### **FINAL**

## SUPPLEMENTAL SITE CHARACTERIZATION REPORT

### **BISHOP TUBE SITE**

# EAST WHITELAND TOWNSHIP CHESTER COUNTY, PENNSYLVANIA

# PADEP CONTRACT NO. SAP4000006380 WORK REQUISITION NO. 4-1-154

Prepared For:



# COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Prepared by:

MICHAEL BAKER JR., INC.

FEBRUARY 2008

#### **FINAL**

#### SUPPLEMENTAL SITE CHARACTERIZATION REPORT

### BISHOP TUBE SITE EAST WHITELAND TOWNSHIP CHESTER COUNTY, PENNSYLVANIA

PADEP Contract No.: SAP4000006380 Work Requisition No.: 4-1-154

Submitted to:

Commonwealth of Pennsylvania
Department of Environmental Protection
Southeastern Regional Office
2 East Main Street
Norristown, PA 19401

Submitted by:
Michael Baker Jr., Inc.
100 Airside Drive
Moon Township, Pennsylvania 15108

Baker Project No. 104339 February 2008

Prepared By:

Matthew J. Maloney, P.G.

**Project Manager** 

Michael Baker Jr., Inc.

Approved By:

Raymond Wattras

**Operations Manager IV** 

Michael Baker Jr., Inc.

#### NOTICE

The Pennsylvania Department of Environmental Protection (PADEP) has funded the information in this document under Contract No. SAP400006380 to Michael Baker Jr., Inc. This document has been formally released by Baker to the PADEP.

### TABLE OF CONTENTS

|     |       |        |                                                           | <u>Page</u>  |
|-----|-------|--------|-----------------------------------------------------------|--------------|
| EXE | CUTIV | E SUMN | MARY                                                      | ES-1         |
| 1.0 | INTI  | RODUC  | TION                                                      | 1-1          |
| 2.0 | ARE   |        | CONCERN                                                   |              |
|     | 2.1   |        | tial Vault/Seepage Pit Area                               |              |
|     | 2.2   |        | er Pickle Rinse Water Disposal Tanks and Lagoon Area      |              |
|     | 2.3   |        | #5 Large Degreaser Area                                   |              |
|     | 2.4   | Plant  | #8 Degreaser Discharge Pipe and Drainage Swale Area       | 2 <b>-</b> 2 |
| 3.0 | SUP   | PLEME  | NTAL SITE CHARACTERIZATION                                | 3-1          |
|     | 3.1   | Geopl  | hysical Survey                                            |              |
|     |       | 3.1.1  | Potential Vault/Seepage Pit Area                          |              |
|     |       | 3.1.2  | Former Pickle Rinse Water Disposal Tanks and Lagoon Area  |              |
|     |       | 3.1.3  | Plant #5 Large Degreaser Area                             |              |
|     |       | 3.1.4  | Plant #8 Degreaser Discharge Pipe and Drainage Swale Area |              |
|     | 3.2   |        | cterization of Areas of Concern                           |              |
|     |       | 3.2.1  | Potential Vault/Seepage Pit Area                          |              |
|     |       | 3.2.2  | Former Pickle Rinse Water Disposal Tanks and Lagoon Area  |              |
|     |       | 3.2.3  | Plant #5 Large Degreaser Area                             | 3-3          |
|     |       | 3.2.4  | Plant #8 Degreaser Discharge Pipe and Drainage Swale Area |              |
|     | 3.3   | Well I | Repairs                                                   | 3-3          |
| 4.0 |       |        | CONCLUSIONS AND RECOMMENDATIONS                           |              |
|     | 4.1   |        | tial Vault/Seepage Pit Area                               |              |
|     |       | 4.1.1  | Soil                                                      |              |
|     |       | 4.1.2  | Groundwater                                               |              |
|     |       | 4.1.3  | Conclusions and Recommendations                           |              |
|     |       | 4.1.4  | Standing Water                                            |              |
|     |       | 4.1.5  | Conclusions and Recommendations                           |              |
|     | 4.2   |        | er Pickle Rinse Water Disposal Tanks and Lagoon Area      |              |
|     |       | 4.2.1  | Soil                                                      |              |
|     |       | 4.2.2  | Groundwater                                               |              |
|     |       | 4.2.3  | Conclusions and Recommendations                           |              |
| 4.3 | Plant | _      | Degreaser Area                                            |              |
|     |       | 4.3.1  | Soil                                                      |              |
|     |       | 4.3.2  | Groundwater                                               |              |
|     |       | 4.3.3  | Conclusions and Recommendations                           |              |
|     | 4.4   |        | #8 Degreaser Discharge Pipe and Drainage Swale Area       |              |
|     |       | 4.4.1  | Soil                                                      |              |
|     |       | 4.4.2  | Groundwater                                               |              |
|     | 4.5   | 4.4.3  | Conclusions and Recommendations                           |              |
|     | 4.5   | 4.5.1  | #8 Floor Vault                                            |              |
|     |       | 4.5.1  | Standing Water                                            |              |
|     |       | T.J./. | CONCIDENTES AND INCOMMINENTALIOUS                         | 4-11         |

### TABLE OF CONTENTS

(Continued)

### LIST OF TABLES

| Table 1 | Summary of Supplemental Sampling Program           |
|---------|----------------------------------------------------|
| Table 2 | Analytical Parameter List for Soil and Groundwater |
| Table 3 | VOCs in Soils                                      |
| Table 4 | SVOCs in Soils                                     |
| Table 5 | Inorganics in Soil                                 |
| Table 6 | VOCs in Shallow Groundwater                        |
| Table 7 | SVOCs in Shallow Groundwater                       |
| Table 8 | Inorganics in Shallow Groundwater                  |

#### LIST OF FIGURES

| Figure 1 | Supplemental Site Investigation Areas of Potential Concern                   |
|----------|------------------------------------------------------------------------------|
| Figure 2 | Supplemental Areas of Concern Sample Locations                               |
| Figure 3 | Supplemental Areas of Concern Compounds Exceeding Screening Criteria in Soil |
|          | Samples                                                                      |
| Figure 4 | Supplemental Areas of Concern Compounds Exceeding Screening Criteria in      |
| _        | Groundwater Grab Samples                                                     |

#### LIST OF APPENDICES

| Appendix A | Geophysical Assessment Report |
|------------|-------------------------------|
| Appendix B | Soil Boring Logs              |
| Appendix C | Sample Tracking Forms         |

#### **EXECUTIVE SUMMARY**

The Bishop Tube Site is located along the east side of Malin Road approximately ¼ of a mile south of U.S. Route 30, in Frazer, East Whiteland Township, Chester County, Pennsylvania. The Bishop Tube Site is situated within a southwest-northeast trending valley locally referred to as the Chester Valley area. The Bishop Tube facility formerly was used to process precious metals and to fabricate stainless-steel specialty items, namely tubing and piping products.

Previous environmental investigations conducted at the Site have identified impacts to soils and groundwater related to the past manufacturing operations. There are three response actions ongoing at the site to address source areas for contamination in soils.

The primary objective of the Supplemental Site Characterization was to investigate four additional areas of potential concern that were identified to the Pennsylvania Department of Environmental Protection (Department) by former employees of the facility. The additional areas of potential concern included the Potential Vault/Seepage Pit Area, Former Pickle Rinse Water Disposal Tanks and Lagoon Area, Plant #5 Large Degreaser Area, and Plant #8 Degreaser Discharge Pipe and Drainage Swale Area. Additional activities included in the scope of work included repairs to existing groundwater monitoring wells. Also, a Pump Pit and floor vault were sampled at the request of the Department.

Soil and groundwater grab samples were collected at each of the areas of potential concern and analyzed for selected analytical parameters including volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals. Also, geophysical surveys were conducted at each area in an attempt to identify buried items of potential concern [e.g., underground storage tanks (USTs), buried drums, discharge pipes].

The results of laboratory analysis of these samples indicated the presence of contaminants, primarily solvents and petroleum compounds, in soil and groundwater at the site. The analytical results were compared to the Pennsylvania Act 2 Statewide Health Standards. The results of this evaluation indicated that several VOCs, SVOCs and metals exceeded the screening criteria at several areas.

Area-specific conclusions and recommendations include:

Potential Vault/Seepage Pit Area: The geophysical survey indicated the presence of a concrete vault measuring approximately three feet by four feet and eight feet deep. The Potential Vault/Seepage Pit Area does not appear to be a source of VOC or SVOC contamination. Chromium exceeded the screening criteria in two samples. There is minimal potential for direct contact exposure to the chromium due to its depth and the ground surface is paved. Additionally, groundwater screening samples collected from this area did not detect chromium in water. Therefore, the chromium does not appear to be contributing to groundwater contamination. There are no specific recommendations for this area other than continue routine groundwater monitoring.

Former Pickle Rinse Water Disposal Tanks and Lagoon Area: The geophysical survey detected anomalies on the eastern side of the Plant #8 building, but they were not interpreted as having characteristics typical of USTs due to their rectangular or flat-topped reflections (steel or fiberglass USTs typically present a parabolic reflection). Attempts to drill into the suspected tank areas met refusal on concrete at two feet bgs (these borings could not be shown on the figure due to their proximity to completed borings and the scale of the figure). Therefore, the presence/existence of buried tanks in this area could not be confirmed. The consistent PID readings and contamination detected from six to eight feet bgs in this same area probably

correspond to the bottom of the former lagoon. Samples LAG-05, LAG-06, LAG-07 and LAG-09 consistently showed the highest concentrations of VOC and metal contamination and probably mark the location of the former lagoon. Chloroethene, cis-1,2-dichloroethene, boron, chromium and nickel exceeded the screening criteria in soil samples. Therefore, this area, primarily the lagoon area, appears to be a source for VOCs and metals contamination. However, the contaminants were detected at depth and the area is paved, so there is minimal potential for direct contact exposure. VOC contamination measured in groundwater samples was generally higher in the upgradient sample (LAG-08). This may indicate that VOCs in groundwater primarily originate from an upgradient source (where there are active remedial actions ongoing), but there may also be contribution from the former lagoon. SVOCs (benzo(a)pyrene, benzo(g,h,i)perylene and BEHP) exceeded the screening criteria in water samples collected from this area. SVOCs, including benzo(a)pyrene, benzo(g,h,i)perylene and BEHP, were also detected in soil samples collected at this area. Even though the SVOCs in soil did not exceed the screening criteria, the soil in this area could be contributing to SVOC contamination in groundwater. Manganese was the only metal to exceed the screening criteria for groundwater samples. Therefore, metals contamination detected in soil does not appear to be impacting local groundwater. Since the VOC contaminants appear localized, the SVOC contaminants in soil did not exceed screening criteria, and the metals contamination in soil does not appear to be impacting groundwater, there are no specific recommendations for this area other than continue routine groundwater monitoring for these compounds.

<u>Plant #5 Large Degreaser Area:</u> TCE was detected but did not exceed the screening criteria. Therefore, this area does not seem to be a source area for VOC contamination. There are no specific recommendations for this area.

Plant #8 Degreaser Discharge Pipe and Drainage Swale Area: This area lies outside the fence line and is a grassy, partially wooded area. The GPR survey identified three anomalies perpendicular to Plant #8 that were interpreted to be potential sewer or drain pipes. Samples collected at these locations appeared to confirm that solvents were discharged to this swale. TCE exceeded the screening criteria in all but the westernmost sample. The soil appears to be a source area for TCE contamination. Samples were not collected from surface soil at this area, so a direct contact risk cannot be evaluated. Seven compounds, including 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, chloroethene, tetrachloroethene, TCE and cis-1,2-dichloroethene, exceeded the screening criteria in both groundwater samples. This appears to be the result of discharges to the swale area. It is recommended that additional soil samples be collected to further delineate the extent of TCE contamination in soil in this area. Soil samples should also be collected from the ground surface to evaluate the direct contact risk. Further recommendations should be developed upon review of that data.

<u>Pump Pit:</u> Chloroethene, cis-1,2-dichloroethene, antimony and chromium exceeded the screening criteria in the sediment sample. 1,1-Dichloroethene, chloroethene, TCE, cis-1,2-dichloroethene and BEHP exceeded the screening criteria in the water sample. The water and sediment in the Pump Pit may be contributing to groundwater contamination. It is recommended that the standing water and sediment be pumped from the pit and disposed properly at an off-site treatment facility. The pit should be power-washed and the wash waters handled in the same method.

<u>Plant #8 Floor Vault:</u> The water in the vault appears to be rainwater and shows no sign of VOC contamination. There are no recommendations for the vault.

#### 1.0 INTRODUCTION

The Bishop Tube Site is located along the east side of Malin Road approximately ¼ of a mile south of U.S. Route 30, in Frazer, East Whiteland Township, Chester County, Pennsylvania. The Bishop Tube Site is situated within a southwest-northeast trending valley locally referred to as the Chester Valley area. The Bishop Tube facility formerly was used to process precious metals and to fabricate stainless-steel specialty items, namely tubing and piping products.

Previous environmental investigations conducted at the Site have identified impacts to soils and groundwater related to the past manufacturing operations. Elevated concentrations of chlorinated solvents (i.e., trichloroethene [TCE], 1,1,1-trichloroethane [1,1,1-TCA], and tetrachloroethylene [PCE]) and fluoride have been detected in the soils and groundwater at the Site that exceed the PADEP Statewide Health-based Standards. In addition, surface water and sediment samples collected from Little Valley Creek also have been found to contain elevated concentrations of chlorinated solvents and fluoride that exceed the established regulatory standards. Remedial actions, including soil vapor extraction, are ongoing at the site to address source areas for contamination in soils.

At a public hearing held March 16, 2007, former employees of Bishop Tube provided additional information to the Department on four other potential contaminant source areas. The additional areas of potential concern included the Potential Vault/Seepage Pit Area, Former Pickle Rinse Water Disposal Tanks and Lagoon Area, Plant #5 Large Degreaser Area, and Plant #8 Degreaser Discharge Pipe and Drainage Swale Area (see Figure 1).

A work plan to investigate these areas was submitted to the Pennsylvania Department of Environmental Protection (PADEP or Department) as part of Change Order No. 6 (Baker, May 11, 2007). Additional tasks in the work plan included repairs to damaged monitoring wells identified during a March 13, 2007 site inspection, and evaluation of two former on-site production wells for use in the characterization of the bedrock aquifer(s). However, the evaluation of the two former productions wells was not implemented during this Supplemental Site Characterization because the wells were found to be inaccessible.

This Supplemental Site Characterization Report presents a description of each area of concern (AOC), a summary of the investigation methods, the findings of the geophysical survey, the results of analysis of soil and groundwater samples, descriptions of well repairs, and conclusions derived from the characterization results and recommendations for further action, if any.

#### 2.0 AREAS OF CONCERN

The approximate locations of the four areas of concern (AOCs) included in the Supplemental Site Characterization are shown on Figure 1.

#### 2.1 <u>Potential Vault/Seepage Pit Area</u>

While conducting utility locating efforts around the Drum Storage Area (DSA) related to interim remedial response activities, a magnetic anomaly was identified on the north side of the DSA. Further investigation of the area revealed the presence of a large underground vault. structure is approximately 25 ft. x 17 ft. x 14 ft. deep constructed of concrete block. Interviews with former employees indicate that the vault was used in the acid rinse water operation. This vault has been sampled by the Department's interim response contractor (Weston Solutions) and will be addressed as part of the formerly identified DSA hotspot currently being addressed by interim response activities. However, former Bishop Tube employees have revealed that a second pit and "waste aeration tower" existed just west of the DSA, near the entrance to the former boiler room, which is located between Plants #5 and #8. Department field staff located a concrete block structure containing pumping equipment and a smaller sub-grade pit or tank at the base of the embankment, directly adjacent to the Plant #8 building (the Pump Pit). Water within the sub-grade portion of the structure can be accessed via the metal lid. A sludge-like material appears to be present within the pit at a depth of approximately six feet bgs. Piping from this pumping structure leads to a surface depression in the paved Plant #5 loading area near the entrance to the boiler.

#### 2.2 Former Pickle Rinse Water Disposal Tanks and Lagoon Area

During the early phases of the site investigation, Baker and the Department attempted to locate a reported lagoon on the eastern side of the site, near Little Valley Creek. The efforts centered around an area east of the Plant #8 receiving building (an addition to Plant #8). Interviews with several former employees indicated that the lagoon was located north of the area that was the focus of the original investigation. These employees indicated that the addition to Plant #8 was built over the former on-site lagoon. The employees also stated that two underground storage tanks (USTs) in the same area were used for disposal of acid rinse water (and potentially other waste liquids). A suspected third UST was also identified by a former employee and possibly being located inside the existing Plant #8 eastern wall (the building addition section). Boring LAG-10 was advanced to investigate the presence of this suspected UST.

During a previous utility location effort, two suspected USTs were identified within the paved area along the northeast side of the Plant #8 receiving area. It had not been confirmed if these potential USTs were the waste tanks because the former employees indicated that the USTs were located beneath the addition to Plant #8. It should be noted that floating free product [i.e., light non-aqueous phase liquid (LNAPL)] has been observed in a shallow monitoring well in this area during routine monitoring.

#### 2.3 Plant #5 Large Degreaser Area

This potential AOC is located within the Plant #5 building where a large degreaser was reportedly located prior to construction of the Plant #8 building. A concrete patch roughly corresponding to the size and location of the degreaser was identified approximately 100 feet southwest of the former specialty (small) degreaser previously identified as a TCE source area.

#### 2.4 Plant #8 Degreaser Discharge Pipe and Drainage Swale Area

A number of former Bishop Tube employees have indicated that a floor drain within the Plant #8 building was used to dispose of liquid wastes. This drain reportedly led to a pipe which was routed beneath the access road located along the north side of Plant #8, ultimately discharging to the drainage swale between the access road and the Norfolk Southern railroad right-of-way. This drain was reportedly used for disposal of spilled TCE and a substance (Zyglow) used as a dye in the inspection of welds.

#### 3.0 SUPPLEMENTAL SITE CHARACTERIZATION

The Supplemental Site Characterization was conducted from May 23 through June 6, 2007. Michael Baker Jr., Inc. supervised the work activities and provided a professional geologist to log the boreholes and collect the samples. The work included collection of soil and groundwater grab samples at each of the AOCs, geophysical survey of the AOCs and repair of damaged groundwater monitoring wells. Sample locations are presented on Figure 2. The designated borings shown on the figure were located through the use of a globally positioning system (GPS) for the borings advanced outside of the building and through measurement triangulation for the borings advanced inside of the building. Some borings were not able to be completed to the desired depth due to the presence of bedrock. In these cases, the borings were re-located nearby in an attempt to extend to the desired depth. Due to the scale of Figure 2, and the proximity of the original and final borings, only one location (the final boring location) was presented on Figure 2 for each sample location.

#### 3.1 Geophysical Survey

ARM Geophysics (ARM) of Hershey, PA conducted the geophysical survey on the four AOCs shown on Figure 1 of this report and Figures 1 through 6 of ARM's report provided in Appendix A. For the geophysical survey, ARM labeled the AOCs 'Area A' through 'Area E' splitting the Potential Vault/Seepage Area into two areas creating five areas instead of four. However, Baker will continue to refer to four AOCs throughout this report, as originally planned and discussed above. The areas (except the Drainage Swale) were surveyed on May 23, 2007. ARM returned on May 30, 2007 to survey the drainage swale (after the swale had been cleared of vegetation).

ARM performed a three-phase survey at each of the areas. The first phase utilized an electromagnetic (EM) survey using an EM61 MKII high sensitivity metal detector, and was performed over traverses spaced ten feet apart and oriented in two directions approximately north-south and east-west. The second phase utilized ground-penetrating radar (GPR) over the same traverses as the EM survey. The third phase utilized pipe and cable locators to perform inductive and conductive tracing to locate buried utilities. Details of the geophysical survey are included in the Geophysical Investigation Report (ARM, June 7, 2007) presented in Appendix A and summarized below. The geophysical report includes figures showing the results of each survey. Anomalies and utilities identified by ARM have also been incorporated onto Figure 1 of this Site Investigation report with one exception. Because of the number and complexity of utilities/anomalies in the Former Pickle Rise Water Disposal Tank and Lagoon Area, these utilities/anomalies have not been incorporated onto Figure 1, but are shown on the figure in the Geophysical Assessment Report included as Appendix A.

#### 3.1.1 Potential Vault/Seepage Pit Area

The geophysical survey indicated the presence of a potential vault measuring approximately three feet by four feet in this area. This anomaly coincides with the depression noted at the surface of the asphalt in this area. The vault did not present as a metal source would, so is not interpreted as a UST.

The portion of the geophysical survey conducted inside the building, north of the potential vault, identified a utility trench running under the concrete parallel to the wall.

#### 3.1.2 Former Pickle Rinse Water Disposal Tanks and Lagoon Area

The geophysical survey detected anomalies on the eastern side of the Plant #8 building, but they were not interpreted as having characteristics typical of USTs due to their rectangular or flat-topped reflections (steel or fiberglass USTs typically present a parabolic reflection). Figure 4 of Appendix A (ARM's geophysical report) presents the anomalies detected at this area.

#### 3.1.3 Plant #5 Large Degreaser Area

The geophysical survey indicated the presence of several utilities and utility trenches in this area. Because of the linearity of the survey performed in this area (275 feet long by 10 feet wide), and the identified utilities/drainage pipes traversing the linear survey area at approximate right angles, the terminal ends (i.e., potential discharge locations) of the utilities/drainage pipes were unable to be identified.

#### 3.1.4 Plant #8 Degreaser Discharge Pipe and Drainage Swale Area

Although the EM61 survey produced poor quality data due to the presence of overhead power lines, the GPR survey identified three anomalies perpendicular to Plant #8 that were interpreted to be potential sewer or drain pipes. Because of the linearity of the survey performed in this area (275 feet long by 10 feet wide), and the identified utilities/drainage pipes traversing the linear survey area at approximate right angles, the terminal ends (i.e., potential discharge locations) of the utilities/drainage pipes were unable to be identified.

#### 3.2 Characterization of Areas of Concern

Allprobe Environmental, Inc. of Wexford, PA completed boreholes at each of the AOCs from May 24 to June 5, 2007. The boreholes were completed using direct-push technology to collect continuous soil cores. Each soil core was screened for the presence of organic vapors using a photo ionization detector (PID). Boring logs are provided in Appendix B. Groundwater grab samples were also collected from each AOC using either a peristaltic pump or bailer. Additional samples were collected at the request of the PADEP from other AOCs identified during the Supplemental Site Characterization field activities. Table 1 summarizes the sampling program conducted during the Supplemental Site Characterization. Copies of the Sample Tracking Forms are provided in Appendix C.

### 3.2.1 Potential Vault/Seepage Pit Area

A total of ten soil samples (includes one duplicate sample) were collected from six boreholes advanced at the Potential Vault/Seepage Pit Area. Additionally, three groundwater grab samples were collected from three of the boreholes.

The soil and groundwater samples were analyzed for VOCs, SVOCs, and metals.

The boring advanced in the center of the depression (VSP-01) encountered a concrete slab buried eight feet bgs. One soil sample, collected from a depth of 10 to 12 feet below ground surface (bgs) in borehole VSP-01, was not analyzed for SVOCs due to a lack of recovered soil.

In addition, at the request of the PADEP, a water sample and sediment sample were collected from the pump pit located south of the Plant #8 building west of the Potential Vault/Seepage Pit

Area (Figure 2). The soil and groundwater samples collected from the pit were analyzed for VOCs, SVOCs, and metals. A sample also was collected from water pooled in a shallow vault located near the northwest corner of the Plant #8 building (Figure 2). This water sample was analyzed for VOCs.

#### 3.2.2 Former Pickle Rinse Water Disposal Tanks and Lagoon Area

A total of 11 soil samples were collected from ten boreholes advanced at the Former Pickle Rinse Water Disposal Tanks and Lagoon Area. Additionally, four groundwater grab samples (includes one duplicate sample) were collected from three of the boreholes. Also, Baker attempted to advance two borings directly through the anomalies identified by the geophysical survey, and encountered refusal (concrete) at two feet bgs in both borings. One of the borings that encountered refusal was advanced in the middle of the northern UST area and the other was advanced north of the northern UST area, near the concrete wall. The off-set distance between the original borings and the final, successful borings was too small to present on Figure 2 at the existing scale. Borings LAG-01 through LAG-04 were then advanced at the perimeter of the anomalies to assess the condition of the soil and groundwater surrounding the suspected former USTs.

The soil and groundwater samples were analyzed for VOCs, SVOCs, and metals.

Attempts to drill into the suspected tank areas met refusal on concrete at two feet bgs.

#### 3.2.3 Plant #5 Large Degreaser Area

A total of four soil samples were collected from six boreholes advanced at the Plant #5 Large Degreaser Area. Additionally, three groundwater grab samples were collected from three of the boreholes.

The soil and groundwater samples were analyzed for VOCs.

Two of the boreholes advanced within the concrete patch area met refusal on concrete at approximately six feet bgs and no samples were collected.

#### 3.2.4 Plant #8 Degreaser Discharge Pipe and Drainage Swale Area

A total of four soil samples were collected from four boreholes advanced at the Plant #8 Degreaser Discharge Pipe and Drainage Swale Area. Three of the boreholes were located at the three anomalies (potential pipes/trenches) identified during the geophysical survey, and one was located farther upstream from the anomalies. Additionally, two groundwater grab samples were collected from two of the boreholes. No other boreholes made water.

The soil and groundwater samples were analyzed for VOCs, SVOCs, and metals.

#### 3.3 Well Repairs

Repairs were conducted on damaged wells as follows:

- Wells MW01, MW08 and MW20R had their locks replaced.
- Wells MW04, MW05, MW06, MW07 and MW18 had their flush-mount concrete pads removed and replaced.

• Wells MW23 and MW 27 had their caps replaced.

#### 4.0 FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

The soil and groundwater grab samples were analyzed at the Pennsylvania Bureau of Laboratories facility located in Harrisburg, Pennsylvania. The samples collected are summarized in Table 1. The analytical parameters tested by the laboratory are summarized in Table 2.

The analytical results were compared to selected criteria. The soil analytical results were compared to the Pennsylvania Act 2 Statewide Health Standards Medium-Specific Criteria (MSCs) for non-residential soil. The soil criteria value selected was the lowest of the Direct Contact value versus the Soil-to-Groundwater value (highest of the Generic or the 100X the groundwater MSC for non-residential settings with total dissolved solids less than or equal to  $[TDS \leq] 2,500 \text{ mg/L}$ ). The soil analytical data are summarized on Tables 3, 4 and 5, and Figure 3.

The groundwater grab sample analytical results were compared to the Pennsylvania Act 2 Statewide Health Standards MSCs for Non-residential, Used Aquifers with TDS  $\leq$  2,500 mg/L. The metals samples were filtered in the field using a 0.45 micron filter; thus the analytical data represents the dissolved metals fraction. The groundwater analytical results are summarized on Tables 6, 7 and 8, and Figure 4.

#### 4.1 Potential Vault/Seepage Pit Area

#### 4.1.1 Soil

Fill material consisting of reworked local soil, was encountered to depths up to approximately nine feet bgs. Bedrock, consisting of weathered schist, was encountered at approximately 20 feet bgs.

#### 4.1.1.1 PID Screening

The PID indicated elevated organic vapor concentrations in boreholes VSP-02, VSP-03, VSP-04, and VSP-05. However, no organic/chemical odors were noticed by the geologist on these cores. It was later determined that the PID was malfunctioning and was replaced. Screening of soil collected from VSP-06 using the replacement PID did not detect organic vapors.

#### 4.1.1.2 <u>VOCs</u>

Tetrachloroethene (PCE) was detected in one sample (VSP-02) at a depth of three to four feet bgs. This concentration did not exceed the comparison criteria, and PCE was not detected in the deeper sample collected from VSP-02 or in any other samples collected in this area. No other VOCs were detected in this area. The lack of VOCs confirms the PID was malfunctioning.

#### 4.1.1.3 **SVOCs**

1,4-Dichlorobenzene, di-n-butylphthalate, bis(2-ethylhexyl)phthalate and 2-methylnaphthalene were detected in several of the soil samples collected in this area. However, none of the concentrations of any SVOC exceeded the screening criteria. Di-n-butylphthalate and bis(2-ethylhexyl)phthalate are common laboratory contaminants and, therefore, may not be site contaminants. An SVOC sample could not be collected at 10 to 12 feet bgs at VSP-01 due to a lack of soil recovery.

#### 4.1.1.4 Metals

Chromium was detected in two samples at concentrations exceeding the screening criteria. The chromium concentration at VSP-01 (10 to 11 feet bgs) was 259 mg/kg and at VSP-03 (three to four feet bgs) was 542 mg/kg, versus a criteria value of 190 mg/kg. No other metal concentration exceeded the screening criteria.

#### 4.1.2 Groundwater

Groundwater was encountered at approximately 16 feet bgs while drilling, and then rose to approximately 12 feet bgs when the borehole was left open. At VSP-06 (inside the Plant #8 building at a lower elevation), groundwater was encountered at seven feet bgs.

Groundwater grab samples were collected from VSP-02, VSP-05 and VSP-06 (VSP-06 was located within the Plant #8 building. Based on the local groundwater flow direction, VSP-05 was considered up gradient of the Potential Vault/Seepage Pit Area, while VSP-02 and VSP-06 were considered downgradient of the area.

#### 4.1.2.1 <u>VOCs</u>

VOCs (primarily solvents and petroleum compounds) were detected in each of the three samples collected at this area. Two compounds, TCE and chloroethene, exceeded the screening criteria. TCE exceeded the criteria in all three samples.

The TCE concentrations in VSP-02, VSP-05 and VSP-06 were 14.4 ug/L, 57.1 Q ug/L and 14.6 ug/L, respectively, versus a criteria value of 5.0 ug/L. The highest concentration was in the sample collected from VSP-05, considered to be the up gradient location. This probably results from the TCE source area located within the Plant #5 building (and up gradient of this area).

Chloroethene exceeded the criteria in the sample collected from VSP-06. The concentration was 5.2 ug/L versus a criteria value of 2 ug/L.

#### 4.1.2.2 SVOCs

Several SVOCs were detected in groundwater grab samples collected at this area. Benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and bis(2-ethylhexyl)phthalate (BEHP) exceeded the screening criteria in the sample collected from VSP-06. BEHP also exceeded the criteria value in the sample collected from VSP-02. No SVOC exceeded the criteria in the sample collected from VSP-05. This would seem to indicate that the potential vault is a source area for SVOC contamination in groundwater. Although BEHP is a common laboratory contaminant, and was flagged as a blank contaminant in the VSP-05 sample, the concentrations of BEHP in VSP-02 and VSP-06 (25.9 E ug/L and 10,200 E ug/L, respectively) seem too high to not be considered a contaminant in these samples.

#### 4.1.2.3 Metals

No metals exceeded the screening criteria in the three samples collected from this area.

#### 4.1.3. Sediment

At the request of PADEP, samples were collected of the standing water and sediment found in the pit located at the base of the embankment within the Potential Vault/Seepage Pit Area. The sediment sample was collected by attaching a jar to the end of a stick and scraping the sediment from the bottom of the pit. It took multiple attempts to gather enough sediment for a sample. The sediment was greasy and had a strong petroleum-like odor. The sediment sample analytical results were compared to the soil criteria used for the other AOCs, and the standing water sample analytical results were compared to the groundwater criteria used for the other AOCs.

#### 4.1.3.1 VOCs

Chloroethene, cis-1,2-dichloroethene and xylenes were detected in the sediment sample, and chloroethene and cis-1,2-dichloroethene exceeded the screening criteria. The concentration of chloroethene was 21,400 ug/kg, versus a criteria value of 200 ug/kg. The concentration of cis-1,2-dichloroethene was 14,900 ug/kg, versus a criteria value of 7,000 ug/kg.

#### 4.1.3.2 SVOCs

Multiple SVOCs, primarily polycyclic aromatic hydrocarbons (PAHs) were detected in the sediment, but the concentrations did not exceed the screening criteria for soils.

#### 4.1.3.3 Metals

Antimony and chromium exceeded the screening criteria in the sediment sample. The concentration of antimony was 102 mg/kg, versus a criteria value of 27 mg/kg. The concentration of chromium was 377 mg/kg, versus a criteria value of 190 mg/kg.

#### 4.1.4 Standing Water

The water sample was collected by lowering a disposable bailer to the bottom of the pit and withdrawing a water sample.

#### 4.1.4.1 VOCs

VOCs (primarily solvents and petroleum compounds) were detected in the standing water sample. Four compounds, 1,1-dichloroethene, chloroethene, TCE and cis-1,2-dichloroethene, exceeded the screening criteria.

The concentration of 1,1-dichloroethene was 23.6 Q ug/L, versus a criteria value of 7 ug/L. The concentration of chloroethene was 1,270 ug/L, versus a criteria value of 2 ug/L. The concentration of TCE was 212 Q ug/L, versus a criteria value of 5 ug/L. The concentration of cis-1,2-dichloroethene was 4,010 ug/L, versus a criteria value of 70 ug/L.

#### 4.1.4.2 SVOCs

BEHP was the only SVOC detected in the standing water and the concentration exceeded the screening criteria. The concentration was 18.6 ug/L versus a criteria value of 6 ug/L.

#### 4.1.4.3 Metals

No metals exceeded the screening criteria in the standing water sample.

#### 4.1.5 Conclusions and Recommendations

The geophysical survey indicated the presence of a concrete vault measuring approximately three feet by four feet and eight feet deep. This anomaly coincides with the depression noted at the surface of the asphalt in this area. The vault did not present as a metal source would, so is not interpreted as a UST. The vault has been filled with soil.

The Potential Vault/Seepage Pit Area does not appear to be a source of VOC or SVOC contamination.

Chromium exceeded the screening criteria in two samples collected at three to four feet bgs and 10 to 11 feet bgs. There is minimal potential for direct contact exposure to the chromium due to its depth and the presence of covering asphalt. Additionally, groundwater screening samples collected from this area did not indicate detectable concentrations of chromium. Therefore, the chromium in the soil does not appear to be contributing to groundwater contamination.

There are no specific recommendations for this area other than to continue routine groundwater monitoring.

With respect to the Pump Pit, chloroethene, cis-1,2-dichloroethene, antimony and chromium exceeded the screening criteria in the sediment sample. 1,1-Dichloroethene, chloroethene, TCE, cis-1,2-dichloroethene and BEHP exceeded the screening criteria in the water sample. The water and sediment in the Pump Pit may be contributing to groundwater contamination.

It is recommended that the standing water and sediment be pumped from the pit and disposed properly at an off-site treatment facility. The pit should be power-washed and the wash waters handled in the same method.

#### 4.2 Former Pickle Rinse Water Disposal Tanks and Lagoon Area

#### 4.2.1 Soil

Borings LAG-01 through LAG-04 were advanced to determine the presence of suspected pickle liquor rinse water USTs, and the condition of the soil and groundwater in the area. Borings LAG-05 through LAG-09 were advanced to investigate the suspected former pickle liquor rinse water lagoon area. Boring LAG-10 was advanced to investigate a suspected UST reportedly located outside the former Plant #8 building eastern wall, which is now inside the Plant #8 addition eastern wall.

In these borings, fill material, consisting of reworked local soil, was encountered at depths up to approximately 15 feet bgs. A vegetative layer indicating the location/depth of the former ground surface, was encountered at approximately 15 feet bgs. Bedrock, consisting of weathered schist, was encountered at approximately 19 feet bgs.

#### 4.2.1.1 PID Screening

The PID detected organic vapor concentrations in boreholes LAG-02, LAG-03, LAG-05, LAG-06, LAG-07 and LAG-09. The PID detections in these boreholes (except LAG-09) were generally encountered between three to eight feet bgs, in concentrations ranging from approximately 2 to 40 parts per million (ppm). However, no organic/chemical odors were noticed by the geologist on these cores. The PID readings in LAG-09 (35 ppm) corresponded to a piece of wood encountered at approximately eight feet bgs, which had a creosote odor.

#### 4.2.1.2 VOCs

VOCs (primarily solvents and petroleum compounds) were detected in all but two of the samples collected from this area. Two compounds, chloroethene and cis-1,2-dichloroethene, exceeded the screening criteria. Chloroethene exceeded the criteria in one sample (LAG-05) collected at six to seven feet bgs. The concentration was 365 ug/kg versus a criteria value of 200 ug/kg. Cis-1,2-Dichloroethene exceeded the criteria in one sample (LAG-07) collected at six to seven feet bgs. The concentration was 8,260 ug/kg versus a criteria value of 7,000 ug/kg.

#### 4.2.1.3 SVOCs

Several SVOCs were detected in several of the samples collected from this area, but none of the concentrations exceeded the screening criteria.

#### 4.2.1.4 Metals

Boron, chromium and nickel were detected at concentrations exceeding the screening criteria. Boron exceeded the criteria value in every sample except LAG-10, with concentrations ranging from 76.8 mg/kg to 147 mg/kg versus a criteria value of 60 mg/kg. The chromium concentration at LAG-05 (six to seven feet bgs) was 617 mg/kg, at LAG-06 (six to seven feet bgs) was 2,747 mg/kg, at LAG-07 (six to seven feet bgs) was 2,145 mg/kg, and at LAG-09 (eight to nine feet bgs) was 803 mg/kg, versus a criteria value of 190 mg/kg. The nickel concentration at LAG-06 (six to seven feet bgs) was 2,564 mg/kg, at LAG-07 (six to seven feet bgs) was 2,014 mg/kg, and at LAG-09 (eight to nine feet bgs) was 736 mg/kg, versus a criteria value of 650 mg/kg. No other metal concentration exceeded the screening criteria.

#### 4.2.2 Groundwater

Groundwater was encountered at approximately 16 feet bgs while drilling, although there were perched layers noted at four feet and seven feet bgs in a couple boreholes (possibly related to the bottom of the former lagoon).

Groundwater grab samples were collected from LAG-02, LAG-03 and LAG-08 (a duplicate sample was also collected at LAG-03). Based on the local groundwater flow direction, LAG-08 was considered up gradient of the Former Pickle Rinse Water Disposal Tanks and Lagoon Area, while LAG-02 and LAG-03 were considered downgradient of the area.

#### 4.2.2.1 VOCs

VOCs (primarily solvents and petroleum compounds) were detected in each of the three samples (plus the duplicate) collected at this area. Four compounds, TCE, cis-1,2-dichloroethene, chloroethene and methyl tert-butyl ether (MTBE), exceeded the screening criteria.

The TCE concentrations in LAG-02, LAG-03 and LAG-08 were 168 ug/L, 19.3 ug/L and 272 ug/L, respectively, versus a criteria value of 5.0 ug/L. The highest concentration was in the sample collected from LAG-08, considered to be the up gradient location. This likely is a result of the VOC source being located within the Plant #8 building.

The compound cis-1,2-Dichloroethene was detected at a concentration of 120 ug/L in LAG-02 and 232 ug/L in LAG-08, versus a criteria value of 70 ug/L.

Chloroethene was detected at a concentration of 7.8 Q ug/L in LAG-02, 5.4 ug/L in LAG-03 and 5.5 ug/L in LAG-08, versus a criteria value of 2 ug/L.

MTBE was detected at a concentration of 21.6 Q ug/L in LAG-02, versus a criteria value of 20 ug/L.

#### 4.2.2.2 SVOCs

Benzo(a)pyrene, benzo(g,h,i)perylene and BEHP exceeded the screening criteria in the sample collected from LAG-02. BEHP also exceeded the criteria value in the sample collected from LAG-08. No SVOC exceeded the criteria in the sample collected from LAG-03. Although BEHP is a common laboratory contaminant and was flagged as a blank contaminant in the LAG-02 and LAG-03 samples, the concentrations of BEHP in LAG-02 and LAG-08 appear too high to be considered a laboratory contaminant in these samples.

#### 4.2.2.3 Metals

Manganese exceeded the screening criteria in the samples collected from LAG-02 and LAG-08. No other metals exceeded the screening criteria in samples collected from this area.

#### 4.2.3 Conclusions and Recommendations

The geophysical survey detected anomalies on the eastern side of the Plant #8 building, but they were not interpreted as having characteristics typical of USTs due to their rectangular or flat-topped reflections (steel or fiberglass USTs typically present a parabolic reflection). Two attempts to drill into the suspected tank areas (the two geophysical anomalies) met with refusal on concrete at two feet bgs. Therefore, the presence/existence of buried tanks in this area could not be confirmed. Soil samples collected nearer the suspected tanks appeared less impacted by VOCs and metals than samples collected farther away (in the suspected lagoon area).

The consistent PID readings and contamination detected from six to eight feet bgs may correspond to the bottom of the former lagoon. Samples LAG-05, LAG-06, LAG-07 and LAG-09 consistently showed the highest concentrations of VOC and metal contamination and probably mark the location of the former lagoon.

Chloroethene and cis-1,2-dichloroethene, exceeded the screening criteria in two samples collected from the former lagoon. So although the VOC contaminants do not appear to be widespread throughout the Former Pickle Rinse Water Disposal Tanks and Lagoon Area, the lagoon may be a source of VOC contamination.

Boron, chromium and nickel were detected in soil at concentrations exceeding the screening criteria. Therefore, this area, primarily the lagoon area, appears to be a source for metals contamination. However, the contaminants were detected at depth and the area is paved, so there is minimal potential for direct contact exposure.

VOC contamination measured in groundwater samples was generally higher in the up gradient sample (LAG-08). This may indicate that VOCs in groundwater primarily originate from an up gradient source (the vapor degreaser area in the Plant #8 building where there are active remedial actions ongoing), but there may also be contribution from the former lagoon.

SVOCs (benzo(a)pyrene, benzo(g,h,i)perylene and BEHP) exceeded the screening criteria in water samples collected from this area. SVOCs, including benzo(a)pyrene, benzo(g,h,i)perylene and BEHP, were also detected in soil samples collected at this area. Even though the SVOCs in soil did not exceed the screening criteria, the soil in this area could be contributing to SVOC contamination in groundwater.

Manganese was the only metal to exceed the screening criteria for groundwater samples. Therefore, metals contamination detected in soil does not appear to be impacting localized groundwater.

Considering that the VOCs appear localized, the SVOCs in soil did not exceed screening criteria, and the metals in soil do not appear to be impacting groundwater, there are no specific recommendations for this area other than to continue routine groundwater monitoring for these compounds.

#### 4.3 Plant #5 Large Degreaser Area

#### 4.3.1 Soil

Fill material consisting of reworked local soil, was encountered to depths up to approximately 11 to 15 feet bgs. Decomposed bedrock was encountered below approximately 11 feet bgs.

Boring LDA-01 was advanced in the center of the rectangular concrete patch identified as the former location of the Large Degreaser, and LDA-02 was advanced directly outside of the patch on the south edge. Both borings encountered a void space beneath the floor, partially backfilled with soil, and then met refusal on another concrete slab about 6 feet beneath the floor. No samples were collected from these borings.

Soil samples collected at the Plant #5 Large Degreaser Area were analyzed for VOCs only.

#### 4.3.1.1 PID Screening

The PID detected organic vapors in the open borehole up to 20 ppm underneath the concrete (down hole), but only detected vapors up to 1.4 ppm on one soil sample in LDA-05. This indicates that soil in this area does not seem to be the source of the organic vapors.

#### 4.3.1.2 VOCs

TCE was detected in two soil samples collected in this area, but the concentrations did not exceed the screening criteria. No other VOCs were detected in soil.

#### 4.3.2 Groundwater

Groundwater was encountered at approximately 16.5 feet bgs while drilling.

Groundwater grab samples were collected from LDA-03, LDA-04 and LDA-06. Based on the local groundwater flow direction, LDA-04 appears to be up gradient of the Plant #5 Large Degreaser Area, while LDA-03 and LDA-06 appear to be downgradient of the area. Groundwater samples collected from this area were analyzed for VOCs only.

#### 4.3.2.1 VOCs

TCE, MTBE and toluene were detected in samples collected at this area, but only TCE exceeded the screening criteria. The TCE concentration in LDA-03 was 23.6 ug/L and in LDA-06 was 122 ug/L, versus a screening value of 5 ug/L.

#### 4.3.3 Conclusions and Recommendations

TCE was detected in soil samples but did not exceed the screening criteria. Therefore, this area does not seem to be a source area for VOC contamination.

There are no specific recommendations for this area.

#### 4.4 Plant #8 Degreaser Discharge Pipe and Drainage Swale Area

#### 4.4.1 Soil

Alluvium was encountered above bedrock. The top of bedrock rose from 9.4 feet bgs at DDP-01 (easternmost borehole) to 5.5 feet bgs at DDP-04 (westernmost borehole). Bedrock consisted of schist.

#### 4.4.1.1 PID Screening

The PID detected organic vapors in soil samples collected from DDP-01, DDP-02 and DDP-03. The vapors were significantly higher at DDP-03. No vapors were detected at DDP-04.

#### 4.4.1.2 **VOCs**

Solvents were detected in DDP-01, DDP-02 and DDP-03, but only TCE exceeded the screening criteria. The concentration of TCE in DDP-01, DDP-02 and DDP-03 was 793 ug/kg, 1000 ug/kg and 11,800 ug/kg, respectively, versus a criteria value of 500 ug/kg. In addition to the TCE concentration being significantly higher at DDP-03, the other detected VOCs were also higher at this location. Additionally, no VOCs were detected in soil in the sample (DDP-04) collected upstream from DDP-03. This indicates that the discharge pipe was located in the vicinity of DDP-03.

#### 4.4.1.3 **SVOCs**

Fluoranthene and pyrene were detected in two of the four soil samples, but the concentrations did not exceed the screening criteria.

#### 4.4.1.4 Metals

No metals exceeded the screening criteria in soil samples collected at this area.

#### 4.4.2 Groundwater

Only borings DDP-01 and DDP-02 encountered water. Water was at 3.3 feet bgs in DDP-01 and 4.6 feet bgs in DDP-02.

#### 4.4.2.1 **VOCs**

VOCs (mostly solvents) were detected in both of the samples collected at this area. Seven compounds, 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, chloroethene, tetrachloroethene, TCE and cis-1,2-dichloroethene, exceeded the screening criteria.

The concentrations of 1,1,1-trichloroethane in DDP-01 and DDP-02 were 19,200 ug/L and 23,200 ug/L, respectively, versus a criteria value of 200 ug/L.

The concentrations of 1,1-dichloroethane in DDP-01 and DDP-02 were 163 ug/L and 112 ug/L, respectively, versus a criteria value of 27 ug/L.

The concentrations of 1,1-dichloroethene in DDP-01 and DDP-02 were 227 ug/L and 282 ug/L, respectively, versus a criteria value of 7 ug/L.

The concentrations of chloroethene in DDP-01 and DDP-02 were 6.8 ug/L and 7.3 ug/L, respectively, versus a criteria value of 2 ug/L.

The concentration of tetrachloroethene in DDP-02 was 5.2 ug/L, versus a criteria value of 5 ug/L.

The concentrations of TCE in DDP-01 and DDP-02 were 5,200 ug/L and 7,160 ug/L, respectively, versus a criteria value of 5 ug/L.

The concentrations of cis-1,2-dichloroethene in DDP-01 and DDP-02 were 1,650 Q ug/L and 1,760 Q ug/L, respectively, versus a criteria value of 70 ug/L.

The concentrations of the VOCs, except 1,1-dichloroethane, increased in the upstream direction (toward the suspected pipe location).

#### 4.4.2.2 SVOCs

Multiple SVOCs were detected in each sample. BEHP and pentachlorophenol exceeded the screening criteria in each sample. The concentrations of BEHP in DDP-01 and DDP-02 were 8.87 B ug/L and 30.1 E ug/L, respectively, versus a criteria value of 6 ug/L. The concentrations of pentachlorophenol in DDP-01 and DDP-02 were 4.53 ug/L and 4.43 ug/L, respectively, versus a criteria value of 1 ug/L.

#### 4.4.2.3 Metals

Manganese exceeded the screening criteria in each sample. The concentrations of manganese in DDP-01 and DDP-02 were 2,150 ug/L and 2,010 ug/L, respectively, versus a criteria value of 300 ug/L.

#### 4.4.3 Conclusions and Recommendations

This area lies outside the north fence line and is a grassy, partially wooded area.

The GPR survey identified three anomalies perpendicular to Plant #8 that were interpreted to be potential sewer or drain pipes. Samples collected at these locations appeared to confirm that solvents were discharged to this swale. TCE exceeded the screening criteria in all but the westernmost sample. The soil appears to be a source area for TCE contamination. Samples were not collected from surface soil at this area, so a direct contact risk cannot be evaluated.

Seven compounds, including 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, chloroethene, tetrachloroethene, TCE and cis-1,2-dichloroethene, exceeded the screening criteria in both groundwater samples. This appears to be the result of discharges to the swale area.

It is recommended that additional soil samples be collected to further delineate the extent of TCE contamination in soil in this area. Soil samples should also be collected from the ground surface to evaluate the direct contact risk. Further recommendations should be developed after this recommended further delineation is completed.

#### 4.5 Plant #8 Floor Vault

#### 4.5.1 Standing Water

Also at the request of the PADEP, a sample was collected from water pooled in a shallow vault located near the northwest corner of the Plant #8 building. This water sample was analyzed for VOCs.

#### 4.5.1.2 **VOCs**

No VOCs were detected in the standing water collected from the vault.

#### 4.5.2 Conclusions and Recommendations

The water in the vault appears to be rainwater and shows no sign of VOC contamination. There are no recommendations for further action regarding the vault.

