PROJECT NAME: 180-115 C-1 Site

LOCATION: Tunkhannock Township

CHANNEL OR CHANNEL SECTION		Swale 1	Swale 1
TEMPORARY OR PERMANENT?	(T OR P)	Р	Р
DESIGN STORM	(2, 5, OR 10 YR.)		0
ACRES	(AC)	9.63	9.63
MULTIPLIER	(1.6, 2.25, OR 2.75) ¹	2.75	2.75
Q _r (REQUIRED CAPACITY)	(CFS)	26.50	26.50
Q (CALCULATED AT FLOW DEPTH d)	(CFS)	26.50	26.50
PROTECTIVE LINING ²		Grass	NAG C125
n (MANNING'S COEFFICIENT) ²		0.040	0.031
V _a (ALLOWABLE VELOCITY)	(FPS)	N/A	N/A
V (CALCULATED AT FLOW DEPTH d)	(FPS)	5.28	6.39
$ au_{a}$ (MAXIMUM ALLOWABLE SHEAR STRESS)	(LB/FT2)	4.00	2.30
$ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d)	(LB/FT2)	2.49	2.22
CHANNEL BOTTOM WIDTH	(FT)	2.00	2.00
CHANNEL SIDE SLOPES	(H:V)	3.00	3.00
D (TOTAL DEPTH)	(FT)	1.50	1.50
CHANNEL TOP WIDTH @ D	(FT)	11.00	11.00
d (CALCULATED FLOW DEPTH)	(FT)	1.00	0.89
CHANNEL TOP WIDTH @ FLOW DEPTH d	(FT)	8.00	7.34
BOTTOM WIDTH: FLOW DEPTH RATIO	(12:1 MAX)	2.00	2.25
d ₅₀ STONE SIZE	(IN)	N/A	N/A
A (CROSS-SECTIONAL AREA)	(SQ. FT.)	4.99	4.15
R (HYDRAULIC RADIUS)		0.60	0.54
S (BED SLOPE) ³	(FT/FT)	0.0400	0.0400
Sc (CRITICAL SLOPE)	(FT/FT)	0.0287	0.0180
0.7S _c	(FT/FT)	0.0201	0.0126
1.3S _c	(FT/FT)	0.0373	0.0234
STABLE FLOW?	(Y/N)	Υ	Υ
FREEBOARD BASED ON UNSTABLE FLOW	(FT)	N/A	N/A
FREEBOARD BASED ON STABLE FLOW	(FT)	0.3960	0.4265
MINIMUM REQUIRED FREEBOARD ⁴	(FT)	0.50	0.50
DESIGN METHOD FOR PROTECTIVE LINING ⁵		S	S
PERMISSIBLE VELOCITY (V) OR SHEAR STRESS	(S))	Ŭ

- 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.
- 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.
- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater.
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

PROJECT NAME: 180-115 C-1 Site

LOCATION: Tunkhannock Township

CHANNEL OR CHANNEL SECTION		Swale 2	Swale 2
TEMPORARY OR PERMANENT?	(T OR P)	Р	Р
DESIGN STORM	(2, 5, OR 10 YR.)		0
ACRES	(AC)	3.03	3.03
MULTIPLIER	(1.6, 2.25, OR 2.75) ¹	2.75	2.75
Q _r (REQUIRED CAPACITY)	(CFS)	8.33	8.33
Q (CALCULATED AT FLOW DEPTH d)	(CFS)	8.33	8.33
PROTECTIVE LINING ²		Grass	NAG S75
n (MANNING'S COEFFICIENT) ²		0.050	0.031
V _a (ALLOWABLE VELOCITY)	(FPS)	N/A	N/A
V (CALCULATED AT FLOW DEPTH d)	(FPS)	3.31	4.73
$ au_{a}$ (MAXIMUM ALLOWABLE SHEAR STRESS)	(LB/FT2)	4.00	1.60
$ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d)	(LB/FT2)	1.60	0.37
CHANNEL BOTTOM WIDTH	(FT)	2.00	2.00
CHANNEL SIDE SLOPES	(H:V)	3.00	3.00
D (TOTAL DEPTH)	(FT)	1.14	1.14
CHANNEL TOP WIDTH @ D	(FT)	8.84	8.84
d (CALCULATED FLOW DEPTH)	(FT)	0.64	0.50
CHANNEL TOP WIDTH @ FLOW DEPTH d	(FT)	5.84	5.00
BOTTOM WIDTH: FLOW DEPTH RATIO	(12:1 MAX)	3.13	4.00
d ₅₀ STONE SIZE	(IN)	N/A	N/A
A (CROSS-SECTIONAL AREA)	(SQ. FT.)	2.52	1.76
R (HYDRAULIC RADIUS)		0.42	0.34
S (BED SLOPE) ³	(FT/FT)	0.0400	0.0400
Sc (CRITICAL SLOPE)	(FT/FT)	0.0499	0.0207
0.7S _c	(FT/FT)	0.0349	0.0145
1.3S _c	(FT/FT)	0.0649	0.0270
STABLE FLOW?	(Y/N)	Υ	Υ
FREEBOARD BASED ON UNSTABLE FLOW	(FT)	N/A	N/A
FREEBOARD BASED ON STABLE FLOW	(FT)	0.1589	0.1774
MINIMUM REQUIRED FREEBOARD ⁴	(FT)	0.50	0.50
DESIGN METHOD FOR PROTECTIVE LINING ⁵		S	S
PERMISSIBLE VELOCITY (V) OR SHEAR STRESS	(S)		<u> </u>

- 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.
- 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.
- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater.
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

PROJECT NAME: 180-115 C-1 Site

LOCATION: Tunkhannock Township

CHANNEL OR CHANNEL SECTION		Swale 3	Swale 3
TEMPORARY OR PERMANENT?	(T OR P)	Р	Р
DESIGN STORM	(2, 5, OR 10 YR.)		0
ACRES	(AC)	14.56	14.56
MULTIPLIER	(1.6, 2.25, OR 2.75) ¹	2.75	2.75
Q _r (REQUIRED CAPACITY)	(CFS)	40.44	40.44
Q (CALCULATED AT FLOW DEPTH d)	(CFS)	40.44	40.44
PROTECTIVE LINING ²		Grass	NAG C125
n (MANNING'S COEFFICIENT) ²		0.040	0.040
V _a (ALLOWABLE VELOCITY)	(FPS)	N/A	N/A
V (CALCULATED AT FLOW DEPTH d)	(FPS)	5.49	5.49
$ au_{a}$ (MAXIMUM ALLOWABLE SHEAR STRESS)	(LB/FT2)	4.00	2.30
$ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d)	(LB/FT2)	2.26	2.26
CHANNEL BOTTOM WIDTH	(FT)	2.00	2.00
CHANNEL SIDE SLOPES	(H:V)	3.00	3.00
D (TOTAL DEPTH)	(FT)	1.60	1.60
CHANNEL TOP WIDTH @ D	(FT)	11.60	11.60
d (CALCULATED FLOW DEPTH)	(FT)	1.10	1.10
CHANNEL TOP WIDTH @ FLOW DEPTH d	(FT)	8.60	8.60
BOTTOM WIDTH: FLOW DEPTH RATIO	(12:1 MAX)	1.82	1.82
d ₅₀ STONE SIZE	(IN)	N/A	N/A
A (CROSS-SECTIONAL AREA)	(SQ. FT.)	8.03	8.03
R (HYDRAULIC RADIUS)		0.73	0.73
S (BED SLOPE) ³	(FT/FT)	0.0330	0.0330
Sc (CRITICAL SLOPE)	(FT/FT)	0.0331	0.0331
0.7S _c	(FT/FT)	0.0232	0.0232
1.3S _c	(FT/FT)	0.0430	0.0430
STABLE FLOW?	(Y/N)	Υ	Υ
FREEBOARD BASED ON UNSTABLE FLOW	(FT)	N/A	N/A
FREEBOARD BASED ON STABLE FLOW	(FT)	0.4529	0.4529
MINIMUM REQUIRED FREEBOARD ⁴	(FT)	0.50	0.50
DESIGN METHOD FOR PROTECTIVE LINING ⁵		S	S
PERMISSIBLE VELOCITY (V) OR SHEAR STRESS	(S))	Ŭ

