Earthres Group, Inc. toll free 800-264-4553

www.earthres.com

HEADQUARTERS / PHILADELPHIA REGION

P. O. Box 468, Pipersville, PA 18947 phone 215-766-1211

APPALACHIAN REGIONAL OFFICE

P. O. Box 794, Morgantown, WV 26505 phone 304-212-6866

January 19, 2023

Michael Kutney, P.G.
Permits Chief
PA Department of Environmental Protection
Pottsville District Mining Office
5 West Laurel Boulevard
Pottsville, PA 17901-2454

Re: NPDES Permit Modification Application (Permit No. PA0594121)

Heidelberg Materials Northeast LLC

Rock Hill Quarry Operation – SMP No. 7974SM1

East Rockhill Township, Bucks County EARTHRES Project No. 061003.052

Dear Mr. Kutney:

On behalf of Heidelberg Materials Northeast LLC (Heidelberg), Earthres Group, Inc. (EARTHRES) is hereby submitting one (1) original and two (2) copies of the NPDES Permit Modification and Renewal Application for the Rock Hill Quarry Operation (SMP No. 7974SM1). As of January 1, 2023 Hanson Aggregates Pennsylvania LLC changed its name to Heidelberg Materials Northeast LLC. The Permit Modification proposes to replace the existing NPDES Discharge Point 001 with three (3) individual discharge points as well as increasing the discharge rate to accommodate the future dewatering of the currently filled quarry pit. No modifications and/or upgrades to existing Site and downstream features are proposed with the modification and consequently, the proposed discharge rate was determined based on the calculated limits of the existing conveyance system.

Consistent with our conversations with Joseph S. Blyler (Reviewing Engineer for most recent NPDES Permit approval) and Richard Tallman, this permit modification seeks to establish monitoring for the Clarifying Pond discharge, which will convey the pumped quarry pit discharge, as well as the stormwater basin discharges from Basin No. 1 and No. 2. This modification will provide monitoring of the Rock Hill Quarry (Site) discharges prior to their confluence with existing upstream flows along the unnamed tributary.

In addition, this Application contains a supplemental a Groundwater Pumping Evaluation Addendum that addresses a technical review of the groundwater model prepared on behalf of the Perkasie Regional Authority. The Addendum also provides an evaluation of quarry pumping impacts as it relates to the Pennsylvania Department of Environmental Protection's (PADEP) ongoing cleanup at the Ridge Run PFAS HSCA Site.

In support of the above mentioned permit modification, please find enclosed three (3) copies of the supplemental documents including the following:

- Application for Individual NPDES Permit Modification & Renewal Associated with Mining Activities;
- Attachment A-8: Public Notice;
- Attachment A-13: Map of Area;
- Attachment C-21: NPDES Discharge Point Modification Report;
 - o Attachment C-21.1: Streamstats Reports;
 - o Attachment C-21.2: Hydraflow Express Output;
 - o Attachment C-21.3: Flow Diagram;
 - o Attachment C-21.4: Site Plan;
- Attachment D-1: Effluent Characterization Summary;
 - o Attachment D-1.1: Analytical Report; and
- Attachment F-7: PPC Notification List.
- Attachment G: Groundwater Pumping Evaluation Addendum

A check in the amount of \$500.00 has been included with this submittal to cover the NPDES renewal application fee.

Should you have any question or need any additional information to complete your review, please contact me at (215) 766-1211.

Sincerely,

Earthres Group, Inc.

Joseph JungTaek Kim, P.E.

Project Manager

Matthew S. Weikel, P.G.

Senior Hydrogeologist/Technical Manager

Town Sweden

Enclosures: As stated

Cc: Andrew Gutshall (Heidelberg Materials)

Application for Individual NPDES Permit Associated with Mining Activities

5600-PM-BMP0032 Rev. 5/2020 Application

pennsylvania
DEPARTMENT OF ENVIRONMENTAL PROTECTION

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF MINING PROGRAMS

OFFICIAL USE ONLY	
D#	
Date Received	

APPLICATION FOR INDIVIDUAL NPDES PERMIT ASSOCIATED WITH MINING ACTIVITIES

	Please answer all questions completely. Refer to the instructions that come with this form.							
	SECTION A	4. G	ENERAL APPLICANT INFORMA	ATION				
1.	Application Type		Renewal Modification		Transfer			
	⊠ Fee included: See https://www.dep.	pa.g	ov/Business/Land/Mining/Bureau	ofDistrictMining	g/Pages/Fees.aspx			
2.	Applicant: Heidelberg Materials Northeast LLC							
4.	Operation Name: Rock Hill Quarry	5. License No: 24143 6. Applicant Email: andrew.gutshall@heidelbergmaterials.com						
7.	Permit/Project Type: (check applicable)							
	☐ Coal ☐ Noncoal		☑ Mining permit (surface or☐ Exploration☐ GP-105 (Bluestone)	underground)				
			Other					
8.	Public notice. (See instructions to determine draft notice is attached. ☐ Yes ☐ No	e if _l	public notice is required.) Public	c notice has be	een submitted for publication.			
9.	Production qualifications (Small business e		• •					
	COAL: Will coal production be at least 100,000			□ No				
10.	NONCOAL: Will production be at least \$100,00 Total Affected Area (Acres): 103.2 Include all associated haul roads. Note: This acreage		,, , <u> </u>	No No	ermit			
11	_							
	Estimated Timeframe: Start (or permit issue		<u> </u>	i (or permit exp	piration) 7/19/2028			
12.	Physical Address of Permit Location (911 co 2055 N Rockhill Road, Sellersville, PA	omp	nanty:					
	County Municip	ality	ı	City	Boro Twp			
	Bucks East Ro	_						
13.	Map View of Area							
	☑ Attach a map with outline of the affected are				tfalls.			
	☐ Map is included as part of mining permit do			<u> </u>	-			
14.	Receiving Stream/Watershed Name: Unnam		•	r Tohickon Cre	ek Watershed			
	Is this stream subject to a TMDL? Yes		No	1				
15.	Chapter 93 Receiving Water Designated Use	e:	TSF, MF	NOTE:	If designated use is 'He			
16.	Existing Stream Use (if different from design been petitioned for redesignation? ☐ Yes	_	d use): EV Has this stream No		complete anti-degradation ment form 5600-PM-BMP000			
17.	During mining, drainage will result in:							
	 ☑ Point source discharge(s) (complete Se ☑ Surface Stream ☐ Municipal or Private Storm Sewer Pro 		·					
	Non-discharge☐ Groundwater – infiltration☐ Containment without discharge (reuse)							
	Other (Including off-site discharges) – Des	cribe	e and attach documentation to sup	pport a legal riç	ght to discharge.			

	SECTION B. EROSION AND SEDIMENTATION (E & S) PLAN					
18. E	& S Plan					
pro to (T	An E & S plan must be included as part of the associated mining permit information or attached to this application. The plan must brovide a brief narrative describing the use of proposed BMPs and their performance to manage E & S for the project. If E & S BMPs to be implemented do not follow the guidelines referenced in the PA Erosion and Sediment Pollution Control Program Manual (TGD # 363-2134-008) or the Engineering Manual for Mining Operations (TGD # 563-0300-101), provide documentation to demonstrate performance equivalent to, or better than, the BMPs in the Manuals.					
Ch	neck one:					
\boxtimes	E & S plan meeting the above criteria is contained item #3 of this application.	within t	he information associated with the mining permit/project listed in			
	E & S information including a complete description of	the imp	plementation of BMPs is included with this NPDES application.			
19. Be	est Management Practices (BMPs) Summary.					
		te Modu	ules of the mining permit/project (coal or noncoal) identified in Item			
	o. 3. ⊠ omplete the following if specific E & S Modules have <u>no</u> t	t hoon o	submitted with an accognited mining normit			
	<u> </u>	<u>i</u> been s	submitted with an associated mining permit.			
Check	all that will be used at this mining site.	10				
	ВМР		ВМР			
	Sediment basins/traps with discharge outlet		Bio-infiltration areas			
	Constructed wetlands		Vegetated swales / Stabilized channels			
	Retention/containment basins		Constructed filters/ filter bags			
	Detention basin/pit sump		Stabilized site entrances			
	Non-discharging sedimentation traps		Wheel washes			
	Sediment fore bay		Limiting disturbed area with concurrent reclamation			
	Infiltration measures		Oil/grit separators			
	Protect Sensitive & Special Value Features		Street sweeping			
	Protect/Conserve/ Enhance Riparian areas		Runoff capture/Reuse			
	Restoration: Buffers/ Landscape/ Floodplain		Temporary sediment controls (silt fence/silt-sok)			
	Top of slope berms		Top of slope diversions			
	Rock inlets for basins		Other			
	Erosion control blankets/textiles		Other			
20. Re	eclamation and BMPs					

Check here if any of the above checked BMPs will be left after final bond release.

If checked, supply details, signed documentation of permission by the landowner and justification in the reclamation plan with the mining permit application. If this information is contained in the mining permit documents, please explain:

SECTION C. OUTFALL INFORMATION	SECTION C.	OUTFALL	INFORMATION
--------------------------------	------------	---------	-------------

This Section is to be completed when discrete outfalls are proposed. Attach additional pages for more than 4 points.

21. Identify each point in the tables below. Each discharge point must be shown and labeled as such on a map submitted with this application or as part of the mining permit/authorization. The labeling of discharge points must correspond with the labels used on the exhibit maps submitted in support of the mining

permit/authorization. The labeling of discharge points must correspond with the labels used on the exhibit maps submitted in support of the mining permit/authorization. Non-discharging sedimentation traps and groundwater infiltration points are not outfalls and should not be included as outfalls but should be listed at the end of this section. Emergency Spillway(s) for ponds associated with non-discharge alternative must be permitted.									
Describe the location and source of each point.									
Discharge Point (e.g. SP 001, SP 002 etc.)	Latitude	e Lo		ongitude Receiving Stream		Longitude		Receiving Stream	Source of Discharge (e.g., sedimentation pond, groundwater sump, etc.)
001	40° 24' 10	.86"	-75° 1	8' 10.82"	Unnamed	Tributary to Tohickon Cree	k Clarification Pond and Pit Sump		
002	40° 24' 17	.67"	-75° 1	8' 15.77"	Unnamed	Tributary to Tohickon Cree	k Sedimentation Pond #1		
003	40° 24' 14	.49"	-75° 1	8' 14.22"	Unnamed	Tributary to Tohickon Cree	k Sedimentation Pond #2		
	0 '	"	0	. "					
			For	the same point	s as above.	describe the flow and treatm	ent for each point.		
				Flow	<u> </u>		on to out point		
Discharge Point (e.g. SP 01, SP 02 etc.)	Average rate (mgd)		(mgd) Design rate		e (mgd)	Frequency (Intermittent (I), Precipitation Dependent (P), Continuous (C)	Treatment		
001	2	2.98		2.98	}	Intermittent	Settlement of Suspended Solids by Detention		
002	I	N/A		N/A		Precipitation	Settlement of Suspended Solids by Detention		
003	ľ	N/A		N/A	<u>.</u>	Precipitation	Settlement of Suspended Solids by Detention		
Design rate is th sedimentation p		ow at the	e Q 7-10 s	tream flow for po	st-mining dis	charges, the maximum hydrau	lic capacity for other treatment facilities or the routed storm flow for		
Latitude/Longitu	de Collection I	Method:	Er	MAP GP	S 🗆 Pr	inted Map ⊠ Other <u>Goog</u>	le Earth		
	ontal reference NAD27 (tope		`		•	ollection method. WGS84 (GEO84) (most	GPS units)		
For non-discharg	jing sediment	tation tr	raps and g	roundwater infi	Itration poin	its, provide the description a	nd location:		
Discharge/Samp	Discharge/Sampling Point: Latitude: Longitu de: Source of Discharge (e.g., sedimentation pond, groundwater sump, etc.):					e (e.g., sedimentation pond, groundwater sump, etc.):			

Depict the structures and corresponding discharge points, average flow rate, and receiving stream(s) in a flow diagram. Include line drawing below or attachment. [40 C.F.R. § 122.21(g)(2)] Please see Attachment C-21.3: Flow Diagram Example: PT. ID Sediment Pond A Avg. Flow Treatment Pond A Avg. Flow PT. ID Treatment Pond B Receiving Stream Sediment Pond B Avg. Stream 22. Evaluation of Thermal Impacts. Describe how thermal impacts were evaluated and, if necessary, how they will be mitigated, in accordance with 25 Pa. Code Chapter 93. Thermal impacts to the Unnamed Tributary to Tohickon Creek are not anticipated. The water discharged at NPDES discharge points are runoff from precipitation at the Site along with any groundwater discharge that may occur as a result of pumping from the mine pit. 23. Solid or liquid wastes not discharged. Will there be sludge or sediment produced from the treatment described above? 🛛 Yes □ No Will there be liquid produced from the treatment described above (not discharged via the outfall)?

Yes

No Describe the material and its ultimate disposal: Pond fines will be used with site overburden for final reclamation.

SECTION D. EFFLUENT CHARACTERIZATION						
Cor	mplete the following subsections fo	r each discharge	outfall listed in Ite	em #21.		
Dis	Discharge Point No(s).: 001					
24.	24. Common parameters/pollutants. Complete the table for each constituent. Indicate 'E' if estimate, 'D' if based on actual data. If needed, attach a separate sheet labeled "Item #24 Common parameters/pollutants". Please include the units of measurement. If you are providing data from one discharge for two or more substantially identical effluents, indicate which outfalls the data represents. [40 CFR 122.21(k)(5)(i) and 40 CFR 122.21(g)(7)(iii)]					
	Constituent Daily Max Daily Average Source of Information					
рН		9.0	N/A	D – See Analytical Results Attachment D-1 (Existing Permit)		
Tota	al Suspended Solids (TSS)	70.0 mg/l	35.0 mg/l	D – See Analytical Results Attachment D-1 (Existing Permit)		
Cor	nductivity			Waiver Requested		
Che	emical Oxygen Demand (COD) ¹			Waiver Requested		
Bio	chemical Oxygen Demand (BOD) ¹			Waiver Requested		
Am	monia (NH3) ¹			Waiver Requested		
Tota	al Organic Carbon (TOC)¹			Waiver Requested		
Flo	w	2.98 MGD	2.98 MGD	See attached NDPES Discharge Modification Report		
Ten	nperature (high)	Varies	Varies	Temperature of the discharge water varies with season		
Ten	nperature (low)	Varies	Varies			
 Waiver option [40 CFR 122.21(k)(5)(i)]: A waiver is requested for the following constituents that are not anticipated to be present in the discharge: □ COD □ BOD □ NH3 □ TOC In addition to the checked constituents above, a waiver for Conductivity is also requested. Please see Attachment D-1: Effluent Characterization Summary for justification. 						
See Attachment D-1: Effluent Characterization Summary. 25. Dioxins. As the applicant, do you have reason to believe that at any time dioxins were made, used, stored or buried on or directly upgradient from the site designated for mining and/or support area? [TCDD, 2,4,5-T, 2,4,5-TP, Erbon, Ronnel, TCP or HCP under 40 CFR 122.21 (g)(7)(viii) and 40 CFR 122.21 (k)(5)(iv)] Yes No If yes, provide information and data characterizing the potential discharge on a separate sheet labeled "Item #25 Dioxins"						
26.	Organic Toxic Pollutants (EPA	Table II) Provide v	waiver justificatio	n or data regarding organic toxic pollutants for the mine site.		
Waiver: This section is not applicable because this operation fulfills one of the following criteria: For coal, this operation produces less than 100,000 tons per year. For noncoal, this operation has gross sales of less than \$100,000 per year (1980 dollars). If a waiver is not applicable, refer to Appendix B: Table II - Organic Toxic Pollutants. List any constituents from that table that are expected to be present in the discharge. See Attachment D-1: Effluent Characterization Summary.						
For all constituents listed above, provide a table of the estimated daily maximum concentration, the estimated daily average concentration and the source of this information on a separate attachment labeled "Item #26 Organic Toxic Pollutants".						

27. Other toxic pollutants. For new mining permits, for each of the following constituents, provide an estimate of the concentration that could reasonably expected to be present in the discharges(s) and the source of this information [40 CFR 122.21 (k)(5)(iii)(A)] (EPA Table III).

For all Coal mining renewals, provide the actual data for concentrations. [40 CFR 122.21 (g)(7)(v)(B)]

For Noncoal renewals, provide data for those you expect to be present. Insert "X" for those not expected to be present [40 CFR 122.21 (g)(7)(vi)(B)]

Please include units of measurement for all concentrations reported.

Constituent	Concentration	Constituent	Concentration
Antimony, Total	X	Nickel, Total	< 0.91 ug/L
Arsenic, Total	< 0.89 ug/L	Selenium, Total	< 0.59 ug/L
Beryllium, Total	X	Silver, Total	X
Cadmium, Total	< 0.071 ug/L	Thallium, Total	X
Chromium, Total	<2.5 ug/L	Zinc, Total	< 6.5 ug/L
Copper, Total	< 2.5 ug/L	Cyanide, Total	X
Lead, Total	< 0.84 ug/L	Phenols, Total	X
Mercury, Total	< 0.043 ug/L		

	onventional Pollutants. For each e discharge. (EPA Table IV)	of the following constituents, c	heck the boxes for those that you
Bromide	☐ Nitrogen, Total Organic	Sulfite	⊠ Iron, Total
☐ Chlorine, Total Residual	☐ Oil and Grease	Surfactants	☐ Magnesium, Total
M	Π	□ A1 · - · ·	

☐ Chlorine, Total Residual	☐ Oil and Grease	Surfactants	☐ Magnesium, Total
□ Color	☐ Phosphorus, Total	☑ Aluminum, Total	☐ Molybdenum, Total
☐ Fecal Coliform	Radioactivity	⊠ Barium, Total	⊠ Manganese, Total
⊠ Fluoride	⊠ Sulfate	⊠ Boron, Total	☐ Tin, Total
☐ Nitrate-Nitrite	Sulfide	☐ Cobalt, Total	⊠ Titanium, Total

For new outfalls, for each constituent checked above (those that you expect to be present) provide the estimated daily maximum concentration, daily average concentration and the source of the information on an attachment. For existing outfalls, report the daily maximum and daily average based on data collected within the previous five years.

See Attachment D-1: Effluent Characterization Summary.

29. Toxic Pollutants and Hazardous Substances (EPA Table V) Refer to Appendix B: Toxic Pollutants and Hazardous Substances. List any constituents from that table that are expected to be present in the discharge.

See Attachment D-1: Effluent Characterization Summary.

For all constituents listed above, provide data for each pollutant expected in the discharge or justification of why any are believed to be not present and the source of this information on a separate attachment labeled "Item #29 Toxic and Hazardous Pollutants".

SECTION D. EFFLUENT CHARACTERIZATION				
Complete the following subsections for e	each discharge	outfall listed in Ite	em #21.	
Discharge Point No(s).: 002				
24. Common parameters/pollutants. Complete the table for each constituent. Indicate 'E' if estimate, 'D' if based on actual data. If needed, attach a separate sheet labeled "Item #24 Common parameters/pollutants". Please include the units of measurement. If you are providing data from one discharge for two or more substantially identical effluents, indicate which outfalls the data represents. [40 CFR 122.21(k)(5)(i) and 40 CFR 122.21(g)(7)(iii)]				
Constituent Daily Max Daily Average Source of Information				
рН	9.0	N/A	D – See Analytical Results Attachment D-1 (Existing Permit)	
Total Suspended Solids (TSS)	70.0 mg/l	35.0 mg/l	D – See Analytical Results Attachment D-1 (Existing Permit)	
Conductivity			Waiver Requested	
Chemical Oxygen Demand (COD) ¹			Waiver Requested	
Biochemical Oxygen Demand (BOD) ¹			Waiver Requested	
Ammonia (NH3) ¹			Waiver Requested	
Total Organic Carbon (TOC) ¹			Waiver Requested	
Flow	N/A	N/A	N/A	
Temperature (high)	Varies	Varies	Temperature of the discharge water varies with season	
Temperature (low)	Varies	Varies		
 Waiver option [40 CFR 122.21(k)(5)(i)]: A waiver is requested for the following constituents that are not anticipated to be present in the discharge: □ COD □ BOD □ NH3 □ TOC In addition to the checked constituents above, a waiver for Conductivity is also requested. Please see Attachment D-1: Effluent Characterization Summary for justification. Provide a justification for this waiver request. 				
See Attachment D-1: Effluent Characterization Summary. 25. Dioxins. As the applicant, do you have reason to believe that at any time dioxins were made, used, stored or buried on or directly upgradient from the site designated for mining and/or support area? [TCDD, 2,4,5-T, 2,4,5-TP, Erbon, Ronnel, TCP or HCP under 40 CFR 122.21 (g)(7)(viii) and 40 CFR 122.21 (k)(5)(iv)] Yes No If yes, provide information and data characterizing the potential discharge on a separate sheet labeled "Item #25 Dioxins"				
26. Organic Toxic Pollutants (EPA Ta	able II) Provide	waiver justificatio	on or data regarding organic toxic pollutants for the mine site.	
Waiver: This section is not applicable because this operation fulfills one of the following criteria: ☐ For coal, this operation produces less than 100,000 tons per year. ☐ For noncoal, this operation has gross sales of less than \$100,000 per year (1980 dollars). If a waiver is not applicable, refer to Appendix B: Table II - Organic Toxic Pollutants. List any constituents from that table that are expected to be present in the discharge. See Attachment D-1: Effluent Characterization Summary.				
For all constituents listed above, provide a table of the estimated daily maximum concentration, the estimated daily average concentration and the source of this information on a separate attachment labeled "Item #26 Organic Toxic Pollutants".				

27. Other toxic pollutants. For new mining permits, for each of the following constituents, provide an estimate of the concentration that could reasonably expected to be present in the discharges(s) and the source of this information [40 CFR 122.21 (k)(5)(iii)(A)] (EPA Table III).

For all Coal mining renewals, provide the actual data for concentrations. [40 CFR 122.21 (g)(7)(v)(B)]

For Noncoal renewals, provide data for those you expect to be present. Insert "X" for those not expected to be present [40 CFR 122.21 (g)(7)(vi)(B)]

Please include units of measurement for all concentrations reported.

Constituent	Concentration	Constituent	Concentration
Antimony, Total	X	Nickel, Total	< 0.91 ug/L
Arsenic, Total	< 0.89 ug/L	Selenium, Total	< 0.59 ug/L
Beryllium, Total	X	Silver, Total	X
Cadmium, Total	< 0.071 ug/L	Thallium, Total	X
Chromium, Total	< 2.5 ug/L	Zinc, Total	13.0 ug/L
Copper, Total	< 2.5 ug/L	Cyanide, Total	X
Lead, Total	< 0.84 ug/L	Phenols, Total	X
Mercury, Total	< 0.043 ug/L		

	onventional Pollutants. For each e discharge. (EPA Table IV)	of the following constituents, cl	heck the boxes for those that you
Bromide	☐ Nitrogen, Total Organic	Sulfite	⊠ Iron, Total
☐ Chlorine, Total Residual	☐ Oil and Grease	Surfactants	☐ Magnesium, Total
⊠ Color	☐ Phosphorus Total	M Aluminum Total	□ Molybdenum Total

Chionne, Total Residual	☐ Oil and Grease		☐ Magnesium, Total
□ Color	☐ Phosphorus, Total		☐ Molybdenum, Total
☐ Fecal Coliform	Radioactivity	⊠ Barium, Total	⊠ Manganese, Total
⊠ Fluoride	Sulfate	⊠ Boron, Total	☐ Tin, Total
☐ Nitrate-Nitrite	Sulfide	☐ Cobalt, Total	⊠ Titanium, Total

For new outfalls, for each constituent checked above (those that you expect to be present) provide the estimated daily maximum concentration, daily average concentration and the source of the information on an attachment. For existing outfalls, report the daily maximum and daily average based on data collected within the previous five years.

See Attachment D-1: Effluent Characterization Summary.

29. Toxic Pollutants and Hazardous Substances (EPA Table V) Refer to Appendix B: Toxic Pollutants and Hazardous Substances. List any constituents from that table that are expected to be present in the discharge.

See Attachment D-1: Effluent Characterization Summary.

For all constituents listed above, provide data for each pollutant expected in the discharge or justification of why any are believed to be not present and the source of this information on a separate attachment labeled "Item #29 Toxic and Hazardous Pollutants".

SECTION D. EFFLUENT CHARACTERIZATION					
Complete the following subsections for					
		- Cotton iisted iii ite	111 #21.		
Discharge Point No(s).: 003					
needed, attach a separate sheet lab you are providing data from one	24. Common parameters/pollutants. Complete the table for each constituent. Indicate 'E' if estimate, 'D' if based on actual data. If needed, attach a separate sheet labeled "Item #24 Common parameters/pollutants". Please include the units of measurement. If you are providing data from one discharge for two or more substantially identical effluents, indicate which outfalls the data represents. [40 CFR 122.21(k)(5)(i) and 40 CFR 122.21(g)(7)(iii)]				
Constituent	Daily Max	Daily Average	Source of Information		
рН	9.0	N/A	D – See Analytical Results Attachment D-1 (Existing Permit)		
Total Suspended Solids (TSS)	70.0 mg/l	35.0 mg/l	D – See Analytical Results Attachment D-1 (Existing Permit)		
Conductivity			Waiver Requested		
Chemical Oxygen Demand (COD) ¹			Waiver Requested		
Biochemical Oxygen Demand (BOD) ¹			Waiver Requested		
Ammonia (NH3) ¹	Ammonia (NH3) ¹ Waiver Requested		Waiver Requested		
Total Organic Carbon (TOC) ¹ Waiver Requested		Waiver Requested			
Flow	N/A	N/A	N/A		
Temperature (high)	Varies	Varies	Temperature of the discharge water varies with season		
Temperature (low) Varies Varies					
 Waiver option [40 CFR 122.21(k)(5)(i)]: A waiver is requested for the following constituents that are not anticipated to be present in the discharge: □ COD □ BOD □ NH3 □ TOC In addition to the checked constituents above, a waiver for Conductivity is also requested. Please see Attachment D-1: Effluent Characterization Summary for justification. Provide a justification for this waiver request. See Attachment D-1: Effluent Characterization Summary. 					
25. Dioxins. As the applicant, do you have reason to believe that at any time dioxins were made, used, stored or buried on or directly upgradient from the site designated for mining and/or support area? [TCDD, 2,4,5-T, 2,4,5-TP, Erbon, Ronnel, TCP or HCP under 40 CFR 122.21 (g)(7)(viii) and 40 CFR 122.21 (k)(5)(iv)] ☐ Yes ☑ No If yes, provide information and data characterizing the potential discharge on a separate sheet labeled "Item #25 Dioxins"					
26. Organic Toxic Pollutants (EPA Table II) Provide waiver justification or data regarding organic toxic pollutants for the mine site.					
Waiver: This section is not applicable because this operation fulfills one of the following criteria: ☐ For coal, this operation produces less than 100,000 tons per year.					
For noncoal, this operation has	•				
expected to be present in the disch		able II - Organic I	oxic Pollutants. List any constituents from that table that are		
See Attachment D-1: Effluent C	haracterizatior	n Summary.			
For all constituents listed above, provide a table of the estimated daily maximum concentration, the estimated daily average concentration and the source of this information on a separate attachment labeled "Item #26 Organic Toxic Pollutants".					

27. Other toxic pollutants. For new mining permits, for each of the following constituents, provide an estimate of the concentration that could reasonably expected to be present in the discharges(s) and the source of this information [40 CFR 122.21 (k)(5)(iii)(A)] (EPA Table III).

For all Coal mining renewals, provide the actual data for concentrations. [40 CFR 122.21 (g)(7)(v)(B)]

For Noncoal renewals, provide data for those you expect to be present. Insert "X" for those not expected to be present [40 CFR 122.21 (g)(7)(vi)(B)]

Please include units of measurement for all concentrations reported.

Constituent	Concentration	Constituent	Concentration
Antimony, Total	X	Nickel, Total	1.5 ug/L
Arsenic, Total	< 0.89 ug/L	Selenium, Total	< 0.59 ug/L
Beryllium, Total	X	Silver, Total	X
Cadmium, Total	< 0.071 ug/L	Thallium, Total	X
Chromium, Total	3.5 ug/L	Zinc, Total	< 6.5 ug/L
Copper, Total	3.7 ug/L	Cyanide, Total	X
Lead, Total	< 0.84 ug/L	Phenols, Total	X
Mercury, Total	< 0.043 ug/L		

28. Conventional and Nonconventional Pollutants. For each of the following constituents, check the boxes for those that you expect to be present in the discharge. (EPA Table IV)				
Bromide	☐ Nitrogen, Total Organic	Sulfite	☑ Iron, Total	
☐ Chlorine, Total Residual	☐ Oil and Grease	Surfactants	☐ Magnesium, Total	
⊠ Color	☐ Phosphorus, Total	⊠ Aluminum, Total	☐ Molybdenum, Total	
☐ Fecal Coliform	Radioactivity	⊠ Barium, Total	⊠ Manganese, Total	
⊠ Fluoride	⊠ Sulfate	⊠ Boron, Total	☐ Tin, Total	
☐ Nitrate-Nitrite	☐ Sulfide	☐ Cobalt. Total	⊠ Titanium. Total	

For new outfalls, for each constituent checked above (those that you expect to be present) provide the estimated daily maximum concentration, daily average concentration and the source of the information on an attachment. For existing outfalls, report the daily maximum and daily average based on data collected within the previous five years.

See Attachment D-1: Effluent Characterization Summary.

29. Toxic Pollutants and Hazardous Substances (EPA Table V) Refer to Appendix B: Toxic Pollutants and Hazardous Substances. List any constituents from that table that are expected to be present in the discharge.

See Attachment D-1: Effluent Characterization Summary.

For all constituents listed above, provide data for each pollutant expected in the discharge or justification of why any are believed to be not present and the source of this information on a separate attachment labeled "Item #29 Toxic and Hazardous Pollutants".

SECTION E. CERTIFICATIONS

The information on the NPDES form must be certified as correct by one of the following, as applicable.

- a) In the case of corporations, by principal executive officer of at least the level of vice president, or his duly authorized representative, if such representative is responsible for the overall operation of the facility from which the discharge described in the NPDES form originates.
- b) In the case of a partnership, by a general partner.
- In the case of a sole proprietorship, by the proprietor.
- In the case of a municipal, state or other public facility, by either a principal executive officer, ranking elected official or other duly authorized employee.