# TABLE 1 SUMMARY OF SUPPLEMENTAL SAMPLING PROGRAM BISHOP TUBE CHESTER COUNTY, PA

| Boring ID | Area           | Depth<br>(ft bgs) | Soil Sample<br>Depths | Groundwater<br>Sample | Comments                                                            |
|-----------|----------------|-------------------|-----------------------|-----------------------|---------------------------------------------------------------------|
| VSP-01    |                | 12                | 7 - 8' & 10 - 12'     | No                    | No SVOA sample at 10 - 12'. PID = Bgnd.                             |
| VSP-02    |                | 20                | 3 - 4' & 11 - 12'     | Yes                   | Plus soil duplicate @ 3 - 4'. PID = 211 (suspected to be erroneous) |
| VSP-03    | Potential      | 20                | 3 - 4' & 11 - 12'     | No                    | PID = 1349 @ 2' (suspected to be erroneous)                         |
| VSP-04    | Vault/Seepage  | 4                 | 3 - 4'                | No                    | PID = 12.3 (suspected to be erroneous)                              |
| VSP-05    | Pit Area       | 20                | 15 - 16'              | Yes                   | PID = 300 + (suspected to be erroneous)                             |
| VSP-06    | i il Alea      | 8.2               | 6 - 7'                | Yes                   | PID = Bgnd                                                          |
| Pump Pit  |                |                   |                       |                       | Sample of water in Pump Pit                                         |
| Pump Pit  |                | **-               |                       |                       | Sample of sediment in Pump Pit                                      |
| LAG-01    |                | 20                | 5 - 6'                | No                    | PID = Bgnd                                                          |
| LAG-02    |                | 24                | 5 - 6' & 16 - 17'     | Yes                   | PID = 39 @ 5'                                                       |
| LAG-03    |                | 20                | 16 - 17'              | Yes                   | Plus groundwater duplicate. PID = 2.3 @ 5'; 2.1 @17'                |
| LAG-04    | Former Pickle  | 19                | 11 - 12'              | No                    | PID = Bgnd                                                          |
| LAG-05    | Rinse Water    | 19.5              | 6 - 7'                | No                    | PID = 17.9 @ 6'                                                     |
| LAG-06    | Disposal and   | 8                 | 6 - 7'                | No                    | PID = 19.5 @ 6'                                                     |
| LAG-07    | Lagoon Area    | 8                 | 6 - 7'                | No                    | PID = 25.1 @ 6'                                                     |
| LAG-08    |                | 20                | 8 - 9'                | Yes                   | PID = 1.1 @ 8'                                                      |
| LAG-09    |                | 20                | 8 - 9'                | No                    | PID = 35.1 @ 8'                                                     |
| LAG-10    |                | 20                | 5 - 6'                | No                    | PID = Bgnd                                                          |
| LDA-01    |                | 6.2               | None                  | No                    | Refusal on concrete, no samples                                     |
| LDA-02    | Plant #5 Large | 6.1               | None                  | No                    | Refusal on concrete, no samples                                     |
| LDA-03    | Degreaser      | 20                | 16 - 16.5'            | Yes                   | PID = 15 just below floor slab; Bgnd on soil                        |
| LDA-04    | Area           | 20                | 2 - 3'                | Yes                   | PID = Bgnd                                                          |
| LDA-05    | Alea           | 20                | 3 - 4'                | No                    | PID = 1.4 @ 3'                                                      |
| LDA-06    |                | 20                | 6 - 7'                | Yes                   | PID = Bgnd                                                          |
| DDP-01    | Discharge Pipe | 9.4               | 7 - 8'                | Yes                   | PID = 28 @ 7'                                                       |
| DDP-02    | and Drainage   | 8.6               | 7 - 8'                | Yes                   | PID = 9.8 @ 7'                                                      |
| DDP-03    | Swale          | 6.8               | 5, - 6'               | No                    | No water encountered. PID = 358 @ 5'                                |
| DDP-04    | Swale          | 5.5               | 4.5 - 5.5'            | No                    | No water encountered. PID = Bgnd                                    |
| Vault     | Plant #8       |                   |                       | _                     | Vault near western edge of Plant #8                                 |
|           |                |                   |                       |                       | -                                                                   |

PID = Photo Ionization Detector (Value shown is in parts per million at designated depth below ground surface)

Bgnd = Background

|                             |                                |                           | <del></del>                    |                            |
|-----------------------------|--------------------------------|---------------------------|--------------------------------|----------------------------|
|                             |                                | SOIL ANALYTES             |                                |                            |
| VOLATILES                   |                                |                           |                                |                            |
| 1,1,1,2-Tetrachloroethane   | 1,2-Dichloroethane             | Bromomethane              | Ethylbenzene                   | Vinyl Acetate              |
| 1,1,1-Trichloroethane       | 1,2-Dichloropropane            | Carbon Disulfide          | Isopropylbenzene               | cis-1,2-Dichloroethene     |
| 1,1,2,2-Tetrachloroethane   | 1,3,5-Trimethylbenzene         | Carbon Tetrachloride      | MEK                            | cis-1,3-Dichloropropene    |
| 1,1,2-Trichloroethane       | 1,3-Dichloropropane            | Chlorobenzene             | MIBK                           | m/p-Xylene                 |
| 1,1-Dichloroethane          | 2,2-Dichloropropane            | Chloroethane              | Methyl Tert-Butyl Ether        | n-Butylbenzene             |
| 1,1-Dichloroethene          | 2-Hexanone                     | Chloroethene              | Methylene Chloride             | n-Propylbenzene            |
| 1,1-Dichloropropene         | 4-Isopropyltoluene             | Chloroform                | Sec-Butylbenzene               | o-Chlorotoluene            |
| 1,2,3-Trichlorobenzene      | Acetone                        | Chloromethane             | Styrene                        | o-Xylene                   |
| 1,2,3-Trichloropropane      | Benzene                        | Diallate (Cis or Trans)   | Tert-Butylbenzene              | p-Chlorotoluene            |
| 1,2,4-Trimethylbenzene      | Bromobenzene                   | Dibromochloromethane      | Tetrachloroethene              | tert-Butyl Acetate         |
| 1,2-Dibromo-3-chloropropane | Bromodichloromethane           | Dibromomethane            | Toluene                        | trans-1,2-Dichloroethene   |
| 1,2-Dibromoethane           | Bromoform                      | Dichlorodifluoromethane   | Trichlorofluoromethane         | trans-1,3-Dichloropropene  |
| SEMIVOLATILES               |                                |                           | <u> </u>                       |                            |
| 1,2,4,5-Tetrachlorobenzene  | 2-Picoline (2-Methylpyridine)  | Di-n-butylphthalate       | N-Nitrosodipropylamine         | bis(2-Ethylhexyl)phthalate |
| ,2,4-Trichlorobenzene       | 3&4-Methylphenol               | Di-n-octylphthalate       | N-Nitrosomethylethylamine      | o-Toluidine                |
| 1,2-Dichlorobenzene         | 3,3'-Dichlorobenzidine         | Diethylphthalate          | N-Nitrosomorpholine            | t-Butyl alcohol            |
| 1,3-Dichlorobenzene         | 3-Methylcholanthrene           | Dimethoate                | N-nitrosopiperidine            | 2-Methylnaphthalene        |
| 4-Dichlorobenzene           | 3-Nitroaniline                 | Dimethylaminoazobenzene   | N-Nitrosodimethylamine         | Acenaphthene               |
| 1,4-Dioxane                 | 4,6-Dinitro-2-methylphenol     | Dimethylphthalate         | Naphthalene                    | Acenaphthylene             |
| ,4-Naphthoquinone           | 4-Aminobiphenyl                | Diphenylamine             | Nitrobenzene                   | Anthracene                 |
| 2,3,4,6-Tetrachlorophenol   | 4-Bromophenyl-phenyl ether     | Ethyl Parathion           | O,O,O-Triethylphosphorothioate | Benzo(g,h,i)perylene       |
| 2,4,5-Trichlorophenol       | 4-Chloro-3-methylphenol        | Ethyl methanesulfonate    | PCTFB                          | Dibenzofuran               |
| 2,4,6-Trichlorophenol       | 4-Chloroaniline                | Fluorene                  | Pentachlorethane               | Fluoranthene               |
| 2,4-Dichlorophenol          | 4-Chlorophenyl-phenyl ether    | Hexachlorobenzene         | Pentachlorobenzene             | Phenanthrene               |
| 2,4-Dimethylphenol          | 4-Nitroaniline                 | Hexachlorobutadiene       | Pentachloronitrobenzene        | Pyrene                     |
| 2,4-Dinitrophenol           | 4-Nitrophenol                  | Hexachlorocyclopentadiene | Phenol                         | Benz(a)anthracene          |
| 2,4-Dinitrotoluene          | 5-Nitro-o-toluidine            | Hexachloroethane          | Pronamide                      | Benzo(a)pyrene             |
| 2,6-Dichlorophenol          | 7,12-Dimethylbenz(a)-anthracen | Hexachloropropene         | Pyridine                       | Benzo(b)fluoranthene       |
| 2-Acetylaminofluorene       | Acetophenone                   | Indeno-1,2,3-cd-pyrene    | Safrole                        | Benzo(k)fluoranthene       |
| 2-Chloronaphthalene         | Aniline                        | Isophorone                | Tetrahydrofuran                | Chrysene                   |
| 2-Chlorophenol              | Aramite                        | Methyl Methanesulfonate   | Thionazine                     | Dibenzo(a,h)anthracene     |
| 2-Methylphenol              | Benzyl alcohol                 | N-Nitrosodibutylamine     | bis(2-Chloroethoxy)methane     | ,,,,                       |
| ?-Nitroaniline              | Butylbenzylphthalate           | N-Nitrosodiethylamine     | bis(2-Chloroethyl)ether        |                            |
| 2-Nitrophenol               | Chlorobenzilate                | N-Nitrosodimethylamine    | bis(2-Chloroisopropyl)ether    |                            |

|                      |                  | SOIL ANALYTES (Con | tinued)           |               |
|----------------------|------------------|--------------------|-------------------|---------------|
| SEMIVOLATILES (Conti | nued)            |                    |                   |               |
| Explosives           | Pesticides       |                    |                   | Herbicides    |
| I,3-Dinitrobenzene   | 4,4'-DDD         | Endosulfan II      | Lindane           | Dinoseb       |
| 2,6-Dinitrotoluene   | 4,4'-DDE         | Endrin             | alpha-BHC         | Disulfoton    |
|                      | 4,4'-DDT         | Heptachlor         | beta-BHC          | Phorate       |
|                      | Aldrin           | Heptachlor Epoxide | delta-BHC         | Sulfotep      |
|                      | Dieldrin         | Isodrin            | Methoxychlor      |               |
|                      | Endosulfan I     | Isosafrole         | Pentachlorophenol |               |
| INORGANICS           |                  |                    |                   |               |
| Aluminum             | Cadmium          | Lead               | Selenium          | Conventionals |
| Antimony             | Calcium          | Magnesium          | Silver            | Acidity       |
| Arsenic              | Chromium         | Manganese          | Sodium            | Moisture      |
| Barium               | Cobalt Compounds | Mercury            | Thallium          | Solids        |
| Beryllium            | Copper           | Nicke!             | Vanadium          |               |
| Boron                | Iron             | Potassium          | Zinc              |               |

|                            |                                | GROUNDWATER ANALY         | ΓES                            |                             |
|----------------------------|--------------------------------|---------------------------|--------------------------------|-----------------------------|
| VOLATILES                  |                                |                           |                                |                             |
| 1,1,1,2-Tetrachloroethane  | 1,2-Dichloropropane            | Carbon Tetrachloride      | MEK                            | cis-1,2-Dichloroethene      |
| ,1,1-Trichloroethane       | 1,3,5-Trimethylbenzene         | Chlorobenzene             | MIBK                           | cis-1,3-Dichloropropene     |
| 1,1,2,2-Tetrachloroethane  | 1,3-Dichloropropane            | Chloroethane              | Methane                        | m/p-Xylene                  |
| 1,1,2-Trichloroethane      | 2,2-Dichloropropane            | Chloroethene              | Methyl Tert-Butyl Ether        | n-Butylbenzene              |
| ,1-Dichloroethane          | 2-Hexanone                     | Chloroform                | Methylene Chloride             | n-Propylbenzene             |
| ,1-Dichloroethene          | 4-Isopropyltoluene             | Chloromethane             | Sec-Butylbenzene               | o-Chlorotoluene             |
| I,I-Dichloropropene        | Acetone                        | Diallate (Cis or Trans)   | Styrene                        | o-Xylene                    |
| 1,2,3-Trichlorobenzene     | Benzene                        | Dibromochloromethane      | Tert-Butylbenzene              | p-Chlorotoluene             |
| ,2,3-Trichloropropane      | Bromobenzene                   | Dibromomethane            | Tetrachloroethene              | tert-Butyl Acetate          |
| 1,2,4-Trimethylbenzene     | Bromodichloromethane           | Dichlorodifluoromethane   | Toluene                        | trans-1,2-Dichloroethene    |
| .2-Dibromo-3-chloropropane | Bromoform                      | Ethane                    | Trichloroethene                | trans-1,3-Dichloropropene   |
| 1,2-Dibromoethane          | Bromomethane                   | Ethylbenzene              | Trichlorofluoromethane         |                             |
| 1,2-Dichloroethane         | Carbon Disulfide               | Isopropylbenzene          | Vinyl Acetate                  |                             |
| SEMIVOLATILES              |                                |                           |                                |                             |
| ,2,4,5-Tetrachlorobenzene  | 2-Picoline (2-Methylpyridine)  | Chlorobenzilate           | N-Nitrosodiethylamine          | bis(2-Chloroethyl)ether     |
| 1,2,4-Trichlorobenzene     | 3&4-Methylphenol               | Di-n-butylphthalate       | N-Nitrosodimethylamine         | bis(2-Chloroisopropyl)ether |
| ,2-Dichlorobenzene         | 3,3'-Dichlorobenzidine         | Di-n-octylphthalate       | N-Nitrosodipropylamine         | bis(2-Ethylhexyl)phthalate  |
| ,3-Dichlorobenzene         | 3-Methylcholanthrene           | Diethylphthalate          | N-Nitrosomethylethylamine      | o-Toluidine                 |
| ,4-Dichlorobenzene         | 3-Nitroaniline                 | Dimethoate                | N-Nitrosomorpholine            | t-Butyl alcohol             |
| ,4-Dioxane                 | 4,6-Dinitro-2-methylphenol     | Dimethylaminoazobenzene   | N-nitrosopiperidine            | Benz(a)anthracene           |
| ,4-Naphthoquinone          | 4-Aminobiphenyl                | Dimethylphthalate         | Naphthalene                    | Benzo(a)pyrene              |
| 2,3,4,6-Tetrachlorophenol  | 4-Bromophenyl-phenyl ether     | Diphenylamine             | Nitrobenzene                   | Benzo(b)fluoranthene        |
| 2,4,5-Trichlorophenol      | 4-Chloro-3-methylphenol        | Ethyl Parathion           | O,O,O-Triethylphosphorothioate | Benzo(k)fluoranthene        |
| 1,4,6-Trichlorophenol      | 4-Chloroaniline                | Ethyl methanesulfonate    | PCTFB                          | Chrysene                    |
| ,4-Dichlorophenol          | 4-Chlorophenyl-phenyl ether    | Fluorene                  | Pentachlorethane               | Dibenzo(a,h)anthracene      |
| ,4-Dimethylphenol          | 4-Nitroaniline                 | Hexachlorobenzene         | Pentachlorobenzene             | 2-Methylnaphthalene         |
| ,4-Dinitrophenol           | 4-Nitrophenol                  | Hexachlorobutadiene       | Pentachloronitrobenzene        | Acenaphthene                |
| ,4-Dinitrotoluene          | 5-Nitro-o-toluidine            | Hexachlorocyclopentadiene | Phenol                         | Acenaphthylene              |
| ,6-Dichlorophenol          | 7,12-Dimethylbenz(a)-anthracen | Hexachloroethane          | Pronamide                      | Anthracene                  |
| -Acetylaminofluorene       | Acetophenone                   | Hexachloropropene         | Pyridine                       | Benzo(g,h,i)perylene        |
| -Chloronaphthalene         | Aniline                        | Indeno-1,2,3-cd-pyrene    | Safrole                        | Dibenzofuran                |
| -Chlorophenol              | Aramite                        | Isophorone                | Tetrahydrofuran                | Fluoranthene                |
| -Methylphenol              | Benzyl alcohol                 | Methyl Methanesulfonate   | Thionazine                     | Phenanthrene                |
| -Nitroaniline              | Butylbenzylphthalate           | N-Nitrosodibutylamine     | bis(2-Chloroethoxy)methane     | Pyrene                      |
| -Nitrophenol               |                                |                           |                                |                             |

|                        |                    | GROUNDWATER ANALYTE | S (Continued)     |            |
|------------------------|--------------------|---------------------|-------------------|------------|
| SEMIVOLATILES (Continu | ued)               |                     |                   |            |
| Explosives             | Pesticides / PCBs  |                     |                   | Herbicides |
| 1,3-Dinitrobenzene     | 4,4'-DDD           | Endosulfan II       | Lindane           | Dinoseb    |
| 2,6-Dinitrotoluene     | 4,4'-DDE           | Endrin              | alpha-BHC         | Disulfoton |
|                        | 4,4'-DDT           | Heptachlor          | beta-BHC          | Phorate    |
|                        | Aldrin             | Heptachlor Epoxide  | delta-BHC         | Sulfotep   |
|                        | Dieldrin           | Isodrin             | Methoxychlor      |            |
|                        | Endosulfan I       | Isosafrole          | Pentachlorophenol |            |
| DISSOLVED INORGANICS   | S                  |                     |                   |            |
| Aluminum               | Boron              | Copper              | Mercury           | Sodium     |
| Antimony               | Cadmium            | Iron                | Nickel            | Thallium   |
| Arsenic                | Calcium            | Lead                | Potassium         | Vanadium   |
| Barium                 | Chromium Compounds | Magnesium           | Selenium          | Zinc       |
| Beryllium Compounds    | Cobalt Compounds   | Manganese           | Silver            |            |
| TOTAL INORGANICS       |                    |                     |                   |            |
| Aluminum               | Boron              | Copper              | Mercury           | Sodium     |
| Antimony               | Cadmium            | Iron                | Nickel            | Thallium   |
| Arsenic                | Calcium            | Lead                | Potassium         | Vanadium   |
| Barium                 | Chromium Compounds | Magnesium           | Selenium          | Zinc       |
| Beryllium Compounds    | Cobalt Compounds   | Manganese           | Silver            |            |
| Conventionals (mg/L)   |                    |                     |                   | !          |
| Alkalinity             | Nitrate (No3)      |                     | :                 |            |
| C                      | Nitrite            |                     |                   |            |
| Chloride               | S                  |                     |                   |            |
| Fluoride               | Sulfate            |                     |                   |            |

# TABLE 3 BISHOP TUBE SITE SUPPLEMENTAL INVESTIGATION VOCs IN SOILS

| Sample ID                 | PA ACT 2     | VSP-01-07  | VSP-01-10  | VSP-02-03  | VSP-02-11  | VSP-03-03  | VSP-03-03DUP | VSP-03-11  | VSP-04-03  |
|---------------------------|--------------|------------|------------|------------|------------|------------|--------------|------------|------------|
| _ <del>_</del>            | 1            |            |            |            |            |            |              |            | ¥3F-04-03  |
| Sequence Number           | Soil         | 140        | 143        | 145        | 148        | 151        | 154          | 157        | 160        |
| Sample Date               | Criteria (1) | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007   | 05-24-2007 | 05-24-2007 |
|                           | (ug/kg)      |            |            |            |            |            |              |            |            |
| Volatiles (ug/kg)         |              |            |            |            |            |            |              |            |            |
| 1.1.1-Trichloroethane     | 20,000       | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| 1,1-Dichloroethane        | 11,000       | 51.6 U     | 57.7 U     | . 47.8 U   | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| 1,1-Dichloroethene        | 700          | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| 1.2.4-Trimethylbenzene    | 20,000       | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| 1,3,5-Trimethylbenzene    | 6,000        | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| 4-Isopropyltoluene        | NE           | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50,6 U     | 51.8 U     |
| Chloroethene              | 200          | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| Ethylbenzene              | 70,000       | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| Tetrachloroethene         | 500          | 51.6 U     | 57.7 U     | 53.4       | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| Toluene                   | 100,000      | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| Trichloroethene           | 500          | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| cis-1,2-Dichloroethene    | 7,000        | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| m/p-Xylene <sup>(2)</sup> | 1,000,000    | 103 U      | 115 U      | 95.7 U     | 106 U      | 97.6 U     | 102 U        | 101 U      | 104 U      |
| n-Propylbenzene           | 780,000      | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| o-Xylene <sup>(2)</sup>   | 1,000,000    | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |
| trans-1,2-Dichloroethene  | 10,000       | 51.6 U     | 57.7 U     | 47.8 U     | 53.1 U     | 48.8 U     | 50.9 U       | 50.6 U     | 51.8 U     |

#### Notes:

- (1) Non-Residential Soil, Lowest-Direct Contact vs S-GW (highest of 100X & Generic), Used Aquifer, TDS <2,500 mg/L
- (2) Screening value for xylenes (total) used as a surrogate.

NA- Not Analyzed

NE - Not Established

- J Indicates an estimated value, below the quantification limit, but above the method detection limit.
- Q This flag identifies the average of multiple results from multiple analysis, or the average of the averages of dual column analysis methods.
- U Indicates compound was analyzed for but not detected. The sample quantitation limit is reported.

Bolded value indicates that the detected concentration is greater than the method detection limit.

Bolded and shaded value indicates that the detected concentration is greater than the method detection limit and PA ACT 2 screening criteria.

TABLE 3
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
VOCs IN SOILS

| Sample ID                 | PA ACT 2     | VSP-05-15  | VSP-06-06  | LAG-01-05  | LAG-02-05  | LAG-02-16  | LAG-03-16  | LAG-04-11     | LAG-05-06  |
|---------------------------|--------------|------------|------------|------------|------------|------------|------------|---------------|------------|
| Sequence Number           | Soil         | 163        | 176        | 184        | 187        | 190        | 198        | 209           | 212        |
| Sample Date               | Criteria (1) | 05-29-2007 | 05-29-2007 | 05-29-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007    | 05-30-2007 |
|                           | (ug/kg)      |            |            |            |            |            |            |               |            |
| Volatiles (ug/kg)         |              |            |            |            |            |            |            |               |            |
| 1,1,1-Trichloroethane     | 20,000       | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U.    | 56.1 U     | 44.3 U     | 49.7 U        | 56.6 U     |
| 1,1-Dichloroethane        | 11,000       | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 56.1 U     | 44.3 U     | 49.7 U        | 56.6 U     |
| 1,1-Dichloroethene        | 700          | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 56.1 U     | 44.3 U     | 49.7 U        | 56.6 U     |
| 1,2,4-Trimethylbenzene    | 20,000       | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 76.7       | 44.3 U     | 49.7 U        | 56.6 U     |
| 1,3,5-Trimethylbenzene    | 6,000        | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 33.8 J     | 44.3 U     | 49.7 U        | 58.1       |
| 4-Isopropyltoluene        | NE           | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 167        | 44.3 U     | 49.7 U        | 56.6 U     |
| Chloroethene              | 200          | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 56.1 U     | 44.3 U     | 49.7 U        | 365        |
| Ethylbenzene              | 70,000       | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 56.1 U     | 44.3 U     | 49.7 U        | 56.6 U     |
| Tetrachloroethene         | 500          | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 56.1 U     | 44.3 U     | 49.7 U        | 56.6 U     |
| Toluene                   | 100,000      | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 56.1 U     | 44.3 U     | 21.6 J        | 43.5 J     |
| Trichloroethene           | 500          | 47.6 U     | 47.1 U     | 337        | 135        | 56.1 U     | 40.4 J     | 53.7          | 164        |
| cis-1,2-Dichloroethene    | 7,000        | 47.6 U     | 47.1 U     | 126        | 47.8 U     | 283        | 44.3 U     | 878           | 3990       |
| m/p-Xylene <sup>(2)</sup> | 1,000,000    | 95.1 U     | 94.2 U     | 103 U      | 95.6 U     | 112 U      | 88.6 U     | 99.4 U        | 113 U      |
| n-Propylbenzene           | 780,000      | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 56.1 U     | 44.3 U     | 49.7 U        | 36.2 J     |
| o-Xylene <sup>(2)</sup>   | 1,000,000    | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 56.1 U     | 44.3 U     | <b>49.7</b> U | 56.6 U     |
| trans-1,2-Dichloroethene  | 10,000       | 47.6 U     | 47.1 U     | 51.7 U     | 47.8 U     | 77.4       | 44.3 U     | 56            | 322        |

TABLE 3
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
VOCs IN SOILS

| Sample ID                 | PA ACT 2     | LAG-05-12  | LAG-06-06  | LAG-07-06  | LAG-08-08  | LAG-09-08  | LAG-10-05  | LDA-03-16  | LDA-04-02      |
|---------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|----------------|
| Sequence Number           | Soil         | 215        | 218        | 221        | 224        | 231        | 267        | 234        | 236            |
| Sample Date               | Criteria (1) | 05-30-2007 | 05-31-2007 | 05-31-2007 | 05-31-2007 | 05-31-2007 | 06-05-2007 | 05-31-2007 | 05-31-2007     |
|                           | (ug/kg)      |            |            |            |            |            |            | :          |                |
| Volatiles (ug/kg)         |              |            |            |            |            |            |            |            |                |
| 1,1,1-Trichloroethane     | 20,000       | 49.4 U     | 54.6 U     | 59.4 U     | 52.3 U     | 55.2 U     | 50.6 U     | 55.5 U     | 57.3 U         |
| 1,1-Dichloroethane        | 11,000       | 49.4 U     | 54.6 U     | 59.4 U     | 52.3 U     | 55.2 U     | 50.6 U     | 55.5 U     | <u>5</u> 7.3 U |
| 1,1-Dichloroethene        | 700          | 49.4 U     | 54.6 U     | 59.4 U     | 52.3 U     | 55.2 U     | 50.6 U     | 55.5 U     | 57.3 U         |
| 1,2,4-Trimethylbenzene    | 20,000       | 49.4 U     | 2720       | 1420 Q     | 52.3 U     | 3660 Q     | 50.6 U     | 55.5 U     | 57.3 U         |
| 1,3,5-Trimethylbenzene    | 6,000        | 49.4 U     | 1490       | 734 Q      | 52.3 U     | 1710 Q     | 50.6 U     | 55.5 U     | 57.3 U         |
| 4-Isopropyltoluene        | NE           | 49.4 U     | 54.6 U     | 59.4 U     | 52.3 U     | 1510 Q     | 50.6 U     | 55.5 U     | 57.3 U         |
| Chloroethene              | 200          | 49.4 U     | 54.6 U     | 59.4 U     | 52.3 U     | 55.2 U     | 50.6 U     | 55.5 U     | 57.3 U         |
| Ethylbenzene              | 70,000       | 49.4 U     | 30.4 J     | 59.4 U     | 52.3 U     | 55.2 U     | 50.6 U     | 55.5 U     | 57.3 U         |
| Tetrachloroethene         | 500          | 49.4 U     | 54.6 U     | 59.4 U     | 52.3 U     | 55.2 U     | 50.6 U     | 55.5 U     | 57.3 U         |
| Toluene                   | 100,000      | 49.4 U     | 404        | 513        | 52.3 U     | 561 Q      | 50.6 U     | 55.5 U     | 57.3 U         |
| Trichloroethene           | 500          | 49.4 U     | 54.6 U     | 59.4 U     | 52.3 U     | 166        | 488        | 55.5 U     | 57.3 U         |
| cis-1,2-Dichloroethene    | 7,000        | 98.2       | 4320       | 8260       | 52.3 U     | 26600      | 128        | 55.5 U     | 57.3 U         |
| m/p-Xylene <sup>(2)</sup> | 1,000,000    | 98.8 U     | 117        | 84.8 J     | 105 U      | 160        | 101 U      | 111 U      | 115 U          |
| n-Propylbenzene           | 780,000      | 49.4 U     | 246        | 138        | 52.3 U     | 346        | 50.6 U     | 55.5 U     | 57.3 U         |
| o-Xylene <sup>(2)</sup>   | 1,000,000    | 49.4 U     | 196        | 121        | 52.3 U     | 233        | 50.6 U     | 55.5 U     | 57.3 U         |
| trans-1,2-Dichloroethene  | 10,000       | 49.4 U     | 121        | 63.1       | 52.3 U     | 323        | 50.6 U     | 55.5 U     | 57.3 U         |

TABLE 3
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
VOCs IN SOILS

| Sample ID                 | PA ACT 2     | LDA-05-03  | LDA-06-06  | DDP-01-07  | DDP-02-07     | DDP-03-06  | DDP-04-05  | Pump Pit Sed |
|---------------------------|--------------|------------|------------|------------|---------------|------------|------------|--------------|
| Sequence Number           | Soil         | 239        | 240        | 247        | 254           | 261        | 264        | 242          |
| Sample Date               | Criteria (1) | 06-04-2007 | 06-04-2007 | 06-05-2007 | 06-05-2007    | 06-05-2007 | 06-05-2007 | 06-04-2007   |
|                           | (ug/kg)      |            |            |            |               |            |            |              |
| Volatiles (ug/kg)         |              |            |            |            |               |            |            |              |
| 1,1,1-Trichloroethane     | 20,000       | 50.1 U     | 50.5 U     | 1720       | 3650          | 3420 Q     | 46.7 U     | 1840 U       |
| 1,1-Dichloroethane        | 11,000       | 50.1 U     | 50.5 U     | 48.3 J     | 54.3 U        | 125        | 46.7 U     | 1840 U       |
| 1,1-Dichloroethene        | 700          | 50.1 U     | 50.5 U     | 56.2       | 54.3 U        | 630 Q      | 46.7 U     | 1840 U       |
| 1,2,4-Trimethylbenzene    | 20,000       | 50.1 U     | 50.5 U     | 52.8 U     | 54.3 U        | 38.7 J     | 46.7 Ū     | 1840 U       |
| 1,3,5-Trimethylbenzene    | 6,000        | 50.1 U     | 50.5 U     | 52.8 U     | 54.3 U        | 49.9 U     | 46.7 U     | 1840 U       |
| 4-Isopropyltoluene        | NE           | 50.1 U     | 50.5 U     | 52.8 U     | 54.3 U        | 49.9 U     | 46.7 U     | 1840 U       |
| Chloroethene              | 200          | 50.1 U     | 50.5 U     | 52.8 U     | 54.3 U        | 49.9 U     | 46.7 U     | 21400        |
| Ethylbenzene              | 70,000       | 50.1 U     | 50.5 U     | 52.8 U     | 54.3 U        | 49.9 U     | 46.7 U     | 1840 U       |
| Tetrachloroethene         | 500          | 50.1 U     | 50.5 U     | 52.8 U     | 54.3 U        | 55.7       | 46.7 U     | 1840 U       |
| Toluene                   | 100,000      | 50.1 U     | 50.5 U     | 52.8 U     | 54.3 U        | 362        | 46.7 U     | 1840 U       |
| Trichloroethene           | 500          | 68.2       | 268        | 793        | 1000          | 11800      | 46.7 U     | 1840 U       |
| cis-1,2-Dichloroethene    | 7,000        | 50.1 U     | 50.5 U     | 282        | 305           | 953 Q      | 46.7 U     | 14900        |
| m/p-Xylene <sup>(2)</sup> | 1,000,000    | 100 U      | 101 U      | 106 U      | 109 U         | 99.8 U     | 93.4 U     | 1500 J       |
| n-Propylbenzene           | 780,000      | 50.1 U     | 50.5 U     | 52.8 U     | 54.3 U        | 49.9 U     | 46.7 U     | 1840 U       |
| o-Xylene <sup>(2)</sup>   | 1,000,000    | 50.1 U     | 50.5 U     | 52.8 U     | 54.3 U        | 49.9 U     | 46.7 U     | 698 J        |
| trans-1,2-Dichloroethene  | 10,000       | 50.1 U     | 50.5 U     | 52.8 U     | <b>54.3</b> U | 49.9 U     | 46.7 U     | 1840 U       |

TABLE 4
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
SVOCs IN SOILS

| Sample ID                  | PA ACT 2           | VSP-01-07  |            | VSP-01-10  | VSP-02-03  |            | VSP-02-11  |            | VSP-03-03  |              |
|----------------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|
| Sequence Number            | Soil               | 140        | 141        | 143        | 145        | 146        | 148        | 149        | 151        | 152          |
| Sample Date                | Criteria (1)       | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007   |
|                            | (ug/kg)            |            |            |            |            |            |            |            |            |              |
| Semivolatiles (ug/kg)      |                    |            |            |            |            |            |            |            |            |              |
| 1,2-Dichlorobenzene*       | 60,000             | 51.6 U     | 846 U      | 57.7 U     | 47.8 U     | 836 U      | 53.1 U     | 755 U      | 48.8 U     | 797 U        |
| 1,3-Dichlorobenzene*       | 61,000             | 51.6 U     | 846 U      | 57.7 U     | 47.8 U     | 836 U      | 53.1 U     | 755 U      | 48.8 U     | 797 U        |
| 1,4-Dichlorobenzene*       | 10,000             | 51.6 U     | 846 U      | 556        | 47.8 U     | 836 U      | 53.1 U     | 755 U      | 48.8 U     | <b>797</b> U |
| 3&4-Methylphenol           | 51,000             | NA         | 3390 U     | NA         | NA         | 3340 U     | NA         | 3020 U     | NA         | 3190 U       |
| Di-n-butylphthalate        | 4,100,000          | NA         | 241 J      | NA         | NA         | 276 J      | NA         | 109 J      | NA         | 64.3 J       |
| Hexachlorobenzene          | 960                | NA         | 846 U      | NA         | NA         | 836 U      | NA         | 755 U      | NA         | 797 U        |
| Indeno-1,2,3-cd-pyrene     | 360                | NA         | 423 U      | NA         | NA         | 418 U      | NA         | 377 U      | NA         | 398 U        |
| Naphthalene*               | 25,000             | 51.6 U     | 423 U      | 1750       | 47.8 U     | 418 U      | 53.1 U     | 377 U      | 48.8 U     | 398 U        |
| Pentachlorobenzene         | 660,000            | NA         | 846 U      | NA         | NA         | 836 U      | NA         | 755 U      | NA         | 797 U        |
| bis(2-Ethylhexyl)phthalate | 130,000            | NA NA      | 54.5 J     | NΑ         | NA         | 836 U      | NA         | 41.8 J     | NA         | 797 U        |
| 2-Methylnaphthalene        | 8,000,000          | NA         | 846 U      | NA         | NA         | 26.3 J     | NA NA      | 755 U      | NA         | 797 U        |
| Acenaphthene               | 4,700,000          | NA         | 423 U      | NA         | NA         | 418 U      | NA         | 377 U      | NA         | 398 U        |
| Anthracene                 | 350,000            | NA         | 423 U      | NA         | NA         | 418 U      | NA         | 377 U      | NA         | 398 U        |
| Benzo(g,h,i)perylene       | 180,000            | NA NA      | 423 U      | NA         | NA NA      | 418 U      | NA         | 377 U      | NA         | 398 U        |
| Fluoranthene               | 3,200,000          | NA_        | 423 U      | NA         | NA         | 418 U      | NA         | 377 U      | NA         | 398 U        |
| Phenanthrene               | 10,000,000         | NA         | 423 U      | NA _       | NA NA      | 418 U      | NA NA      | 377 U      | NA         | 398 U        |
| Pyrene                     | 2,200,000          | NA NA      | 423 U      | NA         | NA NA      | 418 U      | NA         | 377 U      | NA         | 398 U        |
| Benzo(a)pyrene             | 11,000             | NA         | 423 U      | NA         | NA         | 418 U      | NA NA      | 377 U      | NA         | 398 U        |
| Benzo(k)fluoranthene       | 610,000            | NA         | 423 U      | NA         | NA         | 418 U      | NA         | 377 U      | NA         | 398 U        |
| Chrysene                   | 230,000            | NA         | 423 U      | NA         | NA         | 418 U      | NA         | 377 U      | NA         | 398 U        |
| Explosives (ug/kg)         | Explosives (ug/kg) |            |            |            |            |            |            |            |            |              |
| 2,6-Dinitrotoluene         | 10,000             | NA         | 846 U      | NA         | NA         | 836 U      | NA         | 755 U      | NA         | 797 U        |

#### Notes:

(1) Non-Residential Soil, Lowest-Direst Contact vs S-GW (highest of 100X & Generic), Used Aquifer, TDS<2500

#### NA- Not Analyzed

- J Indicates an estimated value, below the quantification limit, but above the method detection limit.
- Q This flag identifies the average of multiple results from multiple analysis, or the average of the averages of dual column analysis methods.
- U Indicates compound was analyzed for but not detected. The sample quantitation limit is reported.

Bolded value indicates that the detected concentration is greater than the method detection limit.

<sup>\* -</sup> Analyzed under both the VOC and SVOC methods. Both results reported with the SVOCs.

TABLE 4
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
SVOCS IN SOILS

| Sample ID                  | PA ACT 2           | VSP-03-03DUP |            | VSP-03-11  |            | VSP-04-03  |              | VSP-05-15  |            |  |  |
|----------------------------|--------------------|--------------|------------|------------|------------|------------|--------------|------------|------------|--|--|
| Sequence Number            | Soil               | 154          | 155        | 157        | 158        | 160        | 161          | 163        | 164        |  |  |
| Sample Date                | Criteria (1)       | 05-24-2007   | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007   | 05-29-2007 | 05-29-2007 |  |  |
|                            | (ug/kg)            |              |            |            |            |            |              |            |            |  |  |
| Semivolatiles (ug/kg)      |                    |              |            |            |            |            |              |            |            |  |  |
| 1,2-Dichlorobenzene*       | 60,000             | 50.9 U       | 831 U      | 50.6 U     | 746 U      | 51.8 U     | 746 U        | 47.6 U     | 762 U      |  |  |
| 1,3-Dichlorobenzene*       | 61,000             | 50.9 U       | 831 U      | 50.6 U     | 746 U      | 51.8 U     | 746 U        | 47.6 U     | 762 U      |  |  |
| 1,4-Dichlorobenzene*       | 10,000             | 50.9 U       | 831 U      | 50.6 U     | 746 U      | 51.8 U     | 746 U        | 47.6 U     | 762 U      |  |  |
| 3&4-Methylphenol           | 51,000             | NA           | 3320 U     | NA         | 2980 U     | NA         | 2980 U       | NA         | 3050 U     |  |  |
| Di-n-butylphthalate        | 4,100,000          | NA .         | 831 U      | NA         | 204 J      | NA         | 746 U        | NA         | 762 U      |  |  |
| Hexachlorobenzene          | 960                | NA           | 831 U      | NA         | 746 U      | NA         | 746 U        | NA         | 762 U      |  |  |
| Indeno-1,2,3-cd-pyrene     | 360                | NA           | 416 U      | NA         | 373 U      | NA         | 373 U        | NA         | 381 U      |  |  |
| Naphthalene*               | 25,000             | 50.9 U       | 416 U      | 50.6 U     | 373 U      | 51.8 U     | 373 U        | 47.6 U     | 381 U      |  |  |
| Pentachlorobenzene         | 660,000            | NA           | 831 U      | NA         | 746 U      | NA         | 746 U        | NA         | 762 U      |  |  |
| bis(2-Ethylhexyl)phthalate | 130,000            | NA           | 831 U      | NA         | 746 U      | NA         | 746 U        | NA NA      | 762 U      |  |  |
| 2-Methylnaphthalene        | 8,000,000          | NA           | 831 U      | NA         | 746 U      | NA         | 746 U        | NA         | 762 U      |  |  |
| Acenaphthene               | 4,700,000          | NA           | 416 U      | NA         | 373 U      | NA         | 373 U        | NA         | 381 U      |  |  |
| Anthracene                 | 350,000            | NA           | 416 U      | NA         | 373 U      | NA         | 373 U        | NA_        | 381 U      |  |  |
| Benzo(g,h,i)perylene       | 180,000            | NA           | 416 U      | NA         | 373 U      | NA         | 373 U        | NA         | 381 U      |  |  |
| Fluoranthene               | 3,200,000          | NA_          | 416 U.     | NA         | 373 U      | NA         | 373 U        | NA         | 381 U      |  |  |
| Phenanthrene               | 10,000,000         | NA           | 416 U      | NA         | 373 U      | NA         | 373 U        | NA         | 381 U      |  |  |
| Pyrene                     | 2,200,000          | NA           | 416 U      | NA         | 373 U      | NA         | 373 U        | NA         | .381 U     |  |  |
| Benzo(a)pyrene             | 11,000             | NA           | 416 U      | NA         | 373 U      | NA         | 373 U        | NA_        | 381 U      |  |  |
| Benzo(k)fluoranthene       | 610,000            | NA           | 416 U      | NA         | 373 U      | NA         | 373 U        | NA         | 381 U      |  |  |
| Chrysene                   | 230,000            | NA           | 416 U      | NA         | 373 U      | NA         | 373 U        | NA         | 381 U      |  |  |
| Explosives (ug/kg)         | Explosives (ug/kg) |              |            |            |            |            |              |            |            |  |  |
| 2,6-Dinitrotoluene         | 10,000             | NA           | 831 U      | NA         | 746 U      | NA         | <b>746</b> U | NA         | 762 U      |  |  |

TABLE 4
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
SVOCs IN SOILS

| Sample ID                  | PA ACT 2     | VSP-06-06  |              | LAG-01-05  |            | LAG-02-05  |            | LAG-02-16  |            |
|----------------------------|--------------|------------|--------------|------------|------------|------------|------------|------------|------------|
| Sequence Number            | Soil         | 176        | 177          | 184        | 185        | 187        | 188        | 190        | 191        |
| Sample Date                | Criteria (1) | 05-29-2007 | 05-29-2007   | 05-29-2007 | 05-29-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 |
|                            | (ug/kg)      |            |              |            |            |            |            |            |            |
| Semivolatiles (ug/kg)      |              |            |              |            |            |            |            |            |            |
| 1,2-Dichlorobenzene*       | 60,000       | 47.1 U     | 843 U        | 51.7 U     | 802 U      | 47.8 U     | 794 U      | 56.1 U     | 754 U      |
| 1,3-Dichlorobenzene*       | 61,000       | 47.1 U     | 843 U        | 51.7 U     | 802 U      | 47.8 U     | 794 U      | 56.1 U     | 754 U      |
| 1.4-Dichlorobenzene*       | 10,000       | 47.1 U     | 843 U        | 51.7 U     | 802 U      | 47.8 U     | 794 U      | 56.1 U     | 754 U      |
| 3&4-Methylphenol           | 51,000       | NA         | 3370 U       | NA NA      | 3210 U     | NA         | 3180 U     | NA_        | 73.9 J     |
| Di-n-butylphthalate        | 4,100,000    | NA         | 843 U        | NA         | 802 U      | NA         | 794 U      | NA         | 754 U      |
| Hexachlorobenzene          | 960          | NA         | 843 U        | NA_        | 802 U      | NA_        | 794 U      | NA         | 754 U      |
| Indeno-1,2,3-cd-pyrene     | 360          | NA         | 422 U        | NA         | 401 U      | NA         | 199 J      | NA         | 377 U      |
| Naphthalene*               | 25,000       | 47.1 U     | 422 U        | 51.7 U     | 401 U      | 47.8 U     | 397 U      | 56.1 U     | 377 U      |
| Pentachlorobenzene         | 660,000      | NA         | 843 U        | NA         | 802 U      | NA         | 794 U      | NA         | 754_U      |
| bis(2-Ethylhexyl)phthalate | 130,000      | NA NA      | 384 J        | NA         | 802 U      | NA         | 794 U      | NA         | 616 J      |
| 2-Methylnaphthalene        | 8,000,000    | NA         | 843 U        | NA         | 802 U      | NA         | 794 U      | NA         | 71 J       |
| Acenaphthene               | 4,700,000    | NA         | 422 U        | NA         | 401 U      | NA         | 397 U      | NA         | . 377 U    |
| Anthracene                 | 350,000      | NA         | 422 U        | NA         | 401 U      | NA         | 113 J      | NA         | 377 U      |
| Benzo(g,h,i)perylene       | 180,000      | NA         | 422 U        | NA NA      | 401 U      | NA         | 216 J      | NA_        | 377 U      |
| Fluoranthene               | 3,200,000    | NA         | 422 U        | NA         | 401 U      | NA NA      | 566        | NA         | 377 U      |
| Phenanthrene               | 10,000,000   | NA         | <b>422</b> U | NA         | 401 U      | NA         | 395 J      | NA         | 377 U      |
| Pyrene                     | 2,200,000    | NA         | 422 U        | NA         | 401 U      | NA NA      | 746        | NA         | 377 U      |
| Benzo(a)pyrene             | 11,000       | NA         | 422 U        | NA         | 401 U      | NA.        | 295 J      | NA NA      | 377 U      |
| Benzo(k)fluoranthene       | 610,000      | NA         | <b>422</b> U | NA         | 401 U      | NA         | 397 U      | NA_        | 377 U      |
| Chrysene                   | 230,000      | NA I       | 422 U        | NA         | 401 U      | NA         | 401        | NA         | 377 U      |
| Explosives (ug/kg)         |              |            |              |            |            |            |            |            |            |
| 2,6-Dinitrotoluene         | 10,000       | NA         | 843 U        | NA NA      | 802 U      | NA         | 794 U      | NA         | 754 U      |

TABLE 4
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
SVOCS IN SOILS

| Sample 1D                  | PA ACT 2     | LAG-       | 03-16      | LAG-       | 04-11      | LAG-       | 05-06      | LAG-       | 05-12      |
|----------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sequence Number            | Soil         | 198        | 199        | 209        | 210        | 212        | 213        | 215        | 216        |
| Sample Date                | Criteria (1) | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 |
|                            | (ug/kg)      |            |            |            |            |            |            |            |            |
| Semivolatiles (ug/kg)      |              |            |            |            |            |            |            |            |            |
| 1,2-Dichlorobenzene*       | 60,000       | 44.3 U     | 838 U      | 49.7 U     | 817 U      | 56.6 U     | 44 J       | 49.4 U     | 807 U      |
| 1,3-Dichlorobenzene*       | 61,000       | 44.3 U     | 838 U      | 49.7 U     | 817 U      | 140        | 735 U      | 49.4 U     | 807 U      |
| 1,4-Dichlorobenzene*       | 10,000       | 44.3 U     | 838 U      | 49.7 U     | 817 U      | 56.6 U     | 735 U      | 49.4 U     | 807 U      |
| 3&4-Methylphenol           | 51,000       | NA         | 3350 U     | NA_        | 3270 U     | NA         | 2940 U     | NA         | 3230 U     |
| Di-n-butylphthalate        | 4,100,000    | NA         | 838 U      | NA .       | 817 U      | NA         | 735 U      | NA         | 807 U      |
| Hexachlorobenzene          | 960          | NA         | 838 U      | NA         | 817 U      | NA         | 284 J      | NA         | 807 U      |
| Indeno-1,2,3-cd-pyrene     | 360          | NA         | 419 U      | NA         | 408 U      | NA         | 367 U      | NA         | 403 U      |
| Naphthalene*               | 25,000       | 44.3 U     | 419 U      | 49.7 U     | 408 U      | 56.6 U     | 75.5 J     | 49.4 U     | 403 U      |
| Pentachlorobenzene         | 660,000      | NA         | 838 U      | NA         | 817 U      | NA         | 436 J      | NA         | 807_U      |
| bis(2-Ethylhexyl)phthalate | 130,000      | NA         | 13500      | NA         | 817 U      | NA         | 735 U      | NA         | 807 U      |
| 2-Methylnaphthalene        | 8,000,000    | NA         | 838 U      | NA         | 306 J      | NA         | 214 J      | NA NA      | 807 U      |
| Acenaphthene               | 4,700,000    | NA         | 419 U      | NA         | 408 U      | NA         | 367 U      | NA         | 403 U      |
| Anthracene                 | 350,000      | NA         | 419 U      | NA         | 408 U      | NA         | 367 U      | NA         | 403 U      |
| Benzo(g,h,i)perylene       | 180,000      | NA         | 419 U      | NA         | 408 U      | NA         | 367 U      | NA_        | 403 U      |
| Fluoranthene               | 3,200,000    | NA         | 419 U      | NA         | 408 U      | NA         | 367 U      | NA_        | 403 U      |
| Phenanthrene               | 10,000,000   | NA         | 419 U      | NA         | 408 U      | NA         | 367 U      | NA_        | 403 U      |
| Pyrene                     | 2,200,000    | NA .       | 419 U      | NA         | 408 U      | NA         | 367 U      | NA_        | 403 U      |
| Benzo(a)pyrene             | 11,000       | NA         | 419 U      | NA         | 408 U      | NA         | 367 U      | NA         | 403 U      |
| Benzo(k)fluoranthene       | 610,000      | NA         | 419 U      | NA :       | 408 U      | NA         | 367 U      | NA         | 403 U      |
| Chrysene                   | 230,000      | NA         | 419 U      | NA NA      | 408 U      | NA         | 367 U      | NA         | 403 U      |
| Explosives (ug/kg)         |              |            |            |            |            |            |            |            |            |
| 2,6-Dinitrotoluene         | 10,000       | NA NA      | 838 U      | NA         | 817 U      | NA         | 735 U      | NA         | 807 U      |

TABLE 4
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
SVOCs IN SOILS

| Sample ID                  | PA ACT 2     | LAG-       | 06-06      | LAG-       | 07-06      | LAG-       | 08-08      | LAG-       | 09-08      |
|----------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sequence Number            | Soil         | 218        | 219        | 221        | 222        | 224        | 225        | 231        | 232        |
| Sample Date                | Criteria (1) | 05-31-2007 | 05-31-2007 | 05-31-2007 | 05-31-2007 | 05-31-2007 | 05-31-2007 | 05-31-2007 | 05-31-2007 |
|                            | (ug/kg)      |            |            |            |            |            |            |            |            |
| Semivolatiles (ug/kg)      |              |            |            |            |            |            |            |            |            |
| 1,2-Dichlorobenzene*       | 60,000       | 54.6 U     | 795 U      | 59.4 U     | 762 U      | 52.3 U     | 776 U      | 55.2 U     | 772 U      |
| 1,3-Dichlorobenzene*       | 61,000       | 54.6 U     | 795 U      | 59.4 U     | 762 U      | 52.3 U     | 776 U      | 55.2 U     | 772 U      |
| 1,4-Dichlorobenzene*       | 10,000       | 54.6 U     | 795 U      | 59.4 U     | 762 U      | 52.3 U     | 776 U      | 55.2 U     | 772 U      |
| 3&4-Methylphenol           | 51,000       | NA         | 3180 U     | NA         | 3050 U     | NA NA      | 3100 U     | NA         | 3090 U     |
| Di-n-butylphthalate        | 4,100,000    | NA         | 795 U      | NA         | 762 U      | NA         | 776 U      | NA         | 772 Ü      |
| Hexachlorobenzene          | 960          | NA         | 148 J      | NA         | 135 J      | NA         | 776 U      | NA         | 772 U      |
| Indeno-1,2,3-cd-pyrene     | 360          | NA         | 398 U      | NA         | 381 U      | NA         | 388 U      | NA :       | 386 U      |
| Naphthalene*               | 25,000       | 602        | 398 U      | 59.4 U     | 381 U      | 52.3 U     | 388 U      | 787        | 386 U      |
| Pentachlorobenzene         | 660,000      | NA         | 147 J      | NA         | 762 U      | NA         | 776 U      | NA         | 772 U      |
| bis(2-Ethylhexyl)phthalate | 130,000      | NA         | 795 U      | NA         | 762 U      | NA         | 2580       | NA         | 772 U      |
| 2-Methylnaphthalene        | 8,000,000    | NA         | 723 J      | NA         | 1060       | NA         | 776 U      | NA         | 1290       |
| Acenaphthene               | 4,700,000    | NA         | 398 U      | NA         | 381 U      | NA         | 388 U      | NA         | 386 U      |
| Anthracene                 | 350,000      | NA         | 398 U      | NA         | 381 U      | NA         | 388 U      | NA         | 386 U      |
| Benzo(g,h,i)perylene       | 180,000      | NA         | 398 U      | NA         | 381 U      | NA         | 388 U      | NA NA      | 386 U      |
| Fluoranthene               | 3,200,000    | NA         | 398 U      | NA         | 381 U      | NA         | 388 U      | NA_        | 386 U      |
| Phenanthrene               | 10,000,000   | NA         | 168 J      | NA         | 381 U      | NA '       | 388 U      | NA         | 386 U      |
| Pyrene                     | 2,200,000    | NA         | 398 U      | NA         | 381 U      | NA         | 388 U      | NA         | 386 U      |
| Benzo(a)pyrene             | 11,000       | NA         | 398 U      | NA NA      | 381 U      | NA NA      | 388 U      | NA         | 386 U      |
| Benzo(k)fluoranthene       | 610,000      | NA         | 398 U      | NA         | 381 U      | NA         | 388 U      | NA         | 386 U      |
| Chrysene                   | 230,000      | NA         | 398 U      | NA         | 381 U      | NA         | 388 U      | NA         | 386 U      |
| Explosives (ug/kg)         |              |            |            |            |            |            |            |            |            |
| 2,6-Dinitrotoluene         | 10,000       | NA         | 795 U      | NA         | 762 U      | NA         | 776 U      | NA         | 772 U      |