- 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.
- 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.
- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater.
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

PROJECT NAME: 180-115 C-1 Site

LOCATION: Tunkhannock Township

CHANNEL OR CHANNEL SECTION		Swale 3 lower	Swale 3 lower
TEMPORARY OR PERMANENT?	(T OR P)	Р	Р
DESIGN STORM	(2, 5, OR 10 YR.)		0
ACRES	(AC)	14.56	14.56
MULTIPLIER	(1.6, 2.25, OR 2.75) ¹	2.75	2.75
Q _r (REQUIRED CAPACITY)	(CFS)	40.44	40.44
Q (CALCULATED AT FLOW DEPTH d)	(CFS)	40.44	40.44
PROTECTIVE LINING ²		NAG 350	NAG 350/grass
n (MANNING'S COEFFICIENT) ²		0.033	0.028
V _a (ALLOWABLE VELOCITY)	(FPS)	N/A	N/A
V (CALCULATED AT FLOW DEPTH d)	(FPS)	8.11	8.11
$ au_{a}$ (MAXIMUM ALLOWABLE SHEAR STRESS)	(LB/FT2)	12.00	3.20
$ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d)	(LB/FT2)	3.44	3.18
CHANNEL BOTTOM WIDTH	(FT)	2.00	2.00
CHANNEL SIDE SLOPES	(H:V)	3.00	3.00
D (TOTAL DEPTH)	(FT)	1.34	1.34
CHANNEL TOP WIDTH @ D	(FT)	10.04	10.04
d (CALCULATED FLOW DEPTH)	(FT)	0.84	0.77
CHANNEL TOP WIDTH @ FLOW DEPTH d	(FT)	7.04	6.62
BOTTOM WIDTH: FLOW DEPTH RATIO	(12:1 MAX)	2.38	2.60
d ₅₀ STONE SIZE	(IN)	N/A	N/A
A (CROSS-SECTIONAL AREA)	(SQ. FT.)	5.44	4.88
R (HYDRAULIC RADIUS)		0.59	0.55
S (BED SLOPE) ³	(FT/FT)	0.0660	0.0660
Sc (CRITICAL SLOPE)	(FT/FT)	0.0248	0.0187
0.7S _c	(FT/FT)	0.0173	0.0131
1.3S _c	(FT/FT)	0.0322	0.0243
STABLE FLOW?	(Y/N)	Y	Υ
FREEBOARD BASED ON UNSTABLE FLOW	(FT)	N/A	N/A
FREEBOARD BASED ON STABLE FLOW	(FT)	0.5109	0.4684
MINIMUM REQUIRED FREEBOARD ⁴	(FT)	0.50	0.50
DESIGN METHOD FOR PROTECTIVE LINING ⁵		S	S
PERMISSIBLE VELOCITY (V) OR SHEAR STRESS	(S))	,

- 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.
- 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.
- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater.
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

PROJECT NAME: 180-115 C-1 Site

LOCATION: Tunkhannock Township

 PREPARED BY:
 SRH
 DATE:
 11/17/2022

CHECKED BY: REV. DATE

flow includes 2 culverts from the west pipe capacity						
CHANNEL OR CHANNEL SECTION		Swale 4 upper	Swale 4 upper			
TEMPORARY OR PERMANENT?	(T OR P)	Р	Р			
DESIGN STORM	(2, 5, OR 10 YR.)		0			
ACRES	(AC)	8.60	8.60			
MULTIPLIER	(1.6, 2.25, OR 2.75) ¹	2.75	2.75			
Q _r (REQUIRED CAPACITY)	(CFS)	24.90	24.90			
Q (CALCULATED AT FLOW DEPTH d)	(CFS)	24.90	24.90			
PROTECTIVE LINING ²		Grass	NAG C125BN			
n (MANNING'S COEFFICIENT) ²		0.040	0.026			
V _a (ALLOWABLE VELOCITY)	(FPS)	N/A	N/A			
V (CALCULATED AT FLOW DEPTH d)	(FPS)	5.57	7.76			
$ au_{a}$ (MAXIMUM ALLOWABLE SHEAR STRESS)	(LB/FT2)	4.00	2.80			
$ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d)	(LB/FT2)	2.79	2.24			
CHANNEL BOTTOM WIDTH	(FT)	2.00	2.00			
CHANNEL SIDE SLOPES	(H:V)	3.00	3.00			
D (TOTAL DEPTH)	(FT)	1.43	1.43			
CHANNEL TOP WIDTH @ D	(FT)	10.58	10.58			
d (CALCULATED FLOW DEPTH)	(FT)	0.93	0.75			
CHANNEL TOP WIDTH @ FLOW DEPTH d	(FT)	7.58	6.50			
BOTTOM WIDTH: FLOW DEPTH RATIO	(12:1 MAX)	2.15	2.67			
d ₅₀ STONE SIZE	(IN)	N/A	N/A			
A (CROSS-SECTIONAL AREA)	(SQ. FT.)	4.47	3.21			
R (HYDRAULIC RADIUS)		0.57	0.47			
S (BED SLOPE) ³	(FT/FT)	0.0500	0.0500			
Sc (CRITICAL SLOPE)	(FT/FT)	0.0291	0.0133			
0.7S _c	(FT/FT)	0.0203	0.0093			
1.3S _c	(FT/FT)	0.0378	0.0173			
STABLE FLOW?	(Y/N)	Y	Υ			
FREEBOARD BASED ON UNSTABLE FLOW	(FT)	N/A	N/A			
FREEBOARD BASED ON STABLE FLOW	(FT)	0.3885	0.4365			
MINIMUM REQUIRED FREEBOARD⁴	(FT)	0.50	0.50			
DESIGN METHOD FOR PROTECTIVE LINING ⁵		S	S			
PERMISSIBLE VELOCITY (V) OR SHEAR STRESS	(S)	<u> </u>				

- 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.
- 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.
- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater.
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

PROJECT NAME: 180-115 C-1 Site

LOCATION: Tunkhannock Township

 PREPARED BY:
 SRH
 DATE:
 11/17/2022

CHECKED BY: REV. DATE

flow includes 2 culverts from the west pipe capacity

	W IIICIUUES Z CUIVE		
CHANNEL OR CHANNEL SECTION		Swale 4 berm	Swale 4 berm
TEMPORARY OR PERMANENT?	(T OR P)	Р	Р
DESIGN STORM	(2, 5, OR 10 YR.)		0
ACRES	(AC)	8.60	8.60
MULTIPLIER	(1.6, 2.25, OR 2.75) ¹	2.75	2.75
Q _r (REQUIRED CAPACITY)	(CFS)	24.90	24.90
Q (CALCULATED AT FLOW DEPTH d)	(CFS)	24.90	24.90
PROTECTIVE LINING ²		Grass	NAG C125BN
n (MANNING'S COEFFICIENT) ²		0.040	0.040
V _a (ALLOWABLE VELOCITY)	(FPS)	N/A	N/A
V (CALCULATED AT FLOW DEPTH d)	(FPS)	4.18	4.18
$ au_{a}$ (MAXIMUM ALLOWABLE SHEAR STRESS)	(LB/FT2)	4.00	2.80
$\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d)	(LB/FT2)	2.24	2.26
CHANNEL BOTTOM WIDTH	(FT)	2.00	2.00
CHANNEL SIDE SLOPES	(H:V)	11.50	11.50
D (TOTAL DEPTH)	(FT)	1.22	1.22
CHANNEL TOP WIDTH @ D	(FT)	30.06	30.06
d (CALCULATED FLOW DEPTH)	(FT)	0.72	0.72
CHANNEL TOP WIDTH @ FLOW DEPTH d	(FT)	18.56	18.56
BOTTOM WIDTH: FLOW DEPTH RATIO	(12:1 MAX)	2.78	2.78
d ₅₀ STONE SIZE	(IN)	N/A	N/A
A (CROSS-SECTIONAL AREA)	(SQ. FT.)	5.95	5.92
R (HYDRAULIC RADIUS)		0.36	0.36
S (BED SLOPE) ³	(FT/FT)	0.0500	0.0500
Sc (CRITICAL SLOPE)	(FT/FT)	0.0292	0.0290
0.7S _c	(FT/FT)	0.0204	0.0203
1.3S _c	(FT/FT)	0.0379	0.0377
STABLE FLOW?	(Y/N)	Υ	Υ
FREEBOARD BASED ON UNSTABLE FLOW	(FT)	N/A	N/A
FREEBOARD BASED ON STABLE FLOW	(FT)	0.2257	0.2257
MINIMUM REQUIRED FREEBOARD ⁴	(FT)	0.50	0.50
DESIGN METHOD FOR PROTECTIVE LINING ⁵		S	S
PERMISSIBLE VELOCITY (V) OR SHEAR STRESS	(S)		,

