Environmental, Mining & Site Development Services www.earthtechinc.net

Office Numbers: Somerset, PA: (814) 266-6402

Uniontown, PA: (724) 439-1313

June 9, 2025

Commonwealth of Pennsylvania Department of Environmental Protection Cambria District Mining Office 286 Industrial Park Road Ebensburg, PA 15931

ATTN: Mr. Michael R. Schirato, P.G.

RE: Rockwood Stone, LLC

Rockwood Quarry

Application No. 56250301

Black Township, Somerset County

Mr. Schirato:

Enclosed please find responses to the Department's letter dated May 14, 2025 for the above referenced site. Please note, the original proof of publication is also included. Should have any questions regarding this submittal, feel free to contact our Somerset office.

Sincerely,

Ryan D. Stairs, P.G.

Attachments - 2 copies, 1 CD

cc: Public Review – Somerset County Conservation District

Module 1

1. The coordinates provided for the center of the permit area are incorrect. Please revise. [§77.126]

The coordinates have been updated for the center of the permit area.

Exhibit 6.2 — Environmental Resource Map

1. Site visit noted a pond associated with springs 14 and 15 that is not shown on the exhibit. Please revise. [§77.410]

The exhibit has been revised to show the pond associated with springs 14 and 15.

2. Site visit noted two additional springs along the power line near' spiking 20. Please label and show the springs on the exhibit and collect two background samples. [§77.410]

The springs are now shown and labeled on the exhibit. Background samples from these springs have been collected.

3. Site visit noted an unnamed tributary within the central permit area. Please show the tributary on all exhibits and apply the 100-foot stream barrier since this stream was determined to be intermittent. There are also two headwater springs associated with this tributary. Please label and collect two background samples. [§77.410]

Please refer to the revised Exhibit 6.2 map and updated 8.1(A)'s. Also note that the Phase 1 area has been adjusted and the Phase 2 area has been removed from the bonded operational area at this time. All appropriate modules have been revised to reflect these adjustments and are included with this submission. A revision will be submitted to the department in the future to address mining in the Phase 2 area and any potential impacts and/or mitigation of this intermittent stream.

4. Site visit noted a small wetland at the southern end of Sediment Pond 2. Please delineate this wetland and depict on all exhibits. This may necessitate revision on the location of the pond to avoid impacting the wetland. [§77.410]

The small wetland has been depicted on the Exhibit 6.2 Map and Pond 2 has been shifted slightly to avoid it.

Module 8

1. Please provide two static water level measurements for background points 18 and 19. [§77.405]

Please refer to the Module 8.1(A) for water level readings on background point 19. Background point 18's well is located under a deck adjacent to the house and is inaccessible for a water level reading.

2. Please provide flow measurements for background points 20, 21, and 22. [§77.406]

Please refer to the revised Module 8.1(A)'s. A flow measurement device (elevated pipe for volumetric readings) has been installed in the overflow channel of monitoring point 20 to allow for accurate flow measurements when the spring is overflowing. Background point 21 shows no sign of discharge and only dip samples from the spring house are able to be obtained. The overflow channel of background point 22 has been cleaned out to allow for cross-sectional flow measurement when discharging.

3. Please identify the recharge area for 20 since it is currently used as a water supply. Also address how mining in the recharge area will not impact the quantity or quality of this spring in the response to Module 8.6 and Module 8.7. [§77.406 §77.457]

As previously stated in Module 8.3, 8.6, and 8.7, the aquifer feeding the spring at sample point 20 is at least 30 feet below the bottom of the Freeport Sandstone and no mining has been proposed within 550 feet horizontally of the spring itself. The current SNC operation has now affected approximately 5 acres, including significant Freeport Sandstone extraction, in the general area up-gradient of sample point 20. There have been no effects to either the quality or quantity of this spring at this time and no further impacts are anticipated since most of the future mining on the LNC will be in a direction away from the spring's recharge area.

4. The response to Module 8.7 notes that Property 23 has an unused private well located on the property. Please confirm and show this well on the exhibits and collected two background samples. [§77.126 §77.405]

According to property owner interview, the well on property #38 (Mallory) has been unused for some time. It is reported to be drilled to a depth of 200 feet and apparently contains elevated levels of iron and sediment. With the pump in inoperable condition and the plumbing/wiring still installed, there is no way to obtain a sample from this well. The current water supply for this residence is reported to be from the spring at monitoring point 20.

Rockwood Stone, LLC – Rockwood Quarry – Application No. 56250301 Responses to DEP Letter Dated May 14, 2025

Background point 23 was a sample taken from the Mallory home for comparison to samples obtained directly from monitoring point 20.

Exhibit 9 -Operations Map

1. Please show the stream variance area on the exhibit. [§77.410]

The stream variance area for Rhoades Creek has been added to the Exhibit 9. The unnamed tributary (UNT-A) has also been added to the exhibit. Also note that the Phase 1 area has been adjusted and the Phase 2 area has been removed from the bonded operational area at this time. All appropriate modules have been revised to reflect these adjustments and are included with this submission. A revision will be submitted to the department in the future to address mining in the Phase 2 area and any potential impacts and/or mitigation of this intermittent stream.

Module 14

1. Please provide the estimated daily maximum and average monthly withdrawal rates.

The estimated daily maximum and average monthly water usage rates have been provided in Module 14.1(c). Based on the relatively small size and efficiency of the proposed processing facility, it is anticipated that only 85 GPM would be needed to supplement the wash plant system. Assuming 8 hours per day and 5 days per week, this would equate to an estimated maximum daily withdrawal of 40,800 gallons and an average monthly withdrawal of 816,000 gallons. The actual pumping rate from the withdrawal facility may vary from the usage rate. However, the overall total water withdrawn is estimated to reflect the numbers above.

2. In the response to Module 14.1(c) please include a narrative of how the stream flow will be determined in order to maintain a passthrough flow of 0.43 cfs. The response only references use of a staff gauge.

A narrative addressing stream flow determination for maintaining the passthrough flow of 0.43 cfs is provided in the revised response to Module 14.1(c). A survey of the cross-section and profile of the stream channel in Rhoades Creek at the withdrawal location will be performed prior to the installation of the water withdrawal equipment.

Rockwood Stone, LLC – Rockwood Quarry – Application No. 56250301 Responses to DEP Letter Dated May 14, 2025

This will allow for a minimum flow depth to be calculated to allow pumping activities. A staff gauge and the pump intake will then be set at the appropriate elevation with a visual indicator to show when stream conditions allow for pumping, while maintaining the minimum passthrough flow of 0.43 cfs during pumping activities. The detailed stream cross-section and profiles, along with flow calculations, can be submitted to the Department prior to implementing water withdrawal from Rhoades Creek.

3. Please establish a monitoring point at the proposed stream withdrawal point and collect background flow measurements.

Monitoring point 31 has been established on Rhoades Creek at the proposed withdrawal location and background monitoring will continue for a total of six monthly samples. It is requested that commencement of quarterly monitoring at sample point 31 occur when the water withdrawal is implemented.

Bonding

1. The response to Module 10.2 notes that the highwall will vary in height from 50-70 feet. However, the bond calculations use a highwall height of 40 feet. Please clarify. [§77.126 §77.202]

The bond calculation reflects the portion of the highwall that requires blasting for reclamation. Only the upper approximately 30-40 feet of the highwall will be required to be blasted, as the lower portion will be backfilled, as can be seen on the cross sections on Bond Attachment A. Therefore, the 40-foot highwall rate is appropriate for bonding purposes.

2. Please provide a schematic of the proposed processing plant in support of the demolition bond calculations. Currently, no proposed structures are depicted on the Operations Map. [§77.126 §77.202)

A schematic of the proposed processing plant has been added to Exhibit 9 to support the demolition bond calculations.

Erle Times-News | The Intelligencer Bucks County Courier Times The Daily American | Beaver County Times Pocono Record | Burlington County Times PO Box 630531 Cincinnati, OH 45263-0531

AFFIDAVIT OF PUBLICATION

Kelly Brown Rockwood Stone LLC 143 Rubright RD Rockwood PA 15557-6025

COMMONWEALTH OF PENNSYLVANIA, COUNTY OF SOMERSET

The Somerset Daily American is a newspaper of general circulation, published at 334 West Main Street, in the borough of Somerset, County of Somerset and State of Pennsylvania. That said newspaper was established as a daily newspaper of general circulation on the First day of July, 1929, since which date said newspaper has been published daily in the Borough of Somerset; that a copy of the printed notice, hereto attached, is exactly as the same was printed and published in the regular edition of the Daily American, published in the issue dated:

03/22/2025, 03/29/2025, 04/05/2025, 04/12/2025

Sworn to and subscribed before on 04/12/2025

Legal Clerk

Notary, State of WI. County of Brown

My commission expires

Publication Cost:

\$1084.84

Tax Amount:

\$0.00 \$1084.84

Payment Cost: Order No:

11147849

Customer No:

1506929

1

of Copies:

PO #:

Application

THIS IS NOT AN INVOICE!

Please do not use this form for payment remittance.

NICOLE JACOBS Notary Public State of Wisconsin

PUBLIC NOTICE NEW PERMIT

Pursuant to the "Surface Mining Conservation and Reclamation Act" and the "Clean Streams Law" notice is hereby given that Rockwood Stone, LLC, 1281 Rubright Road, Rockwood, PA 15557 has made application to the Pennsylvania Department of Environmental Protection (DEP) for a new noncoal surface mining permit in Black Township, Somerset County. The application includes a request for authorization to discharge under an individual NPDES permit and for a variance to conduct mining activities within 100-feet of Rhoades Creek to draw water from the creek for mining usage. The application also includes a request for a land use change from forestland to unmanaged natural habitat and a variance to reclaim the site from the approximate original contour. Additionally, the application will conduct blasting in compliance with all applicable State and Federal laws. The proposed permit is 175 acres, is southeast of Rockwood, PA, and on the eastern side of Rockdale Road (S.R. 2016). The receiving streams for this proposed permit area are Unnamed Tributaries to Rhoades Creek (WWF), Rhoades Creek (WWF) and Unnamed Tributaries to the Casselman River (WWF). The Rockwood, PA U.S. Geological Survey 7.5-minute topographic map contains the area described. A copy of the application is available for public inspection at the Somerset County Conservation District, 6024 Glades Pike #103, Somerset, PA 15501. Written comments, objections, or a request for public hearing or informal conference may be submitted to the DEP, Cambria District Office, 286 Industrial Park Road, Ebensburg, PA 15931, within thirty (30) days from the date of the final (4th) publication of this notice and must include the person's name, address, telephone number, and a brief statement as to the nature of the comment(s).

	SECTION C.	(continued)				
Operation/Site Location						
U.S.G.S. Map Name(s) Rock	wood, PA 7.5 Min Quad					
Map Coordinates (center of prop	osed permit area)					
Latitude 39°	54' 21"	Longitude	79° 09′	07″		
Method of latitude/longitude colle	ection: eMap					
Horizontal accuracy (feet/inches						
Horizontal Reference Datum	☐ N.Am. 1927					
	☐ World Geodetic 19					
Name or route number of neares operation: <u>Access is from an ex</u>	st state/township road and a des isting common use road (Subst	cription of the location ation Road), just east o	of the road that provio	des access to the (S,R, 2016).		
Name(s) of receiving stream(s) and	Chapter 93 Classification					
Unnamed Tributaries to Rhoades Cree		VF), and Unnamed Trib	outaries to Casselmar	n River (WWF)		
MOUA MILLE N						
MSHA Mine I.D. No						
Extent of Mining						
Mining A	irea					
List Rock/Mineral to be Mined			Remining			
(Include topsoil/overburden	Acres of		andoned mine land			
to be sold)	Rock/Mineral Removal		refuse/spoil piles, ted by underground			
Freeport Sandstone	45.2	mining) to be re-at		<u>0</u>		
		_				
			Processing Facili	ty		
		_	· ·			
Total surface acres to be affected	00.0	Total acres to be a	affected	10.0		
by rock/mineral removal	66.3	_				
Total underground acres to be	0	-	Wetlands			
affected by rock/mineral removal		Total carea of wet	and to be offerted by	mining. 0		
		Total acres of well	and to be affected by	mining. <u>U</u>		
		Total acres of wet	and to be replaced:	0		
		_	·			
Permit Area (total acres of mining and support)	175					
and support)	173	-				

1.	Is the project located in or within a 0.5-mile ☐ Yes ☒ No radius of an Environmental Justice community as defined by DEP?
	To determine if the project is located in or within a 0.5-mile radius of an environmental justice community, please use the online PennEnviroScreen tool. To see specific EJ areas, select the appropriate year of your submittal from the themes box on the right.
2.	Have you informed the surrounding community $\ \square$ Yes $\ \boxtimes$ No prior to submitting the application to the Department?
	Method of notification:
3.	Have you addressed community concerns ☐ Yes ☐ No ☒ N/A that were identified?
	If no, please briefly describe the community concerns that have been expressed and not addressed.
4.	Is your project funded by state or federal ☐ Yes ☐ No grants?
	Note: If "Yes", specify what aspect of the project is related to the grant and provide the grant source, contact person and grant expiration date.
	Aspect of Project Related to Grant
	Grant Source:
	Grant Contact Person:
	Grant Expiration Date:
5.	Is this application for an authorization on Yes No Appendix A of the Land Use Policy? (For referenced list, see Appendix A of the Land Use Policy attached to GIF instructions) Note: If "No" to Question 5, the application is not subject to the Land Use Policy.
	If "Yes" to Question 5, the application is subject to this policy and the Applicant should answer the additional questions in the Land Use Information section.
	LAND USE INFORMATION
	e: Applicants should submit copies of local land use approvals or other evidence of compliance with al comprehensive plans and zoning ordinances.
1.	Is there an adopted county or multi-county comprehensive plan?
2.	Is there a county stormwater management plan?
3.	Is there an adopted municipal or multi-municipal comprehensive Yes No plan?
4.	Is there an adopted county-wide zoning ordinance, municipal Yes No zoning ordinance or joint municipal zoning ordinance?
	Note: If the Applicant answers "No" to either Questions 1, 3 or 4, the provisions of the PA MPC are not applicable and the Applicant does not need to respond to questions 5 and 6 below.
	If the Applicant answers "Yes" to questions 1, 3 and 4, the Applicant should respond to questions 5 and 6 below.
5.	Does the proposed project meet the provisions of the zoning Yes No ordinance or does the proposed project have zoning approval? If zoning approval has been received, attach documentation.
6.	Have you attached Municipal and County Land Use Letters for the ☐ Yes ☐ No project?