TABLE 4
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
SVOCs IN SOILS

| Sample ID                  | PA ACT 2     | LAG-       | 10-05      | DDP-       | 01-07      | DDP-       | 02-07      |
|----------------------------|--------------|------------|------------|------------|------------|------------|------------|
| Sequence Number            | Soil         | 267        | 268        | 247        | 248        | 254        | 255        |
| Sample Date                | Criteria (1) | 06-05-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 |
|                            | (ug/kg)      |            |            |            |            |            |            |
| Semivolatiles (ug/kg)      |              |            |            |            |            |            |            |
| 1,2-Dichlorobenzene*       | 60,000       | 50.6 U     | 710 U      | 52.8 U     | 770 U      | 54.3 U     | 610 U      |
| 1,3-Dichlorobenzene*       | 61,000       | 50.6 U     | 710 U      | 52.8 U     | 770 U      | 54.3 U     | 610 U      |
| 1,4-Dichlorobenzene*       | 10,000       | 50.6 U     | 710 U      | 52.8 U     | 770 U      | 54.3 U     | 610 U      |
| 3&4-Methylphenol           | 51,000       | NA         | 2840 U     | NA         | 3080 U     | NA         | 2440 U     |
| Di-n-butylphthalate        | 4,100,000    | NA         | 783        | NA         | 770 U      | NA         | 610 U      |
| Hexachlorobenzene          | 960          | NA         | 710 U      | NA         | 770 U      | NA         | 610 U      |
| Indeno-1,2,3-cd-pyrene     | 360          | NA         | 355 U      | NA         | 385 U      | NA         | 305 U      |
| Naphthalene*               | 25,000       | 50.6 U     | 355 U      | 52.8 U     | 385 U      | 54.3 U     | 305 U      |
| Pentachlorobenzene         | 660,000      | NA         | 710 U      | NA         | 770 U      | NA         | 610 U      |
| bis(2-Ethylhexyl)phthalate | 130,000      | NA         | 710 U      | NA         | 770 U      | NA         | 610 U      |
| 2-Methylnaphthalene        | 8,000,000    | NA         | 710 U      | NA         | 770 U      | NA         | 610 U      |
| Acenaphthene               | 4,700,000    | NA         | 355 U      | NA         | 385 U      | NA         | 305 U      |
| Anthracene                 | 350,000      | NA         | 355 U      | NA         | 385 U      | NA         | 305 U      |
| Benzo(g,h,i)perylene       | 180,000      | NA         | 355 U      | NA NA      | 385 U      | NA         | 305 U      |
| Fluoranthene               | 3,200,000    | NA         | 82 J       | NA         | 269 J      | NA         | 305 U      |
| Phenanthrene               | 10,000,000   | NA         | 355 U      | NA         | 385 U      | NA         | 305 U      |
| Pyrene                     | 2,200,000    | NA         | 65.3 J     | NA         | 254 J      | NA         | 305 U      |
| Benzo(a)pyrene             | 11,000       | NA         | 355 U      | NA         | 385 U      | NA         | 305 U      |
| Benzo(k)fluoranthene       | 610,000      | NA         | 355 U      | NA         | 385 U      | NA NA      | 305 U      |
| Chrysene                   | 230,000      | NA .       | 355 U      | NA_        | 385 U      | NA         | 305 U      |
| Explosives (ug/kg)         |              |            |            |            |            |            |            |
| 2,6-Dinitrotoluene         | 10,000       | NA         | 710 U      | NA         | 770 U      | NA         | 610 U      |

TABLE 4
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
SVOCS IN SOILS

| Sample 1D                  | PA ACT 2     | DDP-       | 03-06      | DDP-       | -04-05     | Pump I     | Pit Sed    |
|----------------------------|--------------|------------|------------|------------|------------|------------|------------|
| Sequence Number            | Soil         | 261        | 262        | 264        | 265        | 242        | 243        |
| Sample Date                | Criteria (1) | 06-05-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 | 06-04-2007 | 06-04-2007 |
|                            | (ug/kg)      |            |            |            |            |            |            |
| Semivolatiles (ug/kg)      |              |            |            |            |            |            |            |
| 1,2-Dichlorobenzene*       | 60,000       | 49.9 U     | 618 U      | 46.7 U     | 814 U      | 1840 U     | 318 U      |
| 1.3-Dichlorobenzene*       | 61,000       | 49.9 U     | 618 U      | 46.7 U     | 814 U      | 1840 U     | 318 Ü      |
| 1,4-Dichlorobenzene*       | 10,000       | 49.9 U     | 618 U      | 46.7 U     | 814 U      | 1840 U     | 318 U      |
| 3&4-Methylphenol           | 51,000       | NA         | 2470 U     | NA         | 3260 U     | NA         | 1270 U     |
| Di-n-butylphthalate        | 4,100,000    | NA         | 618 U      | NA NA      | 814 U      | NA         | 318 U      |
| Hexachlorobenzene          | 960          | NA         | 618 U      | NA NA      | 814 U      | NA         | 318 U      |
| Indeno-1,2,3-cd-pyrene     | 360          | NA         | 309 U      | NA NA      | 407 U      | NA         | 176        |
| Naphthalene*               | 25,000       | 49.9 U     | 309 U      | 46.7 U     | 407 U      | 1840 U     | 159 U      |
| Pentachlorobenzene         | 660,000      | NA         | 618 U      | NA         | 814 U      | NA         | 318 U      |
| bis(2-Ethylhexyl)phthalate | 130,000      | NA         | 618 U      | NA         | 814 U      | NA         | 554 Q      |
| 2-Methylnaphthalene        | 8,000,000    | NA         | 618 U      | NA NA      | 814 U      | NA         | 751 Q      |
| Acenaphthene               | 4,700,000    | NA         | 309 U      | NA         | 407 U      | NA         | 324        |
| Anthracene                 | 350,000      | NA         | 309 U      | NA         | 407 U      | NA         | 543        |
| Benzo(g,h,i)perylene       | 180,000      | NA         | 309 U      | NA         | 407 U      | NA         | 181        |
| Fluoranthene               | 3,200,000    | NA         | 102 J      | NA         | 407 U      | NA         | 1160 Q     |
| Phenanthrene               | 10,000,000   | NA         | 309 U      | NA         | 407 U      | NA         | 1460 Q     |
| Pyrene                     | 2,200,000    | NA         | 92.8 J     | NA         | 407 U      | NA         | 1310 Q     |
| Benzo(a)pyrene             | 11,000       | NA         | 309 U      | NA         | 407 U      | NA         | 122 J      |
| Benzo(k)fluoranthene       | 610,000      | NA         | 309 U      | NA         | 407 U      | NA         | 99 J       |
| Chrysene                   | 230,000      | NA         | 309 U      | NA         | 407 U      | NA         | 420 Q      |
| Explosives (ug/kg)         |              |            |            |            |            |            |            |
| 2,6-Dinitrotoluene         | 10,000       | NA         | 618 U      | NA         | 814 U      | NA         | 368        |

TABLE 5
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
INORGANICS IN SOIL

| Sample 1D          | PA ACT 2                                | VSP-01-07  | VSP-01-10  | VSP-02-03  | VSP-02-11  | VSP-03-03  | VSP-03-03DUP | VSP-03-11  | VSP-04-03  | VSP-05-15  |
|--------------------|-----------------------------------------|------------|------------|------------|------------|------------|--------------|------------|------------|------------|
| Sequence Number    | Soil                                    | 142        | 144        | 147        | 148        | 153        | 156          | 159        | 162        | 165        |
| Sample Date        | Criteria (1)                            | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007 | 05-24-2007   | 05-24-2007 | 05-24-2007 | 05-29-2007 |
|                    | (mg/kg)                                 |            |            | 30 21 2001 | 00 01 000  |            |              |            | 00 27 200  | 00 27 2007 |
| Inorganics (mg/kg) | , , , , , , , , , , , , , , , , , , , , |            |            |            |            |            |              |            |            |            |
| Aluminum           | NE                                      | 22951      | 19427      | 22023      | 20715      | 26203      | 32380        | 21362      | 33973      | 14420      |
| Antimony           | 27                                      | 1.16 U     | 1.23 U     | 1.16 U     | 1.18 U     | 1.17 U     | 1.17 บ       | 1.16 U     | 1.16 U     | 1.1 U      |
| Arsenic            | 53                                      | 2.84       | 4.85       | 11         | 11.9       | 35.3       | 25,8         | 13.2       | 10.2       | 24         |
| Barium             | 8,200                                   | 46         | 86.1       | 71.7       | 51.7       | 78.9       | 89           | 66.8       | 117        | 54.2       |
| Beryllium          | 320                                     | 0.579 U    | 1.72       | 0.578 U    | 0.589 U    | 0.587 U    | 0.586        | 0.582 U    | 0.756      | 0.771      |
| Boron              | 60                                      | 23.1       | 24.5 U     | 23.1       | 23.6 U     | 23.5 U     | 23.4 U       | 87.1       | 90.5       | 115        |
| Cadmium            | 38                                      | 0.752      | 0.613 U    | 0.694      | 0.589 U    | 0.822      | 0.821        | 0.582 U    | 0.582 U    | 1.54       |
| Calcium            | NE                                      | 2056       | 30585      | 28682      | 838        | 7314       | 17673        | 675        | 1261       | 769        |
| Chromium           | 190                                     | 29.7       | 259        | 164        | 29.2       | 542        | 441          | 24.1       | 25.2       | 24.1       |
| Cobalt             | 200                                     | 34.4       | 13.1       | 14.4       | 17         | 23.3       | 19.8         | 13.4       | 20.7       | 68.8       |
| Copper             | 36,000                                  | 41.5       | 46.6       | 38.3       | 28.6       | 81         | 44.1         | 33         | 23,8       | 45         |
| Iron               | NE                                      | 50689      | 27690      | 37168      | 40647      | 53669      | 43869        | 43463      | 46214      | 60951      |
| Lead               | 450                                     | 11         | 280        | 179        | 13.4       | 53.3       | 31.8         | 18         | 36.3       | 13.7       |
| Magnesium          | NE                                      | 6314       | 16256      | 14006      | 3589       | 6334       | 9672         | 2710       | 3951       | 3344       |
| Manganese          | NE                                      | 1233       | 600        | 439        | 447        | 734        | 605          | 407        | 1101       | 720        |
| Mercury            | 10                                      | 0.116 U    | 0.123 U    | 0.116 U    | 0.118 U    | 0.117 U    | 0.117 U      | 0.116 U    | 0.116 U    | 0.11 U     |
| Nickel             | 650                                     | 41.8       | 119        | 157        | 20         | 610        | 355          | 18.3       | 22.9       | 41.6       |
| Potassium          | NE                                      |            |            |            |            |            |              |            |            |            |
| Silver             | 84                                      | 0.579 U    | 0.613 U    | 0.578 U    | 0.589 U    | 0.587 U    | 0.586 U      | 0.582 U    | 0.582 U    | 0.551 U    |
| Sodium             | NE                                      | 304        | 205        | 97.2       | 85.9       | 149        | 288          | 90.8       | 266        | 57.4       |
| Vanadium           | 20,000                                  | 40.2       | 35.6       | 33.8       | 36.2       | 52.5       | 45.2         | 24.7       | 26.8       | 9.91       |
| Zinc               | 12,000                                  | 82.9       | 112        | 124        | 44.9       | 82         | 60.4         | 43.5       | 84.7       | 94.7       |
| Conventionals (%)  |                                         |            |            |            |            |            |              |            |            |            |
| Moisture           | NE                                      | 13.6       | 18.49      | 13.5       | 15.16      | 14.82      | 14.7         | 14.03      | 14.02      | 9.19       |
| Solids             | NE                                      | 86.4       | 81.51      | 86.5       | 84.84      | 85.18      | 85.3         | 85.97      | 85.98      | 90.81      |

#### Notes:

(1) Non-Residential Soil, Lowest-Direct Contact vs S-GW (highest of 100X & Generic), Used Aquifer, TDS<2500

NE - Not Established

U - Indicates compound was analyzed for but not detected. The sample quantitation limit is reported.

Bolded value indicates that the detected concentration is greater than the method detection limit.

Bolded and shaded value indicates that the detected concentration is greater than the method detection limit and PA ACT 2 screening criteria.

TABLE 5
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
INORGANICS IN SOIL

|                    | T            |            |            |            |            |            |            |            |            |            |
|--------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sample ID          | PA ACT 2     | VSP-06-06  | LAG-01-05  | LAG-02-05  | LAG-02-16  | LAG-03-16  | LAG-04-11  | LAG-05-06  | LAG-05-12  | LAG-06-06  |
| Sequence Number    | Soil         | 178        | 186        | 189        | 192        | 200        | 211        | 214        | 217        | 220        |
| Sample Date        | Criteria (1) | 05-29-2007 | 05-29-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-31-2007 |
|                    | (mg/kg)      |            |            |            |            |            |            |            | _          |            |
| Inorganics (mg/kg) |              |            |            |            |            |            |            |            |            |            |
| Aluminum           | NE           | 15432      | 20134      | 34374      | 35300      | 27168      | 38281      | 25472      | 21931      | 30988      |
| Antimony           | 27           | 1.16 U     | 1.18 U     | 1.18 U     | 1.22 U     | 1.14 U     | 1.16 U     | 10.2       | 1.2 U      | 9.17       |
| Arsenic            | 53           | 5.71       | 9.99       | 8.39       | 7.65       | 10.3       | 20         | 16         | 9.56       | 13.9       |
| Barium             | 8,200        | 56.2       | 60.5       | 107        | 131        | 85.4       | 118        | 101        | 62.3       | 171        |
| Beryllium          | 320          | 0.582 U    | 0.591 U    | 0.768      | 0.796      | 0.571      | 0.698      | 0.613 U    | 0.601 U    | 3.22       |
| Boron              | 60           | 70         | 98         | 96         | 83.2       | 114        | 112        | 110        | 76.8       | 139        |
| Cadmium            | 38           | 1.11       | 0.591      | 0.709      | 0.796      | 0.685      | 0.698      | 0.735      | 0.601 U    | 0.62 U     |
| Calcium            | NE           | 814        | 4131       | 5579       | 7118       | 1422       | 6043       | 3965       | 5144       | 9850       |
| Chromium           | 190          | 20         | 31.6       | 38.7       | 59         | 33.2       | 82.9       | 617        | 26.6       | 2747       |
| Cobalt             | 200          | 16.6       | 13.1       | 12.7       | 11.8       | 16.1       | 16.2       | 16.7       | 11.2       | 26.3       |
| Copper             | 36,000       | 22.2       | 27.6       | 23.8       | 23.7       | 29.5       | 34.8       | 247        | 18.6       | 649        |
| Iron               | NE           | 37988      | 49799      | 40567      | 32748      | 51440      | 49482      | 49706      | 35391      | 56050      |
| Lead               | 450          | 15.4       | 19.3       | 18.9       | 21.3       | 14.1       | 16.8       | 295        | 21.3       | 205        |
| Magnesium          | NE           | 4030       | 3574       | 5916       | 5410       | 5350       | 4986       | 3807       | 4133       | 5648       |
| Manganese          | NE           | 358        | 450        | 720        | 679        | 1010       | 850        | 404        | 390        | 700        |
| Mercury            | 10           | 0.116 U    | 0.118 U    | 0.118 U    | 0.122 U    | 0.114 U    | 0.116 U    | 0.127      | 0.12 U     | 0.2        |
| Nickel             | 650          | 24         | 25.5       | 30.7       | 67.4       | 34.2       | 64.3       | 589        | 18.6       | 2564       |
| Potassium          | NE           |            |            |            |            |            |            |            |            | 2617       |
| Silver             | 84           | 0.582 U    | 0.591 U    | 0.591 U    | 0.612 U    | 0.571 U    | 0.582 U    | 0.981      | 0.601 U    | 2.67       |
| Sodium             | NE           | 79.9       | 118        | 395        | 483        | 433        | 528        | 163        | 148        | 413        |
| Vanadium           | 20,000       | 12.5       | 25.5       | 38.1       | 40.1       | -28.3      | 37.2       | 31.8       | 28.1       | 41.7       |
| Zinc               | 12,000       | 53.5       | 46.8       | 66.4       | 65.7       | 78.9       | 58.3       | 247        | 46_        | 448        |
| Conventionals (%)  |              |            |            |            |            |            |            |            |            |            |
| Moisture           | NE           | 14.17      | 15.44      | 15.4       | 18.3       | 12.47      | 14.03      | 18.42      | 16.83      | 19.34      |
| Solids             | NE           | 85.83      | 84.56      | 84.6       | 81.7       | 87.53      | 85.97      | 81.58      | 83.17      | 80.66      |

TABLE 5
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
INORGANICS IN SOIL

| Sample ID          | PA ACT 2     | LAG-07-06  | LAG-08-08  | LAG-09-08  | LAG-10-05  | DDP-01-07  | DDP-02-07  | DDP-03-06  | DDP-04-05  | Pump Pit Sed |
|--------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|
| Sequence Number    | Soil         | 223        | 226        | 233        | 269        | 249        | 256        | 263        | 266        | <u>2</u> 44  |
| Sample Date        | Criteria (1) | 05-31-2007 | 05-31-2007 | 05-31-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 | 06-04-2007   |
| -                  | (mg/kg)      |            |            |            |            |            |            |            |            |              |
| Inorganics (mg/kg) |              |            |            |            |            |            |            |            |            |              |
| Aluminum           | NE           | 22238      | 33522      | 37128      | 29704      | 20253      | 17114      | 24563      | 22517      | 10408        |
| Antimony           | 27           | 6.39       | 1.21 U     | 3.26       | 1.16 U     | 1.18 U     | 1.29 U     | 1.22 U     | 1.18 U     | 102          |
| Arsenic            | 53           | 12.3       | 9.53       | 13.6       | 10.8       | 9.51       | 10.5       | 6.66       | 23.5       | 4.2 U        |
| Barium             | 8,200        | 154        | 99.6       | 144        | 264        | 56.9       | 68.5       | 57         | 42.4       | 192          |
| Beryllium          | 320          | 2.35       | 3.08       | 3.38       | 1.86       | 0.59 U     | 1.29       | 1.16       | 1.3        | ับเ          |
| Boron              | 60           | 147        | 99.1       | 142        | 29.1       | 27.2       | 25.8 U     | 24.4 U     | 27.6       | 42.1 U       |
| Cadmium            | 38           | 0.905      | 0.724      | 0.738      | 0.581      | 0.827      | 1.55       | 0.611 U    | 0.59 U     | 34.7         |
| Calcium            | NE           | 5566       | 2406       | 7653       | 3768       | 1005       | 1653       | 1428       | 1290       | 116835       |
| Chromium           | 190          | 2145       | 54.4       | 803        | 44.7       | 18.5       | 14.4       | 24,7       | 30.4       | 377          |
| Cobalt             | 200          | 25         | 15.5       | 20.5       | 15.9       | 15.2       | 14.9       | 15.6       | 13.8       | 12.4         |
| Copper             | 36,000       | 435        | 23.3       | 250        | 31.7       | 25.6       | 30         | 28.8       | 25.6       | 89.8         |
| Iron               | NE           | 56924      | 42549      | 56430      | 43498      | 49120      | 40498      | 39036      | 49545      | 33502        |
| Lead               | 450          | 188        | 22.3       | 97.7       | 18.4       | 14.8       | 12.1       | 14.9       | 14,4       | 265          |
| Magnesium          | NE           | 3721       | 4146       | 4147       | 3159       | 3920       | 6331       | 6013       | 3088       | 69269        |
| Manganese          | NE           | 896        | 656        | 782        | 439        | 308        | 584        | 345        | 358        | 345          |
| Mercury            | 10           | 0.219      | 0.121 U    | 0.123 U    | 0.116 U    | 0.118 U    | 0.129 U    | 0.122 U    | 0.118 U    | 0.211 U      |
| Nickel             | 650          | 2014       | 87.3       | 736        | 36.5       | 27.3       | 31.4       | 28.8       | 20.3       | 238          |
| Potassium          | NE           | 1486       | 1870       | 2774       | 2203       | 1618       | 3076       | 1293       | 1244       | 1164         |
| Silver             | 84           | 2.17       | 0.603 U    | 1.04       | 0.581 U    | 0.59 U     | 0.645 U    | 0.611 U    | 0.59 U     | 1 U          |
| Sodium             | NE           | 257        | 184        | 521        | 254        | 86         | 166        | 176        | 165        | 156          |
| Vanadium           | 20,000       | 45.4       | 35.8       | 46.4       | 39         | 22.3       | 13.1       | 23.9       | 29         | 29.5         |
| Zinc               | 12,000       | 463        | 79.6       | 332        | 53.7       | 44.5       | 49.1       | 63.1       | 42.6       | 253          |
| Conventionals (%)  |              |            |            |            |            |            |            |            |            |              |
| Moisture           | NE           | 17.1       | 17.13      | 18.66      | 13.95      | 15.32      | 22.49      | 18.19      | 15.33      | 52.54        |
| Solids             | NE           | 82.9       | 82.87      | 81.34      | 86.05      | 84.68      | 77.51      | 81.81      | 84.67      | 47.46        |
|                    |              |            |            |            |            |            |            |            |            |              |

TABLE 6
BISHOP TUBE SITE
VOCs IN SHALLOW GROUNDWATER

| Sample ID                 | PA ACT 2     | VSP-02-GW  | VSP-05-GW  | VSP-06-GW  | LAG-02-GW  | LAG-03-GW  | LAG-03-GWD | LAG-08-GW  | LDA-03-GW  |
|---------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sequence Number           | Groundwater  | 171        | 166        | 179        | 193        | 201        | 205        | 227        | 235        |
| Sample Date               | Criteria (1) | 05-29-2007 | 05-29-2007 | 05-29-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-31-2007 | 05-31-2007 |
|                           | (ug/L)       |            |            |            |            |            |            |            |            |
| Volatiles (ug/L)          |              |            |            |            |            |            |            |            |            |
| 1,1,1-Trichloroethane     | 200          | 0.5 U      | 2.5 U      | 1.2        | 22.8 Q     | 0.5 U      | 0.5 U      | 1.7        | 0.5 U      |
| 1,1-Dichloroethane        | 27           | 1.2        | 2.5 U      | 5.5        | 3.5        | 0.5 U      | 0.5 U      | 3.3        | 0.5 U      |
| 1,1-Dichloroethene        | 7            | 0.5 U      | 2.5 U      | 0.5 U      | 1.5        | 0.5 U      | 0.5 U      | 1.8        | 0.5 U      |
| 1,2,4-Trimethylbenzene    | 16           | 0.5 U      | 2.5 U      | 0.23 J     | 0.5 U      |
| Acetone                   | 3,700        | 22.7       | 12.5 U     | 5.8        | 2.5 U      | 2.5 U      | 5.2        | 2.5 U      | 2.5 U      |
| Benzene                   | 5            | 0.5 U      | 2.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 0.9        | 0.5 U      |
| Carbon Disulfide          | 1,900        | 0.5 U      | 2.5 U      | 0.5 U      | 0.28 J     | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      |
| Chlorobenzene             | 100          | 0.5 U      | 2.5 U      | 0.5 U      |
| Chloroethene              | 2            | 0.5 U      | 2.5 U      | 5.2        | 7.8 Q      | 5.2        | 5.4        | 5.5        | 0.5 U      |
| Chloroform                | 80           | 0.5 U      | 2.5 U      | 0.5 U      |
| Ethylbenzene              | 700          | 0.5 U      | 2.5 U      | 0.12 J     | 0.5 U      |
| Methyl Tert-Butyl Ether   | 20           | 0.5 U      | 2.5 U      | 0.5 U      | 21.6 Q     | 0.5 U      | 0.5 U      | 4.9        | 6.1        |
| Methylene Chloride        | 5_           | 0.5 U      | 2.5 U      | 0.5 U      |
| Sec-Butylbenzene          | 1,500        | 0.5 U      | 2.5 U      | 1.6        | 0.5 U      |
| Tert-Butylbenzene         | 1,500        | 0.5 U      | 2.5 U      | 0.27 J     | 0.5 U      |
| Tetrachloroethene         | 5            | 3.4        | 2.5 U      | 0.5 U      | 0.44 J     | 0.5 U      | 0.21 J     | 0.92       | 0.5 U      |
| Toluene                   | 1,000        | 1          | 60.3 Q     | <u>2</u> 7 | 2.7        | 1.5        | 1.4        | 63.3       | 13.1       |
| Trichloroethene           | 5            | 14.4       | 57.1 Q     | 14.6       | 168        | 19.3       | 18.3       | 272        | 23.6       |
| cis-1,2-Dichloroethene    | 70           | 5.5        | 5 Q        | 15.1       | 120        | 8.2        | 8          | 232        | 0.5 U      |
| m/p-Xylene <sup>(2)</sup> | 10,000       | 1 U        | <u>5</u> U | 0.43 J     | ! U        | 1 U        | 1 U        | 1 U        | 1 U        |
| o-Xylene <sup>(2)</sup>   | 10,000       | 0.5 U      | 2.5 U      | 0.17 J     | 0.5 U      |
| trans-1,2-Dichloroethene  | 100          | 0.92       | 2.5 U      | 0.4 J      | 2.1        | 1.5        | 1.4        | 4.3        | 0.5 U      |

#### Notes:

- (1) Residential Groundwater. Used Aquifer, TDS<2500
- (2) Screening value for xylenes (total) used as a surrogate.
- J Indicates an estimated value, below the quantification limit, but above the method detection limit.
- Q This flag identifies the average of multiple results from multiple analysis, or the average of the averages of dual column analysis methods.
- U Indicates compound was analyzed for but not detected. The sample quantitation limit is reported.

Bolded value indicates that the detected concentration is greater than the method detection limit.

Bolded and shaded value indicates that the detected concentration is greater than the method detection limit and PA ACT 2 screening criteria.

TABLE 6
BISHOP TUBE SITE
VOCs IN SHALLOW GROUNDWATER

| Sample ID                 | PA ACT 2     | LDA-04-GW  | LDA-06-GW  | DDP-01-GW  | DDP-02-GW  | Pump Pit-W | Vault Water | ER-01      |
|---------------------------|--------------|------------|------------|------------|------------|------------|-------------|------------|
| Sequence Number           | Groundwater  | 237        | 241        | 250        | 257        | 238        | 270         | 271        |
| Sample Date               | Criteria (1) | 05-31-2007 | 06-04-2007 | 06-05-2007 | 06-05-2007 | 06-04-2007 | 06-05-2007  | 06-05-2007 |
|                           | (ug/L)       |            |            |            |            |            |             |            |
| Volatiles (ug/L)          |              | •          |            |            |            |            |             |            |
| 1,1,1-Trichloroethane     | 200          | 0.5 U      | 5 U        | 19200      | 23200      | 0.5 U      | 0.5 U       | 0.5 U      |
| 1,1-Dichloroethane        | 27           | 0.5 U      | 5 U        | 163        | 112        | 0.5 บ      | 0.5 U       | 0.5 U      |
| 1,1-Dichloroethene        | 7            | 0.5 U      | 5 U        | 227        | 282        | 23.6 Q     | 0.5 U       | 0.5 U      |
| 1.2,4-Trimethylbenzene    | 16           | 0.5 U      | 5 U        | 0.5 U      | 0.5 Ū      | 0.1 J      | 0.5 U       | 0.5 U      |
| Acetone                   | 3,700        | 2.5 U      | 25 U       | 2.5 U      | 2.5 U      | 2.5 U      | 2.5 U       | 2,5 U      |
| Benzene                   | 5            | 0.5 U      | 5 U        | 0.62       | 0.63       | 0.5 U      | 0.5 U       | 0.5 U      |
| Carbon Disulfide          | 1,900        | 0.5 U      | 5 U        | 0.5 U      | 0.5 U      | 1.9        | 0.5 U       | 0.5 U      |
| Chlorobenzene             | 100          | 0.5 U      | 5 U        | 0.5 U      | 0.5 ป      | 0.24 J     | 0.5 U       | 0.5 U      |
| Chloroethene              | 2            | 0.5 U      | 5 U        | 6.8        | 7.3        | 1270       | 0.5 U       | 0.5 U      |
| Chloroform                | 80           | 0.5 U      | 5 U        | 0.5 U      | 1.7        | 0.5 U      | 0.5 U       | 0.5 U      |
| Ethylbenzene              | 700          | 0.5 U      | 5 U        | 0.5 U      | 0.5 U      | 0.24 J     | 0.5 U       | 0.5 U      |
| Methyl Tert-Butyl Ether   | 20           | 14.7       | 5 U        | 2.1        | 2.2        | 0.5 U      | 0.5 U       | 0.5 U      |
| Methylene Chloride        | 5            | 0.5 U      | 5 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U       | 0.73       |
| Sec-Butylbenzene          | 1,500        | 0.5 U      | 5 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U       | 0.5 U      |
| Tert-Butylbenzene         | 1,500        | 0.5 U      | 5 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U       | 0.5 U      |
| Tetrachloroethene         | 5            | 0.5 U      | 5 U        | 4.2        | 5.2        | 1.5        | 0.5 U       | 0.5 U      |
| Toluene                   | 1,000        | 9          | 4.9 J      | 1.6        | 8.6        | 0.86       | 0.5 U       | 0.5 U      |
| Trichloroethene           | 5            | 1.2        | 122        | 5200       | 7160       | 212 Q      | 0.5 U       | 0.5 U      |
| cis-1,2-Dichloroethene    | 70           | 0.5 U      | 5 U        | 1650 Q     | 1760 Q     | 4010       | 0.5 U       | 0.5 U      |
| m/p-Xylene <sup>(2)</sup> | 10,000       | 1 U        | 10 U       | 1 U        | 1 U        | 0.91 J     | 1 U         | 1 U        |
| o-Xylene <sup>(2)</sup>   | 10,000       | 0.5 U      | 5 ป        | 0.5 U      | 0.5 U      | 0.82       | 0.5 U       | 0.5 U      |
| trans-1,2-Dichloroethene  | 100          | 0.5 U      | 5 U        | 21.6       | 21.4       | 22.8 Q     | 0.5 U       | 0.5 U      |

TABLE 7
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
SVOCs IN SHALLOW GROUNDWATER

| Sample ID                  | PA ACT 2     | VSP-0      | 2-GW       | VSP-0      | 5-GW                  | VSP-0      | 06-GW      | LAG-0      | 2-GW       |
|----------------------------|--------------|------------|------------|------------|-----------------------|------------|------------|------------|------------|
| Sequence Number            | Groundwater  | 171        | 172        | 166        | 167                   | 179        | 180        | 193        | 194        |
| Sample Date                | Criteria (1) | 05-29-2007 | 05-29-2007 | 05-29-2007 | 05-29-2007            | 05-29-2007 | 05-29-2007 | 05-30-2007 | 05-30-2007 |
|                            | (ug/L)       |            |            |            |                       |            |            |            |            |
| Semivolatiles (ug/L)       |              |            |            |            |                       |            |            |            |            |
| 2,3,4,6-Tetrachlorophenol  | 290          | NA         | 2 U        | NA         | 1.94 U                | NA         | 9.43 U     | NA         | 2.22 U     |
| 3&4-Methylphenol           | 180          | NA         | 4 U        | NA         | 3.88 U                | NA         | 18.9 U     | NA         | 4.44 U     |
| Acetophenone               | 3,700        | NA         | 1 U        | NA         | 2.42                  | NA         | 4.72 U     | NA         | 1.11 U     |
| Butylbenzylphthalate       | 2,700        | NA         | 1 U        | NA         | 0.971 U               | NA         | 4.72 U     | NA         | 1.11 U     |
| Di-n-butylphthalate        | 3,700        | NA         | I U        | NA         | 0.971 U               | NA         | 4.72 U     | NA         | 1.11 U     |
| Fluorene                   | 1,500        | NA         | 0.5 U      | NA         | 2.37                  | NA         | 2.36 U     | NA         | 0.556 U    |
| Naphthalene*               | 100          | 0.5 U      | 0.5 U      | 2.5 U      | 4.82                  | 0.5 U      | 2.41       | 0.5 U      | 0.556 U    |
| bis(2-Ethylhexyl)phthalate | 6            | NA         | 25.9 E     | NA         | 2.08 B                | NA         | 10200 E    | NA         | 12.6 B     |
| Benz(a)anthracene          | 0.9          | NA         | 0.5 U      | NA         | 0.485 U               | NA         | 9.94       | NA         | 0.51 J     |
| Benzo(a)pyrene             | 0.2          | NA NA      | 0.5 U      | NA_        | 0.4 <mark>85 U</mark> | NA         | 7.39       | NA         | 0.377 J    |
| Benzo(b)fluoranthene       | 0.9          | NA         | 0.5 U      | NA         | 0.485 U               | NA         | 7.79       | NA         | 0.556 U    |
| Benzo(k)fluoranthene       | 0.55         | NA         | 0.5 U      | NA         | 0.485 U               | NA         | 7.79       | NA         | 0.396 J    |
| Chrysene                   | 1.9          | NA         | 0.5 U      | NA         | 0.0367 J              | NA         | 9.42       | NA         | 0.409 J    |
| 2-Methylnaphthalene        | 730          | NA         | 1 U        | NA         | 8.82                  | NA         | 4.74       | NA         | 1.11 U     |
| Acenaphthene               | 2,200        | NA         | 0.5 U      | NA         | 2.04                  | NA         | 2.63       | NA         | 0.556 U    |
| Anthracene                 | 66           | NA         | 0.5 U      | NA         | 0.485 U               | NA         | 5.23       | NA         | 0.556 U    |
| Benzo(g,h,i)perylene       | 0.26         | NA         | 0.5 U      | NA         | 0.485 U               | NA         | 2.36 U     | NA         | 0.294 J    |
| Fluoranthene               | 260          | NA         | 0.5 U      | NA         | 0.485 U               | NA         | 22.2       | NA         | 0.854      |
| Phenanthrene               | 1,100        | NA         | 0.5 U      | NA         | 2                     | NA         | 29.2       | NA         | 0.576      |
| Pyrene                     | 130          | NA         | 0.5 U      | NA         | 0.253 J               | NA         | 25.2       | NA _       | 0.844      |
| Pentachlorophenol          | 1            | NA         | 2 U        | NA         | 1.94 U                | NA         | 9.43 U     | NA         | 2.22 U     |

#### Notes:

- (1) Non-Residential Soil, Lowest-Direst Contact vs S-GW (highest of 100X & Generic), Used Aquifer, TDS<2500
- \* Analyzed under both the VOC and SVOC methods. Both results reported with the SVOCs.

#### NA- Not Analyzed

- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E Original concentrations exceeds the upper calibration range.
- J Indicates an estimated value, below the quantification limit, but above the method detection limit.
- U Indicates compound was analyzed for but not detected. The sample quantitation limit is reported.

Bolded value indicates that the detected concentration is greater than the method detection limit.

Bolded and shaded value indicates that the detected concentration is greater than the method detection limit and PA ACT 2 screening criteria.

TABLE 7
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
SVOCs IN SHALLOW GROUNDWATER

| Sample ID                  | PA ACT 2     | LAG-(      | 3-GW       | LAG-0      | 3-GWD      | LAG-       | 08-GW      | DDP-0      | 1-GW       |
|----------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sequence Number            | Groundwater  | 201        | 202        | 205        | 206        | 227        | 228        | 250        | 251        |
| Sample Date                | Criteria (1) | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-31-2007 | 05-31-2007 | 06-05-2007 | 06-05-2007 |
| ,                          | (ug/L)       |            |            |            |            |            |            |            |            |
| Semivolatiles (ug/L)       |              |            |            |            |            |            |            |            |            |
| 2,3,4,6-Tetrachlorophenol  | 290          | NA         | 2 U        | NA NA      | 2 U        | NA.        | 2 U        | NA         | 1.14 J     |
| 3&4-Methylphenol           | 180          | NA         | 4 U        | NA         | 4 U        | NA         | 4 U        | NA         | 0.0982 J   |
| Acetophenone               | 3,700        | NA         | 1 U        |
| Butylbenzylphthalate       | 2,700        | NA         | 1 U        | NA         | 1 U        | NA         | 1 U        | NA NA      | 0.912 J    |
| Di-n-butylphthalate        | 3,700        | NA         | 1 U        | NA         | 1 U        | NA         | l U        | NA         | l U        |
| Fluorene                   | 1,500        | NA         | 0.5 U      |
| Naphthalene*               | 100          | 0.5 U      | 0.194 J    |
| bis(2-Ethylhexyl)phthalate | 6            | NA         | 3.44 B     | NA         | 2.74 B     | NA         | 815        | NA         | 8.87 B     |
| Benz(a)anthracene          | 0.9          | NA         | 0.5 U      |
| Benzo(a)pyrene             | 0.2          | NA         | 0.5 U      |
| Benzo(b)fluoranthene       | 0.9          | NA         | 0.5 U      |
| Benzo(k)fluoranthene       | 0.55         | NA         | 0.5 U      | NA         | 0.5 U      | NA         | 0.5 U      | NA NA      | 0.5 U      |
| Chrysene                   | 1.9          | NA         | 0.5 U      |
| 2-Methylnaphthalene        | 730          | NA         | 1 U        | NA         | 1 U        | NA         | 1 U        | NA         | 0.378 J    |
| Acenaphthene               | 2,200        | NA         | 0.5 U      |
| Anthracene                 | 66           | NA         | 0.5 U      |
| Benzo(g,h,i)perylene       | 0.26         | NA         | 0.5 U      |
| Fluoranthene               | 260          | NA         | 0.5 U      | NA         | 0.5 U      | NA         | 0.5 U      | NA         | 0.218 J    |
| Phenanthrene               | 1,100        | NA         | 0.5 U      | NA         | 0.5 U      | NA         | 0.587      | NA         | 0.195 J    |
| Pyrene                     | 130          | NA         | 0.0785 J   | NA         | 0.5 U      | NA         | 0.5 U      | NA NA      | 0.5 U      |
| Pentachlorophenol          | 1            | NA         | 2 U        | NA         | 2 U        | NA         | 2 U        | NA         | 4.53       |

TABLE 7
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
SVOCs IN SHALLOW GROUNDWATER

| Sample ID                  | PA ACT 2     | DDP-0      | 02-GW      | Pump Pit-W | Vault Water | ER-        | -01        |
|----------------------------|--------------|------------|------------|------------|-------------|------------|------------|
| Sequence Number            | Groundwater  | 257        | 258        | 245        | 270         | 271        | 272        |
| Sample Date                | Criteria (1) | 06-05-2007 | 06-05-2007 | 06-04-2007 | 06-05-2007  | 06-05-2007 | 06-05-2007 |
|                            | (ug/L)       |            |            |            |             |            |            |
| Semivolatiles (ug/L)       |              |            |            |            |             |            |            |
| 2,3,4,6-Tetrachlorophenol  | 290          | NA         | 1.19 J     | 2 U        | NA          | NA         | 2 U        |
| 3&4-Methylphenol           | 180          | NA         | 0,124 J    | 4 U        | NA          | NA         | 4 U        |
| Acetophenone               | 3,700        | NA         | 1 U        | U I        | NA          | NA         | 1 U        |
| Butylbenzylphthalate       | 2,700        | NA         | 1 U        | 1 U        | NA          | NA         | 1 U        |
| Di-n-butylphthalate        | 3,700        | NA         | 0.77 J     | 1 U        | NA          | NA         | 1 U        |
| Fluorene                   | 1,500        | NA         | 0.5 U      | 0.5 U      | NA          | NA NA      | 0.5 U      |
| Naphthalene*               | 100          | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U       | 0.5 U      | 0.5 U      |
| bis(2-Ethylhexyl)phthalate | 6            | NA         | 30.1 E     | 18.6       | NA          | NA         | 3.77 B     |
| Benz(a)anthracene          | 0.9          | NA         | 0.5 U      | 0.5 U      | NA          | NA         | 0.5 U      |
| Benzo(a)pyrene             | 0.2          | NA         | 0.5 U      | 0.5 U      | NA          | NA         | 0.5 U      |
| Benzo(b)fluoranthene       | 0.9          | NA         | 0.5 U      | 0.5 U      | NA          | NA         | 0.5 U      |
| Benzo(k)fluoranthene       | 0.55         | NA         | 0.5 U      | 0.5 U      | NA          | NA         | 0.5 U      |
| Chrysene                   | 1.9          | NA         | 0.5 U      | 0.5 U      | NA          | NA         | 0.5 U      |
| 2-Methylnaphthalene        | 730          | NA         | 1 U        | 1 U        | NA          | NA         | 1 U        |
| Acenaphthene               | 2,200        | NA         | 0.5 U      | 0.5 U      | NA          | NA         | 0.5 U      |
| Anthracene                 | 66           | NA         | 0.5 U      | 0.5 U      | NA NA       | NA         | 0.5 U      |
| Benzo(g,h,i)perylene       | 0.26         | NA         | 0.5 U      | 0.5 U      | NA          | NA         | 0.5 U      |
| Fluoranthene               | 260          | NA         | 0.173 J    | 0.5 U      | NA          | NA_        | 0.5 U      |
| Phenanthrene               | 1,100        | NA         | 0.0526 J   | 0.5 U      | NA          | NA         | 0.5 U      |
| Pyrene                     | 130          | NA         | 0.5 U      | 0.5 U      | NA          | NA         | 0.5 U      |
| Pentachlorophenol          | 1            | NA         | 4.43       | 2 U        | NA          | NA         | 2 U        |

# TABLE 8 BISHOP TUBE SITE SUPPLEMENTAL INVESTIGATION INORGANICS IN SHALLOW GROUNDWATER

| Sample ID                   | PA ACT 2     |            | VSP-02-GW  |            |            | VSP-05-GW  |            |            | VSP-06-GW  |            |
|-----------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sequence Number             | Groundwater  | 174        | 174        | 175        | 169        | 169        | 170        | 182        | 182        | 183        |
| Sample Date                 | Criteria (1) | 05-29-2007 | 05-29-2007 | 05-29-2007 | 05-29-2007 | 05-29-2007 | 05-29-2007 | 05-29-2007 | 05-29-2007 | 05-29-2007 |
|                             | (ug/L)       |            |            |            |            |            |            |            |            |            |
| Dissolved Inorganics (ug/L) |              |            |            |            |            |            |            |            |            |            |
| Aluminum                    | NE           | NA         | NA         | NA         | NA         | NA         | NA NA      | 200 U      | NA         | NA         |
| Arsenic                     | 10           | 4.3        | NA         | NA         | NA         | 3 U        | NA NA      | 3 U        | NA         | NA         |
| Barium                      | 2,000        | 17         | NA         | NA :       | NA         | 27         | NA         | 30         | NA         | NA         |
| Calcium                     | NE           | NA         | 63600      | NA         | 64900      | NA         | NA         | NA         | 77900      | NA .       |
| fron                        | NE           | 5790       | NA         | NA         | NA         | 5510       | NA :       | 121        | NA         | NA         |
| Lead                        | - 5          | NA         | NA         | NA         | NA         | NA         | NA         | 1 U        | NA         | NA NA      |
| Magnesium                   | NE           | NA         | 9680       | NA         | 10900      | 1820       | NA         | NA         | 12900      | NA         |
| Manganese                   | 300          | 1540       | NA         | NA         | NA         | NA         | NA         | 2520       | NA         | NA         |
| Potassium                   | NE           | NA         | 1820       | NA NA      | 3730       | NA         | NA         | NA         | 1910       | NA         |
| Sodium                      | NE           | NA         | 4940       | NA         | 6810       | NA         | NA         | NA         | 11500      | NA NA      |
| Zine                        | 2,000        | NA         | NA         | NA         | NA         | NA         | NA         | 10 U       | NA         | NA         |
| Conventionals (ug/L)        |              |            |            |            |            |            |            |            |            |            |
| Fluoride                    | NE           | NA         | NA         | 4780       | NA         | NA         | 3500       | NA         | NA         | 9780       |

#### Notes:

(1) Residential Groundwater, Used Aquifer, TDS<2500

NA- Not Analyzed

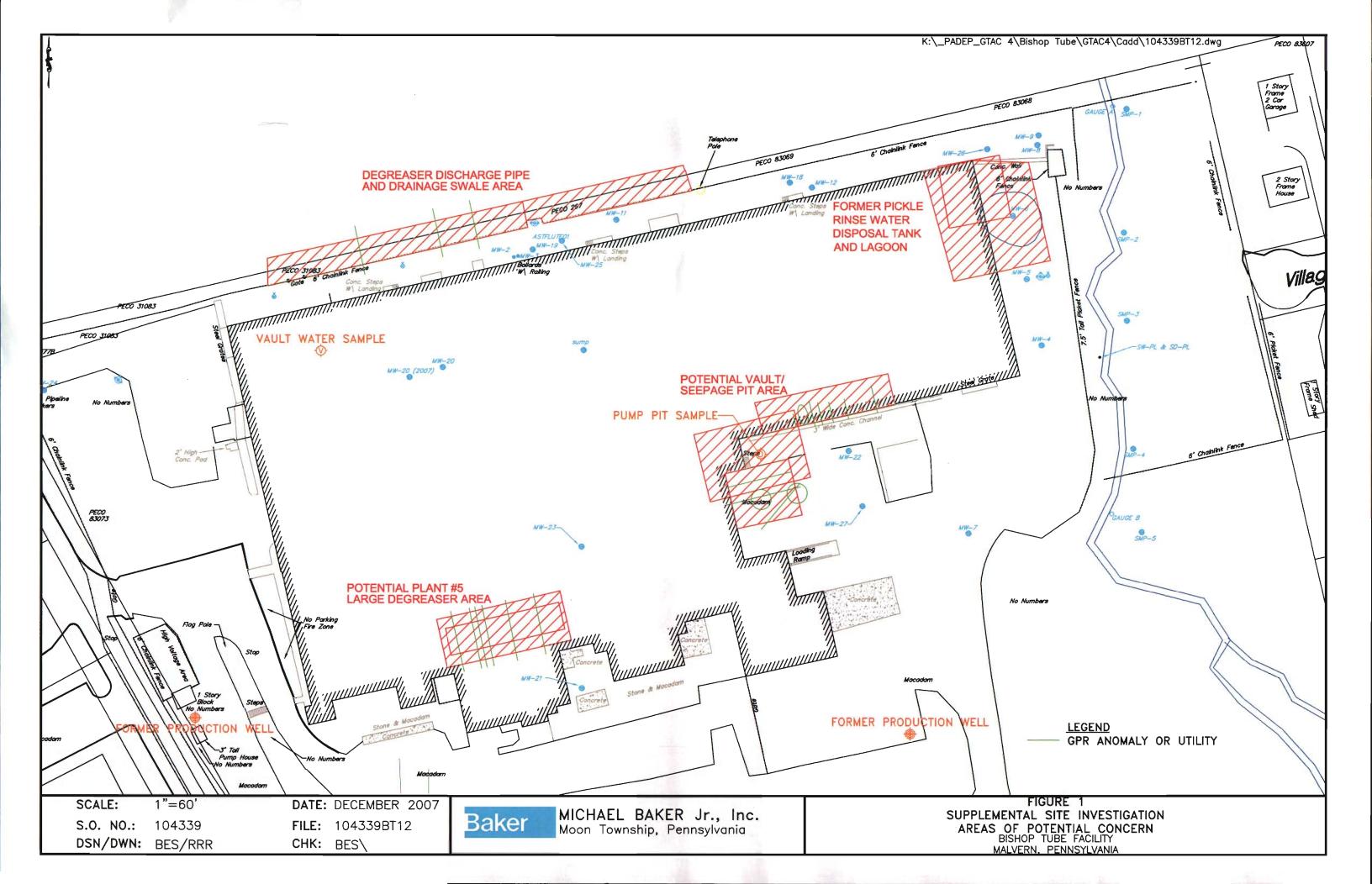
NE - Not Established

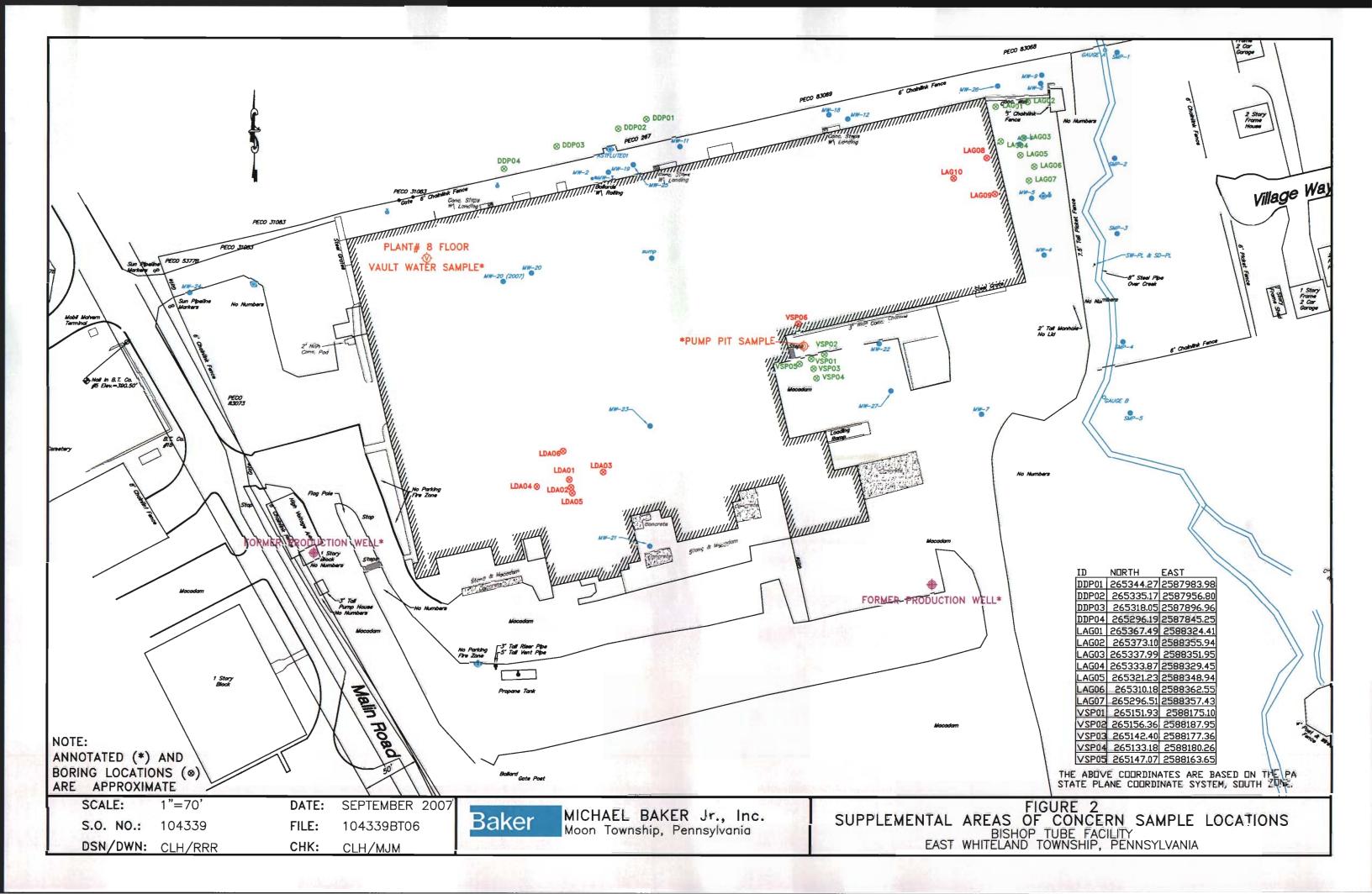
U - Indicates compound was analyzed for but not detected. The sample quantitation limit is reported.