30. Applicant Affidavit

I certify under penalty of law that this application and all related attachments were prepared by me or under my direction or supervision. Based on my own knowledge and on inquiry of the person or persons directly responsible for gathering the information, the information

the NPDES permit, and that the BMPs, E&S Plan, and other that water quality standards and effluent limits are attained. If the associated permit, I am aware that there are significant to	ccurate and complete. I verify that the activity is eligible to participate in plans and controls described are being or will be, implemented to ensure Furthermore, I agree to accept all conditions and limitations imposed by benalties for submitting false information, including the possibility of fine Section 309(c)(4) of the Clean Water Act and, 18 Pa. C.S. §§4903-4904.
Sworn and Subscribed to Before Me This 18th day of January 202 (month) (year)	
Novino & Wolse-	Mark E. Kendrick
Signature of Notary Public	Name (Typed) of Applicant or Responsible Official
Notary Seal Commonwealth of Pennsylvania - Notary Seal DENISE L WELSER - Notary Public Lehigh County My Commission Expires January 24, 2026 Commission Number 1324306	7660 Imperial Way Address of Applicant Allentown, PA 18195 Address of Applicant Vice President Applicant Title and Corporate Seal
31. Preparation of this report (to be completed by the pe	upon who prepared this application)
I do hereby certify to the best of my knowledge, information	and belief that the submitted information is true and correct, represents priate Chapters of the Department's rules and regulations. I am aware
Earthres Group, Inc.	REGISTERED
Company	PROFESSIONAL
6912 Old Easton Road	HING FAER KIMING B
Address	ENGINEER //
Pipersville, PA 18947 (215) 766-121	1 PE088887
City, State, Zip Phone	Rolessiona Seal Cold
Email Address: jkim@earthres.com	WEYLV L

			NPDES No.		
			Permit No.		
SECTION	SECTION F. PREPAREDNESS, PREVENTION AND CONTINGENCY (PPC) PLAN				
		pproved erosion and sedimentation o quest, this PPC plan comprises the St			
Option: If the permittee has a separate, comprehensive PPC plan located on the site, check this box and sign below to confirm that this document is available upon request.					
Signature:	Print Name	:	Date:		
F1. Facility Contact					
This person is the designated con	tact for the mining facility:				
Name: Timothy S. Jacobs		Title: Area Operations Mana	ger		
Address:					
Phone: (24-hr emergency) (215)	388-8835	Email: timothy.jacobs@heide	lbergmaterials.c	<u>om</u>	
F2. PPC Team					
List PPC team members (names corrective actions:	and title) who will undertak	e and oversee the control measure	s in this plan and	make necessary	
1. <u>Timothy S. Jacobs – Opera</u>	tions Manager	2. Mark E. Kendrick – Vic	e President		
3. Andrew J. Gutshall – Envir	onmental Manager	4.			
	Potential Polluta	ant Sources and Control			
F3. Inventory List <u>all chemicals</u> , petroleum products, solvents, paint, acids, water treatment products, fertilizer, antifreeze, ice melt/salt, etc. that are to be used and stored on site. If more space is needed, please submit table on a separate page labeled "F3: Inventory"					
Chemical and trade name	Location	Quantity	Storage Management (letter key) *	Coal sites only AST Inventoried?	
N/A	N/A	N/A	N/A		
* Key to Storage Management: A. Closed, sturdy containers C. Secured Tarps E. Other B. Open-sided covered D. Sheds/buildings/trailers					
F4. History of site					
a. Within 3 years prior to this being a mine site, was this site used for any industrial activity? ☐ Yes ☒ No If yes, what products (such as those listed above) were used, stored and/or disposed of at this site?					
o. Have leaks or spills occurred at this site in the past 3 years? ☐ Yes ☒ No If yes, provide details of the event.					
c. An authorized individual must evaluate the site for nonauthorized discharges such as leaking pipelines, drains, hoses and any other non-stormwater discharges.					
	evaluate the site for nonau	uthorized discharges such as leakin	g pipelines, drains	s, hoses and any	

F5. Potential Pollution Locations Identify locations that have potential for spills or leaks at this	site:				
⊠ Excavation area	☐ Vehicle refueling, maintenance or washing area				
☐ Stockpile area	☑ Equipment storage and maintenance area				
☐ Product storage area	Chemical preparation area				
Haul roads	☐ Treatment system setup				
Other(s) (list):	-				
F6. Pollution Control	ober (alarak arak).				
The operator or designated representative agrees to the follo	- 1				
1. Maintain regular pickup and disposal of waste mate					
2. Undertake daily inspection of site for leaks and spill					
3. Ensure that chemical containers and supplies are p					
4. Maintain equipment so that spills/leaks are avoided					
☐ 6. Take corrective actions to prevent and/or contain le	·				
7. Ensure products are stored in appropriate containe	•				
8. Locate materials storage areas away from vehicle h					
☑ 9. Control garbage onsite to prevent dispersion by wa	ter or wind.				
The above items are included as part of this PPC.					
F7. Emergency Procedures and Training					
The operator or designated representative confirms the follow	ring (check each):				
 In the operator has in place a procedure for stopping, containing and cleaning up spills, leaks or other releases. 					
2. The operator agrees to train all on-site working personnel in the procedures listed in this PPC.					
	3. The operator has a procedure for notifying appropriate facility personnel, emergency response and regulatory agencies (including the District Mining Office) in the event of a spill, leak or release. *				
* Attach this notification list to this document. List is attached	. 🗆				
-1	to be desired to PDO				
	included as part of this PPC.				
	spections				
F8. Inactivity					
a. Will this site be seasonally inactive?] No				
If yes, provide time period of inactivity: <u>Inactivity period may vary with market demand for aggregate product.</u>					
If yes, complete item b.					
	 Please confirm the following by checking the appropriate box(es): ☑ Sites will be secured, and access limited to prevent dumping and vandalism during shutdown. 				
 ☑ Sites will be secured, and access inflited to prevent dumping and varidatism duming shutdown. ☑ Chemicals will be removed from the site during shutdown. 					
☐ Chemicals will be secured in locked structures during shutdown.					
F9. Self-inspection and plan updates	-				
The operator agrees to the following (check the box):					
 Undertake yearly, documented, self-inspections to ensure the PPC is up to date and all BMPs are working. 					
	•				
☑ 3. Update this PPC as necessary and upon renewal or	f the NPDES permit.				
The share 4	The above theme are included to the PDO				
i ne above items are	included as part of this PPC.				

5600-PM-BMP0032 Rev. 5/2020 Application

	Affidavit
supervision in accordance with a system designed to ass submitted. The information submitted is, to the best of m	t and any attachments related to it were prepared under my direction or sure that qualified personnel properly gathered and evaluated the information by knowledge and belief, true, accurate and complete. I am aware that there, including the possibility of fine and imprisonment for knowing violations.
Name: Mark E. Kendrick	Title: Vice President
Signatura: Mh EN/	Date: 1/18/23

Attachment A-8:

Public Notice

Public Notice

Pursuant to the "Noncoal Surface Mining Conservation and Reclamation Act" and the "Clean Streams Law" notice is hereby given that Heidelberg Materials Northeast LLC, 7660 Imperial Way, Allentown, PA 18195, has made an application to the Pennsylvania Department of Environmental Protection (PA DEP) for a National Pollution Discharge Elimination System (NPDES) Individual Permit for the Rock Hill Quarry Operation (SMP No. 7974SM1) located in East Rockhill Township, Bucks County, Pennsylvania. The application seeks to modify the existing NPDES Permit No. PA0594121. The center of the Quarry is located approximately 7.8 inches west and 5.7 inches north from the bottom right-hand corner of the Quakertown, PA U.S.G.S. 7.5-minute Quadrangle.

The receiving stream for the NPDES discharge point is an Unnamed Tributary to Tohickon Creek which is designated as Trout-Stocking (TSF) and Migratory Fishes (MF) in 25 PA Code Chapter 93.

The current NPDES Outfall 001 is located at the northwest corner of the existing SMP boundary. The permit modification seeks to replace the NPDES outfall with three (3) upstream points, which are existing site impoundment outfall locations, and increase the NPDES discharge rate from the existing 0.238 MGD (continuous) to 2.98 MGD (intermittent).

A copy of the application is available for public inspection at the East Rockhill Township Building, 1622 North Ridge Road, Perkasie, PA 18944. Written comments, objections, or a request for public hearing or informal conference may be submitted to the PA DEP, Pottsville District Mining Office, 5 West Laurel Boulevard, Pottsville, PA 17901 by [DATE] and must include the person's name, address, telephone number, and a brief statement as to the nature of the objection(s).

Attachment A-13:

Map View of Area

Attachment C-21:

NPDES Discharge Point Modification Report

NPDES Discharge Point Modification Report

Heidelberg Materials Northeast LLC - Rock Hill Quarry Operation

Heidelberg Materials Northeast LLC (Heidelberg) currently has an existing NPDES Discharge Point 001 (NPDES Permit No. PA0594121) and operates under Surface Mining Permit No. 7974SM1. Heidelberg is proposing to relocate the existing NPDES Discharge Point 001 to the Clarifying Pond Discharge and increase the average and design discharge rate without overloading the existing conveyance system. Concurrently, Heidelberg proposes two (2) additional NPDES discharge points, each from the existing Sediment Ponds (Sediment Pond No. 1 and Sediment Pond No. 2) at Rock Hill Quarry to handle the stormwater runoff from the quarry support areas. The individual points are proposed to isolate the quarry pit discharge pumped through the Clarifying Pond, the stormwater runoff discharge through the Sediment Ponds and the upstream offsite runoff. The isolation of the discharges is proposed to improve monitoring and control of the pumped quarry pit discharge and alleviate impacts on downstream conveyance structures.

In support of the proposed discharge points, the receiving tributary and downstream culverts (Site Culverts & Rich Hill Crossing) were evaluated to assess the resulting impact of the pumped quarry pit discharge in regards to hydraulic capacity. The assessment included a field study and survey of the culvert crossings, conditions and measurement of the mean annual flow passing through the culvert. In addition, the analysis includes an assessment of maximum allowable flow through the existing culvert crossing to determine the proposed NPDES Point 001 discharge rate. The following sections outline the results of that analysis and propose a plan for implementation of the proposed individual discharges.

Site Description

Heidelberg is proposing to replace the existing NPDES discharge point 001 at Rock Hill Quarry with three (3) upstream discharge points (see Attachment C-21.4 Site Plan). The plan does not require any additional construction of erosion and sedimentation controls. All proposed discharge points are existing impoundment discharge points with sufficient downstream controls (Pond Construction As-built Approval received, dated June 28, 2018).

As discussed above, the three (3) proposed discharge points converge prior to passing through the existing NPDES discharge point 001 location. The receiving stream at the discharge points is the Unnamed Tributary to Tohickon Creek/Upper Tohickon Watershed, Chapter 93 designation Trout Stocking, Migratory Fishes. Given the capacity of the receiving tributary and conditions downstream, it is anticipated the Rich Hill culvert crossing will be the limiting downstream conveyance structure. In support of this assumption, field study and survey were conducted to confirm existing culvert conditions and capacity.

Receiving Stream Analysis

EARTHRES completed a field study inclusive of the survey and measurement of the five (5) culvert crossings (see attached Site Plan) downstream of the proposed NPDES discharge point

001 to identify any flow limiting factors which may be at increased risk for flooding as a result of the pumped quarry pit discharge.

The field study indicates that in the immediate vicinity of the proposed discharge points the receiving channel has a stable lining consisting of R-3 and R-4 size riprap. There are four (4) constrictions along the channel prior to the confluence with a large wetland area which is capable of passing larger flood flows. See attached Site Plan and Table 1 below for a summary of the field study results.

Structure	Span (in)*	Length (ft)*
Site Culvert 1	24" RCP	56.7
Site Culvert 2	24" Steel	24.7
Site Culvert 3	24" RCP	39.4
Site Culvert 4	24" Steel	40.8
Rich Hill Crossing Culvert	24" CMP (modeled as 11.5" CMP based on the culvert's approximate available flow area in existing conditions)	24.7

Table 1 Downstream Constrictions

Hydraulic Capacity Assessment

The above measurements and conditions were utilized to assess the hydraulic capacity of the channel for flooding events under existing conditions as well as with the addition of the proposed discharge.

Flood flow data and mean annual flow data were obtained from the USGS web-based program Streamstats to evaluate flow conditions and resultant impact through the downstream constrictions listed above. The Streamstats flow from three (3) watersheds (Upstream Clarifying Pond, Downstream, and Downstream 2) had to be combined to give the totals for the Rich Hill Crossing. Streamstats data is summarized below and can be found in Attachment C-21.1.

	2yr	5yr	10yr	50yr	100yr
Site Culvert 1 Flows (CFS)	30.4	58.4	83.3	154.0	190.0
Site Culvert 2 Flows (CFS)	30.4	58.4	83.3	154.0	190.0
Site Culvert 3 Flows (CFS)	30.4	58.4	83.3	154.0	190.0
Site Culvert 4 Flows (CFS)	30.4	58.4	83.3	154.0	190.0
Rich Hill Crossing Culvert	94.0	180.2	256.4	473.0	584.0
Flows (CFS)					

Table 2 Streamstats Flood Flows

Table 3 Streamstats Mean Annual Flows

	Mean Annual Flow
Site Culvert 1 Flows (CFS)*	0.0885
Site Culvert 2 Flows (CFS)*	0.0885
Site Culvert 3 Flows (CFS)*	0.0885

^{*}Measurements are based on survey information.

Site Culvert 4 Flows (CFS)*	0.0885
Rich Hill Crossing Culvert	0.2773
Flows (CFS)	

^{*}Flow is from Streamstats Upstream Clarifying Pond

The flow and field survey data were used to complete hydraulic calculations for the constrictions downstream of the proposed discharge. Hydraflow Express software was utilized to calculate the maximum allowable flow capacity of the existing culverts. A summary of the calculation output is found below and Hydraflow output is provided in Attachment C-21.2.

Table 4 Hydraflow Output

	Maximum Capacity Flow (cfs)
Site Culvert 1 Flows	31.7
Site Culvert 2 Flows	47.7
Site Culvert 3 Flows	41.8
Site Culvert 4 Flows	54.5
Rich Hill Crossing	4.89
Culvert Flows	4.09

The results summarized on Table 4 indicate that the downstream constrictions at the Rich Hill Crossing, with a maximum allowable flow of 4.89 cfs, will be the limiting factor in the existing conveyance system. Based on the analysis, it is anticipated that the system is currently overloaded during any significant storm event. In order to minimize impacts of the proposed NPDES increase while also maximizing pumping for dewatering of the Pit, Heidelberg proposes to discharge intermittently based on precipitation. Heidelberg is proposing to suspend discharge during any storm event exceeding the 2 year storm. This precaution will minimize impacts to the existing conveyance system to convey flow, by minimizing potential to contribute to additional flooding or channel bottom stability instability.

Considering the above mentioned mean annual flow and assuming no stormwater flow through the system during the pumped quarry pit discharge, the proposed NPDES discharge is calculated to be 4.61 cfs (2.98 MGD). The following Table 5 shows the de minimis impact the proposed pumped quarry discharge will have in comparison to the existing stormwater flows.

Table 5 Proposed Discharge vs Flood Flows Comparison

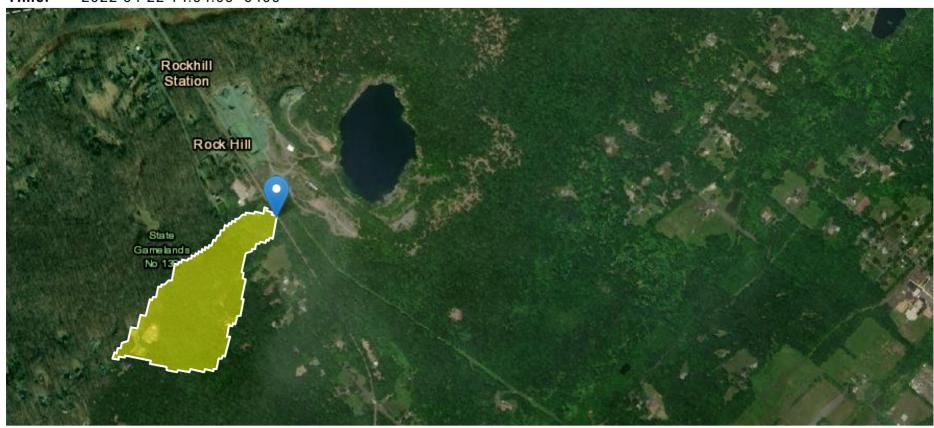
	2yr*	5yr*	10yr*	50yr*	100yr*
Site Culvert 1 Flows (%)	15.2%	7.9%	5.5%	3.0%	2.4%
Site Culvert 2 Flows (%)	15.2%	7.9%	5.5%	3.0%	2.4%
Site Culvert 3 Flows (%)	15.2%	7.9%	5.5%	3.0%	2.4%
Site Culvert 4 Flows (%)	15.2%	7.9%	5.5%	3.0%	2.4%
Rich Hill Crossing Culvert	4.9%	2.6%	1.8%	0.97%	0.79%
Flows (%)					

Based upon the above, EARTHRES concludes the proposed discharge increase will not adversely affect the existing conveyance.

Attachment C-21.1:

Streamstats Reports

Upstream


StreamStats Report (Upstream Clarifying Pond)

Region ID: PA

Workspace ID: PA20220422180333809000

Clicked Point (Latitude, Longitude): 40.40237, -75.30285

Time: 2022-04-22 14:04:00 -0400

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	4.0556	degrees
CARBON	Percentage of area of carbonate rock	0	percent
DRNAREA	Area that drains to a point on a stream	0.0558	square miles
ELEV	Mean Basin Elevation	598	feet
FOREST	Percentage of area covered by forest	98.7552	percent
PRECIP	Mean Annual Precipitation	45	inches
ROCKDEP	Depth to rock	4	feet
URBAN	Percentage of basin with urban development	0	percent

Peak-Flow Statistics Parameters [Peak Flow Region 4 SIR 2019 5094]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0558	square miles	1.2	512
CARBON	Percent Carbonate	0	percent	0	68.5

Peak-Flow Statistics Disclaimers [Peak Flow Region 4 SIR 2019 5094]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Peak-Flow Statistics Flow Report [Peak Flow Region 4 SIR 2019 5094]

Statistic	Value	Unit
50-percent AEP flood	30.4	ft^3/s

Statistic	Value	Unit
20-percent AEP flood	58.4	ft^3/s
10-percent AEP flood	83.3	ft^3/s
4-percent AEP flood	121	ft^3/s
2-percent AEP flood	154	ft^3/s
1-percent AEP flood	190	ft^3/s
0.5-percent AEP flood	229	ft^3/s
0.2-percent AEP flood	289	ft^3/s

Peak-Flow Statistics Citations

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019-5094, 36 p. (https://doi.org/10.3133/sir20195094)

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0558	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	4.0556	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4	feet	4.13	5.21
URBAN	Percent Urban	0	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0043	ft^3/s
30 Day 2 Year Low Flow	0.0066	ft^3/s
7 Day 10 Year Low Flow	0.00127	ft^3/s
30 Day 10 Year Low Flow	0.00217	ft^3/s
90 Day 10 Year Low Flow	0.00445	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Annual Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0558	square miles	2.26	1720
ELEV	Mean Basin Elevation	598	feet	130	2700
PRECIP	Mean Annual Precipitation	45	inches	33.1	50.4
FOREST	Percent Forest	98.7552	percent	5.1	100
URBAN	Percent Urban	0	percent	0	89

Annual Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Annual Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Mean Annual Flow	0.0885	ft^3/s

Annual Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

General Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0558	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	45	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	98.7552	percent	5.1	100
URBAN	Percent Urban	0	percent	0	89

General Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

General Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Harmonic Mean Streamflow	0.018	ft^3/s

General Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Base Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0558	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	45	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	98.7552	percent	5.1	100
URBAN	Percent Urban	0	percent	0	89

Base Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Base Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Base Flow 10 Year Recurrence Interval	0.0464	ft^3/s

Statistic	Value	Unit
Base Flow 25 Year Recurrence Interval	0.0416	ft^3/s
Base Flow 50 Year Recurrence Interval	0.039	ft^3/s

Base Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Bankfull Statistics Parameters [Statewide Bankfull Noncarbonate 2018 5066]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0558	square miles	2.62	207
CARBON	Percent Carbonate	0	percent		

Bankfull Statistics Parameters [Appalachian Highlands D Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0558	square miles	0.07722	940.1535

Bankfull Statistics Parameters [Piedmont P Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0558	square miles	0.289575	939.99906

Bankfull Statistics Parameters [USA Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0558	square miles	0.07722	59927.7393

Bankfull Statistics Disclaimers [Statewide Bankfull Noncarbonate 2018 5066]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [Statewide Bankfull Noncarbonate 2018 5066]

Statistic	Value	Unit
Bankfull Area	1.25	ft^2
Bankfull Streamflow	4	ft^3/s
Bankfull Width	3.8	ft
Bankfull Depth	0.36	ft

Bankfull Statistics Disclaimers [Appalachian Highlands D Bieger 2015]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [Appalachian Highlands D Bieger 2015]

Statistic	Value	Unit
Bieger_D_channel_width	4.59	ft
Bieger_D_channel_depth	0.49	ft
Bieger_D_channel_cross_sectional_area	2.26	ft^2

Bankfull Statistics Disclaimers [Piedmont P Bieger 2015]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [Piedmont P Bieger 2015]

Statistic	Value	Unit
Bieger_P_channel_width	4.22	ft
Bieger_P_channel_depth	0.468	ft
Bieger_P_channel_cross_sectional_area	1.79	ft^2

Bankfull Statistics Disclaimers [USA Bieger 2015]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [USA Bieger 2015]

Statistic	Value	Unit
Bieger_USA_channel_width	4.48	ft
Bieger_USA_channel_depth	0.652	ft
Bieger_USA_channel_cross_sectional_area	3.6	ft^2

Bankfull Statistics Flow Report [Area-Averaged]

Statistic	Value	Unit
Bankfull Area	1.25	ft^2
Bankfull Streamflow	4	ft^3/s
Bankfull Width	3.8	ft

Statistic	Value	Unit
Bankfull Depth	0.36	ft
Bieger_D_channel_width	4.59	ft
Bieger_D_channel_depth	0.49	ft
Bieger_D_channel_cross_sectional_area	2.26	ft^2
Bieger_P_channel_width	4.22	ft
Bieger_P_channel_depth	0.468	ft
Bieger_P_channel_cross_sectional_area	1.79	ft^2
Bieger_USA_channel_width	4.48	ft
Bieger_USA_channel_depth	0.652	ft
Bieger_USA_channel_cross_sectional_area	3.6	ft^2

Bankfull Statistics Citations

Clune, J.W., Chaplin, J.J., and White, K.E.,2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018–5066, 20 p. (https://doi.org/10.3133/sir20185066)

Bieger, Katrin; Rathjens, Hendrik; Allen, Peter M.; and Arnold, Jeffrey G.,2015, Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States, Publications from USDA-ARS / UNL Faculty, 17p. (https://digitalcommons.unl.edu/usdaarsfacpub/1515?

utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1515&utm_medium=PDF&utm_campaign=PDFCoverPages)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.8.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

Heidelberg Materials Northeast LLC – Rock Hill Quarry NPDES Permit Modification January 2023

Downstream

StreamStats Report

Region ID: PA

Workspace ID: PA20220422182046948000

Clicked Point (Latitude, Longitude): 40.40944, -75.30806

Time: 2022-04-22 14:21:16 -0400

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	4.2196	degrees
CARBON	Percentage of area of carbonate rock	0	percent
DRNAREA	Area that drains to a point on a stream	0.0458	square miles
ELEV	Mean Basin Elevation	585	feet
FOREST	Percentage of area covered by forest	78.4148	percent
PRECIP	Mean Annual Precipitation	45	inches
ROCKDEP	Depth to rock	4	feet
URBAN	Percentage of basin with urban development	2.1079	percent

Peak-Flow Statistics Parameters [Peak Flow Region 4 SIR 2019 5094]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0458	square miles	1.2	512
CARBON	Percent Carbonate	0	percent	0	68.5

Peak-Flow Statistics Disclaimers [Peak Flow Region 4 SIR 2019 5094]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Peak-Flow Statistics Flow Report [Peak Flow Region 4 SIR 2019 5094]

Statistic	Value	Unit
50-percent AEP flood	26.5	ft^3/s

Statistic	Value	Unit
20-percent AEP flood	51.1	ft^3/s
10-percent AEP flood	73.1	ft^3/s
4-percent AEP flood	107	ft^3/s
2-percent AEP flood	135	ft^3/s
1-percent AEP flood	167	ft^3/s
0.5-percent AEP flood	203	ft^3/s
0.2-percent AEP flood	256	ft^3/s

Peak-Flow Statistics Citations

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019-5094, 36 p. (https://doi.org/10.3133/sir20195094)

Annual Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0458	square miles	2.26	1720
ELEV	Mean Basin Elevation	585	feet	130	2700
PRECIP	Mean Annual Precipitation	45	inches	33.1	50.4
FOREST	Percent Forest	78.4148	percent	5.1	100
URBAN	Percent Urban	2.1079	percent	0	89

Annual Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Annual Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Mean Annual Flow	0.0698	ft^3/s

Annual Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0458	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	4.2196	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4	feet	4.13	5.21
URBAN	Percent Urban	2.1079	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic Value Unit

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.00386	ft^3/s
30 Day 2 Year Low Flow	0.00589	ft^3/s
7 Day 10 Year Low Flow	0.00116	ft^3/s
30 Day 10 Year Low Flow	0.00197	ft^3/s
90 Day 10 Year Low Flow	0.00396	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

General Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0458	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	45	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	78.4148	percent	5.1	100
URBAN	Percent Urban	2.1079	percent	0	89

General Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

General Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Harmonic Mean Streamflow	0.0136	ft^3/s

General Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Base Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0458	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	45	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	78.4148	percent	5.1	100
URBAN	Percent Urban	2.1079	percent	0	89

Base Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Base Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Base Flow 10 Year Recurrence Interval	0.0332	ft^3/s

Statistic	Value	Unit
Base Flow 25 Year Recurrence Interval	0.0295	ft^3/s
Base Flow 50 Year Recurrence Interval	0.0275	ft^3/s

Base Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Bankfull Statistics Parameters [Statewide Bankfull Noncarbonate 2018 5066]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0458	square miles	2.62	207
CARBON	Percent Carbonate	0	percent		

Bankfull Statistics Parameters [Appalachian Highlands D Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0458	square miles	0.07722	940.1535

Bankfull Statistics Parameters [Piedmont P Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0458	square miles	0.289575	939.99906

Bankfull Statistics Parameters [USA Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0458	square miles	0.07722	59927.7393

Bankfull Statistics Disclaimers [Statewide Bankfull Noncarbonate 2018 5066]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [Statewide Bankfull Noncarbonate 2018 5066]

Statistic	Value	Unit
Bankfull Area	1.07	ft^2
Bankfull Streamflow	3.38	ft^3/s
Bankfull Width	3.47	ft
Bankfull Depth	0.338	ft

Bankfull Statistics Disclaimers [Appalachian Highlands D Bieger 2015]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [Appalachian Highlands D Bieger 2015]

Statistic	Value	Unit
Bieger_D_channel_width	4.23	ft
Bieger_D_channel_depth	0.463	ft
Bieger_D_channel_cross_sectional_area	1.97	ft^2

Bankfull Statistics Disclaimers [Piedmont P Bieger 2015]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [Piedmont P Bieger 2015]

Statistic	Value	Unit
Bieger_P_channel_width	3.89	ft
Bieger_P_channel_depth	0.441	ft
Bieger_P_channel_cross_sectional_area	1.54	ft^2

Bankfull Statistics Disclaimers [USA Bieger 2015]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [USA Bieger 2015]

Statistic	Value	Unit
Bieger_USA_channel_width	4.18	ft
Bieger_USA_channel_depth	0.625	ft
Bieger_USA_channel_cross_sectional_area	3.23	ft^2

Bankfull Statistics Flow Report [Area-Averaged]

Statistic	Value	Unit
Bankfull Area	1.07	ft^2
Bankfull Streamflow	3.38	ft^3/s
Bankfull Width	3.47	ft

Statistic	Value	Unit
Bankfull Depth	0.338	ft
Bieger_D_channel_width	4.23	ft
Bieger_D_channel_depth	0.463	ft
Bieger_D_channel_cross_sectional_area	1.97	ft^2
Bieger_P_channel_width	3.89	ft
Bieger_P_channel_depth	0.441	ft
Bieger_P_channel_cross_sectional_area	1.54	ft^2
Bieger_USA_channel_width	4.18	ft
Bieger_USA_channel_depth	0.625	ft
Bieger_USA_channel_cross_sectional_area	3.23	ft^2

Bankfull Statistics Citations

Clune, J.W., Chaplin, J.J., and White, K.E.,2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018–5066, 20 p. (https://doi.org/10.3133/sir20185066)

Bieger, Katrin; Rathjens, Hendrik; Allen, Peter M.; and Arnold, Jeffrey G.,2015, Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States, Publications from USDA-ARS / UNL Faculty, 17p. (https://digitalcommons.unl.edu/usdaarsfacpub/1515?

utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1515&utm_medium=PDF&utm_campaign=PDFCoverPages)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.8.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

StreamStats Report (Downstream 2)

Region ID: PA

Workspace ID: PA20220422183313578000

Clicked Point (Latitude, Longitude): 40.40964, -75.30751

Time: 2022-04-22 14:33:45 -0400

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	5.4081	degrees
CARBON	Percentage of area of carbonate rock	0	percent
DRNAREA	Area that drains to a point on a stream	0.0741	square miles
ELEV	Mean Basin Elevation	642	feet
FOREST	Percentage of area covered by forest	99.3747	percent
PRECIP	Mean Annual Precipitation	45	inches
ROCKDEP	Depth to rock	4	feet
URBAN	Percentage of basin with urban development	0	percent

Peak-Flow Statistics Parameters [Peak Flow Region 4 SIR 2019 5094]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0741	square miles	1.2	512
CARBON	Percent Carbonate	0	percent	0	68.5

Peak-Flow Statistics Disclaimers [Peak Flow Region 4 SIR 2019 5094]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Peak-Flow Statistics Flow Report [Peak Flow Region 4 SIR 2019 5094]

Statistic	Value	Unit
50-percent AEP flood	37.1	ft^3/s

Statistic	Value	Unit
20-percent AEP flood	70.7	ft^3/s
10-percent AEP flood	100	ft^3/s
4-percent AEP flood	145	ft^3/s
2-percent AEP flood	184	ft^3/s
1-percent AEP flood	227	ft^3/s
0.5-percent AEP flood	274	ft^3/s
0.2-percent AEP flood	345	ft^3/s

Peak-Flow Statistics Citations

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019-5094, 36 p. (https://doi.org/10.3133/sir20195094)

Annual Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0741	square miles	2.26	1720
ELEV	Mean Basin Elevation	642	feet	130	2700
PRECIP	Mean Annual Precipitation	45	inches	33.1	50.4
FOREST	Percent Forest	99.3747	percent	5.1	100
URBAN	Percent Urban	0	percent	0	89

Annual Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Annual Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Mean Annual Flow	0.119	ft^3/s

Annual Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0741	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	5.4081	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4	feet	4.13	5.21
URBAN	Percent Urban	0	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic Value Unit

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.00823	ft^3/s
30 Day 2 Year Low Flow	0.0118	ft^3/s
7 Day 10 Year Low Flow	0.00274	ft^3/s
30 Day 10 Year Low Flow	0.00433	ft^3/s
90 Day 10 Year Low Flow	0.00769	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

General Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0741	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	45	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	99.3747	percent	5.1	100
URBAN	Percent Urban	0	percent	0	89

General Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

General Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Harmonic Mean Streamflow	0.0245	ft^3/s

General Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Base Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0741	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	45	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	99.3747	percent	5.1	100
URBAN	Percent Urban	0	percent	0	89

Base Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Base Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Base Flow 10 Year Recurrence Interval	0.0619	ft^3/s

Statistic	Value	Unit
Base Flow 25 Year Recurrence Interval	0.0555	ft^3/s
Base Flow 50 Year Recurrence Interval	0.052	ft^3/s

Base Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Bankfull Statistics Parameters [Statewide Bankfull Noncarbonate 2018 5066]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0741	square miles	2.62	207
CARBON	Percent Carbonate	0	percent		

Bankfull Statistics Parameters [Appalachian Highlands D Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0741	square miles	0.07722	940.1535

Bankfull Statistics Parameters [Piedmont P Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0741	square miles	0.289575	939.99906

Bankfull Statistics Parameters [USA Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0741	square miles	0.07722	59927.7393

Bankfull Statistics Disclaimers [Statewide Bankfull Noncarbonate 2018 5066]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [Statewide Bankfull Noncarbonate 2018 5066]

Statistic	Value	Unit
Bankfull Area	1.57	ft^2
Bankfull Streamflow	5.09	ft^3/s
Bankfull Width	4.33	ft
Bankfull Depth	0.395	ft

Bankfull Statistics Disclaimers [Appalachian Highlands D Bieger 2015]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [Appalachian Highlands D Bieger 2015]

Statistic	Value	Unit
Bieger_D_channel_width	5.16	ft
Bieger_D_channel_depth	0.531	ft
Bieger_D_channel_cross_sectional_area	2.76	ft^2

Bankfull Statistics Disclaimers [Piedmont P Bieger 2015]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [Piedmont P Bieger 2015]

Statistic	Value	Unit
Bieger_P_channel_width	4.74	ft
Bieger_P_channel_depth	0.511	ft
Bieger_P_channel_cross_sectional_area	2.22	ft^2

Bankfull Statistics Disclaimers [USA Bieger 2015]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Bankfull Statistics Flow Report [USA Bieger 2015]

Statistic	Value	Unit
Bieger_USA_channel_width	4.95	ft
Bieger_USA_channel_depth	0.693	ft
Bieger_USA_channel_cross_sectional_area	4.19	ft^2

Bankfull Statistics Flow Report [Area-Averaged]

Statistic	Value	Unit
Bankfull Area	1.57	ft^2
Bankfull Streamflow	5.09	ft^3/s
Bankfull Width	4.33	ft

Statistic	Value	Unit
Bankfull Depth	0.395	ft
Bieger_D_channel_width	5.16	ft
Bieger_D_channel_depth	0.531	ft
Bieger_D_channel_cross_sectional_area	2.76	ft^2
Bieger_P_channel_width	4.74	ft
Bieger_P_channel_depth	0.511	ft
Bieger_P_channel_cross_sectional_area	2.22	ft^2
Bieger_USA_channel_width	4.95	ft
Bieger_USA_channel_depth	0.693	ft
Bieger_USA_channel_cross_sectional_area	4.19	ft^2

Bankfull Statistics Citations

Clune, J.W., Chaplin, J.J., and White, K.E.,2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018–5066, 20 p. (https://doi.org/10.3133/sir20185066)

Bieger, Katrin; Rathjens, Hendrik; Allen, Peter M.; and Arnold, Jeffrey G.,2015, Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States, Publications from USDA-ARS / UNL Faculty, 17p. (https://digitalcommons.unl.edu/usdaarsfacpub/1515?

utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1515&utm_medium=PDF&utm_campaign=PDFCoverPages)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.8.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

Heidelberg Materials Northeast LLC – Rock Hill Quarry NPDES Permit Modification January 2023

Attachment C-21.2:

Hydraflow Express Output

Heidelberg Materials Northeast LLC – Rock Hill Quarry NPDES Permit Modification January 2023

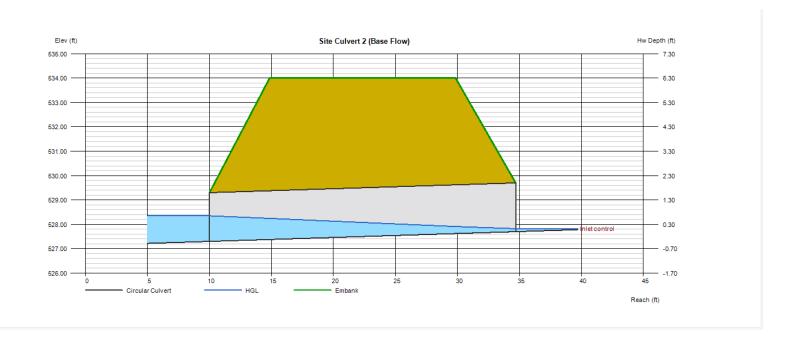
Base Flow

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, May 10 2022

Site Culvert 1 (Base Flow)

Invert Elev Dn (ft)	= 530.50	Calculations	
Pipe Length (ft)	= 56.70	Qmin (cfs)	= 0.09
Slope (%)	= 0.18	Qmax (cfs)	= 0.09
Invert Elev Up (ft)	= 530.60	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 0.09
No. Barrels	= 1	Qpipe (cfs)	= 0.09
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 0.05
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 1.49
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 531.55
		HGL Up (ft)	= 530.70
Embankment		Hw Elev (ft)	= 530.73
Top Elevation (ft)	= 536.00	Hw/D (ft)	= 0.07
Top Width (ft)	= 36.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, May 10 2022

Site Culvert 2 (Base Flow)

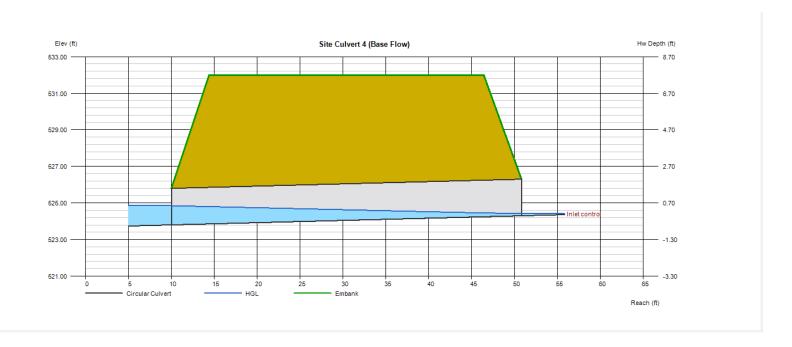
Invert Elev Dn (ft)	= 527.30	Calculations	
Pipe Length (ft)	= 24.70	Qmin (cfs)	= 0.09
Slope (%)	= 1.62	Qmax (cfs)	= 0.09
Invert Elev Up (ft)	= 527.70	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 0.09
No. Barrels	= 1	Qpipe (cfs)	= 0.09
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Culvert	Veloc Dn (ft/s)	= 0.05
Culvert Entrance	= Smooth tapered inlet throat	Veloc Up (ft/s)	= 1.49
Coeff. K,M,c,Y,k	= 0.534, 0.555, 0.0196, 0.9, 0.2	HGL Dn (ft)	= 528.35
		HGL Up (ft)	= 527.80
Embankment		Hw Elev (ft)	= 527.82
Top Elevation (ft)	= 534.00	Hw/D (ft)	= 0.06
Top Width (ft)	= 15.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, May 10 2022

Site Culvert 3 (Base Flow)

Invert Elev Dn (ft)	= 524.80	Calculations	
Pipe Length (ft)	= 39.40	Qmin (cfs)	= 0.09
Slope (%)	= 0.51	Qmax (cfs)	= 0.09
Invert Elev Up (ft)	= 525.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 0.09
No. Barrels	= 1	Qpipe (cfs)	= 0.09
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 0.05
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 1.49
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 525.85
		HGL Up (ft)	= 525.10
Embankment		Hw Elev (ft)	= 525.13
Top Elevation (ft)	= 532.00	Hw/D (ft)	= 0.07
Top Width (ft)	= 30.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		

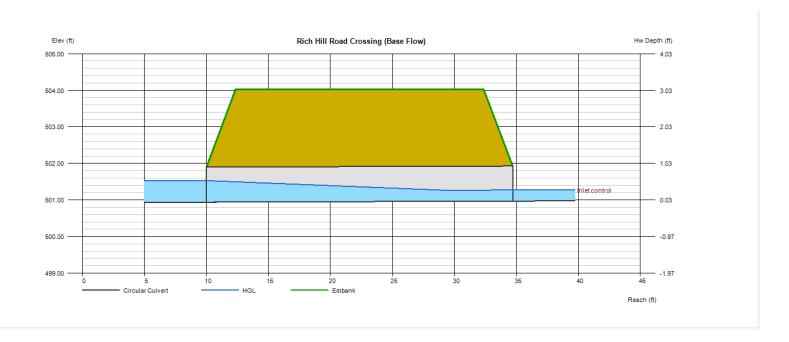


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, May 10 2022

Site Culvert 4 (Base Flow)

Invert Elev Dn (ft)	= 523.80	Calculations	
Pipe Length (ft)	= 40.80	Qmin (cfs)	= 0.09
Slope (%)	= 1.23	Qmax (cfs)	= 0.09
Invert Elev Up (ft)	= 524.30	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 0.09
No. Barrels	= 1	Qpipe (cfs)	= 0.09
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Culvert	Veloc Dn (ft/s)	= 0.05
Culvert Entrance	= Smooth tapered inlet throat	Veloc Up (ft/s)	= 1.49
Coeff. K,M,c,Y,k	= 0.534, 0.555, 0.0196, 0.9, 0.2	HGL Dn (ft)	= 524.85
		HGL Up (ft)	= 524.40
Embankment		Hw Elev (ft)	= 524.42
Top Elevation (ft)	= 532.00	Hw/D (ft)	= 0.06
Top Width (ft)	= 32.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		



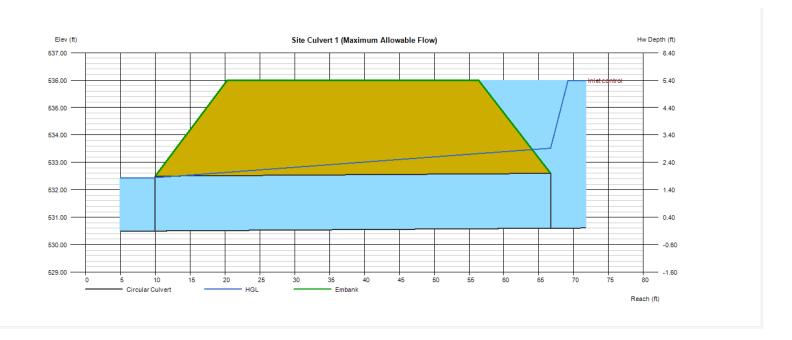
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, May 10 2022

Rich Hill Road Crossing (Base Flow)

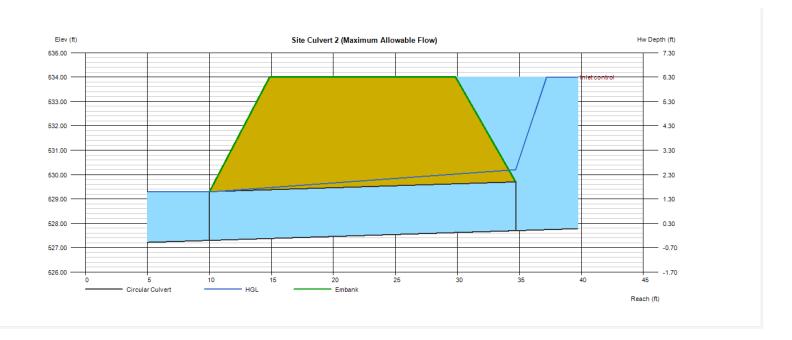
Invert Elev Dn (ft)	= 500.94	Calculations	
Pipe Length (ft)	= 24.70	Qmin (cfs)	= 0.28
Slope (%)	= 0.12	Qmax (cfs)	= 0.28
Invert Elev Up (ft)	= 500.97	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 11.5		
Shape	= Circular	Highlighted	
Span (in)	= 11.5	Qtotal (cfs)	= 0.28
No. Barrels	= 1	Qpipe (cfs)	= 0.28
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	 Circular Corrugate Metal Pipe 	Veloc Dn (ft/s)	= 0.60
Culvert Entrance	= Projecting	Veloc Up (ft/s)	= 2.24
Coeff. K,M,c,Y,k	= 0.034, 1.5, 0.0553, 0.54, 0.9	HGL Dn (ft)	= 501.53
		HGL Up (ft)	= 501.19
Embankment		Hw Elev (ft)	= 501.28
Top Elevation (ft)	= 504.03	Hw/D (ft)	= 0.32
Top Width (ft)	= 20.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		

Heidelberg Materials Northeast LLC – Rock Hill Quarry NPDES Permit Modification January 2023


Maximum Allowable Flow

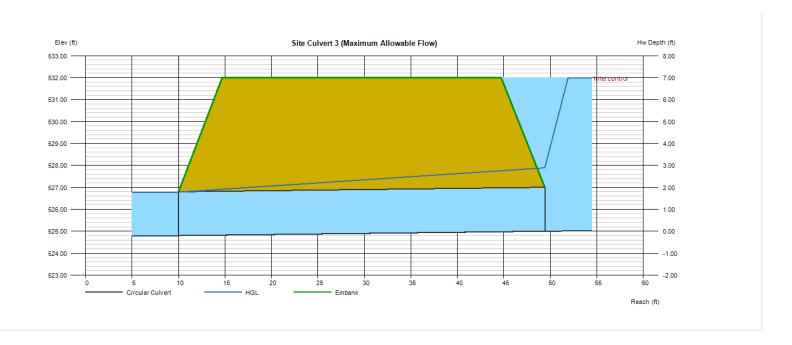
Tuesday, May 10 2022

Site Culvert 1 (Maximum Allowable Flow)

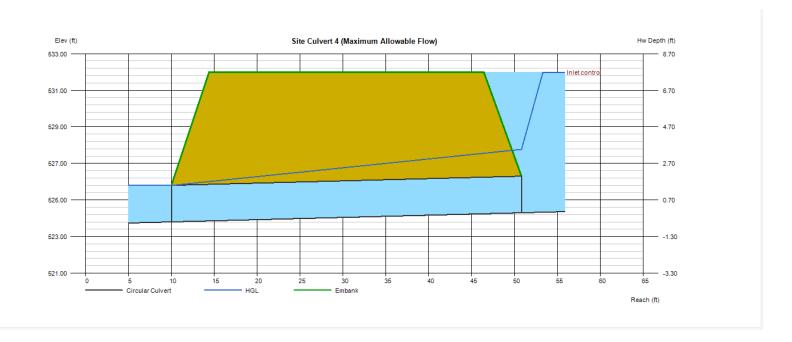

Invert Elev Dn (ft)	= 530.50	Calculations	
Pipe Length (ft)	= 56.70	Qmin (cfs)	= 31.70
Slope (%)	= 0.18	Qmax (cfs)	= 31.70
Invert Elev Up (ft)	= 530.60	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 31.70
No. Barrels	= 1	Qpipe (cfs)	= 31.70
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 10.17
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 10.09
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 532.44
		HGL Up (ft)	= 533.52
Embankment		Hw Elev (ft)	= 535.99
Top Elevation (ft)	= 536.00	Hw/D (ft)	= 2.70
Top Width (ft)	= 36.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		

Tuesday, May 10 2022

Site Culvert 2 (Maximum Allowable Flow)

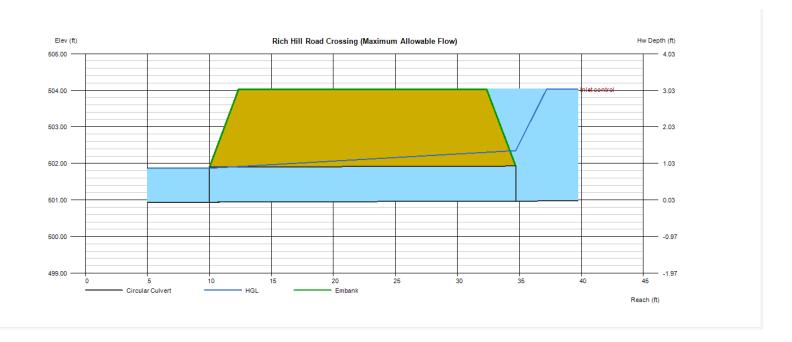

Invert Elev Dn (ft)	= 527.30	Calculations	
Pipe Length (ft)	= 24.70	Qmin (cfs)	= 47.70
Slope (%)	= 1.62	Qmax (cfs)	= 47.70
Invert Elev Up (ft)	= 527.70	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 47.70
No. Barrels	= 1	Qpipe (cfs)	= 47.70
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Culvert	Veloc Dn (ft/s)	= 15.20
Culvert Entrance	= Smooth tapered inlet throat	Veloc Up (ft/s)	= 15.18
Coeff. K,M,c,Y,k	= 0.534, 0.555, 0.0196, 0.9, 0.2	HGL Dn (ft)	= 529.29
		HGL Up (ft)	= 530.20
Embankment		Hw Elev (ft)	= 534.00
Top Elevation (ft)	= 534.00	Hw/D (ft)	= 3.15
Top Width (ft)	= 15.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		

Tuesday, May 10 2022


Site Culvert 3 (Maximum Allowable Flow)

Invert Elev Dn (ft)	= 524.80	Calculations	
Pipe Length (ft)	= 39.40	Qmin (cfs)	= 41.80
Slope (%)	= 0.51	Qmax (cfs)	= 41.80
Invert Elev Up (ft)	= 525.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 41.80
No. Barrels	= 1	Qpipe (cfs)	= 41.80
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 13.33
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 13.31
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 526.78
		HGL Up (ft)	= 527.89
Embankment		Hw Elev (ft)	= 531.99
Top Elevation (ft)	= 532.00	Hw/D (ft)	= 3.49
Top Width (ft)	= 30.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		

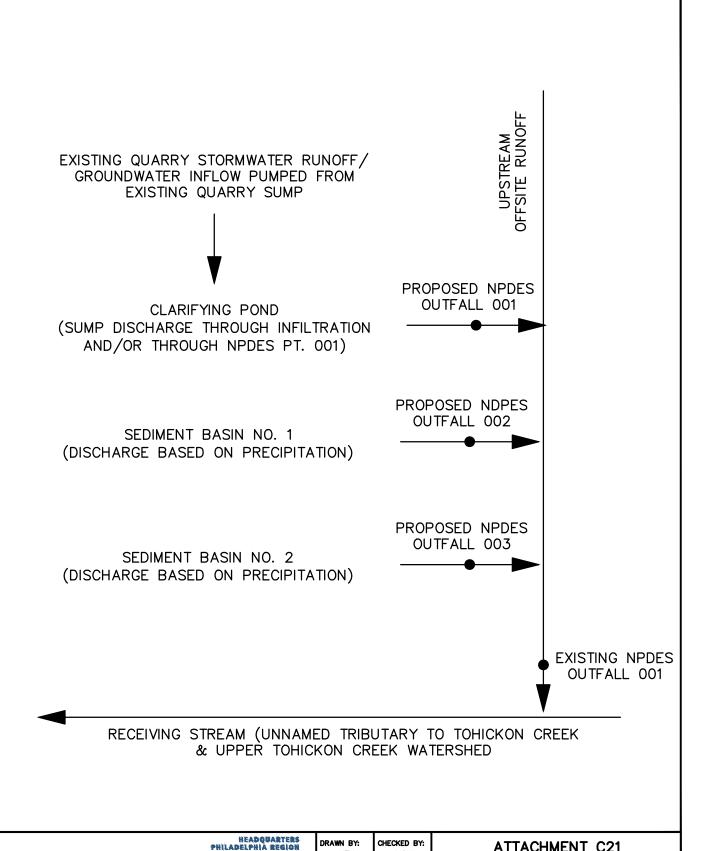
Site Culvert 4 (Maximum Allowable Flow)


= 523.80	Calculations	
= 40.80	Qmin (cfs)	= 54.50
= 1.23	Qmax (cfs)	= 54.50
= 524.30	Tailwater Elev (ft)	= (dc+D)/2
= 24.0		
= Circular	Highlighted	
= 24.0	Qtotal (cfs)	= 54.50
= 1	Qpipe (cfs)	= 54.50
= 0.012	Qovertop (cfs)	= 0.00
Circular Culvert	Veloc Dn (ft/s)	= 17.35
= Smooth tapered inlet throat	Veloc Up (ft/s)	= 17.35
= 0.534, 0.555, 0.0196, 0.9, 0.2	HGL Dn (ft)	= 525.79
	HGL Up (ft)	= 527.77
	Hw Elev (ft)	= 531.99
= 532.00	Hw/D (ft)	= 3.84
= 32.00	Flow Regime	= Inlet Control
= 100.00		
	= 40.80 = 1.23 = 524.30 = 24.0 = Circular = 24.0 = 1 = 0.012 = Circular Culvert = Smooth tapered inlet throat = 0.534, 0.555, 0.0196, 0.9, 0.2 = 532.00 = 32.00	= 40.80 Qmin (cfs) = 1.23 Qmax (cfs) = 524.30 Tailwater Elev (ft) = 24.0 = Circular Highlighted = 24.0 Qtotal (cfs) = 1 Qpipe (cfs) = 0.012 Qovertop (cfs) = Circular Culvert Veloc Dn (ft/s) = Smooth tapered inlet throat Veloc Up (ft/s) = 0.534, 0.555, 0.0196, 0.9, 0.2 HGL Dn (ft) HGL Up (ft) HW Elev (ft) = 532.00 Hw/D (ft) Flow Regime

Tuesday, May 10 2022

Rich Hill Road Crossing (Maximum Allowable Flow)

Invert Elev Dn (ft)	= 500.94	Calculations	
Pipe Length (ft)	= 24.70	Qmin (cfs)	= 4.89
Slope (%)	= 0.12	Qmax (cfs)	= 4.89
Invert Elev Up (ft)	= 500.97	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 11.5		
Shape	= Circular	Highlighted	
Span (in)	= 11.5	Qtotal (cfs)	= 4.89
No. Barrels	= 1	Qpipe (cfs)	= 4.89
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	 Circular Corrugate Metal Pipe 	Veloc Dn (ft/s)	= 6.84
Culvert Entrance	= Projecting	Veloc Up (ft/s)	= 6.78
Coeff. K,M,c,Y,k	= 0.034, 1.5, 0.0553, 0.54, 0.9	HGL Dn (ft)	= 501.87
		HGL Up (ft)	= 502.35
Embankment		Hw Elev (ft)	= 504.03
Top Elevation (ft)	= 504.03	Hw/D (ft)	= 3.19
Top Width (ft)	= 20.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		



Heidelberg Materials Northeast LLC – Rock Hill Quarry NPDES Permit Modification January 2023

Attachment C-21.3:

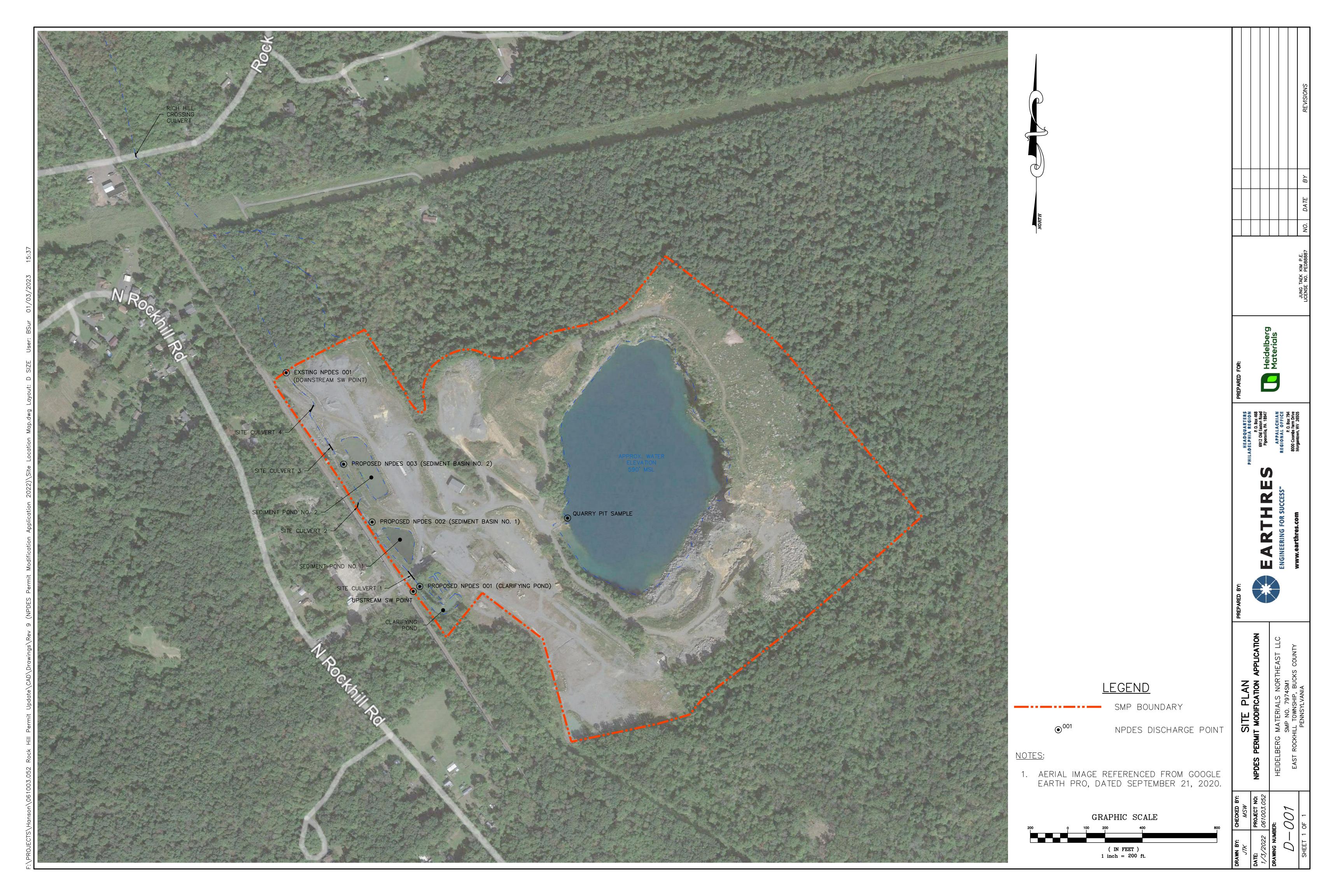
Flow Diagram

DRAWN BY: <i>JTK</i>	CHECKED BY:
DATE:	PROJECT NO: 061003.052
1/3/2022	061003.052

DRAWING SCALE: NOT TO SCALE ATTACHMENT C21 FLOW DIAGRAM

HEIDELBERG MATERIALS NORTHEAST LLC SMP NO, 79745M1

EAST ROCKHILL TOWNSHIP, BUCKS COUNTY
PENNSYLVANIA


www.earthres.com

Heidelberg Materials Northeast LLC – Rock Hill Quarry NPDES Permit Modification January 2023

Attachment C-21.4:

Site Plan

Heidelberg Materials Northeast LLC – Rock Hill Quarry NPDES Permit Modification January 2023

Attachment D-1:

Effluent Characterization Summary

Attachment D-1 Effluent Characterization Summary

Sampling Program

Effluent characterization samples were obtained from the Clarifying Pond (proposed NPDES 001); Sediment Basin No. 1 (proposed NPDES 002), and Sediment Basin No. 02 (proposed NPDES 003) on April 1, 2022. In addition, per discussion with PA DEP, additional background samples were obtained from the Quarry pit sump, as well as at upgradient and downgradient points along the unnamed tributary. The upgradient point is located west of the Clarifying Pond prior to the confluence with the Clarifying Pond discharge. The downgradient point is located at the downgradient property boundary where the existing NPDES point is located.

Analyses to be included in effluent characterization were determined from the National Pollutant Discharge Elimination System (NPDES) Application For Individual Permit To Discharge Industrial Wastewater Instruction (3800-PM-BCW0008a – 11/2016). The effluent characterization samples were analyzed for the following parameters listed in Appendix D of 40 CFR 122:

Item #24 - Common Parameters/Pollutants

pН

Total Suspended Solids (TSS)

Item #27 - Other Toxic Pollutants

Arsenic, total Mercury, total
Cadmium, total Nickel, total
Copper, total Selenium, total
Lead, total Zinc, total

Chromium, total

Item #28 - Conventional and Nonconventional Pollutants

Aluminum, total Iron, Total & Dissolved Barium, total Manganese, total

Boron, total Sulfate

Titanium, Total

Color Fluoride

Item #29 - Toxic Pollutants and Hazardous Substances

Asbestos (Naturally Occuring)

Vanadium Strontium

Additional Parameters

Alkalinity/Acidity Chloride

Hardness Total Dissolved Solids (TDS)

Total Kjeldahl Nitrogen (TKN)

List of Exemptions

The constituents detailed below are not anticipated to be present in any potential discharges from the Rock Hill Quarry. This list of exclusions was prepared giving consideration to the detailed geochemical data¹ available for the diabase geology of the Rock Hill Quarry Yorkhaven type. This data were reviewed to assess the potential for trace elements to be present in the discharge. Any trace element present in the rock at a concentration of less than 10 parts per million, (0.001 %) by weight was negated from the characterization sampling. In addition other trace elements were negated due to their common association with parameters that have already been sampled at the Site and found to be not present.

Item #24 - Common Parameters/Pollutants

A waiver is requested per 40 CFR 122.21(K)(5)(i) for sampling the following constituents: chemical oxygen demand (COD), biochemical oxygen demand (BOD), ammonia (NH3), total organic carbon (TOC) and Conductivity. COD is commonly used to indirectly measure the amount of organic compounds in water. Organic compounds are not expected in the discharge from the permitted outfalls at the Site. BOD is an indication of the organic quality of water and can be used to gauge the effectiveness of wastewater treatment plants. The organic quality of the water is not expected to be compromised from the mining of non-coal materials. Ammonia is produced for commercial fertilizers and other industrial applications, including metal finishing and treating applications as well as in the production of pharmaceuticals and dyes. Ammonia is used in mining applications for the extraction of metals. However, the mining activities at the Rock Hill Quarry do not extract metals from ore. TOC can be used as a rapid and accurate alternative to analyses for COD and BOD. As the need for COD and BOD is not expected, neither is analysis for TOC. Conductivity is commonly used to determine the ionic content within water. The existing monitoring plan includes Total Dissolved Solids (TDS), which is a direct measurement of ionic content in water. Therefore, the need to test for Conductivity is not expected.

Item #25 - Dioxins

There is no evidence that, at any time, dioxins, TCDD, 2,4,5-TP, Erbon, TCH or HCP were made, used, stored or buried on or directly upgradient from the surface mine permit area.

Item #26 - Organic Toxic Pollutants

The Organic Toxic Pollutants listed in EPA Table II (Appendix D of 40 CFR 122) are not expected to be present on the Site. Pesticides, herbicides, soil conditioners, and fertilizers are not applied within the SMP boundary.

Item #27 - Other Toxic Pollutants

¹ Smith R C., et al., Geology and Geochemistry of Triassic Diabase in PA, Geological Society of America Bulletin, v. 86, p. 943-955, July 1975.

Woodruff, L.G., et al., Evolution of tholeiitic diabase sheet systems in the eastern United States: examples from the Culpeper Basin, Virginia-Maryland and the Gettysburg Basin, Pennsylvania, Journal of Volcanology and Geothermal Research 64 (1995)

The following Other Toxic Pollutants identified in EPA Table III (Appendix D of 40 CFR 122) are not expected to be present at the Site based upon the following:

Antimony: Antimony is a transition metal typically found as a sulfide mineral in igneous deposits. It is used as an alloying agent, flame retardant coating, as a catalyst in polymer production, and in the semiconductor industry. Antimony is reported at less than 0.1 ppm by weight in the diabase and is therefore not expected to be present in discharges from the Site. Antimony is not used or produced at this Site.

Beryllium: Beryllium is extremely uncommon in occurrence as a mineral. It may be present as a trace element in minerals of alkaline or granitic composition. Beryllium is present at 0.6 ppm by weight in the diabase geology and is therefore not expected to be present in the discharges from the Site. Beryllium is not used or produced at this Site.

Silver: Silver is a precious metal found associated with copper, lead and zinc sulfide minerals in igneous rocks. Silver is not reported to be present at any level in the diabase geology of the Site. Silver is not used or produced at this Site.

Thallium: Thallium is a transition metal associated with heavy metal sulfide minerals and potassium rich clay and granite minerals. Thallium was reported to be present at a trace level of 2.2 ppm in the diabase geology and is not expected in discharges from the Site. Thallium is not used or produced at this Site.

Cyanide: Cyanide comes from chemical manufacturing as an intermediate of a number of chemicals, electroplating and metal treatment. Cyanide can be generated from the incomplete combustion of organic nitrogen compounds and found in car exhaust. Cyanide is not expected at a non-coal mining site. Cyanide is not used or produced at this Site.

Phenols: Phenols are used in the production of phenolic resins and medicinal products. Phenols also form from the incomplete combustion of fossil fuels. Phenols are not expected at a non-coal mining site. Phenols are not used or produced at this Site.

Item #28 - Conventional and Nonconventional Pollutants

The following Conventional and Nonconventional Pollutants listed in EPA Table IV (Appendix D of 40 CFR 122) are not attributable to Site operations and/or are not expected to be present in effluent from the Site based upon the following:

Total Residual Chlorine: Total Residual Chlorine is the chlorine or chlorine type compounds used to disinfect potable water, industrial water and municipal wastewater. Water at the Site is not treated with chlorine; therefore, Total Residual Chlorine is not expected to be present in effluent from the Site.

Total Organic Nitrogen: Total organic nitrogen is a measure of nitrogen found in surface water and possibly groundwater associated with agriculture and municipal organic wastewaters. No agricultural land use occurs within the SMP boundary.

Nitrate-Nitrite: Nitrate-Nitrite is a site-specific additional parameter if agriculture is present

within the SMP boundary. No agricultural land use occurs within the SMP boundary.

Oil and Grease: Oil and grease is any substance recoverable from water in trichlorotrifluoroethane, and includes biological oils, lipids and mineral hydrocarbons. Heidelberg will follow approved PPC Plan procedures to minimize potential oil and grease accumulation from site vehicle traffic and maintenance.

Phosphorus, total: Phosphorus is a site-specific additional parameter if agriculture is present within the SMP boundary. No agricultural land use occurs within the quarry property.

Radioactivity: Radioactivity measures the presence of radioactive isotopes in water. The presence of radioactive isotopes would be due to mining of uranium or extraction of fossil fuels, including coal, petroleum and natural gas. These activities are not present at the Site.

Sulfide: Sulfide is the reduced form of sulfur produced under anaerobic decomposition of organic sulfur compounds and is typically a concern with wastewater treatment. These activities are not present at the Site.

Sulfite: Sulfite is a sulfur oxide anion present in boiler waters dissolved oxygen control, industrial wastewater, and wastewaters where sulfur dioxide is used for dechlorination. These activities are not present at the Site.

Surfactants: Surfactants are present in industrial and municipal wastewaters from the use of detergents, soaps and other cleansing agents. These activities are not present at the Site.

Bromide: Bromide is a naturally occurring anion halide found at low concentrations in freshwater. Bromide is not used or produced at the Site.

Cobalt, total: Cobalt is a metal found in copper and nickel sulfide igneous minerals mined in Canada, South America, South Africa, and Australia. Cobalt is present in the diabase geology at trace levels similar to copper and nickel. The absence of detectable copper (< 4 ug/L) and nickel (< 4 ug/L) in previous effluent samples from the Site indicates cobalt is not present in discharge from the Site.

Magnesium, total: Magnesium is a common alkaline earth metal found in a variety of minerals including sulfide, silicate and carbonate minerals. Although commonly found in ground and surface waters, Magnesium is not used or produced at the site.

Molybdenum, total: Molybdenum is found in copper sulfide igneous minerals mined in the U.S., Canada, China, and South America. Copper sulfide igneous minerals are not expected to be present at the Site. Molybdenum is not reported in the list of trace elements included with the geology of the Site.