- 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.
- 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.
- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater.
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

PROJECT NAME: 180-115 C-1 Site

LOCATION: Tunkhannock Township

 PREPARED BY:
 SRH
 DATE:
 11/17/2022

 CHECKED BY:
 REV. DATE

flow includes 2 culverts from the west pipe capacity **CHANNEL OR CHANNEL SECTION** Swale 4 lower Swale 4 lower TEMPORARY OR PERMANENT? (T OR P) Ρ Ρ DESIGN STORM (2, 5, OR 10 YR.) 0 ACRES (AC) 8.60 8.60 (1.6, 2.25, OR 2.75)¹ 2.75 2.75 MULTIPLIER Q_r (REQUIRED CAPACITY) (CFS) 40.44 40.44 Q (CALCULATED AT FLOW DEPTH d) (CFS) 40.44 40.44 PROTECTIVE LINING² NAG C125BN **Grass** n (MANNING'S COEFFICIENT)2 0.040 0.025 V_a (ALLOWABLE VELOCITY) (FPS) N/A N/A V (CALCULATED AT FLOW DEPTH d) (FPS) 6.03 8.5 au_a (MAXIMUM ALLOWABLE SHEAR STRESS) (LB/FT2) 4.00 2.80 $au_{\sf d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) (LB/FT2) 2.79 2.55 CHANNEL BOTTOM WIDTH (FT) 2.00 2.00 CHANNEL SIDE SLOPES (H:V) 3.00 3.00 D (TOTAL DEPTH) (FT) 1.76 1.76 CHANNEL TOP WIDTH @ D (FT) 12.56 12.56 d (CALCULATED FLOW DEPTH) (FT) 1.26 1.02 CHANNEL TOP WIDTH @ FLOW DEPTH d (FT) 9.56 8.12 **BOTTOM WIDTH: FLOW DEPTH RATIO** (12:1 MAX) 1.59 1.96 d₅₀ STONE SIZE N/A N/A (IN) A (CROSS-SECTIONAL AREA) (SQ. FT.) 7.29 5.12 R (HYDRAULIC RADIUS) 0.73 0.61 S (BED SLOPE)3 (FT/FT) 0.0400 0.0400 Sc (CRITICAL SLOPE) (FT/FT) 0.0270 0.0111 $0.7S_{c}$ (FT/FT) 0.0189 0.0078 1.3S_c (FT/FT) 0.0351 0.0144 Υ Υ STABLE FLOW? (Y/N)FREEBOARD BASED ON UNSTABLE FLOW (FT) N/A N/A FREEBOARD BASED ON STABLE FLOW (FT) 0.5698 0.6503

1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.

(FT)

0.50

S

0.50

S

- 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.
- 3. Slopes may not be averaged.

MINIMUM REQUIRED FREEBOARD⁴

DESIGN METHOD FOR PROTECTIVE LINING⁵

PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S)

- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater.
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

PROJECT NAME: 180-115 C-1 Site

LOCATION: Tunkhannock Township

CHANNEL OR CHANNEL SECTION		Swale 5	Swale 5
TEMPORARY OR PERMANENT?	(T OR P)	Р	Р
DESIGN STORM	(2, 5, OR 10 YR.)		0
ACRES	(AC)	12.45	12.45
MULTIPLIER	(1.6, 2.25, OR 2.75) ¹	2.75	2.75
Q _r (REQUIRED CAPACITY)	(CFS)	34.20	34.20
Q (CALCULATED AT FLOW DEPTH d)	(CFS)	34.20	34.20
PROTECTIVE LINING ²		Grass	NAG S75
n (MANNING'S COEFFICIENT) ²		0.040	0.033
V _a (ALLOWABLE VELOCITY)	(FPS)	N/A	N/A
V (CALCULATED AT FLOW DEPTH d)	(FPS)	3.37	3.91
$ au_{a}$ (MAXIMUM ALLOWABLE SHEAR STRESS)	(LB/FT2)	4.00	1.60
$ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d)	(LB/FT2)	0.96	0.88
CHANNEL BOTTOM WIDTH	(FT)	2.00	2.00
CHANNEL SIDE SLOPES	(H:V)	3.00	3.00
D (TOTAL DEPTH)	(FT)	2.03	2.03
CHANNEL TOP WIDTH @ D	(FT)	14.18	14.18
d (CALCULATED FLOW DEPTH)	(FT)	1.53	1.41
CHANNEL TOP WIDTH @ FLOW DEPTH d	(FT)	11.18	10.46
BOTTOM WIDTH: FLOW DEPTH RATIO	(12:1 MAX)	1.31	1.42
d ₅₀ STONE SIZE	(IN)	N/A	N/A
A (CROSS-SECTIONAL AREA)	(SQ. FT.)	10.13	8.79
R (HYDRAULIC RADIUS)		0.87	0.80
S (BED SLOPE) ³	(FT/FT)	0.0100	0.0100
Sc (CRITICAL SLOPE)	(FT/FT)	0.0254	0.0179
0.7S _c	(FT/FT)	0.0178	0.0126
1.3S _c	(FT/FT)	0.0330	0.0233
STABLE FLOW?	(Y/N)	Υ	Υ
FREEBOARD BASED ON UNSTABLE FLOW	(FT)	N/A	N/A
FREEBOARD BASED ON STABLE FLOW	(FT)	0.3867	0.4135
MINIMUM REQUIRED FREEBOARD ⁴	(FT)	0.50	0.50
DESIGN METHOD FOR PROTECTIVE LINING ⁵		S	S
PERMISSIBLE VELOCITY (V) OR SHEAR STRESS	(S))	Ŭ

- 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.
- 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.
- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater.
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

