (15% oxygen) when operating on oil

The Stationary Source Review Committee believes that these NOx RACT limits are achievable through the application of water or steam injection and dry low-NOx combustion technology. Higher emission limits may be specified for an individual unit, on a case-by-case basis, if the owner of the stationary combustion turbine can make a demonstration that water injection is not feasible or that low-NOx combustors are not available for the make and model of turbine. Water injection not being feasible refers to either the unavailability of water (i.e., restrictions placed on water use), excessive costs associated with purifying the water (i.e., cleaning up salt water) or other factors associated with either the turbine or the location of the turbine, at the discretion of the states and the US EPA.

These recommendations were adopted by the NESCAUM Board of Directors on September 17, 1992.

LNB Cost analysis for combustion unit greater than 20 and less than 50 MMBtu/hr					
Boiler Size (MMBtu/hr)	20	50	Reference		
DIRECT COSTS					
Equipment Cost	\$128,700	\$128,700	Washington State Dept of Ecology (2006) adjusted with CPI for 2020		
Instrumenttation and Monitoring	\$12.870	\$12.870	(Typical 10% of EC)		
Freight	\$7.722	\$7.722	6% of EC		
Tax	\$7.722	\$7.722	6% of EC		
Total Purchsed Equipment Cost (TEC)	\$157.014	\$157.014			
	<i> </i>	<i></i>			
Direct Installation Cost					
Foundation and Support	\$12 561	\$12 561	8% of TEC		
Handling and Erection	\$21,982	\$21,982	14% of TEC		
	\$6 281	\$6,281	4% of TEC		
Dining	\$3.140	\$3.140	2% of TEC		
Fipling	¢3,140 ¢1,570	\$3,140 \$1,570	1% of TEC		
Fairung	φ1,570	φ1,570			
Indiract Installation Costs					
	¢45 704	<u> Ф45 704</u>			
Engineering and Supervision	\$15,701	\$15,701			
Construction and Field Expenses	\$7,851	\$7,851			
	\$15,701	\$15,701			
Contingencies	\$4,710	\$4,710	3% of TEC		
Other Indirect Costs					
Startup and Testing	\$4,710	\$4,710	3% of TEC		
TOTAL CAPITAL COST (TCC)	\$251,222	\$251,222			
Direct Annual Costs					
Electricity	\$26,280	\$26,280	Vendor's assumption of \$52.580 for 100 MMBtu/hr boiler		
Material & Maintenance	\$12,561	\$12,561	5% of TCC (Most vendors)		
Indirect Annual Costs					
Overhead	\$7,537	\$7,537	60% of Maintenance (EPA's OAQPS)		
PropertyTax+Ins.+Admn.	\$10,049	\$10,049	(4% of TCC - OAQPS)		
Capital Recovery (5.5% @ 20 yrs)	\$21,027	\$21,027			
TOTAL ANNUALIZED COST	\$77,454	\$77,454			
Uncontrolled NOx emissions (lb/MMBtu)	0.2	0.2			
Uncontrolled NOx emissions (tons/year)	17.52	43.80			
NOx removed TPY (50% Eff.)	8.76	21.90			
COST EFFECTIVENESS (\$/Ton of NOx removed)	\$8,841.78	\$3,536.71			
	. ,	· /			
Ovidation Ostalvat analysis for a			without 20 and loss than 50 MMDtu/lan		
Oxidation Catalyst cost analysis for co	ompustio	n unit greate	er than 20 and less than 50 MIMBtu/nr		
Boiler Size (MMBtu/hr)	20	50	Reference		
DIRECT COSTS					
Equipment Cost	\$232,788	\$232,788	Grays Harbor Energy Project for 30 MMBtu/hr auxiliary boiler		
Instrumentation and Monitoring	\$23,279	\$23,279	(Typical 10% of EC)		
Freiaht	\$13.967	\$13.967	6% of EC		
Тах	\$13,967	\$13,967	6% of EC		
Total Purchsed Equipment Cost (TEC)	\$284.002	\$284.002			

	ļ ļ		
Direct Installation Cost			
Foundation and Support	\$22,720	\$22,720	8% of TEC
Handling and Erection	\$39,760	\$39,760	14% of TEC
Electric	\$11,360	\$11,360	4% of TEC
Piping	\$5,680	\$5,680	2% of TEC
Painting	\$2,840	\$2,840	1% of TEC
Indirect Installation Cost			
Engineering and Supervision	\$28,400	\$28,400	10% of TEC
Construction and Field Expenses	\$14,200	\$14,200	5% of TEC
Contractor fees	\$28,400	\$28,400	10% of TEC
Contingencies	\$8,520	\$8,520	3% of TEC
Other Indirect Costs			
Startup and Testing	\$8,520	\$8,520	3% of TEC
TOTAL CAPITAL COST (TCC)	\$454,403	\$454,403	
Direct Annual Costs			
Electricity	\$5,226	\$5,226	\$1,500 for 2500 hrs operation
Catalyst replacement	\$5,000	\$5,000	
Material & Maintenance	\$22,720	\$22,720	5% of TCC (Most vendors)
Indirect Annual Costs			
Overhead	\$13,632	\$13,632	60% of Maintenance (EPA's OAQPS)
PropertyTax+Ins.+Admn.	\$18,176	\$18,176	(4% of TCC - OAQPS)
Capital Recovery (5.5% @ 20 yrs)	\$38,034	\$38,034	
TOTAL ANNUALIZED COST	\$102,788	\$102,788	
Uncontrolled VOC emissions (lb/MMBtu)	0.0036	0.0036	VOC emission at 3 ppm corrected at 3% oxygen
Uncontrolled VOC emissions (tons/year)	0.32	0.79	
VOC removed TPY (50% Eff.)	0.16	0.39	
COST EFFECTIVENESS (\$/Ton of VOC removed)	\$651,876.31	\$260,750.52	

LNB Cost analysis for combustion unit with uncontrolled NOx emission at 5 tons per year					
Boiler Size (MMBtu/hr)	50	Reference			
DIRECT COSTS					
Equipment Cost	\$128,700	Washington State Dept of Ecology (2006) adjusted with CPI for 2020			
Instrumenttation and Monitoring	\$12,870	(Typical 10% of EC)			
Freight	\$7,722	6% of EC			
Тах	\$7,722	6% of EC			
Total Purchsed Equipment Cost (TEC)	\$157,014				
Direct Installation Cost					
Foundation and Support	\$12,561	8% of TEC			
Handling and Erection	\$21,982	14% of TEC			
Electric	\$6,281	4% of TEC			
Piping	\$3,140	2% of TEC			
Painting	\$1,570	1% of TEC			
Indirect Installation Cost					
Engineering and Supervision	\$15,701	10% of TEC			
Construction and Field Expenses	\$7,851	5% of TEC			
Contractor fees	\$15,701	10% of TEC			
Contingencies	\$4,710	3% of TEC			
Other Indirect Costs					
Startup and Testing	\$4,710	3% of TEC			
TOTAL CAPITAL INVESTMENT (TCI)	\$251,222				
Direct Annual Costs					
Electricity	\$26,280	Vendor's assumption of \$52.580 for 100 MMBtu/hr boiler			
Material & Maintenance	\$12,561	5% of TCI (Most vendors)			
Indirect Annual Costs					
Overhead	\$7,537	60% of Maintenance (EPA's OAQPS)			
Property I ax+Ins.+Admn.	\$10,049	(4% of TCI - OAQPS)			
Capital Recovery (5.5% @ 20 yrs)	\$21,02 <i>1</i>				
	A77 454				
TOTAL ANNUALIZED COST	\$77,454				
	5.00				
	5.00				
INOX removed TPY (50% Eff.)	2.50				

COST-EFFECTIVENESS (\$/Ton NOx removed) \$30,981.60

Oxidation Catalyst cost analysis fo	r combustio	n unit with uncontrolled VOC emission at 2.7 tons per year
Boiler Size (MMBtu/hr)	50	Reference
DIRECT COSTS		
Equipment Cost	\$232,788	Grays Harbor Energy Project for 30 MMBtu/hr auxiliary boiler
Instrumenttation and Monitoring	\$23,279	(Typical 10% of EC)
Freight	\$13,967	6% of EC
Тах	\$13,967	6% of EC
Total Purchsed Equipment Cost (TEC)	\$284,002	
Direct Installation Cost		
Foundation and Support	\$22,720	8% of TEC
Handling and Erection	\$39,760	14% of TEC
Electric	\$11,360	4% of TEC
Piping	\$5,680	2% of TEC
Painting	\$2,840	1% of TEC
Indirect Installation Cost		
Engineering and Supervision	\$28,400	10% of TEC
Construction and Field Expenses	\$14,200	5% of TEC
Contractor fees	\$28,400	10% of TEC
Contingencies	\$8,520	3% of TEC
Other Indirect Costs		
Startup and Testing	\$8,520	3% of TEC
TOTAL CAPITAL INVESTMENT (TCI)	\$454,403	
Direct Annual Costs		
Electricity	\$5,226	\$1,500 for 2500 hrs operation
Catalyst replacement	\$5,000	
Material & Maintenance	\$22,720	5% of TCI (Most vendors)
Indirect Annual Costs		
Overhead	\$13,632	60% of Maintenance (EPA's OAQPS)
PropertyTax+Ins.+Admn.	\$18,176	(4% of TCI - OAQPS)
Capital Recovery (5.5% @ 20 yrs)	\$38,034	

TOTAL ANNUALIZED COST	\$102,788	
Uncontrolled VOC emissions (tons/year)	2.70	
VOC removed TPY (50% Eff.)	1.35	
COST-EFFECTIVENESS (\$/Ton VOC removed)	\$76,139.15	

Cost Analysis for SNCR for Municipal Waste Combustor			
	Assumed average		
Cost estimate	large MWC in PA	Factors Used	
Daily throughput municipal waste (tpd waste)	500	Asumed average large combustor (Range 300 - 600 tpd)	
Hrs/Yr	8760		
Reference NOx emissions in lbs/hr	109.00	Permit limit for Covanta Plymouth 109 lb/hr and 180 ppm@7%O2	
Total Capital Cost	\$1,392,000	Based on \$464,000 for 200 tpd MWC at Olmstead, MN for 2007	
TOTAL CAPITAL COST (TCC)	\$1,726,080.00	With CPI from 2007 - 2020 (1.24)	
Direct Annual Costs			
Elecricity	\$95,124	\$0.0676 kw/hr	
Chemical Cost (Urea/Ammonia)	\$88,500	Based on \$29,500 for 200 tpd MWC at Olmstead, MN for 2007	
Administration (3% of maintenance+labor)	\$3,154	3% of maintenance +labor	
Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day	\$32,850	Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day	
Maintenance Material	\$32,850	100% of maintenance labor	
Indirect Annual Costs			
Annulized Capital Recovery Cost (20 yrs at 5.5%)	\$144,473	TCC*0.0837	
Property Taxes (1% of TCC-OAQPS)	\$17,261	1% of TCC (OAQPS)	
Insurance (1% of TCC-OAQPS)	\$17,261	1% of TCC (OAQPS)	
Overhead (44% of Labor cost + 12% Material Cost)	\$39,420.00	60% of Maintenance Cost (OAQPS)	
TOTAL ANNUALIZED COST	\$470,892	This is close to Annual Operating cost*3 for Olmstead for 200 tpd MWC	
Uncontrolled NOx TPY	477.42		
NOx removed TPY (40% Eff.)	190.97		
COST-EFFECTIVENESS (\$/Ton NOx removed)	\$2,465.82		

Bin	Frequency	Cumulative %
80	1	0.05%
90	35	1.78%
100	143	8.86%
110	418	29.55%
120	818	70.05%
130	496	94.60%
140	103	99.70%
150	5	99.95%
160	1	100.00%
More	0	100.00%

NOx emission test results from all MWCs for 2018 and 2019

Bin	Frequency	Cumulative %
40	1	0.07%
50	1	0.14%
60	2	0.28%
70	0	0.28%
80	2	0.42%
90	21	1.91%
100	22	3.46%
110	104	10.80%
120	199	24.84%
130	180	37.54%
140	792	93.44%
150	48	96.82%
160	34	99.22%
170	7	99.72%
180	4	100.00%
More	0	100.00%

45 days over 150 PPM Nox

41 days occurred on unit 2

All but 5 of the 42 days occurred from 11/7/2019 to 1/8/2020

Bin	Frequency	Cumulative %
40	0	0.00%
50	0	0.00%
60	2	0.29%
70	0	0.29%
80	2	0.57%
90	15	2.72%
100	13	4.58%
110	96	18.31%
120	191	45.64%
130	142	65.95%
140	173	90.70%
150	24	94.13%
160	32	98.71%

180	4	100.00%
More	0	100.00%

Bin	Frequency	Cumulative %
110	0	0.00%
120	1	0.05%
130	14	0.74%
140	281	14.57%
150	1733	99.85%
160	2	99.95%
More	1	100.00%

Bin	Frequency	Cumulative %
40	0	0.00%
50	2	0.11%
60	7	0.48%
70	120	6.83%
80	600	38.61%
90	523	66.31%
100	485	92.00%
110	130	98.89%
120	11	99.47%
130	6	99.79%
140	1	99.84%
150	0	99.84%
160	0	99.84%
170	2	99.95%
180	1	100.00%
More	0	100.00%

Bin	Frequency	Cumulative %
40	1	0.08%
50	1	0.16%
60	7	0.70%
70	5	1.09%
80	5	1.48%
90	4	1.79%
100	7	2.34%
110	4	2.65%
120	11	3.51%
130	10	4.29%
140	25	6.24%
150	1191	99.06%
160	1	99.14%
170	1	99.22%

170	1	99.22%
180	2	99.38%
More	8	100.00%

12 days over 150 PPM Nox Al occurred on unit 2

Bin	Frequency	Cumulative %
40	1	0.16%
50	0	0.16%
60	0	0.16%
70	1	0.31%
80	1	0.47%
90	1	0.63%
100	1	0.79%
110	2	1.10%
120	5	1.89%
130	5	2.67%
140	7	3.77%
150	600	98.11%
160	1	98.27%
170	1	98.43%
180	2	98.74%
More	8	100.00%

Bin	Frequency	Cumulative %
60	7	0.37%
70	10	0.90%
80	16	1.74%
90	55	4.64%
100	194	14.86%
110	319	31.66%
120	424	54.00%
130	474	78.98%
140	297	94.63%
150	88	99.26%
160	13	99.95%
More	1	100.00%

14 days over 150 PPM Nox 13 days occurred on unit 3 Al but 2 of the 13 days occurred from 4/18/2018 to 5/20/2018

Bin	Frequency	Cumulative %
60	1	0.16%
70	2	0.48%
80	2	0.80%
90	14	3.03%
100	43	9.87%
110	75	21.82%
120	149	45.54%
130	165	71.82%
140	117	90.45%
150	47	97.93%
160	12	99.84%
More	1	100.00%

Cost Analysis for SCR for NG, propane, or liquid petroleum gas-fired combustion unit or process heater equal or > 50 MMBtu/hr						
Boiler Capacity MMBtu/hr	50	250	Factors/Reference used			
Hrs/Yr	8760	8760				
NOx emissions (lb/MMBtu)	0.1	0.1				
TOTAL CAPITAL COST (TCC) in 2016	\$1,884,950	\$5,365,750	EPA cost spreadsheet for 50 MMBtu and 250 MMBtu/hr for 2016			
TOTAL CAPITAL COST (TCC)	\$2,054,596	\$5,848,668	TCC in 2020 with CPI 1.09 from 2016 to 2020			
Direct Annual Costs						
Elecricity	\$16,595.25	\$82,975.16	EPA cost spreadsheet for 50 MMBtu and 250 MMBtu/hr for 2016			
Chemical Cost (Urea/Ammonia)	\$9,156.00	\$45,778.91	EPA cost spreadsheet for 50 MMBtu and 250 MMBtu/hr for 2016			
Catalyst Replacement (costs/No. of years)	\$4,738.23	\$23,691.15	EPA cost spreadsheet for 50 MMBtu and 250 MMBtu/hr for 2016			
Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day	\$32,850	\$32,850	Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day			
Maintenance Material	\$32,850	\$32,850	100% of maintenance labor			
Indirect Annual Costs						
Administration (3% of maintenance+labor)	\$3,154	\$3,154	3% ofmaintenance +labor			
Annulized Capital Recovery Cost (30 yrs at 5.5%)	\$141,356	\$402,388	TCC*0.0688			
Property Taxes (1% of TCC-OAQPS)	\$20,546	\$58,487	1% of TCC (OAQPS)			
Insurance (1% of TCC-OAQPS)	\$20,546	\$58,487	1% of TCC (OAQPS)			
Overhead (44% of Labor cost + 12% Material Cost)	\$39,420.00	\$39,420.00	60% of Maintenance Cost (OAQPS)			
TOTAL ANNUALIZED COST	\$321,211	\$780,080				
Uncontrolled NOx TPY	21.90	109.50				
NOx removed TPY (80% Eff.)	18	88				
COST-EFFECTIVENESS (\$/Ton NOx removed)	\$18,334	\$8,905				

SCR Cost Analysis for distillate oil-fired combustion unit or process heater equal or > 50 MMBtu/hr					
Boiler Capacity MMBtu/hr	50	250	Factors/reference used		
Hrs/Yr	8760	8760			
NOx emissions (lb/MMBtu)	0.12	0.12			
TOTAL CAPITAL COST (TCC) in 2016	\$1,557,377	\$4,433,271	EPA cost spreadsheet for 50 and 250 MMBtu		
TOTAL CAPITAL COST (TCC) in 2020	\$1,697,541	\$4,832,265	With CPI 1.09 from 2016 to 2020		
Direct Annual Costs					
Elecricity	\$18,829.75	\$94,146.57	EPA cost spreadsheet for 50 and 250 MMBtu		
Chemical Cost (Urea/Ammonia)	\$10,987.20	\$54,934.91	EPA cost spreadsheet for 50 and 250 MMBtu		
Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day	\$32,850	\$32,850	Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day		
Maintenance Material	\$32,850	\$32,850	100% of maintenance labor		
Catalyst Replacement (costs/No. of years)	\$4,773.11	\$23,863.37	EPA cost spreadsheet for 50 and 250 MMBtu		
Indirect Annual Costs					
Administration (3% of maintenance+labor)	\$3,154	\$3,154	3% of maintenance+labor		
Property Taxes (1% of TCC-OAQPS)	\$16,975	\$48,323	1% of TCC (OAQPS)		
Insurance (1% of TCC-OAQPS)	\$15,574	\$44,333	1% of TCC (OAQPS)		
Annulized Capital Recovery Cost (30 yrs at 5.5%)	\$116,791	\$332,460	TCC*0.0688		
Overhead (44% of Labor cost + 12% Material Cost)	\$39,420.00	\$39,420.00	60% of Maintenance Cost (OAQPS)		
TOTAL ANNUALIZED COST	\$292,204	\$706,334			
Uncontrolled NOx TPY	26.28	131.40			
NOx removed TPY (80% Eff.)	21	105			
COST-EFFECTIVENESS (\$/Ton NOx removed)	\$13,899	\$6,719			