Fecal Coliform: Fecal Coliform is an indicator of animal feces contamination or inadequate treatment of animal waste in wastewater treatment and not associated with Site operations. Animal waste is not present at the Site.

Item #29 - Toxic Pollutants and Hazardous Substances

The constituents listed in EPA Table V (Appendix D of 40 CFR 122) are not known to be present, nor are they expected to be present in discharge from the Site.

Asbestos, "Naturally Occurring": PA DEP does not have applicable water quality criteria for asbestos. However, based on an extensive evaluation of the presence of asbestos at the Site, it is not anticipated that asbestos is present in groundwater or surface water at levels that present any risk. Even taking into consideration EPA's National Recommended Water Quality Criteria for asbestos of 7 million fibers per liter (MFL) (which has not been adopted into PA DEP regulations), asbestos at the site does not present a risk to human health. Samples were collected and demonstrate non-dectable levels of asbestos in the effluent.

Heidelberg Materials Northeast LLC – Rock Hill Quarry NPDES Permit Modification January 2023

Attachment D-1:

Analytical Report (4/1/22)

ANALYTICAL REPORT

Eurofins Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-255494-1 Client Project/Site: Rock Hill Quarry

For:

Hanson Aggregates PA LLC 7660 Imperial Way Allentown, Pennsylvania 18195

Attn: Andrew Gutshall

Authorized for release by: 4/18/2022 4:01:06 PM

Julie Gilmore, Project Manager I (484)685-0865

Julie.Gilmore@et.eurofinsus.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Hanson Aggregates PA LLC Project/Site: Rock Hill Quarry

Laboratory Job ID: 460-255494-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	6
Lab Chronicle	13
Certification Summary	18
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	29

A

5

6

8

9

10

Definitions/Glossary

Client: Hanson Aggregates PA LLC Job ID: 460-255494-1

Project/Site: Rock Hill Quarry

Qualifiers

		 \sim	
н	\mathbf{r}	 	и.

 Qualifier
 Qualifier Description

 J
 Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Tresult is less than the NE but greater than or equal to the MDE and the concentration is an approximate

U Indicates the analyte was analyzed for but not detected.

LCMS

Qualifier Qualifier Description

Value is EMPC (estimated maximum possible concentration).

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier Qualifier Description

^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

^6+ Interference Check Standard (ICSA and/or ICSAB) is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	y used abbreviations ma	y or may not	be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)
MDL Method Detection Limit

ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

Eurofins Edison

Page 3 of 31 4/18/2022

Definitions/Glossary

Client: Hanson Aggregates PA LLC Job ID: 460-255494-1

Project/Site: Rock Hill Quarry

Glossary (Continued)

Abbreviation These commonly used abbreviations may or may not be present in this report.

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

5

0

8

46

10

Eurofins Edison

Case Narrative

Client: Hanson Aggregates PA LLC

Project/Site: Rock Hill Quarry

Job ID: 460-255494-1

Job ID: 460-255494-1

Laboratory: Eurofins Edison

Narrative

Job Narrative 460-255494-1

Comments

No additional comments.

Receipt

The samples were received on 4/1/2022 6:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 2.4° C, 3.0° C, 3.5° C and 10.3° C.

Receipt Exceptions

The method detection limit (MDL) is the lowest value detectable by the laboratory for a given analyte as determined by the MDL procedure detailed in EPA 40 CFR 136. Reported MDL values are adjusted for any dilutions and percent moisture (as applicable). The lab is unable to report values below the MDL.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method 6020B: The interference check standard solution (ICSA) associated with the following samples showed results for Cadmium at a level greater than 2X the reporting limit. The solution contains trace impurities of this element, and the results are not due to any matrix interference. These results are consistent with those found by the manufacturer of the ICSA solution. CP (460-255494-6)

Method 6020B: The interference check standard solution (ICSA) associated with the following samples showed results for Cadmium at a level greater than 2X the reporting limit. The solution contains trace impurities of this element, and the results are not due to any matrix interference. These results are consistent with those found by the manufacturer of the ICSA solution. Upgradient (460-255494-1), Downgradient (460-255494-2), Basin 1 (460-255494-3), Basin 2 (460-255494-4) and Pit (460-255494-5) Upgradient (460-255494-2), Basin 1 (460-255494-3), Basin 2 (460-255494-4) and Pit (460-255494-5)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

10

Eurofins Edison 4/18/2022

Client: Hanson Aggregates PA LLC Job ID: 460-255494-1

Project/Site: Rock Hill Quarry

Client Sample ID: Upgradient

Date Collected: 04/01/22 10:30 Date Received: 04/01/22 18:30

Lab Sample ID: 460-255494-1

Matrix: Water

Method: 300.0 - Anions, Ion Ch	_	•							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	10.8		1.60	0.20	mg/L			04/09/22 18:07	
Sulfate	3.18		2.40	0.48	mg/L			04/09/22 18:07	
Bromide	0.054	U	0.32	0.054	mg/L			04/11/22 15:45	
Fluoride	0.071	J	0.080	0.019	mg/L			04/11/22 15:45	
Method: 200.7 Rev 4.4 - Metals	(ICP) - Tot	al Recovera	ıble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Zirconium	0.020	U ^+	0.050	0.020	mg/L	_	04/07/22 09:04	04/08/22 14:30	
Method: 6020B - Metals (ICP/MS	5)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	0.071	U ^6+	0.50	0.071	ug/L	_	04/11/22 09:10	04/12/22 13:04	
Barium	14.3		4.0	0.91	ug/L		04/09/22 10:29	04/10/22 17:07	
Iron	450		120	58.2	ug/L		04/09/22 10:29	04/10/22 17:07	
Nickel	1.4		4.0	0.91				04/10/22 17:07	
Vanadium	0.68		4.0	0.68	Ū			04/10/22 17:07	
Strontium	99.6		4.0	0.50	ŭ			04/10/22 17:07	
Arsenic	0.89		2.0	0.89				04/10/22 17:07	
Copper	4.8	J	4.0		ug/L			04/10/22 17:07	
Boron	30.4	11	80.0		ug/L			04/10/22 17:07	
			40.0		ug/L			04/10/22 17:07	
Aluminum	303				•				
Lead	0.84		1.2	0.84	Ü			04/10/22 17:07	
Zinc	6.5		16.0		ug/L			04/10/22 17:07	
Selenium	0.59	U	2.5	0.59	-			04/10/22 17:07	
Manganese	78.7		8.0		ug/L			04/10/22 17:07	
Chromium	2.5		4.0		ug/L		04/09/22 10:29	04/10/22 17:07	
Cobalt	0.71	U	4.0	0.71	ug/L		04/09/22 10:29	04/10/22 17:07	
Titanium	5.5		4.0	1.9	ug/L		04/09/22 10:29	04/10/22 17:07	
Method: 6020B - Metals (ICP/MS	S) - Dissol	ved							
Analyte		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fa
Iron	58.2	U	120	58.2	ug/L		04/04/22 22:37	04/05/22 00:59	
Method: 7470A - Mercury (CVA)									
Analyte		Qualifier	RL _		Unit	_ D	Prepared	Analyzed	Dil Fa
Mercury	0.043	U	0.20	0.043	ug/L		04/11/22 11:37	04/11/22 17:28	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
HEM (Oil & Grease)	1.4	U	5.0	1.4	mg/L			04/13/22 17:39	
Total Kjeldahl Nitrogen	0.50	U	1.0	0.50	mg/L		04/05/22 13:09	04/06/22 11:21	
Color, Apparent	25.0		5.00	5.00	Color Units			04/03/22 07:45	
Acidity	20.0	U	20.0	20.0	mg/L			04/08/22 13:57	
Alkalinity	103		5.0		mg/L			04/08/22 16:32	
Hardness as calcium carbonate	100		5.0		mg/L			04/12/22 16:35	
Total Dissolved Solids	163		10.0		mg/L			04/08/22 17:36	
Total Suspended Solids	2.5	U	2.5		mg/L			04/08/22 11:10	
•		HF			SU			04/04/22 18:54	
pH	/ u				טס				

Eurofins Edison

4/18/2022

Client: Hanson Aggregates PA LLC Job ID: 460-255494-1

Project/Site: Rock Hill Quarry

Date Received: 04/01/22 18:30

Client Sample ID: Downgradient

Lab Sample ID: 460-255494-2 Date Collected: 04/01/22 10:50

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10.8		0.32	0.039	mg/L			04/09/22 18:22	1
Sulfate	7.07		0.48	0.095	mg/L			04/09/22 18:22	1
Bromide	0.054	U	0.32	0.054	mg/L			04/09/22 18:22	1
Fluoride	0.054	J	0.080	0.019	mg/L			04/09/22 18:22	1

Method: 200.7 Rev 4.4 - Metals	rable								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zirconium	0.020	U	0.050	0.020	mg/L		04/07/22 09:35	04/12/22 17:24	1

Method: 6020B - Metal	ls (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.071	U ^6+	0.50	0.071	ug/L		04/11/22 09:10	04/12/22 13:14	1
Barium	4.8		4.0	0.91	ug/L		04/11/22 11:07	04/11/22 17:20	1
Iron	449		120	58.2	ug/L		04/11/22 11:07	04/11/22 17:20	1
Nickel	0.91	U	4.0	0.91	ug/L		04/11/22 11:07	04/11/22 17:20	1
Vanadium	1.2	J	4.0	0.68	ug/L		04/11/22 11:07	04/11/22 17:20	1
Strontium	60.4		4.0	0.50	ug/L		04/11/22 11:07	04/11/22 17:20	1
Arsenic	0.89	U	2.0	0.89	ug/L		04/11/22 11:07	04/11/22 17:20	1
Copper	3.3	J	4.0	2.5	ug/L		04/11/22 11:07	04/11/22 17:20	1
Boron	30.4	U	80.0	30.4	ug/L		04/11/22 11:07	04/11/22 17:20	1
Aluminum	256		40.0	19.5	ug/L		04/11/22 11:07	04/11/22 17:20	1
Lead	0.84	U	1.2	0.84	ug/L		04/11/22 11:07	04/11/22 17:20	1
Zinc	6.6	J	16.0	6.5	ug/L		04/11/22 11:07	04/11/22 17:20	1
Selenium	0.59	U	2.5	0.59	ug/L		04/11/22 11:07	04/11/22 17:20	1
Manganese	50.3		8.0	1.5	ug/L		04/11/22 11:07	04/11/22 17:20	1
Chromium	2.5	U	4.0	2.5	ug/L		04/11/22 11:07	04/11/22 17:20	1
Cobalt	0.71	U	4.0	0.71	ug/L		04/11/22 11:07	04/11/22 17:20	1
Titanium	6.6		4.0	1.9	ug/L		04/11/22 11:07	04/13/22 20:41	1

Method: 6020B - Metals (ICP/MS) - Dissolved										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Iron	58.2	U	120	58.2	ug/L		04/04/22 22:37	04/05/22 01:01	1

	Method: 7470A - Mercury (CVAA))								
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.043	U	0.20	0.043	ug/L		04/11/22 11:37	04/11/22 17:30	1
Ì										

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	1.4	U	5.0	1.4	mg/L			04/13/22 17:39	1
Total Kjeldahl Nitrogen	0.50	U	1.0	0.50	mg/L		04/05/22 13:09	04/06/22 11:01	1
Color, True	25.0		5.00	5.00	Color Units			04/03/22 07:45	1
Acidity	20.0	U	20.0	20.0	mg/L			04/08/22 13:57	1
Alkalinity	64.2		5.0	5.0	mg/L			04/08/22 16:16	1
Hardness as calcium carbonate	70.0		5.0	5.0	mg/L			04/12/22 16:35	1
Total Dissolved Solids	97.0		10.0	10.0	mg/L			04/08/22 17:36	1
Total Suspended Solids	4.3		2.5	2.5	mg/L			04/08/22 11:10	1
pH	8.0	HF			SU			04/04/22 18:56	1
Temperature	21.0	HF			Degrees C			04/04/22 18:56	1

Eurofins Edison

Client: Hanson Aggregates PA LLC Job ID: 460-255494-1

Project/Site: Rock Hill Quarry

Date Received: 04/01/22 18:30

Boron

Iron

Client Sample ID: Basin 1 Date Collected: 04/01/22 11:50

67.5 J

58.2 U

Lab Sample ID: 460-255494-3

04/11/22 11:07 04/11/22 17:22

04/04/22 22:37 04/05/22 01:03

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.74		0.32	0.039	mg/L			04/09/22 18:38	
Sulfate	10.5		0.48	0.095	mg/L			04/09/22 18:38	1
Bromide	0.054	U	0.32	0.054	mg/L			04/09/22 18:38	1
Fluoride	0.030	J	0.080	0.019	mg/L			04/09/22 18:38	
Method: 200.7 Rev 4.	4 - Metals (ICP) - Tot	al Recovera	able						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Zirconium	0.020	U	0.050	0.020	mg/L		04/07/22 09:24	04/12/22 16:55	1
Method: 6020B - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.071	U ^6+	0.50	0.071	ug/L		04/11/22 09:10	04/12/22 13:16	1
Barium	4.6		4.0	0.91	ug/L		04/11/22 11:07	04/11/22 17:22	1
Iron	376		120	58.2	ug/L		04/11/22 11:07	04/11/22 17:22	1
Nickel	0.91	U	4.0	0.91	ug/L		04/11/22 11:07	04/11/22 17:22	1
Vanadium	2.1	J	4.0	0.68	ug/L		04/11/22 11:07	04/11/22 17:22	1
Strontium	75.4		4.0	0.50	ug/L		04/11/22 11:07	04/11/22 17:22	1
Arsenic	0.89	U	2.0	0.89	ug/L		04/11/22 11:07	04/11/22 17:22	1
Copper	2.5	U	4.0	2.5	ug/L		04/11/22 11:07	04/11/22 17:22	1

80.0

30.4 ug/L

58.2 ug/L

Method: 6020B - Metals (ICP/MS Analyte) - Dissolved Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Titanium	8.9	4.0	1.9	ug/L		04/11/22 11:07	04/13/22 20:45	1
T14 1	0.0	4.0		•		04/44/00 44:07	04/42/22 20:45	4
Cobalt	0.71 U	4.0	0.71	ug/L		04/11/22 11:07	04/11/22 17:22	1
Chromium	2.5 U	4.0	2.5	ug/L		04/11/22 11:07	04/11/22 17:22	1
Manganese	23.6	8.0	1.5	ug/L		04/11/22 11:07	04/11/22 17:22	1
Selenium	0.59 U	2.5	0.59	ug/L		04/11/22 11:07	04/11/22 17:22	1
Zinc	13.0 J	16.0	6.5	ug/L		04/11/22 11:07	04/11/22 17:22	1
Lead	0.84 U	1.2	0.84	ug/L		04/11/22 11:07	04/11/22 17:22	1
Aluminum	223	40.0	19.5	ug/L		04/11/22 11:07	04/11/22 17:22	1

	 Method: 7470A - Mercury (CVA	A)								
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Mercury	0.043	U	0.20	0.043	ug/L		04/11/22 11:37	04/11/22 17:31	1

120

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	1.4	U	5.0	1.4	mg/L	_		04/13/22 17:39	1
Total Kjeldahl Nitrogen	0.50	U	1.0	0.50	mg/L		04/05/22 13:31	04/06/22 10:31	1
Color, Apparent	10.0		5.00	5.00	Color Units			04/03/22 07:45	1
Acidity	20.0	U	20.0	20.0	mg/L			04/08/22 13:57	1
Alkalinity	118		5.0	5.0	mg/L			04/08/22 16:40	1
Hardness as calcium carbonate	130		5.0	5.0	mg/L			04/12/22 16:35	1
Total Dissolved Solids	168		10.0	10.0	mg/L			04/08/22 17:36	1
Total Suspended Solids	4.0		2.5	2.5	mg/L			04/08/22 11:10	1
pH	8.1	HF			SU			04/04/22 18:58	1
Temperature	20.9	HF			Degrees C			04/04/22 18:58	1

Eurofins Edison

4/18/2022

Client: Hanson Aggregates PA LLC Job ID: 460-255494-1

Project/Site: Rock Hill Quarry

Client Sample ID: Basin 2 Lab Sample ID: 460-255494-4

Date Collected: 04/01/22 11:20 Matrix: Water Date Received: 04/01/22 18:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	2.42		1.60	0.20	mg/L	_		04/09/22 18:54	
Sulfate	8.24		2.40	0.48	mg/L			04/09/22 18:54	
Bromide	0.054	U	0.32	0.054	mg/L			04/11/22 16:01	
Fluoride	0.035	J	0.080	0.019	mg/L			04/11/22 16:01	
Method: 200.7 Rev 4.4 - Metals	(ICP) - Tot	al Recovera	ıble						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Zirconium	0.020	U	0.050	0.020	mg/L		04/07/22 09:19	04/12/22 14:17	
Method: 6020B - Metals (ICP/M	•								
Analyte		Qualifier	RL _		Unit	_ D	Prepared	Analyzed	Dil Fa
Cadmium		U ^6+	0.50	0.071	-			04/12/22 13:19	
Barium	4.9		4.0		ug/L		04/11/22 11:07	04/11/22 17:25	
lron	1000		120		ug/L		04/11/22 11:07	04/11/22 17:25	
Nickel	1.5	J	4.0	0.91	ug/L		04/11/22 11:07	04/11/22 17:25	
Vanadium	4.5		4.0	0.68	ug/L		04/11/22 11:07	04/11/22 17:25	
Strontium	54.6		4.0	0.50			04/11/22 11:07	04/11/22 17:25	
Arsenic	0.89	U	2.0	0.89	ug/L		04/11/22 11:07	04/11/22 17:25	
Copper	3.7	J	4.0	2.5	ug/L		04/11/22 11:07	04/11/22 17:25	
Boron	33.4	J	80.0	30.4	ug/L		04/11/22 11:07	04/11/22 17:25	
Aluminum	640		40.0	19.5	ug/L		04/11/22 11:07	04/11/22 17:25	
Lead	0.84	U	1.2	0.84	ug/L		04/11/22 11:07	04/11/22 17:25	
Zinc	6.5	U	16.0	6.5	ug/L		04/11/22 11:07	04/11/22 17:25	
Selenium	0.59	U	2.5	0.59	ug/L		04/11/22 11:07	04/11/22 17:25	
Manganese	108		8.0	1.5	ug/L		04/11/22 11:07	04/11/22 17:25	
Chromium	3.5	J	4.0	2.5	ug/L		04/11/22 11:07	04/11/22 17:25	
Cobalt	0.71	U	4.0	0.71	ug/L		04/11/22 11:07	04/11/22 17:25	
Titanium	17.9		4.0	1.9	ug/L		04/11/22 11:07	04/13/22 20:53	
Method: 6020B - Metals (ICP/M	S) - Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	58.2	U	120	58.2	ug/L	_	04/04/22 22:37	04/05/22 01:06	
Method: 7470A - Mercury (CVA	•								
Analyte		Qualifier	RL _	MDL		_ D	Prepared	Analyzed	Dil Fa
Mercury	0.043	U	0.20	0.043	ug/L		04/11/22 11:37	04/11/22 17:32	
General Chemistry									
Analyte		Qualifier	RL _		Unit	_ D	Prepared	Analyzed	Dil Fa
HEM (Oil & Grease)	1.4	U	5.0		mg/L			04/13/22 17:39	
Total Kjeldahl Nitrogen	1.6		1.0		mg/L		04/06/22 14:26	04/07/22 12:09	
Color, True	10.0		5.00		Color Units			04/03/22 07:45	
Acidity	20.0	U	20.0		mg/L			04/08/22 13:57	
Alkalinity	103		5.0		mg/L			04/08/22 16:49	
Hardness as calcium carbonate	110		5.0		mg/L			04/12/22 16:35	
Total Dissolved Solids	179		10.0		mg/L			04/08/22 17:36	
Total Suspended Solids	10.2		2.5	2.5	mg/L			04/08/22 11:10	
pH	8.4	HF			SU			04/04/22 19:00	
Temperature	21.0	HE			Degrees C			04/04/22 19:00	

Eurofins Edison

3

5

6

8

10

1

iiio Edisoii

4/18/2022

Client: Hanson Aggregates PA LLC Job ID: 460-255494-1

Project/Site: Rock Hill Quarry

Lab Sample ID: 460-255494-5 **Client Sample ID: Pit** Date Collected: 04/01/22 12:15

Matrix: Water

Date Received: 04/01/22 18:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.42		0.32	0.039	mg/L			04/09/22 19:10	1
Sulfate	6.14		0.48	0.095	mg/L			04/09/22 19:10	1
Bromide	0.054	U	0.32	0.054	mg/L			04/09/22 19:10	1
Fluoride	0.057	J	0.080	0.019	mg/L			04/09/22 19:10	1

Method: 200.7 Rev 4.4 - Metals	rable								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zirconium	0.020	U	0.050	0.020	mg/L		04/07/22 09:24	04/12/22 16:52	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.071	U ^6+	0.50	0.071	ug/L		04/11/22 09:10	04/12/22 13:21	1
Barium	1.9	J	4.0	0.91	ug/L		04/11/22 11:07	04/11/22 17:27	1
Iron	58.2	U	120	58.2	ug/L		04/11/22 11:07	04/11/22 17:27	1
Nickel	0.91	U	4.0	0.91	ug/L		04/11/22 11:07	04/11/22 17:27	1
Vanadium	0.68	U	4.0	0.68	ug/L		04/11/22 11:07	04/11/22 17:27	1
Strontium	22.8		4.0	0.50	ug/L		04/11/22 11:07	04/11/22 17:27	1
Arsenic	0.89	U	2.0	0.89	ug/L		04/11/22 11:07	04/11/22 17:27	1
Copper	2.5	U	4.0	2.5	ug/L		04/11/22 11:07	04/11/22 17:27	1
Boron	44.8	J	80.0	30.4	ug/L		04/11/22 11:07	04/11/22 17:27	1
Aluminum	27.2	J	40.0	19.5	ug/L		04/11/22 11:07	04/11/22 17:27	1
Lead	0.84	U	1.2	0.84	ug/L		04/11/22 11:07	04/11/22 17:27	1
Zinc	6.5	U	16.0	6.5	ug/L		04/11/22 11:07	04/11/22 17:27	1
Selenium	0.59	U	2.5	0.59	ug/L		04/11/22 11:07	04/11/22 17:27	1
Manganese	4.1	J	8.0	1.5	ug/L		04/11/22 11:07	04/11/22 17:27	1
Chromium	2.5	U	4.0	2.5	ug/L		04/11/22 11:07	04/11/22 17:27	1
Cobalt	0.71	U	4.0	0.71	ug/L		04/11/22 11:07	04/11/22 17:27	1
Titanium	1.9	U	4.0	1.9	ug/L		04/11/22 11:07	04/13/22 20:55	1

Method: 6020B - Metals (ICP/MS) - Dissolved										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Iron	58.2	U	120	58.2	ug/L		04/04/22 22:37	04/05/22 01:08	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.043	U	0.20	0.043	ug/L		04/11/22 11:37	04/11/22 17:33	1
General Chemistry									

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	1.4	U	5.0	1.4	mg/L			04/13/22 17:39	1
Total Kjeldahl Nitrogen	0.50	U	1.0	0.50	mg/L		04/05/22 13:09	04/06/22 12:09	1
Color, Apparent	5.00	U	5.00	5.00	Color Units			04/03/22 07:45	1
Acidity	20.0	U	20.0	20.0	mg/L			04/08/22 13:57	1
Alkalinity	56.6		5.0	5.0	mg/L			04/08/22 16:57	1
Hardness as calcium carbonate	62.0		5.0	5.0	mg/L			04/12/22 16:35	1
Total Dissolved Solids	98.0		10.0	10.0	mg/L			04/08/22 17:36	1
Total Suspended Solids	2.5	U	2.5	2.5	mg/L			04/08/22 11:10	1
pH	8.3	HF			SU			04/04/22 19:02	1
Temperature	21.1	HF			Degrees C			04/04/22 19:02	1

Eurofins Edison

Client: Hanson Aggregates PA LLC Job ID: 460-255494-1

Project/Site: Rock Hill Quarry

Total Kjeldahl Nitrogen

Total Dissolved Solids

Total Suspended Solids

Hardness as calcium carbonate

Color, Apparent

Acidity

Alkalinity

Temperature

Client Sample ID: CP Lab Sample ID: 460-255494-6

Date Collected: 04/01/22 09:30 Matrix: Water Date Received: 04/01/22 18:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	1.42		0.32	0.039	mg/L			04/09/22 20:14	
Sulfate	5.90		0.48	0.095	mg/L			04/09/22 20:14	
Bromide	0.054	U	0.32	0.054	mg/L			04/09/22 20:14	
Fluoride	0.075	J	0.080	0.019	mg/L			04/09/22 20:14	
Method: 200.7 Rev 4.4 - N	letals (ICP) - Tot	al Recovera	ıble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Zirconium	0.020	U	0.050	0.020	mg/L		04/07/22 09:35	04/12/22 17:27	
Method: 6020B - Metals (I	CP/MS)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Cadmium	0.071	U ^6+	0.50	0.071	ug/L		04/11/22 09:08	04/12/22 12:46	
Barium	2.4	J	4.0	0.91	ug/L		04/11/22 11:07	04/11/22 17:30	
lron	193		120	58.2	ug/L		04/11/22 11:07	04/11/22 17:30	
Nickel	0.91	U	4.0	0.91	ug/L		04/11/22 11:07	04/11/22 17:30	
<i>V</i> anadium	0.68	U	4.0	0.68	ug/L		04/11/22 11:07	04/11/22 17:30	
Strontium	27.5		4.0	0.50	ug/L		04/11/22 11:07	04/11/22 17:30	
Arsenic	0.89	U	2.0	0.89	ug/L		04/11/22 11:07	04/11/22 17:30	
Copper	2.5	U	4.0	2.5	ug/L		04/11/22 11:07	04/11/22 17:30	
Boron	38.4	J	80.0	30.4	ug/L		04/11/22 11:07	04/11/22 17:30	
Aluminum	215		40.0	19.5	ug/L		04/11/22 11:07	04/11/22 17:30	
_ead	0.84	U	1.2	0.84	ug/L		04/11/22 11:07	04/11/22 17:30	
Zinc	6.5	U	16.0	6.5	ug/L		04/11/22 11:07	04/11/22 17:30	
Selenium	0.59	U	2.5	0.59	ug/L		04/11/22 11:07	04/11/22 17:30	
Manganese	12.7		8.0	1.5	ug/L		04/11/22 11:07	04/11/22 17:30	
Chromium	2.5	U	4.0	2.5	ug/L		04/11/22 11:07	04/11/22 17:30	
Cobalt	0.71	U	4.0	0.71	ug/L		04/11/22 11:07	04/11/22 17:30	
Titanium	5.1		4.0	1.9	ug/L		04/11/22 11:07	04/13/22 20:57	
Method: 6020B - Metals (I	•								
Analyte		Qualifier	RL _	MDL		<u>D</u>	Prepared	Analyzed	Dil F
ron	58.2	U	120	58.2	ug/L		04/04/22 22:37	04/05/22 01:10	
Method: 7470A - Mercury		O Per	ъ.	MP.	1114	_	D	A	D.: -
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Mercury	0.043	U	0.20	0.043	ug/L		04/11/22 11:37	04/11/22 17:35	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
HEM (Oil & Grease)	1.4	U	5.0	1 4	mg/L			04/13/22 17:39	

04/04/22 19:04 1 04/04/22 19:04 1

04/03/22 07:45

04/08/22 13:57

04/08/22 17:05

04/12/22 16:35

04/08/22 17:36

04/08/22 11:10

04/05/22 13:09 04/06/22 11:03

Eurofins Edison

1.0

5.00

20.0

5.0

5.0

10.0

2.5

0.50 mg/L

20.0 mg/L

5.0 mg/L

5.0 mg/L

10.0 mg/L

2.5 mg/L

SU

Degrees C

5.00 Color Units

0.50 U

20.0 U

5.00

55.2

56.0

84.0

3.1

8.0 HF

20.9 HF

3

5

7

9

10

1

4/18/2022

Client Sample ID: Field Blank(Pit)

Date Collected: 04/01/22 08:45 Date Received: 04/01/22 18:30 Lab Sample ID: 460-255494-7

Matrix: Water

Job ID: 460-255494-1

Method: 537 IDA - EPA 537	Isotope Dilution	on							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	0.40	U	1.62	0.40	ng/L		04/06/22 07:04	04/07/22 22:02	1
Perfluorooctanesulfonic acid	0.40	U	1.62	0.40	ng/L		04/06/22 07:04	04/07/22 22:02	1
Perfluorooctanoic acid	0.40	U	1.62	0.40	ng/L		04/06/22 07:04	04/07/22 22:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 PFBS	133		16 - 200				04/06/22 07:04	04/07/22 22:02	1
13C8 PFOA	117		48 - 162				04/06/22 07:04	04/07/22 22:02	1
13C8 PFOS	118		51 - 159				04/06/22 07:04	04/07/22 22:02	1

Client Sample ID: Field Blank(CP)

Date Collected: 04/01/22 09:10

Date Received: 04/01/22 18:30

Lab Sample ID: 460-255494-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	0.41	U	1.62	0.41	ng/L		04/06/22 07:04	04/07/22 22:13	1
Perfluorooctanesulfonic acid	0.41	U	1.62	0.41	ng/L		04/06/22 07:04	04/07/22 22:13	1
Perfluorooctanoic acid	0.41	U	1.62	0.41	ng/L		04/06/22 07:04	04/07/22 22:13	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 PFBS	125		16 - 200				04/06/22 07:04	04/07/22 22:13	1
13C8 PFOA	112		48 - 162				04/06/22 07:04	04/07/22 22:13	1
13C8 PFOS	117		51 - 159				04/06/22 07:04	04/07/22 22:13	1

Client Sample ID: CP(PFOS)

Date Collected: 04/01/22 09:05 Date Received: 04/01/22 18:30 Lab Sample ID: 460-255494-9

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	0.51	J	1.62	0.41	ng/L		04/06/22 07:04	04/07/22 22:24	1
Perfluorooctanesulfonic acid	3.01	1	1.62	0.41	ng/L		04/06/22 07:04	04/07/22 22:24	1
Perfluorooctanoic acid	5.58		1.62	0.41	ng/L		04/06/22 07:04	04/07/22 22:24	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 PFBS	117		16 - 200				04/06/22 07:04	04/07/22 22:24	1
13C8 PFOA	115		48 - 162				04/06/22 07:04	04/07/22 22:24	1
13C8 PFOS	112		51 - 159				04/06/22 07:04	04/07/22 22:24	1

Client Sample ID: Pit(PFOS)
Date Collected: 04/01/22 08:40

Date Collected: 04/01/22 08:40

Date Received: 04/01/22 18:30

Lab Sample ID: 460-255494-10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	0.54	J	1.65	0.41	ng/L		04/06/22 07:04	04/07/22 22:35	1
Perfluorooctanesulfonic acid	1.57	J	1.65	0.41	ng/L		04/06/22 07:04	04/07/22 22:35	1
Perfluorooctanoic acid	6.18		1.65	0.41	ng/L		04/06/22 07:04	04/07/22 22:35	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 PFBS	122		16 - 200				04/06/22 07:04	04/07/22 22:35	1
13C8 PFOA	121		48 - 162				04/06/22 07:04	04/07/22 22:35	1
13C8 PFOS	115		51 - 159				04/06/22 07:04	04/07/22 22:35	1

Eurofins Edison

Client: Hanson Aggregates PA LLC Project/Site: Rock Hill Quarry

Client Sample ID: Upgradient

Date Collected: 04/01/22 10:30 Date Received: 04/01/22 18:30

Lab Sample ID: 460-255494-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	838272	04/09/22 18:07	VMI	TAL EDI
Total/NA	Analysis	300.0		1	838704	04/11/22 15:45	VMI	TAL EDI
Total Recoverable Total Recoverable	Prep Analysis	200.7 Rev 4.4 200.7 Rev 4.4		1	242030 242668	04/07/22 09:04 04/08/22 14:30		ELLE ELLE
Dissolved Dissolved Dissolved	Filtration Prep Analysis	FILTRATION 3010A 6020B		1	837333 837335 837381	04/04/22 22:34 04/04/22 22:37 04/05/22 00:59	VAD	TAL EDI TAL EDI TAL EDI
Total/NA Total/NA	Prep Analysis	3020A 6020B		1	621075 621408	04/11/22 09:10 04/12/22 13:04		TAL BUF TAL BUF
Total/NA Total/NA	Prep Analysis	3010A 6020B		1	838260 838367	04/09/22 10:29 04/10/22 17:07		TAL EDI TAL EDI
Total/NA Total/NA	Prep Analysis	7470A 7470A		1	621208 621295	04/11/22 11:37 04/11/22 17:28	NVK BMB	TAL BUF TAL BUF
Total/NA	Analysis	1664A		1	838981	04/13/22 17:39	PXP	TAL EDI
Total/NA Total/NA	Prep Analysis	351.2 351.2		1	241206 241655	04/05/22 13:09 04/06/22 11:21	F8AU	ELLE ELLE
Total/NA	Analysis	SM 2120B		1		04/03/22 07:45		TAL EDI
Total/NA	Analysis	SM 2310B		1	838132	04/08/22 13:57	RAK	TAL EDI
Total/NA	Analysis	SM 2320B		1	838472	04/08/22 16:32	MMC	TAL EDI
Total/NA	Analysis	SM 2340C		1	838760	04/12/22 16:35	HTV	TAL EDI
Total/NA	Analysis	SM 2540C		1	838168	04/08/22 17:36	HTV	TAL EDI
Total/NA	Analysis	SM 2540D		1	838077	04/08/22 11:10	HTV	TAL EDI
Total/NA	Analysis	SM 4500 H+ B		1	837276	04/04/22 18:54	KSS	TAL EDI