Rockwood Stone, LLC.

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF MINING PROGRAMS

BONDING INCREMENT APPLICATION AND AUTHORIZATION TO CONDUCT NONCOAL MINING ACTIVITIES (⋈ New or □ Revision)

DEP Use Only	
No	
Bond No	
Filing Fee	
Amount	
Date Received	

Instructions

Applicant:

Submit the original of this application and one copy. The affidavit must be properly signed and executed. Include any other permit modifications under an Application – For Mining Permit Revision (5600-PM-BMP0015).

Note: No portion of the permit area shall be affected by noncoal mining activities unless the operator has provided a bond to the Department and the Department has approved the bond and issued a written authorization to affect such area.

Surface Mining Permit No.: 56250301

Address:	dress: 1281 Rubright Road		Operation Name: Rockwood Quarry			
	Rockwood, PA	15557	Municipality: Black Township			
Telephone:	814-442-4025		County: <u>Somerset</u>			
Email:	spencer@fearle	essleasing.com				
. Name of	f Landowner	Municipality	County	Acres to be Affected		
la a a a la O	Lumatta E	5 10.				
Joseph C. & Metzgar	Lynette E.	Black Township	Somerset	63.9		
On the Trail, LLC.		Black Township	Somerset	2.4		
		,	Mining Area (Total):	66.3		
Consent of L	andowner Form	(check applicable)				
	sent of Landowne	r Form is attached and it h	has been recorded with the Rec	order of Deeds.		
	sent of Landowne orded with the Re		ding Increment and Mining Auth	orization No and it has		
provide 1) a Chain o) a true and correct	t copy of the lease; 2) exe	se was in existence prior to Ja ecute a Consent of Landowner F Landowner Form, and Chain of	orm as Lessee; and 3) provide		

Map

Attach a copy of Exhibit 9: Operations Map indicating the proposed authorized area and any previously authorized area.

5600-FM-BMP0304 Rev. 02/2025

Bor	nding				
Тур	e of Bond:	⊠ Surety	☐ Collateral	☐ PILB	
Will		request for a p	ohased deposit of collateral?	' (See 25 PA Code Ch.	77.226 for requirements)
Pha	sed deposit	schedule:			
Bor	nd Amount				
1.	•		consolidated Noncoal Summary (5600-FM-MR0474	4) for consolidated Nond	coal mining operations attached?
2.	•		nconsolidated Noncoal (sar summary (5600-FM-MR0473		ated shale, clay, etc.) oncoal mining operations attached?
3.		•	oplicable with this submittal. calculation: <u>June 2025</u>		
App	olication Fe	е			
The be \	re is a fee re riewed at <u>Fe</u>	equired under ees Associated	25 PA Code Chapter 77.10 d with Mining Activities. Indi	96 for each bonding increate which of the follow	ement application. Current fees can ing applies to this application:
⊠ I	New permit	application: fe	e waived		
	ee submitte	ed with the ap	plication		
	No fee inclu	ded. Explain:			

AFFIDAVIT					
This section must be signed by an official and notarized.					
Commonwealth of Pennsylvania, County of Somerset					
I, Spencer Svonavec being duly sworn, according to law, depose that I					
☐ am the applicant.					
☑ am an officer or official of the applicant.					
☐ have the authority to make this application.					
and that the plans, reports, and documents submitted as part of this renewal application and its attachments are true and correct to the best of my knowledge and belief. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.					
Title Member - Rockwood Stone, LLC.					
Address 1281 Rubright Road					
Rockwood, PA 15557					
Sworn and Subscribed to Before Me This					
Day of Downey Public Somerset County My commission expires July 28, 2025 Commission number 1317443					
Notary Signature: Christine Marie We Marco					

Noncoal Bond Rate Guidelines 2025

Project Name:	Rockwood Quarry
Operator:	Rockwood Stone, LLC.
Municipality:	Black Township
County:	Somerset

Revised 6.2025

Unit Operation	Unit Measure	Unit Costs (\$)	If Applies to Permit Mark with " X "	Amount of Units	Total (\$)
Mining Area	acre	3,500.00	Х	45.2	158,200.00
Support Area	acre	1,830.00	Х	21.1	38,613.00
Grading	cubic yard	1.05	Х	320,000	336,000.00
Highwall Blasting	linear foot	40.00	Х	3,600	144,000.00
Pond Removal	pond	3,800.00	Х	2	7,600.00
Structure Demolition	Costs for structure demolition will be calculated using costs listed in the construction industry's latest annual cost publications, such as the Means Building Construction Cost Data publication.	2025 CostWorks	х	22,469.00	22,469.00
	•	<u>'</u>		Subtotal	706,882.00

Special Condition	Unit Measure	Unit Costs (\$)	If Applies to Permit Mark with "X"	Amount of Units	Total (\$)
Mobilization/Demobilization	4% of subtotal or maximum of \$40,000.00	0.04	х	706,882.00	28,275.28
				Subtotal	28,276.00

Conventional Bond Total Required	\$735,158.00
----------------------------------	--------------

Rockwood Quarry Revised 6.2025

CONVENTIONAL BOND CALCULATIONS

OPERATION	EXPLANATION FOR CALCULATIONS			
Mining Area:	45.2 acres (See bond data on Exhibit 9)			
Support Area:	21.1 acres (See bond data on Exhibit 9)			
Grading:	Pit to be backfilled with 320,000 CY of material; see Bond Attachment A			
Pond:	2 ponds to be removed			
Mobilization/Demobilization:	4% of direct costs or \$40,000 maximum			
Other:	Structure Demolition Details: Total from below: \$22,469.00			
	The 2025 edition of Means Building Construction Cost Data publication was used in order to determine the structure demolition figure:			
	Conveyor Demolition: Conveyor Belt = 1,042 total feet Steel Frame Structure Demolition: Labor Foreman \$76.53/hr @ 40 hrs = \$3,061.20/wk and Laborers (4) \$73.60/hr each @ 40 hrs = \$11,776.00/wk; \$3,061.20 + \$11,776.00 = Total \$14,837.20; reference CSI #024116130020 crew info. Front-End Loader: (95 h.p.) for 5 days @ \$720.00/day = \$3,600.00; reference #015433204620 Total Conveyor Cost: \$14,628.40 + \$3,600.00 = \$18,228.40			
	Scale Demolition: Steel Frame Structure Demolition: 70' x 10' x 1'; \$0.57/c.f. = \$399.00; reference #024116130020 Concrete Footer Ramps: 10' x 10' x 1 1/2'; \$0.81/c.f. = \$121.50; reference #024116130050 Total Scale Demolition: \$399.00 + \$121.50 = \$520.50			
	Removal Costs for Mobile Items: Total = \$995.00 Scale House \$995.00/item for removal off of the site; reference #015436501400			
	Plant Demolition Items: Jaw Crusher (1), Cone Crusher/Screen (1), Screendeck (1), Sand Processing Screw (1) and other processing equipment. reference CSI #050505100270 Total Demolition Items: \$545.00 x 5 demolition items = \$2,725.00			

SECTION C. OUTFALL INFORMATION

This Section is to be completed when discrete outfalls are proposed. Attach additional pages for more than 4 points.

21. Identify each point in the tables below. Each discharge point must be shown and labeled as such on a map submitted with this application or as part of the mining permit/authorization. The labeling of discharge points must correspond with the labels used on the exhibit maps submitted in support of the mining permit/authorization. Non-discharging sedimentation traps and groundwater infiltration points are not outfalls and should not be included as outfalls but should be listed at the end of this section. Emergency Spillway(s) for ponds associated with non-discharge alternative must be permitted.

Describe the location and source of each point.								
Discharge Point (e.g. SP 001, SP 002 etc.)	Latitude	e Longit	ude	Receiving Stream Source		Source o	f Discharge (e.g., sedimentation pond, groundwater sump, etc.)	
001	39° 54' 2	2" 79° 09	24"	Unnamed Tributary to Rhoades Creek Sedime		Sediment	Pond 1 (SP-1)	
002	39° 54' 1	4" 79° 09	17"	Unnamed Tributary to	o Rhoades Creek	Sediment	Pond 2 (SP-2)	
		Fo	r the sa	ıme points as above,	describe the flow a	and treatme	nt for each point.	
				Flow	Fragues	•••		
Discharge Point (e.g. SP 01, SP 02 etc.)	Averag	e rate (mgd)		Design rate (mgd)	Frequence (Intermittent (I), Pr Dependent (P), Cor	ecipitation	Treatment	
001		0.80		130.9	Р		Retention and Settling of Solids	
002		0.80		190.6 P			Retention and Settling of Solids	
Design rate is the for sedimentation		flow at the Q 7-10) stream	n flow for post-mining d	ischarges, the maxir	mum hydrau	lic capacity for other treatment facilities or the routed storm flow	
Latitude/Longitu	ıde Collectior	n Method:	EMAP	☐ GPS ☐ I	Printed Map	Other		
Check the horize	ontal referen	ce datum (or proj	ection c	latum) employed in the	collection method.			
] NAD27 (to	po maps)	⊠ N	IAD83 (Emap)	☐ WGS84 (GE	EO84) (most	GPS units)	
For non-discharg	For non-discharging sedimentation traps and groundwater infiltration points, provide the description and location:							
Discharge/Samp	ling Point:	Latitude:		Longitude:	Source of	Discharge ((e.g., sedimentation pond, groundwater sump, etc.):	
Process Po	ond 1	39° 54' 32	"	79° 09' 18"	Process Pond 1 ou	tflow to Proc	cess Pond 2	
Process Po	ond 2	39° 54' 29	"	79° 09' 20"	Process Pond 2 outflow to Processing Plant			

- 3 -

5.3 Adjacent Area (continued)

(18)	Samuel Q. Sanner	Tax Map No. S06-006-052-04
(19)	Debra E. Wagner	Tax Map No. S06-016-030-00
(20)	Charles Scott Monorak & Kristeen A. Pritts	Tax Map No. S06-016-029-00
(21)	Jon J. & Kortini D. Pribelsky	Tax Map No. S06-016-028-00
(22)	Allyson Elizabeth Cramer	Tax Map No. S06-016-027-00
(23)	Sean T. Ibinson II	Tax Map No. S06-016-026-00
(24)	Neal C. & Lynette R. Adolphson	Tax Map No. S06-016-024-00
(25)	Kathy J. Putman	Tax Map No. S06-016-022-00
(26)	Brooke C. & Leeanna Baer	Tax Map No. S06-016-025-00
(27)	Lynn D. & Debra A. Sanner	Tax Map No. S06-006-046-00
(28)	Justin Trimpey & Amanda Urban	Tax Map No. S06-016-044-00
(29)	Diane L. Paul	Tax Map No. S06-016-043-00,015-00,018-00,019-00
(30)	James Edward Brant	Tax Map No. S06-016-021-00
(31)	Rebekah M. & Robert G. Deskevich	Tax Map No. S06-016-020-00
(32)	Joseph D. Ledosky	Tax Map No. S06-016-017-00
(33)	Rick L. Bruner	Tax Map No. S06-016-016-00
(34)	Robert & Tracy A. Deskevich	Tax Map No. S06-016-012-00
(35)	Kevin A. Phillippi	Tax Map No. S06-016-023-00
(36)	Anna Marie Leisher & Josiah J. Withrow	Tax Map No. S06-016-042-00
(37)	Rockwood American Legion	Tax Map No. S06-016-007-00
(38)	James & Debra A. Mallory	Tax Map No. S06-016-035-00
(39)	County of Somerset	Tax Map No. S06-005-004-00
(40), (41)	Barry L. & B. Jean Atchison	Tax Map No.S06-006-042-00
(42), (43)	Penelec c/o First Energy Service Co.	Tax Map No. S06-006-041-00
(44)	Douglas L. & Roxanne Sanner	Tax Map No. S06-006-062-00
(45)	Todd David Miller & Heather M. Weimer	Tax Map No. S06-006-076-00
(46)	B&O RR Co. c/o CSX Transportation Co. Inc.	Tax Map No. S06-006-063-00
(49)	Gail A. Snyder	Tax Map No. S06-010-004-00
(50)	Samuel Q. & Christine Sanner	Tax Map No. S06-006-057-00
(51)	Borough of Rockwood	Tax Map No. S36-012-154-00, 159-00, 160-00
(52)	UNKNOWN	Tax Map No. <i>UNAVAILABLE</i>
(53)	Jason L. & Kelly L. Atchison	Tax Map No. S36-012-153-00
(54)	Robert C. & Lynette Atchison	Tax Map No. S36-012-151-00
(55)	Wayne R. Davis	Tax Map No. S36-012-150-00
(56)	Charles G. Gary	Tax Map No. S36-012-149-00
(57)	Rockwood Borough	Tax Map No. S36-012-149-01

5-3 Revised 6.2025

6) discharges within the permit area resulting from underground mines and discharges resulting from underground mines that are within the permit area but discharge outside the permit area.