SCR Cost Analysis for residual oil or other liquid-fired combustion unit or process heater equal or > 50 MMBtu/hr						
Boiler Capacity MMBtu/hr	50	250	Factors/reference used			
Hrs/Yr	8760	8760				
NOx emissions (lb/MMBtu)	0.2	0.2				
TOTAL CAPITAL COST (TCC) in 2016	\$1,557,377	\$4,433,271	EPA cost spreadsheet for 50 and 250 MMBtu for 2016			
TOTAL CAPITAL COST (TCC) in 2020	\$1,697,541	\$4,832,265	With CPI 1.09			
Direct Annual Costs						
Elecricity	\$18,829.75	\$94,146.57	EPA cost spreadsheet for 50 and 250 MMBtu for 2016			
Chemical Cost (Urea/Ammonia)	\$18,312.00	\$114,446.73	EPA cost spreadsheet for 50 and 250 MMBtu for 2016			
Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day	\$32,850	\$32,850	Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day			
Maintenance Material	\$32,850	\$32,850	100% of maintenance labor			
Catalyst Replacement (costs/No. of years)	\$4,910.45	\$24,980.62	EPA cost spreadsheet for 50 and 250 MMBtu for 2016			
Indirect Annual Costs						
Administration (3% of maintenance+labor)	\$3,154	\$3,154	3% of maintenance+labor			
Property Taxes (1% of TCC-OAQPS)	\$16,975	\$48,323	1% of TCC (OAQPS)			
Insurance (1% of TCC-OAQPS)	\$15,574	\$48,323	1% of TCC (OAQPS)			
Annulized Capital Recovery Cost (30 yrs at 5.5%)	\$116,791	\$332,460	TCC*0.0688			
Overhead (44% of Labor cost + 12% Material Cost)	\$39,420.00	\$39,420.00	60% of Maintenance Cost (OAQPS)			
TOTAL ANNUALIZED COST	\$299,666	\$770,953				
Uncontrolled NOx TPY	43.80	219.00				
NOx removed TPY (80% Eff.)	35	175				
COST-EFFECTIVENESS (\$/Ton NOx removed)	\$8,552	\$4,400				

SCR Cost Analysis for refinery gas-fired combustion unit or process heater equal to or > 50 MMBtu/hr					
Boiler Capacity MMBtu/hr	50	250	Factors/Reference used		
Hrs/Yr	8760	8760			
NOx emissions (lb/MMBtu)	0.25	0.25			
TOTAL CAPITAL COST (TCC) in 2016	\$1,884,950	\$5,365,750	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
TOTAL CAPITAL COST (TCC) in 2020	\$2,054,596	\$5,848,668	With CPI 1.09 from 2016 to 2020		
Direct Annual Costs					
Elecricity	\$16,595.25	\$82,975	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day	\$32,850	\$32,850	Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day		
Maintenance Material	\$32,850	\$32,850	100% of maintenance labor		
Chemical Cost (Urea/Ammonia)	\$22,888.91	\$114,447	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
Catalyst Replacement (costs/No. of years)	\$4,996.56	\$24,981	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
Indirect Annual Costs					
Administration (3% of maintenance+labor)	\$3,154	\$3,154	3% of maintenance + labor		
Property Taxes (1% of TCC-OAQPS)	\$20,546	\$58,487	1% of TCC (OAQPS)		
Insurance (1% of TCC-OAQPS)	\$20,546	\$58,487	1% of TCC (OAQPS)		
Annulized Capital Recovery Cost (30 yrs at 5.5%)	\$129,685	\$369,164	TCC*0.0688		
Overhead (44% of Labor cost + 12% Material Cost)	\$39,420.00	\$39,420.00	60% of Maintenance Cost (OAQPS)		
TOTAL ANNUALIZED COST	\$323,531	\$816,813			
Uncontrolled NOx TPY	54.75	273.75			
NOx removed TPY (80% Eff.)	44	219			
COST-EFFECTIVENESS (\$/Ton NOx removed)	\$7,387	\$3,730			

SCR Cost Analysis for coal-fired combustion unit between 50 - 250 MMBtu/hr					
Boiler Capacity MMBtu/hr	50	250	Factors/Reference used		
Hrs/Yr	8760	8760			
NOx emissions (lb/MMBtu)	0.45	0.45			
TOTAL CAPITAL COST (TCC) in 2016	\$4,806,258	\$13,280,762	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
TOTAL CAPITAL COST (TCC) in 2020	\$5,238,821	\$14,476,031	With CPI 1.09 from 2016 to 2020		
Direct Annual Costs					
Annulized Capital Recovery Cost (30 yrs at 5.5%)	\$360,431	\$995,951	TCC*0.0688		
Elecricity	\$18,073.29	\$90,366	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day	\$32,850	\$32,850	Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day		
Maintenance Material	\$32,850	\$32,850	100% of maintenance labor		
Chemical Cost (Urea/Ammonia)	\$41,200.91	\$206,005	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
Catalyst Replacement (costs/No. of years)	\$17,468.34	\$19,763	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
Indirect Annual Costs					
Administration (3% of maintenance+labor)	\$3,154	\$3,154	3% ofmaintenance +labor		
Property Taxes (1% of TCC-OAQPS)	\$52,388	\$144,760	1% of TCC (OAQPS)		
Insurance (1% of TCC-OAQPS)	\$52,388	\$144,760	1% of TCC (OAQPS)		
Overhead (44% of Labor cost + 12% Material Cost)	\$39,420.00	\$39,420.00	60% of Maintenance Cost (OAQPS)		
TOTAL ANNUALIZED COST	\$650,223	\$1,709,879			
Uncontrolled NOx TPY	98.55	492.75			
NOx removed TPY (80% Eff.)	79	394			
COST-EFFECTIVENESS (\$/Ton NOx removed)	\$8,247	\$4,338			

SNCR Cost Analysis for coal-fired combustion unit between 50 - 250 MMBtu/hr					
Boiler Capacity MMBtu/hr	50	250	Factors/Reference used		
Hrs/Yr	8760	8760			
NOx emissions (lb/MMBtu)	0.45	0.45			
TOTAL CAPITAL COST (TCC) in 2016	\$1,766,776	\$4,045,623	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
TOTAL CAPITAL COST (TCC) in 2020	\$1,925,786	\$4,409,729	With CPI 1.09 from 2016 to 2020		
Direct Annual Costs					
Elecricity	\$832.76	\$4,164	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
Additional Water Cost	\$683.43	\$3,419	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
Additional Ash Cost	\$263.78	\$1,318	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
Additional Fuel Cost	\$3,325.59	\$16,628	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
Chemical Cost (Urea/Ammonia)	\$59,838.82	\$299,196	EPA spreadsheet for 50 and 250 mmbtu/hr boilers		
Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day	\$32,850	\$32,850	Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day		
Maintenance Material	\$32,850	\$32,850	100% of maintenance labor		
Indirect Annual Costs					
Administration (3% of maintenance+labor)	\$3,154	\$3,154	3% of maintenance +labor		
Property Taxes (1% of TCC-OAQPS)	\$19,258	\$44,097	1% of TCC (OAQPS)		
Insurance (1% of TCC-OAQPS)	\$19,258	\$44,097	1% of TCC (OAQPS)		
Annulized Capital Recovery Cost (30 yrs at 5.5%)	\$121,554	\$278,339	TCC*0.0688		
Overhead (44% of Labor cost + 12% Material Cost)	\$39,420.00	\$39,420.00	60% of Maintenance Cost (OAQPS)		
TOTAL ANNUALIZED COST	\$333,288	\$799,532			
Uncontrolled NOx TPY	98.55	492.75			
NOx removed TPY (30% Eff.)	30	148			
COST-EFFECTIVENESS (\$/Ton NOx removed)	\$11,273	\$5,409			

Control technology	Control efficiency	Uncontrolled emission level lb/Mmbtu	Size of boiler Mmbtu/hr	Cost per ton of NOx 2016	Cost per ton of NOx 2020
SNCR	30%	0.16	250	\$5,747	\$6,207
SNCR	30%	0.16	500	\$4,395	\$4,747

			Data Inputs			
inter the following data for your combustion u	ınit:					
s the combustion unit a utility or industrial boiler? s the SNCR for a new boiler or retrofit of an existing boiler?	Industrial			What type of fuel does the unit	burn? Coal 💌	
lease enter a retrofit factor equal to or greater than 0.84 l nter 1 for projects of average retrofit difficulty.	based on the level of difficulty.	1]			
complete all of the highlighted data fields:				Dravida tha following informatio	an for coal fired boilers:	
What is the maximum heat	250	MMBtu/hour]	Type of coal burned:	Lignite	
What is the higher heating	6,000	Btu/lb]	Enter the sulfur content (%S) = or	1.84 percent by weight Select the	
what is the estimated actual annual fuel	365,000,000	lbs/year]	appropriate SO ₂ emission rate:	Not Applicable *The sulfur content of 1.84% is a default value. See below for data source. Ent value, if known.	ter actual
Is the boiler a fluid-bed boi	ler Yes 🔻		-	Ash content (%Ash):	9.23 percent by weight *The ash content of 9.23% is a default value. See below for data source. Enter value, if known.	r actual
				For units burning coal blends:		
Enter the net plant heat in	10	MMBtu/MW			Note: The table below is pre-populated with default values for I Please enter the actual values for these parameters in the table value for any parameter is not known, you may use the default	HHV, %S, %A e below. If th values provid
					Fraction in Coal Blend %S %Ash HH	IV (Btu/lb)
If the NPHR is not known, u	Fuel Type Coal Fuel Oil	Default NPHR 10 MMBtu/MW 11 MMBtu/MW			Bituminous 0 1.84 9.23 Sub-Bituminous 0 0.41 5.84 Lignite 0 0.82 13.6	11,841 8,826 6,626
	Natural Gas	8.2 MMBtu/MW	J		Please click the calculate button to calculate weighted values based on the data in the table above.	

Enter the following design parameters for the proposed SNCR:

Number of days the SNCR of	365	days
Inlet NO _x Emissions (NOx _{in})	0.16	lb/MMBtu
Oulet NO _x Emissions (NOx _o	0.112	lb/MMBtu
Estimated Normalized Stoi	1.22	
Concentration of reagent a	29	Percent
Density of reagent as store	56	lb/ft ³
Concentration of reagent in	10	percent
Number of days reagent is	14	days
Estimated equipment life	30	Years

Select the reagent used Ammonia

Enter the cost data for the proposed SNCR:

Desired dollar-vear	2016				1
CEPCI for 2016	541.7		541.7	2016 CEPCI	CEPCI = Chemical Engineering Plant Cost Index
					* 5.5 percent is the default bank prime rate. User should enter curr
Annual Interest Rate (i)	5.5	Percent*			https://www.federalreserve.gov/releases/h15/.)
Fuel (Cost _{fuel})	2.40	\$/MMBtu*			
Reagent (Cost _{reag})	0.29	\$/gallon for a 29 percent solution of ammonia			
Water (Cost _{water})	0.0042	\$/gallon*			
Electricity (Cost _{elect})	0.0676	\$/kWh*			
Ash Disposal (for coal-fired	48.80	\$/ton*]

* The values marked are default values. See the table below for the default values used and their references. Enter actual values, if known.

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (0.015
Administrative Charges Fac	0.03

Plant Elevation

250 Feet above sea level

Densities of typical SNCR reagents:	
50% urea solution	71 lbs/ft ³
29.4% aqueous NH ₃	56 lbs/ft ³

rrent bank prime rate (available at

Data Sources for Default Values Used in Calculations:

Data Element	Default Value	Sources for Default Value	If you used your own site-specific values, pl and the reference source
Reagent Cost (\$/gallon)	\$0.293/gallon of 29% Ammonia	U.S. Geological Survey, Minerals Commodity Summaries, January 2017 (https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/mcs-2017-nitro.pdf	
Water Cost (\$/gallon)	0.00417	Average water rates for industrial facilities in 2013 compiled by Black & Veatch. (see 2012/2013 "50 Largest Cities Water/Wastewater Rate Survey." Available at http://www.saws.org/who_we_are/community/RAC/docs/2014/50-largest-cities-brochure-water- wastewater-rate-survey.pdf.	
Electricity Cost (\$/kWh)	0.0676	U.S. Energy Information Administration. Electric Power Monthly. Table 5.3. Published December 2017. Available at: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a.	
Fuel Cost (\$/MMBtu)	2.40	U.S. Energy Information Administration. Electric Power Annual 2016. Table 7.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	
Ash Disposal Cost (\$/ton)	48.8	Waste Business Journal. The Cost to Landfill MSW Continues to Rise Despite Soft Demand. July 11, 2017. Available at: http://www.wastebusinessjournal.com/news/wbj20170711A.htm.	
Percent sulfur content for Coal (% weight)	1.84	Average sulfur content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	
Percent ash content for Coal (% weight)	9.23	Average ash content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	
Higher Heating Value (HHV	11,841	2016 coal data compiled by the Office of Oil, Gas, and Coal Supply Statistics, U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	
(Polouit keelu orimo roto	-

The following design parameters for the SNCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q _B) =	HHV x Max. Fuel Rate =	250	MMBtu/hour
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 Btu/MMBtu x 8760)/HHV =	365,000,000	lbs/year
Actual Annual fuel consumption (Mactual) =		365,000,000	lbs/year
Heat Rate Factor (HRF) =	NPHR/10 =	1.00	
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tSNCR/365) =	1.00	fraction
Total operating time for the SNCR (t _{op}) =	CF _{total} x 8760 =	8760	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	30	percent

alues,	please	enter	the v	alue us	sed

NOx removed per hour =	NOx _{in} x EF x Q _B =	12.00	lb/hour	
Total NO _x removed per year =	$(NOx_{in} \times EF \times Q_B \times t_{op})/2000 =$	52.56	tons/year	
Coal Factor (Coal _F) =	1 for bituminous; 1.05 for sub-bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.07		
SO ₂ Emission rate =	(%S/100)x(64/32)*(1x10 ⁶)/HHV =	> 3	lbs/MMBtu	
Elevation Factor (ELEVF) =	14.7 psia/P =			Not applicable; elevation factor does not
Atmospheric pressure at 250 feet above sea level (P) =	2116x[(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.6	psia	apply to plants located at elevations below 500 feet.
Retrofit Factor (RF) =	Retrofit to existing boiler	1.00		

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at

https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Reagent Data:

Type of reagent used	Ammonia	Molecular	Weight of Reagent (MW) = Density =	17.03 g/mole 56 lb/gallon
Parameter	Equation	Calculated Value	Units	
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times NSR \times MW_R)/(MW_{NOx} \times SR) =$	18	lb/hour	
	(whre SR = 1 for NH_3 ; 2 for Urea)			
Reagent Usage Rate (m _{sol}) =	m _{reagent} /C _{sol} =	62	lb/hour	
	(m _{sol} x 7.4805)/Reagent Density =	8.3	gal/hour	
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24 hours/day)/Reagent Density =	2,800	gallons (storage needed to rounded up to the nearest 1	store a 14 day reagent supply .00 gallons)

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i(1+i)^{n}/(1+i)^{n} - 1 =$	0.0688
	Where n = Equipment Life and i= Interest Rate	

Parameter	Equation	Calculated Value	Units
Electricity Usage: Electricity Consumption (P) =	(0.47 x NOx _{in} x NSR x Q _B)/NPHR =	2.3	kW/hour
Water Usage: Water consumption (q _w) =	$(m_{sol}/Density of water) \times ((C_{stored}/C_{inj}) - 1) =$	14	gallons/hour
Fuel Data: Additional Fuel required to evaporate water in injected reagent (ΔFuel) =	Hv x m _{reagent} x ((1/C _{inj})-1) =	0.15	MMBtu/hour
Ash Disposal: Additional ash produced due to increased fuel consumption (Δash) =	(Δfuel x %Ash x 1x10 ⁶)/HHV =	2.3	lb/hour

Cost Estimate

Total Capital Investment (TCI)

For Coal-Fired Boilers:

TCI = $1.3 \times (SNCR_{cost} + APH_{cost} + BOP_{cost})$

For Fuel Oil and Natural Gas-Fired Boilers:

TCI = 1.3 x (SNCR_{cost} + BOP_{cost})

Capital costs for the SNCR (SNCR _{cost}) =
Air Pre-Heater Costs (APH _{cost})* =
Balance of Plant Costs (BOP _{cost}) =

\$682,343 in 2016 dollars

\$682,343 in 2016 dollars \$895,698 in 2016 dollars \$935,477 in 2016 dollars

Total Capital Investment (TCI) = \$3,267,573 in 2016 dollars * This factor applies because the boiler burns bituminous coal and emits equal to or greater than 0.3lb/MMBtu of sulfur dioxide. SNCR Capital Costs (SNCR_{cost}) For Coal-Fired Utility Boilers: $SNCR_{cost} = 220,000 \times (B_{MW} \times HRF)^{0.42} \times CoalF \times BTF \times ELEVF \times RF$ For Fuel Oil and Natural Gas-Fired Utility Boilers: $SNCR_{cost} = 147,000 \times (B_{MW} \times HRF)^{0.42} \times ELEVF \times RF$ For Coal-Fired Industrial Boilers: $SNCR_{cost} = 220,000 \times (0.1 \times Q_B \times HRF)^{0.42} \times CoalF \times BTF \times ELEVF \times RF$ For Fuel Oil and Natural Gas-Fired Industrial Boilers: $SNCR_{cost} = 147,000 \times ((Q_B/NPHR) \times HRF)^{0.42} \times ELEVF \times RF$ SNCR Capital Costs (SNCR_{cost}) = \$682,343 in 2016 dollars Air Pre-Heater Costs (APH_{cost})* For Coal-Fired Utility Boilers: $APH_{cost} = 69,000 \times (B_{MW} \times HRF \times CoalF)^{0.78} \times AHF \times RF$ For Coal-Fired Industrial Boilers: $APH_{cost} = 69,000 \times (0.1 \times Q_B \times HRF \times CoalF)^{0.78} \times AHF \times RF$ Air Pre-Heater Costs (APH_{cost}) = \$895,698 in 2016 dollars * This factor applies because the boiler burns bituminous coal and emits equal to or greater than 0.31b/MMBtu of sulfur dioxide. Balance of Plant Costs (BOP_{cost}) For Coal-Fired Utility Boilers: $BOP_{cost} = 320,000 \times (B_{MW})^{0.33} \times (NO_x Removed/hr)^{0.12} \times BTF \times RF$ For Fuel Oil and Natural Gas-Fired Utility Boilers: BOP_{cost} = 213,000 x $(B_{MW})^{0.33}$ x $(NO_x Removed/hr)^{0.12}$ x RF For Coal-Fired Industrial Boilers: $BOP_{cost} = 320,000 \times (0.1 \times Q_B)^{0.33} \times (NO_x Removed/hr)^{0.12} \times BTF \times RF$ For Fuel Oil and Natural Gas-Fired Industrial Boilers: $BOP_{cost} = 213,000 \times (Q_B/NPHR)^{0.33} \times (NO_x Removed/hr)^{0.12} \times RF$ Balance of Plant Costs (BOP_{cost}) = \$935,477 in 2016 dollars

Annual Costs

Total Annual Cost (TAC) TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$75,802 in 2016 dollars
Indirect Annual Costs (IDAC) =	\$226,279 in 2016 dollars
Total annual costs (TAC) = DAC + IDAC	\$302,081 in 2016 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Water Cost) + (Annual Fuel Cost) + (Annual Ash Cost)

Annual Maintenance Cost =	0.015 x TCI =	\$49,014 in 2016 dollars
Annual Reagent Cost =	$q_{sol} \times Cost_{reag} \times t_{op} =$	\$21,355 in 2016 dollars
Annual Electricity Cost =	$P x Cost_{elect} x t_{op} =$	\$1,358 in 2016 dollars
Annual Water Cost =	q _{water} x Cost _{water} x t _{op} =	\$518 in 2016 dollars
Additional Fuel Cost =	Δ Fuel x Cost _{fuel} x t _{op} =	\$3,076 in 2016 dollars
Additional Ash Cost =	$\Delta Ash x Cost_{ash} x t_{op} x (1/2000) =$	\$481 in 2016 dollars