PROJECT NAME: 180-115 C-1 Site

LOCATION: Tunkhannock Township

 PREPARED BY:
 SRH
 DATE:
 11/17/2022

CHECKED BY: REV. DATE

flow equals the principle spillway capacity of sediment basin

_	w equals the princ		
CHANNEL OR CHANNEL SECTION 5A		Swale A	Swale A
TEMPORARY OR PERMANENT?	(T OR P)	Р	Р
DESIGN STORM	(2, 5, OR 10 YR.)	10	10
ACRES	(AC)	44.40	na
MULTIPLIER	(1.6, 2.25, OR 2.75) ¹	2.75	2.75
Q _r (REQUIRED CAPACITY)	(CFS)	34.20	34.20
Q (CALCULATED AT FLOW DEPTH d)	(CFS)	34.20	34.20
PROTECTIVE LINING ²		Grass	NAG S75
n (MANNING'S COEFFICIENT) ²		0.040	0.034
V _a (ALLOWABLE VELOCITY)	(FPS)	N/A	N/A
V (CALCULATED AT FLOW DEPTH d)	(FPS)	3.01	3.42
τ_{a} (MAXIMUM ALLOWABLE SHEAR STRESS)	(LB/FT2)	4.00	1.60
$ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d)	(LB/FT2)	0.78	0.72
CHANNEL BOTTOM WIDTH	(FT)	2.00	2.00
CHANNEL SIDE SLOPES	(H:V)	3.00	3.00
D (TOTAL DEPTH)	(FT)	1.75	1.75
CHANNEL TOP WIDTH @ D	(FT)	12.50	12.50
d (CALCULATED FLOW DEPTH)	(FT)	1.25	1.16
CHANNEL TOP WIDTH @ FLOW DEPTH d	(FT)	9.50	8.96
BOTTOM WIDTH: FLOW DEPTH RATIO	(12:1 MAX)	1.60	1.72
d ₅₀ STONE SIZE	(IN)	N/A	N/A
A (CROSS-SECTIONAL AREA)	(SQ. FT.)	7.23	6.35
R (HYDRAULIC RADIUS)		0.73	0.68
S (BED SLOPE) ³	(FT/FT)	0.0100	0.0100
Sc (CRITICAL SLOPE)	(FT/FT)	0.0270	0.0199
0.7S _c	(FT/FT)	0.0189	0.0140
1.3S _c	(FT/FT)	0.0351	0.0259
STABLE FLOW?	(Y/N)	Υ	Υ
FREEBOARD BASED ON UNSTABLE FLOW	(FT)	N/A	N/A
FREEBOARD BASED ON STABLE FLOW	(FT)	0.2822	0.2975
MINIMUM REQUIRED FREEBOARD⁴	(FT)	0.50	0.50
DESIGN METHOD FOR PROTECTIVE LINING ⁵		S	S
PERMISSIBLE VELOCITY (V) OR SHEAR STRESS	(S)		

- 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.
- 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.
- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater.
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

>>> Swale 1-grass

Name Swale 1-grass

Discharge 26.5
Channel Slope 0.04
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in

Vegetation Type Mix (Sod and Bunch)

Vegetation Density Good 65-79% Soil Type Silt Loam (SM)

Unreinforced Vegetation

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Unreinforced Vegetation	Straight	26.5 cfs	5.28 ft/s	1 ft	0.04	4 lbs/ft2	2.49 lbs/ft2	1.61	STABLE	
Underlying Substrate	Straight	26.5 cfs	5.28 ft/s	1 ft	0.04	1.75 lbs/ft2	1.5 lbs/ft2	1.17	STABLE	

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	26.5 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.04 ft/ft
Bottom Width (B):	2 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	Mix (Sod and Bunch)
Vegetation Density:	Good 65-79%
Soil Type:	Silt Loam (SM)
Channel Lining Options	

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z_R = Right side bank slope (H : 1 V)
$P = Wetted perimeter, ft (m) = B + Z_L*D + Z_R*D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tauo = Maximum bed shear stress, psf (Pa) = 62.4 * D * So

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SF _P = Product factor of safety = Tau _T / Tau ₀
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_P = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tau _{TV} / Tau ₀
Where:
Tau₁v = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Taus / (1 - C_{FTRM}) * (n / ns)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of so
ns = Manning's of soil bed if left unprotected
SFL = Factor of safety of installed liner = Tau _P / Tau _a

Unreinforced Vegetation

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
Unreinforced Vegetation	0.04	1 ft	4.99 ft2	8.31 ft	0.6 ft	5.28 ft/s	1.2	2.49 lbs/ft2	1.61 (SFL)
Underlying Substrate	0.04	1 ft	4.99 ft2	8.31 ft	0.6 ft	5.28 ft/s	1.2	1.5 lbs/ft2	1.17 (SFL)

>>> Swale 1-matting

Name Swale 1-matting

Discharge 26.5
Channel Slope 0.04
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in Vegetation Type None Vegetation Density None

Soil Type Silt Loam (SM)

C125

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
C125 Unvegetated	Straight	26.5 cfs	6.39 ft/s	0.89 ft	0.031	2.3 lbs/ft2	2.22 lbs/ft2	1.04	STABLE	D
Underlying Substrate	Straight	26.5 cfs	6.39 ft/s	0.89 ft	0.031	1.68 lbs/ft2	1.36 lbs/ft2	1.24	STABLE	D

>>> <u>View Computation</u>

Inputs						
Channel Discharge (Q):	26.5 cfs					
Peak Flow Period (H):	hours					
Channel Slope (S0):	0.04 ft/ft					
Bottom Width (B):	2 ft					
Left Side Slope (ZL):	3 (H : V)					
Right Side Slope (ZR):	3 (H : V)					
Existing Channel Bend:	No					
Bend Coefficient (Kb):	1					
Channel Bend Radius:						
Retardance Class of Vegetation:	C 6-12 in					
Vegetation Type:	None					
Vegetation Density:	None					
Soil Type:	Silt Loam (SM)					
Channel Lining Options						
C125 Protection Type	Temporary					

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z_R = Right side bank slope (H : 1 V)
$P = Wetted perimeter, ft (m) = B + Z_L * D + Z_R * D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = $62.4 * D * S_0$

n = Manning's n = a * Tauab
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tau _™ / Tau ₀
Where:
Tautv = Permissible shear stress from testing, psf (Pa)
Tau _p = In place permissible shear, psf (Pa) = Taus/ (1 – C _{FTRM}) * (n / ns)2
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soi
ns = Manning's of soil bed if left unprotected
SFL= Factor of safety of installed liner = Taup/ Tau₃

C125

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
C125 Unvegetated	0.031	0.89 ft	4.15 ft2	7.62 ft	0.54 ft	6.39 ft/s	1.53	2.22 lbs/ft2	1.04 (SFP)
Underlying Substrate	0.031	0.89 ft	4.15 ft2	7 . 62 ft	0.54 ft	6.39 ft/s	1.53	1.36 lbs/ft2	1.24 (SFL)

> > Swale 2-Grass

Name Swale 2-Grass

Discharge 8.33
Channel Slope 0.04
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in

Vegetation TypeMix (Sod and Bunch)Vegetation DensityVery Good 80-95%Soil TypeSilt Loam (SM)

Unreinforced Vegetation

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Unreinforced Vegetation	Straight	8.33 cfs	3.31 ft/s	0.64 ft	0.05	4 lbs/ft2	1.6 lbs/ft2	2.5	STABLE	
Underlying Substrate	Straight	8.33 cfs	3.31 ft/s	0.64 ft	0.05	3.26 lbs/ft2	1.04 lbs/ft2	3.14	STABLE	

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	8.33 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.04 ft/ft
Bottom Width (B):	2 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	Mix (Sod and Bunch)
Vegetation Density:	Very Good 80-95%
Soil Type:	Silt Loam (SM)
Channel Lining Options	

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z_R = Right side bank slope (H : 1 V)
$P = Wetted perimeter, ft (m) = B + Z_L*D + Z_R*D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tauo = Maximum bed shear stress, psf (Pa) = 62.4 * D * So

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

$SF_P = Product factor of safety = Tau_T / Tau_0$
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_s + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tauτv/ Tau ₀
Where:
Tau₁v = Permissible shear stress from testing, psf (Pa)
Tau _P = In place permissible shear, psf (Pa) = Taus/ $(1 - C_{FTRM}) * (n / ns)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soil
ns = Manning's of soil bed if left unprotected
SFL= Factor of safety of installed liner = Taup / Taua

Unreinforced Vegetation

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
Unreinforced Vegetation	0.05	0.64 ft	2.51 ft2	6.05 ft	0.42 ft	3.31 ft/s	0.9	1.6 lbs/ft2	2.5 (SFL)
Underlying Substrate	0.05	0.64 ft	2.51 ft2	6.05 ft	0.42 ft	3.31 ft/s	0.9	1.04 lbs/ft2	3.14 (SFL)

>>> Swale 2-matting

Name Swale 2-matting

Discharge 8.33
Channel Slope 0.04
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in Vegetation Type None Vegetation Density None

Soil Type Silt Loam (SM)

S75

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
S75 Unvegetated	Straight	8.33 cfs	4.73 ft/s	0.5 ft	0.031	1.6 lbs/ft2	1.25 lbs/ft2	1.27	STABLE	D
Underlying Substrate	Straight	8.33 cfs	4.73 ft/s	0.5 ft	0.031	1.17 lbs/ft2	0.85 lbs/ft2	1.38	STABLE	D