See the Exhibit 6.2 Map for sample point locations and the corresponding Module 8.1(A) data sheets.

7) any monitoring wells developed to determine the characteristics of the groundwater. (The Department may require additional monitoring wells.)

N/A – See provided discussion in Module 8.2b)

8) private water supplies and water supplies abandoned because of degradation or pollution from mining, within the permit area and within 1000 feet of the permit area. For each water supply sampled, provide the data required on the Private Water Supply Information Exhibit 8.2(A)(8) and indicate the source of the information (e.g. owner interview, survey by operator, P.E. etc.). (Provide driller logs if available.) (The Department may require additional water supply information on a case-by-case basis.)

Inventoried private water supplies within 1000-feet are identified on the Exhibit 6.2 Map and documented on the 8.2(A)(8) chart and in section 8.7 of this module.

b) Monitoring Program

Describe the proposed surface and groundwater monitoring plan that will be conducted. The monitoring plan shall include quantity and quality measurements of discharges from the operation; points that will show any effect of the discharge on the receiving stream; and points that will show any effect on the groundwater system. Unless otherwise approved by the District Mining Office prior to permit application submittal, monitoring points must have a minimum series of six (6) complete chemical analyses collected at monthly intervals and should include the month of August, September or October to reflect low flow conditions. A minimum of six (6) monthly samples should be submitted with the application and any additional samples while the application is in process.

All monitoring points must be keyed to Exhibit 6.2. Monitoring plans must provide for collection and monitoring on a quarterly basis unless otherwise specified by the Department. All monitoring data must be compiled on Module 8.1(A) or equivalent facsimile. All monitoring points should be identified in the field with durable markers that can be maintained (wooden stakes, metal or plastic tags, etc.; not just plastic flagging).

The following monitoring program is proposed for the Rockwood site.

The following monitoring locations should be included in the monitoring program:

		Monitoring Points (Key to Exhibit 6.2)
1)	receiving streams above proposed discharge points	1, 8, 31
2)	receiving streams below proposed discharge points	9, 11
3)	abandoned underground or surface mine discharges that are hydrologically connected and may be impacted by the proposed mining	<u>N/A</u>
4)	representative springs and seeps within the permit area and within 1000 feet of the permit area	14, 20
5)	representative wetlands with defined discharge points within the permit area and wetlands within 1000 feet of the permit area that may be impacted by the proposed mining,	N/A
6)	water supplies	20 (see 8.7a)
7)	cased boreholes/piezometers	N/A

Manitarina Dainta

BACKGROUND or X MONITORING REPORT*

(check appropriate block)

פומוטו.	KOCKWOO	Operator. Rockwood Stone, LLC
Operation Name:		Rockwood Quarry
Permit No: 56250301	562503	01
Township: Black	Black	
County:	Somerset	set

Latitude: Monitoring Point I.D.: Surface Elevation (MSL): 1948' Longitude: 39° 54' 34" 79° 09' 22" ≶ N and 20

Description of Sample Point**:

Spring on property (2) Joe Metzgar/On the Trail, LLC

Instructions: Use a separate sheet for each sample point and list results consecutively by date.

Flow Only - AS													40.5	\c	6/2/2025
Flow Only - AS													38.5	\ C	5/20/2025
Geochemical Testing - AS		%	<0.1	0.03	<0.05	13	<10	ω	24	۵	5.37		*	DIP	1/15/2025
Geochemical Testing - JE		~ 5	<0.1	0.02	<0.05	14	<10	10	25	ኇ	5.50	5.7	*	DIP	12/26/2024
Geochemical Testing - JE		6.0	<0.1	0.02	<0.05	11	<10	10	27	2	5.24	6.4	*	DIP	11/25/2024
Geochemical Testing - JE		< 5	<0.1	0.02	<0.05	8	<10	12	29	2	5.57	6.7	*	DIP	10/30/2024
Geochemical Testing - AS/JE		%	<0.1	0.02	<0.05	10	<10	14	33	4	5.56	7.3	*	DIP	9/24/2024
Geochemical Testing - AS/JE		%	<0.1	0.02	<0.05	10	<10	14	27	2	5.52	7.7	*	PIP	8/19/2024
									@ 25° C	mg/l			Elevation	ment	
Name of Sampler		partment	ted by the Department	equested b	Submit above as request	Submit &		<u> </u>	(micromhos/cm)	Solids	말	밀	Water	Measure-	Sampled
Laboratory and									Conductance	Suspended	Lab	Field	or Static	Flow	Date
	(mg/l)	mg/l	mg/l	mg/l	Iron mg/I	mg/l	mg/l	റ്	Specific				Flow (GPM)	Method of	
	Solids	Sulfate	Aluminum	Manganese Aluminum				Field Temp.							
	Dissolved														
	Total														
		ļ				•									

Signature of Permittee or Responsible Official or Authorized Representative

Date

Sampled by Earthtech, Inc.:

JE - Joel Emert AS - Austin Smay

* Dip sample obtained due to no overflow from spring. Dip sample was taken from the springhouse.

** Description should include type of sample point, relation to mine site, treatment and other comments (such as odor, color, etc.)

VC = Volumetric Container Abbreviation/Acronym Key: TLTG = Too Large to Gauge XS = Cross Section

EST = Estimate

X BACKGROUND or MONITORING REPORT*

(check appropriate block)

County: Somerset	Township: Black	Permit No: 56250301	Operation Name: Rockwood Quarry	Operator: Rockwood Stone, LLC
	Surface Elevation (MSL): 195	Longitude: 79° 09' 22" W	Latitude: 39° 54' 33	Monitoring Point I.D.:
	53'	V	" N and	21
		Spring house on Joe Metzgar's property		Description of Sample Point**:

Instructions: Use a separate sheet for each sample point and list results consecutively by date.

Flow Only - AS Flow Only - AS												
Flow Only - AS Flow Only - AS												
Flow Only - AS Flow Only - AS								-				
Flow Only - AS Flow Only - AS												
Flow Only - AS												
Flow Only - AS Flow Only - AS												
Flow Only - AS Flow Only - AS			-									
Flow Only - AS												
Flow Only - AS												
Flow Only - AS										No Discharge	No Di	6/2/2025
!)										No Discharge	No Di	5/20/2025
<0.1 <5 Geochemical Testing - AS/JE	0.01 <	<0.05	8	^10	14	27	۵.	5.49	6.7	*	DIP	9/24/2024
<0.1 <5 Geochemical Testing - AS/JE	0.02 <	<0.05	10	<10	13	26	<2	5.33	7.2	*	DIP	8/19/2024
						@ 25° C	mg/l			Elevation	ment	
by the Department Name of Sampler		Submit above as requested	Submit		<u>~</u>	(micromhos/cm)	Solids	말	말	Water	Measure-	Sampled
Laboratory and						Conductance	Suspended	Lab	Field	or Static	Flow	Date
mg/l	mg/l r	Iron mg/l	mg/l	mg/l	റ്	Specific				Flow (GPM)	Method of	
Aluminum Sulfate Solids	Manganese Aluminum				Field Temp.							
Total Dissolved												
			ŀ						1		1	

^{**} Description should include type of sample point, relation to mine site, treatment and other comments (such as odor, color, etc.)

Signature of Permittee or Responsible Official or Authorized Representative

Date

AS - Austin Smay JE - Joel Emert

Sampled by Earthtech, Inc.:

Abbreviation/Acronym Key:
TLTG = Too Large to Gauge
XS = Cross Section
VC = Volumetric Container

EST = Estimate

^{*} Dip sample obtained due to no overflow from spring. Dip sample was taken from the springhouse.

X BACKGROUND or MONITORING REPORT*

(check appropriate block)

County: Somerset	Township: Black	Permit No: 56250301		
	Surface Elevation (MSL): 1944	Longitude: 79° 09' 24" W	Latitude: 39° 54' 32"	Monitoring Point I.D.:
		8	N and	22
		Spring house on Pavlosky property		Description of Sample Point**:

Instructions: Use a separate sheet for each sample point and list results consecutively by date.

Date Flow (GPM) Flow (GPM																
Method of Flow (GPM) Flow																
Method of Flow (GPM) Method of Flow (GPM) Flow (GPM) Flow (GPM) Measure- Flow Flow (GPM)																
Method of Flow (GPM) Flow																
Method of Flow (GPM) Flow (GPM) Field Lab Measure- Measure- Plant Measure Mea																
Method of Flow (GPM) Field Lab Suspended Conductance Measure-																
Method of Flow (GPM) Flow (GPM) Field Lab Suspended (micromhos/cm) Specific (mg/l) Field Temp. (mg/l) Alkalinity (mg/l) Acidity (mg/l) Manganess (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Manganess (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Manganess (mg/l) Manganess (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Manganess (mg/l) Manganess (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Manganess (mg/l) Manganess (mg/l) Aluminum (mg/l) Manganess (mg/l) Aluminum (mg/l) Manganess (mg/l) Aluminum (mg/l) Manganess (mg/l) Manganess (mg/l) Aluminum (mg/l) Manganess (mg/l) Aluminum (mg/l) Manganess (mg/l) Aluminum (mg/l) Manganess (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Manganess (mg/l) Aluminum (mg/l) Manganess (mg/l)																
Method of Flow (GPM) Field Lab (micromhos/cm) Specific (mg/l) Field Temp. (mg/l) Alkalinity (mg/l) Acidity (mg/l) Manganess (mg/l) Aluminum (mg/l) Sulfate Solids (mg/l) Total Dissolved (mg/l) Method of Flow (GPM) Field Lab (Lab (micromhos/cm)) Suspended (micromhos/cm) (mg/l) Alkalinity (mg/l) Acidity (mg/l) Manganess (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Solids (mg/l) Manganess (mg/l) Aluminum (mg/l) Manganess (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Manganess (mg/l) Aluminum (mg/l) Manganess (mg/l) Manganess (mg/l) Aluminum (mg/l) Manganess (mg/l) Manganess (mg/l) Manganess (mg/l) Manganess (mg/l) Aluminum (mg/l) Solids (mg/l) Solids (mg/l) Manganess (mg/l) Manganess (mg/l) Manganess (mg/l) Manganess (mg/l) Aluminum (mg/l) Manganess (mg/l) Mang																
Method of Flow (GPM) Field Temp (GPM) Alkalinity (GPM) Acidity (Manganese (Manganese)) Aluminum (Manganese) Manganese (Manganese) (Manganese) Aluminum (Manganese) Manganese (Manganese) (Manganese) Aluminum (Manganese) (Manganese) Manganese (Manganese) (Manganese) (Manganese) (Manganese) (Manganese) Aluminum (Manganese) (Mangane	Flow Only - AS													10	XS	6/2/2025
Method of Flow (GPM) Flow (GPM) Field Temple Alkalinity and Flow (GPM) Acidity angular and Flow (GPM) Manganess Aluminum (mg/l) Manganess Aluminum (mg/l) Suffate (mg/l) Total Dissolved (mg/l) Manganess (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Manganess (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Manganess Plantinum (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Manganess Plantinum (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Manganess Plantinum (mg/l) Aluminum (mg/l) Sulfate (mg/l) Solids (mg/l) Manganess Plantinum (mg/l) Aluminum (mg/l) Manganess Plantinum (mg/l) Manganes	Flow Only - AS													16	XS	5/20/2025
Method of Flow (GPM) Field Temp Flow (GPM) Alkalinity Report Flow (GPM) Acjdity Report Re	Geochemical Testing - AS/JE		11	0.1	0.09	1.03	1	15	16	42	2	6.85	6.9	*	DIP	9/24/2024
Method of Flow (GPM) Flow Water Water Elevation Rent Elevation Method of Elevation Results Field Lab Suspended Results Relation Relati	Geochemical Testing - AS/JE		<25	<0.1	0.05	0.33	4	13	15	42	<2	6.54	7.4	*	DIP	8/19/2024
Method of Flow (GPM) Flow Total (GPM) Flow Water PH PH Solids (micromhos/cm) Measure- Measur									-	@ 25° C	mg/l			Elevation	ment	
Method of Flow (GPM) Flow or Static Field Lab Suspended Conductance Method of Flow (GPM) Nethod of Flow (GPM) Field Lab Suspended Conductance Field Temp. Alkalinity Acidity mg/l mg/l lron mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Name of Sampler	_	partmen	y the De	equested t	bove as re	Submit at			(micromhos/cm)	Solids	말	말	Water	Measure-	Sampled
Field Temp. Alkalinity Acidity Flow (GPM) Specific °C mg/l mg/l lron mg/l mg/l mg/l mg/l mg/l	Laboratory and										Suspended	Lab	Field	or Static	Flow	Date
Alkalinity Acidity Manganese Aluminum Sulfate		(mg/l)	mg/l	mg/l	mg/l	_	mg/l	mg/l	ငိ	Specific				Flow (GPM)	Method of	
Total Dissolved		Solids	Sulfate	Aluminum	Manganese		Acidity	Alkalinity	Field Temp.							
Total		Dissolved														
		Total														

Signature of Permittee or Responsible Official or Authorized Representative

Date

Sampled by Earthtech, Inc.:
AS - Austin Smay
JE - Joel Emert

** Description should include type of sample point, relation to mine site, treatment and other comments (such as odor, color, etc.)