Direct Annual Cost =		\$75,802 in 2016 dollars
	Indirect Annual Cost (IDAC)	
	IDAC = Administrative Charges + Capital Record	very Costs
Administrative Charges (AC) =	0.03 x Annual Maintenance Cost =	\$1,470 in 2016 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$224,809 in 2016 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$226,279 in 2016 dollars
	Cost Effectiveness	
	Cost Effectiveness = Total Annual Cost/ NOx Re	moved/year

Total Annual Cost (TAC) =	\$302,081 per year in 2016 dollars
NOx Removed =	53 tons/year
Cost Effectiveness =	\$5,747 per ton of NOx removed in 2016 dollars

Cost Effectivenss =	\$6,207	per ton of NOx removed in 2020 dollars		

	SCR	Cost Analysis for CFB gre	ater than 250 MME	Btu/hr]		
Control technology	Control efficiency	Uncontrolled emission level lb/Mmbtu	Size of boiler Mmbtu/hr	Cost per ton of NOx 2016	Cost per ton of NOx 2020			
SCR	80%	0.16	250	\$8,389	\$9,060			
SCR	80%	0.16	10000	\$5,099	\$5,507			
				SAMPLE CALCULA	TION			
				Data Inputs				
Enter the following data for your	combustion unit:							
Is the combustion unit a utility or industria	I boiler?	Industrial			What type of fuel does the unit burn?		Coal	
Is the SCR for a new boiler or retrofit of an	existing boiler?	Retrofit 🗨						
Please enter a retrofit factor between 0.8 a	and 1.5 based on the level of difficulty.	Enter 1 for projects of average retrofit difficulty.	1]				
Complete all of the highlighted data fields:								
				_	Provide the following information for coa	al-fired boilers:		
	What is the maximum heat input rate (C	10,000 M	1MBtu/hour]	Type of coal burned:		Bituminous 🔻	
	What is the higher heating value (HHV)	a 11,841 Bt	tu/lb]	Enter the sulfur content (%S) =		1.00 percent by weight	
	What is the estimated actual annual fue	7.398.023.816 lb:	s/vear	7				
	consumption?				For units burning coal blends:			
						Note: The table below is pre-pop	pulated with default values for HHV and %S. Please enter the actual	values for these parameters in the
	Enter the net plant heat input rate (NPH	10 M	1MBtu/MW	7		table below. If the actual value f	or any parameter is not known, you may use the default values pro-	vided.
			•	_		Cool Turo	Fraction in Coal	
	If the NPHR is not known, use the defau	Fuel Type De	efault NPHR	4		Bituminous	0 1.84 11,843	
		Fuel Oil 10	1 MMBtu/MW			Sub-Bituminous Lignite	0 0.41 8,820 0 0.82 6,68	
		Natural Gas 8	2 MMBtu/MW			Please click the calculate button	to calculate weighted average values based on	
						the data in the table above.		
	Plant Elevation	1500 Fe	eet above sea level]	For coal-fired boilers, you may use sith	her Method 1 or Mathod 2 to co	loulate the catalyst replacement cost. The equations for both	
					methods are shown on rows 85 and 86	6 on the <i>Cost Estimate</i> tab. Plea	ise select your preferred method:	Method 1 Method 2 Not applicable
Enter the following design param	eters for the proposed SCR:							

	Number of days the SCR operates (t_{SCR})	365 days		Number of SCR reactor chambers (n_{scr})	1	
	Number of days the boiler operates $(t_{plan}$	365 days		Number of catalyst layers (R_{layer})	3	
	Inlet NO _x Emissions (NOx _{in}) to SCR	0.16 lb/MMBtu		Number of empty catalyst layers (R_{empty})	1	
	Outlet NO _x Emissions (NOx _{out}) from SCR	0.032 lb/MMBtu		Ammonia Slip (Slip) provided by vendor	2 ppm	
	Stoichiometric Ratio Factor (SRF)	0.525		Volume of the catalyst layers (Vol _{catalyst}) "UNK" if value is not known)	(Enter UNK Cubic feet	
	*The SRF value of 0.525 is a default value. User should	ıld enter actual value, if known.	-	Flue gas flow rate (Q _{fluegas})	(Enter	
				"UNK" if value is not known)	UNK acfm	
	_					
	Estimated operating life of the catalyst (H	24,000 hours				
	Ectimated SCB equipment life	20 Voors*		Gas temperature at the SCR inlet (T)	<mark>650</mark> °ғ	*The SCR inlet temperature of 650
	* For industrial boilers, the typical equipment life is b	between 20 and 25 years.			184 ft ³ /min MMDtu/hour	deg.F is a default value.
	-		1	Base case fuel gas volumetric flow rate facto	or (Q _{fuel})	
	Concentration of reagent as stored (C _{store}	50 percent*	*The reagent concentration of 50% and density of 71 lbs/cft are default values for urea reagent. User should e	nter actual values for reagent, if different from the default values		
	Density of reagent as stored (p _{stored})	71 lb/cubic feet*	provided.			
	Number of days reagent is stored (t _{storage}	14 days		<u>Den</u>	sities of typical SCR reagents:	
				50%	6 urea solution 71 lbs/ft ³	
				23		
	Select the reagent used Ur	Jrea 🗸				
Enter the cost data for the prope	osed SCR:					
	Desired dollar-year	2016	544.7		series Diast Cast Index	
		541.7	541.7 20			
	Annual Interest Rate (i)	5.5 Percent*		+ 5.5 percent is the default of https://www.federalreserve.g	ank prime rate. User should enter current bank prime rate (available at gov/releases/h15/.)	
	Reagent (Cost _{reag})	1.660 \$/gallon for 50% urea*		* \$1.66/gallon is a default val	ue for 50% urea. User should enter actual value, if known.	
	Electricity (Cost _{elect})	0.0676 \$/kWh		* \$0.0676/kWh is a default va	lue for electrity cost. User should enter actual value, if known.	

Reagent (Cost _{reag})	1.660 \$/gallon for 50% urea*	* \$1.66/gallon is a default value for 50% urea. User should enter actual value, if kn
Electricity (Cost _{elect})	0.0676 \$/kWh	* \$0.0676/kWh is a default value for electrity cost. User should enter actual value,
Catalyst cost (CC _{replace})	227.00 \$/cubic foot (includes removal and disposal/regeneration of existing catalyst and installation of new catalyst	* \$227/cf is a default value for the catalyst cost based on 2016 prices. User should
Operator Labor Rate	60.00 \$/hour (including benefits)*	* \$60/hour is a default value for the operator labor rate. User should enter actual
Operator Hours/Day	4.00 hours/day*	* 4 hours/day is a default value for the operator labor. User should enter actual va

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

-,

ld enter actual value, if known.

al value, if known.

value, if known.

2 2 2

Data Sources for Default Values Used in Calculations:

				Recommended
	Defectivity in		If you used your own site-specific values, please enter the value used and the reference source .	data sources for
gent Cost (\$/gallon)	\$1.66/gallon 50% urea solution	Sources for Default Value		Check with reagent
Berr cost (é) Barron)	\$100, gallen 50% alea Soladoli	Technologies, SCR Cost Development Methodology, Chapter 5, Attachment 5-3, January 2017. Available at: https://www.epa.gov/sites/production/files/2018-05/documents/attachment 5-		vendors for
		3_scr_cost_development_methodology.pdf.		current prices.
tricity Cost (\$/kWh)	0.0676	U.S. Energy Information Administration. Electric Power Monthly. Table 5.3. Published December 2017. Available at:		Plant's utility bill or
		https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a.		use U.S. Energy
				Administration
				(EIA) data for most
				recent year.
cent sulfur content for Coal (%	1.84	Average sulfur content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report.		Check with fuel
ight)		Available at http://www.eia.gov/electricity/data/eia923/.		supplier or use
				U.S. Energy
				Administration
her Heating Value (HHV) (Btu/lb)	11,841	2016 coal data compiled by the Office of Oil, Gas, and Coal Supply Statistics, U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations		Fuel supplier or
		Report. Available at http://www.eia.gov/electricity/data/eia923/.		use U.S. Energy
				Information
				Administration
				(EIA) data for most
alyst Cost (\$/cubic foot)	227	U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6 Using the Integrated Planning Model. Office of Air and Radiation. May 2018. Available at: https://www.epa.gov/airmarkets/documentation-epas-power-sector-modeling-platform-v6.		Check with vendors for
perator Labor Rate (\$/hour)	\$60.00	U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6 Using the Integrated Planning Model. Office of Air and Radiation. May 2018.		Use payroll data, if
		Available at: https://www.epa.gov/airmarkets/documentation-epas-power-sector-modeling-platform-v6.		available, or check
				current edition of
				the Bureau of
				National
				Occupational
				Employment and
				Wage Estimates –
				United States
				(https://www.bls.g
				ov/oes/current/oe
				s_nac.nemj.
est Rate (Percent)	5.5	Default bank prime rate		Use known interest
				rate or use bank
				available at
				https://www.feder
				alreserve.gov/rele
				ases/h15/.

Cost Estimate

	Total Capital Investment (TCI)							
TCI for Coal-Fired Boilers								
For Coal-Fired Boilers:								
	$TCI = 1.3 \times (SCR_{cost} + RPC + APHC + BPC)$							
Capital costs for the SCR (SCR _{cost}) =	\$188,238,031	in 2016 dollars						
Reagent Preparation Cost (RPC) =	\$3,373,507	in 2016 dollars						
Air Pre-Heater Costs (APHC)* =	\$0	in 2016 dollars						
Balance of Plant Costs (BPC) =	\$10,157,840	in 2016 dollars						
Total Capital Investment (TCI) =	\$262,300,191	in 2016 dollars						
* Not applicable - This factor applies only to coal-fired boi	lers that burn bituminous coal and emits equal to or greater than 3lb/MMBtu of sulfur	dioxide.						
	SCR Capital Costs (SCR _{cost})							
For Coal-Fired Utility Boilers >25 MW:								
	$SCR_{} = 310,000 \times (NRF)^{0.2} \times (B_{} \times HRF \times CoalF)^{0.92} \times ELEVE \times RF$							
For Coal-Fired Industrial Boilers >250 MMBtu/bou	r.							
	$SCR_{cost} = 310,000 \times (NRF)^{\circ} \times (0.1 \times Q_B \times COAIF)^{\circ} \times ELEVF \times RF$							
SCR Capital Costs (SCR _{cost}) =		\$188,238,031 in 2016 dollars						
	Reagent Preparation Costs (RPC)							
For Coal-Fired Utility Boilers >25 MW:								
	$RPC = 564,000 \times (NOx_{in} \times B_{MW} \times NPHR \times EF)^{0.25} \times RF$							
For Coal-Fired Industrial Boilers >250 MMBtu/hou	r:							
	RPC = 564.000 × (NOV × O × EE) ^{0.25} × PE							
	$MCC = 304,000 \times (MOX_{in} \times Q_B \times Er) \times RF$							
Descent Descention Costs (DDC)		¢2 272 507 := 2016 delle ==						
Reagent Preparation Costs (RPC) =		\$3,373,507 in 2016 dollars						

	Air Pre-Heater Costs (APHC)*		
For Coal-Fired Utility Boilers >25MW:			
	APHC = 69,000 x (B_{MW} x HRF x CoalF) ^{0.78} x A	AHF x RF	
For Coal-Fired Industrial Boilers >250 MME	stu/hour:		
	APHC = 69,000 x $(0.1 \times Q_B \times CoalF)^{0.78} \times AF$	IF x RF	
Air Pre-Heater Costs (APH _{cost}) =			\$0 in 2016 dollars
* Not applicable - This factor applies only to coal-	fired boilers that burn bituminous coal and emit equal to or greater than 3	Ib/MMBtu of sulfur die	xide.
	Balance of Plant Costs (BPC)		
For Coal-Fired Utility Boilers >25MW:			
	BPC = 529,000 x $(B_{MW} x HRFx CoalF)^{0.42} x ELE$	EVF x RF	
For Coal-Fired Industrial Boilers >250 MME	stu/hour:		
	BPC = 529,000 x (0.1 x Q _B x CoalF) ^{0.42} ELEV	'F x RF	
Balance of Plant Costs (BOP _{cost}) =			\$10,157,840 in 2016 dollars
	Appual Costs		
	Allitual Costs		
	Total Annual Cost (TAC)		
	TAC = Direct Annual Costs + Indirect Annual	l Costs	
Direct Annual Costs (DAC) =		\$10,520,850	in 2016 dollars
Indirect Annual Costs (IDAC) =		\$18,064,619	in 2016 dollars
Total annual costs (TAC) = DAC + IDAC		\$28,585,469	in 2016 dollars
	Direct Annual Costs (DAC)		
DAC = (Ani	nual Maintenance Cost) + (Annual Reagent Cost) + (Annual Elec	ctricity Cost) + (Ann	ual Catalyst Cost)
Annual Maintenance Cost =	0.005 x TCI =		\$1,311,501 in 2016 dollars
Annual Reagent Cost =	$m_{col} \times Cost_{cost} \times t_{cost} =$		\$2,687,923 in 2016 dollars
Annual Electricity Cost =	P x Costelect x ten =		\$3.316.186 in 2016 dollars
Annual Catalyst Replacement Cost =	op		\$3,205,240 in 2016 dollars
······			+-,,
For coal-fired boilers, the following method	is may be used to calcuate the catalyst replacement cost.		
Method 1 (for all fuel types):	n _{scr} x Vol _{cat} x (CC _{replace} /R _{layer}) x FWF		* Calculation Method 2 selected.
Method 2 (for coal-fired industrial boilers):	$(O_{-}/NPHR) \times 0.4 \times (CoalE)^{2.9} \times (NRE)^{0.71} \times (CC_{-1.0}) \times 35.3$		
Direct Annual Cost =			\$10,520,850 in 2016 dollars
	Indirect Annual Cost (IDAC)		
	IDAC = Administrative Charges + Capital Recov	Very Costs	
Administrative Charges (AC) -	$0.03 \times (Operator Cost + 0.4 \times Appual Maintenance Cost) =$		\$18 366 in 2016 dollars
Capital Recovery Costs (CR)=	CRF x TCl =		\$18,046,253 in 2016 dollars
Indirect Annual Cost (IDAC) =	AC + CR =		\$18.064.619 in 2016 dollars
	Cost Effectiveness		
	Cost Effectiveness = Total Annual Cost/ NOx Rep	moved/year	
		¢20 505	annuar in 2016 dellere
I OTAL ANNUAL COST (TAC) =		528,585,469	Der vear in ZUTP dollars

Total Annual Cost (TAC) =	\$28,585,469 per year in 2016 dollars
NOx Removed =	5,606 tons/year
Cost Effectiveness =	\$5,099 per ton of NOx removed in 2016 dollars
Cost Effectiveness =	\$5,507 per ton of NOx removed in 2020 dollars

SCR Cost Analysis for other solid fuel-fired combustion unit equal to or greater than 50 MMBtu/hr						
Boiler Capacity MMBtu/hr	50	250	Factors/Reference used			
Hrs/Yr	8760	8760				
NOx emissions (lb/MMBtu)	0.25	0.25				
TOTAL CAPITAL COST (TCC) in 2016	\$4,599,871	\$12,972,142	EPA spreadsheet for 50 and 250 mmbtu/hr boilers			
TOTAL CAPITAL COST (TCC) in 2020	\$5,013,859	\$14,139,635	With CPI 1.09 from 2016 to 2020			
Direct Annual Costs						
Elecricity	\$18,073.29	\$90,366	EPA spreadsheet for 50 and 250 mmbtu/hr boilers			
Chemical Cost (Urea/Ammonia)	\$22,888.91	\$114,447	EPA spreadsheet for 50 and 250 mmbtu/hr boilers			
Catalyst Replacement (costs/No. of years)	\$17,468.34	\$87,343	EPA spreadsheet for 50 and 250 mmbtu/hr boilers			
Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day	\$32,850	\$32,850	Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day			
Maintenance Material	\$32,850	\$32,850	100% of maintenance labor			
Indirect Annual Costs						
Administration (3% of maintenance+labor)	\$3,154	\$3,154	3% ofmaintenance +labor			
Property Taxes (1% of TCC-OAQPS)	\$50,139	\$141,396	1% of TCC (OAQPS)			
Insurance (1% of TCC-OAQPS)	\$50,139	\$141,396	1% of TCC (OAQPS)			
Annulized Capital Recovery Cost (30 yrs at 5.5%)	\$344,954	\$972,807	TCC*0.0688			
Overhead (44% of Labor cost + 12% Material Cost)	\$39,420.00	\$39,420.00	60% of Maintenance Cost (OAQPS)			
TOTAL ANNUALIZED COST	\$611,935	\$1,656,029				
Uncontrolled NOx TPY	54.75	273.75				
NOx removed TPY (80% Eff.)	44	219				
COST-EFFECTIVENSSS (\$/Ton NOx removed)	\$13,971	\$7,562				

SNCR Cost Analysis for other solid fuel-fired combustion unit equal to or greater than 50 MMBtu/hr						
Boiler Capacity MMBtu/hr	50	250	Factors/Reference used			
Hrs/Yr	8760	8760				
NOx emissions (lb/MMBtu)	0.25	0.25				
TOTAL CAPITAL COST (TCC) in 2016	\$1,706,180	\$3,920,603	EPA spreadsheet for 50 and 250 mmbtu/hr boilers			
TOTAL CAPITAL COST (TCC) in 2020	\$1,859,736	\$4,273,457	With CPI 1.09 from 2016 to 2020			
Direct Annual Costs						
Elecricity	\$462.16	\$2,313	EPA spreadsheet for 50 and 250 mmbtu/hr boilers			
Additional Water Cost	\$380.41	\$1,900	EPA spreadsheet for 50 and 250 mmbtu/hr boilers			
Additional Ash Cost	\$146.06	\$732	EPA spreadsheet for 50 and 250 mmbtu/hr boilers			
Additional Fuel Cost	\$1,847.55	\$9,238	EPA spreadsheet for 50 and 250 mmbtu/hr boilers			
Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day	\$32,850	\$32,850	Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day			
Maintenance Material	\$32,850	\$32,850	100% of maintenance labor			
Chemical Cost (Urea/Ammonia)	\$33,243.91	\$166,221	EPA spreadsheet for 50 and 250 mmbtu/hr boilers			
Indirect Annual Costs						
Administration (3% of maintenance+labor)	\$3,154	\$3,154	3% of maintenance +labor			
Property Taxes (1% of TCC-OAQPS)	\$18,597	\$42,735	1% of TCC (OAQPS)			
Insurance (1% of TCC-OAQPS)	\$18,597	\$42,735	1% of TCC (OAQPS)			
Annulized Capital Recovery Cost (30 yrs at 5.5%)	\$117,385	\$269,737	TCC*0.0688			
Overhead (44% of Labor cost + 12% Material Cost)	\$39,420.00	\$39,420.00	60% of Maintenance Cost (OAQPS)			
TOTAL ANNUALIZED COST	\$298,934	\$643,884				
Uncontrolled NOx TPY	54.75	273.75				
NOx removed TPY (30% Eff.)	16	82				
COST-EFFECTIVENESS (\$/Ton NOx removed)	\$18,200	\$7,840				