Client Sample ID: Downgradient

Date Collected: 04/01/22 10:50 Date Received: 04/01/22 18:30

Lab Sample ID: 460-255494-2

Matrix: Water

Dan Ton	Batch	Batch	D	Dilution	Batch	Prepared	Amakint	Lak
Prep Type Total/NA	Analysis	- Method 300.0	Run	_ <u>Factor</u> _	Number 838272	or Analyzed 04/09/22 18:22	Analyst VMI	TAL EDI
Total Recoverable Total Recoverable	Prep Analysis	200.7 Rev 4.4 200.7 Rev 4.4		1	242055 243896	04/07/22 09:35 04/12/22 17:24	WBK6	ELLE ELLE
Dissolved Dissolved Dissolved	Filtration Prep Analysis	FILTRATION 3010A 6020B		1	837333 837335 837381	04/04/22 22:34 04/04/22 22:37 04/05/22 01:01	VAD	TAL EDI TAL EDI TAL EDI
Total/NA Total/NA	Prep Analysis	3020A 6020B		1	621075 621408	04/11/22 09:10 04/12/22 13:14		TAL BUF TAL BUF
Total/NA Total/NA	Prep Analysis	3010A 6020B		1	838496 838499	04/11/22 11:07 04/11/22 17:20	NNW MDC	TAL EDI TAL EDI
Total/NA Total/NA	Prep Analysis	3010A 6020B		1	838496 839019	04/11/22 11:07 04/13/22 20:41	NNW VAD	TAL EDI TAL EDI
Total/NA Total/NA	Prep Analysis	7470A 7470A		1	621208 621295	04/11/22 11:37 04/11/22 17:30	NVK BMB	TAL BUF TAL BUF

Lab Chronicle

Client: Hanson Aggregates PA LLC Job ID: 460-255494-1

Project/Site: Rock Hill Quarry

Client Sample ID: Downgradient

Date Collected: 04/01/22 10:50 Date Received: 04/01/22 18:30

Lab Sample ID: 460-255494-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1664A			838981	04/13/22 17:39	PXP	TAL EDI
Total/NA	Prep	351.2			241206	04/05/22 13:09	F8AU	ELLE
Total/NA	Analysis	351.2		1	241655	04/06/22 11:01	JCG7	ELLE
Total/NA	Analysis	SM 2120B		1	837124	04/03/22 07:45	VBG	TAL EDI
Total/NA	Analysis	SM 2310B		1	838132	04/08/22 13:57	RAK	TAL EDI
Total/NA	Analysis	SM 2320B		1	838472	04/08/22 16:16	MMC	TAL EDI
Total/NA	Analysis	SM 2340C		1	838760	04/12/22 16:35	HTV	TAL EDI
Total/NA	Analysis	SM 2540C		1	838168	04/08/22 17:36	HTV	TAL EDI
Total/NA	Analysis	SM 2540D		1	838077	04/08/22 11:10	HTV	TAL EDI
Total/NA	Analysis	SM 4500 H+ B		1	837276	04/04/22 18:56	KSS	TAL EDI

Lab Sample ID: 460-255494-3

Matrix: Water

Client Sample ID: Basin 1 Date Collected: 04/01/22 11:50 Date Received: 04/01/22 18:30

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			838272	04/09/22 18:38	VMI	TAL ED
Total Recoverable	Prep	200.7 Rev 4.4			242045	04/07/22 09:24	UJLA	ELLE
Total Recoverable	Analysis	200.7 Rev 4.4		1	243896	04/12/22 16:55	WJM9	ELLE
Dissolved	Filtration	FILTRATION			837333	04/04/22 22:34	VAD	TAL ED
Dissolved	Prep	3010A			837335	04/04/22 22:37	VAD	TAL ED
Dissolved	Analysis	6020B		1	837381	04/05/22 01:03	VAD	TAL ED
Total/NA	Prep	3020A			621075	04/11/22 09:10	NBS	TAL BU
Total/NA	Analysis	6020B		1	621408	04/12/22 13:16	BMB	TAL BU
īotal/NA	Prep	3010A			838496	04/11/22 11:07	NNW	TAL ED
otal/NA	Analysis	6020B		1	838499	04/11/22 17:22	MDC	TAL ED
Total/NA	Prep	3010A			838496	04/11/22 11:07	NNW	TAL ED
otal/NA	Analysis	6020B		1	839019	04/13/22 20:45	VAD	TAL ED
Total/NA	Prep	7470A			621208	04/11/22 11:37	NVK	TAL BU
otal/NA	Analysis	7470A		1	621295	04/11/22 17:31	BMB	TAL BL
Total/NA	Analysis	1664A		1	838981	04/13/22 17:39	PXP	TAL ED
Total/NA	Prep	351.2			241213	04/05/22 13:31	F8AU	ELLE
Total/NA	Analysis	351.2		1	241655	04/06/22 10:31	JCG7	ELLE
Total/NA	Analysis	SM 2120B		1	837124	04/03/22 07:45	VBG	TAL ED
Total/NA	Analysis	SM 2310B		1	838132	04/08/22 13:57	RAK	TAL ED
Total/NA	Analysis	SM 2320B		1	838472	04/08/22 16:40	MMC	TAL ED
Total/NA	Analysis	SM 2340C		1	838760	04/12/22 16:35	HTV	TAL ED
otal/NA	Analysis	SM 2540C		1	838168	04/08/22 17:36	HTV	TAL ED
otal/NA	Analysis	SM 2540D		1	838077	04/08/22 11:10	HTV	TAL ED
īotal/NA	Analysis	SM 4500 H+ B		1	837276	04/04/22 18:58	KSS	TAL ED

Client: Hanson Aggregates PA LLC Project/Site: Rock Hill Quarry

Client Sample ID: Basin 2

Lab Sample ID: 460-255494-4

Matrix: Water

Date Collected: 04/01/22 11:20 Date Received: 04/01/22 18:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	838272	04/09/22 18:54	VMI	TAL EDI
Total/NA	Analysis	300.0		1	838704	04/11/22 16:01	VMI	TAL EDI
Total Recoverable	Prep	200.7 Rev 4.4			242041	04/07/22 09:19	UJLA	ELLE
Total Recoverable	Analysis	200.7 Rev 4.4		1	243733	04/12/22 14:17	WJM9	ELLE
Dissolved	Filtration	FILTRATION			837333	04/04/22 22:34	VAD	TAL EDI
Dissolved	Prep	3010A			837335	04/04/22 22:37	VAD	TAL EDI
Dissolved	Analysis	6020B		1	837381	04/05/22 01:06	VAD	TAL EDI
Total/NA	Prep	3020A			621075	04/11/22 09:10	NBS	TAL BUF
Total/NA	Analysis	6020B		1	621408	04/12/22 13:19	BMB	TAL BUF
Total/NA	Prep	3010A			838496	04/11/22 11:07	NNW	TAL EDI
Total/NA	Analysis	6020B		1	838499	04/11/22 17:25	MDC	TAL EDI
Total/NA	Prep	3010A			838496	04/11/22 11:07	NNW	TAL EDI
Total/NA	Analysis	6020B		1	839019	04/13/22 20:53	VAD	TAL EDI
Total/NA	Prep	7470A			621208	04/11/22 11:37	NVK	TAL BUF
Total/NA	Analysis	7470A		1	621295	04/11/22 17:32	BMB	TAL BUF
Total/NA	Analysis	1664A		1	838981	04/13/22 17:39	PXP	TAL EDI
Total/NA	Prep	351.2			241699	04/06/22 14:26	F8AU	ELLE
Total/NA	Analysis	351.2		1	242201	04/07/22 12:09	JCG7	ELLE
Total/NA	Analysis	SM 2120B		1	837124	04/03/22 07:45	VBG	TAL EDI
Total/NA	Analysis	SM 2310B		1	838132	04/08/22 13:57	RAK	TAL EDI
Total/NA	Analysis	SM 2320B		1	838472	04/08/22 16:49	MMC	TAL EDI
Total/NA	Analysis	SM 2340C		1	838760	04/12/22 16:35	HTV	TAL EDI
Total/NA	Analysis	SM 2540C		1	838168	04/08/22 17:36	HTV	TAL EDI
Total/NA	Analysis	SM 2540D		1	838077	04/08/22 11:10	HTV	TAL EDI
Total/NA	Analysis	SM 4500 H+ B		1	837276	04/04/22 19:00	KSS	TAL EDI

Client Sample ID: Pit

Date Collected: 04/01/22 12:15 Date Received: 04/01/22 18:30 Lab Sample ID: 460-255494-5

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	838272	04/09/22 19:10	VMI	TAL EDI
Total Recoverable	Prep	200.7 Rev 4.4			242045	04/07/22 09:24	UJLA	ELLE
Total Recoverable	Analysis	200.7 Rev 4.4		1	243896	04/12/22 16:52	WJM9	ELLE
Dissolved	Filtration	FILTRATION			837333	04/04/22 22:34	VAD	TAL EDI
Dissolved	Prep	3010A			837335	04/04/22 22:37	VAD	TAL EDI
Dissolved	Analysis	6020B		1	837381	04/05/22 01:08	VAD	TAL EDI
Total/NA	Prep	3020A			621075	04/11/22 09:10	NBS	TAL BUF
Total/NA	Analysis	6020B		1	621408	04/12/22 13:21	BMB	TAL BUF
Total/NA	Prep	3010A			838496	04/11/22 11:07	NNW	TAL EDI
Total/NA	Analysis	6020B		1	838499	04/11/22 17:27	MDC	TAL EDI
Total/NA	Prep	3010A			838496	04/11/22 11:07	NNW	TAL EDI
Total/NA	Analysis	6020B		1	839019	04/13/22 20:55	VAD	TAL EDI

Eurofins Edison

Lab Chronicle

Client: Hanson Aggregates PA LLC Job ID: 460-255494-1

Project/Site: Rock Hill Quarry

Date Received: 04/01/22 18:30

Lab Sample ID: 460-255494-5 **Client Sample ID: Pit** Date Collected: 04/01/22 12:15

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			621208	04/11/22 11:37	NVK	TAL BUF
Total/NA	Analysis	7470A		1	621295	04/11/22 17:33	BMB	TAL BUF
Total/NA	Analysis	1664A		1	838981	04/13/22 17:39	PXP	TAL EDI
Total/NA	Prep	351.2			241206	04/05/22 13:09	F8AU	ELLE
Total/NA	Analysis	351.2		1	241655	04/06/22 12:09	JCG7	ELLE
Total/NA	Analysis	SM 2120B		1	837124	04/03/22 07:45	VBG	TAL EDI
Total/NA	Analysis	SM 2310B		1	838132	04/08/22 13:57	RAK	TAL EDI
Total/NA	Analysis	SM 2320B		1	838472	04/08/22 16:57	MMC	TAL EDI
Total/NA	Analysis	SM 2340C		1	838760	04/12/22 16:35	HTV	TAL EDI
Total/NA	Analysis	SM 2540C		1	838168	04/08/22 17:36	HTV	TAL EDI
Total/NA	Analysis	SM 2540D		1	838077	04/08/22 11:10	HTV	TAL EDI
Total/NA	Analysis	SM 4500 H+ B		1	837276	04/04/22 19:02	KSS	TAL EDI

Lab Sample ID: 460-255494-6 **Client Sample ID: CP**

Matrix: Water

Date Collected: 04/01/22 09:30 Date Received: 04/01/22 18:30

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			838272	04/09/22 20:14	VMI	TAL ED
Total Recoverable	Prep	200.7 Rev 4.4			242055	04/07/22 09:35	WBK6	ELLE
Total Recoverable	Analysis	200.7 Rev 4.4		1	243896	04/12/22 17:27	WJM9	ELLE
Dissolved	Filtration	FILTRATION			837333	04/04/22 22:34	VAD	TAL ED
Dissolved	Prep	3010A			837335	04/04/22 22:37	VAD	TAL ED
Dissolved	Analysis	6020B		1	837381	04/05/22 01:10	VAD	TAL ED
Total/NA	Prep	3020A			621011	04/11/22 09:08	NBS	TAL BU
Total/NA	Analysis	6020B		1	621407	04/12/22 12:46	BMB	TAL BL
Total/NA	Prep	3010A			838496	04/11/22 11:07	NNW	TAL ED
Total/NA	Analysis	6020B		1	838499	04/11/22 17:30	MDC	TAL ED
Total/NA	Prep	3010A			838496	04/11/22 11:07	NNW	TAL ED
Total/NA	Analysis	6020B		1	839019	04/13/22 20:57	VAD	TAL ED
Total/NA	Prep	7470A			621208	04/11/22 11:37	NVK	TAL BL
Total/NA	Analysis	7470A		1	621295	04/11/22 17:35	BMB	TAL BL
Total/NA	Analysis	1664A		1	838981	04/13/22 17:39	PXP	TAL ED
Total/NA	Prep	351.2			241206	04/05/22 13:09	F8AU	ELLE
Total/NA	Analysis	351.2		1	241655	04/06/22 11:03	JCG7	ELLE
Total/NA	Analysis	SM 2120B		1	837124	04/03/22 07:45	VBG	TAL ED
Total/NA	Analysis	SM 2310B		1	838132	04/08/22 13:57	RAK	TAL ED
Total/NA	Analysis	SM 2320B		1	838472	04/08/22 17:05	MMC	TAL ED
Total/NA	Analysis	SM 2340C		1	838760	04/12/22 16:35	HTV	TAL ED
Total/NA	Analysis	SM 2540C		1	838168	04/08/22 17:36	HTV	TAL ED
Total/NA	Analysis	SM 2540D		1	838077	04/08/22 11:10	HTV	TAL ED
Total/NA	Analysis	SM 4500 H+ B		1	837276	04/04/22 19:04	KSS	TAL ED

4/18/2022

Client: Hanson Aggregates PA LLC Project/Site: Rock Hill Quarry

Client Sample ID: Field Blank(Pit)

Date Collected: 04/01/22 08:45 Date Received: 04/01/22 18:30 Lab Sample ID: 460-255494-7

Matrix: Water

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	537 IDA			241436	04/06/22 07:04	RC3V	ELLE
l	Total/NA	Analysis	537 IDA		1	242117	04/07/22 22:02	UUV6	ELLE

Client Sample ID: Field Blank(CP)

Date Collected: 04/01/22 09:10 Date Received: 04/01/22 18:30

Lab Sample ID: 460-255494-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			241436	04/06/22 07:04	RC3V	ELLE
Total/NA	Analysis	537 IDA		1	242117	04/07/22 22:13	UUV6	ELLE

Client Sample ID: CP(PFOS)

Date Collected: 04/01/22 09:05 Date Received: 04/01/22 18:30

Lab Sample ID: 460-255494-9

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			241436	04/06/22 07:04	RC3V	ELLE
Total/NA	Analysis	537 IDA		1	242117	04/07/22 22:24	UUV6	ELLE

Client Sample ID: Pit(PFOS)

Date Collected: 04/01/22 08:40 Date Received: 04/01/22 18:30

Lab Sample ID: 460-255494-10

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			241436	04/06/22 07:04	RC3V	ELLE
Total/NA	Analysis	537 IDA		1	242117	04/07/22 22:35	UUV6	ELLE

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300 TAL BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Client: Hanson Aggregates PA LLC
Project/Site: Rock Hill Quarry

Job ID: 460-255494-1

Laboratory: Eurofins Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	01-01-23
Georgia	State	12028 (NJ)	06-30-22
Massachusetts	State	M-NJ312	06-30-22
New Jersey	NELAP	12028	06-30-22
New York	NELAP	11452	04-01-23
Pennsylvania	NELAP	68-00522	02-28-23
Rhode Island	State	LAO00376	12-31-22
USDA	US Federal Programs	P330-20-00244	11-03-23

Laboratory: Eurofins Buffalo

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Dat
Arkansas DEQ	State	88-0686	07-06-22
Connecticut	State	PH-0568	09-30-22
Florida	NELAP	E87672	06-30-22
Georgia	State	10026 (NY)	04-01-23
Georgia	State Program	N/A	03-31-09 *
Georgia (DW)	State	956	03-31-22 *
Illinois	NELAP	200003	09-30-22
lowa	State	374	03-01-23
lowa	State Program	374	03-01-09 *
Kansas	NELAP	E-10187	01-31-23
Kentucky (DW)	State	90029	12-31-22
Kentucky (UST)	State	30	04-01-22 *
Kentucky (WW)	State	KY90029	12-31-22
Louisiana	NELAP	02031	06-30-22
Maine	State	NY00044	12-04-22
Maryland	State	294	03-31-23
Massachusetts	State	M-NY044	06-30-22
Michigan	State	9937	04-01-22 *
Michigan	State Program	9937	04-01-09 *
New Hampshire	NELAP	2973	09-11-19 *
New Hampshire	NELAP	2337	11-17-22
New Jersey	NELAP	NY455	06-30-22
New York	NELAP	10026	03-31-23
Oregon	NELAP	NY200003	06-12-22
Pennsylvania	NELAP	68-00281	07-31-22
Rhode Island	State	LAO00328	12-30-22
Tennessee	State	02970	04-01-23
Texas	NELAP	T104704412-18-10	07-31-22
USDA	US Federal Programs	P330-18-00039	03-25-24
Virginia	NELAP	460185	09-14-22
Washington	State	C784	02-10-23
Wisconsin	State	998310390	08-31-22

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
7 tatilolity	og. u	iaciiaiicatioii itaiiiboi	=xpiration Bato

 $^{^{\}star}\, \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Edison

2

3

4

6

9

10

Accreditation/Certification Summary

Client: Hanson Aggregates PA LLC
Project/Site: Rock Hill Quarry

Job ID: 460-255494-1

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	1.01	11-30-22
A2LA	ISO/IEC 17025	0001.01	11-30-22
Alaska	State	PA00009	06-30-22
Alaska (UST)	State	17-027	02-28-23
Arizona	State	AZ0780	03-12-23
Arkansas DEQ	State	88-0660	08-10-22
California	State	2792	02-02-22 *
Colorado	State	PA00009	06-30-22
Connecticut	State	PH-0746	06-30-23
DE Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-23
Delaware (DW)	State	N/A	01-31-23
Florida	NELAP	E87997	06-30-22
Georgia (DW)	State	C048	01-31-22 *
Hawaii	State	N/A	01-31-23
Illinois	NELAP	200027	01-31-23
lowa	State	361	03-02-22 *
Kansas	NELAP	E-10151	10-31-22
Kentucky (DW)	State	KY90088	12-31-22
Kentucky (UST)	State	1.01	11-30-22
Kentucky (WW)	State	KY90088	01-01-23
Louisiana	NELAP	02055	06-30-22
Maine	State	2019012	03-12-23
	State	100	06-30-22
Maryland Massachusetts	State		
		M-PA009	06-30-22
Michigan	State	9930	01-31-23
Minnesota	NELAP	042-999-487	12-31-22
Missouri	State	450	01-31-25
Montana (DW)	State	0098	01-01-23
Montana (UST)	State	<cert no.=""></cert>	02-01-23
Nebraska 	State	NE-OS-32-17	01-31-23
New Hampshire	NELAP	2730	01-10-23
New Jersey	NELAP	PA011	06-30-22
New York	NELAP	10670	04-01-23
North Carolina (DW)	State	42705	07-31-22
North Carolina (WW/SW)	State	521	12-31-22
North Dakota	State	R-205	01-31-23
Oklahoma	NELAP	R-205	08-31-22
Oregon	NELAP	PA200001	09-11-22
PALA	Canada	1978	09-16-24
Pennsylvania	NELAP	36-00037	01-31-23
Rhode Island	State	LAO00338	12-30-22
South Carolina	State	89002	01-31-23
Tennessee	State	02838	01-31-23
Texas	NELAP	T104704194-21-40	08-31-22
USDA	US Federal Programs	P330-19-00197	07-03-22
Vermont	State	VT - 36037	10-28-22
Virginia	NELAP	460182	06-14-22
Washington	State	C457	04-12-22
West Virginia (DW)	State	9906 C	12-31-22
West Virginia (EW)	State	055	04-12-22

 $^{^{\}star}\,\text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Edison

Accreditation/Certification Summary

Client: Hanson Aggregates PA LLC Job ID: 460-255494-1

Project/Site: Rock Hill Quarry

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wyoming	State	8TMS-L	01-31-23
Wyoming (UST)	A2LA	1.01	11-30-22

Method Summary

Client: Hanson Aggregates PA LLC Project/Site: Rock Hill Quarry

Job ID: 460-255494-1

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL EDI
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE
200.7 Rev 4.4	Metals (ICP)	EPA	ELLE
6020B	Metals (ICP/MS)	SW846	TAL BUF
6020B	Metals (ICP/MS)	SW846	TAL EDI
7470A	Mercury (CVAA)	SW846	TAL BUF
1664A	HEM and SGT-HEM	1664A	TAL EDI
351.2	Nitrogen, Total Kjeldahl	MCAWW	ELLE
SM 2120B	Color, Colorimetric	SM	TAL EDI
SM 2310B	Acidity	SM	TAL EDI
SM 2320B	Alkalinity	SM	TAL EDI
SM 2340C	Hardness, Total (mg/l as CaC03)	SM	TAL EDI
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL EDI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL EDI
SM 4500 H+ B	рН	SM	TAL EDI
200.7 Rev 4.4	Preparation, Total Recoverable Metals	EPA	ELLE
3010A	Preparation, Total Metals	SW846	TAL EDI
3020A	Preparation, Total Metals	SW846	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	ELLE
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE
7470A	Preparation, Mercury	SW846	TAL BUF
FILTRATION	Sample Filtration	None	TAL EDI

Protocol References:

1664A = EPA-821-98-002

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

TAL BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

4

Ω

9

10

44

Sample Summary

Client: Hanson Aggregates PA LLC Project/Site: Rock Hill Quarry

Lab Sample ID Client Sample ID Matrix Collected Received 460-255494-1 Upgradient Water 04/01/22 10:30 04/01/22 18:30 460-255494-2 Downgradient Water 04/01/22 10:50 04/01/22 18:30 460-255494-3 Basin 1 04/01/22 11:50 04/01/22 18:30 Water 460-255494-4 Basin 2 Water 04/01/22 11:20 04/01/22 18:30 Pit 460-255494-5 Water 04/01/22 12:15 04/01/22 18:30 460-255494-6 CP Water 04/01/22 09:30 04/01/22 18:30 460-255494-7 04/01/22 08:45 04/01/22 18:30 Field Blank(Pit) Water 460-255494-8 Field Blank(CP) Water 04/01/22 09:10 04/01/22 18:30 460-255494-9 CP(PFOS) Water 04/01/22 09:05 04/01/22 18:30 460-255494-10 Pit(PFOS) 04/01/22 08:40 04/01/22 18:30 Water

Job ID: 460-255494-1

3

4

5

6

8

9

10

-	50 (RC.	COC NO: 6/48+1	of	Sampler: CTS/WTR	Walk-in Client:	Lab Sampling:	lob / SDG No.: (5)		Sample Specific Notes:				>	×	9	,	.50	0	Q1		samples are retained longer than 1 month)	Archive for Months		r'd: Therm ID No.:	LEOP Date Time:	The Date/Time/12/12/12	Date I I I I I I I I I I I I I I I I I I I	to the state of th
ž	Other:		Lab Contact: Julie Gilmone Carrier:		(N	/人		Filtered Sam			- 2		7	10,5	14	- 27	- 222	2 2	2 2		Sample Disposal (A fee may be assessed if	Return to Client Disposal by Lab		Cooler Temp. (°C): Obs'd: Corr'd:	Received by:	Received by:	Received in Landing Kol	, ,
	m: Dw NPDES		COM	Analysis Turnaround Time	t from Be	S	1 week 2 days	7	Time G=Grab) Matrix Cont.	4/1/22 1030 G SW 11	SW 11	SW LI	SW (I	II MS	II MS	0845 G DI 2	DI 2	SW 2	SW 2	NO3; 5=NaOH; 6= Other	Please List any EPA Waste Codes for the sample in the	ant Poison B Unknown	lanion (Rock Hill	dy Seal No∴	HRE S	Pate/1	Company M H 122	1.
Address:		Client Contact	y Name: Far Hares (Saup)	Address: Co412 Old Expan Rd. City/State/Zip Proceedings DA 18947	5-766-1211	1	Project Name: Kock Hill Site: Rock Hill County	E	Sample Identification	Ungadient	Downgadent	Bash 1		Pit	(J	Eld Blank (Dit)	Field Blank (CP)		Pit (Pros)	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste?	Non-Hazard Flammahle Skin Irritant	ctions/QC Requirements & Comments:	Intact: Yes No	Relinquished by My Albert	Relinquished by: When the second seco	Selinquished by:	22

Client Sample Results

Client: Hanson Aggregates PA LLC Project/Site: Rock Hill Quarry

Client Sample ID: NPDES 001

Date Collected: 12/12/17 10:50 Date Received: 12/13/17 11:45

Lab Sample ID: 460-146882-1

TestAmerica Job ID: 460-146882-1

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	ND		0.40	mg/L			12/20/17 05:05	
Fluoride	0.13		0.080	mg/L			12/20/17 05:05	
Sulfate	10		0.60	mg/L			12/20/17 05:05	
Method: 300.0 - Anions, Ion Ch	romatogra	phy - DL						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	6.6		0.24	mg/L			12/20/17 12:04	
Method: 6020A - Metals (ICP/M	,	u Ilia	TQ	L				
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Manganese	97		8.0 2.	_		12/16/17 09:00	12/16/17 21:35	1
Iron	240		120 20			12/16/17 09:00	12/16/17 21:35	
Cadmium	ND		2.0	•		12/16/17 09:00	12/16/17 21:35	2
Barium	7.8		4.0 2-6				12/16/17 21:35	2
Nickel	ND		4.0 Li				12/16/17 21:35	2
Arsenic	ND		2.0 3.0				12/16/17 21:35	2
Соррег	ND		4.0 4.0			12/16/17 09:00		2
Aluminum	ND		40 10	ug/L		12/16/17 09:00	12/16/17 21:35	2
Lead	ND		1.2 . 🔾	ug/L		12/16/17 09:00	12/16/17 21:35	2
Zinc	ND		16 5.0	ug/L		12/16/17 09:00	12/16/17 21:35	2
Selenium	ND		10 5.0	ug/L		12/16/17 09:00	12/16/17 21:35	2
Madbad, 0000A - 88-4-1- (100/08	C) Discol	rod						
Method: 6020A - Metals (ICP/M					_	_		
Analyte	Result	Qualifier	RL TQ		D	Prepared	Analyzed	Dii Fac
			RL TQ		D	Prepared 12/19/17 11:49		Dii Fac
Analyte Iron Method: 7470A - Mercury (CVA	Result ND	Qualifier	120 20	ug/L		12/19/17 11:49	12/19/17 14:46	2
Analyte Iron	Result ND			ug/L Unit	D			
Analyte Iron Method: 7470A - Mercury (CVA Analyte Mercury	Result ND Result	Qualifier	120 2 C	ug/L Unit		12/19/17 11:49 Prepared	12/19/17 14:46 Analyzed	2
Analyte Iron Method: 7470A - Mercury (CVA Analyte	Result ND Result	Qualifier	120 2 C	ug/L Unit		12/19/17 11:49 Prepared	12/19/17 14:46 Analyzed	2
Analyte Iron Method: 7470A - Mercury (CVA Analyte Mercury General Chemistry	Result ND Result	Qualifier Qualifier	120 2 C RL 1QL 0.20 • 0 5	Unit ug/L	D	Prepared 12/15/17 11:53	12/19/17 14:46 Analyzed 12/15/17 14:18	Dil Fac
Analyte Iron Method: 7470A - Mercury (CVA Analyte Mercury General Chemistry Analyte	Result ND Result ND Result	Qualifier Qualifier	120 2 C RL 1QL 0.20 - 0 S	ug/L Unit ug/L Unit	D	Prepared 12/15/17 11:53	12/19/17 14:46 Analyzed 12/15/17 14:18 Analyzed	Dil Fac
Analyte Iron Method: 7470A - Mercury (CVA Analyte Mercury General Chemistry Analyte HEM (Oil & Grease)	Result ND Result ND Result	Qualifier Qualifier	120 2 C RL 1QL 0.20 • 0 5	ug/L Unit ug/L Unit mg/L	D	Prepared 12/15/17 11:53 Prepared	Analyzed 12/19/17 14:46 Analyzed 12/15/17 14:18 Analyzed 12/20/17 15:30	Dil Fac
Analyte Iron Method: 7470A - Mercury (CVA Analyte Mercury General Chemistry Analyte HEM (Oil & Grease) Nitrogen, Kjeldahl	Result ND Result ND Result ND ND	Qualifier Qualifier	120 2 C RL 1QL 0.20 • 05 RL 5.4 0.20	Unit ug/L Unit mg/L mg/L	D	Prepared 12/15/17 11:53 Prepared	Analyzed 12/19/17 14:46 Analyzed 12/15/17 14:18 Analyzed 12/20/17 15:30 12/19/17 11:50	Dil Fac
Analyte Iron Method: 7470A - Mercury (CVA Analyte Mercury General Chemistry Analyte HEM (Oil & Grease) Nitrogen, Kjeldahl Color	Result ND Result ND Result ND Robot ND ND 5.0	Qualifier Qualifier	120 2 C RL 1QL 0.20 - 05 RL 5 4 0.20 5.0	Unit ug/L Unit mg/L mg/L Color Units	D	Prepared 12/15/17 11:53 Prepared	Analyzed 12/19/17 14:46 Analyzed 12/15/17 14:18 Analyzed 12/20/17 15:30 12/19/17 11:50 12/14/17 06:37	Dil Fac
Analyte Iron Method: 7470A - Mercury (CVA Analyte Mercury General Chemistry Analyte HEM (Oil & Grease) Nitrogen, Kjeldahl Color Acidity	Result ND Result ND Result ND 38	Qualifier Qualifier	120 2 C RL 1QL 0.20 • 0 5 RL 5.4 0.20 5.0 20	Unit ug/L Unit mg/L mg/L Color Units mg/L	D	Prepared 12/15/17 11:53 Prepared	Analyzed 12/15/17 14:46 Analyzed 12/15/17 14:18 Analyzed 12/20/17 15:30 12/19/17 11:50 12/14/17 06:37 12/19/17 09:54	Dil Fac
Analyte Iron Method: 7470A - Mercury (CVA Analyte Mercury General Chemistry Analyte HEM (Oil & Grease) Nitrogen, Kjeldahl Color Acidity Álkalinity	Result ND Result ND Result ND 38 130	Qualifier Qualifier	120 2 C RL 1QL 0.20 • O S RL 5.4 0.20 5.0 20 5.0	Unit ug/L Unit mg/L mg/L Color Units mg/L mg/L	D	Prepared 12/15/17 11:53 Prepared	Analyzed 12/15/17 14:46 Analyzed 12/15/17 14:18 Analyzed 12/20/17 15:30 12/19/17 11:50 12/14/17 06:37 12/19/17 09:54 12/15/17 14:03	Dil Fac
Analyte Iron Method: 7470A - Mercury (CVA Analyte Mercury General Chemistry Analyte HEM (Oil & Grease) Nitrogen, Kjeldahl Color Acidity Álkalinity Hardness as calcium carbonate	Result ND Result ND Result ND ND S.0 38 130 140	Qualifier Qualifier	120 2 C RL 1QL 0.20 • O S RL 5.4 0.20 5.0 20 5.0 5.0	Unit ug/L Unit mg/L mg/L Color Units mg/L mg/L mg/L mg/L	D	Prepared 12/15/17 11:53 Prepared	Analyzed 12/15/17 14:46 Analyzed 12/15/17 14:18 Analyzed 12/20/17 15:30 12/19/17 11:50 12/14/17 06:37 12/19/17 09:54 12/15/17 14:03 01/09/18 12:21	Dil Fac 1 Dil Fac 1 1 1 1 1 1