* Dip sample obtained due to no overflow from spring. Dip sample was taken from the springhouse.

Abbreviation/Acronym Key: TLTG = Too Large to Gauge

EST = Estimate VC = Volumetric Container XS = Cross Section

Module 8.1(A) X BACKGROUND or MONITORING REPORT*

(ï)	•
:		3	•
(ī)	
(۲)	
;		Ī	•
1	3	٥	
7	C	3	
7	Ċ	3	
•		Š	
(C)	
٦	Ċ	3	
٠		٦	
į	3	5	•
•		١	
•	1)	
ŧ	Ċ	5	•
	2		
•	Ų	,	
(ŗ)	
;	7	۲	•
•		,	•

					6/2/2025	5/13/2025		Sampled	Date			County: S	Township: Black	Permit No: 56250301	_	Operator: R
		·			ဂ်	<u>۷</u>	ment	Measure-	Flow	Method of		Somerset	lack	625030	me:	ockwoo
	-				1.8	1.6	Elevation	Water	or Static	Flow (GPM)		et)1	Rockwoo	Rockwood Stone, LLC
					7.9			Ð	Field		Instruc				od Qua	'n
						5.98		рΗ	Lab		tions:				arry	
						<5	mg/l	Solids	Suspended		Use a sep	•	Sui	 Lor	Lat	Mo
						34	@ 25° C	(micromhos/cm)	Conductance	Specific	Instructions: Use a separate sheet for each sample point and list results		Surface Elevation (MSL): 1936'	٠٠.	Latitude:	Monitoring Point I.D.:
					10	11				Field Temp.	t for each		on (MSL): 1	79° 09' 25"	39° 54' 36"	oint I.D.:
						<10				Alkalinity mg∕l	sampl		936'	25"	36"	
						9		Submit	ą.	A cidity mg/l	e point			≶	N and	25
	-					<0.05		bove as	,	Iron mg/l	and list		•	•		
						<0.01		Submit above as requested by the Department		Manganese mg/l	I _			1" black		Descript
						<0.1	,	by the De		Aluminum mg/l	consecutively by date.			k plastic pipe		tion of Sample Point**:
						9		partment		Sulfate mg/l	tively b			pipe		ample P
								•		Total Dissolved Solids (mg/l)	y date.					oint**:
					Geochemical Testing - AS	Geochemical Testing - AS	-	Name of Sampler	Laboratory and							

Signature of Permittee or Responsible Official or Authorized Representative

Date

Abbreviation/Acronym Key: TLTG = Too Large to Gauge AS - Austin Smay JE - Joel Emert Sampled by Earthtech, Inc.:

XS = Cross Section
VC = Volumetric Container

^{**} Description should include type of sample point, relation to mine site, treatment and other comments (such as odor, color, etc.)

X BACKGROUND or Module 8.1(A) MONITORING REPORT*

check appropriate blo
:k appropriate l
appropriate I د
ppropriate l
priate I
priate I
ate I
<u>e</u>
틍
0
ñ
<u> </u>

					6/2/2025	5/13/2025		Sampled	Date				County: S	Township: Black	Permit No: 56250301	Operation Name: Rockwood Quarry	Operator: R
					XS	XS	ment	Measure-	Flow	Method of			Somerset	3lack	625030	ıme:	łockwoo
					14	12	Elevation	Water	or Static	Flow (GPM)			et)1	Rockwoo	Rockwood Stone, LLC
					7.4			모	Field			Instruc				od Qua	.C
						4.96		모	Lab	,		ctions:				arry	
						<5	mg/l	Solids	Suspended			Use a sep		Sur	Lor	Lat	Mo
						98	@ 25° C	(micromhos/cm)	Conductance	Specific		Instructions: Use a separate sheet for each sample point and list results		Surface Elevation (MSL): 1965	Longitude:	Latitude:	Monitoring Point I.D.:
					11	10				Field Temp. °C		et for each		on (MSL): 1	79° 09' 21"	39° 54' 35"	oint I.D.:
						<10				Alkalinity mg/l		ı sampl		965'	21"	35"	
						13		Submit a		Acidity mg/l		e point			٧	N and	26
						<0.05		bove as r		lron mg/l		and list					
						0.22		Submit above as requested t		Manganese mg/l		results c			Spring c		Description of Sample Point**:
						0.2		by the Department		Aluminum mg/l		consecutively by date			on powerline		on of Sa
						<5		partment		Sulfate mg/l		tively b			rline		ımple Pı
										Solids (mg/l)	Total	/ date.					oint**:
					Geochemical Testing - AS	Geochemical Testing - AS		Name of Sampler	Laboratory and								

Signature of Permittee or Responsible Official or Authorized Representative

Date

AS - Austin Smay

JE - Joel Emert

Sampled by Earthtech, Inc.:

Abbreviation/Acronym Key: TLTG = Too Large to Gauge XS = Cross Section

EST = Estimate VC = Volumetric Container

^{**} Description should include type of sample point, relation to mine site, treatment and other comments (such as odor, color, etc.)

X BACKGROUND or Module 8.1(A) MONITORING REPORT*

6
¥
≍
×
×
<u>8</u>
ᅙ
◙
7
×
×
굨.
#
Œ
0
×
Ō
<u>Ω</u>
ᄌ
$\overline{}$

Signature of Permittee or Responsible Official or Authorized Representative						6/2/2025	5/13/2025		Sampled	Date			County:	Township: Black	Permit No: 56250301	Operator: Rockwi
ermittee or						XS	XX	ment	Measure-	Flow	Method of		Somerset	Black	562503	Rockwoo Vame:
Responsib						23	23	Elevation	Water	or Static	Flow (GPM)		et		01	Rockwood Stone, LLC Name: Rockwood Quarry
e Officia						7.2			말	Field		Instru				c od Qu
ıl or Authc							5.12		말	Lab		ctions:				arry
rized Repre							<5	mg/l	Solids	Suspended		Use a sep		Su	 Lo	Lat
esentative							86	@ 25° C	(micromhos/cm)	Conductance	Specific	Instructions: Use a separate sheet for each sample point and list results		Surface Elevation (MSL): 1966	Longitude:	Monitoring Point I.D.: Latitude: 39° 54'
						9	10				Field Temp.	et for each		on (MSL): 1	79° 09' 21"	oint I.D.: 39° 54' 35"
·			-				<10				Alkalinity mg/l	sampl		966'	21"	35"
							15		Submit a		Acidity mg/l	e point			≶	27 N and
Date							<0.05		above as I		lron mg/l	and list		•	' '	Δ,
					,		0.20		Submit above as requested by the Department		Manganese mg/l	results c			Spring o	Description of Sample Point**:
							0.2		y the De		Aluminum mg/l	consecutively by date			on powerline	on of Sa
							9		partmen		Sulfate mg/l	tively b			rline	ample P
											Dissolved Solids (mg/l)	y date.				oint**:
Sampled by Earthtech, Inc.:						Geochemical Testing - AS	Geochemical Testing - AS		Name of Sampler	Laboratory and						

Abbreviation/Acronym Key:
TLTG = Too Large to Gauge
XS = Cross Section

AS - Austin Smay

JE - Joel Emert

VC = Volumetric Container EST = Estimate

^{**} Description should include type of sample point, relation to mine site, treatment and other comments (such as odor, color, etc.)

X BACKGROUND or Module 8.1(A) MONITORING REPORT*

_
(checl
k app
oropi
riate
block
۰

Operator: Rockwood Stone, LLC Operation Name: Rockwood Quarry Permit No: 56250301	Rockwoo lame: 562503	Rockwood Stone, LLC Name: Rockwood 56250301	od Qua	arry	Mo Lat	P	oint I.D.: 39° 54' 34" 79° 09' 21"	34	V and		Description of Sample Point**: Spring off edge of powerline	on of Sa	of pow	oint**:	
Permit No: 56250301	562503 Black	91			Lor	Longitude: 79° 09' 21" Surface Elevation (MSL): 1962'	79° 09' 21" on (MSL): 1962	962'	8		Spring o	off edge of powerline	of pow	erline	
County:	Somerset	et													
			Instruc	ctions:	Use a sep	Instructions: Use a separate sheet for each sample point and list results consecutively by date.	t for each	າ sample	point a	and list	results c	onsecu	tively b	y date.	
٧														Total Dissolved	
	Method of	Flow (GPM)				Specific	Field Temp. °C	Alkalinity mg/l	Acidity mg/l	Iron mg/l	Manganese mg/l	Aluminum mg/l	Sulfate mg/l	Solids (mg/l)	
Date	Flow	or Static	Field	Lab	Suspended	Conductance									Laboratory and
Sampled	Measure-	Water	P	PH	Solids	(micromhos/cm)		"	Submit a	bove as r	Submit above as requested b	by the Department	partment		Name of Sampler
	ment	Elevation			mg/l	@ 25° C									
5/13/2025	SX	16		4.85	- 5	52	9	<10	13	<0.05	0.06	0.1	<5		Geochemical Testing - AS
6/2/2025	XS	13	7.0				11								Geochemical Testing - AS
											,				
				,											
														ž.	

Signature of Permittee or Responsible Official or Authorized Representative

Date

AS - Austin Smay JE - Joel Emert

Sampled by Earthtech, Inc.:

Abbreviation/Acronym Key:
TLTG = Too Large to Gauge
XS = Cross Section VC = Volumetric Container

EST = Estimate

^{**} Description should include type of sample point, relation to mine site, treatment and other comments (such as odor, color, etc.)

X BACKGROUND or MONITORING REPORT*

(check appropriate block)

6/2/2025	5/13/2025	12/26/2024	11/25/2024	10/30/2024	9/24/2024	8/19/2024	7/10/2024	Sampled	S C C C C C C C C C C C C C C C C C C C	Date					County:	Township: Black	Permit No: 56250301	Operation Name:	Operator:
XS	XS							ment	Mooring	Flow	Method of				Somerset	Black	562503		Rockwoo
54	47	DRY	DRY	DRY	DRY	DRY	DRY	Elevation	Mator	or Static	Flow (GPM)				set		01	Rockwood Quarry	Rockwood Stone, LLC
6.9								ΡΠ	È	Field				Instru				od Qu	.C
	4.92				-			T I) [Lab				ctions:				arry	
	<5							mg/l	collida Section	Suspended				Use a sep	•	Sui	Lor	Lat	Mo
	21							(micromnos/cm @ 25° C	(micrombos/om	Conductance	Specific			Instructions: Use a separate sheet for each sample point and list results		Surface Elevation (MSL): 2115	Longitude:	Latitude:	Monitoring Point I.D.:
10	10)			റ്	Field Temp.		et for each		on (MSL): 2	79° 08' 55"	39° 54' 12"	oint I.D.:
	<10							_			mg/l	Alkalinity		sample		115'	55"	12"	
	13								nhmit a		mg/i	Acidity		point			\$	N and	29
	<0.05							DOVE AS	hove as r	,	Iron mg/l			and list					
	0.06							Outsille above as industrial by the population	y potsound		mg/l	Manganese		results c			Upstrea		Description of Sample Point**:
	0.2							יץ וופ ספ	v the De		mg/l	Aluminum		consecutively by date.			m of sp		on of Sa
	<5							paruncin	nartment		mg/l	Sulfate	-	tively by			ring to		imple Po
											(mg/l)	Dissolved Solids	Total	/ date.			Unnam		oint**:
Geochemical Testing - AS	Geochemical Testing - AS							Name of Sampler	Name of Campler	Laboratory and							eam of spring to Unnamed Tributary		

Signature of Permittee or Responsible Official or Authorized Representative

Date

AS - Austin Smay

Sampled by Earthtech, Inc.:

JE - Joel Emert

Abbreviation/Acronym Key:
TLTG = Too Large to Gauge
XS = Cross Section EST = Estimate VC = Volumetric Container

^{**} Description should include type of sample point, relation to mine site, treatment and other comments (such as odor, color, etc.)