Cost Analysis for Oxidation Catalyst for combustion units and process heaters equal to or greater than 50 MMBtu/h							
Boiler Size (MMBtu/hr)	50	100	150	200	250	Factors/References	
TOTAL CAPITAL COST							
TOTAL CAPITAL COST (TCC)	\$455,667	\$911,333	\$1,367,000	\$1,822,667	\$2,278,333	Company's proposed estimate	
Catalyst Replacement	\$43,333	\$52,000	\$78,000	\$93,600	\$112,320	Company Estimate for 30 MMBtu	
Taxes, Insurance, Administration	\$18,227	\$36,453	\$54,680	\$72,907	\$91,133	4% of TEC	
Capital Recovery (5.5% @ 20 yrs)	\$38,139	\$76,279	\$114,418	\$152,557	\$190,697	TCC*0.0837	
TOTAL ANNUALIZED COST	\$99,699	\$164,732	\$247,098	\$319,064	\$394,150		
Uncontrolled VOC emissions (lb/MMBtu)	0.0100	0.0100	0.0100	0.0100	0.0100	An average uncontrolled VOC emission rate	
Uncontrolled VOC emissions (tons/year)	2.19	4.38	6.57	8.76	10.95		
VOC removed TPY (60% Eff.)	1.31	2.63	3.94	5.26	6.57		
COST-EFFECTIVENESS (\$/Ton NOx removed)	\$75,874.66	\$62,683.38	\$62,683.38	\$60,704.69	\$59,992.36		

Cost Analysis for SCR for NG-fire	d combin	ed cycle combustion turbines between	1000 and 4100	HP
	HP		1000	4100
Operating Hours (h)	Н		8760	8760
Fuel Consumption (MMBtu/h)	FC		10.99	21.99
TOTAL CAPITAL INVESTMENT (TCI)				
SCR Catalyst Housing and Control System	А	Based on vendors quote	\$2,629,336.46	\$3,234,608.16
Reductant Storage Tank	Α'	Based on vendor's Quote	\$70,585.47	\$120,051.63
Total Purchased Equipment Costs	В	PA sales tax of 6% (1.06*(A+A'))	\$2,861,917.25	\$3,555,939.37
Direct Installation Costs	0.30B	OAQPS	\$858,575.18	\$1,066,781.81
Indirect Installation Costs	0.31B	OAQPS	\$887,194.35	\$1,102,341.20
Contingencies	0.24B	OAQPS 24% of equipment	\$686,860.14	\$853,425.45
Total Capital Costs	С	Sum(Row 8:Row 11)*1.11 (CPI)	\$5,876,947.08	\$7,302,121.50
Direct Annual Costs				
Power Costs		PC*H*PP	\$1,122.45	\$3,367.36
Reductant Costs		RC*H*RC	\$20,006.53	\$60,019.58
SCR Catalyst Replacement Costs		H/SCL*SCC	\$8,978.71	\$26,936.12
Replacement Parts		Vendor's quote	\$4,976.13	\$4,976.13
Operating Labor		OW*OH*SY	\$11,804.10	\$11,804.10
Maintenance Labor	D	MW*MH*SY	\$6,493.35	\$6,493.35
Total Direct Annual Costs	E	Sum(Row 15:Row 20)	\$53,381.26	\$113,596.63
Indirect Annual Costs				
Overhead	0.6D	OAQPS	\$3,896.01	\$3,896.01
Property Tax	0.02C	OAQPS using PA property tax of 2%	\$52,586.73	\$64,692.16
Insurance	0.01C	OAQPS	\$26,293.36	\$32,346.08
Administrative	0.02C	OAQPS	\$52,586.73	\$64,692.16
Capital Recovery		5.5% for 30 years=.0688	\$404,333.96	\$689,320.27
Total Indirect Annual Costs	F	Sum(Row 23:Row27)	\$539,696.79	\$854,946.69
TOTAL ANNUALIZED COST	G	E+F	\$593.078.06	\$968.543.32
Control Efficiency	CE		80%	80%
Potential to Emit (TPY)	PTE	NER*FC*H	26.61	53.22
Annual Estimated NOx Removal (TPY)	NR	PTE*CE	21.29	42.57
COST-EFFECTIVENESS (\$/ton NOx removed)		G/NR	\$27,861.63	\$22,750.12
			4.70	5.40
Power Consumption Rate (kW)		Cost Manual Estimate (GP5A Turbine Ref sheet)	1.73	5.19
			0.011	\$0.0741
Reductant Consumption Rate (gal/h)	RC	Cost Manual Estimate (GP5A Turbine Ref sheet)	0.914	2.741
Reductant Price (\$/gal)	RP	Vendor quote (Ref-Reductant consumption price)		\$2.50
SCR Catalyst Cost (\$)	SCC	Cost Manual Estimate (GP5A Turbine Ref sheet)	\$20,499.33	\$61,497.99
SCR Catalyst Life (h)	SCL	Vendor's quote		20,000
Operator Wages (\$/h)	OW	MSC quote (Ref-Reductant consumption price)		\$21.56
Operator Hours per Shift (h)	OH			0.50
Shifts per Year	SY	3 shifts/day*365 days/year		1,095
Maintenance Wages (\$/h)	MW	MSC quote (Ref-Reductant consumption price)		\$23.72

Maintenance Hours per Shift	MH		0.25
Interest Rate	IR		5.50%
Equipment Life (y)	EL		30
NOx Emission Rate (ppm)	Ν	1.50E-04	1.5E-04
Molar Volume @ 14.7 psi and 70 F (scf/lb-mol)	MV		386.80
Molecular Weight of NO2 (lb/lb-mol)	MW		46.01
Fuel Volume (scf/MMBtu)	FD		8,743
Oxygen Content	OC		15%
NOx Emission Rate (lb/MMBtu)	NER	0.5526	0.5526

Cost Analysis for oxidation catalyst for NG-fired	combined cycle of	combustion tu	bines between 1000 - 4100 BHP
	Cost	Costs	Costs
Uncontrolled NMNEC as propane (ppm @ 15% O2)	5	5	5
HP	1,000	1,500	4,100
MW	0.708215297	1.062322946	2.90368272
Hrs/Yr	8760	8760	8760
Heat Input (MMBtu/h)	11.06	16.59	45.346
NMNEHC Emission Rate (Ib/MMBtu)	0.017659376	0.017659376	0.017659376
Total Uncontrolled NMNEHC emissions in Tons per Year	0.86	1.28	3.51
Total NMNEHC Removed in Tons per Year (60%)	0.51	0.77	2.10
TOTAL CAPITAL COST			
Oxidation Catalyst Purchased Equipment Costs	\$96,566	\$98,891	\$110,981
Direct Installation Costs (0.30PEC)	\$28,970	\$29,667	\$33,294
Total Indirect Installation Costs (0 27PEC)	\$26,073	\$26,701	\$29,965
Project Contingency (0 15(DIC+IIC))	\$8 256	\$8 455	\$9 489
Total Capital Investment	\$159.865	\$163 714	\$183 729
	φ100,000	φ100,711	\$100,120
Direct Annual Costs			
Operating and Supervisory Labor Costs	\$18,889	\$18,889	\$18,889
Maintenance Cost	\$2,897	\$2,967	\$3,329
Natural Gas Penalty	\$2,664	\$3,997	\$10,924
Catalyst Disposal	\$21	\$32	\$87
Annual Catalyst Replacement Cost	\$2,317	\$3,476	\$9,500
Indirect Annual Costs			
Overhead (60% of Maintenance - EPA's OAQPS)	\$1,738	\$1,780	\$1,998
PropertyTax+Ins.+Admn. (4% of TCI - EPA OAQPS)	\$6,395	\$6,549	\$7,349
Capital Recovery (5.5% @ 20 yrs)	\$13,381	\$13,703	\$15,378
			·
Direct Annual Costs	\$26,788	\$29,359	\$42,729
Indirect Annual Costs	\$21,513	\$22,031	\$24,725
TOTAL ANNUALIZED COST	\$48,302	\$51,391	\$67,454
COST-EFFECTIVENESS (\$/Ton NMNEHC removed)	\$94,104.00	\$66,748.15	\$32,052.93