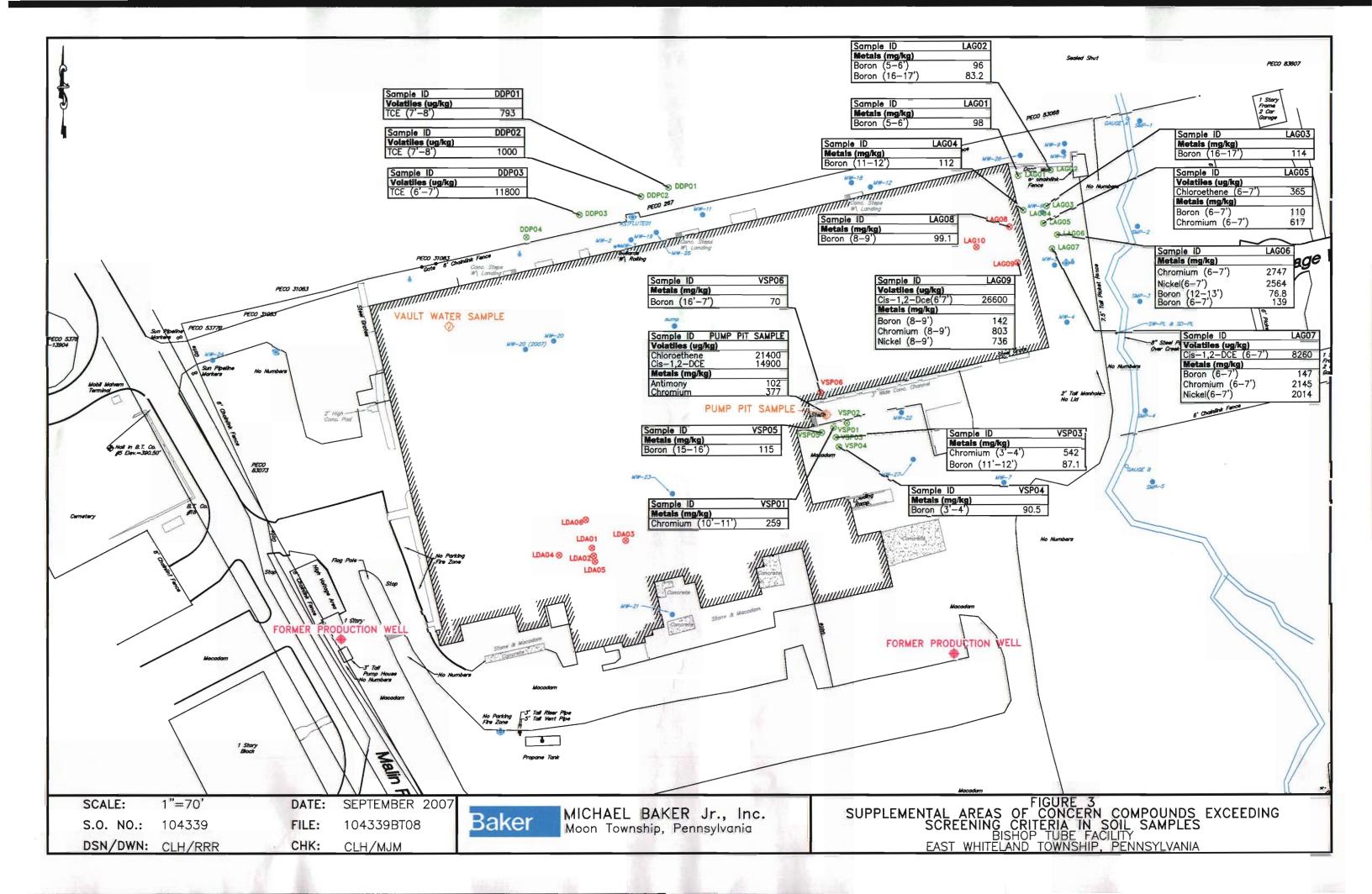
Bolded value indicates that the detected concentration is greater than the method detection limit.

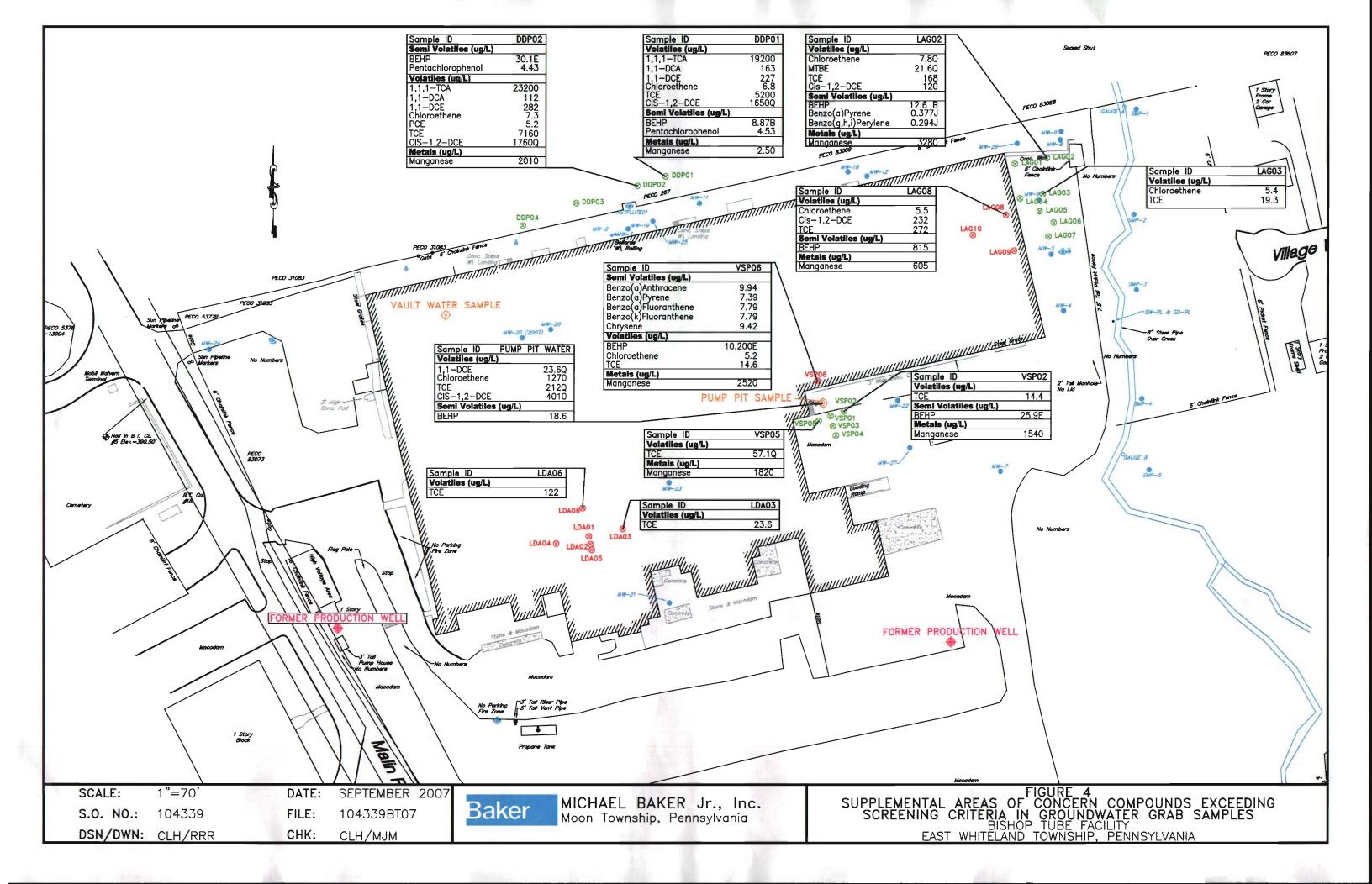
Bolded and shaded value indicates that the detected concentration is greater than the method detection limit and PA ACT 2 screening criteria.

TABLE 8
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
INORGANICS IN SHALLOW GROUNDWATER


| Sample ID                   | PA ACT 2     |            | LAG-02-GW  |            |            | LAG-03-GW  |            | LAG-03-GWD |            |            |  |
|-----------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|
| Sequence Number             | Groundwater  | 196        | 196        | 197        | 203        | 203        | 204        | 207        | 207        | 208        |  |
| Sample Date                 | Criteria (1) | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 | 05-30-2007 |  |
|                             | (ug/L)       |            |            |            |            |            |            |            |            |            |  |
| Dissolved Inorganics (ug/L) |              |            |            |            |            |            |            |            | _          |            |  |
| Aluminum                    | NE           | NA         |  |
| Arsenic                     | 10           | 3 U        | NA         | NA         | 3.4        | NA         | NA         | 3.8        | NA         | NA         |  |
| Barium                      | 2,000        | 47         | NA         | NA         | 36         | NA         | NA         | 36         | NA         | NA         |  |
| Calcium                     | NE           | NA         | 55200      | NA         | NA         | 54300      | NA         | NA         | 54200      | NA         |  |
| Iron                        | NE           | 419        | NA         | NA         | 60         | NA         | NA         | 129        | NA         | NA         |  |
| Lead                        | - 5          | NA         | 14300      | NA .       | NA         | 24700      | NA         | NA         | 24800      | NA         |  |
| Magnesium                   | NE           | 3280       | NA         | NA         | 222        | NA         | NA         | 225        | NA NA      | NA         |  |
| Manganese                   | 300          | NA         |  |
| Potassium                   | NE           | NA         | 5130       | NA         | NA         | 6710       | NA         | NA         | 6630       | NA         |  |
| Sodium                      | NE           | NA         | 17700      | NA NA      | NA         | 20500      | NA         | NA         | 20700      | NA         |  |
| Zinc                        | 2,000        | NA         |  |
| Conventionals (ug/L)        |              |            |            |            |            |            |            |            |            |            |  |
| Fluoride                    | NE           | NA         | NA         | 3400       | NA.        | NA         | 2190       | NA         | NA         | 2160       |  |


# TABLE 8 BISHOP TUBE SITE SUPPLEMENTAL INVESTIGATION INORGANICS IN SHALLOW GROUNDWATER


| Sample ID                   | PA ACT 2     |            | LAG-08-GW  |            |            | DDP-01-GW  |            | DDP-02-GW  |            |            |  |  |  |
|-----------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Sequence Number             | Groundwater  | 229        | 229        | 230        | 252        | 252        | 253        | 259        | 259        | 260        |  |  |  |
| Sample Date                 | Criteria (1) | 05-31-2007 | 05-31-2007 | 05-31-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 |  |  |  |
|                             | (ug/L)       |            |            |            |            |            |            |            |            |            |  |  |  |
| Dissolved Inorganics (ug/L) |              |            |            |            |            |            |            |            |            |            |  |  |  |
| Aluminum                    | NE           | 200 U      | NA         | NA         | 200 U      | NA         | NA         | 200 U      | NA         | Ν̈́A       |  |  |  |
| Arsenic                     | 10           | 4.2        | NA         | NA         | 3 U        | NA         | NA         | 3 U        | NA         | NA         |  |  |  |
| Barium                      | 2,000        | 25         | NA         | NA         | 30         | NA :       | NA         | 46         | NA         | NA         |  |  |  |
| Calcium                     | NE           | NA_        | 88100      | NA         | - NA       | 92100      | NA         | NA         | 98400      | NA         |  |  |  |
| Iron                        | ΝE           | 184        | NA .       | NA         | 340        | NA         | NA         | 24         | NA         | NA         |  |  |  |
| Lead                        | 5            | 1 U        | NA         | NA         | เบา        | NA         | NA         | 1 U        | NA         | NA         |  |  |  |
| Magnesium                   | NE           | NA         | 20900      | NA         | NA         | 14900      | NA         | NA         | 13600      | NA         |  |  |  |
| Manganese                   | 300          | 605        | NA         | NA         | 2150       | NA NA      | NA         | 2010       | NA         | NA         |  |  |  |
| Potassium                   | NE           | NA         | 4670       | NA NA      | NA         | 2770       | NA         | NA         | 1450       | NA         |  |  |  |
| Sodium                      | NE           | NA         | 18300      | NA         | NA         | 14500      | NA NA      | NA         | 15300      | NA         |  |  |  |
| Zinc                        | 2,000        | 10 U       | NA         | NA         | 10 U       | NA         | NA         | 10 U       | NA         | NA         |  |  |  |
| Conventionals (ug/L)        |              |            |            |            |            |            |            |            |            |            |  |  |  |
| Fluoride                    | NE           | NA         | NA         | 1460       | NA         | NA         | 550        | NA_        | NA         | 200 U      |  |  |  |


TABLE 8
BISHOP TUBE SITE
SUPPLEMENTAL INVESTIGATION
INORGANICS IN SHALLOW GROUNDWATER

| Sample ID                   | PA ACT 2     | Pump       | Pit-W      | ER-01      |            |            |  |  |
|-----------------------------|--------------|------------|------------|------------|------------|------------|--|--|
| Sequence Number             | Groundwater  | 246        | 246        | 273        | 273        | 274        |  |  |
| Sample Date                 | Criteria (1) | 06-04-2007 | 06-04-2007 | 06-05-2007 | 06-05-2007 | 06-05-2007 |  |  |
|                             | (ug/L)       |            |            |            |            |            |  |  |
| Dissolved Inorganics (ug/L) |              |            |            |            |            |            |  |  |
| Aluminum                    | NE NE        | 412        | NA         | NA         | - NA       | NA         |  |  |
| Arsenic                     | 10           | 3 U        | NA         | 3 U        | NA         | NA         |  |  |
| Barium                      | 2,000        | 54         | NA NA      | 10 U       | NA         | NA         |  |  |
| Calcium                     | NE           | NA         | 66900      | NA         | 337        | NA         |  |  |
| Iron                        | NE           | 1951       | NA         | 100        | NA         | NA         |  |  |
| Lead                        | 5            | 3          | NA         | NA         | 50         | NA         |  |  |
| Magnesium                   | NE           | NA         | 7700       | 10 U       | NA         | NA         |  |  |
| Manganese                   | 300          | 45         | NA         | NA         | NA         | NA         |  |  |
| Potassium                   | NE NE        | NA         | 1995       | NA .       | 1000 U     | NA         |  |  |
| Sodium                      | NE           | NA         | 2356       | NA         | 200 U      | NA         |  |  |
| Zinc                        | 2,000        | 14         | NA         | NA         | NA         | NA         |  |  |
| Conventionals (ug/L)        |              |            |            |            |            |            |  |  |
| Fluoride                    | NE           | NA         | NA         | NA         | NA :       | 200 U      |  |  |









# **Geophysical Assessment Report**



June 7, 2007

Mr. Christopher H. Kupfer, PG Michael Baker Jr., Inc. Airport Business Park 100 Airside Drive Moon Township, PA 17108

Re: Geophysical Investigation Report

Site Characterization Bishop Tube Site

PADEP Contract No. SAP4000006380

Work Requistion No. 4-2-154 East Whitehall Township Chester County, PA ARM Project 07248

#### Dear Mr. Kupfer:

ARM Geophysics, (ARM), a division of ARM Group Inc., has prepared this report for Michael Baker Jr., Inc (Baker) to present the results of a geophysical investigation performed at the Bishop Tube Site located in East Whitehall Township, Chester County, Pennsylvania. The purpose of the investigation was to locate and delineate possible buried utilities in five survey areas of concern (AOC) outlined by Baker. An ARM geophysicist was on-site May 23 and 30, 2007 to conduct the geophysical survey.

The five sites outlined by Baker are:

- AOC A: Potential Vault/Seepage Pit outside Boiler Room
- AOC B: Eastern portion of the Potential Vault area
- AOC C: Former Pickle Rinse water Disposal Tanks and Lagoons
- AOC D: Plant #5 Large Degreaser
- AOC E: Plant #8 Degreaser Area Discharge Pipe and Drainage Swale

#### FIELD EFFORT

ARM performed a three- phased geophysical survey to locate and delineate possible utilities at the AOCs. In the first phase, an electromagnetic (EM) survey was conducted using an EM61 MKII high sensitivity metal detector manufactured by Geonics Limited. The EM survey was

performed along traverses spaced ten feet apart and oriented in two directions approximately north to south and east to west.

In the second phase of the geophysical investigation, a ground-penetrating radar (GPR) survey was performed. GPR data were collected along the same traverses as the EM61 survey. GPR screening was conducted using a Model SIR-3000 GPR unit manufactured by Geophysical Survey Systems Inc. with a 400-megahertz antenna.

In the third phase of the geophysical survey, ARM utilized pipe and cable locators to perform inductive and conductive tracing to locate buried utilities. As part of the investigation, ARM performed a search with the 50/60 hertz locator. This form of utility locating device screens for loaded (active) underground electrical lines.

#### RESULTS

#### AOC A

Figure 1 presents an EM61 contour map. The survey area measured 50 feet by 40 feet. EM61 and GPR data were collected along bidirectional transects (north to south and east to west) at 10-foot spacings. Anomalies outlined along the western boundary are the result of surface metallic debris in the survey area. There is no metal source of the anomaly located in the central portion of the survey area. This anomaly appears to be the result of subsurface metal content. The GPR profiles collected over this EM anomaly are presented on Figure 2. The anomaly has characteristics similar to a potential vault or associated piping. Based on the EM61 data, the dimensions of the anomaly are approximately 4 feet by 3 feet. Other anomalies (shown as blue and gray) in the EM61 data may represent isolated metallic debris within the subsurface.

Several potential utilities were marked within this AOC. These are shown as dashed lines on Figure 1. The utility that is oriented from the southwest to the northeast trends toward a manhole cover that is located approximately 20 feet to the south of the survey grid.

#### AOC B

Figure 3 presents an EM61 contour map. The survey area measured 100 feet by 20 feet and is located inside of the main building along the south wall. Data were collected along bidirectional transects (north to south and east to west) with spacing of 10 feet between each transect. Anomalies seen in the northern portion of the contour map are most likely the result of reinforcing steel embedded in the concrete. The green areas outlined along 5-8 feet inline distance along the Y-axis correspond to a utility or trench that was detected by the utility locator. Several smaller utilities were also detected trending from south to north and were marked on the ground surface and included on Figure 3. An example of a GPR profile collected over this unknown anomaly has been included on Figure 3.

#### **AOC C**

Figure 4 presents an EM61 contour map. The survey area measured 70 feet by 80 feet and includes the inside and outside portion of the northeast corner of the building. Data were collected along bidirectional transects (north to south and east to west) with spacing of 10 feet between each transect. Anomalies seen in the western portion of the contour map are the result

of reinforcing steel embedded in the concrete inside of the building. Several utilities were detected by the utility locator and marked on the ground surface and included on Figure 4. Several anomalies were detected by the EM61 and also recorded on the GPR profiles collected in this area on the outside of the building. These anomalies have been highlighted on the provided GPR profile presented on Figure 4. The anomalies do not have the typical characteristics of possible underground storage tanks. Generally, USTs have a parabolic shaped reflection on GPR profiles. These anomalies appear to rectangular or flat toped.

Several utilities were detected and marked using the utility locator. These utilities have been marked on the ground surface and included on Figure 4.

#### AOC D

Figure 5 presents an EM61 contour map. The survey area measured 90 feet by 40 feet. Data were collected along bidirectional transects (north to south and east to west) with spacings of 10 feet between each transect. Anomalies seen in the contour map are the result of reinforcing steel embedded in the concrete. The GPR profile provided on Figure 5 shows the characteristic pattern typical for rebar.

Several utilities and trenches were detected with the utility locator and the GPR. These locations were marked on the surface with spray paint and have been included on Figure 5.

#### **AOCE**

Figure 6 presents an EM61 contour map. The survey area measured 275 feet by 10 feet. The poor data quality is due to the influence and interference from overhead power lines parallel to the southern boundary of the survey area.

During the GPR survey of this area several anomalies were detected that may represent possible sewer or drain pipes exiting the building area and trending to the north. The locations of these pipes were spray painted on the ground surface and have been included on Figure 6. They are located at the inline distance of approximately 73 feet, 130 feet, and 160 feet.

#### SURVEY LIMITATIONS

The investigation work scope included standard and/or routinely accepted practices of the geophysical industry. ARM utilized multiple methods in order to locate and delineate potential buried utilities and other subsurface obstructions in the survey areas. The multi-phased investigation was performed to reduce the risk of missing a subsurface feature due to the depth it is buried, the soil type and conditions, the materials, and other site-specific conditions that may interfere with the effectiveness of the geophysical equipment as shown with the data collected in AOC E. This interference can mask the existence of a utility.

However, by its nature, no subsurface survey can completely define subsurface conditions. ARM conducted this survey in accordance with industry standards and cannot accept responsibility for inherent technique limitations, survey limitations or unforeseen site-specific conditions.

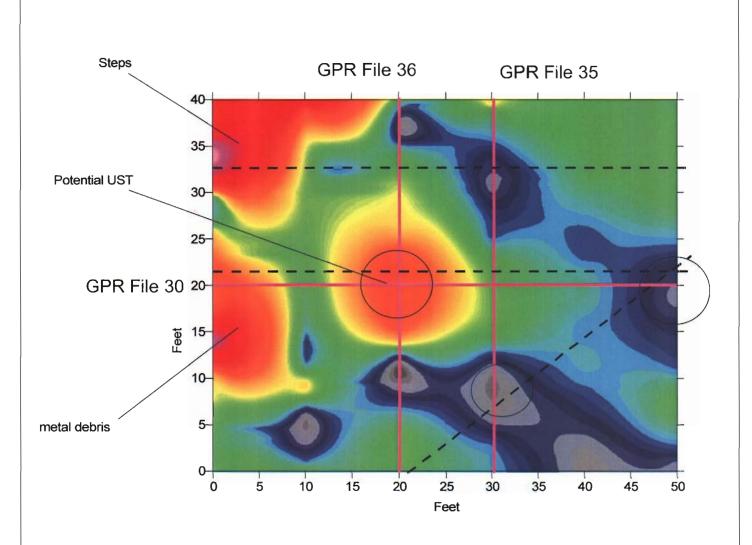
#### **SUMMARY**

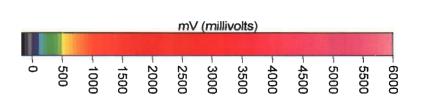
A multi-phase geophysical investigation was conducted at the Bishop Tube Site to locate potential utilities and other underground obstructions in five survey areas. In the five AOCs, several utilities were marked on the ground surface with spray paint. After reviewing the EM61 and GPR data, several other anomalies as well as utilities were detected and have been provided on the figures attached to this report.

If you have any questions or need additional information, please do not hesitate to contact either of the undersigned at 717-533-8600.

Respectfully submitted, ARM Group, Inc.

Museuch J Music

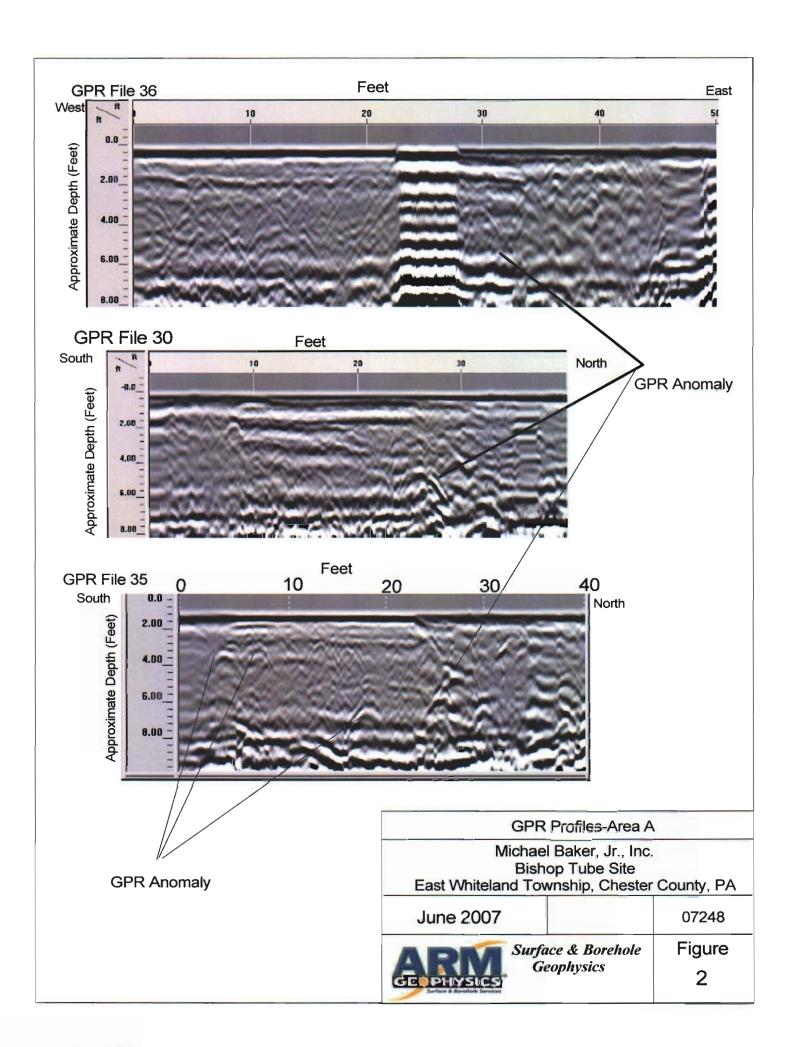

Alexander Mussio

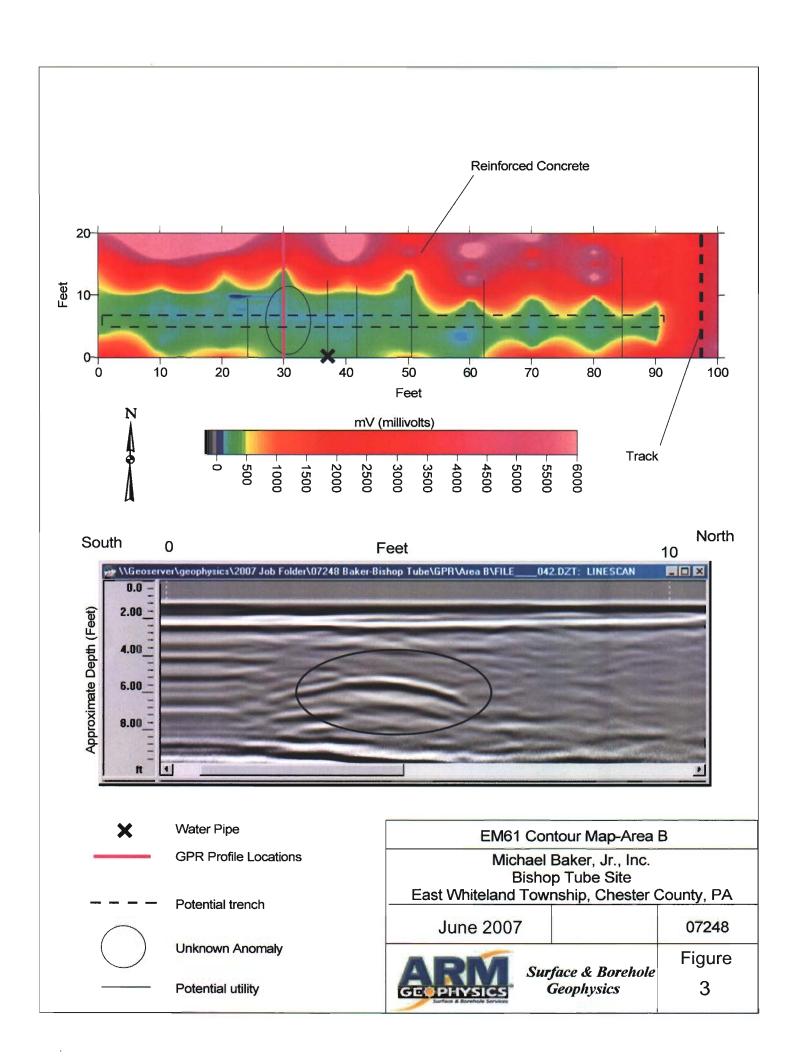

Project Geophysicist

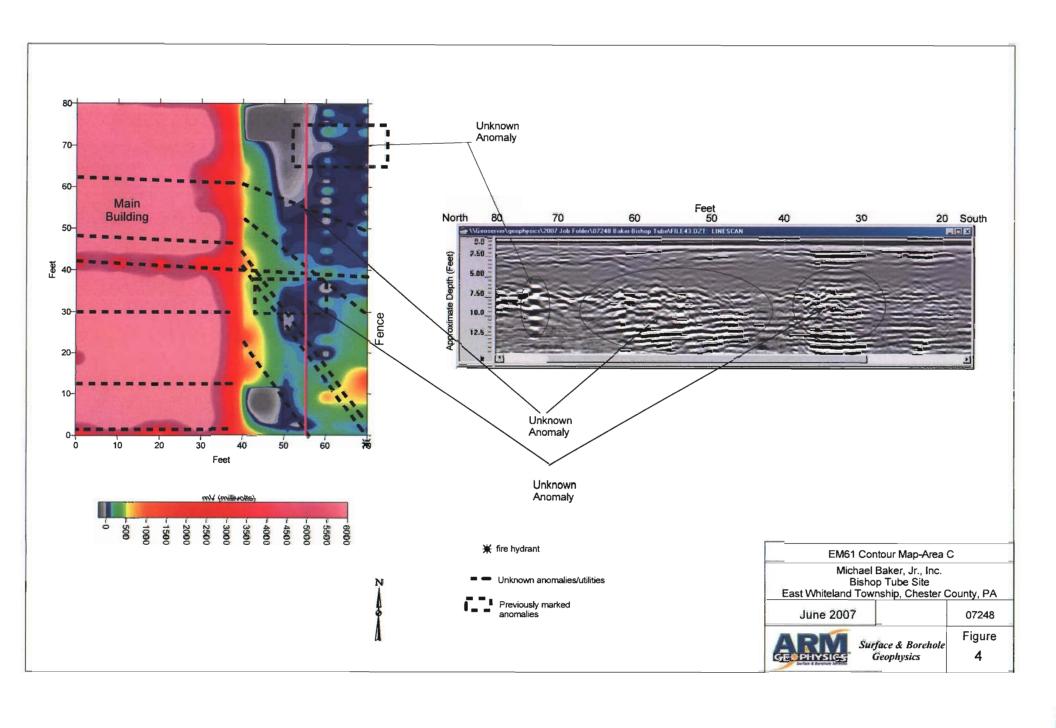
Beth A. Williams, P.G. Senior Geophysicist

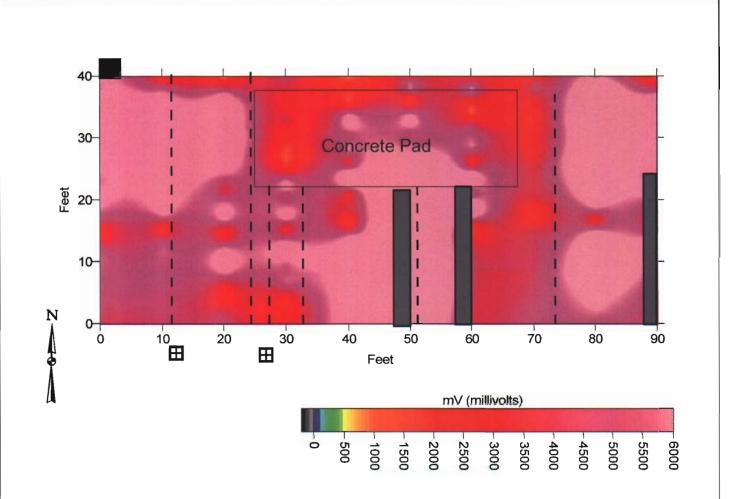
Beth d. Williams

Attachments



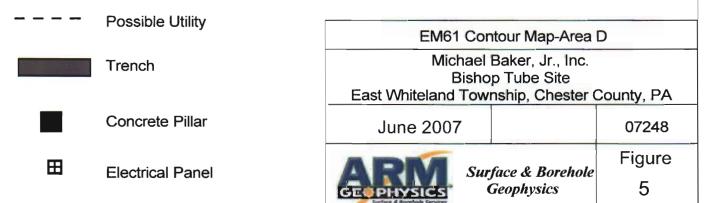



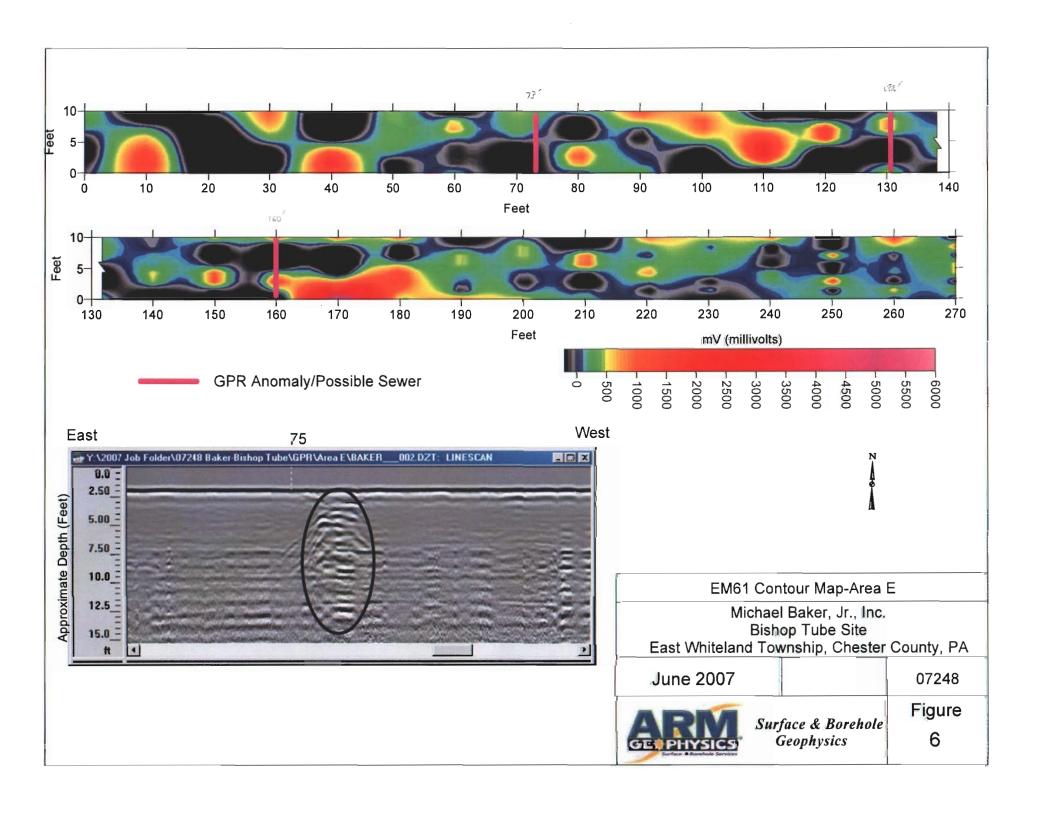





| GPR Profile Locations |
|-----------------------|
| Potential Utility     |
| Unknown Anomaly       |

| EM61 Contour Map-Area A                                                               |                   |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|--|--|--|
| Michael Baker, Jr., Inc. Bishop Tube Site East Whiteland Township, Chester County, PA |                   |  |  |  |  |  |  |  |  |
| June 2007 07248                                                                       |                   |  |  |  |  |  |  |  |  |
| ADM Surface                                                                           | & Borehole Figure |  |  |  |  |  |  |  |  |
| GEOPHYSICS Geoph                                                                      |                   |  |  |  |  |  |  |  |  |








### Typical Rebar pattern







# Baker

# Soil Boring Logs



### TEST BORING RECORD

| PROJECT   | :    | Bishop Tu   | ıbe (4-1-1 | 154)       |      |       |           |                                       |                    | ,          |
|-----------|------|-------------|------------|------------|------|-------|-----------|---------------------------------------|--------------------|------------|
| SO NO.:   |      | 104339      |            |            |      |       |           | BORING NO.:                           | 10-524             |            |
| COORDIN   |      |             |            |            |      | •     |           | NORTH:                                |                    |            |
| ELEVATI   | ON:  | SURFAC      | E:         |            |      | •     |           |                                       |                    |            |
| Rig: F    | owe  | rprobe 96   | 30         |            |      |       |           | T                                     | 1                  | Depth to   |
|           |      | MC          | Casing     | Augers     | Co   | re    | Date      | Progress                              | Weather            | Water      |
|           |      | Sampler     |            |            | Bar  | rel   | 1         | (Ft.)                                 |                    | (Ft.)      |
| Size (ID) |      | 1-5/8" I.D. |            |            |      |       | 5/24/07   | 12.0'                                 | sun 75°            | 10.5       |
| Length    |      | 4'          |            |            |      |       |           | -                                     |                    |            |
| Туре      |      | ΨP          |            |            |      |       |           | ,                                     |                    |            |
| Hammer '  | Wt.  |             |            |            |      |       |           |                                       |                    |            |
| Fall      |      |             |            |            |      |       | <u> </u>  | <u></u>                               |                    | <u> </u>   |
| Remarks:  |      | BKG - Ba    | ckground   |            | Cen  | ter o | dep.      | ression                               |                    |            |
|           |      | SAN         | APLE TY    | PE         |      |       | T         | DEF                                   | INITIONS           |            |
|           |      | S = Split   | Spoon A    | = Auger    |      |       | SPT = St  |                                       | n Test (ASTM D1586 | )          |
|           |      | T = Shelb   |            |            |      |       |           |                                       | tector Measurement | ´.         |
|           |      | R = Air F   |            | C = Core   | •    |       | MSL = N   | Iean Sea Level                        |                    |            |
|           |      | D = Deni    | _          | P = Piston |      |       | BG/PS =   | Background/Poin                       | t Source           |            |
|           |      |             | No Sam     |            |      |       | ppm = pa  | arts per million                      |                    |            |
|           |      | Sample      | Sample     |            | Lab  | PID   |           |                                       |                    | Elevation  |
| Depth (F  | t.)  | Type &      | Rec.       | SPT        | ID   | (ppm) | 1         | Visual Desc                           | ription            | (Ft. MSL)  |
| ···       |      | No.         | (Ft.,%)    |            | ļ    |       |           |                                       | . ,                | ļ          |
| 1.        |      |             |            |            |      |       | Clay      | proken gehist                         | pieces , michens,  | -          |
| │ <u></u> |      |             |            |            |      | '     | 10 m      | soft. A is I                          | own wy grey schist | -          |
| 2         |      | ١ ـ ٨       | 1.5        |            |      | 0.0   | ""        | - 4.11                                | -                  | ┪          |
|           |      | 5-1         |            |            |      | "."   |           |                                       | _                  | 1 1        |
| 3         |      |             |            |            |      |       |           |                                       | -                  | <b>1</b> · |
|           |      |             |            |            |      |       |           |                                       |                    | 1          |
| 4         | 4.0  |             |            |            |      |       |           |                                       | _                  | ]          |
|           |      |             |            |            |      |       |           | <b>\</b>                              |                    | ]          |
| 5         |      |             |            |            | ľ    |       | 00        | above                                 |                    |            |
|           |      |             |            | 2218- 14   |      | ١     |           |                                       | _                  | 4          |
| 6 —       |      |             | 1.6        | 10 -141    |      | 0.0   |           |                                       |                    | -          |
| 7         |      | 5-2         | '`         | -142       | mets |       | Ι,        | 1                                     |                    | -          |
| l '⊢      |      |             |            | V3P-01     | 7-8' |       | Al WEAL   | 1626                                  | L 0 1 1/2 -        | -          |
| 8 8       | ٥.   |             |            | V>F-01     |      |       | Appear    | s to be conc                          | rete a bottom      | 1          |
|           |      |             |            |            |      |       |           |                                       |                    | 7          |
| 9 _       |      |             |            |            |      |       | Can       | oute.                                 | •                  | 1          |
| l I       |      | 5-3         | 2.4        |            |      |       | 9.5       | • • • • • • • • • • • • • • • • • • • |                    | ]          |
|           |      |             |            | 1          | 1    | 1     |           |                                       | -1                 | 7          |
| 10        |      | 2           | ·          |            |      | l     | SITY, YO  | rytine sand, nu                       | LT'@`/0™`` _       |            |
| 10        |      | , ,         |            |            |      |       | sury, va  | rythe sand, and brown , sof           | +                  |            |
| 10        | CO.: |             |            |            |      |       | SUTY, VOI | BAKER REP.:                           | Brian Steffes      | 1          |



### TEST BORING RECORD

PROJECT:

Bishop Tube (4-1-154)

SO NO.:

104339

BORING NO.:

15P-01

| SAMPLE TYPE |                                      |           |          |                              |               |                                             | DEFINITIONS                                                      |           |           |  |  |  |
|-------------|--------------------------------------|-----------|----------|------------------------------|---------------|---------------------------------------------|------------------------------------------------------------------|-----------|-----------|--|--|--|
|             |                                      |           |          |                              |               |                                             | SPT = Standard Penetration Test (ASTM D1586)                     |           |           |  |  |  |
|             |                                      | T = Shelb | y Tube V | $\mathbf{W} = \mathbf{Wash}$ |               | PID = Photo Ionization Detector Measurement |                                                                  |           |           |  |  |  |
|             |                                      |           |          |                              |               |                                             | MSL = Mean Sea Level                                             |           |           |  |  |  |
| L           | D = Denison P = Piston N = No Sample |           |          |                              |               |                                             | ps/bg = point source/background                                  |           |           |  |  |  |
|             |                                      | Sample    | Sample   |                              | Lab           | PID                                         |                                                                  |           | Elevation |  |  |  |
| Depth       | (Ft.)                                | Type &    | Rec.     | SPT                          | ID            | (ppm)                                       | Visual Description                                               |           | (Ft. MSL) |  |  |  |
| -           |                                      | No.       | (Ft.,%)  |                              |               | " '                                         |                                                                  |           | ( )       |  |  |  |
| 11          |                                      |           | \        | 2128-14                      | VOA .         | F                                           | Continued from Sheet                                             | ┪         |           |  |  |  |
|             | 1                                    | 5-3       |          | - المس                       | Crist.        | 0.0                                         | sociations the svok on the metals                                |           |           |  |  |  |
| 12          | 120                                  | 2,7       |          | 145P-01-1                    | MRTS<br>O B m |                                             | suchficed the svot for the metals due to lack of material.       | ⊢         |           |  |  |  |
| -           | <u> </u>                             |           |          |                              | /-            |                                             |                                                                  |           |           |  |  |  |
| 13          | 1                                    |           |          |                              |               | -                                           | Both of hole @ 12.0'                                             | ᅱ         |           |  |  |  |
| "-          | 1 1                                  |           |          |                              |               |                                             | Courts and and                                                   | ᅱ         |           |  |  |  |
| 14          | 1                                    |           |          |                              |               |                                             | Consiste any in 1003                                             | $\dashv$  |           |  |  |  |
| *'-         | 1                                    |           |          |                              |               |                                             | off center, so we                                                |           |           |  |  |  |
| 15          | 1                                    |           |          |                              |               |                                             | Concrete anyled rods off center, so we terminate like to prevent | $\dashv$  |           |  |  |  |
| ''          | ł.                                   |           |          |                              |               |                                             | TO THE TO BE THE                                                 | $\dashv$  |           |  |  |  |
| 16          | í I                                  |           |          |                              |               |                                             | demange to rods                                                  | 닉         |           |  |  |  |
| 10          | 1 1                                  |           |          |                              |               |                                             |                                                                  |           |           |  |  |  |
| 1 ,, -      | 1 1                                  |           |          |                              |               |                                             | No STOA Saple @ 10-12!                                           | 4         |           |  |  |  |
| 17_         |                                      |           |          |                              |               |                                             | No svod saple e 10-12                                            | _         |           |  |  |  |
|             | l l                                  |           |          |                              |               |                                             |                                                                  | ᆈ         |           |  |  |  |
| 18 _        |                                      |           |          |                              |               |                                             |                                                                  | ᆜ         |           |  |  |  |
| l           |                                      |           |          |                              |               |                                             |                                                                  | ┙         |           |  |  |  |
| 19          | .                                    |           |          |                              |               |                                             |                                                                  | _         |           |  |  |  |
|             |                                      |           |          |                              | 1             |                                             |                                                                  | _         |           |  |  |  |
| 20 _        |                                      |           |          |                              |               |                                             |                                                                  |           |           |  |  |  |
| _           |                                      |           |          |                              |               |                                             |                                                                  | ┛         |           |  |  |  |
| 21 _        |                                      |           |          |                              |               | 1                                           |                                                                  |           |           |  |  |  |
|             |                                      |           |          |                              |               |                                             |                                                                  |           |           |  |  |  |
| 22          | l I                                  |           |          |                              |               |                                             |                                                                  |           |           |  |  |  |
| _           | l I                                  |           |          |                              |               |                                             |                                                                  |           |           |  |  |  |
| 23 _        |                                      |           |          |                              |               |                                             |                                                                  |           |           |  |  |  |
| l _         | 1 1                                  |           |          |                              |               |                                             |                                                                  |           |           |  |  |  |
| 24          |                                      |           |          |                              |               |                                             |                                                                  |           |           |  |  |  |
| l _         | ]                                    |           |          |                              |               |                                             | •                                                                |           |           |  |  |  |
| 25          |                                      |           |          |                              |               |                                             |                                                                  |           |           |  |  |  |
| l _         |                                      |           |          |                              |               |                                             |                                                                  |           |           |  |  |  |
| 26          |                                      |           |          |                              |               |                                             |                                                                  | ╕         |           |  |  |  |
| I _         | 1 1                                  |           |          |                              |               | 1                                           |                                                                  | _         |           |  |  |  |
| 27          |                                      |           |          |                              |               |                                             |                                                                  | $\exists$ |           |  |  |  |
| ] —         |                                      |           |          |                              |               |                                             |                                                                  | ᅱ         |           |  |  |  |
| 28 _        |                                      |           |          |                              |               |                                             |                                                                  | $\exists$ |           |  |  |  |
|             | 1 I                                  |           |          |                              |               |                                             |                                                                  | $\dashv$  |           |  |  |  |
| 29          |                                      |           |          |                              |               |                                             |                                                                  | $\dashv$  |           |  |  |  |
| ~~          |                                      |           |          |                              |               |                                             |                                                                  | $\dashv$  |           |  |  |  |
| 30 _        |                                      |           |          |                              |               |                                             |                                                                  | -         |           |  |  |  |
| ~~          |                                      |           |          |                              |               |                                             |                                                                  | $\dashv$  |           |  |  |  |
|             |                                      |           |          |                              |               |                                             |                                                                  |           |           |  |  |  |

DRILLING CO.: AllProbe

DRILLER:

Greg Baker

BAKER REP.: Brian Steffes

BORING NO.: VSP-9)

SHEET 2 OF\_1\_

# Baker Baker Environmental

DRILLING CO.: AllProbe
DRILLER: Greg Baker

## TEST BORING RECORD

BAKER REP.: Brian Steffes
BORING NO.: VSP-02 SHEET 1 OF 3

| PROJECT:    | Bishop Tu   | ibe (4-1-1 | .54)      |        |                                              |           |                  |                    |           |
|-------------|-------------|------------|-----------|--------|----------------------------------------------|-----------|------------------|--------------------|-----------|
| SO NO.:     | 104339      |            |           |        |                                              |           | BORING NO.:      | VSP-02             |           |
| COORDINAT   | EAST:       |            |           |        | •                                            |           | NORTH:           |                    |           |
| ELEVATION:  | SURFAC      | E:         |           |        | ,                                            |           | •                |                    |           |
| Rig: Powe   | erprobe 96. | 30         |           |        |                                              |           |                  |                    | Depth to  |
|             | MC          | Casing     | Augers    | Co     | re                                           | Date      | Progress         | Weather            | Water     |
|             | Sampler     |            | Ū         | Bar    | rel                                          |           | (Ft.)            |                    | (Ft.)     |
| Size (ID)   | 1-5/8" I.D. |            |           |        |                                              | 5)24/07   | 20.0'            | SUN 800            | 12.0'     |
| Length      | 4'          |            |           |        |                                              |           |                  | <u>ک</u> ے         |           |
| Туре        |             |            |           |        |                                              |           |                  |                    | complete  |
| Hammer Wt.  |             |            | _         |        |                                              |           |                  |                    |           |
| Fall        | ,           |            |           |        |                                              |           |                  |                    |           |
| Remarks:    | BKG - Ba    | ckground   | l         |        |                                              |           |                  |                    |           |
|             | SAN         | APLE TY    | /PE       |        |                                              |           | DEF              | NITIONS            |           |
| ·           | S = Split   |            |           |        |                                              | SPT = Sta |                  | Test (ASTM D158    | 6)        |
|             | T ≃ Shelb   |            |           |        |                                              |           |                  | ector Measurement  | "         |
|             | R = Air F   |            | C = Core  |        |                                              |           | lean Sea Level   |                    |           |
|             | D = Deni    | •          | = Piston  |        |                                              |           | Background/Point | t Source           |           |
|             |             | No Sam     |           |        |                                              |           | rts per million  |                    |           |
|             |             | Sample     |           | Lab    | PID                                          | F.F F     |                  |                    | Elevation |
| Depth (Ft.) | Type &      | Rec.       | SPT       | ID     | (ppm)                                        |           | Visual Desc      | ription            | (Ft. MSL) |
| _ ` ` ´     | No.         | (Ft.,%)    |           |        | <b>                                     </b> |           |                  | •                  | 1` 1      |
|             |             |            |           |        |                                              | 2" asy    | obalt            |                    |           |
| 1 ,         |             |            |           |        |                                              |           |                  | -                  |           |
|             | · .         |            |           |        |                                              | clay      | silty w/s        | chistic pieces,    |           |
| 2           |             |            |           | ĺ      | 211                                          |           | was mist         | chistic pieces,    |           |
|             | 5-1         | 1.4        |           | l      | l                                            | ""        | lustic 1.1)      | _                  | ]. I      |
| 3           | 1           |            | 2128- 1   | 46 SVO | ľ                                            | ۲         | -411             | _                  | ] `       |
| l _l        |             |            | i         | TI ME  | ſ                                            |           |                  |                    | _l        |
| 4 4.0       |             |            | V5P-02-0  | 30     | 3-41                                         |           |                  | _                  |           |
| _           |             |            | Y5P-02-03 | اصددا  | iosta                                        |           |                  |                    | _         |
| 5           |             |            | 121-020.  | 1 - 7  | ]                                            | a.        | Joone            | <b></b>            | ا ا       |
| I           |             |            |           |        |                                              |           |                  |                    | _l        |
| 6 _         |             | 1.4        |           |        |                                              |           |                  | _                  | _         |
| [           |             | ' '        |           | i      | ج. ٧                                         |           |                  |                    | _         |
| 7 —         | 5-2         |            |           |        |                                              |           |                  |                    |           |
|             |             |            |           |        |                                              |           |                  |                    | - I       |
| 8 8.0       |             |            |           |        |                                              | ļ         |                  |                    | -         |
|             |             |            |           |        | 4.1                                          |           |                  |                    | -         |
| 9 —         |             |            |           |        |                                              | 4.0       | 0                |                    |           |
| l ., -      |             |            |           |        | 20                                           | 161/74 V  | brown, com       | به <del>ده ۱</del> | _         |
| 10          |             |            |           |        | 1.0                                          | TH GANK   | 4.02-1, 2010     |                    |           |
|             | <u> </u>    |            | L         |        | <u> </u>                                     | L         |                  |                    |           |