X BACKGROUND or MONITORING REPORT*

(check appropriate block)

County: Somerset	Township: Black	Permit No: 56250301	Operation Name: Rockwood Quarry	Operator: Rockwood Stone, LLC
	Surface Elevation (MSL): 2100'	Longitude: 79° 09' 03" W	Latitude: 39° 54' 14"	Monitoring Point I.D.:
		×	N and	30
		Spring to Unnamed Tributary to Rhoades Creek		Description of Sample Point**:

12/26/2024 11/25/2024 10/30/2024 5/13/2025 9/24/2024 8/19/2024 7/10/2024 6/2/2025 Sampled Date Measure-ment Method of XS × Flow Flow (GPM) 310 Elevation 306 DRY DRY DRY DRY DRY DRY or Static Water Field PH Instructions: Use a separate sheet for each sample point and list results consecutively by date. 7.6 4.93 PH B Suspended Solids <u>"</u> ç (micromhos/cm) Conductance @ 25° C Specific 22 Field Temp. °C ဖ 9 Alkalinity mg/l Submit above as requested by the Department Acidity mg/l 3 <0.05 Iron mg/I Manganese Aluminum mg/l mg/l 0.06 0.2 Sulfate mg/l 5 Dissolved Solids (mg/l) Geochemical Testing - AS Geochemical Testing - AS Name of Sampler Laboratory and

** Description should include type of sample point, relation to mine site, treatment and other comments (such as odor, color, etc.)

Signature of Permittee or Responsible Official or Authorized Representative

Date

Sampled by Earthtech, Inc.:
AS - Austin Smay

JE - Joel Emert

Abbreviation/Acronym Key: TLTG = Too Large to Gauge

XS = Cross Section
VC = Volumetric Container

EST = Estimate

BACKGROUND or

_
C
7
æ
n
ᆽ
a
ਰ
0
7
<u>o</u>
ੲ
⋾.
Ŋ
æ
"
σ
ᇹ
ŏ
¥
_

Operator: Rockwood Stone, LLC Operation Name: Rockwood Quarry Permit No: 56250301 Township: Black	Rockwoo lame: 562503 Black	Rockwood Stone, LLC Varne: Rockwood 56250301 Black	od Qua	Yrik	Mo Lat Lor Sur	Monitoring Point I.D.: Latitude: 39° 54' 16" Longitude: 79° 09' 22" Surface Elevation (MSL): 1964'	Dint I.D.: 39° 54' 16" 79° 09' 22" on (MSL): 1964	16" 22"	N and	,	Description of Sample Point**: Water withdrawl point from	on of Sai	nple Popoint f	rom Rh	tion of Sample Point**: withdrawl point from Rhoades Creek
County:	Somerset	set			Ç		יון (ואוסר). ו	1							
			Instruc	tions:	Use a sep	Instructions: Use a separate sheet for each sample point and list results	t for each	sample	point a	nd list i	_	consecutively by date.	vely by	date.	
														Total Dissolved	*
	Method of	Flow (GPM)				Specific	Field Temp. °C	Alkalinity mg/l	A cidity mg/l	Iron mg/l	Manganese mg/l	Aluminum mg/l	Sulfate mg/l	Solids (mg/l)	
Date	Flow	or Static	Field	Lab	Suspended	Conductance									Laboratory and
Sampled	Measure- ment	W ater Elevation	рН	рН	Solids mg/l	(micromhos/cm) @ 25°C			Submit al	ove as r	Submit above as requested by the Department	y the Dep	artment		Name of Sampler
5/20/2025	Est.	TLTG	8.0	7.08	5	69	11	11	4	0.25	0.03	0.1	13		Geochemical Testing - AS
6/2/2025	Est.	TLTG	7.4				10								Geochemical Testing - AS
										,					
								:							4
												/			

Signature of Permittee or Responsible Official or Authorized Representative

Date

Sampled by Earthtech, Inc.:

JE - Joel Emert AS - Austin Smay

^{**} Description should include type of sample point, relation to mine site, treatment and other comments (such as odor, color, etc.)

Module 8.1(A) X BACKGROUND or MONITORING REPORT*

_
ົດ
7
ው
ᄗ
$\hat{}$
<u> </u>
으
2
Õ
Ó
3.
<u>න</u>
ត
ō
¥
ō
ਹ
ے

Operator: Rockwood Stone, LLC Operation Name: Rockwood Quarry	Rockwoo	Rockwood Stone, LLC	전 전 전 년	ן אַר	- Mo	Monitoring Point I.D.:	oint I.D.: 39° 54' 31"	71	32 N and		Description of Sample Point**:	on of Sa	mple Po	oint**:	
Permit No: 56250301 Township: Black	562503 Black	91			Lor	e: evatio	79° 09' 23" on (MSL): 1954	23" 954'	8		Spring b	behind Pavolsky Property	avolsk	y Prope	τу
County:	Somerset	ět				ì								-	
			Instruc	tions:	Use a sep	Instructions: Use a separate sheet for each sample point and list results	t for each	sample	point	and list r	_	consecutively by date.	vely by	date.	
														Total Dissolved	
	Method of	Flow (GPM)				Specific	Field Temp. °C	Alkalinity mg/l	A cidity mg/l	Iron mg/l	Manganese mg/l	Aluminum mg/l	Sulfate mg/l	Solids (mg/l)	
Date	Flow	or Static	Field	Lab	Suspended	Conductance									Laboratory and
Sampled	Measure- ment	W ater Elevation	рH	рн	Solids mg/l	(micromhos/cm) @ 25°C	J.		Submit a	Submit above as requested	equested t	by the Department	artment		Name of Sampler
5/20/2025	VC	2.2	7.7	5.60	<5	25	8	<10	8	<0.05	<0.01	<0.1	5		Geochemical Testing - AS
6/2/2025	VC	1.4	7.1				10								Geochemical Testing - AS
								,			-				

Signature of Permittee or Responsible Official or Authorized Representative

Date

Abbreviation/Acronym Key: TLTG = Too Large to Gauge

AS - Austin Smay JE - Joel Emert Sampled by Earthtech, Inc.:

XS = Cross Section
VC = Volumetric Container
EST = Estimate

^{**} Description should include type of sample point, relation to mine site, treatment and other comments (such as odor, color, etc.)

Module 10: Operational Information [§§77.452/77.456/77.563/77.564]

10.1 Equipment and Operation Plan

For each phase of mining, identify the type and method of mining; engineering techniques; major equipment to be used; starting point; and the anticipated sequence in which the phases are to be mined.

There will be three phases of mining as shown on the Exhibit 9 Operations Map. Phase 1 is proposed to be bonded and activated for mining upon permit issuance. Phases 2 and 3 will be activated at a future date with bonding calculation update and permit revision provided at that time.

Phase 1 will contain the processing plant/pad and initial mineral extraction operations. Phase 1 includes all of the proposed disturbance to the west of the First Energy High Point-Rockwood 115kV transmission line and part of the area to the east of the High Point-Rockwood transmission line. The drainage divide to Unnamed Tributary A to Rhoades Creek (UNT-A) will serve as the boundary for Phase 1. Mineral extraction may take place in any area within the bonded operational/mining area in Phase 1. Sediment pond SP-1 and associated ditches will be constructed prior to any earth disturbance in Phase 1.

Phase 2 consists of the remaining area to the east of the High Point-Rockwood transmission line, but west of the Lick Run-Rockwood transmission line. The only exception to this is that diversion ditch DD-2 will be constructed in Phase 2, which is to the east of the Lick Run-Rockwood transmission line. DD-2 is necessary in Phase 2 to limit the drainage area to SP-2. Before Phase 2 is activated, a bonding calculation update and permit revision will be necessary to accommodate for the potential stream impacts/mitigation to UNT-A. Sediment pond SP-2 and associated ditches will be constructed prior to any earth disturbance in Phase 2.

Phase 3 will include the remaining area to the east of the Lick Run-Rockwood transmission line. Before Phase 3 is activated, a bonding calculation update and permit revision will be necessary. Collection ditch CD-1B will be installed in Phase 3 to convey runoff to SP-1.

The type of mining proposed will be a surface mining block cut method. An existing small non-coal permit is active in the northern section of the proposed mining area in Phase 1. The small non-coal permit will be voided and bonds returned upon issuance and successful bonding of this LNC. Equipment utilized will be excavators, dozers, haul trucks, wheel loaders, and other typical surface mining equipment. A crushing plant will be utilized to reduce shot rock material into common aggregate sizes for sale to public markets. The first cut location for each proposed mining phase is shown on the Exhibit 9 Map. Topsoil and any other overburden will be stripped and stockpiled to be used during reclamation.

10.2 Pit Configuration

 a) Identify the maximum depth of mining and the elevation of the pit floor at the maximum depth of mining for each mining phase.

The mining thickness will follow the sandstone thickness and may vary from 50' to 70'. The sandstone dips gently to the northwest and outcrops on three sides of the property. Electric utility lines bisect the site and prevent full seam extraction in certain areas. The pit floor will be elevated considering adjoining streams and the approximate lowest elevation will be 1990' in Phase 1.

b) If mining consolidated rock, identify the maximum highwall height and the benching interval to include the distance between the benches measured vertically (i.e. height of the working face of the bench) and the width of the benches.

The sandstone is consolidated and the maximum highwall height is approximately 70'. Typical mining will extract full column in one highwall with adequate layback. This may average 65' or less and can be safely completed due to the competent rock unit and lack of overlying overburden.

c) If mining consolidated rock and the reclamation plan is an alternative to approximate original contour involving restoration of the pit floor and final working face, identify the total acreage of pit floor and final graded slopes.

The reclamation plan will be an alternative to approximate original contour due to leaving material in place in the area of the existing electric lines. To reclaim the site, the highwalls will be blasted or backfilled and sloped at no greater than 35° down to the pit floor. The pit floor will be backfilled only in areas where it is necessary to establish positive drainage. The total acreage of pit floor and final graded slopes will be 45.2 acres for Phase 1.

Module 12: Erosion and Sedimentation Controls [§§77.458/77.461/77.466/77.525/77.527/77.531/Chapter 102]

12.1 Diversion Controls

Provide a plan for the collection and conveyance to a natural drainageway of the runoff from upslope undisturbed areas. Provide a separate general design for a temporary highwall diversion which limits the amount of runoff which can enter the pit (where applicable). Include design criteria, capacity calculations, profile of proposed channel slopes, typical cross-sections, required channel linings and applicable details on 12.1 Data Sheet.

During Phase 1, no diversion controls will be necessary since there will be very minimal upstream drainage area. During Phase 2, diversion ditches DD-1 and DD-2 will be installed to minimize the drainage area to SP-2. DD-1 will discharge via an energy dissipator to Rhoades Creek. DD-2 will discharge via an energy dissipator towards the Casselman River. All design criteria, calculations, and details are attached. See Exhibit 9 for the locations of the proposed diversion ditches.

A safety berm will be continuously maintained above all highwalls. These safety berms will also act as a diversion to limit the amount of runoff that can enter the pit.

12.2 Erosion and Sediment Control

Provide a plan for the control of erosion and sedimentation for lands within the permit area to be disturbed by mining activities. Include a narrative describing the implementation of the plan, and detailed design and construction plans and specifications for structures or facilities used in the plan. The plan must include each phase or phases of mining. Include design criteria, capacity calculations, profile of proposed channel slopes, typical cross-sections, required channel linings and applicable details on 12.1 Diversion/Collection Ditch Data Sheet for collection and interceptor ditches. Provide documentation of the capacity of the existing drainage system and the effect proposed mining activities will have on the drainage. Show discharge points to natural drainageways and culverts that intercept upslope drainage or carry drainage away from the site. Show facilities to scale on Modules 9 and 16 as appropriate.

See Exhibit 9 for locations of all erosion and sedimentation controls.

Before Phase 1 mining operations commence, sediment pond SP-1 will be constructed. Collection ditches CD-1A, CD-2A, and CD-2B and Culvert CULV-1 will be constructed to convey runoff into SP-1 after SP-1 is functional. Sediment pond SP-1 will control all runoff from the process pad and mining area. SP-1 will control all runoff from Phase 1 at this time, except for the haul road and support area below CD-1A. Sediment traps ST-1 and ST-2 will be installed to control runoff in this area below CD-1A. Collection ditches CD-4 and CD-5 will be installed to convey runoff to sediment traps ST-1 and ST-2, respectively. Culvert CULV-2 will be installed where CD-5 crosses the existing common use road.

Before future Phase 2 mining operations commence, sediment pond SP-2 must be constructed. After SP-2 becomes functional, CD-2B should be directed into SP-2, as shown on Exhibit 13 - Sheet 2. Collection ditch CD-3 will also be installed at this time to convey runoff to SP-2. DD-2 and DD-3 will be constructed at this time. SP-2 will control runoff from all of Phase 2 and the portion of Phase 1 to the east of the First Energy High Point-Rockwood 115 kV transmission line at this time. SP-1 will continue to control the portion of Phase 1 to the west of the above-mentioned transmission line.