AZZ Total Chromium 4.0 Total Vanadium 100 Total Cobalt Total Zirconium Total Strontium 10 Total Boson 16000 Total Titanium ___ Page 5 of 13

TestAmerica Edison

1/9/2018

EDS-WI-038, Rev 4.1 10/22/2019

Eurofins Edison

777 New Durham Road

Edison, NJ 08817

Chain of Custody Record

|--|--|--|--|--|--|--|

💸 eurofins

Environment Testing

Phone: 732-549-3900 Fax: 732-549-3679 Sampler Carrier Tracking No(s): Client Information (Sub Contract Lab) 460-64589.1 Gilmore, Julie L Client Contact: E-Mail: Page: Phone: State of Origin: Shipping/Receiving Julie.Gilmore@Eurofinset.com Pennsylvania Page 1 of 2 Accreditations Required (See note): Job #: Company: Eurofins Lancaster Laboratories Env. LLC 460-255494-1 Address: Due Date Requested: Preservation Codes: **Analysis Requested** 2425 New Holland Pike, 4/12/2022 M - Hexane City: TAT Requested (days): B - NaOH N - None Lancaster C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S State, Zip: PFOS E - NaHSO4 Q - Na2SO3 PA, 17601 F - MeOH R - Na2S2O3 Total Kjeldahl Phone: PO #: PFOA, G - Amchlor S - H2SO4 717-656-2300(Tel) T - TSP Dodecahydrate H - Ascorbic Acid WO #: L- Ice U - Acetone 537_IDA/3535_PFC (MOD) PFNA, J - DI Water V - MCAA K - EDTA W - pH 4-5 Project Name: TR Zirconlum Project #: L - EDA Z - other (specify) 46011424 Rock Hill Quarry MS/MSD (Y Other: SSOW#: of 351.2/351.2_Prep METH Total Number 200.7/200.7 P Sample (W=water, Smoothd Type Owwests/oil (C=comp, Sample BT=Tissue, Sample Identification - Client ID (Lab ID) Sample Date Time G=grab) Special Instructions/Note: Preservation Code: 10:30 2 Upgradient (460-255494-1) 4/1/22 Water X X Eastern 10:50 2 Downgradient (460-255494-2) 4/1/22 Water X X Eastern 2 Х Basin 1 (460-255494-3) 4/1/22 Water X Eastern 2 Basin 2 (460-255494-4) Water Х X 4/1/22 Eastern 12:15 Х Х 2 Water Pit (460-255494-5) 4/1/22 Eastern 09:30 2 Х Х CP (460-255494-6) 4/1/22 Water Eastern 08:45 2 X Field Blank(Pit) (460-255494-7) 4/1/22 Water Eastern 09:10 2 Field Blank(CP) (460-255494-8) 4/1/22 Water Х Eastern 09:05 CP(PFOS) (460-255494-9) 4/1/22 Water Eastern Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Northeast, LLC places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Northeast, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing Northeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins Environment Testing Northeast, LLC. Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Months Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify) Primary Deliverable Rank: 1 Special Instructions/QC Requirements: Method of Shipment Empty Kit Relinquished by: Date: Time Relinquished by: Received by: Received by: Relinquished by: Company d Relinguished by: Received by: Custody Seal No.: Cooler Temperature(s) C and Other Remarks: Custody Seals Intact: Δ Yes Δ No Page 26 of 31 4/18/2022

2

5

7

8

10

Eurofins Edison

777 New Durham Road Edison, NJ 08817

Phone: 732-549-3900 Fax: 732-549-3679

Chain of Custody Record

	_			_	C	٠			_	
40.0	e	ы	r	ก	т	1	r	٦	ς	
70.0	-	0~0		•		۰	۰	۰	~	

Environment Testing America

Client Information (Sub Contract Lab)	Sampler:			Lab Gilr	PM: nore, .	Julie I	Ļ					Can	ier Trac	king No	o(s):		COC No: 460-64589.2
Client Contact:	Phone:			E-Ma) F	C4					e of On				Page:
Shipping/Receiving Company:				Juli	e.Gilm	_	s Requ			te).		Pe	nnsylv	anıa			Page 2 of 2 Job #:
Eurofins Lancaster Laboratories Env, LLC					,	0.0000	io rioqi	J. 50 (c	500 110	10).						_	460-255494-1
Address: 2425 New Holland Pike, ,	Due Date Requests 4/12/2022	id:							An	alysi	s R	eque	sted				Preservation Codes: A - HCL M - Hexane
City:	TAT Requested (da	ıys):			12											13	B - NaOH N - None
Lancaster State, Zip:					88			"									C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S
PA, 17601								PFOS									E - NaHSO4 Q - Na2SO3
Phone: 717-656-2300(Tel)	PO #:				9	Kjeldahl		PFOA, P								1	F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydr
mail:	WO #:				or No	otal Kj		PFNA, P								10	I - Ice U - Acetone J - DI Water V - MCAA
Project Name:	Project #:				Sample (Yes	Nitrogen, Total	E) PF								taine	K - EDTA W - pH 4-5 L - EDA Z - other (specify)
Rock Hill Quarry	46011424				11	roge tro	Zirconlum									conta	
ite:	SSOW#:				E S			5								ofc	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Water, Sesolid, O=waste/oil, BT=Tiesue, A=Air)	P	351.2/351.2 Prep	200.7/200.7_P_T	537_IDA/3535_PFC (MOD)								Total Number	Special Instructions/Note:
Sample Identification - Cheft ID (Cab ID)	Sample Date		Preservation		X	7	17	10					100			\ <u>\</u>	Special instructions/Note.
Pit(PFOS) (460-255494-10)	4/1/22	08:40		Water	ÍΥ			х			7					2	2
		Eastern			++		+-			-	+	+	-	-			
					11				\Box	\rightarrow	_	\bot			\rightarrow		
					ш												
					11			П					1		\neg		
				_	₩	-	+		\vdash	+	+	+			-		
					Ш												
					+		\top			_	+	_	1		_	- 0	
					₩	+	-	\vdash	\vdash	+	+	+		_	\rightarrow		
					П											10	
Note: Since laboratory accreditations are subject to change, Eurofins En- aboratory does not currently maintain accreditation in the State of Origin accreditation status should be brought to Eurofins Environment Testing	listed above for analysis/test	s/matrix being	analyzed, the sa	mples must	be ship	ped ba	ck to th	e Euro	ofins Er	nvironm	ent Te	sting N	ortheas	t, LLC	aboratory	or other	instructions will be provided. Any changes to
Possible Hazard Identification					S	amp	le Dis	posa	I (A	fee m	ay b	asse	ssed	if san	iples ar	e retal	ned longer than 1 month)
Inconfirmed							Retun	n To I	Client] Disp	osal E	By Lab		□ Arc	chive For Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	1		S	pecia	al Instr	ructio	ns/Q0	C Req	uiren			-			
mpty Kit Relinquished by:		Date:	_		Time	B:							Meth	od of SI	nipment:		
delinquished by:	Date/Time:	2 /	535	ompany	5/	Red	ceived t	W	7-					C	ate/Time:/	4/2	2 1535 Contpany
Relinquished by:	Date/Time: 4/4/2		838	O L		Red	ceived l	1	7				-	_	ate/Tinle:	1	Company
Relinquished by:	Date/Time:		7	ompany		Ro	peived	by/	(/	(/				ate/Ine	40)	1958 coppany of
Custody Spale Intact: Custody Spal No :						100	XX			°C	Other	Dome			-111	100	10100 100
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Col	oler Ter	mperat	ure(s)	C and	Other	Remar	KS:			1.	6
4 105 4 110			P	age 27	of 3	31			_							1	4/18

Cooler Temperature(s) & and Other Remarks:

Chain of Custody Record

Eurofins Edison

Chain of Custody Record	Sampler: Lab PM: Carrier Tracking No(s): COC No: Gilmore, Julie L 460-64624.1	Phone: State of Origin: Page:
Eurofins Edison 777 New Durham Road Edison, NJ 08817 Phone: 732-549-3900 Fax: 732-549-3679	Client Information (Sub Contract Lab)	Shipping/Receiving

	Sampler:			Lab PM:					Carrier Tracking No(s)	No(s).	SN JOJ		
Client Contact:	i			Gilmor	Gilmore, Julie L					·(c)	460-6	460-64624.1	
Shipping/Receiving	Phone:			E-Mail: Julie G	more	n to	E-Mait: Julie Gilmore@et eurofipsus com		State of Origin:		Page:		
Company: Eurofins Environment Testing Northeast.				Ao	creditation	ns Requ	Accreditations Required (See note):		reilisyivarila		Page 1 of	1 0f 1	
Address:	Due Date Requested:	ij									460-2	460-255494-1	
10 Hazelwood Drive,	4/14/2022						Ana	Analysis Requested	ested		Prese	Preservation Codes	les:
orty: Amherst	TAT Requested (days):	3ys):								E	A - HCL B - NaC	NOH NOH	M - Hexane N - None
State, Zip: NY, 14228-2298											C-Z-	Acetate tric Acid	0 - AsNaO2 P - Na2O4S
Phone: 716-691-2600(Tel) 716-691-7991(Fax)	PO #:										G-An	F - MeOH G - Amchlor	G - Na2S2O3 R - Na2S2O3 S - H2SO4
Email:	:# OM			ON 10	(0)							corbic Acid	T - TSP Dodecahydrate U - Acetone
Project Name: Rock Hill Quarry	Project #: 46011424			\$9,0	4 10 s							J - DI Water K - EDTA L - FDA	V - MCAA W - pH 4-5 7 - other (specific)
Site:	:#MOSS			pigms	eD (Ye								Carda (specify)
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp,	(Wwwster, Sesolid, Orwaste/oil, Filtsue, oil	EMISM mnohe ng_A01411A014	10T A0S0E\80S0					otal Number o		
	X	X	Preservat			-					1	Special In	Special Instructions/Note:
Upgradient (460-255494-1)	4/1/22	10:30		Water	×	×							
Downgradient (460-255494-2)	4/1/22	10:50		Water	×	+					- 1		
Basin 1 (460-255494-3)	4/1/22	11:50		Water	×	+							
Basin 2 (460-255494-4)	4/1/22	11:20		Water	×	+		+					
Pit (460-255494-5)	4/1/22	12:15		Water	×	+-							
CP (460-255494-6)	4/1/22	09:30 Factors		Water	×	+-							
							-						
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Northeast, LLC places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing vortheast, LLC attention immediately. If all requested accreditations are current to date, return to classic formation and the sing on their instructions will be provided. Any changes to	ant Testing Northeast, bove for analysis/tests st, LLC attention imme	LLC places the //matrix being a idiately. If all re	ownership of inalyzed, the signested accre	nethod, analyte & amples must be sl	accredita ipped bar	tion con	The signed Ch	out subcontract ironment Testing ain of Custody a	laboratories. The Northeast, LLC	his sample sh	ipment is forward	ded under cha	in-of-custody. If the rided. Any changes to
Possible Hazard Identification					Sampl	e Disp	osal (A fe	e may be as	sessed if sa	amples are	Sample Disposal (A fee may be assessed if samples are retained longer than 1 months	onment lestin	ig Northeast, LLC.
Unconfirmed Deliverable Beautofield II III IV On The Control of t						Return	Return To Client		Disposal By Lab	1 q	Archive For		Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Ra	able Rank: 1			Specia	Instr	actions/QC	Special Instructions/QC Requirements:	.s				MOREIS
Empty Kit Relinquished by:		Date:		Ë	Time:				Method of Shipment:	Shipment:			
Yearn dutained by.	Date/[me:/6/1	1 22	0061	Company	Rec	Received by:	;; f			Date/Time:			
Relinquished by:	Date/Time:			Company	- A	Received by:				Date/Time:	<u></u>	3	て <i>作</i> ら Company
Relinquished by:	Date/Time:			Company	Red	Received by:	<i>i</i>			Date/Time:			Company

Custody Seal No.:

Custody Seals Intact:

Login Sample Receipt Checklist

Client: Hanson Aggregates PA LLC Job Number: 460-255494-1

Login Number: 255494 List Source: Eurofins Edison

List Number: 1

Creator: Rivera, Kenneth

oreator. Nivera, Neimeth		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

5

4

9

10

Login Sample Receipt Checklist

Client: Hanson Aggregates PA LLC Job Number: 460-255494-1

Login Number: 255494 List Source: Eurofins Buffalo
List Number: 3 List Creation: 04/07/22 02:07 PM

Creator: Yeager, Brian A

Creator. reager, Briair A		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.7 ICE IR GUN #1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

9

10

Login Sample Receipt Checklist

Client: Hanson Aggregates PA LLC Job Number: 460-255494-1

Login Number: 255494 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC

List Creation: 04/04/22 08:09 PM

Creator: Metzger, Katherine A

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	Not present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	

2

4

_

_

9

10

Request for Laboratory Analytical Services - Chain of Custody

Page 1

ATTENT	ION TO:				Did you	complete	e a Submit a Sar	nple Fo	orm Online?	Yes	No	
Lab Use	Project No.:	Client No.:			Purchase Ord	ler		Client J				
Only	Date Logged In:	Logged In By:			Number:			Numbe	r:			
	Name:	Andrew Gutshall				Name:	Andrew Gutshall		Email:	Andrew Gutshall @	LehighHanson.com	Œ.
	Company:	Hanson Aggregates Pa, LLC				Company:	Hanson Aggregates	Pa, LLC	Fax:			
Report	Address:	7660 Imperial Way			Invoice To	Address:	7660 Imperial Way					
Results	City, State, Zip:	Allentown, PA 18195				City, State, Zip		A 18195				
To	Phone:	610-366-4819 Fax:				Phone:	610-366-4819					_
	Email results to:	Andrew Gutshall@LehighHanson.com			Date Results Needed				ed if left blank; rague terms like ASAP	Rush Charg Authorized (circle one	1?	
	If a hard copy of in	nvoice is needed, check here										_
9969	appro ward effections	Accreditations required to be followed:	yes no			Analys	is Requested		Special Instruct	ions or Comm	nents	_
Req	lity System Juirements Inpplicable)	Circle which ones to SO (Please specify): cGMP: Other (Please specify):			NOA Per EPA Method							
Clier	nt Sample ID	Sample Description	Sample Location (Please specify if NY state)	Sample Date & Time	100.2							
Upgradie	nt	Surface water sample		4/1/22 1030	х						€	
Downgra	dient	Surface water sample		4/1/22 1050	Х							
Basin 1		Surface water sample		4/1/22 1150	х							
Basin 2		Surface water sample		4/1/22 1120	X							
Pit		Surface water sample		4/1/2022 1215	х							
СР		Surface water sample		4/1/22 0930	х							
Chain of Custody	Relinquished By (S Relinquished By (F Company Name: 2	Print Name): William Russo Relinquish	14/22 Time: ned To: Federy f Shipment: Federy		Chain of Custody	Received By Received By Company Na	(Signature): (Print Name): ame:		Date: 04// Relinquished Method of SI	To:	Time:	
			Time:		al · ·	Received By	(Signature):		Date:	2	Time:	
Chain of	Relinquished By (S Relinquished By (F				Chain of Custody		(Print Name):		Relinquished			
Custody	Company Name:		f Shipment:		Custody	Company Na			Method of SI	nipment:		
	1										RS 091820	119

Pennsylvania - HQ 350 Hochberg Road Monroeville, PA 15146

724.325.1776 Phone 724.733.1799 Fax

Columbia Basin Analytical Laboratories Pasco, WA 99301

Do Not Lift Using This Tag **Do Not Lift Using This Tag** AndEx Pouch Here RT465 BRYAN BANDLI RJ LEE GROUP 350 HOCHBERG RD 10NROEVILLE PA 15146 387-1933 REF-061003052-04 7764 9706 9191 PRIORITY OVERNIGHT WED - 06 APR 10:30A PA-US 56DJ2/BDF9/FE4A

Final Laboratory Report TEM Non Potable Water Analysis

Ms. Clair Wischusen Fox Rothschild LLP 2700 Kelly Road Suite 300 Warrington, PA 18976

Method: EPA 100.1 600/4-03-043

Report Date: 04/14/2022 Sample Receipt Date: 04/06/2022 RJ Lee Group Job No.: LLH901997-37

Authorization/P.O. No.: Samples Received: 6

Client Job No.:

		Date	Date	Filter Area	Volume	Area Analyzed	Confidence Interval	Struc	estos ctures	Analytical Sensitivity (MFL)	Concentration (MFL)
Client Sample Number	RJLG Sample Number	Prepped	Analyzed	(mm²)	(ml)	(mm²)	>0.50 µ m	Chry	Amph	>0.50 μ m	>0.50 µ m
Upgradient	3179818.HTW2	04/06/2022	04/14/2022	1220	20.0	0.18682	0-4	0	0	0.3	< 0.3
Downgradient	3179819.HTW2	04/06/2022	04/14/2022	1220	20.0	0.18682	0-4	0	0	0.3	< 0.3
Basin 1	3179820.HTW2	04/06/2022	04/14/2022	1220	20.0	0.18682	0-4	0	0	0.3	< 0.3
Basin 2	3179821.HTW2	04/06/2022	04/14/2022	1220	10.0	0.18682	0-4	0	0	0.7	< 0.7
Pit	3179822.HTW1	04/06/2022	04/14/2022	1220	100.0	0.18682	0-4	0	0	0.1	< 0.1
CP	3179823.HTW2	04/06/2022	04/14/2022	1220	20.0	0.18682	0-4	0	0	0.3	< 0.3

NOTES

- 1. Water samples collected more than 24 hours before receipt may be out of compliance. Drinking water samples are filtered within 24 hours of receipt.
- 2. "<" indicates results less than analytical sensitivity. "---" indicates that sample was not analyzed.
- 3. Sample(s) for this project were analyzed at our: Monroeville, PA (AIHA LAP, LLC #100364, NVLAP #101208-0, NY ELAP #10884) facility.
- 4. If RJ Lee Group, Inc. did not collect the samples analyzed, the verifiability of the laboratory's results are limited to the reported values.
- 5. Abbreviations: N/A-Not Applicable, Chry-Chrysotile Asbestos, Amph-Amphibole Asbestos, MFL-million fibers per liter.
- 6. Samples will be held for 30 days and then disposed of per Federal regulations.
- 7. These results are submitted pursuant to RJ Lee Group's current terms and conditions of sale, including the company's standard warranty and limitation of liability provisions. No responsibility or liability is assumed for the manner in which these results are used or interpreted.

DISCLAIMER

RJ Lee Group, Inc. is accredited by the New York Department of Health Environmental Laboratory Program (NY ELAP) and the Pennsylvania Department of Environmental Protection (PA DEP) for asbestos in water analysis by TEM. This report may not be used to claim product endorsement by NY ELAP, PA DEP or any other regulatory or laboratory accrediting agency. Any reproduction of this document must be in full in order for the report to be valid. This report is not valid unless it bears the name of a NY ELAP and PA-DEP approved signatory.

These results are submitted pursuant to RJ Lee Group's current terms and conditions of sale, including the company's standard warranty and limiting provisions and no responsibility or liability is assumed for the manner in which the results are used or interpreted. Unless notified in writing to return the samples covered by this report, RJ Lee Group will store the samples for a period of thirty (30) days before discarding. A shipping and handling fee will be assessed for the return of any sample.

RJ Lee Group, Inc.

RJ Lee Group Job No: LLH901997-37

Client Job No/Name:

Final Laboratory Report (cont'd)

Client:

Fox Rothschild LLP

Report Date:

04/14/2022

Authorized Signature

Ashleigh Sload, Scientist

NOTES

- 1. Water samples collected more than 24 hours before receipt may be out of compliance. Drinking water samples are filtered within 24 hours of receipt.
- 2. "<" indicates results less than analytical sensitivity. "---" indicates that sample was not analyzed.
- 3. Sample(s) for this project were analyzed at our: Monroeville, PA (AIHA LAP, LLC #100364, NVLAP #101208-0, NY ELAP #10884) facility.
- 4. If RJ Lee Group, Inc. did not collect the samples analyzed, the verifiability of the laboratory's results are limited to the reported values.
- 5. Abbreviations: N/A-Not Applicable, Chry-Chrysotile Asbestos, Amph-Amphibole Asbestos, MFL-million fibers per liter.
- 6. Samples will be held for 30 days and then disposed of per Federal regulations.
- 7. These results are submitted pursuant to RJ Lee Group's current terms and conditions of sale, including the company's standard warranty and limitation of liability provisions. No responsibility or liability is assumed for the manner in which these results are used or interpreted.

DISCLAIMER

RJ Lee Group, Inc. is accredited by the New York Department of Health Environmental Laboratory Program (NY ELAP) and the Pennsylvania Department of Environmental Protection (PA DEP) for asbestos in water analysis by TEM. This report may not be used to claim product endorsement by NY ELAP, PA DEP or any other regulatory or laboratory accrediting agency. Any reproduction of this document must be in full in order for the report to be valid. This report is not valid unless it bears the name of a NY ELAP and PA-DEP approved signatory.

These results are submitted pursuant to RJ Lee Group's current terms and conditions of sale, including the company's standard warranty and limiting provisions and no responsibility or liability is assumed for the manner in which the results are used or interpreted. Unless notified in writing to return the samples covered by this report, RJ Lee Group will store the samples for a period of thirty (30) days before discarding. A shipping and handling fee will be assessed for the return of any sample.

Heidelberg Materials Northeast LLC – Rock Hill Quarry NPDES Permit Modification January 2023

Attachment F-7:

PPC Notification List

Emergency contact list & phone numbers

Provide a contact list and phone numbers for the facility response coordinator, National Response Center, cleanup contractors with whom you have an agreement for response, and all Federal, State, and local agencies who must be contacted in case of a discharge.

Facility Response Coordinator & team members:

Team Member	Name & Title	Day Phone #	Cell Phone #
Facility Response Coordinator (primary)	Timothy J. Poppenberg Area Operations Manager	(610) 366-4815	(610) 850-4760
Emergency Information Coordinator	Andrew J. Gutshall Area Environmental Manager	(610) 366-4819	(484) 955-2407
Divisional Emergency Team Member	Timothy J. Poppenberg Operations Manager	(610) 366-4815	(610) 850-4760
Divisional Emergency Team Member	Mark E. Kendrick Vice President	(610) 366-4627	(484) 894-0773

Local Emergency Response Agencies:

Bucks County Emergency Services	044	
(Fire, Police, Ambulance)	911	

State Emergency Response Agencies:

DEP Regional Office: Southeast Region 24 hr release reporting	(484) 250-5900
County Emergency Management Agency: Bucks	(215) 340-8700
Pennsylvania Emergency Management Agency	(800) 424-7362 or (717) 783-8150

Federal Emergency Response Agencies:

National Response Center	(800) 424-8802

List of Emergency Response Contractors:

Note: No emergency response contractors should be necessary. However, in the event that a contracted responder is necessary, the following are available to provide assistance:

Emergency Response Contractor(s)	Phone Number
Elk Environmental Services	(800) 851-7156 - Emergency Response Line
(www.elkenv.com)	(610) 372-4760
	(===,==================================

Heidelberg Materials Northeast LLC – Rock Hill Quarry NPDES Permit Modification January 2023

Attachment G:

Groundwater Pumping Evaluation Addendum

Groundwater Pumping Evaluation Addendum

Rock Hill Quarry

East Rockhill Township Bucks County, Pennsylvania EARTHRES Project # 061003.052

January 2023

Prepared for:

Heidelberg Materials Northeast LLC Rock Hill Quarry 7660 Imperial Way Allentown, PA 18195

Prepared by:

EarthRes Group, Inc. P.O. Box 468 Pipersville, PA 18947 Phone: (215) 766-1211

Matthew S. Weikel, P.G.

TABLE OF CONTENTS

1.0	INT	RODUCTION1
	1.1	Planned Dewatering of Rock Hill Quarry Pit
2.0	MOl	DEL ADJUSTMENTS & RESULTS2
	2.1	Quarry Drain & Layer Adjustment
	2.2	Unnamed Tributary Adjustment
	2.3	Updated Groundwater Level Calibration Targets
	2.4	Model Sensitivity Analysis5
	2.5	Simulated Drawdown5
3.0	EVA	LUATION OF RIDGE RUN PFAS HSCA SITE7
	3.1	Ridge Run PFAS HSCA Site
	3.2	Hydrogeologic Setting
	3.3	Evaluation of Potable Well Results
	3.4	Rock Hill Quarry Sampling9
	3.5	Assessment of Potential Rock Hill Quarry Effects
4.0		ICLUSIONS
5.0	REF	ERENCES
		TABLES
Table	1	Quarry Drain Properties – Page 2
Table	2	Background Stream Flows – Page 3
Table	3	Model Calibration Flow Residuals – Page 3
Table		Model Calibration Head Residuals – Page 4
Table		Simulated Quarry Pumping Drawdown – Page 5
Table		Primary Ridge Run PFAS HSCA Documents – Page 7
Table	7	Rock Hill Quarry PFAS Sampling Results – Page 10
		FIGURES
Figure	e 1	Simulated Drawdown Map
Figure	e 2	Ridge Run PFAS HSCA Site
Figure		Ridge Run HSCA Potable Well Results
Figure		Ridge Run HSCA Potable Well Results (With Simulated Groundwater
		Contours)

Rock Hill Quarry Contributing Area (No Quarry Pumping)

Rock Hill Quarry Contributing Area (Active Quarry Pumping) Groundwater Flow Paths West of Quarry (No Quarry Pumping)

Figure 4A

Figure 4B

Figure 5A

Figure 5B

Groundwater Flow Paths West of Quarr (With Quarry Pumping)

ATTACHMENTS

ATTACHMENT A Model Calibration Information

1.0 INTRODUCTION

Earthres Group, Inc. (EARTHRES) has prepared this Groundwater Pumping Addendum (Addendum) to support an NPDES modification for planned future dewatering activities at the Heidelberg Materials Rock Hill Quarry in East Rockhill Township Bucks County, Pennsylvania (Quarry or Heidelberg). This Addendum provides supplementary information to the 2018 Groundwater Pumping Evaluation report and addresses a technical comment raised by the Perkasie Borough Authority technical review, model updates including updated stream calibration, updated calibration analysis, updated zone of influence assessment, and characterization sampling of Quarry groundwater for per-and polyfluoroalkyl substances (PFAS) and related modeling. The latter are provided specifically to evaluate the potential for Quarry pumping to affect the Ridge Run PFAS Hazardous Site Cleanup Act (HSCA) Site, which is currently subject to on-going remediation and interim response actions related to PFAS.

1.1 Planned Dewatering of Rock Hill Quarry Pit

As part of planned future mining operations, Heidelberg proposes to pump at a rate of up to 4.61 cubic feet per second (cfs) or 2.98 million gallons per day (MGD) in order to dewater the currently filled Quarry pit impoundment (Pit). The Pit currently holds an estimated 1,584 acrefeet or 516 million gallons of water and would require 173 days of uninterrupted pumping to dewater to the operating level of 460 msl, assuming no contributions from precipitation and groundwater. After depletion of the existing storage, the pumping rate needed to keep the Pit dry will decrease substantially. The 2018 GPE evaluated the influence of pumping groundwater from the Quarry and found that groundwater and direct precipitation inflow to the Pit will be approximately 0.07 MGD for long-term average conditions.

Dewatering of the Pit will be facilitated by pumping to an existing gravity line that outlets to the Clarifying Pond. A seepage interceptor was also installed during construction of the stormwater management facility and feeds into an 18-inch HDPE gravity line. The interceptor was installed to enhance the subsurface drainage and relieve seepage forming as water from the impoundment drains toward the stream valley and encounters poor subsurface drainage characteristics due to the diabase geology. The pumping and on-site conveyance system was evaluated to ensure existing capacity to pump at the 4.61 cfs as described within the NPDES Discharge Point Modification Report included in the NPDES Modification Application.

2.0 MODEL ADJUSTMENTS & RESULTS

EARTHRES completed several model adjustments to improve the model in support of the current NPDES Modification Application. An adjustment was made in response to a technical review of the model on behalf of the Perkasie Regional Authority pertaining to depiction of drawdown within the Quarry footprint (see Section 2.1). Adjustments to stream parameters of the Unnamed Tributary to Tohickon Creek were made to improve simulated flows in support of the NPDES Modification Application (Section 2.2). Additional calibration targets were added to the model to provide a more robust evaluation of the model calibration (Section 2.3) and a sensitivity analysis was performed. Based on these adjustments an updated drawdown map is provided for the Quarry.

2.1 Quarry Drain & Layer Adjustment

The technical review by Perkasie Regional Authority's consultant (Mercuri Associates, 2018) noted the following:

"One question that arises from reviewing the files is: Figure 3- Full Expansion Drawdown Map shows drawdown of 130 feet, down to 460 mean sea level, in the center of the quarry, but only 30 feet of drawdown in the northeast corner, the water elevation in the quarry is all the same elevation, approximately 595 feet, and the drawdown in the quarry should show that drawdown is 130 feet in the entire open quarry pit."

The depiction arose due to the sloping topography within the Pit area which resulted in the Quarry bottom and drain feature at 460 MSL being split between both Layer 2 and Layer 3. To address this, the model layering in the vicinity of the Quarry was adjusted so that the entire Quarry bottom and resulting drawdown could be shown in Layer 2. This minor adjustment did not significantly affect the Quarry pumping rate which was indicated to be 0.039 million gallons per day (MGD) plus direct precipitation (0.035 MGD) for a total of 0.074 MGD. To summarize the drains utilized by the model are the following:

Table 1. Quarry Drain Properties			
Drain ID Conductance (ft²/d)/(ft²) Bottom Elevation (ft) Model Layer			
1	0.01	464.0	1
2	0.01	514.0	1
3	0.01	564.0	2

A map of the revised drawdown is included in Figure 1. The slight gradient in the drawdown shown across the Quarry pit is due to the sloping water table present in the pre-pumping condition.

2.2 Unnamed Tributary Adjustment

As part of this Addendum a more detailed evaluation of the Unnamed Tributary flow at the Rich Hill crossing (SW-3) was completed using site-specific data following completion of the onsite stormwater management system in 2018. Flow was measured at SW-3 on March 24, 2022, April 1, 2022, and June 8, 2022 indicating flows of 0.51 cfs, 1.2 cfs, and 0.4 cfs respectively. Flows on these days were compared to the regional USGS gauges 01459500 and 01465500 to evaluate background hydrologic conditions at the time of the measurements and further evaluate the baseflow at SW-3.

Table 2. Background Stream Flows				
Date	Date SW-3 01459500 01465500			
	(cfs)	(cfs)	(cfs)	
3/24/2022	0.51	51.9	372	
4/1/2022	1.20	249	1,260	
6/8/2022	0.40	41.7	151	

Review of White and Sloto (1990) indicates the 2-year baseflow for USGS 01459500 (Tohickon Creek near Pipersville) to range from 0.257 to 0.293 million gallons per day per mile squared (MGD/mi²) or 38.7 to 44.1 cfs. Similarly the 2-year baseflow for USGS 01465500 (Neshaminy Creek) is 0.374 – 0.398 (MGD/mi²) or 121-129 cfs. Comparison to the site-specific data indicates that flow conditions on June 8, 2022 approximated the baseflow values. Therefore, the flow at SW-3 of 0.4 cfs may be considered to approximate baseflow conditions. This value is somewhat higher than the 10-YR baseflow indicated by Streamstats, of 0.21 cfs (18,922 cfd) that was used as a calibration target in the 2018 GPE. Based on this data, the Unnamed Tributary was further evaluated and adjusted to reflect the more accurate baseflow value.

As discussed in the 2018 GPE, the Unnamed Tributary is represented using a MODFLOW drain. More precise elevations were assigned to the drain bottom nodes for this Addendum using the 2-foot contour data from the topographic base map for the Quarry. This resulted in an overall lowering of the drain bottom and increase in baseflow that better matched the observed flow. The drain conductance was also increased from 1 to 5 (ft²/d)/(ft) resulting in a final calibrated flow of 30.965 cfd or within 10% of baseflow value.

Table 3. Model Calibration Flow Residuals				
Stream Model Simulated Baseflow Target Baseflow Flow Residu				
Point ID	ft³/day	ft ³ /day		
SW-1	179,688	192,171*	6.5	
SW-2	143,526	141,420*	-1.5	
SW-3	30,965	34,560	10.4	

No other parameters such as hydraulic conductivity or recharge were adjusted with this iteration of the groundwater model.