Tuthe horsecover (bhp) HP med Consequence (bh) HP consequence (bh) HD Strop Seateng Hour, MMIRIuhy) FC 10.99 27.99 80.17 17.59 190.00 300.01 SCR Catalyst Houldsing and Control System A Based on vendors quote 500.602.72 \$1.201.111.08 31.000.702.70 \$2.21.65.05 \$2.30.17.20.01 Total CAPTRA LINKSTIMENT (TCI) A Based on vendors quote \$33.84.44.04 \$85.91.13.2 \$83.83.50.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.300.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00 \$81.303.80.00		Cost Analys	sis for SCR for NG-fired combined cycle	e turbines betwe	en 4100 and 6	60000 HP			
Openching Human (h) PC B780 B780 <td>Turbine Horsepower (bhp)</td> <td>HP</td> <td></td> <td>4100</td> <td>6000</td> <td>11150</td> <td>15900</td> <td>30000</td> <td>60000</td>	Turbine Horsepower (bhp)	HP		4100	6000	11150	15900	30000	60000
Fuel Consumption (MMBluh) FC Instance 10.90 21.90 80.17 117.58 110.90.80 30.01.01 SCR Catalwyst HousesTheort (TC) A Based on vendors quote \$30.60.28 \$1.008.62.72 \$1.291.111.68 \$1.506.782.76 \$2.221.652.56 \$3.283.70.04 Total Partichaned Equipment Conde D Parates kar of %1.009/A+N1) \$30.60.56.78 \$30.60.56 \$3.114.761.76 \$1.143.753.956.27 \$2.216.52.56 \$3.283.70.04 \$1.33.99.04.03 \$1.33.99.00.05 \$1.34.99.00.06 \$1.33.99.04.03 \$1.33.99.00.05 \$1.34.99.00.06 \$1.33.99.00.05 \$1.34.99.00.	Operating Hours (h)	Н		8760	8760	8760	8760	8760	8760
TOTAL CAPTAL INVESTMENT (TC) Image: Control System A Based on vendors quarta SDD5Ge0.28 51.005.02.72 51.2011168 51.007.201 52.201 56.23 53.2617.250	Fuel Consumption (MMBtu/h)	FC		10.99	21.99	80.17	117.58	190.80	309.10
SCR Calelyst Housing and Control System A Based on vendors Quide \$350,870,20 \$1,207,727.8 \$2,321,735,56 \$2,321,735,56 \$3,333 \$223,70,84 Total Purchagod Equipment Cosis B PA serbs and or Vendors Quide \$306,176,200 \$1,117,706,17 \$1,437,508,40 \$1,737,508,27 \$2,109,227,02 \$4,409,803,303 \$223,708,44 Direct Installation Cosis 0.318 OAQPS \$200,805,55,41 \$1,437,508,40 \$37,508,27 \$5,778,708,11 \$1,439,494,002 Contingencies 0.248 OAQPS \$300,855,41 \$346,851,850,200,808 \$537,878,11 \$1,349,493,02 Total Cosis C Sum(Rew Rew 1)*1.11 (CPI) \$2,044,694,02 \$2,289,172,241 \$2,502,108,31 \$3,563,561,11 \$5,378,562,60 \$9,240,345,60 Direct Annual Cosis Pever Cosis PCH*PP \$300,747 \$2,282,108,13 \$3,607,747,761,83 \$34,677,51 \$3,456,11,14 \$2,522,241,44 \$3,005,541 \$4,461,411 \$2,522,241,453 \$3,661,41 \$3,222,222 \$3,661,41 \$3,256,21 \$3,261,271,41,853 \$3,261,271,41,853 \$3,261,271,41,853 \$3,261,271,	TOTAL CAPITAL INVESTMENT (TCI)								
Reductant Storage Tark A' Based on verdor's Quarte \$33,614.60 \$42,103.48 \$55,113.22 \$86,333.80 \$14,93.33.33 \$278,370.64 Total purchased Equationent Costs 0.308 OAOPS \$209,609.01 \$334,429.85 \$431,279.52 \$522,060.88 \$785,778.11 \$15,499,409.23 Indirical frailaliation Costs 0.308 OAOPS \$209,605.65 \$354,677.51 \$446,055.05 \$557,004.1 \$51,093.83 \$13,493,403.83 Contingencies 0.248 OAOPS 24W of equipment \$204,949.12 \$2,291,72.34 \$2,952.108.31 \$5,375,927.69 \$2,403,456.37 Direct Annual Costs C Sum(Rww 8/kow 1)?1.11 (CPI) \$2,044,994.02 \$2,282.23 \$8,872.44 \$9,005.64 \$1,079,827.47 Direct Annual Costs C PCH*PP \$9,007.64 \$2,282.23 \$8,872.44 \$9,005.64 \$1,49,283.97 \$2,374,24 SGR Catalysk Replacement Costs HISCL*SoC \$13,198.57 \$9,874,13 \$4,976,13 \$4,976,13 \$4,976,13 \$4,976,13 \$4,976,13 \$4,976,13 \$4,976,13 \$4,976,13 \$4,976,13 <td>SCR Catalyst Housing and Control System</td> <td>А</td> <td>Based on vendors quote</td> <td>\$905,690.28</td> <td>\$1,009,562.72</td> <td>\$1,291,111.68</td> <td>\$1,550,792.76</td> <td>\$2,321,635.56</td> <td>\$3,961,726.60</td>	SCR Catalyst Housing and Control System	А	Based on vendors quote	\$905,690.28	\$1,009,562.72	\$1,291,111.68	\$1,550,792.76	\$2,321,635.56	\$3,961,726.60
Total Partnamed Equipment Cootsi 19 Pasate star of 6% (1.02% (A+A)) S909.663.02 \$1.417.80.07 \$1.437.80.04 \$1.735.80.27 \$2.619.277.02 \$4.409.80.30 Dinect Institution Cootsi 0.301 0AOPS \$2.806.011 \$3.442.865 \$3.442.865 \$3.578.011 \$3.140.400.27 Dinect Institution Cootsi 0.301 0AOPS 2x4 of equipment \$2.288.613 \$3.84.023.62 \$3.58.131 \$5.378.582.09 \$3.242.885 Total Copting Costs C SumRow 8.Row 11Y1.11 (CPI) \$2.204.340.02 \$2.289.172.34 \$2.385.131 \$5.378.582.09 \$3.240.345.85 Dinect Annual Costs C SumRow 8.Row 11Y1.11 (CPI) \$2.044.340.02 \$2.282.108.31 \$3.583.554.11 \$5.378.582.09 \$3.240.245.25 Dinect Annual Costs RC/H*RC \$5.969.26 \$16,744.76 \$5.368.72 \$4.00.05.94 \$4.457.11 \$4.04.97.11 \$4.90.351.72 \$1.64.76.11 \$4.90.351.72 \$1.64.76.13 \$4.90.51.72 \$1.64.76.13 \$4.90.51.72 \$1.64.76.13 \$4.90.51.72 \$1.64.76.13 \$4.90.51.72 \$1.64.76.13 \$4.90.55.77.12 \$4.66.55.9 \$	Reductant Storage Tank	Α'	Based on vendor's Quote	\$33,614.46	\$42,103.48	\$65,113.22	\$86,335.80	\$149,333.33	\$283,370.64
Direct Installation Costs 0.308 [AACPIS \$208.698.91 \$334.429.85 \$431.279.52 \$325.006.88 \$775.76.11 \$1.349.494.02 Indirect Installation Costs 0.248 [AACPIS 248: d equipment] \$228.969.13 \$297.643.88 \$345.075.12 \$416.653.05 \$537.960.44 \$51.394.93.85 \$537.661.04 \$55.376.11 \$55.376.21 \$51.394.93.85 \$537.661.04 \$51.394.93.85 \$537.661.04 \$53.786.24 \$53.786.24 \$57.861.04 \$57.876.24 \$53.786.24 \$53.786.24 \$53.786.24 \$53.786.24 \$53.786.24 \$53.786.24 \$53.786.24 \$53.786.24 \$53.786.24 \$53.786.24 \$57.747.18 \$53.786.24 \$50.075.13 \$53.786.24 \$53	Total Purchased Equipment Costs	В	PA sales tax of 6% (1.06*(A+A'))	\$995,663.02	\$1,114,766.17	\$1,437,598.40	\$1,735,356.27	\$2,619,227.02	\$4,499,803.08
Indicet Installation Costs 0.318 DACPS 3308.05.54 3547.51 3448.05.50 3537.090.44 \$811.900.38 51.349.838.05 Contingences C Sum(Row BRow 11)*1.11 (CPI) \$22.939.913 \$245.054.38 \$345.023.28 \$345.023.28 \$35.903.594.11 \$53.78.592.69 \$92.403.4583 Direct Annual Costs C Sum(Row BRow 11)*1.11 (CPI) \$2.044.940.02 \$2.299.172.34 \$30.057.84 \$3.590.594.11 \$53.78.592.69 \$92.403.4583 Direct Annual Costs POH*PPP \$840.74 \$2.82.22.28 \$3.77.461.83 \$112.569.71 \$34.761.13 \$4.125.669.71 \$34.761.13 \$4.125.669.71 \$32.72.78 \$34.761.13 \$4.125.669.71 \$32.72.78 \$34.77.13 \$4.125.669.71 \$32.72.78 \$34.77.13 \$4.125.669.71 \$32.72.78 \$34.77.13 \$3.125.667.73 \$34.77.13 \$34.72.73 \$34.77.13 \$34.72.73 \$34.77.13 \$34.72.73 \$34.77.13 \$34.72.73 \$34.77.13 \$34.72.73 \$34.77.13 \$34.72.73 \$34.77.13 \$34.72.73 \$34.77.13 \$34.72.73 \$34.77.13 \$34.72.73 \$34.72.73	Direct Installation Costs	0.30B	OAQPS	\$298,698.91	\$334,429.85	\$431,279.52	\$520,606.88	\$785,768.11	\$1,349,940.92
Contingencies 0.240 CAOPS 2/4% of equipment \$22,84.951.1 \$26,76.43.80 \$345,022.62 241-6.485.61 \$528,81.4.40 \$1,079,922.74 Total Capital Costs C Sum(Row 8.Row 11)*1.11 (CPI) \$2,049,546.02 \$2,289,172.3.4 \$2,952,108.31 \$3,663,654.11 \$5,786,82.09 \$3,40,345.63 Direct Annual Costs P PCM*PP \$940,74 \$2,822.23 \$8,872.44 \$9,005.94 \$14,614.11 \$232,222.23 Reductant Costs R PCM*PP \$940,74 \$2,822.23 \$8,872.44 \$9,005.94 \$14,614.11 \$232,322.22 Cost Cataliyat Replacement Costs R PCM*PP \$940,74 \$2,822.23 \$8,872.14 \$9,053.14 \$9,125.137.12 \$11,814.107 \$11,804.107 \$11,804.107 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.101 \$11,804.103 \$11,80	Indirect Installation Costs	0.31B	OAQPS	\$308,655.54	\$345,577.51	\$445,655.50	\$537,960.44	\$811,960.38	\$1,394,938.96
Total Capital Costs C Sum(Row 8:Row 11)*1.11 (CPI) \$2.044,594.02 \$2.289,172.34 \$2.952,108.1 \$3.563.554.11 \$5.378.582.69 \$9.40.345.83 Direct Annual Costs PC+HPC \$9.07.4 \$2.289,172.34 \$2.092,108.11 \$5.563.57.41 \$5.767.57.44 \$9.07.54 \$5.77.461.83 \$1.72.588.97.41 \$5.78.78.24 \$9.07.54 \$5.281.47 \$7.7.461.83 \$1.72.588.97.14 \$5.78.78.24 \$9.07.51 \$5.97.77.47 \$5.78.77.461.83 \$1.77.461.83 \$1.72.588.97.14 \$5.79.73.13 \$4.976.13	Contingencies	0.24B	OAQPS 24% of equipment	\$238,959.13	\$267,543.88	\$345,023.62	\$416,485.51	\$628,614.49	\$1,079,952.74
Incerd Annual Costs Power Costs Power Costs PC/TMPD S940.74 \$22,872.23 \$8,872.44 \$9005.94 \$14,414.11 \$29,278.25 Diced Annual Costs RC/TMPC \$5508.25 \$16,704.76 \$52,844.87 \$37,461.83 \$125,569.71 \$25,1397.42 SCR Catalyst Replacement Costs HISCL*SCC \$13,139.57 \$39,418.71 \$44,976.13 \$4,976.13	Total Capital Costs	С	Sum(Row 8:Row 11)*1.11 (CPI)	\$2,044,594.02	\$2,289,172.34	\$2,952,108.31	\$3,563,554.11	\$5,378,582.69	\$9,240,345.63
Direct Annual Costs POwer Costs PC/HPP S940.74 \$2.8.22.23 \$8.872.44 \$9.005.94 \$2.9.22.23 Reductant Costs RC/HTRC \$5.598.25 \$16.794.76 \$52.814.87 \$77.461.83 \$125.608.71 \$250.233.47 SCR Catalyst Replacement Parts Vendor's quote \$4.976.13									
Power Costs PC'H*PP \$940.74 \$2,22.23 \$8,872.44 \$5,005.94 \$14,614.11 \$25,223.73 Reductant Costs RC'H*RC \$5,598.25 \$16,794.76 \$52,814.87 \$77.461.83 \$122,698.27 \$13,139.57 \$39,418.71 \$564,832.38 \$88,471.44 \$90,631.72 \$181,004.03 Replacement Parts Vendor's quote \$4,976.13 <td>Direct Annual Costs</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Direct Annual Costs								
Reductant Costs RC1+IPC \$55,89.25 \$16,794.76 \$52,814.87 \$77,461.83 \$125,608.71 \$251,397.42 SIC Catalyst Replacement Costs H/SCL*SCC \$13,199.67 \$394,417.11 \$34,976.13 \$4,976.13 <	Power Costs		PC*H*PP	\$940.74	\$2,822.23	\$8,872.44	\$9,005.94	\$14,614.11	\$29,228.22
SCR Catalyst Replacement Parts H/SCL*SCC \$13,139.57 \$39,418.71 \$45,453.28 \$68,471.44 \$90,531.72 \$18,087.63 Replacement Parts Ownohr's quote \$4.976.13	Reductant Costs		RC*H*RC	\$5,598.25	\$16,794.76	\$52,814.87	\$77,461.83	\$125,698.71	\$251,397.42
Replacement Parts Vendor's quote \$4,976.13 \$5,6133 \$5,6133 \$5,6433.5 \$6,493.35 \$6,493.35 \$6,493.35 \$6,493.35 \$6,493.35 \$6,493.35 \$6,493.35 \$6,493.35 \$6,493.35 \$6,493.35 \$6,493.35 \$6,493.35 \$6,493.35 \$6,493.26 \$6,492.27 \$23,261.63 \$38,96.01 \$33,896.01 \$33,896.01 \$33,896.01 \$33,896.01 \$33,896.01 \$33,896.01 \$33,896.01 \$33,896.	SCR Catalyst Replacement Costs		H/SCL*SCC	\$13,139.57	\$39,418.71	\$54,532.38	\$68,471.44	\$90,531.72	\$181,063.43
Operating Labor OW*OH*SY \$11,804,10 \$11,	Replacement Parts		Vendor's quote	\$4,976.13	\$4,976.13	\$4,976.13	\$4,976.13	\$4,976.13	\$4,976.13
Maintenance Labor D MW/tHrSY §6.493.35 §7.61.30.43 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 §7.69.601 <	Operating Labor		OW*OH*SY	\$11,804.10	\$11,804.10	\$11,804.10	\$11,804.10	\$11,804.10	\$11,804.10
Total Direct Annual Costs E Sum(Row 15:Row 20) \$42,952.15 \$82,309.28 \$139,493.28 \$178,212.79 \$254,118.12 \$448,962.65 indirect Annual Costs 0.00 OAQPS \$3,896.01 \$3,961.23 \$3,015.86 \$46,432.71 \$79,234.53 Capital Recovery 5 5% for 30 years=.0688 \$140,668.07	Maintenance Labor	D	MW*MH*SY	\$6,493.35	\$6,493.35	\$6,493.35	\$6,493.35	\$6,493.35	\$6,493.35
Indirect Annual Costs	Total Direct Annual Costs	E	Sum(Row 15:Row 20)	\$42,952.15	\$82,309.28	\$139,493.28	\$178,212.79	\$254,118.12	\$484,962.65
Overhead 0.6D 0AQPS \$3,896.01 \$3,291.015.86 \$4,64.32.71 \$7,9234.53 Capital Recovery 5.5% for 30 years=.0688 \$140,668.07 \$216.097.87 \$278.679.02 \$336.799.51 \$60,77.15.20 \$1,0	Indirect Annual Costs								
Property Tax 0.02C OAQPS using PA property tax of 2% \$18,113.81 \$20,191.25 \$25,822.23 \$31,015.86 \$46,432.71 \$79,234.53 Insurance 0.01C OAQPS \$90,056.90 \$10,095.63 \$12,911.12 \$15,507.33 \$22,163.68 \$39,017.27 Administrative 0.02C OAQPS \$18,113.81 \$20,191.25 \$25,822.23 \$31,015.86 \$46,432.71 \$79,234.53 Capital Recovery 5.5% for 30 years=.0688 \$140,668.07 \$216,097.87 \$27,87.020 \$336,399.51 \$507,738.21 \$872,288.63 Total Indirect Annual Costs F Sum(Row 23:Row27) \$189,848.59 \$270,472.01 \$347,130.62 \$417,835.16 \$627,715.99 \$1,074,270.97 Total Indirect Annual Costs F Sum(Row 23:Row27) \$189,848.59 \$270,472.01 \$347,130.62 \$417,835.16 \$627,715.99 \$1,074,270.97 Control Efficiency G E+F \$223,800.74 \$352,781.30 \$486,623.90 \$596,04.79.5 \$881,834.11 \$1,559,233.62 Control Efficiency CE 80% 80%	Overhead	0.6D	OAQPS	\$3,896.01	\$3,896.01	\$3,896.01	\$3,896.01	\$3,896.01	\$3,896.01
Insurance 0.01C OAQPS \$9,056.90 \$10,095.63 \$12,911.12 \$15,507.93 \$23,216.36 \$39,617.27 Administrative 0.02C OAQPS \$18,113.81 \$20,191.25 \$25,822.32 \$31,015.86 \$46,432.71 \$79,234.53 Capital Recovery 5.5% for 30 years=.0688 \$140,668.07 \$216,097.87 \$278,679.02 \$336,399.51 \$507,738.21 \$872,288.63 Total Indirect Annual Costs F Sum(Row 23:Row27) \$189,848.59 \$270,472.01 \$347,130.62 \$417,835.16 \$627,715.99 \$10,074,270.97 TOTAL ANNUALIZED COST G E+F \$232,800.74 \$352,781.30 \$486,623.90 \$596,047.95 \$881,834.11 \$1,559,233.62 Control Efficiency CE 80% <	Property Tax	0.02C	OAQPS using PA property tax of 2%	\$18,113.81	\$20,191.25	\$25,822.23	\$31,015.86	\$46,432.71	\$79,234.53
Administrative 0.02 OAQPS \$18,113.81 \$20,191.25 \$25,822.23 \$31,015.86 \$46,432.71 \$79,234.53 Capital Recovery 5.5% for 30 years=.0688 \$140,666.07 \$276,679.02 \$336,399.51 \$507,738.21 \$872,228.63 Total Indirect Annual Costs F Sum(Row 23:Row27) \$189,848.59 \$270,472.01 \$246,632.90 \$441,783.51 \$607,738.21 \$872,228.63 Total Indirect Annual Costs F Sum(Row 23:Row27) \$189,848.59 \$270,472.01 \$346,632.90 \$441,783.51 \$627,742.02 \$347,130.62 \$411,783.51 \$627,742,70.97 TOTAL ANNUALIZED COST G E+F \$232,800.74 \$352,781.30 \$486,623.90 \$596,047.95 \$881,834.11 \$1,559,233.62 Control Efficiency CE 80% <td< td=""><td>Insurance</td><td>0.01C</td><td>OAQPS</td><td>\$9,056.90</td><td>\$10,095.63</td><td>\$12,911.12</td><td>\$15,507.93</td><td>\$23,216.36</td><td>\$39,617.27</td></td<>	Insurance	0.01C	OAQPS	\$9,056.90	\$10,095.63	\$12,911.12	\$15,507.93	\$23,216.36	\$39,617.27
Capital Recovery 5.5% for 30 years=.0688 \$140,668.07 \$216,097.87 \$278,679.02 \$336,399.51 \$507,738.21 \$872,288.63 Total Indirect Annual Costs F Sum(Row 23:Row27) \$189,848.59 \$270,472.01 \$347,130.62 \$417,835.16 \$627,715.99 \$1,074,270.97 C - <t< td=""><td>Administrative</td><td>0.02C</td><td>OAQPS</td><td>\$18,113.81</td><td>\$20,191.25</td><td>\$25,822.23</td><td>\$31,015.86</td><td>\$46,432.71</td><td>\$79,234.53</td></t<>	Administrative	0.02C	OAQPS	\$18,113.81	\$20,191.25	\$25,822.23	\$31,015.86	\$46,432.71	\$79,234.53
Total Indirect Annual Costs F Sum(Row 23:Row27) \$189,848.59 \$270,472.01 \$347,130.62 \$417,835.16 \$627,715.99 \$1,074,270.97 TOTAL ANNUALIZED COST G E+F \$232,800.74 \$352,781.30 \$486,623.90 \$596,047.95 \$881,834.11 \$1,559,233.62 Control Efficiency CE 80%	Capital Recovery		5.5% for 30 years=.0688	\$140,668.07	\$216,097.87	\$278,679.02	\$336,399.51	\$507,738.21	\$872,288.63
Image: Construct of the second seco	Total Indirect Annual Costs	F	Sum(Row 23:Row27)	\$189,848.59	\$270,472.01	\$347,130.62	\$417,835.16	\$627,715.99	\$1,074,270.97
TOTAL ANNUALIZED COST G E+F \$232,800.74 \$352,781.30 \$486,623.90 \$596,047.95 \$881,834.11 \$1,559,233.62 Control Efficiency CE 80% <									
Control Efficiency CE 80% <	TOTAL ANNUALIZED COST	G	E+F	\$232,800.74	\$352,781.30	\$486,623.90	\$596,047.95	\$881,834.11	\$1,559,233.62
Potential to Emit (TPY) PTE NER*FC*H 7.45 14.90 54.33 79.69 129.31 209.48 Annual Estimated NOx Removal (TPY) NR PTE*CE 5.96 11.92 43.46 63.75 103.45 167.58 COST-EFFECTIVENESS (\$/ton NOx removed) G/NR \$39,058.99 \$29,594.58 \$11,195.82 \$9,350.01 \$8,524.61 \$9,304.30 Assumptions: Image: Cost Manual Estimate (GP5A Turbine Ref sheet) 1.45 4.35 13.67 13.87 22.51 45.03 Industrial Retail Power Price (\$/kWh) PP EIA Data Image: Cost Manual Estimate (GP5A Turbine Ref sheet) 0.256 0.767 2.412 3.537 5.740 11.479 Reductant Consumption Rate (gal/h) RP Vendor quote (Ref-Reductant consumption price) 0.256 0.767 2.412 3.537 5.740 11.479 Reductant Price (\$/gal) RP Vendor quote (Ref-Reductant consumption price) 0.256 0.767 2.412 3.537 5.740 11.479	Control Efficiency	CE		80%	80%	80%	80%	80%	80%
Annual Estimated NOx Removal (TPY) NR PTE*CE 5.96 11.92 43.46 63.75 103.45 167.58 COST-EFFECTIVENESS (\$/ton NOx removed) G/NR \$39,058.99 \$29,594.58 \$11,195.82 \$9,350.01 \$8,524.61 \$9,304.30 Assumptions: Image: Cost Manual Estimate (GP5A Turbine Ref sheet) 1.45 4.35 13.67 13.87 22.51 45.03 Industrial Retail Power Price (\$/kWh) PP EIA Data Image: Cost Manual Estimate (GP5A Turbine Ref sheet) 0.256 0.767 2.412 3.537 5.740 11.479 Reductant Price (\$/gal) RP Vendor quote (Ref-Reductant consumption price) \$25.50 \$2.51 45.03	Potential to Emit (TPY)	PTE	NER*FC*H	7.45	14.90	54.33	79.69	129.31	209.48
COST-EFFECTIVENESS (\$/ton NOx removed)G/NR\$39,058.99\$29,594.58\$11,195.82\$9,350.01\$8,524.61\$9,304.30Assumptions:Image: Cost Manual Estimate (GP5A Turbine Ref sheet)Image: Cost Manual Estimate (GP5A Turbine Ref sheet) <td< td=""><td>Annual Estimated NOx Removal (TPY)</td><td>NR</td><td>PTE*CE</td><td>5.96</td><td>11.92</td><td>43.46</td><td>63.75</td><td>103.45</td><td>167.58</td></td<>	Annual Estimated NOx Removal (TPY)	NR	PTE*CE	5.96	11.92	43.46	63.75	103.45	167.58
Image: Construction of the con	COST-EFFECTIVENESS (\$/ton NOx removed)		G/NR	\$39,058.99	\$29,594.58	\$11,195.82	\$9,350.01	\$8,524.61	\$9,304.30
Assumptions:Image: Cost Manual Estimate (GP5A Turbine Ref sheet)1.454.3513.6713.8722.5145.03Power Consumption Rate (kW)PPEIA Data\$0.0741Image: Cost Manual Estimate (GP5A Turbine Ref sheet)0.2560.7672.4123.5375.74011.479Reductant Consumption Rate (gal/h)RCCost Manual Estimate (GP5A Turbine Ref sheet)0.2560.7672.4123.5375.74011.479Reductant Price (\$/gal)RPVendor quote (Ref-Reductant consumption price)\$2.50Image: Cost Annual Estimate (OP5A Turbine Ref sheet)0.2560.7672.4123.5375.74011.479									
Power Consumption Rate (kW)PCCost Manual Estimate (GP5A Turbine Ref sheet)1.454.3513.6713.8722.5145.03Industrial Retail Power Price (\$/kWh)PPEIA Data6\$0.07416666Reductant Consumption Rate (gal/h)RCCost Manual Estimate (GP5A Turbine Ref sheet)0.2560.7672.4123.5375.74011.479Reductant Price (\$/gal)RPVendor quote (Ref-Reductant consumption price)\$2.506666666	Assumptions:								
Industrial Retail Power Price (\$/kWh)PPEIA Data\$0.0741CostReductant Consumption Rate (gal/h)RCCost Manual Estimate (GP5A Turbine Ref sheet)0.2560.7672.4123.5375.74011.479Reductant Price (\$/gal)RPVendor quote (Ref-Reductant consumption price)\$2.50Cost Manual Estimate (GP5A Turbine Ref sheet)0.000 (\$2.50)Cost Manual Estimate (\$2.50)	Power Consumption Rate (kW)	PC	Cost Manual Estimate (GP5A Turbine Ref sheet)	1.45	4.35	13.67	13.87	22.51	45.03
Reductant Consumption Rate (gal/h)RCCost Manual Estimate (GP5A Turbine Ref sheet)0.2560.7672.4123.5375.74011.479Reductant Price (\$/gal)RPVendor quote (Ref-Reductant consumption price)\$2.50<	Industrial Retail Power Price (\$/kWh)	PP	EIA Data		\$0.0741				
Reductant Price (\$/gal) RP Vendor quote (Ref-Reductant consumption price) \$2.50	Reductant Consumption Rate (gal/h)	RC	Cost Manual Estimate (GP5A Turbine Ref sheet)	0.256	0.767	2.412	3.537	5.740	11.479
	Reductant Price (\$/gal)	RP	Vendor quote (Ref-Reductant consumption price)		\$2.50				
SCR Catalyst Cost (\$) SCC Cost Manual Estimate (GP5A Turbine Ref sheet) \$29,999.02 \$89,997.06 \$124,503.16 \$156,327.48 \$206,693.42 \$413,386.84	SCR Catalyst Cost (\$)	SCC	Cost Manual Estimate (GP5A Turbine Ref sheet)	\$29,999.02	\$89,997.06	\$124,503.16	\$156,327.48	\$206,693.42	\$413,386.84
SCR Catalyst Life (h) SCL Vendor's quote 20,000	SCR Catalyst Life (h)	SCL	Vendor's quote		20,000				
Operator Wages (\$/h) OW MSC quote (Ref-Reductant consumption price) \$21.56	Operator Wages (\$/h)	OW	MSC quote (Ref-Reductant consumption price)		\$21.56				
Operator Hours per Shift (h) OH 0.50	Operator Hours per Shift (h)	OH			0.50				
Shifts per Year 1,095	Shifts per Year	SY	3 shifts/day*365 days/year		1,095				
Maintenance Wages (\$/h)MWMSC quote (Ref-Reductant consumption price)\$23.72	Maintenance Wages (\$/h)	MW	MSC quote (Ref-Reductant consumption price)		\$23.72				

Maintenance Hours per Shift	MH		0.25				
Interest Rate	IR		5.50%				
Equipment Life (y)	EL		30				
NOx Emission Rate (ppm)	N	4.20E-05	4.2E-05	4.2E-05	4.2E-05	4.2E-05	4.2E-05
Molar Volume @ 14.7 psi and 70 F (scf/lb-mol)	MV		386.80				
Molecular Weight of NO2 (lb/lb-mol)	MW		46.01				
Fuel Volume (scf/MMBtu)	FD For 1050 Btu/scf Natural Gas @ 70 F		8,743				
Oxygen Content	OC		15%				
NOx Emission Rate (lb/MMBtu)	NER	0.1547	0.1547	0.1547	0.1547	0.1547	0.1547

Cost Analysis for oxidation catalyst for I	NG-fired Combir	ned cycle com	hbustion turbi	nes rated between 4,100 - 60,000 Bhp
· · · · ·	Cost	Costs	Costs	Costs
Uncontrolled NMNEC as propane (ppm @ 15% O2)	5	5	5	5
HP	4 100	15 900	30,000	60.000
MW	2 90368272	11 26062323	21 24645892	42 49291785
Hrs/Yr	8760	8760	8760	8760
Fuel Consumption (MMBtu/h)	37.578	117.58	190.8	378.568
NMNEHC Emission Rate (Ib/MMBtu)	0.017659376	0.017659376	0.017659376	0.017659376
Total Uncontrolled NMNEHC emissions in Tons per Year	2.91	9.09	14.76	29.28
Total NMNEHC Removed in Tons per Year (60%)	1.74	5.46	8.85	17.57
TOTAL CAPITAL COST				
Oxidation Catalyst Purchased Equipment Costs	\$96,785	\$205,918	\$215,090	\$215,090
Direct Installation Costs (0.30PEC)	\$29,035	\$61,775	\$64,527	\$64,527
Total Indirect Installation Costs (0.27PEC)	\$26,132	\$55,598	\$58,074	\$58,074
Project Contingency (0.15(DIC+IIC))	\$8,275	\$17,606	\$18,390	\$18,390
Total Capital Investment	\$160,227	\$340,897	\$356,082	\$356,082
Direct Annual Costs				
Operating and Supervisory Labor Costs	\$18,889	\$18,889	\$18,889	\$18,889
Maintenance Cost	\$2,904	\$6,178	\$6,453	\$6,453
Natural Gas Penalty	\$12,553	\$28,325	\$45,964	\$45,964
Catalyst Disposal	\$130	\$338	\$637	\$637
Annual Catalyst Replacement Cost	\$14,204	\$36,841	\$69,512	\$69,512
Indirect Annual Costs				
Overhead (60% of Maintenance (EPA OAQPS)	\$1,742	\$3,707	\$3,872	\$3,872
PropertyTax+Ins.+Admn. (4% of TCI - OAQPS)	\$6,409	\$13,636	\$14,243	\$14,243
Capital Recovery (5.5% @ 20 yrs)	\$13,411	\$28,533	\$29,804	\$29,804
TOTAL ANNUALIZED COST	\$70,242	\$136,446	\$189,373	\$189,373
COST-EFFECTIVENESS (\$/Ton NMNEHC removed)	\$40,277.24	\$25,004.91	\$21,386.45	\$10,778.87