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	8.33 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.04 ft/ft
Bottom Width (B):	2 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	None
Vegetation Density:	None
Soil Type:	Silt Loam (SM)
Channel Lining Options	
S75 Protection Type	Temporary

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z _R = Right side bank slope (H : 1 V)
$P = \text{Wetted perimeter, ft (m)} = B + Z_{L} * D + Z_{R} * D$
R = Hydraulic radius, ft (m) = A / P
$V = Flow \ velocity, \ ft/s \ (m/s) = Q / A$
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = $62.4 * D * S_0$

n = Manning's n = a * Tauab
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
<u>and (iteratively solved)</u>
n = 1.486 / Q * A * R(2/3)S ₀ ^{0.5}
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tau _{TV} / Tau ₀
Where:
Tau₁v = Permissible shear stress from testing, psf (Pa)
$Tau_P = In place permissible shear, psf (Pa) = Taus / (1 - C_{FTRM}) * (n / ns)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soil
ns = Manning's of soil bed if left unprotected
SFL= Factor of safety of installed liner = Taup / Taua

S75

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
S75 Unvegetated	0.031	0.5 ft	1.76 ft2	5.18 ft	0.34 ft	4.73 ft/s	1.43	1.25 lbs/ft2	1.27 (SFP)
Underlying Substrate	0.031	0.5 ft	1.76 ft2	5.18 ft	0.34 ft	4.73 ft/s	1.43	0.85 lbs/ft2	1.38 (SFL)

>>> swale 3-grass

Name swale 3-grass

Discharge 44.04
Channel Slope 0.033
Channel Bottom Width 4
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in

Vegetation TypeMix (Sod and Bunch)Vegetation DensityVery Good 80-95%Soil TypeSilt Loam (SM)

Unreinforced Vegetation

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Unreinforced Vegetation	Straight	44.04 cfs	5.49 ft/s	1.1 ft	0.04	4 lbs/ft2	2.26 lbs/ft2	1.77	STABLE	
Underlying Substrate	Straight	44.04 cfs	5.49 ft/s	1.1 ft	0.04	2.08 lbs/ft2	1.51 lbs/ft2	1.38	STABLE	

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	44.04 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.033 ft/ft
Bottom Width (B):	4 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	Mix (Sod and Bunch)
Vegetation Density:	Very Good 80-95%
Soil Type:	Silt Loam (SM)
Channel Lining Options	

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SF _P = Product factor of safety = Tau⊤/ Tau₀
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_s + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
<u>and (iteratively solved)</u>
n = 1.486 / Q * A * R(2/3)S ₀ ^{0.5}
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tau _{TV} / Tau ₀
Where:
Tau π = Permissible shear stress from testing, psf (Pa)
$Tau_P = In place permissible shear, psf (Pa) = Taus / (1 - C_{FTRM}) * (n / ns)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soil
ns = Manning's of soil bed if left unprotected
SFL= Factor of safety of installed liner = Tau _P / Tau _a

Unreinforced Vegetation

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
Unreinforced Vegetation	0.04	1.1 ft	8.03 ft2	10.96 ft	0.73 ft	5.49 ft/s	1.13	2.26 lbs/ft2	1.77 (SFL)
Underlying Substrate	0.04	1.1 ft	8.03 ft2	10.96 ft	0.73 ft	5.49 ft/s	1.13	1.51 lbs/ft2	1.38 (SFL)

>>> swale 3-matting

Name swale 3-matting

Discharge 44.04
Channel Slope 0.033
Channel Bottom Width 4
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in Vegetation Type None Vegetation Density None

Soil Type Silt Loam (SM)

C125

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
C125 Unvegetated	Straight	44.04 cfs	5.49 ft/s	1.1 ft	0.04	2.3 lbs/ft2	2.26 lbs/ft2	1.02	STABLE	D
Underlying Substrate	Straight	44.04 cfs	5.49 ft/s	1.1 ft	0.04	1.68 lbs/ft2	1.51 lbs/ft2	1.12	STABLE	D

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	44.04 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.033 ft/ft
Bottom Width (B):	4 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	None
Vegetation Density:	None
Soil Type:	Silt Loam (SM)
Channel Lining Options	
C125 Protection Type	Temporary

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
$Z_R = Right side bank slope (H : 1 V)$
$P = Wetted perimeter, ft (m) = B + Z_L*D + Z_R*D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = $62.4 * D * S_0$
Tauo = Maximum bed shear stress, psf (Pa) = 62.4 * D * So

n = Manning's n = a * Tauab
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tau _™ / Tau ₀
Where:
Tautv = Permissible shear stress from testing, psf (Pa)
Tau _p = In place permissible shear, psf (Pa) = Taus/ (1 – C _{FTRM}) * (n / ns)2
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soi
ns = Manning's of soil bed if left unprotected
SFL= Factor of safety of installed liner = Taup/ Tau₃

C125

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
C125 Unvegetated	0.04	1.1 ft	8.03 ft2	10.96 ft	0.73 ft	5.49 ft/s	1.13	2.26 lbs/ft2	1.02 (SFP)
Underlying Substrate	0.04	1.1 ft	8.03 ft2	10.96 ft	0.73 ft	5.49 ft/s	1.13	1.51 lbs/ft2	1.12 (SFL)

> > <u>Swale 3-lower</u>

Name Swale 3-lower

Discharge 44.04
Channel Slope 0.066
Channel Bottom Width 4
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in

Vegetation Type Mix (Sod and Bunch)
Vegetation Density Very Good 80-95%
Soil Type Silt Loam (SM)

C350

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
C350 Unvegetated	Straight	44.04 cfs	9.02 ft/s	0.77 ft	0.028	3.2 lbs/ft2	3.18 lbs/ft2	1.01	STABLE	Е
Underlying Substrate	Straight	44.04 cfs	9.02 ft/s	0.77 ft	0.028	2.34 lbs/ft2	2.26 lbs/ft2	1.04	STABLE	E
C350 Reinforced Vegetation	Straight	44.04 cfs	8.11 ft/s	0.84 ft	0.033	12 lbs/ft2	3.44 lbs/ft2	3.49	STABLE	E
Underlying Substrate	Straight	44.04 cfs	8.11 ft/s	0.84 ft	0.033	3.2 lbs/ft2	2.41 lbs/ft2	1.33	STABLE	E

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	44.04 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.066 ft/ft
Bottom Width (B):	4 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	Mix (Sod and Bunch)
Vegetation Density:	Very Good 80-95%
Soil Type:	Silt Loam (SM)
Channel Lining Options	
C350 Protection Type	Permanent

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + (ZL/ 2 * D2) + (ZR/ 2 * D2)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Zı = Left side bank slope (H : 1 V)
$Z_R = Right side bank slope (H : 1 V)$
$P = Wetted perimeter, ft (m) = B + Z_L*D + Z_R*D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = $62.4 * D * S_0$

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SF _P = Product factor of safety = Tau _T / Tau ₀
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SFP = Product factor of safety = Tautv/ Tauo
Where:
Tauπ = Permissible shear stress from testing, psf (Pa)
Tau _p = In place permissible shear, psf (Pa) = Tau _s / $(1 - C_{FTRM}) * (n / n_s)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soil
ns = Manning's of soil bed if left unprotected
SFL= Factor of safety of installed liner = Taup/ Tau₃

C350

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
C350 Unvegetated	0.028	0.77 ft	4.88 ft2	8.89 ft	0.55 ft	9.02 ft/s	2.14	3.18 lbs/ft2	1.01 (SFP)
Underlying Substrate	0.028	0.77 ft	4.88 ft2	8.89 ft	0.55 ft	9.02 ft/s	2.14	2.26 lbs/ft2	1.04 (SFL)
C350 Reinforced Vegetation	0.033	0.84 ft	5.44 ft2	9.28 ft	0.59 ft	8.11 ft/s	1.86	3.44 lbs/ft2	3.49 (SFP)
Underlying Substrate	0.033	0.84 ft	5.44 ft2	9.28 ft	0.59 ft	8.11 ft/s	1.86	2.41 lbs/ft2	1.33 (SFL)