2.3 Updated Groundwater Level Calibration Targets

The calibration of the groundwater model was evaluated using a larger dataset of groundwater level observations surrounding the Quarry. This data consists of the background data that was collected as part of the Surface Mine Permit (SMP) Application but was not completed or available when the model was first developed. No new data was collected for the evaluation. In total, data from twelve (12) surrounding residential wells and three (3) Quarry monitoring wells was included to assess calibration. Where multiple water levels from a well were available, the average value was used as the calibration target. In other cases, only one (1) water level measurement was available. Calibration targets and residual values for individual wells and calibration statistics are included in Table 2 and a calibration plot is included in Attachment A. The calibration plot shows a good calibration with points generally falling on the 1 to 1 correlation line with some above and below the line.

	Table 4: Model Calibration Head Residuals			
Well ID	Observed Head	Computed Head	Residual Head	
MW-3	558.5	563.16	-4.66	
MW-2	574.69	566.63	8.06	
MW-1	603.6	585.77	17.83	
MP-2	578.46	565.90	12.56	
MP-1	535.08	531.84	3.24	
MP-3	469.5	494.02	-24.52	
MP-5	535.7	520.70	15.00	
MP-10	527.14	534.23	-7.09	
MP-12	531.6	549.43	-17.83	
MP-6	536.1	547.94	-11.84	
MP-8	531.8	541.75	-9.95	
MP-11	518.6	528.87	-10.27	
MP-13	542.2	556.30	-14.10	
MP-14	528.63	525.02	3.61	
MP-16	535.2	518.21	16.99	

Model Calibration Statistics		
Mean Residual Head	-1.53	
Absolute Value Median Residual Head	11.84	
Root Mean Squared Error (RMSE)	13.20	
RMSE/Δ Head	0.098	
Absolute Value Median Residual Head / Δ		
Head	0.088	

The calibration statistics indicate an RMSE of less than 10% of the full range of head observations, which is within acceptable limits. Based on this data, the model is considered well calibrated based on the existing data.

2.4 Model Sensitivity Analysis

A sensitivity analysis was completed for the model to evaluate hydraulic conductivity, recharge, and stream conductance. Each of the tested parameters were varied from 20% to 300% of the calibrated value to assess the effect on the heads and flows in the model. Plots of the resulting RMSE of the simulated heads and the simulated flow at SW-3 with each adjustment are included in Attachment A. The analysis indicates the simulated heads are moderately to highly sensitive to hydraulic conductivity and are highly sensitive to recharge. Simulated flow to SW-3 is moderately sensitive to the hydraulic conductivity and highly sensitive to both recharge and stream conductance. The model is considered well calibrated to these parameters based on the site-specific data.

2.5 Simulated Drawdown

The Quarry's cone of depression was re-evaluated to assess potential lowering of the local water table based on the model adjustments completed herein. A drawdown map was prepared by subtracting the head array values for the future pumping simulation from the head array of the pre-Quarry simulation. The resulting drawdown map or Zone of Influence (ZOI) map is shown on Figure 1 with the ZOI delineated at the 10 ft drawdown contour. Figure 1 also shows the residential wells that were identified and monitored as part of the background evaluation of groundwater in 2018. As shown on Figure 1, the model simulation indicates that the 10 ft drawdown contour (ZOI) does not extend more than 500 feet beyond the property boundary to the north or south and does not extend to residential areas to the southwest. A table of prepumping water levels, simulated water levels under Quarry pumping conditions, and resulting drawdown is provided below for all observations. No known private or public water supplies are located within the predicted 10 ft ZOI. Therefore, Quarry pumping is not anticipated to adversely impact surrounding well use or availability of local groundwater resources.

Table 5. Simulated Quarry Pumping Drawdown			
		Simulated Water Level	
	Pre Quarry Water Level	During Quarry Pumping	Drawdown
Well ID	(feet msl)	(feet msl)	(feet)
MW-3	559.45	540.12	19.32
MW-2	555.76	525.30	30.47
MW-1	576.28	469.37	106.91
MP-2	563.90	559.54	4.36
MP-1	531.79	531.70	0.09
MP-3	493.00	490.49	2.51
MP-5	519.28	515.59	3.69
MP-10	534.09	533.86	0.23
MP-12	549.23	548.99	0.24
MP-6	547.25	546.46	0.78
MP-8	541.58	541.35	0.23

Table 5. Simulated Quarry Pumping Drawdown (Continued)			
	Simulated Water Level		
	Pre Quarry Water Level	During Quarry Pumping	Drawdown
Well ID	(feet msl)	(feet msl)	(feet)
MP-11	528.81	528.71	0.11
MP-13	555.91	555.46	0.45
MP-14	524.94	524.80	0.14
MP-16	516.34	511.71	4.63

The data and analysis performed for this Addendum indicates that potential hydrologic impacts due to proposed Quarry pumping are minimal. No adverse impacts to surrounding wells or flow diminution to nearby streams is anticipated. The hydrologic balance will be continually assessed through implementation of the monitoring plan in conjunction with the record of the Quarry pumping rate.

The proposed monitoring network includes collection of regular static water level measurements from the wells located around the perimeter of the proposed pit (MW-1 MW-2, MW-3, MW-4) as indicated in Module 8 of the SMP. Data generated from the monitoring network will provide regular monitoring of groundwater levels and will enable detection of potential impacts to surface water and groundwater.

3.0 EVALUATION OF RIDGE RUN PFAS HSCA SITE

Rock Hill monitoring well MW-4 was sampled by PADEP on February 22, 2018 to gather data in support of PADEP's on-going investigation and clean-up activities for the Ridge Run PFAS HSCA Site. The Rock Hill Quarry lies at the North-eastern edge of the Ridge Run Site boundary that was initially delineated by PADEP as a one-mile radius centered around (2) two North Penn Water Authority (NPWA) public supply wells (See Figure 2, Environtrac, 2017). For reference, Figure 2 shows the 1-mile Ridge Run HSCA Site boundary, the approximate outline of the property at 1419 Bethlehem Pike which was the source of PFAS contamination, the two (2) NPWA wells, the Quarry and geology. The property at 1419 Bethlehem Pike will be referred to in this report as the Ridge Run Property to distinguish it from the initial 1-mile Site boundary delineated by PADEP. The analysis presented herein provides an assessment of what effects, if any, Quarry pumping may have on the Ridge Run site activities, clean up, and background PFAS concentrations. As part of this assessment, EARTHRES evaluated the Ridge Run HSCA Site activities and sampling results, assessed area hydrogeology, collected samples from the Quarry Pit and Clarifying Pond discharge for PFAS and completed additional modeling simulations. Model results indicate that Quarry pumping will not influence the Ridge Run HSCA Site because pumping will not extend the PFAS plume and will have limited impact on the natural groundwater flow near the Quarry.

3.1 Ridge Run PFAS HSCA Site

Documents reviewed by EARTHRES pertaining to the Ridge Run PFAS HSCA Site include the following:

Table 6. Primary Ridge Run PFAS Documents					
Document	Date	Author			
Ridge Run PFAS HSCA Work Plan	1/12/2017	EnviroTrac			
Ridge Run PFAS HSCA Site Public	7/11/2018	PADEP			
Hearing Presentation					
Ridge Run PFAS HSCA Statement	4/18/2019	PADEP			
of Decision					
Ridge Run Site Investigation Report	3/10/2020	EnviroTrac			
November 2021 Monitoring Well	2/23/2022	Tetratech			
Sample Results					

As detailed in PADEP's Site Investigation Report (Envirotrac, 2020), in November 1986, a tire fire occurred at 1419 Bethlehem Pike. The fire was extinguished using firefighting foams contaminated with PFAS. Soil sampling conducted in 2019 identified a source area for PFAS located on the northern portion of the property, corresponding to the site of the fire. PFAS was detected in August and September 2016 in two (2) public water wells (NPWA-74 & 73) located approximately 0.6 miles from Rock Hill Quarry. PFAS levels were detected in exceedance of the United States Environmental Protection Agency (US EPA) Health Advisory level (HAL) of 70 nanograms per liter (ng/L) established in 2016, which resulted in the wells being taken off-line. From February 2017 through October 2019, a total of 156 potable wells were sampled to

develop a baseline survey of potentially PFAS impacted wells. PADEP has been actively pursuing site remediation and treatment systems for impacted residents. PADEP's interim response actions consist of installation and maintenance of point of entry treatment systems (POET) on impacted residential wells located in proximity to the Ridge Run Property. Additionally, remedial measures are being undertaken at the source area using implementation of permeable reactive barrier technology.

3.2 Hydrogeologic Setting

The Ridge Run HSCA Site and surrounding area are underlain by Triassic rocks of the Brunswick Formation, Lockatong Formation, and Triassic Diabase (see Figure 2). Within this geology, groundwater is stored and moves primarily through fractures in the bedrock including bedding plane partings, joints, and faults, if present. The water table is generally a subdued reflection of topography and groundwater typically flows downhill discharging to local streams (Low et al, 2002). Groundwater potentiometric surface maps completed for the Ridge Run Property confirm that groundwater gradients are directed to the southeast toward Three Mile Run Creek (Tetratech, 2022).

As shown on Figure 2, the Brunswick Formation underlies the Ridge Run Property and underlies the low-lying area adjacent to Three Mile Run Creek. The Brunswick Formation consists primarily of shale, mudstone, and siltstone. These rocks are moderately resistant to weathering with a moderate permeability and porosity (Geyer & Wilshusen, 1982). By contrast, the Diabase is a crystalline igneous intrusive rock that is very resistant to weathering and exhibits very low porosity and permeability (Geyer & Wilshusen, 1982). Due to its high resistance to weathering, the Diabase forms a ridge line that rises over 100 feet above Three Mile Run Creek. The Diabase ridge is located north of the Three Mile Run Creek and north of the Property. The Quarry is underlain only by the Diabase.

Within the Brunswick Formation, permeability is typically greatest in the strike direction and lowest perpendicular to the plane of bedding. Therefore, wells aligned along geologic strike are more likely to exhibit pumping effects than wells that are not aligned the geologic strike (Greenman, 1955). Site investigations indicate that the geologic structure within the Brunswick Formation trends (strikes) in the northeast/southwest direction with beds that are inclined (dip) gently (< 30 degrees) to the northwest (Environtrac, 2020).

Based on these aquifer characteristics, wells located along geologic strike from the Ridge Run Property (northeast), and within the same geologic formation, including the NPWA, wells would be susceptible to influencing and capturing contaminated groundwater from the Property.

Wells that are cross-strike from the Ridge Run Property (northwest or southeast) and/or in a different geologic formation (e.g., in the Diabase in which the Quarry is located) would be less susceptible to influencing and capturing contaminated groundwater from the Property.

3.3 Evaluation of Potable Well Results

Figure 3A depicts the Ridge Run Property, NPWA wells, the geology, and an overlay of the potable well sampling results contained within the Envirotrac Site Investigation Report. The potable well results are color-coded based on the level of PFAS detected. Sampling from the Ridge Run Property wells indicated combined PFOA/PFOS concentrations of up to 24,700 ng/L (MW-6S) (see Table 5, Envirotrac, 2020) and levels decrease significantly at distance from the Ridge Run Property. Figure 3B depicts the same results along with the groundwater potentiometric surface simulated by the EARTHRES model. The groundwater contours indicate the general direction of groundwater flow with flow occurring from high head potential to low head potential, except where influenced by groundwater pumping.

Review of the potable well sampling results indicates a general plume distribution that is elongated in the strike direction and toward the NPWA wells as shown by the well sites impacted at over 70 ng/L (red). This pattern is consistent with and suggests that contamination was pulled along geologic strike by pumping of the NPWA wells.

In addition to the red sites, the sampling results indicate a more diffuse and wider area of impact corresponding with the yellow sites (21-40 ng/L) combined PFOA/PFOS). This zone appears to be centered on the Ridge Run Property and extends along strike toward the NPWA wells but also southeast beyond Three Mile Run Creek as well as to the northwest across a geologic contact and into the diabase geology. There are also several other yellow and orange sites that appear unrelated to the main cluster surrounding the Property.

Finally, the majority of potable well results within the 1-mile HSCA Site boundary indicate concentrations below 20 ng/L or non-detect (blue and green sites, respectively). Low level detections occur throughout the 1-mile HSCA Site boundary and have occurred in remote areas such as along the top of the Diabase ridge (more than 100 feet higher in elevation than the Ridge Run Site).

Given the hydrogeologic conditions and physical constraints i.e. the hydraulic gradient directed away from the Diabase ridge, the low permeability of the Diabase, the low permeability of the Brunswick in the cross-strike direction toward the ridge, it is likely that a mode of contaminant transport other than groundwater advection from the Property has contributed to found PFAS concentrations within the 1-mile HSCA Site boundary.

Given the physical and hydrogeologic constraints, the low-level concentrations (e.g., the blue, green, and potentially yellow areas depicted on Figure 3B) may be characterized as diffuse areawide background levels, the source of which is unknown but could include aerial deposition resulting from the fire or deposition from rain water.

3.4 Rock Hill Quarry Sampling

As part of the investigation, PADEP collected a sample from Rock Hill monitoring well MW-4 on February 22, 2018 which tested positive for low level PFAS constituents, significantly below

the HAL of 70 ug/L. Given this data and in consultation with PADEP, EARTHRES collected grab samples from the Quarry Pit and Clarifying Pond Discharge on April 1, 2022 for further analysis of PFAS, specifically PFOA, PFOS, and PFBS compounds. The sampling results are summarized below, along with the results from the PADEP sample from MW-4 collected in February 22, 2018.

Table 7. Rock Hill Quarry PFAS Sampling Results					
Sample ID	Date	PFOA (ng/L)	PFOS (ng/L)	PFBS (ng/L)	
MW-4	2/22/2018	4	<2	NS	
Quarry Pit	4/1/2022	6.18	1.57 J	0.54 J	
Clarifying Pond	4/1/2022	5.58	3.01 I	0.51 J	

Review of the results indicates the detection of PFAS compounds in the Quarry Pit water and Clarifying Pond at levels similar to those found in MW-4 and significantly below the EPA HAL of 70 ng/L. Based on review of the PADEP potable well sample results, the concentrations identified at Rock Hill Quarry are consistent with background levels found within the 1-mile Site boundary of the Ridge Run PFAS HSCA Site.

The found concentration levels within the Quarry Pit water are below the Pennsylvania Maximum Contaminant Levels (MCLs) of 14 ng/L for PFOA and 18 ng/L for PFOS in public drinking water supplies and are below the EPA HAL of 70 ng/L. The found levels are also below the Pennsylvania Act 2 cleanup standard for groundwater of 70 ng/L. In addition, the found levels are orders of magnitude below the draft EPA Aquatic Life Ambient Water Quality Criteria of 940 ug/L for PFOA and 8.4 ug/L for PFOS (EPA, 2022¹). A search by EARTHRES for public water supply intakes located within 10 miles of the Quarry discharge point indicates no intakes within 10 miles, confirming that discharge from the Quarry will not impact public drinking water supplies. Based on comparison of existing PFAS concentrations presented in Table 7 with the above regulatory criteria, the Quarry discharge will not adversely impact surface or groundwater quality or local sources of drinking water.

3.5 Assessment of Potential Rock Hill Quarry Effects

Quarry pumping was further assessed to evaluate what potential effects, if any, Quarry dewatering could have on the Ridge Run Site activities, remedial response measures, and background levels of PFAS. The interim response actions consist of installation and maintenance of POET systems on impacted residential wells located in proximity to the Ridge Run Site. Additionally, remedial measures are being undertaken at the source area using reactive barrier remediation technology.

¹ EPA, 2022. Fact Sheet: Draft 2022 Aquatic Life Ambient Water Quality Criteria for Perfluorooctanoic acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS), https://www.epa.gov/system/files/documents/2022-04/pfoa-pfos-draft-factsheet-2022.pdf

Groundwater Pumping Evaluation Addendum Heidelberg Materials – Rock Hill Quarry January 2023 Page 11

Additional modeling simulations were completed to evaluate the Quarry's contributing area under current and future pumping conditions. Particle tracking was implemented within the model using the USGS MODPATH code. Particles were located within the Quarry and were tracked backward to determine their point of origin to determine the contributing area.

Figure 4A shows the simulated groundwater flow paths reaching the Quarry under current non-pumping conditions. As expected, the pathlines indicate the flow paths under non-pumping conditions originate from upgradient areas to the north.

Figure 4B shows the simulated groundwater flow paths under future pumping conditions. As depicted on Figure 4B, the majority of the flow paths originate within close proximity to the Quarry with most of the paths originating from the north, upgradient of the Quarry. Fewer pathways extend southwest from the diabase ridge on the other side of the Unnamed Tributary valley. Pathlines from the southwest represent deeper groundwater flow paths that, under non-pumping conditions, flow beneath the Unnamed Tributary enroute to Three Mile Run Creek or Bog Run.

The capture zone analysis demonstrates conclusively that Quarry pumping will not capture or influence contaminated groundwater from beneath the Ridge Run Property or NPWA wells. In addition to modeling, several hydrogeologic factors also support this conclusion. Rock Hill Quarry is located both cross strike and hydraulically upgradient of these locations. The Quarry is also located within a different geologic unit (Diabase as opposed to the Brunswick Formation). These factors combined with the distance (0.6 miles from the NPWA wells and 1.4 miles from the Property) ensure that dewatering of the Rock Hill Quarry will not capture groundwater from beneath the Ridge Run Site or NPWA wells or otherwise influence the remedial activities and interim response action undertaken by PADEP.

With respect to local groundwater conditions, Quarry pumping has limited potential to capture a small amount of groundwater originating from the Diabase ridge southwest of the Quarry. EARTHRES completed additional particle tracking to evaluate groundwater flow paths originating from the Diabase ridge. Figure 5A and 5B show the groundwater flow paths under current conditions as well as future Quarry pumping conditions.

Based on the model results, groundwater from this Diabase ridge flows naturally toward the Unnamed Tributary of Bog Run, Bog Run, and Three Mile Run (see Figure 5A). Quarry pumping results in minor changes to a small number of flow paths in this area but does not impact the overall flow paths as shown by comparison of Figure 5A and 5B. The groundwater captured by the Quarry is deep groundwater from the ridge that flows naturally toward the Unnamed Tributary and becomes susceptible to capture upon nearing the Quarry. Thus, while according to PADEP's potable well sampling, low-level PFAS was detected in a few wells located on this ridge, it is unlikely that Quarry pumping will impact flow from these wells.

Based on this analysis, Quarry pumping has the potential to capture a small portion of the groundwater that would otherwise discharge naturally to Bog Run or Three Mile Run. This pumped water will be discharged back to surface water via NPDES 001 and flow to Bog Run

Groundwater Pumping Evaluation Addendum Heidelberg Materials – Rock Hill Quarry January 2023 Page 12

where it would eventually discharge naturally in the absence of Quarry pumping. Given these conditions, Quarry pumping is not anticipated to adversely affect the existing background conditions related to PFAS. Furthermore, it is concluded that Quarry pumping will have limited influence on the natural groundwater flow paths, will not direct PFAS toward potable wells or streams that are not currently in the flow path of PFAS, and as such will not alter the existing groundwater conditions with respect to PFAS.

The capture zone analysis demonstrates conclusively that Quarry pumping will not influence the Ridge Run HSCA Site because it will not extend the PFAS plume and will have limited impact on the natural groundwater flow near the Quarry.

Based on the modeling results and the hydrogeologic factors discussed within, it is concluded the Quarry will not impact the on-going site remediation response actions being conducted for the Ridge Run HSCA Site.

4.0 CONCLUSIONS

This Addendum provides supplementary information to the 2018 Groundwater Pumping Evaluation report and incorporates several model adjustments, an updated calibration analysis, and zone of influence assessment. In addition, the Quarry Pit water was evaluated for per-and polyfluoroalkyl substances (PFAS). Quarry pumping was further assessed to evaluate what potential effects Quarry dewatering could have on the Ridge Run PFAS HSCA Site, if any, related to site activities, remedial response measures, and background levels. The findings and conclusions of this Addendum are consistent with the conclusions of the 2018 Groundwater Pumping Evaluation

Based on the modeling results and the hydrogeologic factors discussed within, it is concluded that Quarry pumping will not capture or influence contaminated groundwater from beneath the Ridge Run Site. Additionally, the Quarry will not impact the on-going site remediation response actions being conducted for the Ridge Run HSCA Site.

Review of sampling results indicates detection of PFAS compounds in the Pit water and Clarifying Pond at levels similar to those found in MW-4 and significantly below the HAL of 70 ng/L, below the Pennsylvania MCLs, and below the draft EPA aquatic effects levels. Based on comparison with these criteria, Quarry discharge will not adversely impact surface or groundwater quality or sources of drinking water.

Based on review of the regional potable well sample results, the PFAS concentrations identified at Rock Hill Quarry are consistent with the background levels found within the 1-mile Site boundary of the Ridge Run HSCA Site.

Based on the model results, it is concluded that Quarry pumping will have limited influence on the nearby flow paths of groundwater, will not direct PFAS toward any potable wells or to areas that are not currently in the flow path of PFAS and as such will not alter the existing groundwater conditions with respect to PFAS.

The data and analysis performed for this evaluation indicates that potential hydrologic impacts including stream flow diminution and well impacts due to proposed Quarry pumping are minimal. The hydrologic balance will be continually assessed through implementation of the monitoring plan in conjunction with the record of the Quarry pumping rate.

The proposed monitoring network includes collection of static water levels for monitoring wells located around the perimeter of the proposed Pit. Data generated from the monitoring network will provide regular monitoring of groundwater levels during pumping and will enable detection of potential impacts to surface water and groundwater.

EARTHRES concludes that the proposed pumping will not adversely affect the availability of groundwater for existing supplies and that the proposed monitoring program provides adequate protection for water features in and around the permit area.

5.0 REFERENCES

EnviroTrac, Ltd., 2020. Site Investigation Report, Ridge Run PFAS HSCA Site, East Rockhill Township, West Rockhill Township, and Perkasie Borough Bucks County, Pennsylvania. <a href="https://files.dep.state.pa.us/Water/DrinkingWater/Perfluorinated%20Chemicals/Ridge_Run_PFAS_ite/2020-03-10%20Ridge%20Run%20PFAS%20Site%20-%20Site%20Investigation%20Report%20(Final)%20-%20Reduced.pdf

EnviroTrac, Ltd., 2017. Ridge Run PFAS HSCA Work Plan, East Rockhill Township, West Rockhill Township, and Perkasie Borough Bucks County, Pennsylvania.

EPA, 2022. Fact Sheet: Draft 2022 Aquatic Life Ambient Water Quality Criteria for Perfluorooctanoic acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS), https://www.epa.gov/system/files/documents/2022-04/pfoa-pfos-draft-factsheet-2022.pdf

EPA, 2021, "Addressing Challenges of PFAS: Protecting Groundwater and Treating Contaminated Sources, https://www.epa.gov/sciencematters/addressing-challenges-pfas-protecting-groundwater-and-treating-contaminated-sources

Geyer, A.R., and Wilshusen, J.P., 1982. Engineering Characteristics of the Rocks of Pennsylvania, Pennsylvania Geological Survey, 4th ser., Environmental Geology Report 1.

Greenman, David W. "Ground Water Resources of Bucks County, Pennsylvania." Pennsylvania Bureau of Topographic and Geologic Survey, Bulletin W11, 1955.

Low, Dennis J. "Geohydrology of Southeastern Pennsylvania." Pennsylvania Bureau of Topographic and Geologic Survey, WRIR-00-4166, 2002.

Mercuri Associates, "Rock Hill Quarry Review - Review of Hydrogeologic Data Associated with Hanson Aggregates Pennsylvania LLC Rock Hill Quarry Operation" August 6, 2018

PADEP, 2018. Ridge Run PFAS HSCA Site, Public Hearing West Rockhill Township, Presentation.

PADEP, 2019. Ridge Run PFAS HSCA Site East and West Rockhill Townships, Bucks County, Statement of Decision.

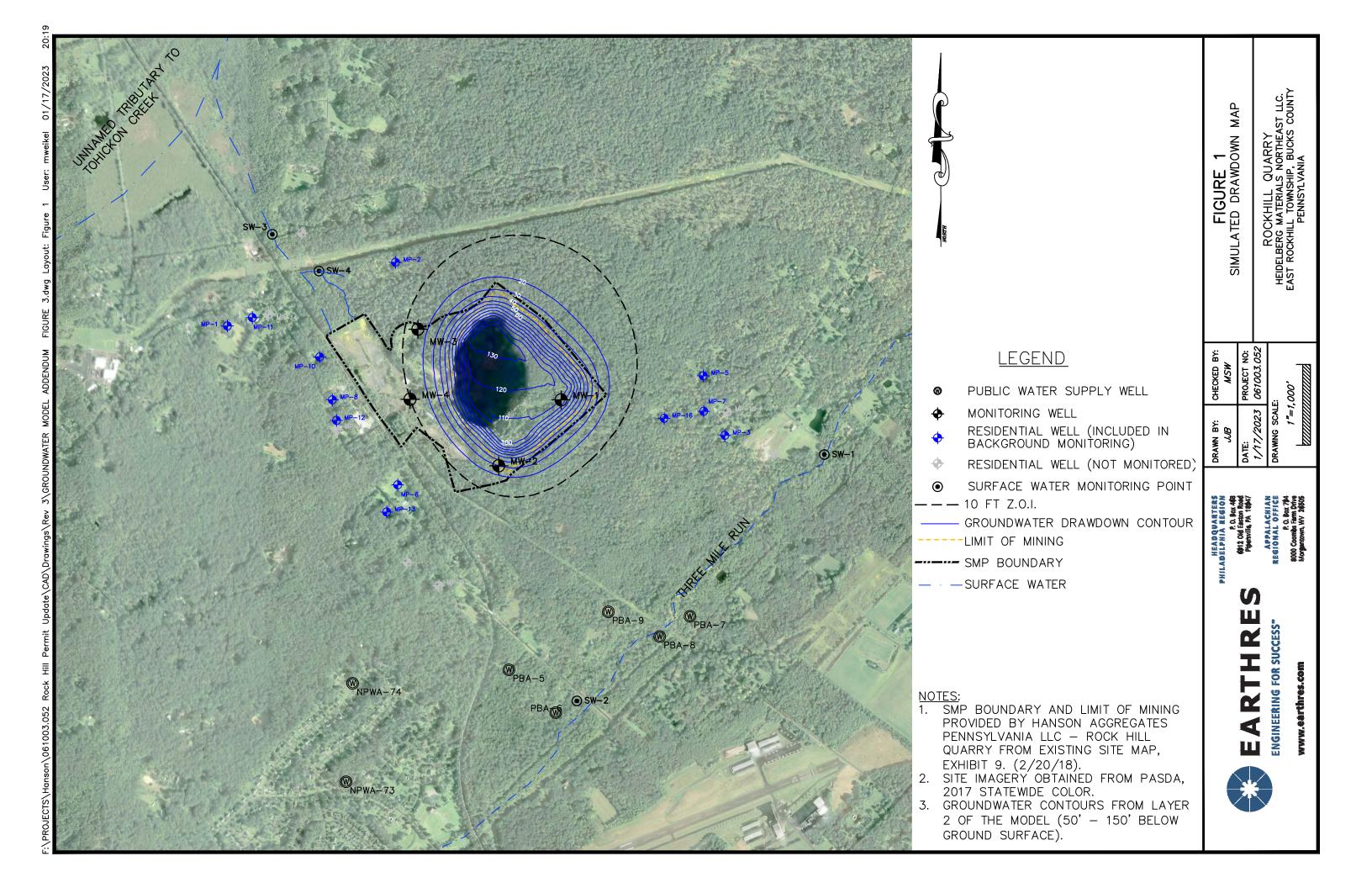
PADEP, 2019. "PFAS Action Team Initial Report Pennsylvania." https://files.dep.state.pa.us/Water/DrinkingWater/Perfluorinated%20Chemicals/Reports/2 0191205-PFAS-Action-Team-Initial-Report-Pennsylvania.pdf

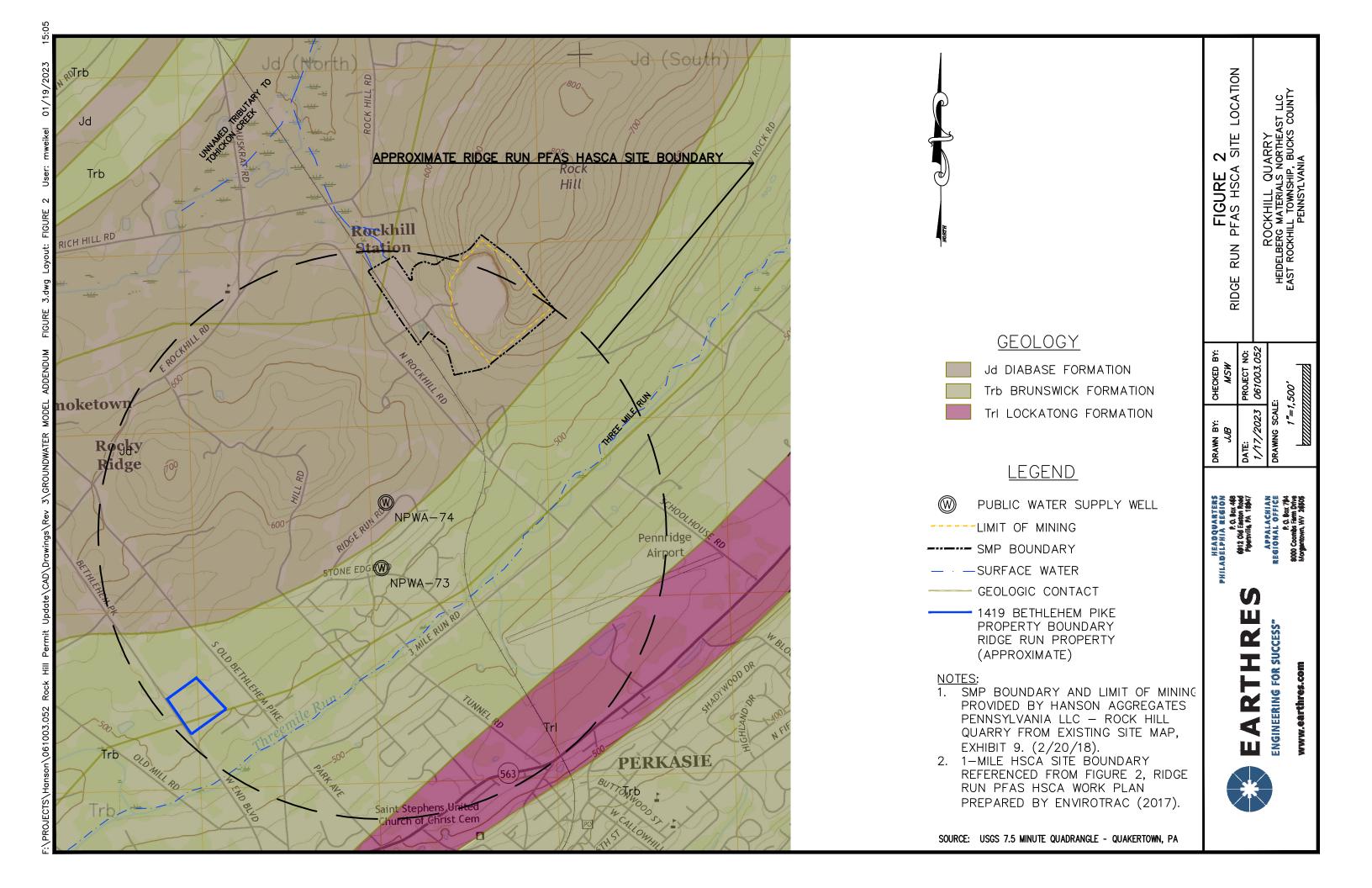
Risser, Dennis, "Summary of Groundwater-Recharge Estimates for Pennsylvania." Pennsylvania Bureau of Topographic & Geologic Survey. W-70, 2010.