PROJECT:

Bishop Tube (4-1-154)

SO NO.:

104339 BORING NO.:

|    |                                      |             |             |                                        |           |       | <u> </u>                     |                                                   |            |
|----|--------------------------------------|-------------|-------------|----------------------------------------|-----------|-------|------------------------------|---------------------------------------------------|------------|
| ١  |                                      |             | SAN         | IPLE TY                                | PE.       |       |                              | DEFINITIONS                                       |            |
| ١  |                                      |             | S = Split S |                                        |           |       |                              | SPT = Standard Penetration Test (ASTM D1586)      |            |
| ١  |                                      |             | _           | _                                      | -         |       |                              |                                                   |            |
| ١  |                                      |             | T = Shelby  |                                        |           |       |                              | PID = Photo Ionization Detector Measurement       |            |
| ١  |                                      |             | R = Air R   | lotary (                               | C = Core  |       |                              | MSL = Mean Sea Level                              |            |
| ١  |                                      | D = I       | Denison P   | = Piston                               | N = No Sa | mple  |                              | ps/bg = point source/background                   |            |
| ı  |                                      |             |             |                                        |           |       | PID                          | po og pomesoures ouekground                       | T21        |
| ١  | -                                    | I           | Sample      | Sample                                 |           | Lab . |                              |                                                   | Elevation  |
| ٠١ | Depth (Ft.) Type & Rec. SPT ID (ppm) |             |             |                                        |           | ID    | Visual Description           | (Ft. MSL)                                         |            |
| 1  | No. (Ft.%)                           |             |             |                                        |           |       |                              |                                                   |            |
| ſ  | 11                                   |             |             |                                        | 2128-     | VOA   | 0.0                          | Continued from Sheet 1                            |            |
| ı  | - · ·                                |             | 5-3         | 3.5                                    | r .       | SWA   | •                            | Continued from Shoot 1                            | 1 I        |
| 1  | ⊢                                    |             | フィ          |                                        | ۰ ا       | Mei   | _ a                          | _                                                 | 4 1        |
| ł  | 12 12.0                              |             |             |                                        | VSP-02-   |       | 6.0                          |                                                   | J i        |
| ı  |                                      |             |             |                                        | @ 11-     | 121   |                              | brown, obsoine, low plastic,                      | 1          |
| ı  | 13                                   |             |             | l                                      |           |       | home on braine love almotis. | 1 I                                               |            |
| ı  |                                      |             |             |                                        | l         |       |                              | - Manuel asymptotic Learning Land                 | - I        |
| 1  |                                      |             |             |                                        | l         |       |                              | moist to wet                                      | 4 I        |
| ı  | 14                                   |             |             | 10                                     |           |       | 0.0                          | ·                                                 |            |
| П  |                                      |             |             | 1.7                                    | l         |       |                              |                                                   |            |
| ı  | 15                                   |             | 5-4         |                                        | l         |       |                              |                                                   | 1          |
| ı  |                                      |             | · ·         |                                        | l         |       |                              |                                                   | - 1        |
| ı  |                                      | . 0         |             |                                        | l         |       |                              | degenerated schist                                | 1          |
| ı  | 16                                   | 40          |             |                                        |           |       |                              |                                                   |            |
| ı  |                                      |             |             |                                        | ·         | l     |                              | become wet below it'                              | 1          |
| ı  | 17                                   |             |             |                                        | l         |       |                              | -                                                 | 1          |
| ı  | 17                                   |             |             |                                        | l         |       | ]                            | <u> </u>                                          | - 1        |
| ı  | +                                    |             |             |                                        | 1         |       |                              | brown,                                            | 1 1        |
| ı  | 18                                   |             |             | 0.                                     |           | · .   | فيما                         | silty very time same, wety                        |            |
| ı  |                                      |             |             | 1.8                                    |           |       | 0                            |                                                   | 1 1        |
| ı  | 19                                   |             | ,           | '                                      |           |       |                              | , mro                                             | -          |
| ı  | 19 —                                 |             | 5.5         |                                        |           |       |                              | _                                                 | <b>.</b> ' |
| ı  |                                      | _           | 2.          |                                        |           |       |                              | •                                                 |            |
| ı  | 20                                   | 100         |             |                                        |           | 1     |                              |                                                   | ]          |
| ı  |                                      | <del></del> |             | ~····································· |           |       |                              |                                                   | -          |
| ı  | ٦, ٦                                 |             |             |                                        |           |       |                              | Bottom of boung @ 20.0 -                          | -{         |
| ı  | 21                                   |             |             |                                        |           |       |                              | _                                                 |            |
| 1  |                                      |             |             |                                        |           |       | ' -                          | _                                                 |            |
| 1  | 22                                   |             |             |                                        |           |       |                              | ·                                                 | 1          |
| 1  |                                      |             | ·           |                                        |           |       |                              | a Martin Sample -                                 | -          |
| ı  | 23                                   |             |             |                                        |           |       |                              | Collected Reserved                                | -          |
| ١  | <sup>23</sup> ــــ                   |             |             |                                        |           |       |                              | collected water somple -<br>VSP-02-6W on 5/29/07_ | _          |
| ١  |                                      |             |             |                                        |           |       |                              | 1 1 1                                             |            |
| ١  | 24                                   |             |             |                                        |           |       |                              | · ·                                               |            |
| -  |                                      |             |             |                                        |           | l     |                              |                                                   | 7          |
| ١  | 25                                   |             |             |                                        |           |       |                              | -                                                 | 4          |
| ١  | 23 →                                 |             |             |                                        |           |       |                              | _                                                 |            |
| 1  |                                      |             |             |                                        |           |       |                              |                                                   |            |
|    | 26                                   |             |             |                                        |           |       |                              | -                                                 |            |
|    |                                      |             | ·           |                                        |           |       |                              |                                                   | 1          |
|    |                                      |             |             |                                        |           |       |                              |                                                   | -          |
|    | 27                                   |             |             |                                        |           |       |                              | _                                                 | 1          |
|    |                                      |             |             | ·                                      |           |       |                              |                                                   |            |
|    | 28                                   |             |             |                                        | 7         |       |                              |                                                   |            |
|    |                                      |             |             |                                        | 1         |       |                              |                                                   |            |
|    |                                      |             |             | -                                      | -         |       |                              |                                                   |            |
|    | 29                                   |             |             |                                        | '         |       |                              |                                                   |            |
|    |                                      | ,           |             |                                        | -         |       |                              |                                                   |            |
|    | 30 _                                 |             |             |                                        |           |       |                              |                                                   | 1          |
|    | ~~—                                  |             |             |                                        |           |       |                              |                                                   | -          |
| L  |                                      |             |             |                                        |           |       | ı                            |                                                   | 1          |

DRILLING CO.:

AllProbe

DRILLER:

Greg Baker

BAKER REP.: Brian Steffes

BORING NO.: VSP-02

DRILLING CO.: AllProbe

DRILLER: Greg Baker

#### TEST BORING RECORD

BAKER REP.: Brian Steffes

BORING NO.: Y57-03 SHEET 1 OF

| PROJECT:          | Bishop Tu   | ıbe (4-1-1        | 154)              |            |               |            |                   |                                       |              |
|-------------------|-------------|-------------------|-------------------|------------|---------------|------------|-------------------|---------------------------------------|--------------|
| SO NO.:           | 104339      |                   |                   |            |               |            | BORING NO.:       | ¥5P-03                                |              |
| COORDINAT         | EAST:       |                   |                   |            | •             |            | NORTH:            |                                       |              |
| <b>ELEVATION:</b> | SURFAC      | E:                |                   |            | •             |            |                   |                                       |              |
| Rig: Powe         | erprobe 96  | 30                |                   |            |               |            |                   |                                       | Depth to     |
|                   | MC          | Casing            | Augers            | Co         | re            | Date       | Progress          | Weather                               | Water        |
|                   | Sampler     | Onom <sub>g</sub> | 1145010           | Bar        |               | ~          | (Ft.)             | /ventiles                             | (Ft.)        |
| Size (ID)         | 1-5/8" I.D. |                   | <del></del>       |            |               | 5-24-07    | 20.0              | 50 × 850                              | 122          |
| Length            | 4'          |                   |                   |            |               | 3.54.01    | 2010              | 20.2 44                               | 1900         |
| Туре              |             |                   |                   |            |               |            |                   |                                       |              |
| Hammer Wt.        |             |                   |                   |            |               |            |                   |                                       |              |
| Fall              |             |                   |                   |            |               |            |                   |                                       |              |
| Remarks:          | BKG - Ba    | ckground          | <u> </u>          |            |               |            |                   |                                       |              |
|                   |             |                   |                   |            |               |            |                   |                                       |              |
|                   |             | APLE TY           |                   |            |               |            |                   | INITIONS                              |              |
|                   |             |                   | $\lambda = Auger$ |            |               | SPT = Sta  | andard Penetratio | n Test (ASTM D158                     | 36)          |
|                   | T = Shelb   |                   |                   |            |               | PID = Pho  | oto Ionization De | tector Measurement                    |              |
| 4.                | R = Air F   | •                 | C = Core          |            |               |            | lean Sea Level    |                                       |              |
|                   | D = Deni    |                   | P = Piston        |            |               |            | Background/Poir   | it Source                             |              |
|                   | N≈          | No Sam            | ple               |            |               | ppm = pa   | rts per million   |                                       |              |
|                   | Sample      | Sample            |                   | Lab        | PID           |            |                   |                                       | Elevation    |
| Depth (Ft.)       | Type &      | Rec.              | SPT               | ID         | (ppm)         | 1          | Visual Desc       | cription                              | (Ft. MSL)    |
|                   | No.         | (Ft.,%)           |                   | ļ          |               |            |                   |                                       |              |
| 1 .               |             |                   |                   |            |               | 2" A       | sphit             |                                       | <u>_</u>     |
| 1 4               |             |                   |                   |            |               | , <i>U</i> | 11. 01.           | to be errotic                         | _            |
| I , -             |             | l .               |                   | l          | <b>ند</b> . ا | F-111      | 5 31/1-1 VI       | ed and second                         | 4            |
| 2 _               | 5-1         | 24                |                   | 2128-      | 1347          | P'6        | cea, brown,       | , , , , , , , , , , , , , , , , , , , |              |
| 3 -               | ا د ا       | I                 |                   | Ø10-6      | ļ.            | * F        | oid suspected     | to be errotic humidity.               | 4 ·          |
| '                 |             |                   | 15P-03-03         | [왕 3       | <u> </u>      | picate     | got to wind       | C MUZICITY.                           | -            |
| 4 74.0            |             |                   |                   | [ <b>1</b> | 123 a         | phate      |                   |                                       | 4            |
| <del>" - </del> - |             |                   |                   | 156 24     | 12            | 1          |                   | -                                     | _            |
| 5                 |             | J                 |                   |            |               |            | ha 10 1059        | selicit, were                         | $\dashv$     |
| l                 |             |                   |                   |            |               | as "       | ariove, was       | a makes to                            |              |
| 6 _               |             |                   |                   | [          |               | (10        | My prosti         | ,                                     | -            |
|                   |             |                   |                   |            | 0,0           |            |                   | -                                     |              |
| 7 ]               | . 2         | 2.5               |                   |            | "             |            |                   |                                       | 4            |
| 1 7.              | 5-2-        |                   |                   |            |               |            |                   | •                                     | -            |
| 8 -6.0            |             |                   |                   |            |               | 7.9        | ٠                 |                                       | <del>_</del> |
|                   |             |                   |                   |            | T             | durka      | a brown           | •                                     |              |
| آ و ا             |             |                   |                   |            |               | a.o        |                   |                                       |              |
|                   | _ `         | 3.3               |                   |            | 0.0           |            |                   | •                                     | _            |
| 10 _              | 5-3         | 3.7               | ľ                 |            | ľ             |            |                   |                                       |              |
|                   |             |                   |                   |            |               |            |                   |                                       |              |
|                   |             |                   |                   |            |               |            |                   |                                       |              |

#### TEST BORING RECORD

PROJECT:

Bishop Tube (4-1-154)

SAMPLE TYPE

SO NO.:

104339 BORING NO.: V5P-03

|   |             |       | S = Split S | True I J  |                                               |       |       | DEFINITIONS                                                      |              |  |  |
|---|-------------|-------|-------------|-----------|-----------------------------------------------|-------|-------|------------------------------------------------------------------|--------------|--|--|
|   |             |       | T = Shelb   | opoon A   | X — Auger                                     |       |       | SPT = Standard Penetration Test (ASTM D1586)                     |              |  |  |
|   |             |       | R = Air R   |           |                                               |       |       | PID = Photo Ionization Detector Measurement MSL = Mean Sea Level |              |  |  |
|   |             | D = 1 | Denison P   |           |                                               | mnle  |       |                                                                  |              |  |  |
| h |             |       | Sample      | Sample    |                                               | Lab   | PID   | ps/bg = point source/background                                  | Elevation    |  |  |
| ı | Depth (     | Ft.)  | Type &      | Rec.      | SPT                                           | ID    | (ppm) | Visual Description                                               | (Ft. MSL)    |  |  |
| ı | z-pm (      | ,     | No.         | (Ft.,%)   | 51.1                                          | 10    | фршу  | Visual Description                                               | (Lr. MOL)    |  |  |
| r | 11          |       |             | (2 0.570) | 3128-15                                       | 7 VOA | _     | Continued from Sheet                                             | <del> </del> |  |  |
| Т |             |       |             |           | 15                                            | A NOT |       |                                                                  |              |  |  |
| 1 | 12          | 0.0   |             |           | VSP-03-11                                     | 0     | 12    | -                                                                | 1 1          |  |  |
| ı |             | ·     | <del></del> |           | , <u>, , , , , , , , , , , , , , , , , , </u> |       |       | silty clay, brown, low -                                         | 1 I          |  |  |
| ı | 13          |       |             |           |                                               |       |       | plastic moist solisto sièces                                     | 1            |  |  |
| ı | _           |       |             |           |                                               |       |       |                                                                  | 1 1          |  |  |
| ı | 14          |       |             |           | ,                                             |       |       |                                                                  | ]            |  |  |
| ı |             |       | 5-4         |           |                                               |       | 00    | · .                                                              |              |  |  |
| ı | 15_         |       |             |           |                                               |       |       | <u> </u>                                                         |              |  |  |
| ı | ., -        | 160   |             |           |                                               |       | ,     | · .                                                              | .            |  |  |
| ı | 16_         | 163   |             |           |                                               |       |       | 1 halo 160' hand to -                                            | l i          |  |  |
| ı | 17          |       |             |           |                                               |       |       | determine exact depth                                            | .            |  |  |
| ı | 1/          |       |             |           |                                               |       |       | determine exist of                                               | -            |  |  |
| ı | 18          |       |             |           |                                               |       |       | sity fine sons, west, directory -                                | 1            |  |  |
| ı | ^°          |       | ,           |           |                                               |       | ١. ۵  | s brown.                                                         | -            |  |  |
| ı | 19          |       | 5-5         |           |                                               |       | 0,0   | _                                                                | - I          |  |  |
| ı | $\neg$      | اہا   | ,           |           |                                               |       |       |                                                                  | 1 1          |  |  |
| ı | 20          | 10.D  |             |           |                                               |       |       | - · · · · · · · · · · · · · · · · · · ·                          | <b>{</b>     |  |  |
| ı |             |       |             |           | `                                             |       | _     | a lb \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                         | †            |  |  |
| ı | 21 _        |       |             |           |                                               |       |       | Bottom of borny @ 20.0 _                                         | 1            |  |  |
| ı | _           |       |             |           |                                               |       |       |                                                                  | 1            |  |  |
| ı | 22_         |       |             |           |                                               |       |       | <u></u>                                                          | ]            |  |  |
| ı |             |       |             |           |                                               |       |       | · .                                                              | ]            |  |  |
| ı | 23          |       |             |           |                                               |       |       |                                                                  |              |  |  |
| ı | ~ -l        |       |             |           |                                               |       |       | <u>.</u>                                                         |              |  |  |
| ı | 24          |       |             |           |                                               |       |       |                                                                  | 4            |  |  |
| ı | 25          |       |             |           |                                               |       |       | ·                                                                | -            |  |  |
| ı | <i>23</i> – |       |             |           |                                               |       |       | _                                                                | -            |  |  |
| ı | 26          |       |             |           |                                               |       |       |                                                                  | -            |  |  |
|   |             |       |             |           |                                               |       |       | _                                                                | 1            |  |  |
|   | 27 _        |       |             |           |                                               |       |       | · ,                                                              | 1            |  |  |
|   |             | l     |             |           |                                               |       |       | <i>,</i>                                                         | 1            |  |  |
|   | 28 _        |       |             |           |                                               |       |       | · · · · · · · · · · · · · · · · · · ·                            | 1 ,          |  |  |
|   |             |       |             |           |                                               |       |       |                                                                  | 1 ′          |  |  |
|   | 29 _        |       |             |           |                                               |       |       | -                                                                | 1            |  |  |
|   |             |       |             |           |                                               |       |       |                                                                  | 1            |  |  |
|   | 30 _        |       |             |           |                                               |       |       |                                                                  | 1            |  |  |
| L |             |       |             |           |                                               |       |       |                                                                  | ]            |  |  |

DRILLING CO.: AllProbe

DRILLER:

Greg Baker

BAKER REP.:

**Brian Steffes** 

BORING NO .: VSP-03

DRILLING CO.: AllProbe
DRILLER: Greg Baker

#### TEST BORING RECORD

BAKER REP.: Brian Steffes
BORING NO.: y 5P- 0 Y SHEET 1 OF 1

| PROJECT:    | Bishop Tu   | be (4-1-1 | 54)        |            |              |          |                    |                    |           |
|-------------|-------------|-----------|------------|------------|--------------|----------|--------------------|--------------------|-----------|
| SO NO.:     | 104339      |           |            |            |              |          | BORING NO.:        | V5P-04             |           |
| COORDINAT   | EAST:       |           |            |            |              |          | NORTH:             |                    |           |
| ELEVATION:  | SURFAC      | E:        |            |            |              |          |                    | and county         |           |
| Rig: Powe   | erprobe 96  | 30        |            |            |              |          |                    |                    | Depth to  |
|             | MC          | Casing    | Augers     | Co         | re           | Date     | Progress           | Weather            | Water     |
|             | Sampler     |           | 8          | Bar        | rel          |          | (Ft.)              |                    | (Ft.)     |
| Size (ID)   | 1-5/8" I.D. |           |            |            |              | 5/24/07  | 4,51               | 5un 850            | NE        |
| Length      | 4'          |           |            |            |              |          |                    |                    |           |
| Туре        |             |           |            |            |              |          |                    |                    |           |
| Hammer Wt.  |             |           |            |            |              |          |                    |                    |           |
| Fall        |             |           |            |            |              |          |                    |                    |           |
| Remarks:    | BKG - Ba    | ckground  |            | -          |              |          |                    |                    |           |
|             | SAN         | APLE T    | PE         |            |              | · · · ·  | DEF                | NITIONS            |           |
|             | _           |           | = Auger    |            |              | SPT = St | andard Penetration | Test (ASTM D15     | 36)       |
|             | T = Shelb   | y Tube V  | V = Wash   |            |              | PID = Ph | oto Ionization De  | tector Measurement | ;         |
|             | R = Air F   | Rotary    | C = Core   |            |              | MSL = N  | Iean Sea Level     |                    |           |
|             | D = Deni    | <b>-</b>  | P = Piston |            |              | BG/PS =  | Background/Poin    | t Source           |           |
|             | N =         | No Sam    | ple        |            |              | ppm = pa | uts per million    |                    |           |
|             | Sample      | Sample    |            | Lab        | PID          |          |                    |                    | Elevation |
| Depth (Ft.) | Type &      | Rec.      | SPT        | ID         | (ppm)        | 1        | Visual Desc        | ription            | (Ft. MSL) |
|             | No. (Ft.,%) |           | <b>.</b>   |            |              |          |                    |                    |           |
|             |             |           |            |            |              | Z" :     | asphalt            |                    | ~         |
| 1 -         |             |           |            | l <b>.</b> |              | cith     | , clay w/ 5        | elist pièces,      |           |
| 2 _         |             |           | 2128- 169  | SVA        | ا ا          | مط       | - work 1st         | -1:11              | $\dashv$  |
| l ⁴⊢        | Ι.          | 0.5       | 161        | met        | 12-5         | ""       |                    | حاد ما داداد       |           |
| 3           | 5^\         | 12        |            |            | l .          | * P      | 10 reading         | Juspect Gozar      | ·         |
|             |             | V:        | P-04-0     | 36         | 3-4          | 'l '     | zigh Rumia!        | 14                 |           |
| 4 740       |             |           |            |            |              |          |                    |                    |           |
|             |             |           |            |            | <b></b>      | 6.12     | - of bole @        | 10                 |           |
| 5 _         | ļ           |           |            |            |              | 7/07 (5  | 9                  | 7.0                |           |
|             |             |           |            |            |              |          |                    |                    | $\neg$    |
| 6 _         |             | l         |            |            |              |          |                    |                    |           |
|             |             |           |            |            | İ            |          |                    |                    | _         |
| 7           |             | 1.        |            |            |              |          |                    |                    |           |
|             |             |           |            |            |              |          |                    |                    |           |
| 8 —         |             |           |            |            | <del> </del> | 1        |                    |                    | $\dashv$  |
|             |             |           |            |            |              |          |                    |                    | 4         |
| 9           |             |           |            |            |              |          |                    |                    |           |
| l           |             |           |            |            |              |          |                    |                    | 4         |
| 10          |             |           |            |            |              |          |                    |                    |           |
|             |             |           |            |            |              |          |                    |                    |           |

DRILLING CO.: AllProbe

DRILLER: Greg Baker

### TEST BORING RECORD

BAKER REP.: Brian Steffes
BORING NO.: V5P-65

SHEET 1 OF 2

| PROJECT:    | Bishop Tu              | ibe (4-1-1 | 54)                  |     |          |          |                                   |                                           |              |
|-------------|------------------------|------------|----------------------|-----|----------|----------|-----------------------------------|-------------------------------------------|--------------|
| SO NO.:     | 104339                 |            |                      |     |          |          | BORING NO.:                       | V57-05                                    |              |
| COORDINAT   | EAST:                  |            | _                    |     | •        |          | NORTH:                            |                                           |              |
| ELEVATION:  | SURFAC                 | E:         |                      |     |          |          |                                   |                                           | •            |
| Rig: Powe   | erprobe 96             | 30         |                      |     |          |          |                                   |                                           | Depth to     |
|             | MC                     | Casing     | Augers               | Co  | re       | Date     | Progress                          | Weather                                   | Water        |
|             | Sampler                |            |                      | Bat |          |          | (Ft.)                             | ************                              | (Ft.)        |
| Size (ID)   | 1-5/8" I.D.            |            |                      |     |          | 5/29/06  | 20,01                             | 500750                                    | 12.8         |
| Length      | 4'                     |            |                      |     |          | 1        |                                   |                                           | 1            |
| Type        |                        |            |                      |     |          |          |                                   |                                           | <del> </del> |
| Hammer Wt.  |                        |            |                      |     |          |          |                                   |                                           |              |
| Fall        |                        |            |                      |     |          |          |                                   |                                           |              |
| Remarks:    | BKG - Ba               | ckground   | l                    |     |          |          |                                   |                                           |              |
|             |                        | (DI E S    | 770.70               |     |          |          | <u></u>                           |                                           |              |
|             |                        | APLE TY    |                      |     |          | ana a    |                                   | INITIONS                                  | ^            |
|             | S = Split              | -          | _                    |     |          |          |                                   | Test (ASTM D158                           | 5)           |
| 1           | T = Shelb<br>R = Air F | -          | v ≃ wasn<br>C = Core |     |          |          |                                   | tector Measurement                        |              |
|             | D = Deni               | •          | P = Piston           |     |          |          | fean Sea Level<br>Background/Poin | 4 C                                       |              |
|             |                        | = No Sam   |                      |     |          |          | rts per million                   | t Source                                  |              |
|             | Sample                 | Sample     | P10                  | Lab | PID      | ррш – ра | res her minion                    |                                           | Elevation    |
| Depth (Ft.) | Type &                 | Rec.       | SPT                  | ID  | (ppm)    |          | Visual Desc                       | rintion                                   | (Ft. MSL)    |
|             | No.                    | (Ft.,%)    | ~ ~                  |     | (PP-III) | 1        | V ISUAI DOS                       | прион                                     | (*** 141515) |
| T           |                        | , ,,,,     |                      |     | <u> </u> | 2" A     | sphiet                            |                                           | <b>-</b>     |
| 1 🚣         |                        |            |                      |     |          | ,        | sphaet<br>restone grave           | لنميا                                     | =            |
|             |                        |            |                      |     | 4        | //~      | e a small of                      | , 60 50-1 -                               |              |
| 2           |                        |            |                      |     | 300+     |          |                                   | A1 -                                      |              |
|             |                        | j.£        |                      |     | 30-1     |          |                                   | - £7) -                                   | <b>.</b>     |
| 3           | 2-1                    |            |                      |     |          |          |                                   | _                                         | _            |
| 4 - 4.0     | (2,                    |            |                      |     |          |          |                                   |                                           | _            |
| 4 4.0       |                        |            |                      |     | ļ        |          |                                   | _                                         | 4            |
| 5 _         |                        |            |                      |     |          | Mari     | ex silt, mic                      | accous schift                             | -            |
| '⊢          |                        |            |                      |     |          | 510      | ces i atz pe                      | accous schift bles, brown,- plusticfill - | -{           |
| 6 _         |                        |            |                      |     | *        | ł '      | aist was                          | plestic.                                  | $\dashv$     |
| • -         |                        | 23         |                      |     | 200+     | ~        |                                   | -eill -                                   | $\dashv$     |
| 7 7         |                        |            |                      |     |          |          |                                   |                                           | -            |
|             | 5-2                    |            |                      |     | y.       |          |                                   | <del>-</del>                              | 1            |
| 8 8.0       |                        |            |                      |     | 100 7    |          |                                   |                                           | -            |
|             |                        |            |                      |     |          |          |                                   | -                                         | 7            |
| 9 _         |                        |            |                      |     |          | as       | Noore incre                       | easing clay,                              | 1            |
|             | 1.2                    | 2.6        |                      |     |          | 1        |                                   | o high humidit                            | .1           |
| 10          | 5.7                    | 2.3        |                      |     | 0.0      | * 50     | bect 610 gre-                     | a wider warmed in                         | 7            |
|             | L                      |            |                      |     |          | * °O'    | opp-with                          | new Mir                                   |              |



PROJECT:

Bishop Tube (4-1-154)

SO NO.:

104339

BORING NO.:

|   |                 |                                                  | 104337   |                           |          | <u> </u>      | DOMING NO 13/1-03                                                                |           |
|---|-----------------|--------------------------------------------------|----------|---------------------------|----------|---------------|----------------------------------------------------------------------------------|-----------|
| 1 |                 | SAN                                              | IPLE TY  | PE                        |          |               | DEFINITIONS                                                                      |           |
| 1 |                 | S = Split                                        | Spoon A  | = Auger                   |          |               | SPT = Standard Penetration Test (ASTM D1586)                                     |           |
| 1 |                 | T = Shelb                                        |          |                           |          |               | PID = Photo Ionization Detector Measurement                                      |           |
| 1 |                 | R = Air F                                        |          |                           |          |               | MSL = Mean Sea Level                                                             |           |
| 1 | D=1             | Denison P                                        | - Dieton | N - No Co                 | 1-       |               |                                                                                  |           |
| ł | <u> </u>        |                                                  |          |                           |          | DYD           | ps/bg = point source/background                                                  | 1=1       |
| ١ | D45 (Ex)        | Sample                                           | Sample   |                           | Lab.     | PID           |                                                                                  | Elevation |
| 1 | Depth (Ft.)     | Type &                                           | Rec.     | SPT                       | ID       | (ppm)         | Visual Description                                                               | (Ft MSL)  |
| 1 |                 | No.                                              | (Ft.,%)  |                           |          |               |                                                                                  |           |
| ١ | 11_             |                                                  | Zº .     | V-                        |          |               | Continued from Sheet                                                             |           |
| ١ | 1 ,             |                                                  |          | 45 6                      |          |               | _                                                                                |           |
| 1 | 12 12.0         | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> |          |                           |          |               |                                                                                  |           |
| ١ |                 |                                                  |          |                           |          |               |                                                                                  | 1         |
| ١ | 13              |                                                  |          |                           |          |               | _                                                                                | 1         |
| ١ |                 |                                                  |          |                           |          |               | <u> </u>                                                                         | 1 '       |
| ١ | 14              |                                                  |          |                           | l        | 9.0           | . ·                                                                              | 1         |
| ı |                 | 5-4                                              | 3,2      |                           |          |               | <del>-</del> -                                                                   | 1         |
| ı | 15              | 5                                                | ار, روا  | C-162 V                   | <b>A</b> |               | <u>-</u>                                                                         | ·         |
| ı | <b>-</b>        |                                                  | 216      | 8-163 M<br>164 S<br>165 S | 94       |               | <del>-</del>                                                                     | 1         |
| ı | 16 - 162        |                                                  |          | 165 5                     | 23       | ا , ا         | 18.9                                                                             | <b>·</b>  |
| ı | 10              | ~                                                | VYP      | -05-15                    | G 17:    | <u> </u>      | I                                                                                | -         |
| ı | .,, -           |                                                  |          |                           |          |               | brown - decomposed bedrock                                                       | 1         |
| ١ | 17              |                                                  |          |                           | l        |               | brown .                                                                          |           |
| ١ | 4               |                                                  |          |                           |          |               | - deco-possed bearocle                                                           | _         |
| ١ | 18              |                                                  | ا ہا     | -                         |          | 0.0           |                                                                                  |           |
| ١ |                 | _                                                | 1.1      |                           |          | 0.3           |                                                                                  | 1         |
| ١ | 19              | 5.5                                              |          |                           | l        |               | 43                                                                               | 1         |
| ١ |                 | )                                                |          |                           | l        |               | SIHISAID Black, Let                                                              | 1         |
| ١ | 20 10.0         |                                                  |          |                           | l        |               | 51Hyshoo, black, cet FAT Brokengrou rock (schist?), well, Bottom of hole @ 20.01 | 1         |
| ١ |                 |                                                  |          |                           |          | <del> -</del> | Bother of help (1) 20 at                                                         | 1         |
| ١ | 21              |                                                  |          |                           | l        |               |                                                                                  | 1         |
| ١ | <b>-</b> 1-     |                                                  |          | VSP-                      | b5-6     | w             | water somple -                                                                   | -         |
| ١ | 22              |                                                  |          | •/-                       |          | <b>Y</b>      | _                                                                                | 4         |
| ١ | <sup>22</sup> — |                                                  |          |                           |          | 1             | _                                                                                |           |
| ١ |                 |                                                  |          |                           |          |               | _                                                                                |           |
| ١ | 23              |                                                  |          |                           |          |               | <u></u>                                                                          | _         |
| ١ |                 |                                                  |          |                           |          |               |                                                                                  | _         |
| ١ | 24              |                                                  |          |                           |          |               |                                                                                  | ╛         |
| ١ | _               |                                                  |          |                           |          |               |                                                                                  | ]         |
| ı | 25              |                                                  |          |                           |          |               |                                                                                  | 1         |
| ı |                 |                                                  |          |                           |          |               | _                                                                                | 1         |
| ı | 26              |                                                  |          |                           | <b>.</b> |               | -                                                                                | 1         |
| ı |                 |                                                  |          |                           |          |               | . –                                                                              | 1         |
| 1 | 27              |                                                  |          |                           |          |               | -                                                                                | 1         |
|   | -·              |                                                  |          |                           |          |               | -                                                                                | -         |
| ŀ | 28 _            |                                                  |          |                           |          |               | -                                                                                | -         |
|   | ° -             |                                                  |          |                           |          |               | ·                                                                                | 4         |
|   |                 |                                                  |          |                           |          |               | -                                                                                | 4         |
|   | 29              |                                                  |          |                           |          |               |                                                                                  | 7         |
|   |                 |                                                  |          |                           |          |               | _                                                                                |           |
|   | 30              |                                                  |          |                           |          |               |                                                                                  |           |
|   |                 |                                                  |          |                           |          |               |                                                                                  |           |

DRILLING CO.:

AllProbe

DRILLER:

Greg Baker

BAKER REP.: Brian Steffes

BORING NO.: VSP-05

DRILLING CO.: AllProbe
DRILLER: Greg Baker

#### TEST BORING RECORD

BAKER REP.: Brian Steffes
BORING NO.:  $\frac{1}{\sqrt{5}\rho^2 - b}$  SHEET 1 OF  $\frac{1}{\sqrt{5}\rho^2 - b}$ 

| PROJECT:        | Bishop Tu   | ibe (4-1-1 | 54)                        |                                                  |       |             |                                       |                                   |              |
|-----------------|-------------|------------|----------------------------|--------------------------------------------------|-------|-------------|---------------------------------------|-----------------------------------|--------------|
| SO NO.:         | 104339      |            |                            |                                                  |       |             | BORING NO.:                           | 1/58-06                           |              |
| COORDINAT       | EAST:       |            |                            |                                                  |       |             | NORTH:                                |                                   |              |
| ELEVATION:      | SURFAC      | E:         |                            |                                                  | •     |             |                                       |                                   |              |
| Rig: Powe       | erprobe 96  | 30         |                            |                                                  |       | Γ           | 1                                     | Γ                                 | Depth to     |
|                 | MC          | Casing     | Augers                     | Co                                               | re    | Date        | Progress                              | Weather                           | Water        |
|                 | Sampler     |            |                            | Bar                                              |       |             | (Ft.)                                 |                                   | (Ft.)        |
| Size (ID)       | 1-5/8" I.D. |            |                            |                                                  | ·     | 5/29/00     | 8.0                                   | 5UN 750                           | 6.81         |
| Length          | 4'          |            |                            |                                                  |       |             |                                       |                                   |              |
| Туре            |             |            |                            |                                                  |       |             |                                       |                                   |              |
| Hammer Wt.      |             |            |                            |                                                  |       |             |                                       |                                   |              |
| Fall            |             |            |                            |                                                  |       |             |                                       |                                   |              |
| Remarks:        | BKG - Ba    | ckground   | l                          |                                                  |       |             |                                       |                                   |              |
|                 | SAN         | APLE TY    | /PE                        |                                                  |       | <del></del> | DEE                                   | INITIONS                          |              |
|                 | S = Split   |            |                            |                                                  |       | SPT = St    |                                       | n Test (ASTM D158                 | െ            |
|                 | T = Shelb   |            |                            |                                                  |       |             |                                       | tector Measurement                | ٧)           |
|                 | R = Air F   |            | C = Core                   |                                                  |       |             | fean Sea Level                        |                                   |              |
|                 | D = Deni    | -          | = Piston                   |                                                  |       |             | Background/Poin                       | at Source                         |              |
|                 | <u>N</u> =  | No Sam     | ple                        |                                                  |       |             | arts per million                      |                                   |              |
|                 | Sample      | Sample     |                            | Lab                                              | PID   |             |                                       |                                   | Elevation    |
| Depth (Ft.)     | Type &      | Rec.       | SPT                        | ID                                               | (ppm) | ł           | Visual Desc                           | cription                          | (Ft. MSL)    |
|                 | No.         | (Ft.,%)    |                            |                                                  |       |             |                                       |                                   |              |
|                 |             |            |                            |                                                  |       | 4" Con      | acte                                  |                                   |              |
| 1 -             |             |            |                            |                                                  |       | · . ,       | 1 01. 1.                              | . A b salit -                     | -            |
| , -             |             |            |                            |                                                  |       | 5117        | y clay wis                            | alm th                            | - · · · ·    |
| 2               |             | 2.5        |                            |                                                  | 0.0   | PI          | Eres Brown                            | and & schot - , non-plooth,  2,1) | -            |
| 3               |             | s.,        |                            |                                                  | 0.0   |             | aist 1                                | 2.1)                              | <b>-</b>   ⋅ |
| 1 7             |             |            |                            |                                                  |       |             | -4                                    | - 11 / -                          | -            |
| 4 -4,3          |             |            |                            |                                                  |       |             |                                       |                                   | -            |
| ' <del> '</del> |             |            |                            | <del>                                     </del> | _ ,   | 1           |                                       | -                                 | -            |
| 5 7             |             | √\$        | P-06-06<br>2128-176<br>177 | @ 6-                                             | 17    |             |                                       |                                   | 1            |
|                 |             |            | 2128-176                   | WA                                               |       |             |                                       |                                   |              |
| 6 _             |             | 4.0        | 177                        | WOA.                                             |       |             |                                       |                                   |              |
|                 |             | 9          | 1 /8                       | m245.                                            | 00    | hs          | et below ?                            | 7.6                               |              |
| 7               |             |            | '                          | 1                                                |       |             |                                       |                                   |              |
| -               |             |            |                            |                                                  |       |             |                                       |                                   | _            |
| 8 780           |             |            |                            |                                                  |       |             | · · · · · · · · · · · · · · · · · · · |                                   |              |
| 9 -             |             |            |                            |                                                  |       |             | Botton of h                           | alo (n. 8°0.                      | -            |
|                 |             |            |                            |                                                  |       |             | U                                     | - al-                             |              |
| 10              |             |            |                            |                                                  |       | VSP-1       | 26-en ma                              | er surple                         | -            |
| ^~ -            |             |            |                            |                                                  |       |             |                                       | -                                 | $\dashv$     |
| L               |             |            |                            | <u></u>                                          |       |             |                                       |                                   |              |

DRILLING CO.: AllProbe
DRILLER: Greg Baker

#### TEST BORING RECORD

BAKER REP.: Brian Steffes
BORING NO.: LAGO SHEET 1 OF

| PROJECT:    | Bishop Tu        | ibe (4-1-1     | 54)      |           |                                                  |          |                                         |                    |             |
|-------------|------------------|----------------|----------|-----------|--------------------------------------------------|----------|-----------------------------------------|--------------------|-------------|
| SO NO.:     | 104339           |                |          |           |                                                  |          | BORING NO.:                             | LAG-01             |             |
| COORDINAT   | EAST:            |                |          |           |                                                  |          | NORTH:                                  |                    |             |
| ELEVATION:  | SURFAC           | E:             |          |           |                                                  |          |                                         |                    |             |
| Rig: Powe   | erprobe 96       | 30             |          |           |                                                  |          | I :                                     |                    | Depth to    |
|             | MC               | Casing         | Augers   | Co        | re                                               | Date     | Progress                                | Weather            | Water       |
|             | Sampler          | ٥              |          | Bar       |                                                  |          | (Ft.)                                   |                    | (Ft.)       |
| Size (ID)   | 1-5/8" I.D.      |                |          |           |                                                  | 5/29/01  | 20.0                                    | Sun 80°            | NEX         |
| Length      | 4'               |                |          |           |                                                  |          |                                         |                    |             |
| Туре        |                  |                |          |           |                                                  |          |                                         |                    |             |
| Hammer Wt.  |                  |                |          |           |                                                  |          |                                         |                    |             |
| Fall        | DVG 5            |                |          |           |                                                  |          | <u> </u>                                | <u> </u>           |             |
| Remarks:    | BKG - Ba         | ckground       | l        |           |                                                  |          | . *                                     | perchad 20m        | r @ 3.5-43  |
|             | SAN              | APLE T         | (PE      |           |                                                  |          | DEF                                     | INITIONS           |             |
|             | S = Split        |                |          |           |                                                  |          |                                         | n Test (ASTM D15   |             |
|             | T = Shelb        |                |          |           |                                                  |          |                                         | tector Measuremen  | t           |
|             | R = Air B        |                | C = Core |           |                                                  |          | lean Sea Level                          | _                  |             |
|             | D = Deni         | <b>-</b>       | Piston   |           |                                                  | 1        | Background/Poin                         | t Source           |             |
|             |                  | No Sam         | ple      | 7 1       | - NYTO                                           | ppm = pa | erts per million                        |                    | I Elizabeth |
| Depth (Ft.) | Sample<br>Type & | Sample<br>Rec. | SPT      | Lab<br>ID | PID<br>(ppm)                                     | J        | Visual Desc                             | rintian            | (Ft. MSL)   |
| Deput (14.) | No.              | (Ft.,%)        | OF 1     | ш         | լ <b>աբու</b> յ                                  |          |                                         | -                  |             |
|             | 1.0.             | (2 0.5,70)     |          |           | _                                                | 0.6 Ay   | halt base m                             | ustoral south, gra | -el         |
| 1 _,        |                  |                |          |           |                                                  | 51/+     | & fine sand, b                          | رادافس مدود        |             |
|             |                  |                |          |           |                                                  | (        | dohusive.                               |                    |             |
| 2 _         | i                |                |          |           | 0.0                                              |          |                                         |                    |             |
| 1           | Ι.               | 1.3            |          |           |                                                  |          |                                         |                    |             |
| 3           | 5-1              |                |          |           |                                                  | 2.5      | wet 3.5 - 4                             | .5'                |             |
| 4 4.0       |                  |                |          |           |                                                  |          |                                         |                    | <del></del> |
| "           |                  |                |          |           | <del> </del>                                     | 9.3 /11  | mestone same & g                        | irarel, white, go  | <b>E</b>    |
| 5 _         |                  |                |          |           |                                                  | .14      | , sand & clay,                          | w/ rocks,          | コ           |
|             |                  | 3/89-18        | 4 VOA    |           |                                                  | 4-1/1    | of teiam and                            | wphotic i          | 4           |
| 6           |                  | 18             | 5 50A    |           | 0.0                                              | 6/4      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | - 4111.            | $\dashv$    |
| ] 7 -       | 5.2              |                | 05@5-6   | •         |                                                  |          |                                         |                    | -           |
| 1 '         | 5'               | 3.3            | 746      |           |                                                  | 1        |                                         |                    | $\dashv$    |
| 8 48.9      |                  | 3.0            |          |           |                                                  |          |                                         |                    | -           |
| "           |                  |                |          |           | <del>                                     </del> | 1        |                                         |                    | $\dashv$    |
| 9           |                  |                |          |           | ĺ                                                |          |                                         |                    |             |
|             |                  | 2.7            |          |           | 0.0                                              |          |                                         |                    |             |
| 10          | 5-3              | " '            |          |           |                                                  |          |                                         |                    |             |
|             |                  |                |          |           |                                                  | L        |                                         |                    |             |



| Baker Environn | nental                  |                           |                             |           |              |                                                                                                                                                               |                        |
|----------------|-------------------------|---------------------------|-----------------------------|-----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| PROJECT:       | Bisho                   | p Tube (4                 | 1-1-154)                    |           |              |                                                                                                                                                               |                        |
| SO NO.:        |                         | 104339                    |                             |           |              | BORING NO.: LAG-OF                                                                                                                                            |                        |
| D=1            | S = Split               | y Tube V<br>Rotary (      | A = Auger V = Wash C = Core | mple      |              | DEFINITIONS  SPT = Standard Penetration Test (ASTM D1586)  PID = Photo Ionization Detector Measurement  MSL = Mean Sea Level  ps/bg = point source/background |                        |
| Depth (Ft.)    | Sample<br>Type &<br>No. | Sample<br>Rec.<br>(Ft.,%) |                             | Lab<br>ID | PID<br>(ppm) |                                                                                                                                                               | Elevation<br>(Ft. MSL) |
| 11             |                         |                           |                             |           |              | Continued from Sheet 1                                                                                                                                        |                        |
| 13             | 5-4                     | 1.5                       | ·                           |           | 0.0          | 15.4<br>Vegetation, black organic soll@15.4-                                                                                                                  |                        |
| 17             | 9.5                     | 2.7                       |                             |           | 0,0          | Decomposed rock, clayery microcond  19.2  Broken rock, dry to minot schiefe, intest pieces are hard, grey-                                                    |                        |
| 21             |                         | <b>V</b> .                |                             |           |              | Bottomy hale @ 20.0                                                                                                                                           |                        |
| 29             |                         |                           |                             |           |              |                                                                                                                                                               | -                      |

| DRILLING CO.: | AllProbe   | BAKER REP.: | Brian Steffes |              |
|---------------|------------|-------------|---------------|--------------|
| DRILLER:      | Greg Baker | BORING NO.: | MG-01         | SHEET 2 OF Z |

#### TEST BORING RECORD

| PROJECT:         | Bishop Tu   | be (4-1-1 | 54)                                   |            |       |           |                    |                                       |                 |
|------------------|-------------|-----------|---------------------------------------|------------|-------|-----------|--------------------|---------------------------------------|-----------------|
| SO NO.:          | 104339      |           |                                       |            |       |           | BORING NO.:        | LAG-02                                |                 |
| COORDINAT        | EAST:       |           |                                       |            | •     |           | NORTH:             |                                       |                 |
| ELEVATION:       | SURFAC      | Е:        |                                       |            |       |           | •                  |                                       | •               |
| Rig: Powe        | erprobe 96  | 30        |                                       |            |       |           |                    | · · · · · · · · · · · · · · · · · · · | Depth to        |
|                  | MC          | Casing    | Augers                                | Co         | re    | Date      | Progress           | Weather                               | Water           |
|                  | Sampler     |           |                                       | Bar        |       |           | (Ft.)              |                                       | (Ft.)           |
| Size (ID)        | 1-5/8" I.D. |           |                                       |            |       | 5/30/07   | 24.0               | gun 75"                               | 15.51           |
| Length           | 4'          |           |                                       |            |       |           |                    |                                       |                 |
| Туре             |             |           |                                       |            |       |           |                    |                                       |                 |
| Hammer Wt.       |             |           |                                       |            |       |           |                    |                                       |                 |
| Fall             |             |           |                                       |            |       |           |                    |                                       |                 |
| Remarks:         | BKG - Ba    | ckground  | East.                                 | βn,        | UST.  |           |                    |                                       |                 |
|                  | SAN         | APLE T    | PE                                    |            |       |           | DEF                | NITIONS                               |                 |
|                  |             |           | - Auger                               |            |       | SPT = Sta | andard Penetration | Test (ASTM D15                        | 86)             |
|                  | T = Shelb   | -         |                                       |            |       |           |                    | ector Measuremer                      | nt              |
|                  | R = Air F   | -         | C = Core                              |            |       |           | fean Sea Level     |                                       |                 |
|                  | D = Deni    |           | P = Piston                            |            |       |           | Background/Poin    | Source                                |                 |
|                  |             | No Sam    | ple                                   |            | T     | ppm = pa  | rts per million    |                                       |                 |
| 5 4 5            | Sample      | Sample    |                                       | Lab        | PID   |           |                    |                                       | Elevation       |
| Depth (Ft.)      | Type &      | Rec.      | SPT                                   | ID         | (ppm) | 1         | Visual Desc        | ription                               | (Ft. MSL)       |
| т -              | No.         | (Ft.,%)   |                                       |            | ┼     | 1.        | 1 164 co ula       | laca material                         |                 |
| 1.               |             |           |                                       |            |       | o. Y ASP  | work & disamples   | soul brown, mile offer, tie - fill    | <u>'</u>        |
| ^ <del>-</del> - |             |           |                                       |            | 4.8   |           | 4 5 0-             |                                       | _               |
| 2                |             | 2.4       |                                       |            | ""    | 51174     | clay & w. tore     | Sand                                  | - 1             |
|                  |             | 12・'      |                                       |            |       | 100       | est, slight orgi   | the oute,                             |                 |
| 3                | 5-1         |           |                                       |            |       | l le      | ow to non pla      | " - fr/)                              | 1 1             |
|                  |             |           |                                       |            | 19.3  |           |                    |                                       | $\neg$          |
| 4 740            |             |           |                                       |            |       |           |                    |                                       | 7 1             |
|                  |             | 2128-     | 87 VOA                                |            |       | 1         | easing clay, 1     | teins situle                          |                 |
| 5                |             |           | 87 vod<br>88 svod<br>89 nd.           |            | د ما  | inco      | casing clay!       | A                                     | <b>」</b> . Ⅰ    |
|                  |             | اً ا      | ,<br>,                                | ١,,        | 39.1  |           |                    | - £, ()                               |                 |
| 6 _              |             | LAE-OT    | D3 (# 2.                              | [*         |       |           |                    |                                       | _               |
| _                | ļ           | 70        | o\$ @ 5                               |            |       |           |                    |                                       | 4 1             |
| 7 —              | 5-2         | r         |                                       |            | 2.6   |           |                    |                                       | _               |
| 1 2              |             |           |                                       |            |       |           |                    |                                       | - I             |
| 8 . 8.0          |             |           | <u> </u>                              | ļ <u>.</u> | ₩     | ł         |                    |                                       |                 |
| <u>,</u>         |             |           |                                       |            | ۱.,   |           |                    |                                       | -               |
| 9 _              |             |           |                                       |            | 7.1   |           |                    |                                       | $\dashv$ $\mid$ |
| 10               |             |           |                                       |            |       |           |                    |                                       | -               |
| 10               |             |           |                                       |            | 4.0   |           |                    |                                       | $\dashv$ $\mid$ |
|                  | L           |           |                                       | <u> </u>   | .L•   |           |                    |                                       |                 |
| DRILLING CO.:    |             |           | · · · · · · · · · · · · · · · · · · · |            | _     |           | BAKER REP.:        | Brian Steffes                         |                 |
| DRILLER:         | Greg Bak    | er        |                                       |            | _     |           | BORING NO.:        | LAG-02 SI                             | HEET 1 OF 👱     |



DEFINITIONS

PROJECT: Bishop Tube (4-1-154)