>>> Swale 4 upper grass

Name Swale 4 upper grass

Discharge 24.9
Channel Slope 0.048
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in

Vegetation TypeMix (Sod and Bunch)Vegetation DensityVery Good 80-95%Soil TypeSilt Loam (SM)

Unreinforced Vegetation

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Unreinforced Vegetation	Straight	24.9 cfs	5.57 ft/s	0.93 ft	0.04	4 lbs/ft2	2.79 lbs/ft2	1.43	STABLE	
Underlying Substrate	Straight	24.9 cfs	5.57 ft/s	0.93 ft	0.04	2.08 lbs/ft2	1.7 lbs/ft2	1.23	STABLE	

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	24.9 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.048 ft/ft
Bottom Width (B):	2 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	Mix (Sod and Bunch)
Vegetation Density:	Very Good 80-95%
Soil Type:	Silt Loam (SM)
Channel Lining Options	

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z_R = Right side bank slope (H : 1 V)
P = Wetted perimeter, ft (m) = B + $Z_L * D + Z_R * D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = $62.4 * R * S0$
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = $62.4 * D * S_0$

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SF _P = Product factor of safety = Tau _T / Tau ₀
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_P = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SFP = Product factor of safety = Tautv/ Tau ₀
Where:
Tau₁√ = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Taus/(1 - C_{FTRM}) * (n / ns)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soi
ns = Manning's of soil bed if left unprotected
SF_L = Factor of safety of installed liner = Tau_p / Tau_a

Unreinforced Vegetation

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
Unreinforced Vegetation	0.04	0.93 ft	4.47 ft2	7.89 ft	0.57 ft	5.57 ft/s	1.3	2.79 lbs/ft2	1.43 (SFL)
Underlying Substrate	0.04	0.93 ft	4.47 ft2	7 . 89 ft	0.57 ft	5.57 ft/s	1.3	1.7 lbs/ft2	1.23 (SFL)

> > Swale 4-grass-section-upper

Name Swale 4-grass-section-

pper

Discharge 24.9
Channel Slope 0.048
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in Vegetation Type None Vegetation Density None

Soil Type Silt Loam (SM)

C125BN

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
C125BN Unvegetated	Straight	24.9 cfs	7.76 ft/s	0.75 ft	0.026	2.8 lbs/ft2	2.26 lbs/ft2	1.24	STABLE	D
Underlying Substrate	Straight	24.9 cfs	7.76 ft/s	0.75 ft	0.026	2.05 lbs/ft2	1.42 lbs/ft2	1.44	STABLE	D

>>> <u>View Computation</u>

Inputs							
Channel Discharge (Q):	24.9 cfs						
Peak Flow Period (H):	hours						
Channel Slope (S0):	0.048 ft/ft						
Bottom Width (B):	2 ft						
Left Side Slope (ZL):	3 (H : V)						
Right Side Slope (ZR):	3 (H : V)						
Existing Channel Bend:	No						
Bend Coefficient (Kb):	1						
Channel Bend Radius:							
Retardance Class of Vegetation:	C 6-12 in						
Vegetation Type:	None						
Vegetation Density:	None						
Soil Type:	Silt Loam (SM)						
Channel Lining Options							
C125BN Protection Type	Temporary						

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z_R = Right side bank slope (H : 1 V)
P = Wetted perimeter, ft (m) = B + $Z_L * D + Z_R * D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = $62.4 * D * S_0$

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SF _P = Product factor of safety = Tau _T / Tau ₀
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_P = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tau _{TV} / Tau ₀
Where:
Tau₁v = Permissible shear stress from testing, psf (Pa)
$Tau_P = In place permissible shear, psf (Pa) = Taus / (1 - C_{FTRM}) * (n / ns)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soil
ns = Manning's of soil bed if left unprotected
SF₁ = Factor of safety of installed liner = Taup/ Taua

C125BN

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
C125BN Unvegetated	0.026	0.75 ft	3.21 ft2	6.76 ft	0.47 ft	7.76 ft/s	2	2.26 lbs/ft2	1.24 (SFP)
Underlying Substrate	0.026	0.75 ft	3.21 ft2	6.76 ft	0.47 ft	7.76 ft/s	2	1.42 lbs/ft2	1.44 (SFL)

North American Green
5401 St. Wendel-Cynthiana Rd.
Poseyville, Indiana 47633
Tel. 800.772.2040
>Fax 812.867.0247
www.nagreen.com
ECMDS v7.0

CHANNEL ANALYSIS

> > Swale 4-berm-section-grass

Name Swale 4-berm-section-grass

Discharge 24.9
Channel Slope 0.05
Channel Bottom Width 0
Left Side Slope 20
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in

Vegetation TypeMix (Sod and Bunch)Vegetation DensityVery Good 80-95%Soil TypeSilt Loam (SM)

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Unreinforced Vegetation	Straight	24.9 cfs	4.18 ft/s	0.72 ft	0.04	4 lbs/ft2	2.24 lbs/ft2	1.78	STABLE	
Underlying Substrate	Straight	24.9 cfs	4.18 ft/s	0.72 ft	0.04	2.08 lbs/ft2	1.11 lbs/ft2	1.87	STABLE	

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	24.9 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.05 ft/ft
Bottom Width (B):	0 ft
Left Side Slope (ZL):	20 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	Mix (Sod and Bunch)
Vegetation Density:	Very Good 80-95%
Soil Type:	Silt Loam (SM)
Channel Lining Options	

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SFP = Product factor of safety = Taur/ Tauo
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SFP = Product factor of safety = Tau₁v/ Tau₀
Where:
Tau_{TV} = Permissible shear stress from testing, psf (Pa)
Tau _p = In place permissible shear, psf (Pa) = Taus/ $(1 - C_{FTRM}) * (n / n_s)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soil
ns = Manning's of soil bed if left unprotected
SF _L = Factor of safety of installed liner = Tau _P / Tau _a

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
Unreinforced Vegetation	0.04	0.72 ft	5.95 ft2	16.68 ft	0.36 ft	4.18 ft/s	1.23	2.24 lbs/ft2	1.78 (SFL)
Underlying Substrate	0.04	0.72 ft	5.95 ft2	16.68 ft	0.36 ft	4.18 ft/s	1.23	1.11 lbs/ft2	1.87 (SFL)

North American Green
5401 St. Wendel-Cynthiana Rd.
Poseyville, Indiana 47633
Tel. 800.772.2040
>Fax 812.867.0247
www.nagreen.com
ECMDS v7.0

CHANNEL ANALYSIS

> > Swale 4-berm-section-grass

Name Swale 4-berm-section-grass

Discharge 24.9
Channel Slope 0.05
Channel Bottom Width 0
Left Side Slope 20
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in Vegetation Type None Vegetation Density None

Soil Type Silt Loam (SM)

C125BN

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
C125BN Unvegetated	Straight	24.9 cfs	4.18 ft/s	0.72 ft	0.04	2.8 lbs/ft2	2.24 lbs/ft2	1.25	STABLE	D
Underlying Substrate	Straight	24.9 cfs	4.18 ft/s	0.72 ft	0.04	2.05 lbs/ft2	1.11 lbs/ft2	1.84	STABLE	D

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	24.9 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.05 ft/ft
Bottom Width (B):	0 ft
Left Side Slope (ZL):	20 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	None
Vegetation Density:	None
Soil Type:	Silt Loam (SM)
Channel Lining Options	
C125BN Protection Type	Temporary

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z_R = Right side bank slope (H : 1 V)
$P = Wetted perimeter, ft (m) = B + Z_L*D + Z_R*D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = $62.4 * D * S_0$

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SF _P = Product factor of safety = Tau _T / Tau ₀
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tau _{TV} / Tau ₀
Where:
Tauτv = Permissible shear stress from testing, psf (Pa)
Tau _p = In place permissible shear, psf (Pa) = Tau _s / $(1 - C_{FTRM}) * (n / n_s)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soil
ns = Manning's of soil bed if left unprotected
SF _L = Factor of safety of installed liner = Tau _p / Tau _a