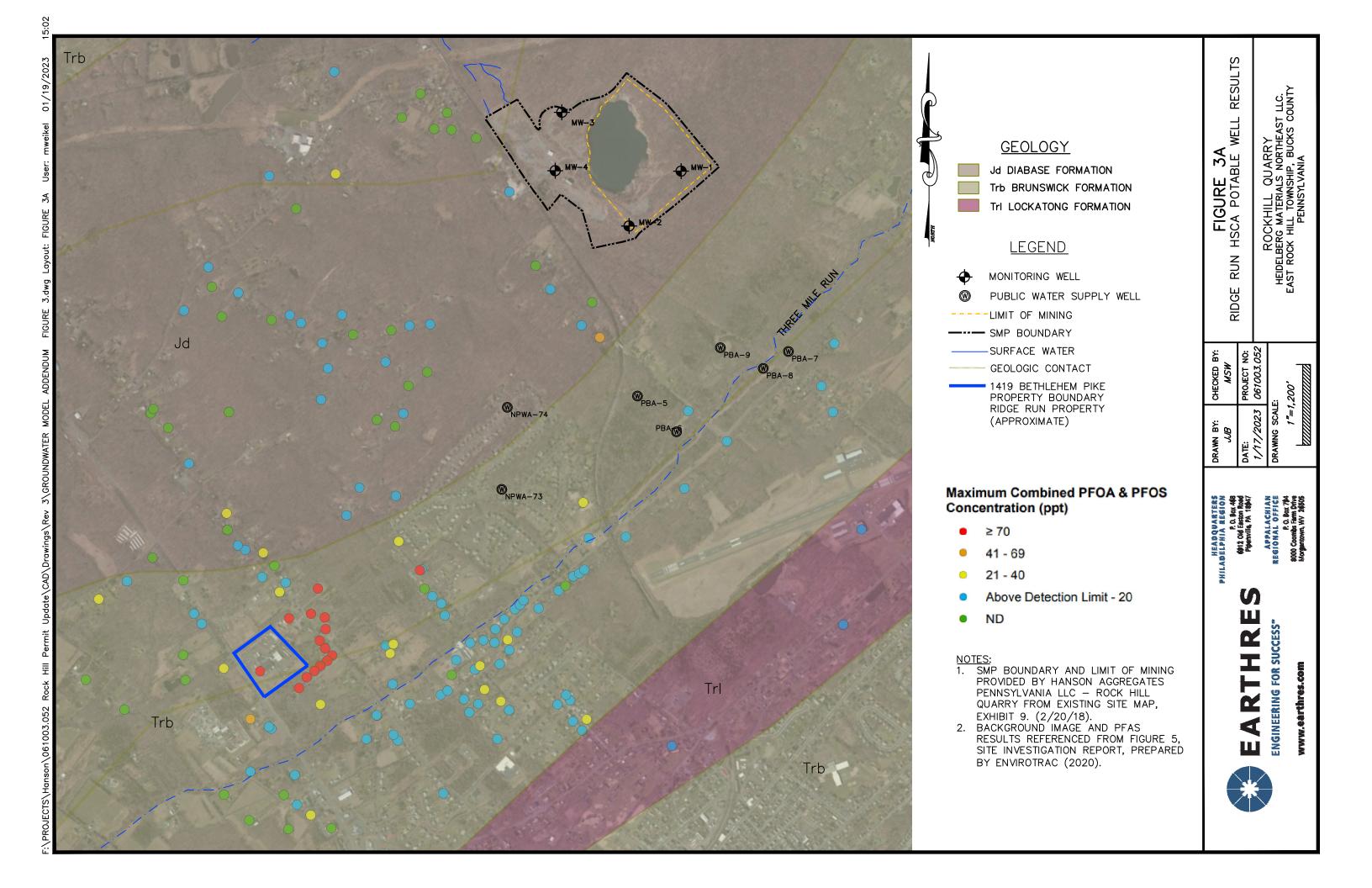
Sloto, Ronald A. "Hydrogeology and Ground-Water Quality of Northern Bucks County, Pennsylvania." U.S. Geologic Survey, WRIR-94-4109, 1994.

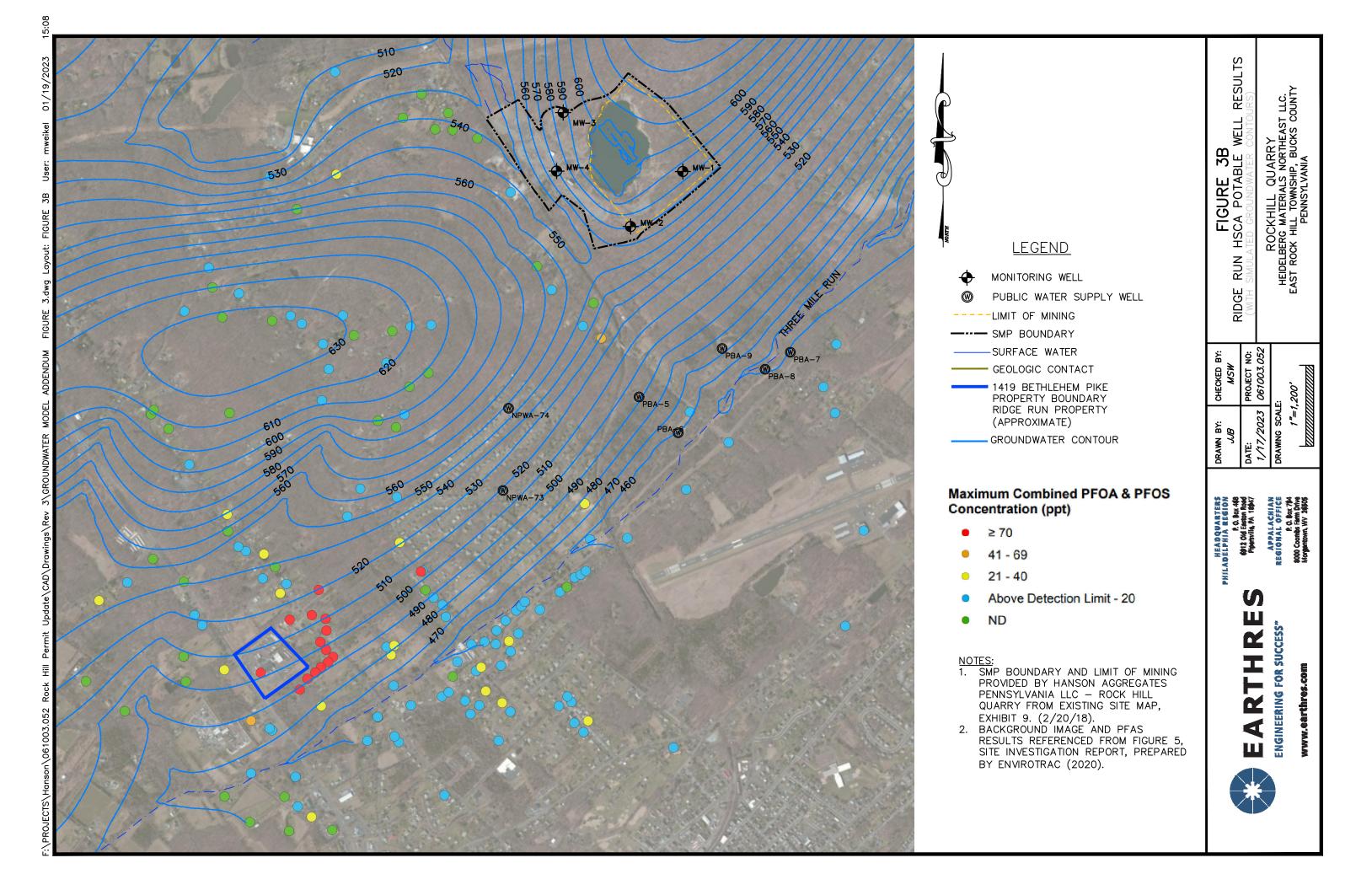
Groundwater Pumping Evaluation Addendum Heidelberg Materials – Rock Hill Quarry January 2023 Page 15

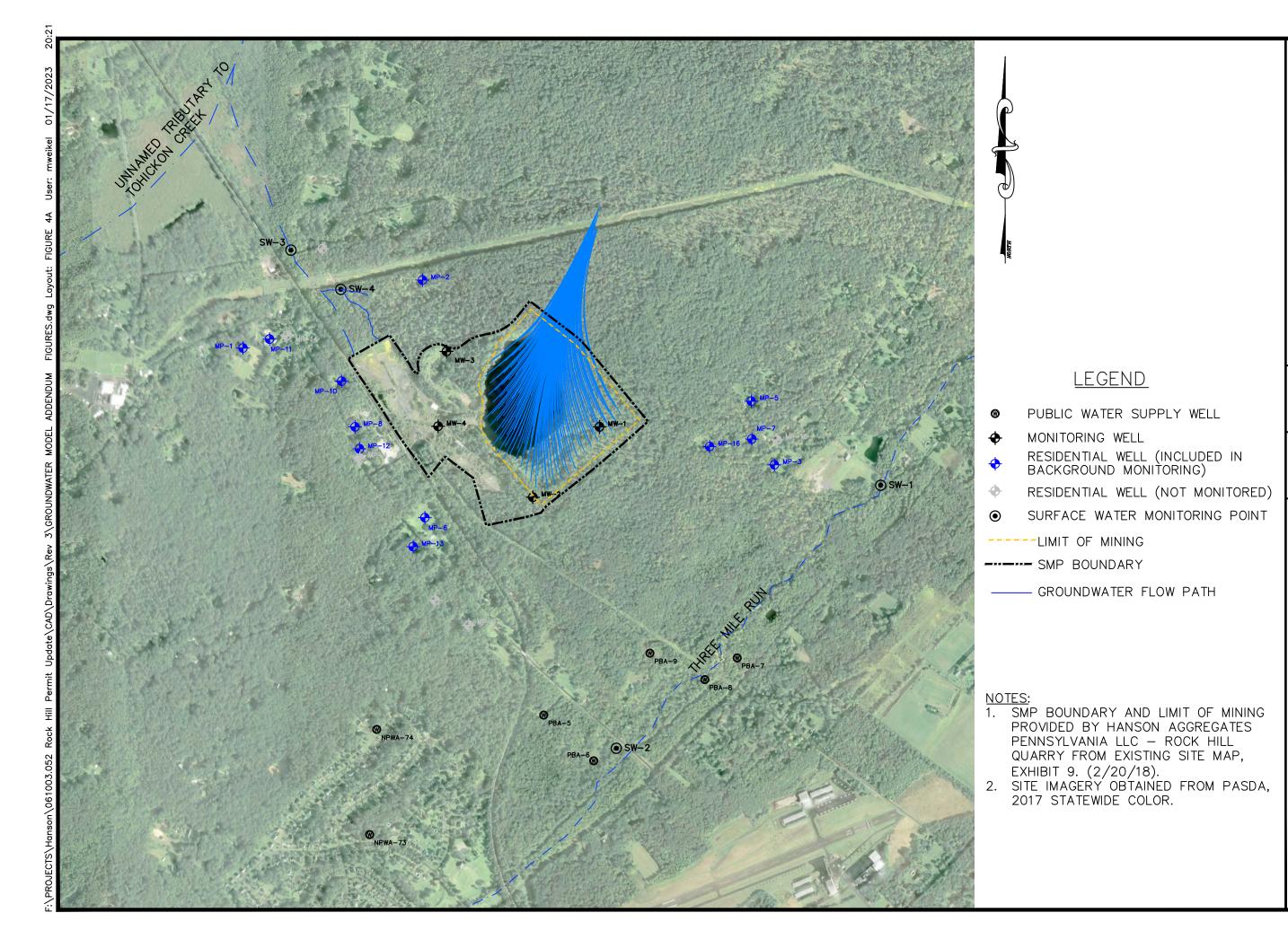
Tetratech, Monitoring Well Sample Results November 2021.


https://files.dep.state.pa.us/Water/DrinkingWater/Perfluorinated%20Chemicals/Ridge_Run_PFAS_Site/103S5436015-2070_NOVEMBER-COMBINED_2021_2-24-2022.pdf

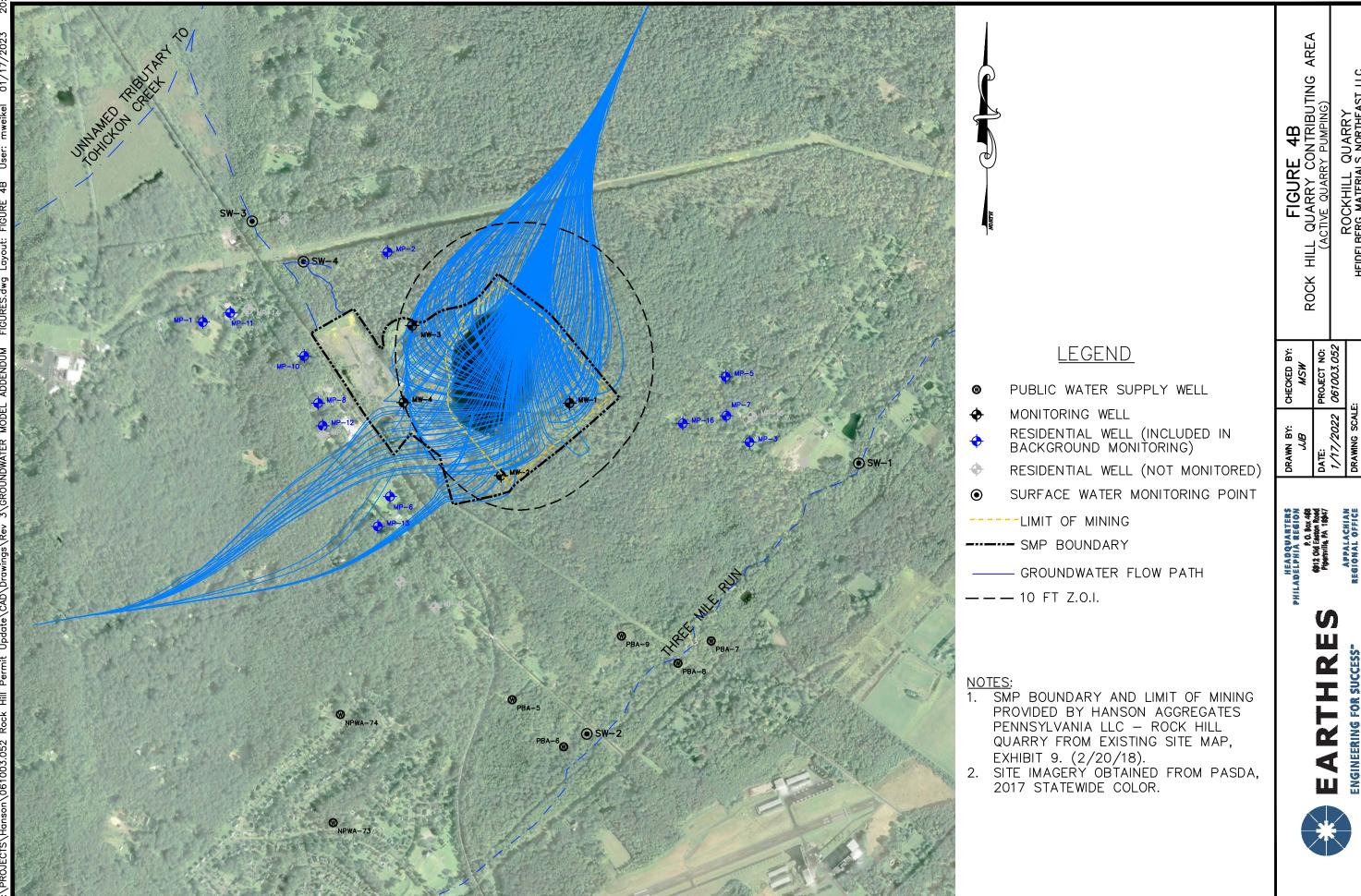



Groundwater Pumping Evaluation Addendum Heidelberg Materials – Rock Hill Quarry January 2023


FIGURES

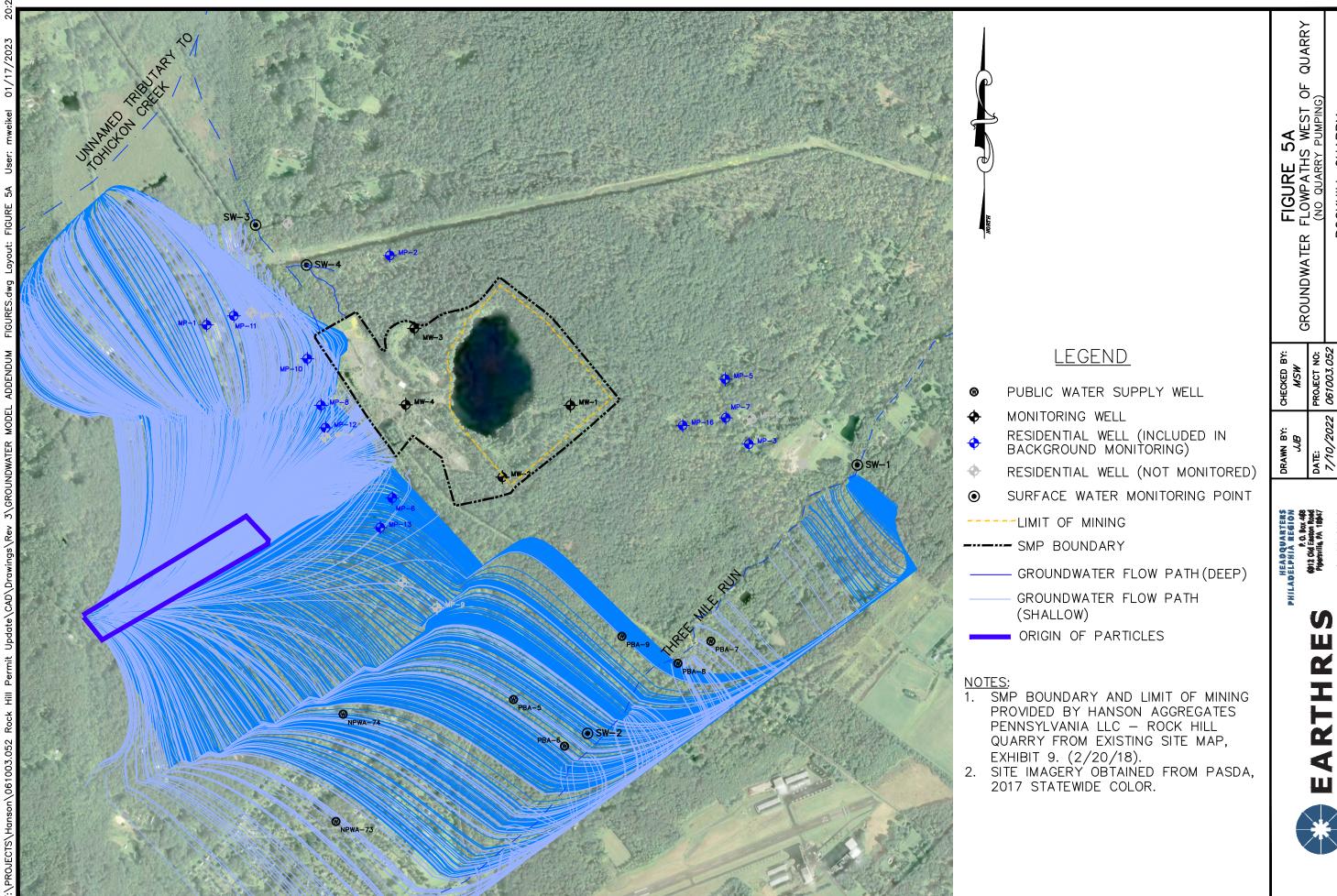


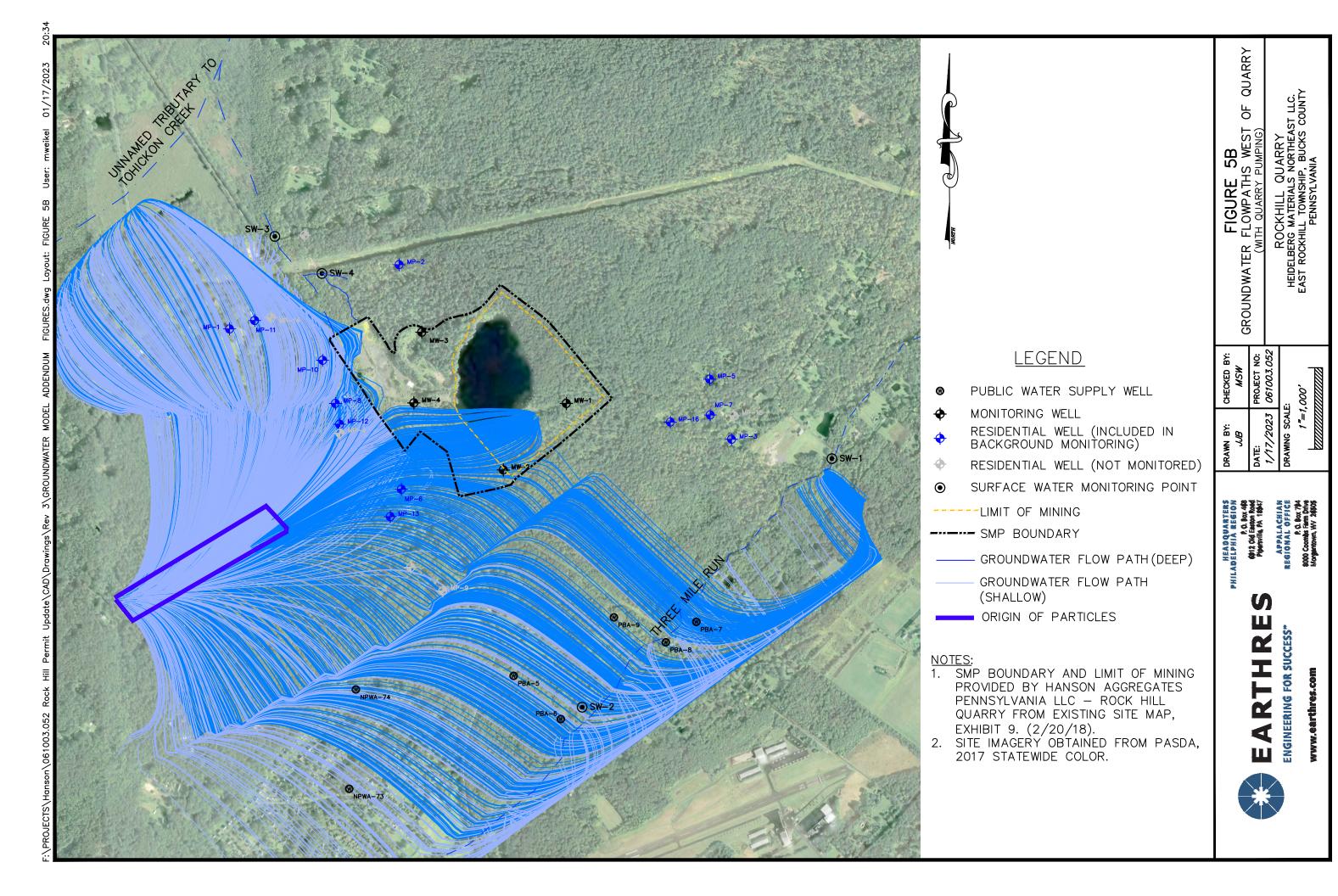
OCK HILL QUARRY CONTRIBUTING
(NO QUARRY PUMPING)
ROCKHILL QUARRY
HEIDELBERG MATERIALS NORTHEAST LI

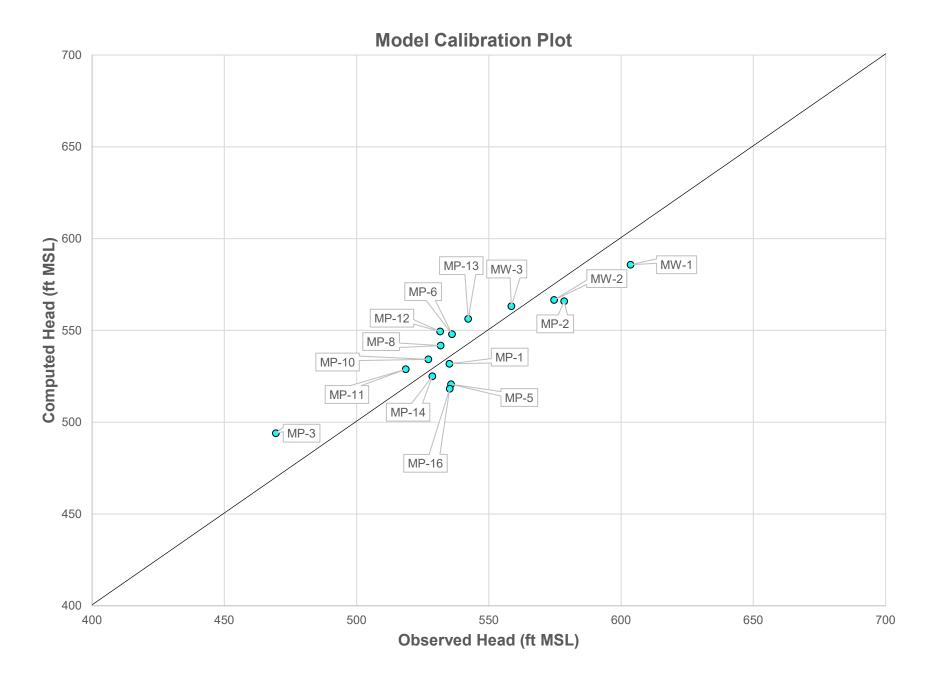

PROJECT NO: 1/17/2023 061003.052 ORAWING SCALE:

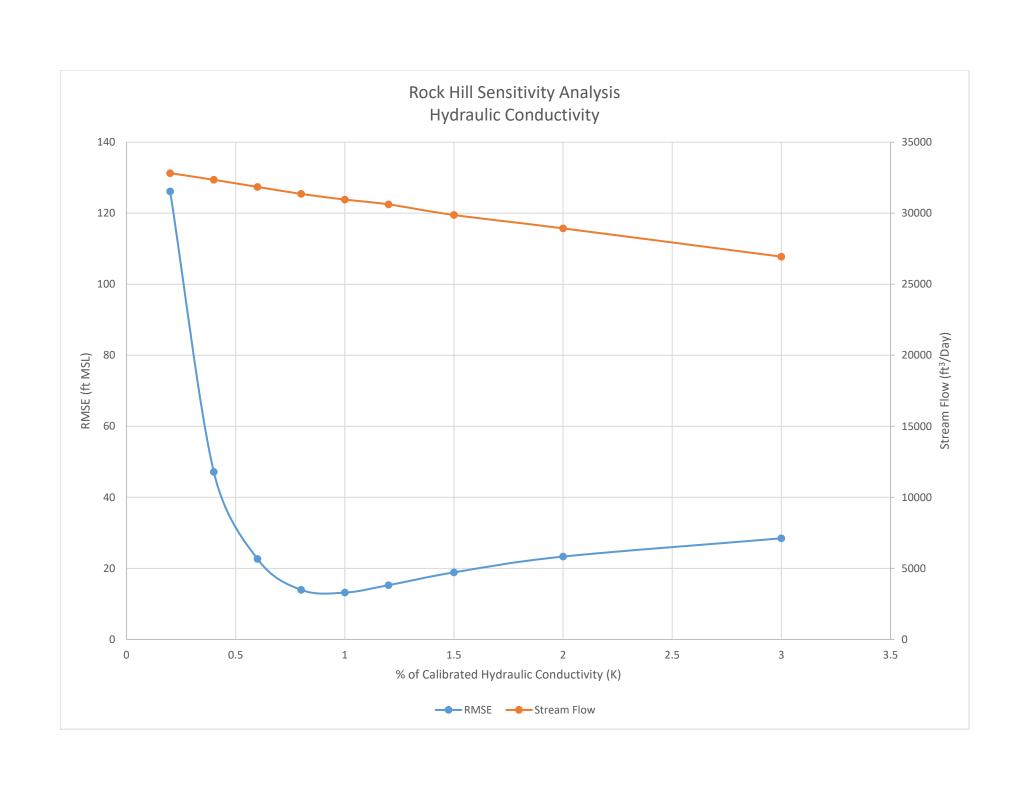
HEADQUARTERS
DELPHIA REGION
P.O. Box 468
6012 OM Esson Road
Phartville, PA 18947

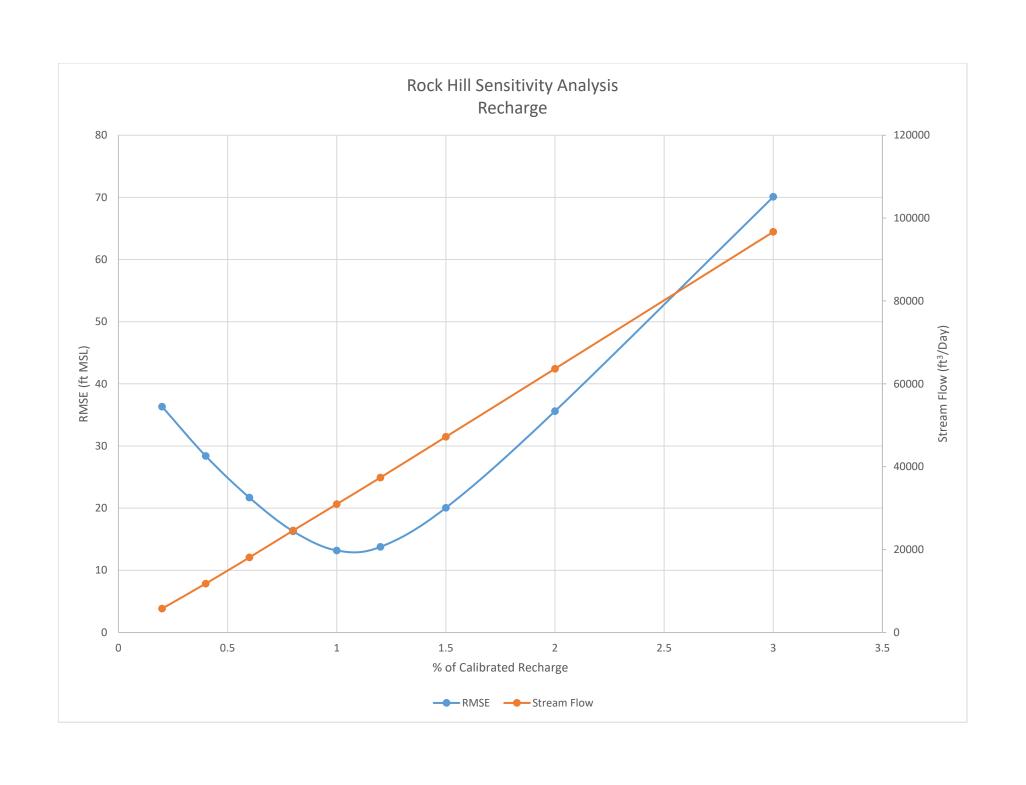
6912 Old Easton Ro Pipersville, PA 1899 APPALACHIA REGIONAL OFFIC ROMAN SAND COMMERCENT PROPERTY SAND COMMERCENT PROPERTY

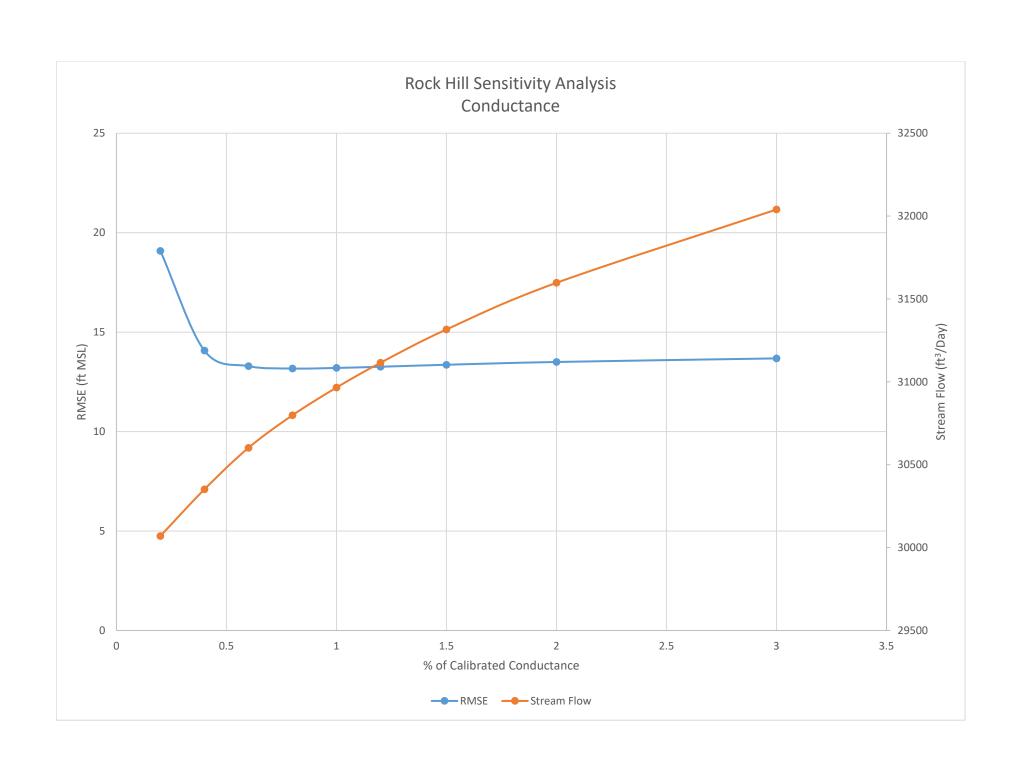



engineering for Success"








ATTACHMENT A Model Calibration Information