Cost Analysis for oxidation catalyst for NG or Oil-	fired simple cycle	combustion tur	bines between 1000 - 4100 BHP
	Cost	Costs	Costs
Uncontrolled NMNEC as propane (ppm @ 15% O2)	9	9	9
HP	1,000	1,500	4,100
MW	0.708215297	1.062322946	2.90368272
Hrs/Yr	8760	8760	8760
Heat Input (MMBtu/h)	11.06	16.59	45.346
NMNEHC Emission Rate (lb/MMBtu)	0.031786877	0.031786877	0.031786877
Total Uncontrolled NMNEHC emissions in Tons per Year	1.54	2.31	6.31
Total NMNEHC Removed in Tons per Year (60%)	0.92	1.39	3.79
TOTAL CAPITAL COST		1 1	
Oxidation Catalyst Purchased Equipment Costs	\$96,566	\$98,891	\$110,981
Direct Installation Costs (0.30PEC)	\$28,970	\$29,667	\$33,294
Total Indirect Installation Costs (0.27PEC)	\$26,073	\$26,701	\$29,965
Project Contingency (0.15(DIC+IIC))	\$8,256	\$8,455	\$9,489
Total Capital Investment	\$159,865	\$163,714	\$183,729
Direct Annual Costs			
Operating and Supervisory Labor Costs	\$18,889	\$18,889	\$18,889
Maintenance Cost	\$2,897	\$2,967	\$3,329
Natural Gas Penalty	\$2,664	\$3,997	\$10,924
Catalyst Disposal	\$21	\$32	\$87
Annual Catalyst Replacement Cost	\$2,317	\$3,476	\$9,500
Indirect Annual Costs			
Overhead (60% of Maintenance - EPA's OAQPS)	\$1,738	\$1,780	\$1,998
PropertyTax+Ins.+Admn. (4% of TCI - EPA OAQPS)	\$6,395	\$6,549	\$7,349
Capital Recovery (5.5% @ 20 yrs)	\$13,381	\$13,703	\$15,378
Direct Annual Costs	\$26,788	\$29,359	\$42,729
Indirect Annual Costs	\$21,513	\$22,031	\$24,725
TOTAL ANNUALIZED COST	\$48,302	\$51,391	\$67,454
COST-EFFECTIVENESS (\$/Ton NMNEHC removed)	\$52,280.00	\$37,082.31	\$17,807.19

Cost Analys	sis foi	^r SCR for NG-fired simple cycle turbines	between 4100	and 60000 H	Р		
Turbine Horsepower (bhp)	HP		4100	11150	15900	30000	60000
Operating Hours (h)	Н		8760	8760	8760	8760	8760
Fuel Consumption (MMBtu/h)	FC		21.99	80.17	117.58	190.80	309.10
TOTAL CAPITAL INVESTMENT (TCI)							
SCR Catalyst Housing and Control System	Α	Based on vendors quote	\$905,690.28	\$1,291,111.68	\$1,550,792.76	\$2,321,635.56	\$3,961,726.60
Reductant Storage Tank	Α'	Based on vendor's Quote	\$33,614.46	\$65,113.22	\$86,335.80	\$149,333.33	\$283,370.64
Total Purchased Equipment Costs	В	PA sales tax of 6% (1.06*(A+A'))	\$995,663.02	\$1,437,598.40	\$1,735,356.27	\$2,619,227.02	\$4,499,803.08
Direct Installation Costs	0.30B	OAQPS	\$298,698.91	\$431,279.52	\$520,606.88	\$785,768.11	\$1,349,940.92
Indirect Installation Costs	0.31B	OAQPS	\$308,655.54	\$445,655.50	\$537,960.44	\$811,960.38	\$1,394,938.96
Contingencies	0.24B	OAQPS 24% of equipment	\$238,959.13	\$345,023.62	\$416,485.51	\$628,614.49	\$1,079,952.74
Total Capital Costs	С	Sum(Row 8:Row 11)*1.11 (CPI)	\$2,044,594.02	\$2,952,108.31	\$3,563,554.11	\$5,378,582.69	\$9,240,345.63
Direct Annual Costs							
Power Costs		PC*H*PP	\$2,822.23	\$8,872.44	\$9,005.94	\$14,614.11	\$29,228.22
Reductant Costs		RC*H*RC	\$16,794.76	\$52,814.87	\$77,461.83	\$125,698.71	\$251,397.42
SCR Catalyst Replacement Costs		H/SCL*SCC	\$26,936.12	\$54,532.38	\$68,471.44	\$90,531.72	\$181,063.43
Replacement Parts		Vendor's quote	\$4,976.13	\$4,976.13	\$4,976.13	\$4,976.13	\$4,976.13
Operating Labor		OW*OH*SY	\$11,804.10	\$11,804.10	\$11,804.10	\$11,804.10	\$11,804.10
Maintenance Labor	D	MW*MH*SY	\$6,493.35	\$6,493.35	\$6,493.35	\$6,493.35	\$6,493.35
Total Direct Annual Costs	Е	Sum(Row 15:Row 20)	\$69,826.69	\$139,493.28	\$178,212.79	\$254,118.12	\$484,962.65
Indirect Annual Costs							
Overhead	0.6D	OAQPS	\$3,896.01	\$3,896.01	\$3,896.01	\$3,896.01	\$3,896.01
Property Tax	0.02C	OAQPS using PA property tax of 2%	\$18,113.81	\$25,822.23	\$31,015.86	\$46,432.71	\$79,234.53
Insurance	0.01C	OAQPS	\$9,056.90	\$12,911.12	\$15,507.93	\$23,216.36	\$39,617.27
Administrative	0.02C	OAQPS	\$18,113.81	\$25,822.23	\$31,015.86	\$46,432.71	\$79,234.53
Capital Recovery		5.5% for 30 years=.0688	\$193,009.68	\$278,679.02	\$336,399.51	\$507,738.21	\$872,288.63
Total Indirect Annual Costs	F	Sum(Row 23:Row27)	\$242,190.20	\$347,130.62	\$417,835.16	\$627,715.99	\$1,074,270.97
TOTAL ANNUALIZED COST	G	E+F	\$312,016.89	\$486,623.90	\$596,047.95	\$881,834.11	\$1,559,233.62
Control Efficiency	CE		80%	80%	80%	80%	80%
Potential to Emit (TPY)	PTE	NER*FC*H	14.90	54.33	79.69	129.31	209.48
Annual Estimated NOx Removal (TPY)	NR	PTE*CE	11.92	43.46	63.75	103.45	167.58
COST-EFFECTIVENESS (\$/ton NOx removed)		G/NR	\$26,174.89	\$11,195.82	\$9,350.01	\$8,524.61	\$9,304.30
Assumptions:							
Power Consumption Rate (kW)	PC	Cost Manual Estimate (GP5A Turbine Ref sheet)	4.35	13.67	13.87	22.51	45.03
Industrial Retail Power Price (\$/kWh)	PP	EIA Data	\$0.0741				
Reductant Consumption Rate (gal/h)	RC	Cost Manual Estimate (GP5A Turbine Ref sheet)	0.767	2.412	3.537	5.740	11.479
Reductant Price (\$/gal)	RP	Vendor quote (Ref-Reductant consumption price)	\$2.50				
SCR Catalyst Cost (\$)	SCC	Cost Manual Estimate (GP5A Turbine Ref sheet)	\$61,497.99	\$124,503.16	\$156,327.48	\$206,693.42	\$413,386.84
SCR Catalyst Life (h)	SCL	Vendor's quote	20,000				
Operator Wages (\$/h)	OW	MSC quote (Ref-Reductant consumption price)	\$21.56				
Operator Hours per Shift (h)	OH		0.50				
Shifts per Year	SY	3 shifts/day*365 days/year	1,095				
Maintenance Wages (\$/h)	MW	MSC quote (Ref-Reductant consumption price)	\$23.72				

Maintenance Hours per Shift	MH	0.25				
Interest Rate	IR	5.50%				
Equipment Life (y)	EL	30				
NOx Emission Rate (ppm)	N	4.2E-05	4.2E-05	4.2E-05	4.2E-05	4.2E-05
Molar Volume @ 14.7 psi and 70 F (scf/lb-mol)	MV	386.80				
Molecular Weight of NO2 (lb/lb-mol)	MW	46.01				
Fuel Volume (scf/MMBtu)	FD For 1050 Btu/scf Natural Gas @ 70 F	8,743				
Oxygen Content	OC	15%				
NOx Emission Rate (lb/MMBtu)	NER	0.1547	0.1547	0.1547	0.1547	0.1547

Cost Analysis for oxidation catalyst for NG	or Oil-fired sim	nple cycle turb	ines rated be	tween 4,100 - 60,000 Bhp
	Cost	Costs	Costs	Costs
Uncontrolled NMNEC as propane (ppm @ 15% O2)	9	9	9	9
HP	4,100	15,900	30,000	60,000
MW	2.90368272	11.26062323	21.24645892	42.49291785
Hrs/Yr	8760	8760	8760	8760
Fuel Consumption (MMBtu/h)	37.578	117.58	190.8	378.568
NMNEHC Emission Rate (lb/MMBtu)	0.031786877	0.031786877	0.031786877	0.031786877
Total Uncontrolled NMNEHC emissions in Tons per Year	5.23	16.37	26.56	52.71
Total NMNEHC Removed in Tons per Year (60%)	3.14	9.82	15.94	31.62
TOTAL CAPITAL COST				
Oxidation Catalyst Purchased Equipment Costs	\$111,063	\$166,169	\$232,016	\$372,116
Direct Installation Costs (0.30PEC)	\$33,319	\$49,851	\$69,605	\$111,635
Total Indirect Installation Costs (0.27PEC)	\$29,987	\$44,866	\$62,644	\$100,471
Project Contingency (0.15(DIC+IIC))	\$9,496	\$14,207	\$19,837	\$31,816
Total Capital Investment	\$183,865	\$275,093	\$384,102	\$616,038
Direct Annual Costs				
Operating and Supervisory Labor Costs	\$18,889	\$18,889	\$18,889	\$18,889
Maintenance Cost	\$3,332	\$4,985	\$6,960	\$11,163
Natural Gas Penalty	\$12,553	\$28,325	\$45,964	\$45,964
Catalyst Disposal	\$130	\$338	\$637	\$637
Annual Catalyst Replacement Cost	\$9,500	\$36,841	\$69,512	\$139,023
Indirect Annual Costs				
Overhead (60% of Maintenance (EPA OAQPS)	\$1,999	\$2,991	\$4,176	\$6,698
PropertyTax+Ins.+Admn. (4% of TCI - OAQPS)	\$7,355	\$11,004	\$15,364	\$24,642
Capital Recovery (5.5% @ 20 yrs)	\$15,389	\$23,025	\$32,149	\$51,562
TOTAL ANNUALIZED COST	\$69,147	\$126,398	\$193,651	\$298,578
COST-EFFECTIVENESS (\$/Ton NMNEHC removed)	\$22,027.64	\$12,868.63	\$12,149.80	\$9,441.50

Cost Analysis for SCR for	oil-fired	simple cycle turbines between 1000 and	d 4100 HP	
· · · · · · · · · · · · · · · · · · ·	HP	, ,	1000	4100
Operating Hours (h)	Н		8760	8760
Fuel Consumption (MMBtu/h)	FC		10.99	21.99
TOTAL CAPITAL INVESTMENT (TCI)				
SCR Catalyst Housing and Control System	А	Based on vendors quote	\$2,629,336.46	\$3,234,608.16
Reductant Storage Tank	Α'	Based on vendor's Quote	\$70,585.47	\$120,051.63
Total Purchased Equipment Costs	В	PA sales tax of 6% (1.06*(A+A'))	\$2,861,917.25	\$3,555,939.37
Direct Installation Costs	0.30B	OAQPS	\$858,575.18	\$1,066,781.81
Indirect Installation Costs	0.31B	OAQPS	\$887,194.35	\$1,102,341.20
Contingencies	0.24B	OAQPS 24% of equipment	\$686,860.14	\$853,425.45
Total Capital Costs	С	Sum(Row 8:Row 11)*1.11 (CPI)	\$5,876,947.08	\$7,302,121.50
Direct Annual Costs				
Power Costs		PC*H*PP	\$1,122,45	\$3,367,36
Reductant Costs		RC*H*RC	\$20.006.53	\$60.019.58
SCB Catalyst Replacement Costs		H/SCL*SCC	\$8,978,71	\$26,936,12
Replacement Parts		Vendor's quote	\$4,976,13	\$4,976,13
Operating Labor		OW*OH*SY	\$11.804.10	\$11.804.10
Maintenance Labor	D	MW*MH*SY	\$6,493,35	\$6.493.35
Total Direct Annual Costs	E	Sum(Row 15:Row 20)	\$53.381.26	\$113.596.63
Indirect Annual Costs			+00,00	<i></i>
Overhead	0.6D	OAQPS	\$3,896,01	\$3,896,01
Property Tax	0.02C	OAQPS using PA property tax of 2%	\$52,586,73	\$64,692,16
	0.01C		\$26,293,36	\$32,346.08
Administrative	0.02C	OAQPS	\$52,586,73	\$64,692,16
Capital Recovery	0.020	5.5% for 30 years= 0688	\$404,333.96	\$689.320.27
Total Indirect Annual Costs	F	Sum(Row 23:Row27)	\$539,696.79	\$854,946.69
	G	E+E	\$503.078.06	\$068 5 <i>1</i> 3 32
Control Efficiency			φ393,070.00 80%	900,040.02 80%
Potential to Emit (TPV)			27.97	55.94
Annual Estimated NOx Removal (TPV)		PTE*CE	27.37	<i>33.34</i> <i>44.75</i>
			¢26.506.45	¢21 642 56
COST-EFFECTIVENESS (\$/ton NOx removed)		GINR	\$20,500.45	\$21,043.30
Assumptions:				
Power Consumption Rate (kW)	PC	Cost Manual Estimate (GP5A Turbine Ref sheet)	1.73	5.19
Industrial Retail Power Price (\$/kWh)	PP	EIA Data		\$0.0741
Reductant Consumption Rate (gal/h)	RC	Cost Manual Estimate (GP5A Turbine Ref sheet)	0.914	2.741
Reductant Price (\$/gal)	RP	Vendor quote (Ref-Reductant consumption price)		\$2.50
SCR Catalyst Cost (\$)	SCC	Cost Manual Estimate (GP5A Turbine Ref sheet)	\$20,499.33	\$61,497.99
SCR Catalyst Life (h)	SCL	Vendor's quote		20,000
Operator Wages (\$/h)	OW	MSC quote (Ref-Reductant consumption price)		\$21.56
Operator Hours per Shift (h)	OH			0.50
Shifts per Year	SY	3 shifts/day*365 days/year		1,095
Maintenance Wages (\$/h)	MW	MSC quote (Ref-Reductant consumption price)		\$23.72

Maintenance Hours per Shift	MH		0.25
Interest Rate	IR		5.50%
Equipment Life (y)	EL		30
NOx Emission Rate (ppm)	Ν	1.50E-04	1.5E-04
Molar Volume @ 14.7 psi and 70 F (scf/lb-mol)	MV		386.80
Molecular Weight of NO2 (lb/lb-mol)	MW		46.01
Fuel Volume (scf/MMBtu)	FD		9,190
Oxygen Content	OC		15%
NOx Emission Rate (lb/MMBtu)	NER	0.5809	0.5809

Cost Ai	nalysis fo	r SCR for Oil-fired simple cycle turbine	s between 4100	and 60000 H	P		
Turbine Horsepower (bhp)	HP		4100	11150	15900	30000	60000
Operating Hours (h)	Н		8760	8760	8760	8760	8760
Fuel Consumption (MMBtu/h)	FC		21.99	80.17	117.58	190.80	309.10
TOTAL CAPITAL INVESTMENT (TCI)							
SCR Catalyst Housing and Control System	А	Based on vendors quote	\$2,070,149.22	\$2,951,112.41	\$3,544,669.17	\$5,306,595.56	\$9,055,375.09
Reductant Storage Tank	Α'	Based on vendor's Quote	\$76,833.04	\$148,830.22	\$197,338.97	\$341,333.33	\$647,704.33
Total Purchased Equipment Costs	В	PA sales tax of 6% (1.06*(A+A'))	\$2,275,801.20	\$3,285,939.19	\$3,966,528.63	\$5,986,804.62	\$10,285,264.19
Direct Installation Costs	0.30B	OAQPS	\$682,740.36	\$985,781.76	\$1,189,958.59	\$1,796,041.39	\$3,085,579.26
Indirect Installation Costs	0.31B	OAQPS	\$705,498.37	\$1,018,641.15	\$1,229,623.87	\$1,855,909.43	\$3,188,431.90
Contingencies	0.24B	OAQPS 24% of equipment	\$546,192.29	\$788,625.41	\$951,966.87	\$1,436,833.11	\$2,468,463.41
Total Capital Costs	С	Sum(Row 8:Row 11)*1.11 (CPI)	\$4,673,357.76	\$6,747,676.14	\$8,145,266.53	\$12,293,903.29	\$21,120,790.01
Direct Annual Costs							
Power Costs		PC*H*PP	\$3,097.33	\$9,742.04	\$10,281.36	\$16,683.75	\$33,367.49
Reductant Costs		RC*H*RC	\$38,369.66	\$120,719.70	\$177,055.61	\$287,311.34	\$574,622.68
SCR Catalyst Replacement Costs		H/SCL*SCC	\$26,936.12	\$54,532.38	\$68,471.44	\$90,531.72	\$181,063.43
Replacement Parts		Vendor's quote	\$4,976.13	\$4,976.13	\$4,976.13	\$4,976.13	\$4,976.13
Operating Labor		OW*OH*SY	\$11,804.10	\$11,804.10	\$11,804.10	\$11,804.10	\$11,804.10
Maintenance Labor	D	MW*MH*SY	\$6,493.35	\$6,493.35	\$6,493.35	\$6,493.35	\$6,493.35
otal Direct Annual Costs	E	Sum(Row 15:Row 20)	\$91,676.69	\$208,267.71	\$279,081.99	\$417,800.38	\$812,327.18
ndirect Annual Costs							
Overhead	0.6D	OAQPS	\$3,896.01	\$3,896.01	\$3,896.01	\$3,896.01	\$3,896.01
Property Tax	0.02C	OAQPS using PA property tax of 2%	\$41,402.98	\$59,022.25	\$70,893.38	\$106,131.91	\$181,107.50
Insurance	0.01C	OAQPS	\$20,701.49	\$29,511.12	\$35,446.69	\$53,065.96	\$90,553.75
Administrative	0.02C	OAQPS	\$41,402.98	\$59,022.25	\$70,893.38	\$106,131.91	\$181,107.50
Capital Recovery		5.5% for 30 years=.0688	\$441,164.97	\$636,980.63	\$768,913.16	\$1,160,544.47	\$1,993,802.58
Total Indirect Annual Costs	F	Sum(Row 23:Row27)	\$548,568.44	\$788,432.26	\$950,042.63	\$1,429,770.26	\$2,450,467.34
OTAL ANNUALIZED COST	G	E+F	\$640,245.13	\$996,699.97	\$1,229,124.62	\$1,847,570.64	\$3,262,794.52
Control Efficiency	CE		80%	80%	80%	80%	80%
Potential to Emit (TPY)	PTE	NER*FC*H	34.06	124.19	182.14	295.56	478.81
nnual Estimated NOx Removal (TPY)	NR	PTE*CE	27.25	99.35	145.71	236.45	383.04
COST-EFFECTIVENESS (\$/ton NOx removed)		G/NR	\$23,498.01	\$10,032.40	\$8,435.38	\$7,813.88	\$8,518.06
Assumptions:							
Power Consumption Rate (kW)	PC	Cost Manual Estimate (GP5A Turbine Ref sheet)	4.772	15.008	15.839	25.702	51.40
ndustrial Retail Power Price (\$/kWh)	PP	EIA Data	\$0.0741				
Reductant Consumption Rate (cal/h)	RC	Cost Manual Estimate (GP5A Turbine Ref sheet)	1.752	5.512	8.085	13.119	26.238
Reductant Price (\$/gal)	RP	Vendor quote (Ref-Reductant consumption price)	\$2.50				
CR Catalyst Cost (\$)	SCC	Cost Manual Estimate (GP5A Turbine Ref sheet)	\$61,497.99	\$124,503,16	\$156.327.48	\$206.693.42	\$413,386.84
SCR Catalyst Life (h)	SCI	Vendor's quote	20.000	÷ · _ · ,• • • • • •	+···· ·	+, ~~~	÷••••••••
Derator Wages (\$/h)	OW	MSC guote (Ref-Reductant consumption price)	\$21.56				
Operator Hours per Shift (h)	<u>ОН</u>		0.50		1		
Shifts per Year	SY	3 shifts/dav*365 davs/year	1 095			<u> </u>	
Maintenance Wages (\$/h)	N///	MSC quote (Ref-Reductant consumption price)	\$23.70				