C125BN

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
C125BN Unvegetated	0.04	0.72 ft	5.95 ft2	16.68 ft	0.36 ft	4.18 ft/s	1.23	2.24 lbs/ft2	1.25 (SFP)
Underlying Substrate	0.04	0.72 ft	5.95 ft2	16.68 ft	0.36 ft	4.18 ft/s	1.23	1.11 lbs/ft2	1.84 (SFL)

>>> Swale 4 lower grass

Name Swale 4 lower grass

Discharge 44.04
Channel Slope 0.04
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in

Vegetation TypeMix (Sod and Bunch)Vegetation DensityVery Good 80-95%Soil TypeSilt Loam (SM)

Unreinforced Vegetation

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Unreinforced Vegetation	Straight	44.04 cfs	6.03 ft/s	1.26 ft	0.04	4 lbs/ft2	3.15 lbs/ft2	1.27	STABLE	
Underlying Substrate	Straight	44.04 cfs	6.03 ft/s	1.26 ft	0.04	2.08 lbs/ft2	1.83 lbs/ft2	1.14	STABLE	

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	44.04 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.04 ft/ft
Bottom Width (B):	2 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation	: C 6-12 in
Vegetation Type:	Mix (Sod and Bunch)
Vegetation Density:	Very Good 80-95%
Soil Type:	Silt Loam (SM)
Channel Lining Options	

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
A = Cross sectional area, RZ (IIIZ) = (B - D) + (ZL) - Z + DZ) + (ZR) - Z + DZ)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z _R = Right side bank slope (H : 1 V)
$P = Wetted perimeter, ft (m) = B + Z_L * D + Z_R * D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = $62.4 * R * S0$
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = $62.4 * D * S_0$

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SFP = Product factor of safety = Taur/ Tauo
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SFP = Product factor of safety = Tau₁v/ Tau₀
Where:
Tau_{TV} = Permissible shear stress from testing, psf (Pa)
Tau _p = In place permissible shear, psf (Pa) = Taus/ $(1 - C_{FTRM}) * (n / n_s)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soil
ns = Manning's of soil bed if left unprotected
SF _L = Factor of safety of installed liner = Tau _P / Tau _a

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
Unreinforced Vegetation	0.04	1.26 ft	7.29 ft2	9.98 ft	0.73 ft	6.03 ft/s	1.24	3.15 lbs/ft2	1.27 (SFL)
Underlying Substrate	0.04	1.26 ft	7.29 ft2	9.98 ft	0.73 ft	6.03 ft/s	1.24	1.83 lbs/ft2	1.14 (SFL)

> > Swale 4 lower

Name Swale 4 lower

Discharge 44.04
Channel Slope 0.04
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in Vegetation Type None Vegetation Density None

Soil Type Silt Loam (SM)

C125BN

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
C125BN Unvegetated	Straight	44.04 cfs	8.5 ft/s	1.02 ft	0.025	2.8 lbs/ft2	2.55 lbs/ft2	1.1	STABLE	D
Underlying Substrate	Straight	44.04 cfs	8.5 ft/s	1.02 ft	0.025	2.05 lbs/ft2	1.53 lbs/ft2	1.34	STABLE	D

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	44.04 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.04 ft/ft
Bottom Width (B):	2 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	None
Vegetation Density:	None
Soil Type:	Silt Loam (SM)
Channel Lining Options	
C125BN Protection Type	Temporary

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z _R = Right side bank slope (H : 1 V)
$P = Wetted perimeter, ft (m) = B + Z_L*D + Z_R*D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = $62.4 * D * S_0$

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SF _P = Product factor of safety = Tau _T / Tau ₀
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tau _{TV} / Tau ₀
Where:
Tau τ v = Permissible shear stress from testing, psf (Pa)
Tau _p = In place permissible shear, psf (Pa) = Taus/ $(1 - C_{FTRM}) * (n / ns)2$
Tady = In place permissible shear, psi (ra) = raus, (1 Crinw) (11, 115)2
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soi
ns = Manning's of soil bed if left unprotected
SFL = Factor of safety of installed liner = Tau _P / Tau _a

C125BN

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
C125BN Unvegetated	0.025	1.02 ft	5.19 ft2	8.47 ft	0.61 ft	8.5 ft/s	1.92	2.55 lbs/ft2	1.1 (SFP)
Underlying Substrate	0.025	1.02 ft	5.19 ft2	8.47 ft	0.61 ft	8.5 ft/s	1.92	1.53 lbs/ft2	1.34 (SFL)

5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633
Tel. 800.772.2040
>Fax 812.867.0247
www.nagreen.com
ECMDS v7.0

North American Green

CHANNEL ANALYSIS

> > > <u>Swale 5</u>

NameSwale 5Discharge34.2Channel Slope0.01Channel Bottom Width2Left Side Slope3Right Side Slope3

Low Flow Liner

Retardence Class C 6-12 in

Vegetation TypeMix (Sod and Bunch)Vegetation DensityVery Good 80-95%Soil TypeSilt Loam (SM)

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Unreinforced Vegetation	Straight	34.2 cfs	3.37 ft/s	1.53 ft	0.04	4 lbs/ft2	0.96 lbs/ft2	4.18	STABLE	
Underlying Substrate	Straight	34.2 cfs	3.37 ft/s	1.53 ft	0.04	2.08 lbs/ft2	0.54 lbs/ft2	3.86	STABLE	

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	34.2 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.01 ft/ft
Bottom Width (B):	2 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	Mix (Sod and Bunch)
Vegetation Density:	Very Good 80-95%
Soil Type:	Silt Loam (SM)
Channel Lining Options	

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z _R = Right side bank slope (H : 1 V)
$P = Wetted perimeter, ft (m) = B + Z_L*D + Z_R*D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = 62.4 * D * S ₀

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SF _P = Product factor of safety = Tau _T / Tau ₀
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_P = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tau _{TV} / Tau ₀
Where:
Tau₁v = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Taus / (1 - C_{FTRM}) * (n / ns)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of so
ns = Manning's of soil bed if left unprotected
SFL = Factor of safety of installed liner = Tau _P / Tau _a

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
Unreinforced Vegetation	0.04	1.53 ft	10.13 ft2	11.71 ft	0.87 ft	3.37 ft/s	0.64	0.96 lbs/ft2	4.18 (SFL)
Underlying Substrate	0.04	1.53 ft	10.13 ft2	11.71 ft	0.87 ft	3.37 ft/s	0.64	0.54 lbs/ft2	3.86 (SFL)

>>> Swale 5 matting

Name Swale 5 matting

Discharge 34.2
Channel Slope 0.01
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in Vegetation Type None Vegetation Density None

Soil Type Silt Loam (SM)

S75

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
S75 Unvegetated	Straight	34.2 cfs	3.91 ft/s	1.41 ft	0.033	1.6 lbs/ft2	0.88 lbs/ft2	1.82	STABLE	D
Underlying Substrate	Straight	34.2 cfs	3.91 ft/s	1.41 ft	0.033	1.17 lbs/ft2	0.5 lbs/ft2	2.34	STABLE	D

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	34.2 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.01 ft/ft
Bottom Width (B):	2 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	None
Vegetation Density:	None
Soil Type:	Silt Loam (SM)
Channel Lining Options	
S75 Protection Type	Temporary

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z _R = Right side bank slope (H : 1 V)
$P = Wetted perimeter, ft (m) = B + Z_L*D + Z_R*D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = 62.4 * D * S ₀

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SF _P = Product factor of safety = Tau _T / Tau ₀
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_P = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tauτv/ Tau ₀
Where:
Tauτv = Permissible shear stress from testing, psf (Pa)
Tau _p = In place permissible shear, psf (Pa) = Taus/ $(1 - C_{FTRM}) * (n / ns)2$
rady = 111 place permissible shear, psi (ra) = rads, (1 - CPINM) (11 / 115)2
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soil
ns = Manning's of soil bed if left unprotected
SFL= Factor of safety of installed liner = Tau _P / Tau _a