Before future Phase 3 mining operations commence, collection ditch CD-1B will be constructed to convey runoff from this area to SP-1. SP-1 and SP-2 will each control runoff from a portion of Phase 3.

All ditches may be constructed as mining progresses, as long as all sediment-laden runoff gets collected and conveyed to the sediment ponds.

Calculations for all erosion and sedimentation controls are attached. All ditches were designed to convey the 10-year, 24-hour storm event and contain a proper lining. Grass-lined ditches will have R-4 rip-rap placed at any abrupt changes in ditch direction. All culverts will be designed to convey the design flow of the ditch(es) that flow to them, or the 10-year, 24-hour storm event. Rip-rap aprons or channels will provide outlet protection for all culverts. All sediment ponds have been designed to have a storage capacity of a minimum of 7,000 cubic feet per acre (2,000 c.f./acre sediment storage and 5,000 c.f./acre dewatering zone).

Alternate E&S controls consisting of compost filter sock will be utilized downgrade of all proposed ponds before any earth disturbance occurs. Compost filter socks will only receive sediment-laden runoff during the construction or reclamation of the ponds. During the time when the ponds are functional and stabilized, there is no need for alternate E&S controls. All compost filter socks were designed in accordance with Chapter 102 requirements.

12-1 Revised 6-2025

12.3 Haul Roads

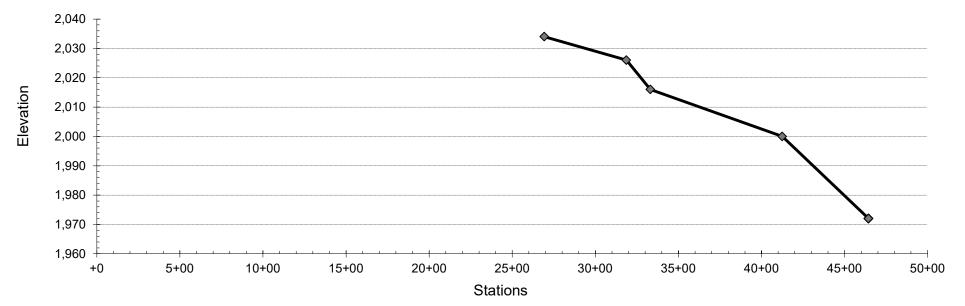
Provide the following information for each haul road to be constructed, reconstructed or used in the operation:

Note: Activities proposed to be conducted under General permit for Temporary Road Crossings (BMR-GP-101) and General Permit for Access Road Crossings (BMR-GP-102) must include a completed Notification Form, with attachments, for the respective General Permit (i.e., Form 5600-FM-MR0054 for BMR-GP-101 and Form 5600-FM-MR0059 for BMR-GP-102). BMR-GP-102 may not be used for haul roads.

- a) Location; show on Exhibit 9 (and Exhibit 18 if road will remain as part of postmining land use);
 Please see Exhibit 9 for the location of the haul road and Exhibit 18 for the location of the haul road to remain.
- b) Description and typical cross-sections showing the construction of the haul road including existing ground, grades, slopes, culvert locations, outlet protection and other drainage control;

 The proposed haul road will connect the proposed processing pad to the common use road and mining area. The travelway width will be 30' from the processing pad to the common use road and 50' from the processing pad to the mining area. The haul road will not have a slope exceeding 15% and will have a 1-2% cross slope for drainage. A safety berm will be installed along all edges where vehicle overturnment is possible. A culvert will be installed at the location(s) where a collection ditch crosses the haul road.
- c) Measures to control and prevent erosion and sedimentation; include proposed spacing of sediment traps, turnouts, culverts, check dams, etc.;
 Collection ditches will be installed to collect runoff from the haul roads and convey it to either SP-1 or SP-2. The haul road will be topped with a non-acid producing stone to prevent soils and other material from accumulating on the public roadway. The portion of the haul road that is downgrade of CD-1A will be controlled by sediment traps ST-1 and ST-2. Collection ditches CD-4 and CD-5 will be installed to convey runoff to sediment traps ST-1 and ST-2, respectively. Culvert CULV-2 will be installed where CD-5 crosses the common use road. The haul road will have a cross slope towards either CD-4 or CD-5, or will be crowned and sloped towards both ditches.
- d) Plan for reclamation after mining is completed;
 N/A The haul road is proposed to remain after mining is completed.
- e) If the haul road involves the crossing of any intermittent or perennial stream or wetland include Module 14 Streams/Wetlands;

N/A - The haul road does not cross any intermittent or perennial streams or wetlands.


	,		
f)	Will a PennDOT highway occupancy permit be needed?	☐ Yes	⊠ No
	If yes, PennDOT Occupancy Permit number must be sub	mitted prior to peri	nit activation

12-2 Revised 6-2025

12.1 Diversion/Collection Ditch Data Sheet

Title:								Site:						Compa					Permit N	lumber:			
		COLL	ECTIO	N DITC	H CD-	1A			R	OCKWO	OD QU	ARRY		RO	CKWOC	D STO	ONE, L	LC					
Prepared	•				Initials:			Telepho	one Nur					Date:					Sheet	1	of	1_	_
	Ea	rthtech,	Inc.			CGY				(814)2	66-640	2			JUI	NE 202	25						
	Statio	n										Channel									Wi	th Freeb	oard
Start				ge Area :res)	Design Storm	Average Watershe d Slope	Curve Numbe	Peak Di	_	Channel Bed Slope	Free- board	Lining (specify average rock	Manning's Coefficient	Bottom	Channel Side Slopes	Flow Area	Flow Depth	Top Flow Width	Flow Velocity		Channel Depth	Top Channel Width	Q Available
End		Elevation	Section	Cum.	(yrs)	(%)	r	Section	Cum.	(%)	(ft)	size)	(n)	(ft)	(H:V)	(sq ft)	(ft)	(ft)	(ft/sec)	(CFS)	(ft)	(ft)	(CFS)
26 +	93	2034.0																					
31 +	87	2026.0	2.8	2.8	10	6.0%	85	5.1	50.5	1.6%	0.4	R-3	0.035	5.0	2:1	10.9	1.40	10.6	5.28	57.7	1.75	12.0	88.6
33 +	31	2016.0	0.4	3.2	10	6.0%	85	0.7	51.2	6.9%	0.5	R-4	0.047	5.0	2:1	7.9	1.10	9.4	7.09	56.2	1.60	11.4	113.9
41 +	25	2000.0	11.8	15.0	10	6.0%	85	19.0	70.2	2.0%	0.5	R-3	0.035	5.0	2:1	12.0	1.50	11.0	6.18	74.1	2.00	13.0	129.7
46 +	44	1972.0	7.0	22.0	10	6.0%	85	10.7	80.9	5.4%	0.5	R-4	0.045	5.0	2 : 1	10.9	1.40	10.6	7.56	82.6	1.90	12.6	149.0

Ditch Profile

Trapezoidal/Triangle Section Ditch

Channel Name:	COLLECTION DITCH CD-1A			Peak Disch & Base Flow:	5.1 45.4	
Section Number:		1		Peak Discharge (Cum):	50.5	
End Station:	31	+	87	Drainage Acreage:	2.8	
End Elevation:		2,026.0		Watershed Slope:	6.0%	

Given:					
F	Flow Depth, d (f	ft)	=	1.4	
Bottom Width (ft)			=	5	
Side Slopes (H:1)			=	2	
W	/hat size Rip R	ар	=	R-3	
(d ₅₀ size (inches	s)	=	3	
Ma	nnings Coeffic	ient	=	0.035	
Cha	annel Slope, s ((ft/ft)	=	1.62%	
	F	Iow Rate	, Q _{design} (c	fs)	
	Q = (1.486/n)	x a x r ^{2/3} x	(S ^{1/2}		
	Q =	57.68	cfs		
	Q =	88.59	cfs	WITH FR	EEBOARD
	<u></u>	Velocit	y, V (fps)		
U	se V to size ri			ited, or d _{acti}	_{ial} ≤ 0
	V = Q/A			,	
	V =	5.28	fps		
	V _{MAX} =	6.50	fps		
	Account f	or 40% V	oid Space	in Rip Rap)
			≥ 10%		
Rip Ra	p Thickness, t	(inches)	=	9	
A _{void} =0.4*	•	,			
70.0					
	$A_{\text{void}} =$	N/A	sq.ft.		
A _{in-channel fl}	low=A-A _{void}				
	A _{in-channel flow} =	#VALUE!	sq.ft.		
			·		
	$-h + \sqrt{}$	$h^2 + 4 * 7$	* A:11		
d _{in-channe}	$_{\text{1 flow}} = \frac{-b + }{}$	2 *	7	llow	
			2		
	d _{in-channel flow} =	#VALUE!	ft		
			s Calculat	tion	
			rip rap if s		
	Sh = 62.4 x d _{ii}				
	vable Shear Str			1.00	psf
Calcu	ılated Shear St	ress =		1.41	psf

C	ross Sec	ctional A	rea, Wette	ed Perime	eter &	
			ulic Radi			
A = bd + z	d^2					
	A =	10.92	sq.ft.			
	A =	14.88	sq.ft.	WITH F	REEBOARD	
$P = b + 2d SQRT(z^2 + 1)$						
	P =	11.26	feet			
	P = 12.83 fe		feet	WITH F	REEBOARD	
r = A/P						
	r =	0.97	feet			
	r =	1.16	feet	WITH F	REEBOARD	
		Top V	Vidth (fee	et)		
T = b + 2*	z*d					
	T =	10.60	feet			
	T =	12.00	feet	WITH F	REEBOARD	
		Ditch S	Sizing Ch	eck		
Q CHECK =			PASS			
VELOCITY CHECK =			PASS			
SHEAR STRESS CHECK =				USE VELOCITY		
OVERA	LL CHE	CK =	PASS			

Trapezoidal/Triangle Section Ditch

Channel Name:	COLLECTION DITCH CD-1A		COLLECTION DITCH CD-1A		COLLECTION DITCH CD-1A		Peak Disch & Base Flow:	0.7	
Section Number:		2		Peak Discharge (Cum):	51.2				
End Station:	33	+	31	Drainage Acreage:	0.4				
End Elevation:		2,016.0		Watershed Slope:	6.0%				

Given:							
F	low Depth, d (1	ft)	=	1.1			
Bottom Width (ft)			=	5			
S	ide Slopes (H:	1)	=	2			
W	hat size Rip R	ap	=	R-4			
C	d ₅₀ size (inches	s)	=	6			
Ma	nnings Coeffic	ient	=	0.047			
Cha	nnel Slope, s	(ft/ft)	=	6.94%			
			, Q _{design} (c	fs)			
				-			
	Q = (1.486/n)	x a x r ^{2/3} x	(S ^{1/2}				
	,						
	Q =	56.17	cfs				
	Q =	113.88	cfs	WITH FR	EEBOARD		
Velocity, V (fps)							
Use V to size rip rap if s < 10%, grouted, or d _{actual} ≤ 0							
	V = Q/A	p rup ii s	1070, 9100	acti	iai - V		
	V - Q/A						
	V =	7.09	fps				
	V =	9.00	fps				
				in Rip Rap	\		
	Account		old Opace ≥ 10%	III IXIP IXA	,		
Din Dar	Thickness t		= 10 /0	18			
A _{void} =0.4*l	o Thickness, t	(IIICHES)	_	10			
N _{void} -0.4	D C						
	A _{void} =	NI/A	ea ft				
	Vold	IN/A	3q.it.				
_	- 0 0						
A _{in-channel fl}	ow-A-A _{void}						
		₩/ /\					
	A _{in-channel flow} =	#VALUE!	sq.ii.				
	,						
d. , ,	$=\frac{-b+}{}$	$b^2 + 4 * z =$	* A _{in-channel}	flow			
$d_{\text{in-channel flow}} = \frac{-b + \sqrt{b^2 + 4 * z * A_{\text{in-channel flow}}}}{2 * z}$							
	d _{in-channel flow} =						
	_		s Calculat				
			rip rap if s	> 10%			
	$Sh = 62.4 \times d_i$	n-channel flow	x s				
Allow	able Shear Str			2.00	psf		
	lated Shear St			4.77	psi		
J J U			<u> </u>				

	Proce Soc	otional A	roa Wott	ed Perime	otor 8
•	51055 360		ulic Radi		eter ox
A - ll	12	Tiyura	unc Itaui	us	
A = bd + z	za-				
	A =	7.92	sq.ft.		
	A =	13.12	sq.ft.	WITH F	REEBOARD
P = b + 2c	d SQRT(z ²	+1)			
	P =	9.92	feet		
	P = 12.16		feet	WITH F	REEBOARD
r = A/P					
	r =	0.80	feet		
	r =	1.08	feet		REEBOARD
		Top \	Nidth (fee	et)	
T = b + 2*	z*d				
	T =	9.40	feet		
	T =	11.40	feet	WITH F	REEBOARD
		Ditch S	Sizing Ch	eck	
Q CHECK	(=		PASS		
VELOCIT	Y CHECK	=		PASS	3
SHEAR S	SHEAR STRESS CHECK =			USE VELO	CITY
OVERA	LL CHE	CK =		PAS	<u> </u>