Maintenance Hours per Shift	MH		0.25				
Interest Rate	IR		5.50%				
Equipment Life (y)	EL		30				
NOx Emission Rate (ppm)	N		9.6E-05	9.6E-05	9.6E-05	9.6E-05	9.6E-05
Molar Volume @ 14.7 psi and 70 F (scf/lb-mol)	MV		386.80				
Molecular Weight of NO2 (lb/lb-mol)	MW		46.01				
Fuel Volume (scf/MMBtu)	FD	For 1050 Btu/scf Natural Gas @ 70 F	8,743				
Oxygen Content	OC		15%				
NOx Emission Rate (lb/MMBtu)	NER		0.3537	0.3537	0.3537	0.3537	0.3537

		Cost Analysis for SCR for natura	gas-fired lean-b	ourn engines	between 500) - 3,500 BHF	C			
Engine Horsepower (bhp)	HP		500	1000	1380	1500	2000	2400	2500	3000
Operating Hours (h)	Н		8760	8760	8760	8760	8760	8760	8760	8760
SCR Catalyst Housing and Control System	А	OAQPS	\$232,597.34	\$279,869.71	\$315,796.70	\$327,142.07	\$374,414.44	\$412,232.33	\$421,686.80	\$468,959.16
Reductant Storage Tank	Α'	Vendor's quote	\$6,014.80	\$8,844.80	\$10,995.60	\$11,674.80	\$14,504.80	\$16,768.80	\$17,334.80	\$20,164.80
Total Purchased Equipment Costs	В	OAQPS with PA sales tax of 6%	\$252,928.87	\$306,037.38	\$346,399.84	\$359,145.88	\$412,254.39	\$454,741.19	\$487,313.98	\$542,927.60
Direct Installation Costs	0.30B	OAQPS	\$75,878.66	\$91,811.21	\$103,919.95	\$107,743.77	\$123,676.32	\$136,422.36	\$146,194.19	\$162,878.28
Indirect Installation Costs	0.31B	OAQPS	\$78,407.95	\$94,871.59	\$107,383.95	\$111,335.22	\$127,798.86	\$140,969.77	\$151,067.33	\$168,307.56
Contingencies	0.24B	OAQPS (0.15*(B+0.30B+0.31B))	\$60,702.93	\$73,448.97	\$83,135.96	\$86,195.01	\$98,941.05	\$109,137.89	\$116,955.35	\$130,302.62
TOTAL CAPITAL COST (TCC)	С	SUM ROW 7 - 10 with CPI	\$519,389.44	\$628,447.76	\$711,332.08	\$737,506.07	\$846,564.39	\$933,811.04	\$1,000,699.25	\$1,114,901.82
Direct Annual Costs										
Power Costs		PC*H*PP	\$1,867.89	\$2,481.09	\$2,947.12	\$3,094.28	\$3,707.48	\$4,198.04	\$4,320.68	\$4,933.88
Reductant Costs		RC*H*RC	\$14,067.54	\$28,135.07	\$38,826.40	\$42,202.61	\$56,270.15	\$67,524.17	\$70,337.68	\$84,405.22
SCR Catalyst Replacement Costs		H/SCL*SCC*1.11	\$8,986.76	\$9,751.08	\$10,331.97	\$10,515.41	\$11,279.73	\$11,891.19	\$12,044.06	\$12,808.38
Operating Labor plus 15% for Supervisor		OW*OH*SY*1.15	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72
Maintenance Labor plus Materials	D	MW*MH*SY*2	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70
Total Direct Annual Costs	E	Sum(Row 12:Row17)	\$51,483.60	\$66,928.66	\$78,666.90	\$82,373.72	\$97,818.77	\$110,174.82	\$113,263.83	\$128,708.89
Indirect Annual Costs										
Overhead	0.6D	OAQPS	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02
Property Tax	0.02C	OAQPS using PA property tax of 2%	\$10,387.79	\$12,568.96	\$14,226.64	\$14,750.12	\$16,931.29	\$18,676.22	\$20,013.98	\$22,298.04
Insurance	0.01C	OAQPS	\$5,193.89	\$6,284.48	\$7,113.32	\$7,375.06	\$8,465.64	\$9,338.11	\$10,006.99	\$11,149.02
Administrative	0.02C	OAQPS	\$10,387.79	\$12,568.96	\$14,226.64	\$14,750.12	\$16,931.29	\$18,676.22	\$20,013.98	\$22,298.04
Capital Recovery (5.5% @ 30 yrs)			\$35,733.99	\$43,237.21	\$48,939.65	\$50,740.42	\$58,243.63	\$64,246.20	\$68,853.50	\$76,711.25
Total Indirect Annual Costs	F	Sum(Row 20:Row24)	\$69,495.49	\$82,451.61	\$92,298.27	\$95,407.74	\$108,363.87	\$118,728.77	\$126,680.48	\$140,248.37
	G		\$120.070.00	\$140,380,27	\$170,065,17	¢177 781 /6	\$206 182 64	\$228,003,50	\$220 044 22	\$268 057 26
Control Efficiency			\$120,979.09 80%	\$149,300.27 80%	80%	80%	φ200,102.04 80%	φ220,903.39 80%	\$233,344.32 80%	\$208,937.20 80%
Potential to Emit (TPV)		ER*HP*H/(151 a/lb*2000 lb/top)	1/ /7	28.94	30.0/	13.11	57.89	69.46	00%	00 <i>%</i>
Annual Estimated NOx Removal (TPV)			11.58	20.94	31.95	34.73	46.31	55 57	57.80	69.46
COST EFEECTIVENESS (\$/Top of NOv removed)			\$10 //0 87	\$6.451.55	\$5 350 56	\$5 118 77	40.31 \$4.452.38	\$1 110 10	\$7.69 \$1.145.16	62 871 07
			ψ10,449.07	ψ0,401.00	ψ0,000.00	φ3,110. <i>11</i>	φ4,402.00	ψ4,113.13	\$4,145.10	\$3,871.97
Assumptions:										
Power Consumption Rate (kW)	PC	OAQPS	2.88	3.82	4.54	4.77	5.71	6.47	6.66	7.60
Industrial Retail Power Price (\$/kWh)	PP	EIA Data	\$0.0741	\$0.0741	\$0.0741	\$0.0741	\$0.0741	\$0.0741		
Reductant Consumption Rate (gal/h)	RC	OAQPS	0.642	1.285	1.773	1.927	2.569	3.083	3.212	3.854
Reductant Price (\$/gal)	RP	Vendor's quote			\$2.50					
SCR Catalyst Cost (\$)	SCC	OAQPS	\$18,484.43	\$20,056.53	\$21,251.33	\$21,628.63	\$23,200.73	\$24,458.41	\$24,772.83	\$26,344.94
SCR Catalyst Life (h)	SCL	Vendor's quote			20,000					
Operator Wages (\$/h)	OW	MSC quote (\$21.56/hr)			\$21.56					
Operator Hours per Shift (h)	OH				0.50					
Shifts per Year	SY	3 shifts/day*365 days/year	-		1,095					
Maintenance Wages (\$/h)	MW	MSC quote	-		\$23.72					
Maintenance Hours per Shift	MH		-		0.25					
Interest Rate	IR				5.50%					
Equipment Life (y)	EL		-		30					
NOx Emission Rate (g/bhp-h)	NER	Uncontrolled NOx Emissions >500 bhp			3.0					

Cost Analysis	s for S	CR for natural gas-fired lean-burn eng	gines rated at	Greater than	3500 BHP		
Engine Horsepower (bhp)	HP		3500	4000	4500	4735	5000
Operating Hours (h)	Н		8760	8760	8760	8760	8760
SCR Catalyst Housing and Control System	А	OAQPS	\$516,231.53	\$563,503.89	\$610,776.25	\$632,994.26	\$658,048.62
Reductant Storage Tank	Α'	Vendor's quote	\$22,994.80	\$25,824.80	\$28,654.80	\$29,984.90	\$31,484.80
Total Purchased Equipment Costs	В	OAQPS with PA sales tax of 6%	\$598,541.22	\$654,154.85	\$709,768.47	\$735,906.87	\$765,382.09
Direct Installation Costs	0.30B	OAQPS	\$179,562.37	\$196,246.45	\$212,930.54	\$220,772.06	\$229,614.63
Indirect Installation Costs	0.31B	OAQPS	\$185,547.78	\$202,788.00	\$220,028.23	\$228,131.13	\$237,268.45
Contingencies	0.24B	OAQPS (0.15*(B+0.30B+0.31B))	\$143,649.89	\$156,997.16	\$170,344.43	\$176,617.65	\$183,691.70
TOTAL CAPITAL COST (TCC)	С	SUM ROW 7 - 10 with CPI	\$1,229,104.40	\$1,343,306.98	\$1,457,509.55	\$1,511,184.76	\$1,571,712.13
Direct Annual Costs							
Power Costs		PC*H*PP	\$5,547.07	\$6,160.27	\$6,773.47	\$7,061.67	\$7,386.66
Reductant Costs		RC*H*RC	\$98,472.75	\$112,540.29	\$126,607.83	\$133,219.57	\$140,675.36
SCR Catalyst Replacement Costs		H/SCL*SCC*1.11	\$13,572.71	\$14,337.03	\$15,101.35	\$15,460.59	\$15,865.68
Operating Labor plus 15% for Supervisor	_	OW*OH*SY*1.15	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72
Maintenance Labor plus Materials	D	MW*MH*SY*2	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70
Total Direct Annual Costs	E	Sum(Row 12:Row17)	\$144,153.95	\$159,599.00	\$175,044.06	\$182,303.24	\$190,489.12
Indirect Annual Costs		0.000		4	t= == = = =	47 700 00	4
Overhead	0.6D	DAQPS	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02
Property Tax	0.020	DAQPS using PA property tax of 2%	\$24,582.09	\$26,866.14	\$29,150.19	\$30,223.70	\$31,434.24
Insurance	0.010	UAQPS	\$12,291.04	\$13,433.07	\$14,575.10	\$15,111.85	\$15,/1/.12
	0.020	UAQPS	\$24,582.09	\$26,866.14	\$29,150.19	\$30,223.70	\$31,434.24
Capital Recovery (5.5% @ 30 yrs)			\$84,569.01	\$92,426.76	\$100,284.51	\$103,977.66	\$108,142.27
l otal indirect Annual Costs	F	Sum(Row 20:Row24)	\$153,816.25	\$167,384.13	\$180,952.01	\$187,328.91	\$194,519.89
	-		¢207.070.10	¢220.082.12	62FF 00C 07	¢200 022 15	6285 000 01
Control Efficiency	G		\$297,970.19	\$326,983.13	\$355,996.07	\$369,632.15	\$385,009.01
Control Enclency Retential to Emit (TRY)			101.20		80%	80%	
Appual Estimated NOx Removal (TPV)			101.30 91.04	02.62	130.24	137.04	144.71
COST EFEECTIVENESS (\$/Top of NOx removed)			61.04 \$2.676.94	92.02 \$2.520.50	104.19 ¢2.417	109.04 ¢2.271	\$2,226
COST EFFECTIVENESS (\$/TOF OF NOX TEHLOVED)		G/NK	\$3,070.84	\$3,530.50	\$5,417	\$3,371 	\$3,320
Assumptions:							
Power Consumption Rate (kW)	PC	OAQPS	8 55	9 4 9	10.43	10.88	11 38
Industrial Retail Power Price (\$/kWh)	PP	FIA Data	0.00	5.15	10.15	10.00	11.50
Reductant Consumption Rate (gal/h)	RC	OAOPS	4 496	5 139	5 781	6.083	6 424
Reductant Price (\$/gal)	RP	Vendor's quote		51200	5.701	0.000	0.121
SCR Catalyst Cost (\$)	SCC	OAQPS	\$27,917,04	\$29,489,14	\$31.061.24	\$31.800.13	\$32,633,34
SCR Catalyst Life (h)	SCL	Vendor's quote	+=//0=//01	+=0).00121	<i><i>vo</i>_<i>joo</i>_<i>i</i>_<i>i</i>_<i>i</i></i>	<i>\\</i>	<i>+01,000.0</i> .
Operator Wages (\$/h)	OW	MSC guote (\$21.56/hr)					
Operator Hours per Shift (h)	ОН						
Shifts per Year	SY	3 shifts/day*365 days/year					
Maintenance Wages (\$/h)	MW	MSC quote				1	
Maintenance Hours per Shift	MH	· ·					
Interest Rate	IR						
Equipment Life (y)	EL						
NOx Emission Rate (g/bhp-h)	NER	Uncontrolled NOx Emissions >500 bhp		1		1	
					-	-	-

Cost Analysis for SCR for oil-fired engines greater than 500 BHP														
Engine Horsepower (bhp)	HP	500	1000	1380	1500	2000	2400	2500	3000	3500	4000	4500	4735	5000
Operating Hours (h)	Н	8760	8760	8760	8760	8760	8760	8760	8760	8760	8760	8760	8760	8760
SCR Catalyst Housing and Control System	A OAQPS	\$160,950.00	\$321,900.00	\$444,222.00	\$482,850.00	\$643,800.00	\$772,560.00	\$804,750.00	\$965,700.00	\$1,126,650.00	\$1,287,600.00	\$1,448,550.00	\$1,524,196.50	\$1,609,500.00
Reductant Storage Tank	A' Vendor's quote	\$6,014.80	\$8,844.80	\$10,995.60	\$11,674.80	\$14,504.80	\$16,768.80	\$17,334.80	\$20,164.80	\$22,994.80	\$25,824.80	\$28,654.80	\$29,984.90	\$31,484.80
Total Purchased Equipment Costs	B OAQPS with PA sales tax of 6%	\$176,982.69	\$350,589.49	\$482,530.66	\$524,196.29	\$697,803.09	\$836,688.53	\$912,514.13	\$1,094,309.93	\$1,276,105.73	\$1,457,901.53	\$1,639,697.33	\$1,725,141.35	\$1,821,493.13
Direct Installation Costs	0.30B OAQPS	\$53,094.81	\$105,176.85	\$144,759.20	\$157,258.89	\$209,340.93	\$251,006.56	\$273,754.24	\$328,292.98	\$382,831.72	\$437,370.46	\$491,909.20	\$517,542.41	\$546,447.94
Indirect Installation Costs	0.31B OAQPS	\$54,864.63	\$108,682.74	\$149,584.50	\$162,500.85	\$216,318.96	\$259,373.44	\$282,879.38	\$339,236.08	\$395,592.78	\$451,949.47	\$508,306.17	\$534,793.82	\$564,662.87
Contingencies	0.24B OAQPS (0.15*(B+0.30B+0.31B))	\$42,475.85	\$84,141.48	\$115,807.36	\$125,807.11	\$167,472.74	\$200,805.25	\$219,003.39	\$262,634.38	\$306,265.37	\$349,896.37	\$393,527.36	\$414,033.92	\$437,158.35
TOTAL CAPITAL COST (TCC)	C SUM ROW 7 - 10 with CPI	\$363,433.95	\$719,935.51	\$990,876.70	\$1,076,437.08	\$1,432,938.64	\$1,718,139.89	\$1,873,847.76	\$2,247,165.44	\$2,620,483.11	\$2,993,800.79	\$3,367,118.46	\$3,542,577.77	\$3,740,436.14
Direct Annual Costs														
Power Costs	PC*H*PP	\$993.15	\$1,986.29	\$2,741.09	\$2,979.44	\$3,972.59	\$4,767.11	\$4,965.74	\$5,958.88	\$6,952.03	\$7,945.18	\$8,938.33	\$9,405.11	\$9,931.47
Reductant Costs	RC*H*RC	\$27,243.60	\$54,487.20	\$75,192.34	\$81,730.80	\$108,974.40	\$130,769.28	\$136,218.00	\$163,461.60	\$190,705.20	\$217,948.80	\$245,192.40	\$257,996.89	\$272,436.00
SCR Catalyst Replacement Costs	H/SCL*SCC*1.11	\$2,390.06	\$4,780.12	\$6,596.57	\$7,170.18	\$9,560.24	\$11,472.29	\$11,950.30	\$14,340.37	\$16,730.43	\$19,120.49	\$21,510.55	\$22,633.88	\$23,900.61
Operating Labor plus 15% for Supervisor	OW*OH*SY*1.15	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72	\$13,574.72
Maintenance Labor plus Materials	D MW*MH*SY*2	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70	\$12,986.70
Total Direct Annual Costs	E Sum(Row 12:Row17)	\$57,188.22	\$87,815.03	\$111,091.41	\$118,441.84	\$149,068.65	\$173,570.10	\$179,695.46	\$210,322.27	\$240,949.07	\$271,575.88	\$302,202.69	\$316,597.29	\$332,829.50
Indirect Annual Costs								1	4	1	1	1	4	4
Overhead	0.6D OAQPS	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02	\$7,792.02
Property Tax	0.02C OAQPS using PA property tax of 2%	\$7,268.68	\$14,398.71	\$19,817.53	\$21,528.74	\$28,658.77	\$34,362.80	\$37,476.96	\$44,943.31	\$52,409.66	\$59,876.02	\$67,342.37	\$70,851.56	\$74,808.72
Insurance		\$3,634.34	\$7,199.36	\$9,908.77	\$10,764.37	\$14,329.39	\$17,181.40	\$18,738.48	\$22,471.65	\$26,204.83	\$29,938.01	\$33,671.18	\$35,425.78	\$37,404.36
Administrative	0.02C OAQPS	\$7,268.68	\$14,398.71	\$19,817.53	\$21,528.74	\$28,658.77	\$34,362.80	\$37,476.96	\$44,943.31	\$52,409.66	\$59,876.02	\$67,342.37	\$70,851.56	\$74,808.72
Capital Recovery (5.5% @ 30 yrs)		\$25,004.26	\$49,531.56	\$68,172.32	\$74,058.87	\$98,586.18	\$118,208.02	\$128,930.83	\$154,617.09	\$180,303.36	\$205,989.63	\$231,675.90	\$243,748.44	\$257,362.17
l otal Indirect Annual Costs	F Sum(Row 20:Row24)	\$50,967.97	\$93,320.36	\$125,508.17	\$135,672.74	\$178,025.13	\$211,907.04	\$230,415.23	\$274,767.39	\$319,119.54	\$363,471.69	\$407,823.84	\$428,669.35	\$452,175.99
		¢109,156,20	¢101 125 20	¢006 500 59	¢054 114 59	¢227.002.79	¢205 477 42	¢410.110.00	6405 000 CF	¢500.000.01	6625 047 57	6710 020 52	6745 200 04	¢705.005.40
Control Efficiency		\$106,156.20	\$101,135.39	\$230,399.30	φ204,114.00 900/	φ327,093.70 900/	φ305,477.13 900/	\$410,110.69	\$485,089.65	\$560,068.61	\$635,047.57	\$710,026.53	\$745,266.64	\$785,005.49
Control Elliciency		00%	00%	00%	00%	00%	00%	80%	80%	80%	80%	80%	80%	80%
Potential to Emit (TPY)		38.59	61.74	106.51	115.77	154.30	185.23	192.95	231.54	270.13	308.72	347.31	365.45	385.90
Annual Estimated NOX Removal (TPT)		\$2.502.25	¢2.022.62	00.21 ¢0.776.75	92.02	123.49 \$2.649.77	140.19 ¢2.601.20	154.30	185.23 \$2.619.90	210.11 \$2.501.64	240.98 ¢2 571 27	277.85 \$2.555	292.30 \$2.540	508.72 ¢2.542
COST EFFECTIVENESS (\$/TOILOLNOX TELLOVED)	G/NK	\$3,505.55	\$2,933.03	\$2,110.15	φ2,743.72	φ2,040.77	\$2,001.29	\$2,050.82	\$2,018.80	\$2,591.04	\$2,571.27	ş2,555	ş2,549	şz,545
Assumptions														
Power Consumption Rate (kW)	PC DAOPS	1 53	3.06	4 22	4 59	6.12	7 34	7.65	9.18	10.71	12.24	13 77	11.19	15 30
Industrial Retail Power Price (\$/k\Wb)	PP FIA Data	\$0.0741	\$0.0741	\$0.0741	\$0.0741	\$0.0741	\$0.0741	7.05	5.10	10.71	12.24	13.77	14.45	15.50
Reductant Consumption Rate (gal/b)		1 244	2 488	3 433	3 732	4 976	5 971	6 2 2 0	7 464	8 708	9 952	11 196	11 781	12 440
Reductant Price (\$/gal)	BP Vendor's quote	1.277	2.400	\$2.50	0.102	4.070	0.071	0.220	7.404	0.700	5.552	11.150	11.701	12.440
SCR Catalyst Cost (\$)	SCC DAOPS	\$4 916 00	\$9 832 00	\$13 568 16	\$14 748 00	\$19 664 00	\$23 596 80	\$24,580,00	\$29,496,00	\$34,412,00	\$39,328,00	\$44,244,00	\$46,554,52	\$49,160.00
SCR Catalyst Life (h)	SCL Vendor's quote	<i><i><i></i></i></i>	<i>\$0,002.00</i>	20.000	¢,	<i><i><i></i></i></i>	\$20,000100	<i>\\</i>	<i>\(_2)</i>	<i>\\\\</i>	<i>\\</i>	<i>\(\)</i>	\$ 10,00 H01	<i>\(\)</i>
Operator Wages (\$/h)	OW MSC guote (\$21.56/hr)			\$21.56										
Operator Hours per Shift (h)	OH OH			0.50										1
Shifts per Year	SY 3 shifts/day*365 days/vear			1,095										
Maintenance Wages (\$/h)	MW MSC quote			\$23.72										
Maintenance Hours per Shift	MH			0.25										
Interest Rate	IR			5.50%										
Equipment Life (y)	EL			30										
NOx Emission Rate (g/bhp-h)	NER Uncontrolled NOx Emissions >500 bhp			8.0	T	Ī							1	