SAMPLE TYPE

SO NO.: 104339 BORING NO.:

| ı |                 |             | ILT'E II |                                |        |       | DEFINITIONS                                  |           |  |  |
|---|-----------------|-------------|----------|--------------------------------|--------|-------|----------------------------------------------|-----------|--|--|
|   |                 | S = Split S |          |                                |        |       | SPT = Standard Penetration Test (ASTM D1586) |           |  |  |
|   |                 | T = Shelby  |          |                                |        |       | PID = Photo Ionization Detector Measurement  |           |  |  |
| I | ъ,              | R = Air R   |          |                                |        |       | MSL = Mean Sea Level                         |           |  |  |
| 1 | D=1             | Denison P   |          |                                |        | DID   | ps/bg = point source/background              | 701       |  |  |
| ١ | <b>5</b> 4 (5)  | Sample      | Sample   |                                | Lab    | PID   | I                                            | Elevation |  |  |
|   | Depth (Ft.)     | Type &      | Rec.     | SPT                            | ID     | (ppm) | Visual Description                           | (Ft. MSL) |  |  |
|   |                 | No.         | (Ft.,%)  |                                |        |       |                                              |           |  |  |
| ı | 11 _            | 6.9         | 2.0      |                                |        |       | Continued from Sheet                         |           |  |  |
|   |                 | 5-3         | V        |                                |        |       | piece, - fill -                              |           |  |  |
|   | 12 12.0         |             |          |                                |        |       | as above, oceaissioned aspect                |           |  |  |
| - |                 |             |          |                                | İ      |       |                                              |           |  |  |
| ı | 13              |             |          |                                |        | 3.9   | Piece , Fill                                 |           |  |  |
|   |                 | 1           |          |                                | l      | l '   | _                                            |           |  |  |
|   | 14              |             |          |                                | l      | I     |                                              |           |  |  |
|   |                 | 5-4.        | 2.2      | l                              |        | 1     |                                              |           |  |  |
| 1 | 15              | 5-9         | ٠        | ł                              | l      | 2.4   |                                              |           |  |  |
|   |                 |             |          |                                |        | L.7   |                                              |           |  |  |
|   | 16 160          |             |          |                                |        |       | ·                                            |           |  |  |
| 1 |                 |             | 2128-    | 190 VUA<br>141 SVOA<br>192 503 |        |       | <u> </u>                                     |           |  |  |
|   | 17              |             |          | 192 500                        | l .    | i     | 17.4                                         |           |  |  |
|   |                 |             | LAG-     | ozalb @                        | 16-17' |       | silt & said w/ regetation, dk gray           |           |  |  |
|   | 18              |             |          |                                |        |       |                                              |           |  |  |
|   | 10              |             | 4.6      |                                | l      | 1.5   | JB. <                                        |           |  |  |
|   | 19              | τς ς        | 3.~      |                                |        | ١,,,  | <u></u>                                      | -         |  |  |
|   | 19—             | ς.ς         |          |                                |        |       | silt & sand, microsous, degmentil            | ' I       |  |  |
|   | 20              |             |          |                                |        |       | rock, maist                                  | Į.        |  |  |
|   | 20              |             | <u> </u> |                                |        |       |                                              |           |  |  |
|   |                 | 1           |          |                                |        |       |                                              |           |  |  |
|   | 21              |             |          |                                | l      | 1     | _                                            |           |  |  |
|   |                 |             |          |                                |        | Ï     | l                                            |           |  |  |
|   | 22              |             |          |                                |        | 0.4   | I last course - hand dulling -               |           |  |  |
|   |                 | 3,6         | ,0-      |                                | l      | דים   | 1691 900                                     |           |  |  |
|   | 23              | J .         | [′ ]     |                                | 1      | i     | at 22-24 morel wet upon                      |           |  |  |
|   |                 | J I         | l        | *                              |        |       | Bottom revolution come                       |           |  |  |
|   | 24 14.5         |             |          |                                |        |       | Bottom y hade @ 29.0.                        |           |  |  |
|   |                 |             | l        |                                |        |       | colon of bole @ 29.0.                        |           |  |  |
|   | 25              |             | ĺ        |                                |        | l     | 12.2                                         |           |  |  |
|   |                 | 1           |          |                                | ĺ      | l     |                                              |           |  |  |
|   | 26              | l           | ·        |                                |        |       | LAG-02-GW water suple_                       |           |  |  |
|   |                 |             | ľ        |                                | 1      | 1     | LNG                                          |           |  |  |
|   | 27 _            |             |          |                                |        |       | _                                            |           |  |  |
|   | <del>  </del>   |             | 1        |                                |        |       |                                              |           |  |  |
|   | 28_             |             |          |                                |        |       | <u> </u>                                     |           |  |  |
|   | ""              |             | 1        |                                |        |       | <del>-</del>                                 |           |  |  |
|   | 29 _            |             |          |                                |        |       | _                                            |           |  |  |
|   | 29 —            |             |          |                                | ľ      |       |                                              | -         |  |  |
|   | <sub>20</sub> - |             |          |                                |        |       |                                              | -         |  |  |
|   | 30              |             |          |                                |        |       | · <u> </u>                                   |           |  |  |
|   |                 |             |          | 1                              | 1      | 1     |                                              |           |  |  |

DRILLING CO.: AllProbe

DRILLER:

Greg Baker

BAKER REP.: Brian Steffes

BORING NO.: 146-02

DRILLING CO.: AllProbe
DRILLER: Greg Baker

#### TEST BORING RECORD

| PROJECT:      | Bishop Tu   | ibe (4-1-1    | 54)      |             |            |               |                                         |                   |               |
|---------------|-------------|---------------|----------|-------------|------------|---------------|-----------------------------------------|-------------------|---------------|
| SO NO.:       | 104339      |               |          |             |            |               | BORING NO.:                             | LAG-03            |               |
| COORDINAT     | EAST:       |               |          |             |            |               | NORTH:                                  |                   |               |
| ELEVATION:    | SURFAC      | E:            |          |             |            |               | •                                       |                   |               |
| Rig: Powe     | rprobe 96   | 30            |          |             |            |               |                                         |                   | Depth to      |
|               | MC          | Casing        | Augers   | Co          | re         | Date          | Progress                                | Weather           | Water         |
|               | Sampler     | J             | B        | Bar         |            | 2             | (Ft.)                                   | / V College       | (Ft.)         |
| Size (ID)     | 1-5/8" I.D. | - 1           |          |             |            | 5/30/07       | 70.0                                    | 5un 85°           | 7.75*         |
| Length        | 4'          |               |          |             |            | - <del></del> | <u> </u>                                | * NE SH +         | enoving ra    |
| Туре          |             |               |          |             |            |               |                                         |                   | F 4           |
| Hammer Wt.    |             |               |          |             |            |               |                                         |                   | <del>  </del> |
| Fall          |             |               |          |             |            |               |                                         |                   | <del> </del>  |
| Remarks:      | BKG - Ba    | ckground      |          |             | E-2        | + of sou      | thern UST 1                             | ocution.          |               |
|               | SAN         | APLE TY       | ZPE      | <del></del> |            |               | DEF                                     | NITIONS           |               |
|               | S = Split   |               |          |             |            | SPT = Sta     |                                         | Test (ASTM D1586  | )             |
|               | T = Shelb   |               |          |             |            |               |                                         | ector Measurement | '             |
|               | R = Air F   | •             | C = Core |             |            | ı             | ean Sea Level                           |                   |               |
|               | D = Deni    | -             | = Piston |             |            | ı             | Background/Poin                         | t Source          | l             |
|               |             | No Sam        | ple      |             |            |               | rts per million                         |                   |               |
|               | Sample      | Sample        |          | Lab         | PID        | <u> </u>      |                                         |                   | Elevation     |
| Depth (Ft.)   | Type &      | Rec.          | SPT      | ID          | (ppm)      |               | Visual Desc                             | ription           | (Ft. MSL)     |
| • ` '         | No.         | (Ft.,%)       |          |             |            |               |                                         | -                 | 1 1           |
|               |             | ` <del></del> |          |             |            | Asi           | hute grand                              | w/ gravet &-      |               |
| 1 ,           |             |               |          |             |            | 1,0           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | _                 | 1             |
| <u> </u>      |             |               |          |             | 6.4        |               | - A · ·                                 | 110000            | 1 .           |
| 2             |             | ا ہا          |          |             | 5.7        | S11+          | of the Sound                            | b. A. W.          | 1 1           |
|               | ا ا         | 3.3           |          |             | <b>,</b> ' | set           | mat pieces,                             | 1300000           | 1 1           |
| 3 _           | 5-1         |               |          |             |            |               |                                         | - fill -          | 1             |
|               |             |               |          |             | 2.2        |               |                                         | _                 | 1             |
| 4 4.0         |             |               |          |             |            |               |                                         |                   |               |
|               |             |               |          |             |            |               |                                         | , l               |               |
| 5             |             |               |          |             | 2.3        | inc           | reasing Clay                            | 1 100-tomed.      | J             |
|               |             |               |          |             | 10.5       | 010           | utic, moist                             | 2 0.1             |               |
| 6             |             | ١. ا          |          |             |            | l '           | ,                                       |                   | ]             |
|               | ٦.          | 2.1           |          |             |            |               |                                         |                   | ]             |
| 7             | 5           |               |          |             |            |               |                                         |                   | ]             |
| ا ا           |             |               |          |             | 1.7        |               |                                         |                   |               |
| 8 <u>4</u> ,2 |             |               |          |             |            |               |                                         |                   |               |
| J             |             |               |          |             |            | Moist         | -to                                     | _                 |               |
| 9 _           |             | _             |          |             |            | with          | t your 9-1                              | 0.0               |               |
|               | 5-3         | 2.3           |          |             | 0.1        |               |                                         |                   |               |
| 10            | ) /         |               |          |             | 0"         |               |                                         | •                 |               |
|               |             | <u></u>       |          |             |            |               |                                         | _                 |               |

BAKER REP.: Brian Steffes
BORING NO.: LAG-03 SHEET 1 OF P



PROJECT:

Bishop Tube (4-1-154) 104339

SO NO.:

SAMPLE TYPE

BORING NO.:

LAG-03

|   |          |       | SAM           | IPLE TY         | PE                              |          |       | DEFINITIONS                                        |           |
|---|----------|-------|---------------|-----------------|---------------------------------|----------|-------|----------------------------------------------------|-----------|
|   |          |       | S = Split S   | Spoon A         | = Auger                         |          |       | SPT = Standard Penetration Test (ASTM D1586)       |           |
|   |          |       | T = Shelby    | y Tube V        | V = Wash                        |          |       | PID = Photo Ionization Detector Measurement        |           |
|   |          |       | R = Air R     | otary (         | C = Core                        |          |       | MSL = Mean Sea Level                               |           |
| ı |          | D = I | Denison P     | = Piston        | N = No Sa                       | mple     |       | ps/bg = point source/background                    |           |
|   |          |       | Sample        | Sample          |                                 | Lab      | PID   |                                                    | Elevation |
| 1 | Depth (  | Ft.)  | Type &<br>No. | Rec.<br>(Ft.,%) | SPT                             | ID       | (ppm) | Visual Description                                 | (Ft. MSL) |
|   | 11_      | 120   |               |                 |                                 |          | 0.0   | Continued from Sheet 1 Let 20he above 12.0'        |           |
|   | 12<br>13 | 10    |               |                 |                                 |          |       | and sol of gtz gravel of schist pieces throughout, |           |
|   | 14       |       | ٠,            | દ્ય             |                                 |          | 0.0   | schist pieces throughout                           |           |
|   | 15       |       | 5-4           | 2.4             |                                 |          |       | contact                                            | .         |
|   | 16       | 160   |               |                 | - 44                            | <u> </u> | 0.0   | <u>-</u>                                           |           |
|   | 17 _     |       |               | <b>7</b> 128-   | 199 VOA<br>199 SHEA<br>200 METS |          | 2.1   | <u>-</u>                                           | -         |
|   | 18       |       |               | 1.8             | 3-16 @                          | , ,a/    |       | I had silling to rado veering                      | 1         |
|   | 19       | 10°   | 5.5           | KAG-0           | 3-16 @                          | 16-11    | 0.5   | harder dulling & rads veering                      |           |
|   | 20       |       |               | <del></del>     | L. <u></u>                      |          |       | Bottom of loving 20.0                              | 1         |
|   | 22       |       |               |                 |                                 |          |       |                                                    |           |
|   | 23       | ,     |               |                 |                                 |          |       | LAG-03-GW & (notes Souple) -                       |           |
|   | 24 _     |       | ·             |                 |                                 |          |       | (No-03 Gars (advisors)                             |           |
|   | 25       |       |               |                 |                                 |          |       | -<br>-                                             | -         |
|   | 26       |       |               |                 |                                 |          |       | -                                                  | - <br>-   |
|   | 27       |       |               |                 |                                 |          |       | _                                                  | -         |
|   | 28       |       |               |                 |                                 |          |       |                                                    | ]         |
|   | 29       |       |               |                 |                                 |          |       |                                                    |           |
|   | 30       |       |               |                 |                                 |          |       | _                                                  | -         |

DRILLING CO.: AllProbe

DRILLER:

Greg Baker

BAKER REP .: Brian Steffes

BORING NO.: LAG-03



#### TEST BORING RECORD

| PROJECT:                  | Bishop Tu   | ibe (4-1-1              | 154)         |             |                                                  |             |                            |               |                |           |
|---------------------------|-------------|-------------------------|--------------|-------------|--------------------------------------------------|-------------|----------------------------|---------------|----------------|-----------|
| SO NO.:                   | 104339      | •                       |              |             |                                                  |             | BORING NO.:                | LA6-04        |                |           |
| COORDINAT                 | EAST:       |                         |              |             | •                                                |             | NORTH:                     |               |                |           |
| ELEVATION:                | SURFAC      | Е:                      |              |             | -                                                |             |                            |               |                | -         |
| Rig: Powe                 | erprobe 96  | 30                      |              |             |                                                  | <b>1</b>    |                            |               |                | Depth to  |
|                           | MC          | Casing                  | Augers       | Co          | re                                               | Date        | Progress                   | Weather       | .              | Water     |
|                           | Sampler     |                         | _            | Bar         | rel                                              |             | (Ft.)                      |               |                | (Ft.)     |
| Size (ID)                 | 1-5/8" I.D. |                         |              |             |                                                  | 5/30/07     | \$ 19.0'                   | 5vn 870       |                | 4.5'      |
| Length                    | 4'          |                         |              |             |                                                  |             |                            |               |                |           |
| Туре                      |             |                         |              |             |                                                  |             |                            |               |                |           |
| Hammer Wt.<br>Fall        |             |                         |              | <b></b>     |                                                  |             |                            |               |                |           |
| Remarks:                  | BKG - Ba    |                         |              | <u> </u>    |                                                  |             |                            | <u> </u>      |                |           |
| Kemai ks.                 | SQ - DAG    | ckground                | ı            |             |                                                  |             |                            |               |                |           |
|                           | SAN         | APLE TY                 | PE           |             |                                                  | <del></del> | DFE                        | INITIONS      |                |           |
|                           |             |                         | = Auger      |             |                                                  | SPT = Sta   | andard Penetratio          |               | <b>)1586</b> ) |           |
|                           | T = Shelb   |                         |              |             |                                                  |             | oto Ionization De          |               |                |           |
|                           | R = Air F   | •                       | C = Core     |             |                                                  | MSL = M     | lean Sea Level             |               |                |           |
|                           | D = Deni    |                         | = Piston     |             |                                                  |             | Background/Poir            | nt Source     |                |           |
| · <b>-</b>                |             | No Sam                  | ple          | <del></del> | T                                                | ppm = pa    | rts per million            |               |                |           |
| Don't (Et)                | Sample      | Sample                  | ana.         | Lab         | PID                                              |             |                            |               |                | Elevation |
| Depth (Ft.)               | Type & No.  | Rec.<br>(Ft.,%)         | SPT          | ID          | (ppm)                                            | 1           | Visual Des                 | cription      |                | (Ft. MSL) |
|                           |             | (x't., /6)              | <del>-</del> | <u>-</u>    | ┼──                                              |             | 1141.                      | 0             |                |           |
| 1                         |             |                         |              |             | 6.4                                              | 1.5 As      | y day and s                | cgrove        | _              |           |
| ••                        |             |                         |              |             | דיסן                                             |             | /                          | 1             |                | ٠.        |
| 2 _                       |             | 2.7                     |              |             | ł                                                | 51/4        | y Clay and s               | and, bricky   | 1000           |           |
| 4                         | ۱ ۵         | $ \mathcal{U}^{\cdot} $ |              |             |                                                  | b.          | DWK, MOIST                 | -011          |                |           |
| 3                         | 5-1         |                         |              |             | 0.8                                              |             |                            | ` ' '         | _              |           |
| 4 -40                     |             |                         |              |             | 0.0                                              |             |                            |               | _              |           |
| 4 - 7                     |             |                         |              | <b>-</b>    | <del>                                     </del> | 1           |                            |               |                |           |
| 5                         |             |                         |              |             | Ι,                                               |             |                            |               | _              |           |
| ·                         |             |                         |              |             | 0.0                                              |             |                            |               | -              |           |
| 6 _                       |             | ,                       |              |             |                                                  |             |                            |               |                |           |
|                           |             | 2.6                     |              |             |                                                  | ١ ,         | _                          | . 1           |                |           |
| 7                         | 5.2         | _                       |              |             |                                                  | ~et         | zone @ 7.4-                | 7.6'          |                |           |
| ا ما                      | 2.          |                         |              |             | 0.0                                              |             |                            |               |                |           |
| 8 _ 5.                    | ·-··        |                         |              |             | <del> </del> -                                   | -           |                            |               | ***.           |           |
| 9 -                       |             | ZÌ                      | Um C+ 1      | OA<br>OA    |                                                  |             |                            |               | _              | 1         |
|                           |             |                         | 211 1        | <b>1</b> 50 | 0.0                                              |             |                            |               | _              | }         |
| 10                        | 5-3         | 1.7                     | LAG-01       | 1-11 a      | 11-12                                            | ł           |                            |               | -              | -         |
|                           | _           |                         |              |             |                                                  |             |                            |               | _              | ,:        |
| Dell I Big oc             | A 11D1-     |                         |              | <b></b>     |                                                  |             | DAKED DEE                  | D. i          |                |           |
| DRILLING CO.:<br>DRILLER: | Greg Bak    | er                      |              |             | -                                                |             | BAKER REP.:<br>BORING NO.: | Brian Steffes | CUEE           | T10F 2    |
|                           | JIVE Dak    | <u></u>                 |              |             | -                                                |             | POMMA MO"                  | <u> </u>      | OUEE           | TIOL 7    |



PROJECT:

Bishop Tube (4-1-154)

SO NO.:

104339

BORING NO.:

|   | 30 NO        |             | 104339  |             |            | -           | BORING NO.: LAB-04                           |           |  |  |  |
|---|--------------|-------------|---------|-------------|------------|-------------|----------------------------------------------|-----------|--|--|--|
| ı |              | SAM         | IPLE TY | PE          |            |             | DEFINITIONS                                  |           |  |  |  |
| ı |              | S = Split S | Spoon A | = Auger     |            |             | SPT = Standard Penetration Test (ASTM D1586) |           |  |  |  |
| ı |              | T = Shelb   | _       | -           |            |             | PID = Photo Ionization Detector Measurement  |           |  |  |  |
| ١ |              | R = Air R   |         |             |            |             | MSL = Mean Sea Level                         |           |  |  |  |
| ١ | D = I        | Denison P   | -       |             | mule       |             | ps/bg = point source/background              |           |  |  |  |
| ł |              | Sample      | Sample  | 11 - 110 52 | Lab        | PID         | parog – ponit source/background              | Elevation |  |  |  |
| ١ | Depth (Ft.)  | Type &      | Rec.    | SPT         | ID         |             | Winnel D                                     |           |  |  |  |
| 1 | Depth (Ft.)  |             |         | OF 1        | 10         | (ppm)       | Visual Description                           | (Ft. MSL) |  |  |  |
| ŀ | 11           | No.         | (Ft.,%) |             | ļ <u> </u> |             | 0 / 10 / 0                                   |           |  |  |  |
| ı | 11 —         |             |         |             | l '        | 1.0         | Continued from Sheet                         |           |  |  |  |
| ł | 12 10        |             |         |             |            | ' -         | as sill, Clay of count & sochat -            |           |  |  |  |
| ı | 12 10        |             |         |             |            |             | pieces, monet, brown, proofic -              |           |  |  |  |
| ı |              |             |         |             | l          | نخا         | bicco Image I branch I was                   |           |  |  |  |
| 1 | 13           |             |         |             | l          | 0.0         |                                              |           |  |  |  |
| ı | _   I        |             |         |             | l          | 1           | _                                            |           |  |  |  |
| 1 | 14 _         |             | 2.      | ,           |            | 1           |                                              |           |  |  |  |
|   | _            | .4          | 32      |             |            |             | -                                            |           |  |  |  |
| ı | 15           | 9           | •       |             |            |             | 18.0                                         | ]         |  |  |  |
| ı | اه. ٔ 🗆      |             |         |             | l          | 0.1         |                                              | 1         |  |  |  |
| ı | 16 - 60      |             |         |             |            | 0.1         | demost rock - south, 81/4                    | 1         |  |  |  |
| I |              |             |         |             | <u> </u>   |             | decomposed rock - southy, is 14 -            | 1         |  |  |  |
| 1 | 17 _         |             |         |             |            | 1.4         | - GIMBY ON BENIET HIERE                      | i         |  |  |  |
| ı | - · ·        | /           | 0       |             |            | ١, ١        | _                                            | i         |  |  |  |
| ı | 18           | <i>5.</i> 5 | r.8     |             |            |             | -                                            | ł         |  |  |  |
| ١ | '°⊢          |             | ,       |             |            | 05          | <u>                                   </u>   | -         |  |  |  |
| ĺ | 19A.0        |             |         |             |            | 00          | refisal on weathered schurt -                | 4         |  |  |  |
| ı | 19 A.        |             |         |             |            | <del></del> | refisal on weathered school -                | 1         |  |  |  |
| ı | <u> </u>     |             |         |             |            |             | 1 Bottom & hora & (1,0)                      | 4         |  |  |  |
| ı | 20           |             |         |             |            |             | _                                            |           |  |  |  |
| ı | ·            |             |         |             |            |             | _                                            |           |  |  |  |
| 1 | 21           |             |         |             |            |             | <u> </u>                                     | 1         |  |  |  |
| ı | 4 1          |             |         |             |            | ľ           | _                                            |           |  |  |  |
| ı | 22           |             |         | l .         |            | l .         |                                              | ] .       |  |  |  |
| ١ | _            |             |         |             |            | l           |                                              |           |  |  |  |
| ı | 23           |             |         |             |            | l .         |                                              |           |  |  |  |
| ı |              |             |         |             |            |             |                                              | 1         |  |  |  |
| ı | 24           |             |         |             |            |             | _                                            | 1         |  |  |  |
| ı |              |             |         |             |            | 1           | _                                            | 1         |  |  |  |
| ı | 25           |             | 1       |             |            |             | · -                                          | 1         |  |  |  |
|   | 7            |             |         |             |            |             | _                                            | 1         |  |  |  |
|   | 26 _         |             |         |             |            |             |                                              | 1         |  |  |  |
|   |              |             |         |             |            |             |                                              | 1         |  |  |  |
|   | 27           |             |         |             |            |             | -                                            | 1         |  |  |  |
|   | ~′           |             |         |             |            |             |                                              | 1         |  |  |  |
|   | 28           |             |         |             |            |             | -                                            | -         |  |  |  |
|   | 40           |             |         |             |            |             | . –                                          | -         |  |  |  |
|   |              |             |         |             |            |             |                                              | -         |  |  |  |
|   | 29           |             |         |             |            |             | -                                            |           |  |  |  |
|   | <u>,</u> , - |             |         |             |            |             |                                              | 1         |  |  |  |
|   | 30           |             |         |             |            |             |                                              |           |  |  |  |
|   |              |             |         |             | I          |             |                                              |           |  |  |  |

DRILLING CO.: AllProbe

DRILLER:

Greg Baker

BAKER REP .: Brian Steffes

BORING NO.:

LA6-04



DRILLING CO.: AllProbe

DRILLER:

Greg Baker

#### TEST BORING RECORD

BAKER REP.: Brian Steffes
BORING NO.: LAGOS SHEET 1 OF Z

| PROJECT:      | Bishop Tu   | ıbe (4-1-1 | 154)      |      |              |           |                    |                    |           |
|---------------|-------------|------------|-----------|------|--------------|-----------|--------------------|--------------------|-----------|
| SO NO.:       | 104339      |            |           |      |              |           | BORING NO.:        | LAG-05             |           |
| COORDINAT     | EAST:       |            |           |      | •            |           | NORTH:             |                    |           |
| ELEVATION:    | SURFAC      | E:         |           |      |              |           | ,                  |                    |           |
| Rig: Powe     | rprobe 96   | 30         |           |      |              |           |                    |                    | Depth to  |
| rug. Tom      | MC          | Casing     | Augers    | Co   | re           | Date      | Progress           | Weather            | Water     |
|               | Sampler     | Cusing     | nuguis    | Bar  |              | , Date    | (Ft.)              | Weather            | (Ft.)     |
| Size (ID)     | 1-5/8" I.D. |            |           | 1741 | 101          | 5/30/07   | 19.5               | Sun &7°            |           |
| Length        | 4'          |            |           |      | ·            | 213767    | 17.5               | 304 81             | 12,3      |
| Type          |             |            |           |      |              |           |                    |                    | <u> </u>  |
| Hammer Wt.    |             |            |           |      |              |           |                    |                    |           |
| Fall          |             |            |           |      |              |           |                    |                    |           |
|               | BKG - Ba    | ckground   |           |      | ,            | <b>b</b>  | Ma. 055            | Con d.A.           |           |
|               |             |            |           | 56   | JAW.         | of 50     | other UST          | Q) ===0            |           |
|               | SAN         | APLE TY    | <u>PE</u> |      |              |           | DEF                | INITIONS           |           |
|               | S = Split   |            |           |      |              | SPT = Sta | andard Penetration | Test (ASTM D1586   | )         |
|               | T = Shelb   | y Tube V   | W = Wash  |      |              |           |                    | tector Measurement |           |
|               | R = Air F   | •          | C = Core  |      |              |           | lean Sea Level     |                    |           |
|               | D = Denis   | son F      | Piston    |      |              | BG/PS =   | Background/Poin    | t Source           |           |
|               |             | No Sam     | ple       |      |              | ppm = pa  | rts per million    |                    |           |
|               | Sample      |            |           | Lab  | PID          |           |                    |                    | Elevation |
| Depth (Ft.)   | Туре &      | Rec.       | SPT       | ID   | (ppm)        | ĺ         | Visual Desc        | ription            | (Ft. MSL) |
|               | No.         | (Ft.,%)    |           |      |              |           |                    |                    |           |
|               |             |            |           |      |              | l A₅      | chalt & base       | with rock -        | 4 I       |
| 1             |             |            |           |      | 1.3          | 1.0       | ,                  |                    | .         |
|               |             |            |           |      |              | l .       |                    | ·                  | .         |
| 2             |             | 3.1        |           |      |              | 1 2,1t,   | clay, such,        | WITH YOCK          | -         |
|               | 5/1         | ٠          |           |      | 3.4          | 3.0       | ecoo, hund,        | . المحرودسير       | -         |
| 3 _<br>4 _ Mo | •           |            |           |      |              | '         | , ,                | 1.11 -             | -         |
| 1 - 40        |             |            |           |      | 2.7          |           |                    | -4//               | 1         |
|               |             |            |           |      |              | 1         |                    | _                  | ┫         |
| 5 _           |             |            |           |      | اندا         |           |                    | -                  | 1         |
| ,             |             | ,          |           |      | 3.1          |           |                    | _                  | 1         |
| 6             |             | 1,5        |           |      |              |           |                    | -                  | 1         |
|               |             | 1.         |           |      | 17.9         |           |                    | _                  | 1         |
| 7 7           | 5-2         | 5158.      | 212       |      | ' <i>'</i> ' |           |                    |                    | ·1        |
|               |             |            | 214       |      |              | lano      | 2 of hooken        | rock e 7.4-17      | 1         |
| 8 74.3        |             | 146-05     | -06 @     | 6-7  | 1.1          | 1 " "     | oetl.              | rock e 7.4-79      | 1         |
|               |             |            |           |      |              | ]         |                    |                    | 1         |
| 9 _           |             |            |           |      | 4.0          |           |                    | •                  |           |
|               | 2           | 28         |           |      |              |           |                    | _                  |           |
| 10            | 53          |            |           |      | 0,0          |           |                    |                    |           |
|               |             |            |           | L    |              |           |                    | · _                |           |

| ļ | Baker Environ | nental                              |                    |                                      |              |            |                                                                                                                              |             |
|---|---------------|-------------------------------------|--------------------|--------------------------------------|--------------|------------|------------------------------------------------------------------------------------------------------------------------------|-------------|
|   | PROJECT:      | Bisho                               | p Tube (4          | I-1-154)                             |              |            |                                                                                                                              |             |
|   | SO NO.:       |                                     | 104339             |                                      |              | _          | BORING NO.: LAG-05                                                                                                           |             |
|   |               | S = Split<br>T = Shelb<br>R = Air F | y Tube V<br>Rotary | \ = Auger \( V = Wash \( C = Core \) |              |            | DEFINITIONS  SPT = Standard Penetration Test (ASTM D1586)  PID = Photo Ionization Detector Measurement  MSL = Mean Sea Level | )           |
| ۱ | <u>D</u> =    | Denison P<br>Sample                 | = Piston<br>Sample |                                      | ample<br>Lab | PID        | ps/bg = point source/background                                                                                              | Elevation   |
|   | Depth (Ft.)   | Type & No.                          | Rec.<br>(Ft.,%)    | SPT                                  | ID           | (ppm)      | Visual Description                                                                                                           | (Ft. MSL)   |
|   | 11            |                                     |                    |                                      |              |            | Continued from Sheet 1                                                                                                       |             |
|   | 1212,°        |                                     |                    |                                      |              | <u> </u>   |                                                                                                                              |             |
|   | 13            |                                     |                    |                                      |              | 0-0        |                                                                                                                              | _           |
| I | 14            | ,                                   | 3.2                |                                      |              |            |                                                                                                                              | ゴ           |
| ı | 15            | 5-4                                 |                    |                                      |              | 0."        | 15.5                                                                                                                         |             |
| ı | 16 _ tho      |                                     |                    |                                      |              | <u> </u>   |                                                                                                                              |             |
|   | 17_           |                                     |                    |                                      |              |            | brown & gray, clayer, plantice had rock pieces.                                                                              | <u>/-</u> ] |
|   | 18            | 5.5                                 | 2.6                |                                      |              | 0.0        | had rock pieces.                                                                                                             | _           |
|   | 19            |                                     | 2.3                |                                      |              | 0.0        |                                                                                                                              |             |
|   | 79.5          |                                     |                    | <u> </u>                             | <u> </u>     | ļ <u>.</u> | return on weathered schoot.  Button of hole @ 19.5                                                                           |             |
|   | 20            |                                     |                    |                                      |              |            | Botton of woll @ 19.5                                                                                                        |             |
|   | 21            |                                     |                    |                                      | İ            |            |                                                                                                                              | _           |
|   | 22 _          |                                     |                    |                                      |              |            |                                                                                                                              | _           |
|   | 23            |                                     |                    |                                      |              |            |                                                                                                                              | _           |
|   | 24            |                                     |                    |                                      |              |            |                                                                                                                              |             |
|   | 25            |                                     |                    |                                      |              |            |                                                                                                                              |             |
|   | 26            |                                     |                    |                                      |              |            |                                                                                                                              | 7           |
|   | 27            |                                     |                    |                                      |              |            |                                                                                                                              | _           |
|   | 28 _          |                                     |                    |                                      |              |            |                                                                                                                              |             |
|   |               |                                     |                    |                                      |              |            |                                                                                                                              |             |
|   | 29            |                                     |                    |                                      |              |            |                                                                                                                              | _           |
|   |               |                                     |                    |                                      |              |            |                                                                                                                              |             |

DRILLING CO.: AllProbe
DRILLER: Greg Baker

BAKER REP.: Brian Steffes
BORING NO.: LAG-05 SHEET 2 OF 2



DRILLING CO.: AllProbe

DRILLER: Greg Baker

#### TEST BORING RECORD

BAKER REP.: Brian Steffes

BORING NO.: LAG-OG SHEET 1 OF I

| PROJECT:    | Bishop Tu   | ibe (4-1-1 | (54)                                 |              |                                                  |              |                                       |                                         |           |
|-------------|-------------|------------|--------------------------------------|--------------|--------------------------------------------------|--------------|---------------------------------------|-----------------------------------------|-----------|
| SO NO.:     | 104339      |            |                                      |              |                                                  |              | BORING NO.:                           | LAG-06                                  |           |
| COORDINAT   | EAST:       |            |                                      |              | •                                                |              | NORTH:                                |                                         |           |
| ELEVATION:  | SURFAC      | E:         |                                      |              | •                                                |              | ,                                     | • • • • • • • • • • • • • • • • • • • • |           |
| D: D        | 1.00        | 70         |                                      |              |                                                  |              | · · · · · · · · · · · · · · · · · · · |                                         | Ts a. 1   |
| Rig: Powe   | erprobe 96  |            |                                      |              |                                                  | ا ير ا       | _                                     | ***                                     | Depth to  |
|             | MC          | Casing     | Augers                               | Co           |                                                  | Date         | Progress                              | Weather                                 | Water     |
| a. a        | Sampler     |            |                                      | Bar          | rei                                              | -13.1        | (Ft.)                                 |                                         | (Ft.)     |
| Size (ID)   | 1-5/8" I.D. |            |                                      |              |                                                  | 5/31/07      | Q.0                                   | 321 18°                                 | 1/2       |
| Length      | 4'          |            |                                      |              |                                                  |              |                                       |                                         | <b>↓</b>  |
| Туре        |             |            |                                      |              |                                                  |              |                                       |                                         |           |
| Hammer Wt.  |             |            |                                      |              |                                                  |              |                                       |                                         | ┥         |
| Fall        |             |            |                                      |              |                                                  | <u> </u>     |                                       |                                         | ⊥         |
| Remarks:    | BKG - Ba    | ckground   | <br>                                 | -1 504       | that                                             | LAGT         | os (stepou                            | tborin)                                 |           |
|             |             |            |                                      |              |                                                  | <del> </del> |                                       |                                         |           |
|             |             | APLE TY    |                                      |              |                                                  | <br>         |                                       | INITIONS                                | _         |
|             | -           | -          | A = Auger                            |              |                                                  |              |                                       | Test (ASTM D158                         | "         |
|             |             | -          | W = Wash                             |              |                                                  | 1            |                                       | tector Measurement                      |           |
|             | R = Air I   | -          |                                      |              |                                                  |              | fean Sea Level                        |                                         |           |
|             | D = Deni    |            | Piston                               |              |                                                  |              | Background/Poin                       | t Source                                |           |
| ļ           |             | No Sam     | pie                                  | T .1         | DID                                              | ppm = pa     | rts per million                       |                                         | I EL      |
| Daniel (E4) | Sample      |            | d'Dar                                | Lab          | PID                                              | !            | 77 175                                | • .•                                    | Elevation |
| Depth (Ft.) | Type &      | Rec.       | SPT                                  | ID           | (ppm)                                            | 1            | Visual Desc                           | ription                                 | (Ft. MSL) |
| ļ           | No.         | (Ft.,%)    | <del></del>                          |              | ļ                                                | <u> </u>     |                                       | 0                                       | +         |
| ,           |             |            |                                      |              | _ 4                                              |              | (sphilt &                             | hase outeral                            | -         |
| 1 ,         |             |            |                                      |              | 0.7                                              | 1.0          |                                       |                                         | -         |
| 2           |             |            |                                      |              |                                                  |              |                                       |                                         |           |
| -           |             | 2.1        |                                      |              |                                                  | J. 1         | Holon W/                              | send tock-                              | -         |
| 3           | 3-1         |            |                                      |              |                                                  | 7,7          | المده والم مور                        | 13T                                     | ┥・ !      |
| l '⊢        | ر ا         |            |                                      |              | 4.م                                              | 1 110        | 1mtic 50%                             | -                                       | ┥ .       |
| 4 40        |             |            |                                      |              | •                                                | ſ            | 2,00                                  |                                         | ┥         |
| 1           |             |            |                                      | <del> </del> |                                                  | 1            |                                       | -                                       | ┨ │       |
| 5           |             | 2128 - 21  | 8 20 4                               |              | 1                                                |              |                                       |                                         | ┥ .       |
| ~           |             | 2,         | g sop<br>g supp<br>co mets<br>LAG-06 |              | 19.5                                             | 1            |                                       |                                         | _         |
| 6           |             | 7          | io pers                              |              | '` _                                             |              |                                       | ,                                       | -         |
| ~           |             | 1.5        | LA & 06                              | -06€         | 6-7                                              | _ ا          | rey from 6. slight odor               | 5-8.0 -                                 | ┪         |
| 7           | 5.2         |            |                                      |              |                                                  | 9            | int oder                              |                                         | ┨         |
| . –         | ١,          |            | 1                                    |              | _                                                | ·l           | 31170                                 | -                                       |           |
| 8 -8'0      |             |            |                                      |              | 8,5                                              |              |                                       |                                         | ╡         |
| '           |             |            |                                      |              | <del>                                     </del> | Bot          | on of hole                            | Q 8.0'                                  | ┑         |
| 9 7         |             |            |                                      |              |                                                  | '' '         | <b>d</b>                              |                                         |           |
|             |             |            |                                      |              |                                                  |              |                                       | -                                       | ┑         |
| 10          |             |            |                                      |              |                                                  |              |                                       |                                         | 7         |
|             |             |            |                                      |              |                                                  |              |                                       | _                                       |           |
|             |             |            | ·                                    | •            |                                                  |              |                                       |                                         |           |

#### TEST BORING RECORD

| PROJECT:        | Bishop Tu   | ibe (4-1-)   | .54)                                 |           |              |                         |                 | •                  |              |  |
|-----------------|-------------|--------------|--------------------------------------|-----------|--------------|-------------------------|-----------------|--------------------|--------------|--|
| SO NO.:         | 104339      |              |                                      |           |              |                         | BORING NO.:     | LA4 -07            |              |  |
| COORDINAT       | EAST:       |              |                                      |           | •            |                         | NORTH:          |                    |              |  |
| ELEVATION:      | SURFAC      | E:           |                                      |           | •            |                         | - ·             | <b>E</b>           |              |  |
|                 |             |              |                                      |           | •            | <del>,</del>            |                 |                    |              |  |
| Rig: Powe       | rprobe 96   |              |                                      |           | -            |                         |                 |                    | Depth to     |  |
|                 | MC          | Casing       | Augers                               | Co        |              | Date                    | Progress        | Weather            | Water        |  |
|                 | Sampler     |              |                                      | Bar       | rel          |                         | (Ft.)           | l<br>              | (Ft.)        |  |
| Size (ID)       | 1-5/8" I.D. |              |                                      |           |              | 8/31/07                 | 8.4             | 50m 800            | NE           |  |
| Length          | 4'          |              |                                      |           |              | , ,                     |                 |                    |              |  |
| Туре            |             |              |                                      |           |              |                         |                 |                    |              |  |
| Hammer Wt.      |             |              |                                      |           |              |                         |                 |                    | 1            |  |
| Fall            |             |              |                                      |           |              |                         |                 |                    |              |  |
| Remarks:        | BKG - Ba    | ckground     |                                      |           | مملم         | - y <del>L</del> 15     | 'souther of     | 1 A = -05          |              |  |
|                 |             | •            |                                      |           | STEP         | e~,                     | 29-1            | 3 276 23           |              |  |
|                 | SAN         | APLE TY      | PE.                                  |           |              |                         | DEF             | INITIONS           | ·            |  |
|                 |             |              | = Auger                              | SPT = Sta |              | n Test (ASTM D1586      | <b>)</b>        |                    |              |  |
|                 |             |              | W = Wash                             |           |              |                         |                 | tector Measurement | ´            |  |
|                 | R = Air F   | •            |                                      |           |              | ı                       | ean Sea Level   |                    |              |  |
|                 | D = Deni    |              | = Piston                             |           |              | 1                       | Background/Poin | t Source           |              |  |
|                 |             | No Sam       |                                      |           |              | ppm = parts per million |                 |                    |              |  |
|                 | Sample      |              |                                      | Lab       | PID          | PPIL PIL                | to por inition  |                    | Elevation    |  |
| Depth (Ft.)     | Type &      | Rec.         | SPT                                  | ID        | (ppm)        |                         | Visual Desc     | rintion            | (Ft. MSL)    |  |
| 247.2 (1.1)     | No.         | (Ft.,%)      | J. 1                                 | 110       | (PPIII)      | 1                       | V ISUal DOS     | лфион              | (I't. MISL)  |  |
|                 | 214         | _(= ,=,,,,,, |                                      |           | <del> </del> |                         | 1 11 1 1        | 1-1                |              |  |
| 1 1 .           |             |              |                                      |           |              | J                       | sphult q s      | sase uteril.       | 1 1          |  |
| I 14            |             |              |                                      |           |              |                         | ·               |                    | 1 1          |  |
| ] 2 -           |             |              |                                      |           |              | 1                       |                 | _                  | 1 `          |  |
| 1 ~ ~ 1         | ,           | 19           |                                      |           | 1            | 51/4                    | y Clay & Sa     | and rock -         | 1 1          |  |
| 3               | 5-1         |              |                                      |           | ١.,          | 200                     | cos 9/000       | ~5.5T, briun-      | {·           |  |
| I               |             | '            |                                      |           | 0.4          | 1                       | 007/11/1        | 111 -              | - I          |  |
| 4 40            |             |              |                                      |           |              |                         |                 | - <del> </del>     | <del>1</del> |  |
| ' <del>- </del> |             |              |                                      |           |              | <b>.</b> .              |                 | -                  | ╣╴           |  |
| 5 _             |             | 78787        | אפעוכב                               |           |              |                         |                 | -                  | -            |  |
| '⊷              |             | 010          | 222 500                              | Q.        | 25.1         |                         |                 | •                  | 1 1          |  |
| 6 _             | . 1-        |              | 22 VOA<br>222 500<br>223 503<br>7-86 | •         |              |                         |                 | -                  | 1 1          |  |
| l°⊢             | 5           | ٧. ٨         |                                      |           |              |                         |                 |                    | -l           |  |
| 7               |             | $\nu$        |                                      |           |              |                         |                 | -                  | -l -         |  |
| 1 ′⊢            |             | LAG-0        | 7-06                                 |           |              |                         |                 |                    | - 1          |  |
| 8 - 80          |             |              |                                      |           | 6.4          |                         |                 | -                  | 4 1          |  |
| 8 8             |             |              |                                      |           | ├            | <u> </u>                |                 |                    | 4 1          |  |
|                 |             |              |                                      |           |              | Post                    | for it have a   | ુ 8.ઈ _            | -l           |  |
| 9               |             |              |                                      |           |              |                         | V .             |                    | l            |  |
| ,, -            |             |              |                                      |           |              |                         |                 | -                  | _            |  |
| 10              |             |              |                                      |           |              |                         |                 |                    | . I          |  |
| L               | L           |              |                                      |           | <u> </u>     |                         |                 |                    |              |  |
| DRILLING CO.:   | AllProbe    |              |                                      |           |              |                         | BAKER REP.:     | Brian Steffes      |              |  |
| DRILLER:        | Greg Bak    | er           |                                      |           | -            |                         | BORING NO.:     |                    | ET 1 OF 1    |  |
|                 |             |              |                                      |           | -            |                         |                 |                    |              |  |

DRILLING CO.: AllProbe

DRILLER: Greg Baker

#### TEST BORING RECORD

BAKER REP.: Brian Steffes

BORING NO.: LAG-08 SHEET 1 OF 2

| PROJECT:         | Bishop Tu   | ibe (4-1-1 | 154)                |      |          |                                                  |                                |                    |              |
|------------------|-------------|------------|---------------------|------|----------|--------------------------------------------------|--------------------------------|--------------------|--------------|
| SO NO.:          | 104339      |            |                     |      |          |                                                  | BORING NO.:                    | LAG-08             |              |
| COORDINAT        | EAST:       |            |                     |      | •        |                                                  | NORTH:                         |                    |              |
| ELEVATION:       | SURFAC      | E:         |                     |      | •        |                                                  |                                |                    | ····         |
| Rig: Powe        | rprobe 96   | 30         |                     |      |          |                                                  |                                |                    | Depth to     |
| lug. 10w         | MC MC       | Casing     | Augers              | Co   | ra       | Date                                             | Progress                       | Weather            | Water        |
|                  | Sampler     | Casing     | Augers              | Bar  |          | Date                                             | (Ft.)                          | WEATHEL            | (Ft.)        |
| Size (ID)        | 1-5/8" I.D. |            |                     | Dat  | 101      | 5/31/07                                          | 20·0'                          | 30 n 850           | 16.8         |
| Length           | 4'          |            |                     |      |          | - / 31/9A                                        | 0.0                            | 304 03             | 160          |
| Type             |             |            |                     |      |          | -                                                |                                |                    | <del></del>  |
| Hammer Wt.       |             |            |                     |      |          |                                                  |                                | . :. <u></u>       |              |
| Fall             |             |            |                     |      |          | -                                                | ·                              |                    |              |
| Remarks:         | BKG - Ba    | ckeround   |                     |      | •        |                                                  |                                | L                  |              |
|                  |             |            |                     | ો•   | رجاط     | e bldg                                           | <b>1</b> -                     |                    |              |
|                  | SAN         | IPLE TY    | /PE                 |      |          | <del>,                                    </del> | DEF                            | INITIONS           | **********   |
|                  | S = Split   |            |                     |      |          | SPT = Sta                                        |                                | n Test (ASTM D15   | 86)          |
|                  | T = Shelb   | -          | _                   |      |          |                                                  |                                | tector Measurement |              |
|                  | R = Air F   | •          | C = Core            |      |          |                                                  | lean Sea Level                 |                    |              |
|                  | D = Denis   | son F      | P = Piston          |      |          |                                                  | Background/Poin                | t Source           |              |
|                  | N =         | No Sam     | ple                 |      |          |                                                  | rts per million                | ,                  |              |
|                  | Sample      | Sample     |                     | Lab  | PID      |                                                  |                                |                    | Elevation    |
| Depth (Ft.)      | Type &      | Rec.       | SPT                 | ID   | (ppm)    | l                                                | Visual Desc                    | ription            | (Ft. MSL)    |
|                  | No.         | (Ft.,%)    |                     |      |          |                                                  |                                |                    |              |
|                  |             |            |                     |      |          | 0.5                                              | nerete                         |                    |              |
| 1 ,              |             |            |                     |      |          |                                                  |                                |                    |              |
| ] _]             |             |            |                     |      | 6,0      | 1.8 Saul                                         | tgraval buse                   | ALMER RIVE SHE     |              |
| 2                |             |            |                     |      |          |                                                  |                                |                    |              |
|                  |             | 3.9        |                     |      |          | Silt                                             | f silty vy.f                   | ive soud w/        | ↓.           |
| 3 _              | 5-1         | 1          |                     |      | 0.0      | - T- P)                                          | L Pieces                       | dry, brown,        |              |
| 40               |             |            |                     |      | 0.0      | , , ,                                            | CE )                           | - ,, -             |              |
| 4 4              |             |            |                     |      |          | ļ                                                |                                |                    | _            |
|                  |             |            |                     |      |          |                                                  |                                |                    | 4            |
| 5 _              |             |            |                     |      | 0.0      | _ ا                                              | A ,                            | 4. 🖛               |              |
| 6 _              |             |            |                     |      | ľ        | Incre                                            | asıng Clay C                   | ontons,            | 4            |
| 1 7              |             |            |                     |      |          | bec                                              | ر آهسم <u>ه م</u> سم           | t, low to          | -1           |
| 7 _              | 5.2         | 4.0        |                     |      |          | non                                              | asing clay comes mois plustic, | stiff              | $\dashv$     |
| 1 '⊢             | 5           | l ,        |                     |      | 0.0      | '                                                | 1. ,                           |                    |              |
| 8 - 8.0          |             |            |                     |      |          |                                                  |                                |                    | $\exists$    |
| " <del>- -</del> |             | 0.000      | 224                 |      |          | 1                                                |                                |                    | <del>-</del> |
| 9 -              |             | 4128       | 224 roa<br>225 svog |      | 1.1      |                                                  |                                |                    | $\dashv$     |
|                  | _           |            | ers mut             | •    | '''      |                                                  |                                |                    |              |
| 10               | 5-3         | 1000       | ୭୫-୭୫ <b>ଡ</b>      | مدها | 1        |                                                  |                                |                    | $\dashv$     |
| `~               |             | المارد ا   | ام عو ه             | 4-7  | 0.0      |                                                  |                                |                    | -            |
|                  |             | L          | L                   | L    | <u> </u> | L                                                |                                | ·                  |              |



| Daner Environm | CINA          |
|----------------|---------------|
| PROJECT:       | <u>Bi</u> sho |
| SO NO.:        |               |

p Tube (4-1-154)