S75

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
S75 Unvegetated	0.033	1.41 ft	8.76 ft2	10.9 ft	0.8 ft	3.91 ft/s	0.77	0.88 lbs/ft2	1.82 (SFP)
Underlying Substrate	0.033	1.41 ft	8.76 ft2	10.9 ft	0.8 ft	3.91 ft/s	0.77	0.5 lbs/ft2	2.34 (SFL)

>>> Swale A-grass

Name Swale A-grass

Discharge 21.73
Channel Slope 0.01
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in

Vegetation TypeMix (Sod and Bunch)Vegetation DensityVery Good 80-95%Soil TypeSilt Loam (SM)

Unreinforced Vegetation

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Unreinforced Vegetation	Straight	21.73 cfs	3.01 ft/s	1.25 ft	0.04	4 lbs/ft2	0.78 lbs/ft2	5.11	STABLE	
Underlying Substrate	Straight	21.73 cfs	3.01 ft/s	1.25 ft	0.04	2.08 lbs/ft2	0.45 lbs/ft2	4.59	STABLE	

>>> <u>View Computation</u>

Inputs	
Channel Discharge (Q):	21.73 cfs
Peak Flow Period (H):	hours
Channel Slope (S0):	0.01 ft/ft
Bottom Width (B):	2 ft
Left Side Slope (ZL):	3 (H : V)
Right Side Slope (ZR):	3 (H : V)
Existing Channel Bend:	No
Bend Coefficient (Kb):	1
Channel Bend Radius:	
Retardance Class of Vegetation:	C 6-12 in
Vegetation Type:	Mix (Sod and Bunch)
Vegetation Density:	Very Good 80-95%
Soil Type:	Silt Loam (SM)
Channel Lining Options	

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z _R = Right side bank slope (H : 1 V)
$P = Wetted perimeter, ft (m) = B + Z_L*D + Z_R*D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = 62.4 * D * S ₀

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
and (iteratively solved)
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SFP = Product factor of safety = Taur/ Tauo
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
and <u>(iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tauτν / Tau ₀
Where:
Tau™ = Permissible shear stress from testing, psf (Pa)
$Tau_p = In place permissible shear, psf (Pa) = Taus / (1 - C_{FTRM}) * (n / ns)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soi
ns = Manning's of soil bed if left unprotected
SF _L = Factor of safety of installed liner = Tau _P / Tau _a

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
Unreinforced Vegetation	0.04	1.25 ft	7.23 ft2	9.93 ft	0.73 ft	3.01 ft/s	0.62	0.78 lbs/ft2	5.11 (SFL)
Underlying Substrate	0.04	1.25 ft	7.23 ft2	9.93 ft	0.73 ft	3.01 ft/s	0.62	0.45 lbs/ft2	4.59 (SFL)

>>> Swale A-matting

Name Swale A-matting

Discharge 21.73
Channel Slope 0.01
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in Vegetation Type None Vegetation Density None

Soil Type Silt Loam (SM)

S75

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
S75 Unvegetated	Straight	21.73 cfs	3.42 ft/s	1.16 ft	0.034	1.6 lbs/ft2	0.72 lbs/ft2	2.21	STABLE	D
Underlying Substrate	Straight	21.73 cfs	3.42 ft/s	1.16 ft	0.034	1.17 lbs/ft2	0.42 lbs/ft2	2.76	STABLE	D

>>> Swale A-matting

Name Swale A-matting

Discharge 21.73
Channel Slope 0.01
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in Vegetation Type None Vegetation Density None

Soil Type Silt Loam (SM)

S75

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
S75 Unvegetated	Straight	21.73 cfs	3.42 ft/s	1.16 ft	0.034	1.6 lbs/ft2	0.72 lbs/ft2	2.21	STABLE	D
Underlying Substrate	Straight	21.73 cfs	3.42 ft/s	1.16 ft	0.034	1.17 lbs/ft2	0.42 lbs/ft2	2.76	STABLE	D

>>> <u>View Computation</u>

Inputs								
Channel Discharge (Q):	21.73 cfs							
Peak Flow Period (H):	hours							
Channel Slope (S0):	0.01 ft/ft							
Bottom Width (B):	2 ft							
Left Side Slope (ZL):	3 (H : V)							
Right Side Slope (ZR):	3 (H : V)							
Existing Channel Bend:	No							
Bend Coefficient (Kb):	1							
Channel Bend Radius:								
Retardance Class of Vegetation:	C 6-12 in							
Vegetation Type:	None							
Vegetation Density:	None							
Soil Type:	Silt Loam (SM)							
Channel Lining Options	Channel Lining Options							
S75 Protection Type	Temporary							

Basic Relationships
A = Cross sectional area, ft2 (m2) = (B * D) + ($Z_L/2 * D2$) + ($Z_R/2 * D2$)
Where:
B = Base width of channel, ft (m)
D = Flow depth, ft (m)
Z_L = Left side bank slope (H : 1 V)
Z_R = Right side bank slope (H : 1 V)
$P = Wetted perimeter, ft (m) = B + Z_L*D + Z_R*D$
R = Hydraulic radius, ft (m) = A / P
V = Flow velocity, ft/s (m/s) = Q / A
Where:
Q = Channel discharge, cfs (cms)
Taua Average bed shear stress, psf (Pa) = 62.4 * R * S0
Where:
S0 = Gradient of channel, ft/ft (m/m)
Tau ₀ = Maximum bed shear stress, psf (Pa) = $62.4 * D * S_0$

Unvegetated Conditions Computations:
n = Manning's n = a * Tauab
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
n = Manning's n
a = Product specific coefficient from performance testing
b = Product specific coefficient from performance testing

SF _P = Product factor of safety = Tau _T / Tau ₀
Where:
TauT = Permissible shear stress from testing, psf (Pa)
$Tau_P = In place permissible shear, psf (Pa) = Tau_T / alpha * (Tau_S + alpha / 4.3)$
Where:
alpha = unit conversion constant, 0.14 English, 6.5 Metric
Taus = Permissible shear stress of soil
SFL = Factor of safety of installed liner = Taup / Taua

Vegetated Computations:
n = Manning's n = alpha * Cn* Taua-0.4
<u>and (iteratively solved)</u>
$n = 1.486 / Q * A * R(2/3)S_0^{0.5}$
Where:
alpha = Unit conversion constant, 0.213 English, 1.0 Metric
Cn = Vegetation retardance coefficient
SF _P = Product factor of safety = Tauτv/ Tau ₀
Where:
Tau₁v = Permissible shear stress from testing, psf (Pa)
T. T. I
$Tau_P = In place permissible shear, psf (Pa) = Taus / (1 - C_{FTRM}) * (n / ns)2$
Where:
CFTRM = Coefficient of TRM performance derived from testing Taus = Permissible shear stress of soil
ns = Manning's of soil bed if left unprotected
SFL= Factor of safety of installed liner = Tau _P / Tau _a

S75

Phase	Mannings N	Predicted flow depth (D)	Cross sectional area (A)	Wetted perimeter (P)	Hydraulic radius (R)	Flow velocity (V)	Froude number (FR)	Calculated Shear Stress	SFP/SFL
S75 Unvegetated	0.034	1.16 ft	6.35 ft2	9.33 ft	0.68 ft	3.42 ft/s	0.73	0.72 lbs/ft2	2.21 (SFP)
Underlying Substrate	0.034	1.16 ft	6.35 ft2	9.33 ft	0.68 ft	3.42 ft/s	0.73	0.42 lbs/ft2	2.76 (SFL)

>>> Swale A-matting

Name Swale A-matting

Discharge 21.73
Channel Slope 0.01
Channel Bottom Width 2
Left Side Slope 3
Right Side Slope 3

Low Flow Liner

Retardence Class C 6-12 in Vegetation Type None Vegetation Density None

Soil Type Silt Loam (SM)

S75

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
S75 Unvegetated	Straight	21.73 cfs	3.42 ft/s	1.16 ft	0.034	1.6 lbs/ft2	0.72 lbs/ft2	2.21	STABLE	D
Underlying Substrate	Straight	21.73 cfs	3.42 ft/s	1.16 ft	0.034	1.17 lbs/ft2	0.42 lbs/ft2	2.76	STABLE	D