Based on E - C/R INC's Cost-Analysis done		1					
for EPA in June 2010							
ЦР	100	300	800	1500	3000		
LIF Hrs	9760	9760	8760	9760	9760		
1115	8700	8700	8700	0700	8700		
Total Capital Cost (TCC) in 2010	\$15 139 00	\$17 240 00	\$33 103 00	\$44 223 00	\$89 644 00		
Total Capital Cost (TCC) in 2020 (CPI 1 18)	\$17,864,02	\$20,343,20	\$39,061,54	\$52 183 14	\$105 779 92		
Total Annual Operating Cost (TAOC)	\$5,466,00	\$8,465,00	\$10,723,00	\$12,306,00	\$18,773,00		
Total Annual Operating Cost (TAOC) in 2020 (CPI 1 18)	\$6,449,88	\$9 988 70	\$12,653,14	\$14 521 08	\$22 152 14		
	φ0,110.00	φ0,000.10	φ12,000.11	\$11,021.00	<i>\\\\\\\\\\\\\</i>		
Uncontrolled NOx Gms/bhp-hr	16	16	16	16	16		
Uncontrolled NMHC Gms/bhp-hr	1 00	1.00	1.00	1.00	1.00		
Uncontrolled NOx tons per vear	15.44	46.31	123.49	231.54	463.08		
Uncontrolled NMHC tons per year	0.96	2.89	7.72	14.47	28.94		
NOx removed TPY (80% Eff.)	12.35	37.05	98.79	185.23	370.47		
NMHC removed TPY (50% Eff.)	0.48	1.45	3.86	7.24	14.47		
Total NOx. NMHC removed	12.83	38.49	102.65	192.47	384.94		
Cost-Effectiveness (\$/Ton NOx removed) 2010 Dollars	\$522.30	\$269.62	\$128.08	\$78.39	\$59.80		
Cost-Effectiveness in 2020 Dollars with CPI 1.18	\$616.32	\$318.16	\$151.13	\$92.50	\$70.56		
Uncontrolled NOx Emissions used for this cost analysis - 16 gms/b	hp-hr						
Uncontrolled NMHC Emissions used for this cost analysis - 1.0 gn	ns/bhp-hr						
Typical NOx Control Efficiency 80%							
HC Control Efficiency 50%							
TCC = Direct Costs (DC) + Indirect Costs (IC)							
DC = Purchased Equipment Cost (PEC) + Direct Installation (Costs (DIC)						
PEC includes Costs for Control Device and Auxiliary Equipm	ent (EC), Instrumer	nttation (10% of EC), and				
Sales Tax and Fright (6% each of EC)							
DIC includes Foundation and Supports (8% of PEC), Handlin	ng and Erection (14	% pf PEC), and					
Electric (4% of PEC), Piping (2% of PEC), insulation (1%	of PEC), and pain	ting (1% of PEC)					
IC Indirect Installation Costs (ICC) + Contingencies (C)							
ICC includes Engineering (10% of PEC), Construction and Fie	d expenses (5% o	f PEC), Contractor	Fees (10% of PEC),	-			
Startup (2% of PEC), and Performance test (1% of PEC)							
C is assumed to be 3% of PEC							
TAC = DAC + IAC							
DAC includes Utilities, Operating Labor, maintenance, Annua	I Compliance test,	Catalytic Cleaning					
Catalyst replacement, Catalyst Disposal			<u> </u>				
IAC includes Overhead, Fuel Penalty, Property Tax, Insurance, Administrative Charges, and Capital Recovery (10% for 10 years)							

Cost Analysis for NSCR for rich-burn engines

Cost Analysis for oxidation catalyst for IC engines									
Cost Costs Costs Costs Costs Costs									
Uncontrolled NMHC gms/hp-hr	1	1	1	1	1	1			
HP	2500	2000	1500	1000	750	500			
Hrs/Yr	8760	8760	8760	8760	8760	8760			
Capital Cost:									
TOTAL CAPITAL COST (TCC) (2009)	\$35,069.00	\$28,669.00	\$22,269.00	\$15,869.00	\$12,669.00	\$9,469.00			
Direct Annual Costs									
On-Site Testing	\$5,000.00	\$5,000.00	\$5,000.00	\$5,000.00	\$5,000.00	\$5,000.00			
Catalyst replacement (3 yrs Operating life)	\$11,689.67	\$9,556.33	\$7,423.00	\$5,289.67	\$4,223.00	\$3,156.33			
Maintenance (5% of TCC)	\$1,753.45	\$1,433.45	\$1,113.45	\$793.45	\$633.45	\$473.45			
Indirect Annual Costs									
Capital Recovery (5.5 % @ 20 yrs)	\$2,935.28	\$2,399.60	\$1,863.92	\$1,328.24	\$1,060.40	\$792.56			
Overhead (60% of Maintenance - OAQPS)	\$1,052.07	\$860.07	\$668.07	\$476.07	\$380.07	\$284.07			
PropertyTax+Ins.+Admn. (4% of TCC - OAQPS)	\$1,402.76	\$1,146.76	\$890.76	\$634.76	\$506.76	\$378.76			
TOTAL ANNUALIZED COST	\$23,833.22	\$20,396.21	\$16,959.20	\$13,522.18	\$11,803.68	\$10,085.17			
Total Uncontrolled NMHC emissions in Tons per Year	24.12	19.30	14.47	9.65	7.24	4.82			
Total NMHC Removed in Tons per Year (60%)	14.47	11.58	8.68	5.79	4.34	2.89			
Cost-Effectiveness (\$/Ton NMHC removed) in 2009	\$1,646.92	\$1,761.77	\$1,953.19	\$2,336.02	\$2,718.86	\$3,484.53			
COST-EFFECTIVENESS (\$/Ton NMHC removed) in 2020 with CPI	\$1,976.31	\$2,114.13	\$2,343.83	\$2,803.23	\$3,262.63	\$4,181.43			

Reference: June 29, 2010-Control Costs for Existing Stationary SI RICE From: Bradley Nelson, EC/R, Inc.To: Melanie King, EPA OAQPS/SPPD/ESG

https://19january2017snapshot.epa.gov/sites/production/files/2014-02/documents/5_2011_ctrlcostmemo_exist_si.pdf

Cost Analysis for SCR at Container and Flat glass furnaces							
	VITRO GLASS/Carlisle WORKS 6 flat at	OWENS-BROCKWAY GLASS CONTAINER INC/CRENSHAW	OWENS BROCKWAY GLASS/CHERRY ST container starting at 4	ARDAGH GLASS PORT ALLEGANY PLT container			
Cost estimate	26.75 lbs/ton	starting at 4 lbs/ton	lbs/ton	starting at 4 lbs/ton	Factors Used		
Boiler Capacity MMBtu/hr	224	70.2	66.3	51.65	For Vitro - MMBtu/hr calculated from fuel flow in permit		
Hrs/Yr	8760	8760	8760	8760			
NOx emissions (lb/MMBtu)	3.49	0.77	0.78	0.91	Vitro - 29.2 ton glass puled per hours in permit		
TOTAL CAPITAL COST							
DIRECT CAPITAL COST	*= -=						
Equipment Cost (EC) = (1)	\$5,250,000.00	\$2,975,852.00	\$2,975,852.00	\$2,975,852.00	Estimted based on similar size natural gas-fired boilers		
Auxiliaries = (2)	¢525.000	\$207 595	¢207 595	\$207 585	10% of EC		
Sales Tax (6% of EC) = (4)	\$325,000	\$297,303	\$297,565 \$178,551	\$297,585	6% of EC		
Exercise tax (0% of EC) = (4) Ereight (6% of EC) = (5)	\$315,000	\$178,551	\$178,551	\$178,551	6% of EC		
Total Equipment Cost (TEC) = $(6) = (1)+(2)+(3)+(4)+(5)$	\$6 405 000	\$3 630 539	\$3 630 539	\$3,630,539			
	\$0,100,000	\$0,000,000	\$0,000,000	\$0,000,000			
INSTALLATION COSTS							
Direct Installation							
Foundation and Support = (7)	\$512,400	\$290,443	\$290,443	\$290,443	8% of TEC		
Handling and Erection = (8)	\$896,700	\$508,276	\$508,276	\$508,276	14% of TEC		
Electrical = (9)	\$256,200	\$145,222	\$145,222	\$145,222	4% of TEC		
Piping (10)	\$128,100	\$72,611	\$72,611	\$72,611	2% of TEC		
Insulation for duct work (11)	\$64,050	\$36,305	\$36,305	\$36,305	1% of IEC		
Painting (12) Total Direct Installation Cost = $(42) = (7) + (9) + (9) + (40) + (44) + (42)$	\$64,050	\$36,305	\$36,305	\$36,305	1% of TEC		
Total Direct installation $Cost = (13) = (7) + (8) + (9) + (10) + (11) + (12)$	\$1,921,500	\$1,069,162	\$1,009,102	\$1,069,162			
Indirect Installation							
Engineering and Supervision = (14)	\$640 500	\$363.054	\$363.054	\$363.054	10% of TEC		
Construction. Field = (15)	\$320,250	\$181.527	\$181.527	\$181.527	5% of TEC		
Construction or Contractor Fees = (16)	\$640,500	\$363,054	\$363,054	\$363,054	10% of TEC		
Contingencies = (17)	\$192,150	\$108,916	\$108,916	\$108,916	3% of TEC		
Startup and performance Tests = (18)	\$192,150	\$108,916	\$108,916	\$108,916	3% of TEC		
Total Indirect Cost = (19) = (14)+(15)+(16)+(17)+(18)	\$1,985,550	\$1,125,467	\$1,125,467	\$1,125,467			
		** • • * • • • •					
101AL CAPITAL COST (1CC) = 20 = (6) + (13) + (19)	\$10,312,050	\$5,845,168	\$5,845,168	\$5,845,168			
Direct Annual Casta							
Electicity = (22)	\$76 124	\$76.124	¢76 10/	\$76.124	\$0.0676 kw/br (prorated from 200 MMBtu quote)		
Chemical Cost (Lirea/Ammonia) = (23)	\$206.606	\$103 303	\$103 303	\$103 303	Estimated from EPA cost spreadsheet		
Catalyst Replacement (costs/No. of years) = (24)	\$47.528	\$23,764	\$23,764	\$23,764	Estimated from EPA cost spreadsheet		
Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day = (28)	\$32,850	\$32,850	\$32,850	\$32,850	Maintenance Labor - \$60/hr, 30 min/shift, 3 shifts/day		
Maintenance Material = (29)	\$32,850	\$32,850	\$32,850	\$32,850	100% of maintenance labor		
Indirect Annual Costs							
Administration (3% of maintenance+labor) = (25)	\$3,154	\$3,154	\$3,154	\$3,154	3% ofmaintenance +labor		
Property Taxes (1% of TCC-OAQPS) = (26)	\$103,121	\$58,452	\$58,452	\$58,452	1% of TCC (OAQPS)		
Insurance (1% of TCC-OAQPS) = (27)	\$103,121	\$58,452	\$58,452	\$58,452	1% of TCC (OAQPS)		
Annulized Capital Recovery Cost (30 yrs at 5.5%) = (21)	\$709,469	\$402,148	\$402,148	\$402,148	ICC"U.0688		
Overhead (44% of Labor cost + 12% Material Cost) = (30)	\$39,420.00	\$39,420.00	\$39,420.00	\$39,420.00	60% of Maintenance Cost (OAQPS)		
TOTAL ANNUALIZED COST = (31) = Sum from (21) through (30)	\$1 354 241	\$830 515	\$830.515	\$830 515			
	ψ1,007,241	φ000,010	ψ000,010	ψ000,010			
Uncontrolled NOx TPY = (32)	3.421.22	238.27	227.76	204.98			
NOx removed TPY (80% Eff.) = (33)	2,736.97	190.62	182.21	163.99			
COST EFFECTIVENESS (\$/Ton of NOx removed) = (34) = (31)/(33)	\$494.79	\$4,356.97	\$4,558.06	\$5,064.51			
Calculated theoretical emissions after control (lbs NOx/ton glass)	5.35	0.80	0.80	0.80	% remainder after control*uncontrolled		
RACT II emission limit (lbs NOx/ton glass) and §129.304	7.00	4.00	4.00	4.00			

Cost Analysis for SCR for all other glass furnaces								
	PQ CORP/CHESTER other starting at 6 lbs/ton							
Cost estimate		Factors Used						
Furnace Capacity MMBtu/hr	50	From Permit						
Hrs/Yr	8760							
NOx emissions (lb/MMBtu)	1.20	Based on ~10 tons of glass pulled						
DIRECT CAPITAL COST	¢0.075.050.00	an an involute of the same swith line 200 for 050 merch to						
Equipment Cost (EC) = (1)	\$2,975,852.00	manipulated to agree with line 33 for 250 mmbtu						
Auxiliaries – (2)	\$207 585	10% of EC						
Sales Tay (6% of EC) = (4)	\$257,505 \$178,551	6% of EC						
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	\$178.551	6% of EC						
Total Equipment Cost (TEC) = $(6) = (1)+(2)+(3)+(4)+(5)$	\$3,630,539	5% 61 E0						
	+-,,							
INSTALLATION COSTS								
Direct Installation								
Foundation and Support = (7)	\$290,443	8% of TEC						
Handling and Erection = (8)	\$508,276	14% of TEC						
Electrical = (9)	\$145,222	4% of TEC						
Piping (10)	\$72,611	2% of TEC						
Insulation for duct work (11)	\$36,305	1% of TEC						
Painting (12)	\$36,305	1% of TEC						
Total Direct Installation Cost = $(13) = (7)+(8)+(9)+(10)+(11)+(12)$	\$1,089,162							
Indicast Installation								
Engineering and Supervision = (14)	\$363.054	10% of TEC						
Construction Field = (15)	\$303,034 \$191,527	5% of TEC						
Construction, Field – (15)	\$101,327	10% of TEC						
Contingencies = (17)	\$303,034	3% of TEC						
Startup and performance Tests = (18)	\$108,916	3% of TEC						
Total Indirect Cost = $(19) = (14)+(15)+(16)+(17)+(18)$	\$1,125,467	0.001120						
	·····							
TOTAL CAPITAL COST (TCC) = 20 = (6) + (13) + (19)	\$5,845,168	EPA cost spreadsheet for 250 MMBtu (Appendix 7)						
Direct Annual Costs								
Elecricity = (22)	\$76.124	\$0.0676 kw/hr (prorated from 200 MMBtu quote)						
Maintenance Labor - \$60/hr. 30 min/shift. 3 shifts/day = (28)	\$32.850	Maintenance Labor - \$60/hr. 30 min/shift. 3 shifts/day						
Maintenance Material = (29)	\$32,850	100% of maintenance labor						
Chemical Cost (Urea/Ammonia) = (23)	\$103,303	from EPA cost spreadsheet for 250 MMBtu						
Catalyst Replacement (costs/No. of years) = (24)	\$35,964	from EPA cost spreadsheet for 250 MMBtu						
Indirect Annual Costs								
Administration (3% of maintenance+labor) = (25)	\$3,154	3% of maintenance + labor						
Property Taxes (1% of TCC-OAQPS) = (26)	\$58,452	1% of ICC (UAQPS)						
Insurance (1% of TCC-OAQPS) = (27)	\$58,452	1% 0FTCC (UAQPS)						
Annulized Capital Recovery Cost $(5.5\% \oplus 50 \text{ yrs}) = (21)$	\$402,146	FOUL of Maintananaa Cost (OAODS)						
TOTAL ANNUALIZED COST = (31) = Sum from (21) through (30)	\$842 715							
	ψυτΖ,/10							
Uncontrolled NOx TPY = (32)	262.80							
NOx removed TPY (80% Eff.) = (33)	210.24							
COST-EFFECTIVENESS (\$/Ton NOx removed) = (34) = (31)/(33)	\$4,008.35							
Calculated theoretical emissions after control (lbs NOx/ton glass)	1.03	% remainder after control*uncontrolled						
RACT II emission limit (lbs NOx/ton glass) and §129.304	6.00							