Trapezoidal/Triangle Section Ditch

Channel Name:	COLLECTION DITCH CD-1A		COLLECTION DITCH CD-1A		Peak Disch & Base Flow:	19.0
Section Number:	3		Peak Discharge (Cum):	70.2		
End Station:	41	+	25	Drainage Acreage:	11.8	
End Elevation:		2,000.0		Watershed Slope:	6.0%	

0:	1		I	ı					
Given:									
	low Depth, d (f	,	=	1.5					
Bottom Width (ft)			=	5					
	ide Slopes (H:		=	2					
	/hat size Rip R		=	R-3					
(d ₅₀ size (inches	s)	=	3					
Ma	nnings Coeffic	ient	=	0.035					
Cha	annel Slope, s (=	2.02%					
	Flow Rate, Q _{design} (cfs)								
	Q = (1.486/n)	x a x r ^{2/3} >	(S ^{1/2}						
	Q =	74.10	cfs						
	Q =	129.73	cfs	WITH FR	EEBOARD				
			y, V (fps)	************	220071110				
Use V to size rip rap if s < 10%, grouted, or d _{actual} ≤ 0									
0	V = Q/A	piapiis	- 10 /0, grot	ateu, or u _{acti}	lal = 0				
	V - Q/A								
	\/ -	C 40	f						
	V = V _{MAX} =	6.18 6.50	fps fps						
				in Din Day					
	Account to		-	in Rip Rap)				
			≥ 10%	_					
	p Thickness, t	(inches)	=	9					
$A_{\text{void}}=0.4^*$	b*t								
			_						
	$A_{\text{void}} =$	N/A	sq.ft.						
A _{in-channel fl}	$_{low}$ =A-A $_{void}$								
	$A_{in-channel flow} =$	#VALUE!	sq.ft.						
	$-b + \sqrt{}$	$b^2 + 4 * z$	* Ain_channel	flow					
$d_{\text{in-channel flow}} = \frac{-b + \sqrt{b^2 + 4 * z * A_{\text{in-channel flow}}}}{2 * z}$									
2 ·· 2									
d _{in-channel flow} = #VALUE! ft									
			s Calculat	tion					
			rip rap if s						
	$Sh = 62.4 \times d_{i}$								
	able Shear Str			1.00	psf				
Calcu	lated Shear St	1.89	psf						

	33 360	uonai A				
			ulic Radi	ed Perime	rter &	
$\Lambda - hd + zd^2$		Hydra	The Itaan	13		
$A = bd + zd^2$						
	Δ	40.00	C			
	A = A =	12.00 18.00	sq.ft.	\\/\TL F	REEBOARD	
	A –	10.00	sq.ft.	VVIIII	REEDUARD	
	DT (2	4)				
P = b + 2d SC	۲۲۱(z	F1)				
	P =	11.71	feet			
P = 13.94		feet	WITH F	REEBOARD		
r = A/P						
	r =	1.02	feet			
	r =	1.29	feet		REEBOARD	
		Top V	Vidth (fee	t)		
T = b + 2*z*d						
	T =	11.00	feet			
	T =	13.00	feet	WITH F	REEBOARD	
		Ditch S	Sizing Che	eck		
Q CHECK =			PASS			
VELOCITY C	HECK	=		PASS	6	
SHEAR STR	ESS CH	HECK =		USE VELC	CITY	
OVERALL	. CHE	CK =		PAS	S	

Channel Name:	COLLECTION DITCH CD-1A			Peak Disch & Base Flow:	10.7	
Section Number:	4		Peak Discharge (Cum):	80.9		
End Station:	46	+	44	Drainage Acreage:	7.0	
End Elevation:	1,972.0		Watershed Slope:	6.0%		

Given:									
F	low Depth, d (1	ft)	=	1.4					
Е	Bottom Width (1	ft)	=	5					
S	ide Slopes (H:	1)	=	2					
W	hat size Rip R	ар	=	R-4					
(d ₅₀ size (inches	s)	=	6					
Ma	nnings Coeffic	ient	=	0.045					
	annel Slope, s		=	5.39%					
	F	low Rate	, Q _{design} (c	fs)					
	Q = (1.486/n)	x a x r ^{2/3} x	(S ^{1/2}						
	Q =	82.59	cfs						
	Q =	149.00	cfs	WITH FR	EEBOARD				
		Velocit	y, V (fps)	I					
U	se V to size ri		• • • •	ited or d	< 0				
	V = Q/A	p 14p 11 0	1070, 9.00	acti	iai – S				
	V - W/A								
	V =	7.56	fps						
	V – V _{MAX} =	9.00	fps						
				in Rip Rap	`				
	Account		old Opace ≥ 10%	III IXIP IXA	,				
Din Do	o Thickness, t		=	18					
A _{void} =0.4*		(IIICHES)	_	10					
A _{void} -0.4	ы								
	Δ=	N/A	ca ft						
	Noid —	IN/A	5 4 .11.						
	- 0 0								
A _{in-channel} fl	$_{ow}$ =A-A $_{void}$								
		//\ /A 							
	A _{in-channel flow} =	#VALUE!	sq.π.						
$d_{\text{in-channel flow}} = \frac{-b + \sqrt{b^2 + 4 * z * A_{\text{in-channel flow}}}}{2 * z}$									
uin-channel flow = 2 * z									
	-i -	//\ /A -	6.						
	d _{in-channel flow} =								
			s Calculat						
			rip rap if s	> 10%					
	$Sh = 62.4 \times d_i$	n-channel flow	x s						
Allowable Shear Stress = 2.00 psf									
	lated Shear Str			2.00 4.71	psf psf				
Calcu	iaica oncai ol	1000 -		7./	μοι				

	Cross Sec	tional A	roa Wott	ad Parime	tor &		
`	J1033 060		ulic Radi		iter Q		
A = bd + z	rd^2	,					
7							
	A =	10.92	sq.ft.				
	A = 16.72		sq.ft.	WITH F	REEBOARD		
P = b + 2c	SQRT(z ² -	+1)					
	P =	11.26	feet				
	P =	13.50	feet	WITH F	REEBOARD		
r = A/P							
	r =	0.97	feet				
	r =	1.24	feet	WITH F	REEBOARD		
		Top \	Width (fee	et)			
T = b + 2*	z*d						
	T =	10.60	feet				
	T =	12.60	feet	WITH F	REEBOARD		
	•	Ditch S	Sizing Cho	eck			
Q CHECK	(=			PASS	;		
VELOCIT	Y CHECK	=		PASS			
SHEAR S	TRESS CH	HECK =		USE VELC	CITY		
OVERA	ILL CHE	CK =		PAS	S		

Graphical Peak Discharge Tue May 27 15:41:40 2025 Project: ROCKWOOD By: CGY Date: 05/27/25 Location: CD-1A(3) Checked: Date: Developed 1. Data: Runoff Curve Number:.....CN = 85 Time of Concentration:.....Tc = 34.20 min Storm Type:.... = II Pond and swamp areas spread throughout watershed..... = 0.00 percent of A 0.0000 Acres 2. Frequency.....yr = 10 3. Rainfall, P(24-hour)....in = 3.570 4. Initial abstraction, Ia..... = 0.3529 5. Compute Ia/P..... = 0.0989 6. Unit peak discharge, qu.....csm/in = 495.181 7. Runoff,Q....in = 2.077 8. Pond & swap adjustment factor,...Fp = 1.00 9. Peak Discharge, qp......cfs = 18.967

Time of Concentration (SCS)

Tue May 27 15:38:33 2025

Project: ROCKWOOD By: CGY Date: 05/27/25 Location: CD-1A(3) Checked: Date: 05/27/25

Developed

Curve Number : 85

Length of Flow : 4125.00 ft Average Land Slope : 6.00 %

Time of Concentration : 0.570 hrs, 34.2 mins

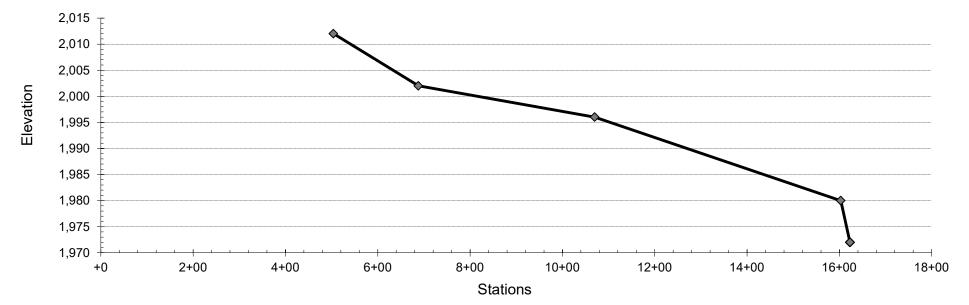
Graphical Peak Discharge Mon Jan 20 11:03:01 2025 Date: 01/20/25 Project: ROCKWOOD By: CGY Location: CD-1A(4) Checked: Date: Developed 1. Data: Drainage area:..... A = 7.0000Acres Time of Concentration:.....Tc = 37.30 min Storm Type:.... = II Pond and swamp areas spread throughout watershed..... = 0.00 percent of A 0.0000 Acres 2. Frequency.....yr = 10 3. Rainfall, P(24-hour)....in = 3.570 4. Initial abstraction, Ia..... = 0.3529 5. Compute Ia/P..... = 0.0989 6. Unit peak discharge, qu.....csm/in = 471.368 7. Runoff,Q....in = 2.077 8. Pond & swap adjustment factor,...Fp = 1.00 9. Peak Discharge, qp......cfs = 10.711

Time of Concentration (SCS) Mon Jan 20 10:45:13 2025

Project: ROCKWOOD By: CGY Date: 01/20/25 Location: CD-1A(4) Checked: Date: 01/20/25

Developed

Curve Number : 85


Length of Flow : 4604.00 ft Average Land Slope : 6.00 %

Time of Concentration : 0.622 hrs, 37.3 mins

12.1 Diversion/Collection Ditch Data Sheet

Title	: :								Site:						Compa	any:				Permit N	Number:			
			COLL	ECTIO	N DITC	H CD-	2A			R	OCKWO	OD QU	ARRY		RO	CKWOC	D ST	ONE, L	LC					
Prepa	ared	Ву:				Initials:	:		Telepho	one Nur	nber:				Date:					Sheet	1	of	1	
		Ea	rthtech,	Inc.			CGY				(814)2	66-640)2			JUI	NE 202	25				•		_
	S	tatio	n	<u> </u>									Channel									Wi	th Freeb	oard
	Start				ige Area cres)	Design Storm	Average Watershe d Slope	Curve Numbe	Peak Di Q (C		Channel Bed Slope	Free- board	Lining (specify average rock	Manning's Coefficient	Bottom	Channel Side Slopes	Flow Area	Flow Depth	Top Flow Width	Flow Velocity	Q Available	Channel	Тор	
	End		Elevation	Section	Cum.	(yrs)	(%)	r	Section	Cum.	(%)	(ft)	size)	(n)	(ft)	(H:V)	(sq ft)	(ft)	(ft)	(ft/sec)	(CFS)	(ft)	(ft)	(CFS)
5	+	04	2012.0																					
6	+	88	2002.0	0.5	0.5	10	9.0%	85	1.3	82.5	5.4%	0.4	R-4	0.044	5.0	2:1	12.0	1.50	11.0	8.00	96.0	1.88	12.5	148.0
10	+	70	1996.0	2.6	3.1	10	9.0%	85	6.2	88.7	1.6%	0.5	R-3	0.034	5.0	2 : 1	15.5	1.80	12.2	6.16	95.3	2.30	14.2	155.1
16	+	03	1980.0	7.5	10.6	10	9.0%	85	16.4	105.1	3.0%	0.5	R-4	0.042	5.0	2:1	15.5	1.80	12.2	6.81	105.4	2.30	14.2	171.6
16	+	23	1972.0	0.0	10.6	10	9.0%	85	0.0	105.1	40.0%	0.5	R-6	0.071	8.0	2 : 1	10.0	1.00	12.0	11.35	113.5	1.50	14.0	234.5

Ditch Profile

Channel Name:	COLLEC	TION DIT	CH CD-2A	Peak Disch & Base Flow:	1.3	81.2
Section Number:	1		Peak Discharge (Cum): 82.5			
End Station:	6	+	88	Drainage Acreage:	0.5	
End Elevation:	2,002.0		Watershed Slope:	9.0%		