SAMPLE TYPE

104339

BORING NO.: LAG-08 DEFINITIONS

|   |                                                |             | TELE I   |          |     |       | DEFINITIONS                                                      | 1         |
|---|------------------------------------------------|-------------|----------|----------|-----|-------|------------------------------------------------------------------|-----------|
|   |                                                | S = Split S |          |          |     |       | SPT = Standard Penetration Test (ASTM D1586)                     |           |
| ١ |                                                | T = Shelby  |          |          |     |       | PID = Photo Ionization Detector Measurement                      |           |
|   | D - 1                                          | R = Air R   | cotary ( | C = Core |     |       | MSL = Mean Sea Level                                             |           |
| ŀ | <u></u>                                        | Denison P   |          |          |     | l Brb | ps/bg = point source/background                                  | I 701     |
|   | Depth (Ft.)                                    | Sample      | Sample   |          | Lab | PID   | 777- 175 Lat                                                     | Elevation |
|   | Depui (Ft.)                                    | Type &      | Rec.     | SPT      | m   | (bbm) | Visual Description                                               | (Ft. MSL) |
| ŀ | 11                                             | No.         | (Ft.,%)  |          |     |       | Continued Constituted I                                          |           |
|   | **                                             |             |          |          |     |       | Continued from Sheet 1                                           |           |
|   | 12 - 12.0                                      |             |          |          |     | 0:0   | _                                                                | l l       |
| ١ | 12 - 11-                                       |             |          |          |     |       | 12 <del>-</del>                                                  | <b>\</b>  |
|   | 13                                             |             |          |          |     |       |                                                                  | 1         |
|   | · —                                            | L d         |          |          |     |       | 13.5                                                             | 1         |
|   | 14                                             | 5-4<br>40   |          |          |     |       | 140 Organie loany sail, (topsail), reget                         | 4         |
|   | · · · -                                        | 40          | G.p      |          |     | 0.0   | 19.0 5. tacke 100 1                                              |           |
|   | 15                                             | 1           | '        |          |     |       |                                                                  | 1         |
|   | <b>–</b> –                                     |             |          |          |     |       | SILTY Clay W/ small rock of                                      | 1 1       |
|   | 16ا⁄هدا                                        |             |          |          |     |       | pieces (decomposed schiot:)                                      | 1         |
|   | ~~                                             |             |          |          |     | ·     | pieces (decomposed schiot?)  moist, browning green,  low plustic | 1         |
|   | 17                                             |             |          |          |     |       | 1 months                                                         | t         |
|   | * / <del></del>                                |             |          |          |     |       | ands into very the silty sand _<br>wet around 17'                | 1         |
|   | 18                                             |             |          |          |     |       | ands into very time sittlemy -                                   | -         |
|   | 10 —                                           | 5           | 4.0      |          |     | ا ما  | I around 17'                                                     | - I       |
| 1 | 19                                             | 5-5         | - [      |          |     | 6.0   | -                                                                | -         |
|   | _                                              |             |          |          |     |       |                                                                  | -         |
|   | 20_80.9                                        |             |          |          |     |       | -                                                                | -         |
|   | 20                                             |             |          |          |     | -     |                                                                  | 1         |
|   | 21                                             |             |          |          |     |       | Botton of hale @ 20.0 _                                          | -         |
|   | <b>~</b> • • • • • • • • • • • • • • • • • • • |             |          |          |     |       |                                                                  | - I       |
| 1 | 22 _                                           |             |          |          |     |       | -                                                                | -         |
| ١ |                                                |             |          |          |     |       | 646-08-GW water                                                  | -         |
| ١ | 23                                             |             |          |          |     |       | LA6-08-GC -                                                      | · 1       |
| ١ | ~~ —                                           |             |          |          |     |       | <del>-</del>                                                     | 1         |
| ١ | 24                                             |             |          |          |     |       | -                                                                | ·         |
| ١ | ~'' —                                          |             |          |          |     |       | <del>-</del>                                                     | 1         |
| ١ | 25                                             |             |          |          |     |       | <u>-</u>                                                         | -         |
| ١ | 23                                             |             |          |          |     |       | _                                                                | ┪ ′       |
| ١ | 26                                             |             |          |          |     |       | <u>.</u>                                                         | -         |
| ١ | -~ -                                           |             |          |          |     |       |                                                                  | -         |
|   | 27                                             |             |          |          |     |       | -                                                                | -         |
|   | <i>""</i> —                                    |             |          |          |     |       | _                                                                | -         |
| ١ | 28                                             |             |          |          |     |       | -                                                                | 1         |
|   | 20                                             |             |          |          |     |       | <u> </u>                                                         | -         |
|   | 29 _                                           |             |          |          |     |       | -                                                                |           |
|   | ~~                                             |             |          |          |     |       | _                                                                | -         |
|   | 30                                             |             |          |          |     |       | -                                                                | -         |
|   | J                                              |             |          |          |     |       | _                                                                | 1         |

DRILLING CO.:

AllProbe

DRILLER:

Greg Baker

BAKER REP.: Brian Steffes

BORING NO.: LAG-08



DRILLING CO.: AllProbe

DRILLER: Greg Baker

#### TEST BORING RECORD

BAKER REP.: Brian Steffes
BORING NO.: LAG-OQ SHEET 1 OF

| PROJECT:          | Bishop Tu   | ıbe (4-1-1 | .54)               |              |           |             |                 |                                       |            |
|-------------------|-------------|------------|--------------------|--------------|-----------|-------------|-----------------|---------------------------------------|------------|
| SO NO.:           | 104339      |            |                    |              |           |             | BORING NO.:     | LA6-09                                |            |
| COORDINAT         | EAST:       |            |                    |              | -         |             | NORTH:          |                                       |            |
| ELEVATION:        | SURFAC      | E:         |                    |              | •         |             |                 |                                       |            |
| Dr. Dr.           | 1 00        | 20         |                    |              | •         |             |                 |                                       | 15         |
| Rig: Powe         | erprobe 96. |            | A                  |              |           | ١ , . ا     |                 | *** .*                                | Depth to   |
|                   | MC          | Casing     | Augers             | Co           |           | Date        | Progress        | Weather                               | Water      |
|                   | Sampler     |            |                    | Bar          | rei       | -A-1-       | (Ft.)           | · · · · · · · · · · · · · · · · · · · | (Ft.)      |
| Size (ID)         | 1-5/8" I.D. |            |                    |              |           | 5/21/07     | 20.0            | 312 820                               | NE         |
| Length            | 4'          |            |                    |              |           |             |                 |                                       |            |
| Туре              |             |            |                    |              |           |             |                 |                                       |            |
| Hammer Wt.        |             |            | ,                  |              |           |             |                 |                                       |            |
| Fall              |             | إ          |                    |              |           | <u> </u>    |                 |                                       |            |
| Remarks:          | BKG - Ba    | ckground   |                    |              |           |             |                 |                                       |            |
|                   |             |            |                    |              |           |             |                 |                                       |            |
|                   |             | APLE TY    |                    |              |           | l           |                 | <u>NITIONS</u>                        |            |
|                   | S = Split   | -          | _                  |              |           |             |                 | Test (ASTM D1                         |            |
|                   | T = Shelb   |            |                    |              |           |             |                 | tector Measureme                      | nt         |
|                   | R = Air F   | •          |                    |              |           |             | lean Sea Level  |                                       |            |
| 1                 | D = Deni    |            | = Piston           |              |           |             | Background/Poin | t Source                              |            |
| ļ                 |             | No Sam     | ple                |              |           | ppm = pa    | rts per million | ·                                     |            |
|                   | -           | Sample     |                    | Lab          | PID       |             |                 |                                       | Elevation  |
| Depth (Ft.)       | Type &      | Rec.       | SPT                | $\mathbf{m}$ | (ppm)     | 1           | Visual Desc     | ription                               | (Ft. MSL   |
|                   | No.         | (Ft.,%)    |                    |              |           |             | ·               |                                       |            |
|                   |             |            |                    |              | .         | 0.5 Con     | crete           | base metaid                           | <b>,</b>   |
| 1                 |             |            |                    |              | اميما     | 1.2 50      | the growd       | base material                         | ' <u> </u> |
| 1                 |             |            |                    |              | ا         | <del></del> | _               | <del></del>                           | ` _  ·     |
| 2                 | 5-1         | 5.5        |                    |              |           |             |                 |                                       |            |
| l <sub>-</sub> -  | 5''         | 9'         |                    |              |           | . ال ا      | clan with so    | ud & rack piece<br>to, brown.         | . يوم:     |
| 3 _               |             |            |                    |              | ٦         | 91119       | (2,000 0),11 00 | a hans                                |            |
| 4 - 40            |             |            |                    |              | الما الما | ma(         | st, low plant   | (0)                                   | _          |
| 4 4               |             |            |                    |              | <u> </u>  | 1           |                 | - fill                                |            |
| l <sub>-</sub> -  |             |            |                    |              | l         |             |                 | . , . ,                               | 4          |
| 5                 |             |            |                    |              | 0.0       |             |                 |                                       | _          |
| , -               |             |            |                    |              | 1         |             |                 |                                       | 4          |
| . 6               |             | 1.1        |                    |              | 1         |             |                 |                                       |            |
| I <sub>-</sub> -I | 5N          | u          |                    |              | 6.0       |             |                 |                                       | 4          |
| 7 —               | 5           |            |                    |              |           |             |                 |                                       |            |
| 8 - 4.0           |             |            |                    |              | l         |             |                 |                                       | 4          |
| 8 4.0             |             |            |                    |              | 14.1      | 1           |                 | 041 6                                 | 4          |
| _                 |             | 2128-2     | 31 VOA             |              | 35.1      | DI C        | ce of wood,     | s swelled of                          | _          |
| 9 _               |             | 2          | 32 SVOA<br>33 Moto |              | J.22.,    | 14.10       | ce of wood,     | 3-8.5'                                | $\Box$     |
| _                 |             | ) 2        | 33 Met             |              |           |             | , <u> </u>      |                                       | _          |
| 10                |             |            |                    |              |           |             |                 |                                       |            |
|                   |             | LAG        | -09-08             |              | 3.5       |             |                 |                                       |            |



PROJECT:

Bishop Tube (4-1-154) 104339

SO NO.:

BORING NO.:

LAG-09

| ١ |          |           | SAM           | IPLE TY         | PE      |      |       | <b>DEFINITIONS</b>                           |           |
|---|----------|-----------|---------------|-----------------|---------|------|-------|----------------------------------------------|-----------|
| ١ |          |           | S = Split S   | Spoon A         | = Auger |      |       | SPT = Standard Penetration Test (ASTM D1586) | .         |
| ١ |          |           | T = Shelby    |                 |         |      |       | PID = Photo Ionization Detector Measurement  |           |
| 1 |          |           | R = Air R     |                 |         |      |       | MSL = Mean Sea Level                         |           |
| ١ | ]        | D = I     | Denison P     |                 |         | mple |       | ps/bg = point source/background              |           |
| Ì |          |           | Sample        | Sample          |         | Lab  | PID   |                                              | Elevation |
| , | Depth (F | čt.)      | Type &<br>No. | Rec.<br>(Ft.,%) | SPT     | ID   | (ppm) | Visual Description                           | (Ft. MSL) |
|   | 11       |           |               | . (=), -2,      |         |      |       | Continued from Sheet 1                       |           |
|   | 12       | 10        |               |                 |         |      | 0.5   | _<br>-                                       | 1         |
|   | 13 _     |           |               |                 |         |      | 0.0   | - A11 _                                      |           |
|   | 14       |           | ς.·Ϥ          | 3.0             |         |      |       | <br> MS                                      |           |
|   | 15_      | .         |               | ,               |         |      | 0.0   | 15:0 Top soil, vegetation                    | <u> </u>  |
|   | 16       | 60<br>(40 |               |                 |         |      | 0.0   | pieces, (desposed bedrack -                  | 1         |
|   | 17_      |           |               |                 |         |      |       | l •                                          | -         |
|   | 18       |           |               | 6               |         |      | 0.0   | layered colors, bown, grey, -                | _         |
|   | 19       |           | 5-5           | 3.6             |         |      | 0.0   | <i>yyuu</i>                                  | -         |
|   | $\neg$   | 10.0      | 5''           |                 |         |      | 0.0   |                                              | ]         |
|   | 21       |           |               |                 |         |      | 1     | Poston of boring @ 20.0'                     | -         |
|   |          |           |               |                 | ·       |      |       |                                              |           |
|   | 22       |           |               |                 |         |      |       | _                                            | _         |
|   | 23       |           | •             |                 |         |      |       | -                                            | -         |
|   | 24 _     |           |               |                 |         |      |       |                                              | _         |
|   | 25       |           |               |                 |         |      |       |                                              | 1         |
|   | 26       |           |               |                 |         |      |       |                                              |           |
|   | 27       |           |               |                 |         |      |       |                                              |           |
|   | 28       |           |               |                 |         |      |       |                                              | -         |
|   | 29       |           |               |                 |         |      |       |                                              |           |
|   |          |           |               |                 |         |      |       | _                                            |           |
|   | 30       |           |               |                 |         |      |       | -                                            | -         |

| DRII | LING | CO.:        |
|------|------|-------------|
|      |      | • • • • • • |

DRILLER:

AllProbe Greg Baker

BAKER REP.:

Brian Steffes

BORING NO.:



DRILLING CO.: AllProbe

Greg Baker

DRILLER:

## TEST BORING RECORD

BAKER REP.: Brian Steffes
BORING NO.: LAG-10

SHEET 1 OF 2

| PROJECT:         | Bishop To   | abe (4-1-) | 154)     |          |              |                                 | <u> </u>        |                                     |           |  |
|------------------|-------------|------------|----------|----------|--------------|---------------------------------|-----------------|-------------------------------------|-----------|--|
| SO NO.:          | 104339      |            |          |          |              |                                 | BORING NO.:     | LAGIO                               |           |  |
| COORDINAT        | EAST:       |            |          |          |              |                                 | NORTH:          |                                     |           |  |
| <b>ELEVATION</b> | SURFAC      | E:         |          |          |              |                                 |                 |                                     |           |  |
| Rig: Pow         | erprobe 96  | 30         |          |          |              |                                 |                 |                                     | Depth to  |  |
|                  | MC          | Casing     | Augers   | Co       | re           | Date                            | Progress        | Weather                             | Water     |  |
|                  | Sampler     |            |          | Bar      | rel          |                                 | (Ft.)           |                                     | (Ft.)     |  |
| Size (ID)        | 1-5/8" I.D. |            |          |          |              | 6/5/07                          | 80.0            | sun 850 haid                        | 16.5      |  |
| Length           | 4'          |            |          |          |              | ,                               |                 |                                     |           |  |
| Туре             |             |            |          |          |              |                                 |                 |                                     |           |  |
| Hammer Wt.       |             |            | ,        |          |              |                                 |                 |                                     |           |  |
| Fall             |             |            |          |          |              |                                 |                 |                                     |           |  |
| Remarks:         | BKG - Ba    | ckground   | I        | west     | 7 6          | AG-08                           | ₹               |                                     |           |  |
|                  | SAN         | APLE T     | (PE      |          |              |                                 | DEF             | INITIONS                            |           |  |
|                  | S = Split   | Spoon A    | = Auger  |          |              | SPT = Sta                       |                 | n Test (ASTM D1586                  | )         |  |
|                  | T = Shelb   | y Tube \   | V = Wash |          |              |                                 |                 | tector Measurement                  | -         |  |
|                  | R = Air H   |            | C = Core |          |              | MSL = M                         | Iean Sea Level  |                                     |           |  |
|                  | D = Deni    | son I      | Piston   |          |              | BG/PS = Background/Point Source |                 |                                     |           |  |
|                  |             | No Sam     | ple      |          |              | ppm = pa                        | rts per million |                                     |           |  |
|                  | Sample      | Sample     |          | Lab      | PID          |                                 |                 |                                     | Elevation |  |
| Depth (Ft.)      | Туре &      | Rec.       | SPT      | ID       | (ppm)        | 1                               | Visual Desc     | cription                            | (Ft. MSL) |  |
|                  | No.         | (Ft.,%)    |          | <u> </u> |              | .,,                             |                 |                                     |           |  |
| 1 _              | Ÿ ·         |            |          |          |              | 6" Com                          | segrovel (u     | et) -<br>brown, stiff _<br>- fill - | _         |  |
| . ]              |             |            |          |          | ۱            |                                 | 111 / 2         | 1 & mill rock                       | ] .       |  |
| 2                |             | 3.3        |          |          | 0.0          | Clark                           | 1 5114 201 302  | brown stiff.                        |           |  |
|                  | · .         | ٠, ر       |          |          |              | Piec                            | Shortin         | _                                   | ].        |  |
| 3                | 5-1         |            |          |          |              | l usu                           | 771-311         | eil –                               | 1         |  |
| 4 40             |             |            |          |          |              |                                 | _               | - <i>(//)</i><br>-                  | _         |  |
| 4 _ 4            |             |            |          |          |              |                                 |                 | _                                   | 4         |  |
| . ا- ـ ا         | 5,21        | 3 A/1/     | - 05 @   | 5-61     | _ ا          |                                 |                 | _                                   | _         |  |
| 5                |             | 2,00       | - / 7    | ۸ور      | 0.5          |                                 |                 | _                                   | 4         |  |
| , - ,            |             | a a        | -260     | SVOA     |              |                                 |                 | -                                   | 4         |  |
| 6'               |             | 2.2        | -269     | M.\$5.   |              | 1                               |                 | _                                   | -         |  |
| 7 -              | -21         | , ) ,      |          |          | ١. ۾         |                                 |                 | -                                   | -         |  |
| 1 '-             | ۾ رو        |            |          |          | 0.0          |                                 |                 | _                                   | -         |  |
| 8 <u>- 0.0</u>   |             |            |          |          |              |                                 |                 | · -                                 | 1         |  |
| <u> </u>         |             |            | ,        |          | <del> </del> | 1                               |                 |                                     | -         |  |
| 9                |             |            |          |          |              |                                 |                 | -                                   | 1         |  |
| -                |             | 1.2        | ,        |          | 0.0          |                                 |                 | _                                   | -         |  |
| 10               |             | 3.3        |          |          |              |                                 |                 | -                                   | -         |  |
|                  |             |            |          |          |              |                                 |                 | _                                   | 1         |  |
|                  |             |            |          |          |              |                                 |                 |                                     |           |  |



PROJECT:

Bishop Tube (4-1-154)

SAMPLE TYPE

SO NO.:

104339

BORING NO.:

LAG-10

**DEFINITIONS** 

| ı |                         | S = Split           |         |     |      |                                | SPT = Standard Penetration Test (ASTM D1586)                                           |           |  |
|---|-------------------------|---------------------|---------|-----|------|--------------------------------|----------------------------------------------------------------------------------------|-----------|--|
| ı |                         | T = Shelby          |         |     |      |                                | PID = Photo Ionization Detector Measurement  MSL = Mean Sea Level                      |           |  |
| ı | D = 1                   | R = Air R Denison P |         |     | mnle |                                | ps/bg = point source/background                                                        |           |  |
| Ì | Sample Sample Lab PID   |                     |         |     |      | poweg point source outerground | Elevation                                                                              |           |  |
| ٠ | Depth (Ft.)             | Type &              | Rec.    | SPT | ID   | (ppm)                          | Visual Description                                                                     | (Ft. MSL) |  |
| ļ |                         | No.                 | (Ft.,%) |     |      |                                |                                                                                        |           |  |
| ı | 11                      |                     |         | ٠,  |      |                                | Continued from Sheet                                                                   | 4         |  |
| • | 12 12.                  |                     |         | ٠,  | ·    | l · .                          | 11.7                                                                                   | 1         |  |
| ı | 12                      |                     |         |     |      |                                | moist, un plastie.                                                                     | 1         |  |
| ı | 13                      |                     |         |     |      | 0.0                            | misist, war prostite                                                                   | 1         |  |
| ı | -                       |                     |         |     |      | 0.0                            | *                                                                                      | ] [       |  |
| ı | 14                      |                     | 3.6     |     |      | 0.0                            | 14.0                                                                                   | 4         |  |
| ı | 15_                     | 4-4                 |         |     |      |                                | grades into silty of fire suf -                                                        | - I       |  |
| ı | $\mid_{\sigma_{i}}\mid$ | 7                   |         |     |      | 0.0                            | wi rock 11:000 decomposal -                                                            | 1 1       |  |
| ı | 16                      |                     |         |     | L    |                                | grades into sily vy. fire sund -<br>w/ rock piccos decomposed<br>bedrock, dry to moist | 1         |  |
| ١ |                         |                     |         |     |      |                                |                                                                                        | ]         |  |
| ١ | 17_                     |                     |         |     |      | 6.8                            |                                                                                        |           |  |
| ١ |                         |                     |         |     |      | 8.0                            | do moved school wet below                                                              | 4.5       |  |
| 1 | 18                      |                     | امدا    |     |      |                                | de roposed school, welkelust                                                           | -         |  |
| ı | 19                      | 5.5                 | ۱۹٬۰    |     |      |                                | -                                                                                      | ┪ 【       |  |
| ı |                         |                     |         |     |      | 6.3                            | *** <del>-</del>                                                                       | 1         |  |
| ı | 20 - 20,0               |                     |         |     |      | <u> </u>                       |                                                                                        |           |  |
| ı | <u>,, -</u>             |                     |         |     |      |                                | Botton of hole @ 20.0 .                                                                |           |  |
| ı | 21                      |                     |         |     |      |                                | _                                                                                      |           |  |
| ı | 22                      |                     |         |     |      |                                | <u>-</u>                                                                               | -         |  |
| ı |                         |                     |         |     |      |                                | <del>-</del>                                                                           |           |  |
| ١ | 23                      |                     |         |     |      |                                |                                                                                        | ]         |  |
| ı |                         |                     |         |     |      |                                |                                                                                        | 4 l       |  |
| ı | 24                      |                     |         |     |      |                                | <u> </u>                                                                               | -         |  |
| ı | 25                      |                     |         |     |      |                                |                                                                                        | -         |  |
|   |                         |                     |         |     |      |                                | _                                                                                      | 1         |  |
| ı | 26                      |                     |         |     |      |                                | ·                                                                                      | ]         |  |
| ı |                         |                     |         |     |      |                                |                                                                                        |           |  |
|   | 27                      |                     |         |     |      |                                | _                                                                                      | -         |  |
|   | 28                      |                     |         |     |      |                                |                                                                                        | -         |  |
|   | 20                      | <b>3</b> 62         | ,       |     |      |                                |                                                                                        | -         |  |
|   | 29 _                    |                     |         |     |      |                                |                                                                                        | 1 !       |  |
|   |                         |                     |         |     |      |                                |                                                                                        | ]         |  |
|   | 30                      | ,                   |         |     |      |                                | _                                                                                      |           |  |
| l |                         |                     |         |     | l    | L                              |                                                                                        |           |  |

DRILLING CO.:

AllProbe

DRILLER:

Greg Baker

BAKER REP.:

Brian Steffes

BORING NO.:

LAG-10

#### TEST BORING RECORD

| PROJECT:                                                        | Bishop Tu            | be (4-1-1      | 154)     |           |       |          |                            |                           |           |
|-----------------------------------------------------------------|----------------------|----------------|----------|-----------|-------|----------|----------------------------|---------------------------|-----------|
| SO NO.:                                                         | 104339               |                |          |           |       |          | BORING NO.:                | LDA-01                    |           |
| COORDINAT                                                       | EAST:                |                |          |           |       |          | NORTH:                     |                           |           |
| <b>ELEVATION</b>                                                | SURFAC               | E:             |          |           |       |          |                            |                           |           |
| Rig: Powe                                                       | erprobe 96           | 30             |          |           |       | <u> </u> |                            | T                         | Depth to  |
|                                                                 | MC                   | Casing         | Augers   | Co        | re    | Date     | Progress                   | Weather                   | Water     |
|                                                                 | Sampler              |                |          | Bar       | rel   |          | (Ft.)                      |                           | (Ft.)     |
| Size (ID)                                                       | 1-5/8" I.D.          |                |          |           |       | 5]31/07  | 6.21                       | 5UN 850                   | NE        |
| Length                                                          | 4'                   |                |          |           |       |          |                            |                           |           |
| Туре                                                            |                      |                |          |           |       |          |                            |                           |           |
| Hammer Wt.<br>Fall                                              |                      |                |          |           |       | <b></b>  |                            |                           |           |
| Remarks:                                                        | BKG - Ba             | oleonous d     |          |           |       |          |                            |                           |           |
| Acmai As.                                                       | DKU - Da             | ckground       |          |           | Ca-   | tong 1   | lange Degree               | sa Area.                  |           |
|                                                                 | SAN                  | APLE TY        | PE       |           |       |          | DEF                        | INITIONS                  |           |
|                                                                 | S = Split            | -              | -        |           |       |          |                            | n Test (ASTM D158         | 5)        |
|                                                                 | T = Shelb            |                |          |           |       |          |                            | tector Measurement        |           |
|                                                                 | R = Air F            | -              | C = Core |           |       |          | lean Sea Level             |                           |           |
|                                                                 | D = Deni             |                | Piston   |           |       |          | Background/Poin            | nt Source                 |           |
|                                                                 |                      | No Sam         | pie      | Y al      | PID   | ppm = pa | rts per million            |                           | T         |
| Depth (Ft.)                                                     | Sample<br>Type &     | Sample<br>Rec. | SPT      | Lab<br>ID | (ppm) |          | Visual Desc                | rintian                   | (Ft. MSL) |
| Dopui (1 t.)                                                    | No.                  | (Ft.,%)        | 511      | II        | (ppm) | 1        | V Isual Desc               | ripuon                    | (FL MSL)  |
| 1 , 2 - 3 - 4 - 4 - 4 - 5 - 6 - 6 - 6 - 7 - 8 - 6 - 9 - 10 - 10 | 5-72                 | 6.3<br>0.4     | 20 32    | elss.     | 0.0   | clay     | , sal & gra                | comanete                  |           |
| DRILLING CO.: DRILLER:                                          | AllProbe<br>Greg Bak | er             |          | l         | L     | l        | BAKER REP.:<br>BORING NO.: | Brian Steffes  LDA-01 SHE | ET1OF }   |
|                                                                 | JIUS DUK             |                |          |           |       |          | DOIGHO NO.                 | PAUL BUE                  | T         |



#### TEST BORING RECORD

| PROJECT:           | Bishop Tu   | ibe (4-1-1      | 54)         |          |       |                   |                 |                                                  |             |
|--------------------|-------------|-----------------|-------------|----------|-------|-------------------|-----------------|--------------------------------------------------|-------------|
| SO NO.:            | 104339      |                 |             |          |       |                   | BORING NO.:     | LDA-02                                           |             |
| COORDINAT          | EAST:       | · · · · ·       |             |          | •     |                   | NORTH:          |                                                  |             |
| ELEVATION:         | SURFAC      | E: (            |             |          |       |                   |                 |                                                  |             |
| Rig: Powe          | erprobe 96  | 30              |             |          |       | · · · · · ·       |                 | T                                                | Depth to    |
|                    | MC          | Casing          | Augers      | Co       | re    | Date              | Progress        | Weather                                          | Water       |
| ,                  | Sampler     |                 |             | Bar      | rel   |                   | (Ft.)           |                                                  | (Ft.)       |
| Size (ID)          | 1-5/8" L.D. |                 |             |          |       | 5/31/47           | 6.1             | 3Um 850                                          | NE          |
| Length             | 4'          |                 |             |          |       |                   |                 |                                                  |             |
| Туре               |             |                 |             |          |       |                   |                 |                                                  |             |
| Hammer Wt.<br>Fall |             |                 |             |          |       |                   |                 |                                                  |             |
| Remarks:           | DVC D-      | -1              |             |          |       |                   |                 |                                                  |             |
| Remarks:           | BKG - Ba    | ckground        | ı           |          | mma   | dialy &           | gothed ca       | newse recta                                      | yer         |
|                    | SAN         | IPLE TY         | (PE         |          |       | <u> </u>          | DEF             | INITIONS                                         |             |
|                    | S = Split   |                 |             |          |       | SPT = Sta         |                 | n Test (ASTM D1                                  | 586)        |
|                    | T = Shelb   | y Tube V        | W = Wash    |          |       |                   |                 | tector Measureme                                 |             |
|                    | R = Air F   | •               | C = Core    |          |       |                   | lean Sea Level  |                                                  |             |
|                    | D = Deni    |                 | = Piston    |          |       | 1                 | Background/Poin | t Source                                         |             |
|                    |             | No Sam          | ple         |          | T     | ppm = pa          | rts per million |                                                  |             |
| Donath (Et.)       | Sample      | Sample          | GD/T        | Lab      | PID   |                   | *** 15          |                                                  | Elevation   |
| Depth (Ft.)        | Type & No.  | Rec.<br>(Ft.,%) | SPT         | ID       | (ppm) | 1                 | Visual Desc     | ription                                          | (Ft. MSL)   |
| 1                  | 5-1<br>5N   | 0.9             | NO<br>Some! | 20       | 0.0   | <b>√</b> 0<br>\$1 | t, clay, sm     | easily and<br>ow, little<br>1, wist<br>crete@6.1 |             |
| DRILLING CO.:      |             |                 |             | <u> </u> |       |                   | BAKER REP.:     | Brian Steffes                                    |             |
| DRILLER:           | Greg Bak    | er              |             |          |       |                   | BORING NO.:     | LDA-02 S                                         | HEET I OF _ |

## Baker Environmental

#### TEST BORING RECORD

| PROJECT:                 | Bishop II      |             | (54)         |     |        |                                                         |                    |                    |               |  |
|--------------------------|----------------|-------------|--------------|-----|--------|---------------------------------------------------------|--------------------|--------------------|---------------|--|
| SO NO.:                  | 104339         |             |              |     |        |                                                         | BORING NO.:        | LDA-03             |               |  |
| COORDINAT                | EAST:          |             | -            |     |        |                                                         | NORTH:             |                    |               |  |
| ELEVATION:               | SURFAC         | E:          |              |     | _      |                                                         |                    |                    |               |  |
| Rig: Powe                | erprobe 96     | 30          |              |     |        |                                                         |                    |                    | Depth to      |  |
| Idg. 10w                 | MC             | Casing      | Augers       | Co  | -      | Date                                                    | Dwagnaga           | Weather            | Water         |  |
|                          |                | Casing      | Augers       |     |        | Date                                                    | Progress           | vv eatner          |               |  |
| at any                   | Sampler        |             |              | Bar | теі    |                                                         | (Ft.)              | / 450              | (Ft.)         |  |
| Size (ID)                | 1-5/8" LD.     |             |              |     |        | 5/31/27                                                 | 80.0,              | 50 n 870           | <i>الحط/</i>  |  |
| Length                   | 4'             |             |              |     |        |                                                         |                    |                    |               |  |
| Туре                     |                |             |              |     |        |                                                         |                    |                    |               |  |
| Hammer Wt.               |                |             |              |     |        |                                                         |                    |                    |               |  |
| Fall                     |                |             |              |     |        |                                                         |                    |                    | L             |  |
| Remarks:                 | BKG - Ba       | ckground    | l            | 10  | ' cas  | ,+ = <del>}</del>                                       | dge of eoner       | de rectongle       |               |  |
|                          | SAN            | APLE TY     | /PE          |     |        |                                                         | DEF                | INITIONS           |               |  |
| ·                        |                |             | = Auger      |     |        | SPT = Sta                                               |                    | n Test (ASTM D1586 | ) l           |  |
|                          | T = Shelb      |             |              |     |        |                                                         |                    | tector Measurement | <b>'</b>      |  |
| 1                        | R = Air I      | -           |              |     |        |                                                         |                    |                    |               |  |
| D = Denison $P = Piston$ |                |             |              |     |        | MSL = Mean Sea Level<br>BG/PS = Background/Point Source |                    |                    |               |  |
| 1                        |                | = No Sam    |              |     |        |                                                         | rts per million    |                    |               |  |
|                          |                | Sample      |              | Lab | PID    | PP Pu                                                   | The post infinited |                    | Elevation     |  |
| Depth (Ft.)              | Type &         | Rec.        | SPT          | ID  | (ppm)  |                                                         | Visual Desc        | ription            | (Ft. MSL)     |  |
|                          | No.            | (Ft.,%)     | ~            | ~~  | (1911) | 1                                                       |                    |                    | (1 11 111010) |  |
|                          |                | (=, / - /   |              |     |        |                                                         | ·                  | 1.5                | <b></b>       |  |
| 1 <u>,</u>               |                |             |              | 1   |        | pust                                                    | ed concerté "      | - (۱۱ مس <i>ن</i>  | i l           |  |
|                          |                |             |              |     |        |                                                         |                    | -                  |               |  |
| 2                        |                |             |              |     | l _    | _                                                       | 11                 | -<br>- م. م. د     | 1             |  |
|                          | ۱ ۱            | 1.4         |              |     | 0.0    | Sand                                                    | , clay & 91 1+     |                    | 1             |  |
| ] 3 ]                    | 5 <sup>)</sup> | '           |              |     |        | ا ا                                                     | m                  | -Cill -            | - ·           |  |
| 3 - 40                   | -              |             | <u>′</u>     |     |        | "                                                       | 000                |                    | 1             |  |
| 4   40                   |                |             |              |     | 1      |                                                         |                    | -                  | 1             |  |
| l ' <del> </del>         |                |             |              |     |        |                                                         |                    | -                  | 1             |  |
| 5 7                      |                | 1           |              | ļ   |        |                                                         |                    | -                  | 1             |  |
| I °⊢                     |                |             |              |     | 0.0    |                                                         |                    |                    | 1             |  |
| 6 _                      |                |             |              |     |        | l 6                                                     | OD reading         | ۳ العبر م          | -             |  |
| I                        | 1              | 1.8         |              |     |        | '                                                       |                    | Les but -          |               |  |
| 7                        | 5.1            | 1,0         | 1            |     |        | L                                                       | المستر المسترا     | 1 - Vapors         | -             |  |
| 11                       |                |             |              |     |        | '                                                       | אסק ות ששי         | -                  | 1             |  |
| 8 48.0                   | 8 - 8.0        |             |              |     | 0.0    | /                                                       | way be +           | rapper -           | 1             |  |
|                          |                | <del></del> | <del>-</del> |     |        | 1                                                       | Wenzath            | rapped Aloor Slab. | 1             |  |
| 9 -                      |                | _           |              |     |        |                                                         | 10 - m.            | _                  | 1             |  |
| ´                        | 5,3            | 3.0         |              |     | 0.0    |                                                         |                    |                    | -             |  |
| 10                       | ا ا            |             |              |     |        |                                                         |                    | -                  | 1             |  |
| <b>, '</b> "⊢            |                |             |              |     |        |                                                         |                    | _                  | 1             |  |
|                          |                |             | <u></u>      | L   | 1      |                                                         |                    |                    | L             |  |

DRILLING CO.: AllProbe

DRILLER: Greg Baker

BAKER REP.: Brian Steffes

BORING NO.: LDA-03 SHEET 1 OF



DRILLING CO.: AllProbe

DRILLER:

Greg Baker

#### TEST BORING RECORD

BAKER REP.: Brian Steffes
BORING NO.: LDA-63 SHEET 2 OF 2

| PROJECT:       | Bisho                                                 | p Tube (4                 | -1-154)                           |             |              |                                                                                                                                                               |                        |
|----------------|-------------------------------------------------------|---------------------------|-----------------------------------|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| SO NO.:        |                                                       | 104339                    |                                   |             |              | BORING NO.: LDA-03                                                                                                                                            |                        |
| D=1            | S = Split S $T = Shelb$ $R = Air R$ $Denison P = SAN$ | y Tube V<br>Lotary (      | X ≃ Auger<br>V = Wash<br>C = Core | mnle        |              | DEFINITIONS  SPT = Standard Penetration Test (ASTM D1586)  PID = Photo Ionization Detector Measurement  MSL = Mean Sea Level  ps/bg = point source/background |                        |
| Depth (Ft.)    | Sample<br>Type &.<br>No.                              | Sample<br>Rec.<br>(Ft.,%) | SPT                               | Lab .<br>ID | PID<br>(ppm) |                                                                                                                                                               | Elevation<br>(Ft. MSL) |
| 11             |                                                       |                           |                                   |             | 0.0          | Continued from Sheet 1_                                                                                                                                       |                        |
| 13             |                                                       |                           |                                   |             |              |                                                                                                                                                               | -                      |
| 14             | بهما                                                  |                           |                                   | س. سم       |              |                                                                                                                                                               | -                      |
| 16 - 160<br>17 |                                                       | 2<br>4                    | A-03-                             | 16 0        | 16           | 15.5                                                                                                                                                          | -                      |
| 18             | 5-5                                                   |                           |                                   |             |              | sity fine soul, brown & gray, -<br>wat.<br>de corposed rock                                                                                                   | -                      |
| 20             |                                                       |                           |                                   |             | <br>         | Bottom of hole @ 20.0'                                                                                                                                        | -                      |
| 22             |                                                       |                           |                                   |             |              | LDA-03-GW                                                                                                                                                     |                        |
| 24             |                                                       |                           |                                   |             |              | -                                                                                                                                                             |                        |
| 26             |                                                       |                           |                                   |             |              | -<br>-                                                                                                                                                        |                        |
| 27             |                                                       |                           |                                   |             |              | -                                                                                                                                                             |                        |
| 29             |                                                       |                           | , e                               |             |              | _                                                                                                                                                             | <u>-</u>               |
| 1 7            |                                                       |                           |                                   |             | 1            | -                                                                                                                                                             |                        |

#### TEST BORING RECORD

| PROJECT:          | Bishop Tu   | ıbe (4-1-1  | 54)        |     |            |          |                 |                                                    |              |
|-------------------|-------------|-------------|------------|-----|------------|----------|-----------------|----------------------------------------------------|--------------|
| SO NO.:           | 104339      |             |            | '   |            |          | BORING NO.:     | LDA-OY                                             |              |
| COORDINAT         | EAST:       |             |            |     |            |          | NORTH:          |                                                    |              |
| ELEVATION         | SURFAC      | E:          |            |     | •          |          |                 |                                                    |              |
| Rig: Pow          | erprobe 96  | 30          |            |     |            |          |                 |                                                    | Depth to     |
| Idg. Xow          | MC          | Casing      | Augers     | Co  | Te.        | Date     | Progress        | Weather                                            | Water        |
|                   | Sampler     | Cusing      | 2xugers    | Bar |            | Date     | (Ft.)           | VV CACHEL                                          | (Ft.)        |
| Size (ID)         | 1-5/8" I.D. |             |            |     |            | \$/3/06  |                 | 5u~ 89°                                            | 165          |
| Length            | 4'          |             |            |     |            | 3/5/20   | , g v           | 2000 01                                            | 100          |
| Туре              |             |             |            |     |            |          |                 |                                                    |              |
| Hammer Wt.        |             |             |            |     |            |          |                 |                                                    |              |
| Fall              |             |             |            |     |            |          |                 |                                                    |              |
| Remarks:          | BKG - Ba    | ckground    | l          |     |            |          |                 |                                                    |              |
|                   | CAR         | ADE E CO    | 773373     |     |            |          |                 |                                                    |              |
|                   | S = Split   | Speed A     |            |     |            | CDT - C4 |                 | INITIONS                                           | 96)          |
|                   | T = Shelb   |             |            |     |            |          |                 | n Test (ASTM D15)<br>tector Measurement            |              |
| 1                 | R = Air F   |             | C = Core   |     |            |          | ican Sea Level  | lector ivicasuremen                                | •            |
|                   | D = Deni    | •           | P = Piston |     |            |          | Background/Poin | t Source                                           |              |
|                   |             | No Sam      |            |     |            |          | rts per million | Cource                                             |              |
|                   | Sample      | Sample      |            | Lab | PID        | pp p.    | ato per minion  | ,                                                  | Elevation    |
| Depth (Ft.)       | Type &      | Rec.        | SPT        | ID  | (ppm)      | 1        | Visual Desc     | ription                                            | (Ft. MSL)    |
|                   | No.         | (Ft.,%)     |            |     | <b>`</b> ´ |          |                 |                                                    |              |
|                   |             |             |            | ""  | T          |          |                 |                                                    |              |
| 1                 |             | 21          | 28-234     | 1   |            | ŀ        | •               | low to Home                                        |              |
|                   |             | <i>o</i> ≠1 | , , ,      |     | h a 2      | 1 pul    | lad somple fo   | for la Hours                                       | ,            |
| 2 _               |             |             | LDA-0      | -oZ | 15.60      |          | with bit        |                                                    |              |
|                   | 5-1         | 0'8         |            |     |            |          |                 |                                                    | <b>-</b>   . |
| 3                 | 5           |             |            |     | 0.0        |          |                 |                                                    |              |
| 4 - 10            |             |             | ·          |     |            | 51       | Hy Clanz &      | sadiu/                                             |              |
| * <del> u</del> - |             |             |            |     |            |          | clant piece     | to brome,                                          |              |
| 5 _               |             |             |            |     |            | ~        | The of large    | sul, w/ is, brown, appostic.                       | 4            |
| ~-                |             |             |            |     | 0.0        | ·        | mets!           | 0.11                                               |              |
| 6                 |             | ايما        |            |     | •          |          |                 | _ <del>                                     </del> |              |
|                   | 52          | 2,2         |            |     | 2.0        |          |                 |                                                    |              |
| 7                 | *           |             |            |     |            |          |                 |                                                    | ٦            |
|                   |             |             |            |     | 0,0        |          |                 |                                                    |              |
| 8 76.5            |             |             |            |     | <u> </u>   |          | •               |                                                    |              |
| l _l              |             |             |            |     |            |          |                 |                                                    |              |
| 9                 |             | d           |            |     | 0.0        |          |                 |                                                    |              |
|                   |             | va          |            |     | 1          |          |                 |                                                    |              |
| 10                |             |             |            |     | 6.0        |          |                 |                                                    |              |
|                   |             |             | L          |     |            |          |                 |                                                    |              |

DRILLING CO.: AllProbe DRILLER: Greg Baker

BAKER REP.: Brian Steffes
BORING NO.: LDA 04 SHEET 1 OF Z



BORING NO.:

PROJECT:

Bishop Tube (4-1-154)

SAMPLE TYPE

SO NO.:

104339

|       |       |       |            | TUTTION    |           |
|-------|-------|-------|------------|------------|-----------|
| SPT = | Stand | ard F | Penetratio | n Test (AS | TM D1586) |
|       |       |       |            |            |           |

LDA-OY

S = Split Spoon A = Auger T = Shelby Tube W = Wash

| 1   |             |       | T = Shelby    | /Tube W         | V = Wash                              |              |       | PID = Photo Ionization Detector Measurement                                                           |                                              |
|-----|-------------|-------|---------------|-----------------|---------------------------------------|--------------|-------|-------------------------------------------------------------------------------------------------------|----------------------------------------------|
|     |             |       | R = Air R     |                 | C = Core                              |              |       | MSL = Mean Sea Level                                                                                  |                                              |
|     |             | ) = [ | Denison P =   | Piston          | N = No Sa                             | mple         |       | ps/bg = point source/background                                                                       |                                              |
| ١   |             |       | Sample        | Sample          |                                       | Lab          | PID   |                                                                                                       | Elevation                                    |
| ا.  | Depth (F    | t.)   | Type &<br>No. | Rec.<br>(Ft.,%) | SPT                                   | ID           | (ppm) | Visual Description                                                                                    | (Ft. MSL)                                    |
| ſ   | 11_         |       |               |                 |                                       |              |       | Continued from Sheet                                                                                  |                                              |
| 1   | 4,          | ا ہ،  |               |                 |                                       |              |       | <u> </u>                                                                                              |                                              |
| ı   | 1217        | ٥٠    |               |                 | · · · · · · · · · · · · · · · · · · · | ···          |       | grades into silty very fine soul us about pieces & occ. gtz pebble, brown, consiste (decomposed rock) | -                                            |
| ı   |             |       |               |                 |                                       |              |       | gradis into silly                                                                                     | . [                                          |
| 1   | 13          |       |               |                 |                                       |              | 0.0   | Sand w/ south pleased & occi.                                                                         | - I                                          |
| ı   | ., -        |       |               |                 |                                       |              |       | gtz pébble, brown, comme                                                                              | - 1                                          |
| ١   | 14          |       | ا ئ           | 4.0             |                                       |              |       | (decomposed rock)                                                                                     | -{                                           |
| ١   | 15          | ٠,    | 5-4           |                 |                                       |              |       | . (4820-49-                                                                                           | -                                            |
| ı   | <b>—</b> —. |       | ·             |                 |                                       |              | 010   | <del></del>                                                                                           | - 1                                          |
| ı   | 16          | اعما  |               |                 |                                       |              | •     | -                                                                                                     | 1 1                                          |
| ı   | 10          |       |               |                 |                                       |              |       | <del>-</del>                                                                                          | ┥ ┃                                          |
| ı   | 17          |       |               |                 |                                       |              | 0.0   | wde 16.5                                                                                              | <b>1</b> 1                                   |
| ı   | *′-         |       |               |                 | •                                     |              | • • • |                                                                                                       | † I                                          |
| ١   | 18          |       |               | _               |                                       |              |       | <del>-</del>                                                                                          | <b>┤                                    </b> |
| ١   | ~~          |       | -5            | 4.0             |                                       |              | 0,0   |                                                                                                       | 1                                            |
| ı   | 19          |       | 5-5           | ,               |                                       |              |       | -                                                                                                     | 1                                            |
| ı   |             |       |               |                 |                                       | l            |       |                                                                                                       | ~                                            |
|     | 20 _]v      | ø.º   |               |                 |                                       | l            | 0.0   | , , ·                                                                                                 | 1                                            |
| ı   | 了           |       |               |                 |                                       | <del> </del> |       | Bottom of hole @ 20.0'                                                                                |                                              |
| ı   | 21          |       |               |                 |                                       | l            |       | 1,000,000                                                                                             | .]                                           |
| ١   |             |       |               |                 |                                       | l            |       |                                                                                                       |                                              |
| ١   | 22          |       |               |                 |                                       |              |       |                                                                                                       |                                              |
| 1   |             |       |               |                 |                                       | l            |       | LDA-04-GW                                                                                             |                                              |
| ١   | 23          |       |               |                 |                                       |              |       | ·                                                                                                     | _                                            |
| ı   | 4           |       |               |                 |                                       |              |       | <u>'</u>                                                                                              | _                                            |
| ı   | 24          |       |               |                 |                                       |              |       | _ ·                                                                                                   | _                                            |
| 1   |             | 1     |               |                 |                                       |              |       | _                                                                                                     |                                              |
| ١   | 25          |       |               |                 |                                       |              |       |                                                                                                       |                                              |
| ١   | <u>,,</u> - |       |               |                 |                                       |              |       |                                                                                                       | -                                            |
| ١   | 26_         |       |               |                 |                                       |              |       | -                                                                                                     | -                                            |
| ı   |             |       |               |                 |                                       |              |       |                                                                                                       | 4                                            |
| ١   | 27          |       |               |                 |                                       |              |       | -                                                                                                     | -                                            |
|     | ~。┤         |       |               |                 |                                       |              |       |                                                                                                       | -                                            |
|     | 28          |       |               |                 |                                       |              |       | ****                                                                                                  |                                              |
|     | 29          |       |               |                 |                                       |              |       |                                                                                                       | -                                            |
|     | 29          |       |               |                 |                                       |              |       | _                                                                                                     | -                                            |
|     | 30 _        |       |               |                 |                                       |              |       |                                                                                                       | -                                            |
|     |             |       |               |                 |                                       |              |       | -                                                                                                     |                                              |
| - 1 |             |       |               |                 |                                       |              |       |                                                                                                       |                                              |

| DRILLING CO | .: |
|-------------|----|
|             |    |

AllProbe

DRILLER:

Greg Baker

BAKER REP.: Brian Steffes

BORING NO .: LD4-04



DRILLING CO.: AllProbe

Greg Baker

DRILLER:

#### TEST BORING RECORD

BAKER REP.: Brian Steffes
BORING NO.: LDA-oS SHEET 1 OF 2

| PROJECT:     | Bishop Tu   | ibe (4-1-)  | 54)        |              |                                        |                                 |                                          |                                       |               |  |
|--------------|-------------|-------------|------------|--------------|----------------------------------------|---------------------------------|------------------------------------------|---------------------------------------|---------------|--|
| SO NO.:      | 104339      |             |            |              |                                        |                                 | BORING NO.:                              | LBA-05                                |               |  |
| COORDINAT    |             |             |            |              |                                        | NORTH:                          |                                          |                                       |               |  |
| ELEVATION:   | SURFAC      | E:          |            |              | _                                      |                                 |                                          |                                       |               |  |
| Rig: Pow     | erprobe 96  | 30          |            |              |                                        | ſ                               |                                          | <u> </u>                              | Depth to      |  |
| 105.         | MC          | Casing      | Augers     | C            | re                                     | Date                            | Progress                                 | Weather                               | Water         |  |
|              | Sampler     | Casing      | ragers     | I            | rrel                                   | Date                            | (Ft.)                                    | Weather                               | (Ft.)         |  |
| Size (ID)    | 1-5/8" I.D. |             |            |              | 101                                    | 6/4/07                          | 20.0                                     | 0-cast 700                            | 14,4          |  |
| Length       | 4'          |             |            | <del> </del> | ·· · · · · · · · · · · · · · · · · · · | <u> </u>                        | 7.0.0                                    | himid                                 | 1,14          |  |
| Type         |             |             |            |              |                                        |                                 |                                          | 1 1 2 1 2                             | <del> </del>  |  |
| Hammer Wt.   |             |             |            |              |                                        |                                 |                                          |                                       |               |  |
| Fall         |             |             |            |              |                                        |                                 |                                          |                                       | <del>  </del> |  |
| Remarks:     | BKG - Ba    | ckground    | 0.3        | -0.4         | pm                                     |                                 | lu                                       | , , , , , , , , , , , , , , , , , , , |               |  |
|              | SAN         | APLE TY     |            |              |                                        | 1                               | DEF                                      | INITIONS                              |               |  |
|              |             |             | = Auger    |              |                                        | SPT = St                        |                                          | n Test (ASTM D1586                    | a             |  |
|              | T = Shelb   |             |            |              |                                        |                                 |                                          | tector Measurement                    | '             |  |
|              | R = Air F   |             | C = Core   |              |                                        |                                 | fean Sea Level                           |                                       |               |  |
|              | D = Deni    | •           | P = Piston |              |                                        | BG/PS = Background/Point Source |                                          |                                       |               |  |
|              |             | No Sam      | ple        |              |                                        |                                 | rts per million                          |                                       |               |  |
|              | Sample      | Sample      |            | Lab          | PID                                    |                                 |                                          |                                       | Elevation     |  |
| Depth (Ft.)  | Type &      | Rec.        | SPT        | ID           | (ppm)                                  | ļ                               | Visual Desc                              | cription                              | (Ft MSL)      |  |
|              | No.         | (Ft.,%)     |            |              |                                        |                                 |                                          | -                                     |               |  |
|              |             |             |            |              |                                        | 6"Concre                        |                                          |                                       |               |  |
| 1 .          |             |             |            |              |                                        | A                               | td.vanced 1.5' w                         | / con much birth.                     |               |  |
| I _          |             | _ŧ          |            |              | ٠,                                     | 4.3                             | som under A                              | loor slab deanty                      | العا          |  |
| 2            |             | 3.3<br>2128 |            |              | ١.                                     |                                 |                                          |                                       | 1             |  |
| _            | ١, ١        | 2128        | - 239      |              | 1.4                                    |                                 | n. 10.                                   | send to rock.                         | ].            |  |
| 3            | 5-1         | ^ _         | 5-03@      | 11           |                                        | 5117                            | ( C. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Security of 100 kg                    |               |  |
| 4 - 4.0      |             | L-DA-0      | 5- 02 @    | P-1/         | 0.9                                    | P16                             | المروع أ المام الم                       | 1. m.b.a. p./~ 10.                    |               |  |
| 4 4.0        |             |             |            |              | <u> </u>                               | 100                             | 515T                                     |                                       | _  ·          |  |
| I <u>.</u> - |             |             |            |              |                                        |                                 |                                          | _eill                                 | 4             |  |
| 5 _          |             |             |            |              |                                        |                                 |                                          | _# <i>11</i> / _                      | -             |  |
| I , -        |             | ١,          |            |              | 6.0                                    |                                 |                                          |                                       | -             |  |
| 6 _          |             | 2.4         | ľ          |              |                                        |                                 |                                          | _                                     | -             |  |
| 7            | 5.2         | • `         |            |              |                                        |                                 |                                          |                                       | -             |  |
|              |             |             |            |              |                                        |                                 |                                          |                                       |               |  |
| 8 - 8.0      |             |             |            |              | 0.0                                    |                                 |                                          |                                       | -             |  |
| ° -   °      |             |             |            | -            | <del> </del>                           | ł                               |                                          |                                       | -             |  |
| ,            |             |             |            |              |                                        |                                 |                                          |                                       | -             |  |
| 1-           | . ~         | . 1         |            |              |                                        |                                 |                                          | _                                     | $\dashv$      |  |
| 10           | 5 1         | 2.7         |            |              |                                        |                                 |                                          |                                       | -             |  |
| '`-          |             |             |            |              |                                        |                                 |                                          | _                                     | $\dashv$      |  |
|              | l           | L           | <u> </u>   | L            |                                        | I                               |                                          |                                       |               |  |



PROJECT: SO NO.:

Bishop Tube (4-1-154) 104339

SAMPLE TYPE S = Split Spoon A = Auger

T = Shelby Tube W = WashR = Air Rotary C = Core

BORING NO.:

DEFINITIONS SPT = Standard Penetration Test (ASTM D1586)

LDA-05

PID = Photo Ionization Detector Measurement

MSL = Mean Sea Level

| R = Air Rotary C = Core              |                                        |         |                                        |       |              | MSL = Mean Sea Level                                                  |           |  |  |
|--------------------------------------|----------------------------------------|---------|----------------------------------------|-------|--------------|-----------------------------------------------------------------------|-----------|--|--|
| D = Denison P = Piston N = No Sample |                                        |         |                                        |       |              | ps/bg = point source/background                                       |           |  |  |
| Donali (Da)                          | Sample                                 | Sample  | an-                                    | Lab . | PID          |                                                                       | Elevation |  |  |
| Depth (Ft.)                          | Type &                                 | Rec.    | SPT                                    | ID    | (ppm)        | Visual Description                                                    | (Ft. MSL) |  |  |
| 11                                   | No.                                    | (Ft.,%) |                                        |       | <b></b>      |                                                                       |           |  |  |
| 11 -                                 |                                        |         |                                        |       |              | Continued from Sheet 1                                                |           |  |  |
| 12 - 12,0                            |                                        |         |                                        | -     |              | 11.0 grades into silty by five -<br>soul of clay of rock precess      |           |  |  |
| 12                                   | · <del></del>                          |         |                                        |       | <del> </del> | Si lali ti cek piaces -                                               |           |  |  |
| 13                                   |                                        |         |                                        |       |              | South of aska sull brown                                              |           |  |  |
| 13                                   |                                        |         |                                        |       |              | mais de motingre and                                                  |           |  |  |
| 14                                   |                                        |         |                                        |       |              |                                                                       |           |  |  |
| '-                                   | .(                                     | 3.1     |                                        |       | 0.0          | met 30ne 14.3-14.5'                                                   | 1         |  |  |
| 15                                   | 5,4                                    |         |                                        |       |              | <sup>:                                   </sup>                       | l ·       |  |  |
|                                      |                                        |         |                                        |       | '            |                                                                       | {         |  |  |
| 16_160                               |                                        |         |                                        |       |              | <u>-</u>                                                              | 1 1       |  |  |
| "-                                   | ************************************** |         |                                        |       | <b></b>      | Appears wet @ 16.7'                                                   | 1         |  |  |
| 17                                   |                                        |         |                                        |       |              | Appears delle 1011                                                    | <b>!</b>  |  |  |
| ''                                   |                                        |         |                                        |       |              | gilty, my fine sand w/ rock pieces<br>dk brown to gray, wit, colesive | 1         |  |  |
| 18                                   |                                        | l .     |                                        |       | 0.0          | I'm brown to gray, wet, cohesive, -                                   | 1         |  |  |
| ~~                                   | 5.5                                    | 4.0     |                                        |       | 9.0          |                                                                       | 1         |  |  |
| 19                                   | 51                                     |         |                                        |       |              | -                                                                     | 1         |  |  |
|                                      |                                        |         |                                        |       |              | 19,2                                                                  | 1         |  |  |
| 20 70                                |                                        |         |                                        |       |              | grade into decomposed bedrock -                                       | 1         |  |  |
|                                      |                                        |         | ··· ·································· |       |              | grads into de composed bedrock -<br>settor of boring @ 20.0           | † · ·     |  |  |
| 21                                   |                                        |         |                                        |       |              | 1 200 2 00 1 2 C 2.0                                                  | 1         |  |  |
|                                      |                                        |         |                                        |       | ŀ            | _                                                                     | 1         |  |  |
| 22                                   |                                        |         |                                        |       |              | -                                                                     | 1         |  |  |
|                                      |                                        |         |                                        |       |              | <del></del>                                                           | 1         |  |  |
| 23 _                                 |                                        |         |                                        |       |              | <del>-</del>                                                          | 1         |  |  |
|                                      |                                        |         |                                        |       |              | <u></u>                                                               | 1         |  |  |
| 24                                   |                                        |         |                                        |       |              | ·                                                                     | 1         |  |  |
|                                      |                                        |         |                                        |       |              |                                                                       |           |  |  |
| 25                                   |                                        |         |                                        |       |              |                                                                       | ]         |  |  |
|                                      |                                        |         |                                        |       |              |                                                                       |           |  |  |
| 26                                   |                                        | '       |                                        |       |              |                                                                       | ]         |  |  |
|                                      |                                        |         |                                        |       |              |                                                                       | ]         |  |  |
| 27                                   |                                        |         |                                        |       |              |                                                                       | ]         |  |  |
|                                      |                                        |         |                                        |       |              |                                                                       | ]         |  |  |
| 28                                   |                                        |         |                                        |       |              | · _                                                                   |           |  |  |
|                                      |                                        |         |                                        |       |              |                                                                       | 1         |  |  |
| 29                                   |                                        |         |                                        |       |              |                                                                       |           |  |  |
|                                      |                                        |         |                                        |       |              |                                                                       |           |  |  |
| 30                                   |                                        |         |                                        |       |              | _                                                                     |           |  |  |
|                                      |                                        |         |                                        |       | L            |                                                                       |           |  |  |

DRILLING CO.:

AllProbe

DRILLER:

Greg Baker

BAKER REP.:

**Brian Steffes** 

BORING NO.:

LDA-05

#### TEST BORING RECORD

| PROJECT:    | Bishop It     | ibe (4-1-1 | 154)             |                                       |          |                                 |                                       |                    |           |  |
|-------------|---------------|------------|------------------|---------------------------------------|----------|---------------------------------|---------------------------------------|--------------------|-----------|--|
| SO NO.:     | 104339        |            |                  |                                       |          |                                 | BORING NO.:                           | LDA-06             |           |  |
| COORDINAT   | EAST:         |            |                  |                                       |          | NORTH:                          | _                                     |                    |           |  |
| ELEVATION:  | SURFAC        | E:         |                  |                                       |          |                                 |                                       |                    |           |  |
| Rig: Powe   | rprobe 96     | 30         |                  | · · · · · · · · · · · · · · · · · · · |          |                                 |                                       |                    | Depth to  |  |
|             | MC            | Casing     | Augers           | Co                                    | re       | Date                            | Progress                              | Weather            | Water     |  |
|             | Sampler       |            | ~                | Bar                                   | rel      |                                 | (Ft.)                                 |                    | (Ft.)     |  |
| Size (ID)   | 1-5/8" I.D.   |            |                  | •                                     |          | 6/4/07                          | 20.0                                  | ram 70"            | 14.5      |  |
| Length      | 4'            |            |                  |                                       |          | , ,                             |                                       | humid              | 1         |  |
| Туре        | · .           |            |                  |                                       |          |                                 |                                       |                    |           |  |
| Hammer Wt.  |               |            |                  |                                       |          |                                 |                                       |                    |           |  |
| Fall        |               |            |                  |                                       |          |                                 |                                       |                    |           |  |
| Remarks:    | BKG - Ba      | ckground   | D.3              | ٠.٠٧                                  | pany     |                                 |                                       |                    |           |  |
|             | SAN           | IPLE TY    | /PE              |                                       |          | 1                               | DEF                                   | INITIONS           | ,         |  |
|             | S = Split     |            |                  |                                       |          | SPT = St                        |                                       | n Test (ASTM D158  | 6)        |  |
|             | T = Shelb     |            |                  |                                       |          |                                 |                                       | tector Measurement | ٠,        |  |
|             | R = Air F     |            | C = Core         |                                       |          |                                 | fean Sea Level                        |                    |           |  |
| · ·         |               |            |                  |                                       |          | BG/PS = Background/Point Source |                                       |                    |           |  |
|             | N =           | No Sam     | ple              |                                       |          | ppm = parts per million         |                                       |                    |           |  |
|             | Sample        | Sample     |                  | Lab                                   | PID      | <u> </u>                        |                                       |                    | Elevation |  |
| Depth (Ft.) | Type &        | Rec.       | SPT              | ID                                    | (ppm)    |                                 | Visual Desc                           | cription           | (Ft. MSL) |  |
|             | No.           | (Ft.,%)    |                  |                                       |          |                                 | · · · · · · · · · · · · · · · · · · · | -                  |           |  |
|             |               |            |                  |                                       |          | conou                           | .Д                                    | I consult horse    |           |  |
| 1 ,         |               |            |                  | 1                                     |          | 44                              | varied 1.3 w                          | Consuct viores     |           |  |
| -           |               | ia         |                  | l                                     |          | 1 40                            | ا ن.                                  |                    |           |  |
| 2           | 1,            | 2.6        |                  | 1                                     |          |                                 |                                       |                    | _         |  |
|             | 5-1           | _          |                  | l                                     | 0,0      | 51 144                          | clay w/ SAM                           | + rock piers       | '⅃ .      |  |
| 3 _         |               |            |                  |                                       |          | 6.000                           | , motst.                              | -£[]]              | _         |  |
| 4 - 40      |               |            |                  |                                       |          |                                 |                                       |                    | 4         |  |
| 4 - 4,-     |               |            |                  |                                       |          | ł                               |                                       | -                  | $\dashv$  |  |
| 5           |               |            |                  | l                                     |          |                                 |                                       |                    | $\dashv$  |  |
| ~~          |               | ار-        | 28-34<br>A-06-00 | D VOA                                 | Į        |                                 |                                       | -                  | $\dashv$  |  |
| 6 -         |               | احت        | 5 0 V            | آم ر <u>.</u>                         | 71       |                                 |                                       |                    | -         |  |
| 6 _         | ٦             | 2 12 1-0   | 4-00. W          | 160 P.                                | 0.0      |                                 |                                       | -                  |           |  |
| 7 1         | 5.            | 1.         |                  |                                       |          |                                 |                                       |                    | -         |  |
|             |               |            |                  |                                       |          |                                 |                                       | -                  |           |  |
| 8 - 8.0     |               |            |                  |                                       |          |                                 |                                       |                    |           |  |
|             | <del></del>   |            |                  |                                       |          | 1                               |                                       | •                  | -         |  |
| 9 _         |               |            |                  |                                       |          |                                 |                                       |                    |           |  |
|             | <b>ن</b> -ک   | 2.6        |                  |                                       |          |                                 |                                       | -                  |           |  |
| 10          | ָר ר <u>י</u> | ľ          |                  |                                       |          |                                 |                                       |                    |           |  |
|             |               |            |                  |                                       | <u> </u> |                                 |                                       |                    |           |  |

DRILLING CO.: AllProbe
DRILLER: Greg Baker

BORING NO.: LPA-06 SHEET 1 OF Z-



29

30

#### TEST BORING RECORD

PROJECT: Bishop Tube (4-1-154) SO NO.: 104339 BORING NO.: LDA-06 SAMPLE TYPE DEFINITIONS S = Split Spoon A = AugerSPT = Standard Penetration Test (ASTM D1586) T = Shelby Tube W = Wash PID = Photo Ionization Detector Measurement R = Air Rotary C = Core MSL = Mean Sea Level D = Denison P = Piston N = No Sampleps/bg = point source/background Sample Sample Lab PID Elevation Depth (Ft.) Type & SPT (Ft. MSL) Rec.  $\mathbf{ID}$ (ppm) Visual Description (Ft.,%) No. 11 Continued from Sheet grades into silty five such w/ rock pieces, less clay w/ depthy, brown moist
-decomposed rock ]1,0 12 13 3.0 14 15 /A<sub>D</sub> 16 wet @ 16,5' 17 lost some somple upon retrieval 2.0 18 19 20.0 20 Bottom of hole 20.0 LOA-06-GW 21 22 23 24 25 26 27 28

| DRILLING CO.: |            | BAKER REP.: | Brian Steffes |              |
|---------------|------------|-------------|---------------|--------------|
| DRILLER:      | Greg Baker | BORING NO.: | LDA-06        | SHEET 2 OF 2 |

#### TEST BORING RECORD

| PROJECT:                      | Bishop Tu   | ibe (4-1-1 | 54)             |              |          |                                 |                                 |                                               |           |  |
|-------------------------------|-------------|------------|-----------------|--------------|----------|---------------------------------|---------------------------------|-----------------------------------------------|-----------|--|
| SO NO.:                       | 104339      |            |                 |              |          |                                 | BORING NO.:                     | DDP-01                                        |           |  |
| COORDINAT                     | EAST:       |            |                 |              |          | NORTH:                          |                                 |                                               |           |  |
| ELEVATION: SURFACE:           |             |            |                 |              |          |                                 |                                 |                                               |           |  |
| Rig: Powerprobe 9630 Depth to |             |            |                 |              |          |                                 |                                 |                                               |           |  |
|                               | MC          | Casing     | Augers          | Co           | re       | Date                            | Progress                        | Weather                                       | Water     |  |
|                               | Sampler     |            |                 | Bar          |          |                                 | (Ft.)                           |                                               | (Ft.)     |  |
| Size (ID)                     | 1-5/8" I.D. |            |                 |              |          | 6/5/07                          | 9.4                             | 75° hund                                      | 3.3       |  |
| Length                        | 4'          |            |                 |              |          |                                 |                                 |                                               |           |  |
| Type                          |             |            |                 |              |          |                                 |                                 |                                               |           |  |
| Hammer Wt.                    |             |            |                 |              |          |                                 |                                 |                                               |           |  |
| Fall                          | DWG 25      |            |                 |              |          | <u> </u>                        |                                 | Minimal for                                   |           |  |
| Remarks:                      | BKG - Ba    |            |                 | (P)          | 200      | tern qua                        | mulia (pipe?)                   | 1. 1. 2. 1. 1. 1.                             |           |  |
|                               |             | APLE T     | 5-2.9 p         | <del> </del> | γ.       | D EVIN                          | AIC due to No                   | MAN MAN AND AND AND AND AND AND AND AND AND A |           |  |
|                               | S = Split   |            |                 |              |          | 77 = T42                        | <u>DEF</u><br>andard Penetratio | n Test (ASTM D1586                            | ,         |  |
|                               | T = Shelb   |            |                 |              |          |                                 |                                 | tector Measurement                            | "         |  |
| 1                             | R = Air F   |            | C = Core        |              |          |                                 | lean Sea Level                  | locioi mousarement                            |           |  |
|                               | D = Deni    | -          | = Piston        |              |          | BG/PS = Background/Point Source |                                 |                                               |           |  |
|                               | N =         | No Sam     | ple             |              |          | ppm = parts per million         |                                 |                                               |           |  |
|                               | Sample      | _          |                 | Lab          | PID      |                                 |                                 |                                               | Elevation |  |
| Depth (Ft.)                   | Type &      | Rec.       | SPT             | ID           | (ppm)    |                                 | Visual Desc                     | cription                                      | (Ft. MSL) |  |
|                               | No.         | (Ft.,%)    |                 |              |          |                                 |                                 |                                               | <u> </u>  |  |
| 1.1                           |             |            |                 |              |          | 5114                            | to time comy                    | out school pieces,                            | 4 I       |  |
| 1 .                           |             |            |                 |              |          | day                             | & mist, br                      | o~ ^ _                                        | -         |  |
| 2                             |             |            |                 |              | Ι,       | '                               | - alluvi                        | <i>ym</i> ;                                   | - · I     |  |
| <i>"</i>                      | 5-1         | 2,4        |                 |              | 2.1      |                                 |                                 |                                               | 1 1       |  |
| 3 _                           | 2           |            |                 |              |          |                                 |                                 | •                                             | 1         |  |
|                               |             |            |                 |              |          |                                 |                                 |                                               |           |  |
| 4 4.0                         |             |            |                 |              |          |                                 |                                 | -                                             |           |  |
|                               |             |            |                 |              |          |                                 |                                 |                                               | _         |  |
| 5                             |             |            |                 |              |          |                                 |                                 |                                               | -         |  |
| 6                             |             |            | -סכות           | 01-02        | 100      | x'                              |                                 |                                               | 4         |  |
| "-                            |             | ,, a       | DDP-<br>2128-34 | , , ,        | ه ۱      | ľ                               |                                 | _                                             | -l ' l    |  |
| 7 1                           | 5-2         | 4.         | 208 24          | & SUDA       | 28.      |                                 |                                 | -                                             | ┥         |  |
| 8 - 50                        | ĺ           |            | 2,              | 9 MHS        | 1        | 7.5                             |                                 |                                               | 1         |  |
| 8 75                          |             |            |                 |              |          |                                 | de oposed                       | se hat, ex brown                              | -         |  |
|                               |             |            |                 |              |          |                                 | 2 9.2'                          | · · · -                                       | 1         |  |
| 9-9.4                         | 5-3         | 1.0        |                 | l            |          | 21                              | had an bad                      | ـ انهم بابید                                  | ]         |  |
| 1                             |             |            |                 | <del></del>  | <u> </u> | 1-0                             | 4.11. 0                         | 7000 (0°14                                    | ]         |  |
| 10_                           |             |            |                 | ١            |          | 12.00                           | · DOHO- of                      | 20-7 Co 4.4                                   | _         |  |
|                               | L           | <u> </u>   | DOP-01-         | 6W           |          |                                 |                                 |                                               |           |  |
| DRILLING CO.:                 | AllProbe    |            | ,               |              |          |                                 | BAKER REP.:                     | Brian Steffes                                 |           |  |
| DRILLER:                      | Greg Bak    | er         |                 |              |          |                                 | BORING NO.:                     |                                               | ET 1 OF / |  |



## TEST BORING RECORD

| PROJECT:      | Bishop Tu     | ıbe (4-1-1 | .54)     |           |          |           |                   |                                |                |
|---------------|---------------|------------|----------|-----------|----------|-----------|-------------------|--------------------------------|----------------|
| SO NO.:       | 104339        |            |          |           |          |           | BORING NO.:       | VDP-UZ                         |                |
| COORDINAT     |               |            |          |           | •        |           | NORTH:            |                                |                |
| ELEVATION:    | SURFAC        | E:         |          |           | •        |           |                   | •                              |                |
| Rig: Powe     | erprobe 96    | 30         |          |           |          | · · ·     |                   |                                | Depth to       |
| <u> </u>      | MC<br>Sampler | Casing     | Augers   | Co<br>Bar |          | Date      | Progress<br>(Ft.) | Weather                        | Water<br>(Ft.) |
| Size (ID)     | L-5/8" I.D.   |            |          |           |          | 6/5/01    | 8,6               | sun wind                       | 4.6            |
| Length        | 4'            |            |          |           |          | ,,        |                   |                                |                |
| Туре          |               |            |          |           |          |           |                   |                                |                |
| Hammer Wt.    |               |            |          |           |          |           |                   |                                |                |
| Fall          | D7/40 %       |            |          | . 4 1 1 4 |          | ma (4)    |                   | <u> </u>                       |                |
| Remarks:      | BKG - Ba      | ckground   |          | / 0.0 IE  | · u~     | 17        |                   | ,                              | j              |
|               | SAN           | IPLE TY    | /PE      |           |          |           | DER               | INITIONS                       |                |
|               | S = Split     |            |          |           |          | SPT = Sta |                   | n Test (ASTM D1586             | o              |
|               | T = Shelb     |            |          |           |          |           |                   | tector Measurement             | <b>'</b>       |
|               | R = Air F     | lotary     | C = Core |           |          | MSL = M   | lean Sea Level    |                                |                |
|               | D = Denis     | son P      | = Piston |           |          | BG/PS = 1 | Background/Poin   | t Source                       |                |
|               |               | No Sam     | ple      |           |          | ppm = pa  | rts per million   | · ·                            |                |
|               | Sample        | Sample     |          | Lab       | PID      |           |                   |                                | Elevation      |
| Depth (Ft.)   | Type &        | Rec.       | SPT      | ID        | (ppm)    | 1         | Visual Desc       | ription                        | (Ft. MSL)      |
| ļ             | No.           | (Ft.,%)    |          |           | -        |           |                   | Λ-                             |                |
| 1 ,           |               |            |          |           |          | SIH       | and clay w/       | fire sand & -<br>brown, moist- | -l             |
|               |               |            |          |           | 0.0      | sch       | ist pieces,       | brown, moist-                  | -              |
| 2 _           |               |            |          |           |          | MON       | profie -          | • -                            | 1 1            |
| 1             | 5-1           | 3.7        |          |           | ٦        | · ·       | , - YIII          | - NU-                          | 1 1            |
| 3             | ),            | ,          |          |           | 0.2      |           |                   | -                              | 1              |
| ]             |               |            |          |           | 1.3      |           |                   | -                              |                |
| 4 -4.0        |               |            |          |           | 1.5      |           |                   | Priva                          |                |
| l <u>.</u> 4  |               |            |          |           | 0.9      |           |                   |                                | -              |
| 5             |               |            |          |           | ļ ,      |           |                   | -                              |                |
| 6             |               | ا ا        |          |           | 5.0      |           |                   |                                | -l -l          |
| ~—            | 1,2           | 4.0        |          | 1         |          |           |                   | <u>-</u>                       | ┥ ╽            |
| ] 7 7         | 5             | վ.0        |          | ١.        | 4.8      | 7.0'      |                   | •                              | ┪ ┃            |
| 1 - 1         |               | DDP-02     | =07 @ 7  | -8'       | Ι.       |           | Ane sal, de       | 2 composed bedisch             | <b>Վ ∣</b>     |
| 8 3."         |               | 5158.      | 522 SAN  |           | 1.6      | TK,       | fine sandy de     | -cladfum                       | 8,0'           |
| _g.v          | 5.3           | 0          | 52000    | 9         |          | Refus     | ial on beduce     | Le 8,6'                        | ]              |
| 9             |               |            |          |           | <u> </u> | Bo        | Hom of hole       | methelo-1<br>ke 8.6'           | <b>1</b>       |
| 1 4           |               |            |          |           |          |           | 1.02-6w           |                                | _              |
| 10            |               |            |          |           |          | יוסטי     | -02               | _                              | -              |
|               | l             | l          | <u> </u> | L         | <u> </u> |           |                   |                                |                |
| DRILLING CO.: | AllProbe      |            |          |           | _        |           | BAKER REP.:       | Brian Steffes                  |                |
| DRILLER:      | Greg Bak      | er         |          |           |          |           | BORING NO.:       |                                | ET 1 OF 1      |

# Baker

## TEST BORING RECORD

| PROJECT:      | Bishop Tu   | be (4-1-1       | 54)              |        |       |           |                                          |                    |           |
|---------------|-------------|-----------------|------------------|--------|-------|-----------|------------------------------------------|--------------------|-----------|
| SO NO.:       | 104339      |                 |                  |        |       |           | BORING NO.:                              | DDP-03             |           |
| COORDINAT     | EAST:       |                 |                  |        |       |           | NORTH:                                   |                    |           |
| ELEVATION:    | SURFAC      | E:              |                  |        |       |           |                                          |                    |           |
| Rig: Powe     | erprobe 96  | 30              |                  |        |       |           |                                          |                    | Depth to  |
|               | MC          | Casing          | Augers           | Co     | re    | Date      | Progress                                 | Weather            | Water     |
|               | Sampler     | ا               | Ū                | Bar    | rel   |           | (Ft.)                                    | •                  | (Ft.)     |
| Size (ID)     | 1-5/8" I.D. |                 | · .              |        |       | 6/5/07    | 6.8'                                     | sun 80° humid      | NE        |
| Length        | 4'          |                 |                  |        |       |           |                                          |                    |           |
| Туре          |             |                 |                  |        |       |           |                                          |                    |           |
| Hammer Wt.    |             |                 |                  |        |       |           |                                          |                    |           |
| Fall          | DVG B       |                 |                  |        |       |           |                                          | •                  |           |
| Remarks:      | BKG - Ba    | ckground        | Į.               |        |       |           |                                          |                    |           |
| ,             | SAN         | APLE TY         | /PE              | -      |       |           | DEF                                      | INITIONS           |           |
|               | S = Split   |                 |                  |        |       | SPT = Sta |                                          | 1 Test (ASTM D1586 | )         |
|               | T = Shelb   | y Tube V        | V = Wash         |        |       | PID = Ph  | oto Ionization De                        | tector Measurement |           |
|               | R = Air F   |                 |                  |        |       | MSL = M   | lean Sea Level                           |                    |           |
|               | D = Deni    |                 | = Piston         |        |       |           | Background/Poin                          | t Source           |           |
|               |             | No Sam          | ple              |        |       | ppm = pa  | rts per million                          |                    | 1         |
| - 4 C-1       | Sample      | 1               | ana              | Lab    | PID   | }         | 10 15                                    |                    | Elevation |
| Depth (Ft.)   | Type & No.  | Rec.<br>(Ft.,%) | SPT              | ID     | (ppm) | 1         | Visual Desc                              | ription            | (Ft. MSL) |
|               | 140.        | (Ft., 76)       |                  |        |       | 14        | م المام                                  | - d w/ schat       |           |
| 1             |             |                 |                  |        |       | 5)/1      | terminal !                               | and of school -    | ]         |
|               |             |                 |                  |        | 0,0   | pres      |                                          | <u>-</u>           | .         |
| 2             |             | 1.6             |                  |        | ١,,   |           |                                          | _                  | 4 I       |
|               | 5_1         | *               |                  |        | 0.6   |           |                                          | -                  | -l - l    |
| 3 _           | 5 `         |                 |                  |        |       |           |                                          | _                  | -l        |
| 4 - 43        |             |                 |                  |        | 99.1  |           |                                          | •                  | 1         |
|               |             | DN9-0           | 3-06 @<br>2128-3 | 5-6    | 35%   | 1         | of Test                                  |                    | ]         |
| 5             |             | ""              |                  |        |       | ع محصير   | chy, moist<br>report just<br>support bud | _                  | ] ]       |
|               | 5.2         | 1.6             | 2128-2           | 2 5-64 | 2.2   | ا مم      | variation fut                            | 5 souty,           | -         |
| 6 —           | ١,          | Ι'              | ž                | 300    | 1     | de        | bod brogno                               | rock usted _       | -         |
| 7 -64         |             |                 |                  |        |       | L         |                                          |                    | =         |
| \ \ \ \ \ \ \ |             |                 |                  |        |       | nf        | sul @ 6.8'                               | _                  | <b>1</b>  |
| 8 -           |             |                 |                  |        |       |           | 1                                        |                    |           |
|               |             |                 |                  |        | ,     | 1 ~       | الم ستغتر ال                             | to somple -        |           |
| 9 _           |             |                 |                  |        |       |           |                                          | <u></u>            |           |
| I _           |             |                 |                  |        | 1     |           |                                          |                    |           |
| 10            |             |                 |                  |        |       |           |                                          | _                  | -         |
|               | l           |                 |                  |        | .L    | <u> </u>  |                                          |                    |           |
| DRILLING CO.: |             |                 |                  |        |       |           | BAKER REP.:                              | Brian Steffes      |           |
| DRILLER:      | Greg Bak    | er              |                  |        |       |           | BORING NO.:                              | DDP203 SHE         | ET 1 OF   |

# Baker Baker Environmental

## TEST BORING RECORD

| PROJECT:      | Bishop Tu                               | ibe (4-1-1                            | (54)       |           |          |                                       |                 |                      |           |
|---------------|-----------------------------------------|---------------------------------------|------------|-----------|----------|---------------------------------------|-----------------|----------------------|-----------|
| SO NO.:       | 104339                                  | · · · · · · · · · · · · · · · · · · · |            |           |          |                                       | BORING NO.:     | DDP-04               |           |
| COORDINAT     | EAST:                                   |                                       |            |           | •        |                                       | NORTH:          |                      |           |
| ELEVATION:    | SURFAC                                  | E:                                    |            |           |          |                                       |                 |                      |           |
| Rig: Powe     | rprobe 96                               | 30                                    |            |           |          | · · · · · · · · · · · · · · · · · · · |                 |                      | Depth to  |
|               | MC                                      | Casing                                | Augers     | Co        | re       | Date                                  | Progress        | Weather              | Water     |
| `             | Sampler                                 |                                       | ,          | Bar       | rel      |                                       | (Ft.)           |                      | (Ft.)     |
| Size (ID)     | 1-5/8" I.D.                             |                                       |            |           |          | 6507                                  | _ 55            | SUR, WIND, 800 frome | NE        |
| Length        | 4'                                      |                                       |            |           |          | ,,,,,                                 |                 |                      |           |
| Туре          |                                         |                                       |            |           |          |                                       |                 |                      |           |
| Hammer Wt.    |                                         |                                       |            |           |          |                                       |                 |                      |           |
| Fall          | DVC D                                   | -1                                    |            | <u> </u>  |          | <u> </u>                              |                 |                      | L         |
| Remarks:      | BKG - Ba                                | ckground                              | l wes      | t and     | ع ول     | poner                                 | pole            |                      |           |
|               | SAN                                     | APLE T                                |            |           | - 21     |                                       |                 | INITIONS             |           |
|               | S = Split                               | Spoon A                               | = Auger    |           |          | SPT = St                              |                 | n Test (ASTM D1586)  | )         |
| ļ             | T = Shelb                               | •                                     |            |           |          |                                       |                 | tector Measurement   |           |
|               | $\mathbf{R} = \mathbf{Air}  \mathbf{I}$ | •                                     |            |           |          |                                       | Iean Sea Level  | •                    |           |
|               | D = Deni                                |                                       | P = Piston |           |          |                                       | Background/Poin | it Source            |           |
|               |                                         | No Sam                                |            |           | l nrn    | ppm = pa                              | rts per million | •                    | T74 .4    |
| Depth (Ft.)   | Sample<br>Type &                        | Sample<br>Rec.                        | SPT        | Lab<br>ID | PID      |                                       | Visual Desc     | !+!                  | Elevation |
| Deput (Ft.)   |                                         |                                       |            |           | (ppm)    |                                       |                 |                      | (Ft. MSL) |
| 1 .           |                                         |                                       | DDP-04-    | 55 @      | 4.5-5    | 51 th                                 | schist, brown   | and if pieces -      |           |
| 3             | 51                                      | 1.5                                   |            |           | 0.0      |                                       |                 | -<br>-<br>-          |           |
| 5             |                                         | 1.2                                   |            |           | გ. ა     | re                                    | fusal on be     | drock@ 5.5           |           |
| 6 —           |                                         |                                       |            |           |          | 1301                                  | How of Luke     | © 5°.5°              | -         |
| 7 _           |                                         |                                       |            |           |          |                                       |                 | -                    | 1         |
|               |                                         |                                       |            |           | l        |                                       |                 |                      | ]         |
| 8 ——          |                                         |                                       |            | ļ         | <u> </u> | 1                                     |                 |                      |           |
|               |                                         |                                       |            |           | l        |                                       |                 | -                    | 4         |
| 9 —           |                                         |                                       |            |           | l        |                                       |                 | _                    | 4         |
| 10            |                                         |                                       |            |           |          |                                       |                 |                      | - <br>-   |
| DRILLING CO.: | AllProbe                                |                                       |            |           |          | ·                                     | BAKER REP.:     | Brian Steffes        |           |
| DRILLER:      | Greg Bak                                | er                                    |            |           | -        |                                       | BORING NO.:     |                      | ET 1 OF   |

# **Sample Tracking Forms**

| Site | Name |  |
|------|------|--|
| _    |      |  |

DEP or Contractor

Shipping Method: US Cargo

Sampler Collector ID:

Bishop Tube Armstrong/Baker-GTAC

2128

Contractor: Baker

Waybill #

| Well/Loc. # | Matrix | Seq. #   | Date    | Time  | Analysis    | Legal Seal # | Shp. Date | Comments              |
|-------------|--------|----------|---------|-------|-------------|--------------|-----------|-----------------------|
| VSP-01-07   | şcĭ l  | १५०      | 5-24-07 | 1030  | VOAI        | F010362      | 5-24-07   | plus % moisture vial  |
| VSP-01-67   | Stil   | 741      | 5-24-07 |       | SVOAI       | F010358      | 5-24-07   |                       |
| VSP-01-07   | Soil   | 142      | 5-24-07 | (0)6  | Mets 503    | F010360      | 5-24-07   |                       |
| VSP-01-10   |        | 143      | 5-24-07 |       | VoAi        | F010359      | 5-24-07   | Plus To moisture vial |
| USP-01-10   |        | 14#      | 5-24-07 | 1042  | Met 503     | F010361      | 5-14-07   |                       |
| VSP-02-0    |        | 145      |         | 1210  | Vodi        | F010355      |           | + 96 moist.           |
| VSP-04-0    | 3      | 146      |         | 1210  | SVOAL       | F010356      |           |                       |
| VSP-02-0    | 3      | 147      |         | 1210  | 503         | F010357      |           |                       |
| VCP-02-11   |        | 148      |         | 1230  | voti        | F010363      |           | + % moret,            |
| VSP-02-11   |        | 149      |         | 1230  | 54041       | P010364      |           |                       |
| V3P-02-4    |        | 150      |         | 1230  | 503         | P010365      |           |                       |
| VSD-08-0    |        | 150      |         | 1355  | voAr        | FORK         |           |                       |
| V5P-03-03   |        | 152      |         | 1358  | SVOAG       | F010367      |           |                       |
| vsP~3~3     |        | 153      |         | 1355  | 503         | F010368      |           |                       |
| 1803-03     |        | 54       |         | 1355  | WAI         | FU10369      |           |                       |
| USA-03-03   |        | 155      |         | 1355  | 54041       | F010370      |           |                       |
| 17P-03-03   |        | 156      |         | 1355  | <b>5</b> 23 | F0x0371      |           | ·                     |
| VSP03-11    |        | 157      |         | 1515  | VOAL        | F010372      |           |                       |
| 1/5P-13-11  |        | 158      |         | 1515  | SVOAT       | F010373      |           |                       |
| 75P-43-11   |        | 159      |         | 1515  | 565         | F010374      |           |                       |
| 75P-0403    |        | 160      |         | 1545  | WAI         | F00575       |           |                       |
| VSP-04-03   | -₩-    | 162      |         | 1545  | SVOAI       | FO 10376     |           |                       |
| 77 07-03    | _ ,    | <u> </u> | _       | , ,-, |             | F010311      | - N-      |                       |

4:1

#### **BOL -Sample Tracking Form**

Site Name Bi

Bishop Tube

DEP or Contractor

Shipping Method: US Cargo

Sampler Collector ID: Armstrong/Baker-GTAC 2128

Contractor:

Baker

Waybill #

| Weli/Loc. # | Matrix    | Seq. # | Date     | Time | Analysis | Legal Seal # | Shn Date | Comments                              |
|-------------|-----------|--------|----------|------|----------|--------------|----------|---------------------------------------|
| VS0-05-15   |           |        | 5-29-07  |      |          | For0378      | 5-29-07  | , , , , , , , , , , , , , , , , , , , |
| 1/40-05 5   | -         | len    | 5-29-07  |      |          | F40379       | 5-29-07  |                                       |
| 1/50-00 15  |           |        | 5-19-57  | , ,  |          | F010350      | 5-19-07  |                                       |
| 160-15-HW   |           |        | 5-19-07  |      | VOAI     | F010 381     | 5-29-07  |                                       |
| 467-65-6W   |           |        | 5-19-07  |      |          | F010382      | 5-79-07  |                                       |
| VSP-05-6W   |           | : · I  | 5-74-07  |      |          | F010383      | 5-79-07  |                                       |
| WalterstyW  | ,         | , ,    | 4.79.07  |      | ,        | Fur0 364     | 525.07   | . 8 4 /1                              |
| VEN US (W   |           | 170    | 5-25.07  | 2930 | 1700-160 | £610385 -    | 5.29-07  |                                       |
| VSP 02-6W   |           |        | 5-29.47  |      | VOAL     | F010386      | 5-24.07  |                                       |
| VSF 07-6W   |           |        | 5-29-57  |      | SVOAT    | FU10387      | 5-79-07  |                                       |
| 13/207-14W  |           |        | 5-14-07  |      |          | FU10388      | 5-29-01  |                                       |
| 1158 W. GW  |           |        |          |      | 503      |              | 5-29.07  |                                       |
| 19-11-14    |           |        |          |      | Fluede   |              | 5-19-07  | Fluoride                              |
| VSP-06-06   |           |        |          |      | VOAL     |              | 5-14-07  |                                       |
| 199-06-06   |           |        |          |      | SUCAI    | FUN392       |          |                                       |
| V5P-16-06   |           |        | G17-07   | 1345 | 503      | F010393      | 6-19-09  |                                       |
| 157-06-6W   |           | 179    | 5-19-07  | 1400 | V04 1    | F610394      | 5-19-07  |                                       |
| V52-06-6W   | em in The | 180    | 5-701-07 | 1400 | SVOAT    | F010395      | 5-79-07  |                                       |
| 1/57-a-50   | w.toz     | 181    | 5-29-07  | 1400 | SUDAL    | FON 396      | 2.25.03  |                                       |
| VSP-Clo-ten |           |        | 5.79-07  |      | 503      | FU1597       | 5-25-07  | Filteral in fold.                     |
| V-P-06-6m   |           |        | 2-29-07  |      |          | 5 FUIS 398   | 5-29-03  | Fburide                               |
| 1.46 -01-05 | 5         | 185    | 5-17 07  | 1515 | 20041    | F010399      | 5-17-07  |                                       |
| 114 01-05   |           | _      | 5 27     |      | 503      | F012401      | 5-17-07  |                                       |

Page 182

#### **BOL** -Sample Tracking Form

| Site Name | Bishop Tube          |
|-----------|----------------------|
| Sampler   | Armetrong/Raker-GTAC |

DEP or Contractor

Baker

Shipping Method: US Cargo

Collector ID: Anistrong/Baker-G FAC

Contractor:

Waybill #

| Well/Loc. #    | Matrix  | Sea. # | Date   | Time         | Analysis | Legal Seal # | Shn Date   | Comments          |
|----------------|---------|--------|--------|--------------|----------|--------------|------------|-------------------|
| 6A4.02-05      | 5.e 1 m | 187    | Staluz | 0830         | V.U.A.1  | F010402      | 5/30/07    |                   |
| LAC-02-05      |         | 188    |        | 0630         | SVOAI    | F010 443     | -1 3-4 C 1 |                   |
| 11/4-02-05     |         | 159    |        | 0530         | 503      | F010404      |            |                   |
| CAG-07-16      |         | 190    |        | 0900         | VOAL     | " F010405    |            |                   |
| LA 07-16       |         | 1011   |        | 0900         |          | FULUELO      |            |                   |
| 146-0246       |         | 192    |        | 0900         |          | F010407      |            |                   |
| 1.A6-01-6W     |         | 193    |        | 0915         | VOAI     | 1010468      |            |                   |
| 106-67 660     |         |        |        | 0915         | SUDAL    | FOIDHOR      |            |                   |
| 116 17 60      |         | 194    |        | 09,5         | SUDAL    | FOIGHIU      |            |                   |
| Mr. 102-6W     |         | 196    |        | 09.5         | 503      | F-10411      |            | Filtered in field |
| 116-07-60      |         |        |        | 09:5         | Flouride | F010412      |            | fluorida          |
| 16-03-16       | SUN     | 198    |        | 1130         | VOAT     | FUIVHIZ      |            |                   |
| 110-03-16      | Soil    | 199    |        | 1130         |          | \$ 104/4     |            |                   |
| (AK-63-16      |         | 300/   |        | 1130         | 503      | F010415      |            |                   |
| LA6-03-60      | natha   | 201    |        | 1200         | VOAL     | FU10416      |            |                   |
| 116-03-60      |         | 202    |        | 1700         | SWAI     | F010417      |            | \$ FU10418        |
| (16-43-64)     | u.Ton   | 203    |        | 1200         | 503      | PUN119       |            | March of fold     |
| 116-3-6-       | v Alex  | 70N    |        | المن         | Fhe de   | ECIONIS      |            | is the ide        |
| LA6-03-54D     | witz    | 205    |        | <i>(</i> }⊍≎ | LUAT     | F 616421     |            |                   |
| 1.16-03-6WD    | ı       | 106    |        | 1000         | SVOAI    | F0101172     |            | \$ FOIU1123       |
| 1 Age + Sepand |         | 707    |        | 1200         | 503      | FUIU43.4     |            | fillowed in fill  |
| (Ab-us burg    | a Mine  | 7.8    |        | 1700         | FLorde   | F01043E      |            | 1 horacole        |
|                |         |        |        | -            |          |              |            |                   |

1 6

Page 2 of 2

#### **BOL** -Sample Tracking Form

Site Name Sampler Sampler Collector ID: DEP or Contractor Shipping Method: US Cargo

Collector ID: DEP or Contractor Shipping Method: US Cargo

Waybill #

| -           |        |        |          | •    |            |              |           |          |
|-------------|--------|--------|----------|------|------------|--------------|-----------|----------|
| Weli/Loc. # | Matrix | Seq. # | Date     | Time | Analysis   | Legal Seal # | Shp. Date | Comments |
| 6A6-W-21    |        | 209    | 5/30/07  | 1445 | VUAL       | FOW426       | 5/30/17   |          |
| がたったませ      | 51     | 210    | (        | 1445 | SWAI       | F010427      |           |          |
| 1 Al WI-11  | 5.1    | 211    |          | 1445 | 503        | FU10428      |           |          |
| LAC 07-06   | Š      | 7:2    | )        | 1545 | VUNI       | FUUUJ9       |           |          |
| iAL is do   | Seil   | 2+3    |          | 1545 | SVOAL      | FUID 601     |           |          |
| 2 Ac -15 06 | No. 1  | 214    |          | 1545 | 503        | Fullo2       | 7.        |          |
| IAL-15-12   |        | 7:5    |          | 1600 | VOAT       | FULLOT       | /         |          |
| 144-06-12   |        | 216    |          | 1600 | SVUA!      | 1010604      |           |          |
| LA6-06-12   | South  | 217    | <b>V</b> | 1600 | <u>503</u> | FOIDEUS      | 1         |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            | _            |           |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            | ·            |           |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            |              |           |          |
|             |        |        |          |      |            |              |           |          |

Site Name Bishop Tube DEP or Contractor Shipping Method: US Cargo

Collector ID: 2128 Contractor: Baker Waybill #

| Well/Loc. #   | Matrix                | Seq. # | Date      | Time  | Analysis  | Legal Seal #         | Shp. Date | Comments            |
|---------------|-----------------------|--------|-----------|-------|-----------|----------------------|-----------|---------------------|
| 101 - 01 - Of | c!                    | 718    | 5/3/107 6 | 285   | VANT F    | 00000 3              | 13/167    |                     |
| 10.01-11      | < 1                   | 7.9    |           | 0815  | SVCA F    | UN607                | / /       |                     |
| 1st words     | < t                   | 220    |           | 1215  | 503 E     | U10608               |           |                     |
| 16-10-16      | in t                  | 771    |           | 0(45  | MAL. F    | DIU 609              |           |                     |
| 107           |                       | 771    |           | 2:045 | < voli F  | 01060                |           |                     |
| An Beat       | 5                     | 73     |           | 0845  | 5.3 F     | 210 611              |           |                     |
| A1-18-08      | 1 103                 | 774    |           | 7950  | LISAT.    | FON GZ               |           |                     |
| 11.05-08      |                       | 275    |           | 2950  | SpeciAl : | 1010G3               |           |                     |
| 246-5- N      | 4.1                   | 776    |           | 0950  | (U3 /     | FU1064               |           |                     |
| Almita Car    | ry try                | 27     |           | 1015  | WALL      | 1065                 |           |                     |
| M. ChiGW      |                       | 724    |           |       |           | 010616               | 4         | FC10617             |
| A 67-60       | и <del>. 1</del> .    | 213    |           | 1015  | 500 F     | 11.618               |           | Patton and in Party |
| 4: 5, 00      | 10.5 <del>4.5</del> % | 230)   |           | 45    |           | C10 49               |           | Fluoride            |
| A6-19-68      |                       | 251    |           | 1115  | VOAL      | FUID (70             |           | <u> </u>            |
| A6.09.58      | <u> </u>              | 232    |           | 115   |           | 010631               |           |                     |
| A1: 19:00     | Comment               | 733    |           | 115   |           | SIN 63.2             |           |                     |
| DA -90316     |                       | 234    |           |       |           |                      | ميتور     |                     |
| 11/1 - 103 H  | 50                    | 735    | -         | 415   |           |                      | -         | ES                  |
| DA-16, Cul    | _                     | 35     |           |       |           | 010624               |           |                     |
| DA WYN        |                       | 936    |           |       |           | UN 676               | · .       |                     |
| 01-01-6W      | they got the said     | 237    |           | 1530  | 4041 F    | \$106 <del>4.7</del> |           |                     |
| 100           |                       |        |           |       |           |                      |           |                     |
| ****          |                       |        |           |       |           |                      |           |                     |

| Site Name     | Bishop Tube                  | DEP or Contractor               | Shipping Method: US Cargo from CCHD |
|---------------|------------------------------|---------------------------------|-------------------------------------|
| Sampler       | B. Steffas for D. Armstrong2 |                                 |                                     |
| Collector ID: |                              | Contractor: Baker Environmental | Waybill #                           |

| Well/Loc. #                             | Matrix           | Seq. #  | Date     | Time  | Analysis | Legal Seal # | Shp. Date | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|------------------|---------|----------|-------|----------|--------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | 44               | 736     | 4/1/02   | ONOU  | VOA      | F010678      | (1/107    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | * *              | 77      | $C_{ij}$ | 10:00 | 1041     | 1.0609       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                  | 34      | (        | 1150  | POAT     | Foloso       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F 116 to                                | ·                | 741     |          | 1730  | VOAL     | F010 (31     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                       | ~#.j             | 2.42    |          | 1500  | voA1     | FUNCO2       |           | Salmont strong strongs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | - 1              | ાનું કુ |          | 1530  | SMIA     | 6003         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | , ,              | 344     |          | 0.30  |          | FUE (34      |           | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |
| 8. M.W                                  | 29003 <b>T</b> . | 245"    |          | 1400  |          | F010 035     | 1 -1 -    | 2 FUI0636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14. <u>14. †</u>                        | in .             | 2016    | ¥        | 1400  | 502      | (www.36      | · V       | N T E CIERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         |                  |         |          |       |          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                  |         |          |       |          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                  |         |          |       |          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                  |         |          |       |          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                  |         |          |       | ·        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                  |         |          |       |          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                  |         |          | -     |          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                  |         | _        |       |          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                  | _       |          | -     |          |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                  |         |          |       |          | <u> </u>     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

.

Prope 12 3

| Site | Name |
|------|------|
| Sam  | pler |

**Bishop Tube** 

B. Steffas for D. Armstrong2

DEP or Contractor

Shipping Method: US Cargo from CCHD

Collector ID:

Contractor: Baker Environmental

Waybill #

| Well/Loc.#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Matrix               | Seg. #             | Date . | Time  | Analysis       | Legal Seal #   | Shp. Date | Comments         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------|-------|----------------|----------------|-----------|------------------|
| MATTER OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500                  | 79                 | 15/0   | C4/00 | VOAT           | F010638        |           |                  |
| 1004 OF OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * 70° [              | 348                |        | 0000  | SUNA           | F010659        |           |                  |
| 1000 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . Cu 1               | 249                |        | 0700  | 503            | F00646         | )         |                  |
| 5-1-1 1.1-6142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | La tallisa           | 250                |        | 0930  | TGA !          | 101064         |           |                  |
| 101 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | ` ~                |        | 27930 | SUGAT          | FU10642        |           | \$ t010643       |
| Was Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 232                |        | 0930  | 302            | FOIDLY         | Ч         | Silter In Fished |
| 114. Of 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | עני יי             | ,      | 0934  | 001            | FU10649        | 5         | Fluoride         |
| <i>™° ≈) 37</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7000                 | 354                |        | 1000  | VOA            | +010696        |           | w.c. h.          |
| Dar Cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~,e~                 | ~                  |        | 1000  | SVOA           | 100046         | 3         |                  |
| 94 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C7 15                | 356                |        | 7000  | 503            | F010647        |           |                  |
| 201 102 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | 257                |        | 1015  | VOAI           | foruce         |           |                  |
| 1867 - Can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Service Constitution | 378                |        | 1015  | >1CA           | F010650        |           | + F01065/        |
| Di Ci Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jr. s. Kin           | 221                |        | 1015  | <i>ડ</i> ુ     | 100052         |           | Eithord in field |
| THE STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | े ६०               |        | 1612  | 100            | FULUS 3        |           | Fluride          |
| 2000 V3-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 311                |        | 1045  | 1041           | 101065 9       |           |                  |
| Miranot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 362                |        | 1095  | SVOAL          | FUIDES         |           |                  |
| 12 Brook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 3(3                |        | 7.542 | 505            | 1010656        |           |                  |
| Dial 11 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>,</del>         | <del>-/1</del> -11 |        |       | - 100 At       | FU1065         | _         |                  |
| With the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of t | 6.50                 | 713                |        | 1100  | 54441          | <i>1</i> 90.58 |           | 1/00659          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |        | 1100  | <del>50%</del> | Janteo         |           | titaid in tital  |
| DA 01-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < !                  | 204                |        | 1/15  | VOAT           | FULL (57       |           | ( Och te         |
| DDV (41 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30                   | 265                |        | 1115  | 30061          | 10058          | ,         |                  |
| Mi-un-us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.1                 | 366                |        | 145   | 5-3            | F-12459        | •         |                  |

Pog 202

Site Name Bishop Tube DEP or Contractor Shipping Method: US Cargo from CCHD

Sampler B. Steffas for D. Armstrong2

Collector ID: Contractor: Baker Environmental Waybill #

| <u>·</u>    |              |        |        |        |          |              |           | <del></del>  |
|-------------|--------------|--------|--------|--------|----------|--------------|-----------|--------------|
| Well/Loc. # |              | Seq. # | Date   | Time   | Analysis | Legal Seal # | Shp. Date | Comments     |
| 上版 10-05    | 540          | 267    | 1/5/47 |        |          | Fanul        | 0 (15)    | 7            |
| A 45 5 - 09 | 50.f         | 368    |        | 12 300 | SWAI     | FONUGE       |           |              |
| LAND-US     | Son          | 719    | 7      | 17.30  | 503      | FUNGED       | *         | :            |
| 1. OF 10 M. | 10 g - 80 mg | 774    | Y      | 133    | VOA      | FUILLES      | 3 1       |              |
| 24.01       | to att.      | 3-11   | $\neg$ | 1400   | ) VUA    | FU1066       | 4         |              |
| 84. J.      | L - 2.       | 373    | 1      | 1400   | SVOA     | 1 101066     | 5         | + F010666    |
| ्रहेर-दा    | L.F.         | 373    |        | 11/00  |          | 401066       |           | NOT FICTORED |
| 30 41       | £r i €ių     | 374    | V      | 140    | 100      | F01066       | 8 V       | Flooride     |
|             |              |        |        |        |          |              |           |              |
|             |              |        |        |        |          |              |           |              |
|             |              |        |        |        |          | •            |           |              |
|             |              |        |        |        |          |              |           |              |
|             |              |        |        |        |          |              |           |              |
|             |              |        |        |        |          |              |           |              |
|             |              |        |        |        |          |              |           |              |
| _ : .       |              |        |        |        |          |              |           |              |
|             |              |        |        |        |          |              |           |              |
|             |              |        |        |        |          |              |           |              |
|             |              |        |        |        |          |              |           |              |
|             |              |        |        |        |          |              |           |              |

1 42.