Given:										
F	low Depth, d (f	ft)	=	1.5						
E	Bottom Width (f	ft)	=	5						
S	ide Slopes (H:	1)	=	2						
W	hat size Rip R	ар	=	R-4						
C	d_{50} size (inches	s)	=	6						
Ма	nnings Coeffic	ient	=	0.044						
Cha	annel Slope, s (=	5.43%						
	F	Iow Rate	, Q _{design} (c	fs)						
	Q = (1.486/n)	x a x r ^{2/3} x	(S ^{1/2}							
	Q =	96.01	cfs							
	Q =	147.98	cfs	WITH FR	EEBOARD					
	<u></u>	Velocit	y, V (fps)							
U	se V to size ri			ited, or d _{acti}	ıal ≤ 0					
	V = Q/A		, 0	,						
	V =	8.00	fps							
	V _{MAX} =	9.00	fps							
		or 40% V	oid Space	in Rip Rap)					
			≥ 10%							
	p Thickness, t	(inches)	=	18						
A _{void} =0.4*	D"L									
	A _{void} =	N/A	sq.ft.							
A _{in-channel fl}	ow=A-A _{void}									
	A _{in-channel flow} =	#VALUE!	sq.ft.							
$d_{\text{in-channel flow}} = \frac{-b + \sqrt{b^2 + 4 * z * A_{\text{in-channel flow}}}}{2 * z}$										
$d_{\text{in-channel flow}} = \frac{1}{2 * z}$										
	d _{in-channel flow} =	#VALUE!	ft							
			s Calculat	tion						
Use Sh to size rip rap if s > 10%										
	$Sh = 62.4 \times d_{i}$									
	able Shear Str			2.00	psf					
Calcu	lated Shear St	ress =		5.09	psf					

	ross Soc	rtional A	rea, Wett	nd Parime	otor &			
	1033 360		ulic Radi		eter &			
A 1.1.	12	rryura	The Itaai	us				
A = bd + z	d ⁻							
	A =	12.00	sq.ft.					
	A =	16.41	sq.ft.	WITH F	REEBOARD			
P = b + 2d	SQRT(z ²	+1)						
	P =	11.71	feet					
	P =	13.39	feet	WITH F	REEBOARD			
r = A/P								
	r =	1.02	feet					
	r =	1.23	feet					
		Top V	Vidth (fee	et)				
T = b + 2*z	z*d							
	T =	11.00	feet					
	T =	12.50	feet	WITH F	REEBOARD			
		Ditch S	Sizing Cho	eck				
Q CHECK	=			PASS	6			
VELOCITY	CHECK	=	PASS					
SHEAR S	TRESS CI	HECK =	USE VELOCITY					
OVERA	LL CHE	CK =		PAS	S			

Channel Name:	COLLEC	CTION DIT	CH CD-2A	Peak Disch & Base Flow:	6.2	
Section Number:	2		Peak Discharge (Cum):	88.7		
End Station:	10	+	70	Drainage Acreage:	2.6	
End Elevation:	1,996.0		Watershed Slope:	9.0%		

Given:									
F	low Depth, d (f	ft)	=	1.8					
Е	Bottom Width (f	t)	=	5					
S	ide Slopes (H:	1)	=	2					
W	/hat size Rip R	ар	=	R-3					
(d_{50} size (inches	s)	=	3					
Ma	nnings Coeffic	ient	=	0.034					
Cha	annel Slope, s (=	1.57%					
	F	Iow Rate	, Q _{design} (c	fs)					
	Q = (1.486/n)	x a x r ^{2/3} >	(S ^{1/2}						
	Q =	95.30	cfs						
	Q =	155.11	cfs	WITH FR	EEBOARD				
		Velocit	y, V (fps)						
U	se V to size ri	p rap if s	< 10%, groເ	ited, or d _{acti}	_{ual} ≤ 0				
	V = Q/A								
	V =	6.16	fps						
	V _{MAX} =	6.50	fps						
	Account f	or 40% V	oid Space	in Rip Rap)				
		if s	- ≥ 10%						
Rip Ra _l A _{void} =0.4*	p Thickness, t	(inches)	=	9					
N _{Void} -0.4	<i>.</i>								
	$A_{\text{void}} =$	N/A	sq.ft.						
A _{in-channel fl}	low=A-A _{void}								
	A _{in-channel flow} =	#VALUE!	sq.ft.						
·									
$d_{\text{in-channel flow}} = \frac{-b + \sqrt{b^2 + 4 * z * A_{\text{in-channel flow}}}}{2 * z}$									
	d _{in-channel flow} =								
			s Calculat	tion					
			rip rap if s						
	Sh = 62.4 x d _i								
		in Granner now							
Allow	able Shear Str	ess =		1.00	psf				
Calcu	llated Shear St	ress =		1.76	psf				

	Proce Son	tional A	roa Wott	ed Perime	otor &		
`	J1033 060		ulic Radi		iei u		
A = bd + z	rd^2	,					
A - bu · 2	_u						
	A =	15.48	sq.ft.				
	A = 22.08		sq.ft.	WITH F	REEBOARD		
P = b + 2c	SQRT(z²-	+1)					
	P =	13.05	feet				
	P =	15.29	feet	WITH F	REEBOARD		
r = A/P							
	r =	1.19	feet				
	r =	1.44	feet	WITH F	REEBOARD		
		Top \	Nidth (fee	et)			
T = b + 2*	z*d						
	T =	12.20	feet				
	T =	14.20	feet	WITH F	REEBOARD		
		Ditch S	Sizing Ch	eck			
Q CHECK	(=			PASS	<u></u>		
VELOCIT	Y CHECK	=		PASS	3		
SHEAR S	TRESS CH	HECK =		USE VELC	CITY		
OVERA	ILL CHE	CK =		PAS	S		

Channel Name:	COLLEC	COLLECTION DITCH CD-2A		Peak Disch & Base Flow:	16.4
Section Number:	3		Peak Discharge (Cum):	105.1	
End Station:	16	+	03	Drainage Acreage:	7.5
End Elevation:		1,980.0		Watershed Slope:	9.0%

Given:										
F	low Depth, d (1	t)	=	1.8						
В	Bottom Width (f	t)	=	5						
S	ide Slopes (H:	1)	=	2						
W	hat size Rip R	ар	=	R-4						
C	d ₅₀ size (inches	5)	=	6						
Ма	nnings Coeffic	ient	=	0.042						
Cha	nnel Slope, s	(ft/ft)	=	3.00%						
	F	low Rate	, Q _{design} (c	fs)						
	Q = (1.486/n)	x a x r ^{2/3} x	(S ^{1/2}							
	Q =	105.41	cfs							
	Q =	171.56	cfs	WITH FR	EEBOARD					
			y, V (fps)	I						
U	se V to size ri			ited. or dage	.al ≤ 0					
	V = Q/A		,,,	acti	-					
	V =	6.81	fps							
	V _{MAX} =	9.00	fps							
		or 40% V	oid Space	in Rip Rap)					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		≥ 10%							
Rin Rar	Thickness, t		=,	18						
A _{void} =0.4*I		(.0						
, void O. i i										
	$A_{\text{void}} =$	N/A	sa ft							
	Void		94							
A _{in-channel fl}	-Δ_Δ									
rin-channel fl	ow-//-void									
	A _{in-channel flow} =	#\/ALLIEI	ea ft							
	^in-channel flow -	#VALUL:	3q.it.							
$d_{\text{in-channel flow}} = \frac{-b + \sqrt{b^2 + 4 * z * A_{\text{in-channel flow}}}}{2 * z}$										
din_channol	$\frac{-b+}{}$	$b^2 + 4 * z =$	* A _{in-channel}	flow						
-III-Cilaililei	illow	2 *	Z							
	d =	#\/^ =	ft							
	d _{in-channel flow} =			·!						
	_		s Calculat							
	Sh = 62.4 x d _i			- IU%						
	511 - 02.4 X Ui	n-channel flow	Λ3							
Allowable Shear Stress = 2.00 psf										
	lated Shear St			3.37	psf					

	Proce Soc	tional A	roa Wott	ed Perime	otor 8
`	51055 Sec		ulic Radi		eter ox
	.2	пуша	ulic Kaul	us	T
A = bd + z	zd				
	A =	15.48	sq.ft.		
	A =	22.08	sq.ft.	WITH F	REEBOARD
P = b + 2c	SQRT(z ² -	+1)			
	P =	13.05	feet		
	P =	15.29	feet	WITH F	REEBOARD
r = A/P					
	r =	1.19	feet		
	r =	1.44	feet	WITH F	REEBOARD
		Top V	Nidth (fee	et)	
T = b + 2*	z*d				
	T =	12.20	feet		
	T =	14.20	feet	WITH F	REEBOARD
		Ditch S	Sizing Ch	eck	
Q CHECK	(=			PASS	3
VELOCIT	Y CHECK	=		PASS	
SHEAR S	TRESS CI	HECK =		USE VELO	CITY
OVERA	LL CHE	CK =		PAS	S

Channel Name:	COLLEC	TION DIT	CH CD-2A	Peak Disch & Base Flow:	0.0
Section Number:	4		Peak Discharge (Cum):	105.1	
End Station:	16 + 23			Drainage Acreage:	0.0
End Elevation:	nd Elevation: 1,972.0		Watershed Slope:	9.0%	

Given:													
F	low Depth, d (f	ft)	=	1									
Е	Bottom Width (f	ft)	=	8									
S	ide Slopes (H:	1)	=	2									
W	hat size Rip R	ap	=	R-6									
C	d ₅₀ size (inches	s)	=	12									
Ма	nnings Coeffic	ient	=	0.071									
Cha	nnel Slope, s ((ft/ft)	=	40.00%									
			, Q _{design} (c	fs)									
$Q = (1.486/n) \times a \times r^{2/3} \times s^{1/2}$													
	Q =	113.47	cfs										
	Q =	234.48	cfs	WITH FR	EEBOARD								
Velocity, V (fps) Use V to size rip rap if s < 10%, grouted, or d _{actual} ≤ 0													
	V = Q/A	p rup ii o	1070, 9100	atou, or u _{acti}	iai – S								
	V 3071												
	V =	11.35	fps										
	V _{MAX} =	13.00	fps										
				in Rip Rap	<u> </u>								
	710000111111		≥ 10%										
Rin Rai	Thickness, t		= =	36									
A _{void} =0.4*		(11101100)		00									
void O. I													
	$A_{\text{void}} =$	9 60	sa ft										
	Void	0.00	94										
A _{in-channel fl}	-Δ-Δ												
n-channel fl	ow—/\-\void												
	A _{in-channel flow} =	0.40	ea ft										
	^in-channel flow -	0.40	34.11.										
	. /												
d _{in-channel}	$_{1 \text{ flow}} = \frac{-b + }{}$	$b^2 + 4 * z$	* A _{in-channel}	flow									
- III CHAIIIIC	inow	2 *	Z										
	d _{in-channel flow} =	0.05	ft										
				lian									
			ss Calculat										
	Sh = 62.4 x d _i			- 10 /0									
	511 - 02.4 X Ui	n-channel flow	Α Θ										
Allow	l able Shear Str	ess =		4.00	psf								
	lated Shear St			1.23	psf								

	Proce Soc	tional A	rea, Wett	od Dorim	otor 8				
	71033 3EC		ulic Radi		eter &				
	.2	пуша	unc Raui	us					
A = bd + z	zd-								
	A =	10.00	sq.ft.						
	A =	16.50	sq.ft.	WITH F	REEBOARD				
P = b + 2c	I SQRT(z ² -	+1)							
	P =	12.47	feet						
	P =	14.71	feet	WITH F	REEBOARD				
r = A/P									
	r =	0.80	feet						
	r =	1.12	feet	WITH F	REEBOARD				
		Top V	Vidth (fee	et)					
$T = b + 2^*$	z*d								
	T =	12.00	feet						
	T =	14.00	feet	WITH F	REEBOARD				
		Ditch S	Sizing Ch	eck					
Q CHECK	(=			PAS	3				
VELOCIT	Y CHECK	=	GREAT	ER THAN	10% SLOPE				
SHEAR S	TRESS CI	HECK =	PASS						
OVERA	LL CHE	CK =		PAS	S				

Graphical Peak Discharge Wed May 28 12:01:44 2025 Project: ROCKWOOD By: CGY Date: 05/28/25 Location: CD-2A(1) Checked: Date: Developed 1. Data: Drainage area:..... A = 0.5000Acres Time of Concentration:.....Tc = 12.80 min Storm Type:.... = II Pond and swamp areas spread throughout watershed..... = 0.00 percent of A 0.0000 Acres 2. Frequency.....yr = 10 3. Rainfall, P(24-hour)....in = 3.570 4. Initial abstraction, Ia..... = 0.3529 5. Compute Ia/P..... = 0.0989 6. Unit peak discharge, qu.....csm/in = 781.378 7. Runoff,Q....in = 2.077 8. Pond & swap adjustment factor,...Fp = 1.00 9. Peak Discharge, qp......cfs = 1.268

Time of Concentration (SCS) Wed May 28 11:50:52 2025

Project: ROCKWOOD By: CGY Date: 05/28/25 Location: CD-2A(1) Checked: Date: 05/28/25

Developed

Curve Number : 85

Length of Flow : 1563.00 ft Average Land Slope : 9.00 %

Time of Concentration : 0.214 hrs, 12.8 mins

Graphical Peak Discharge Wed May 28 12:02:15 2025 Project: ROCKWOOD By: CGY Date: 05/28/25 Location: CD-2A(2) Checked: Date: Developed 1. Data: Drainage area:..... A = 2.6000Acres Time of Concentration:.....Tc = 15.30 min Storm Type:.... = II Pond and swamp areas spread throughout watershed..... = 0.00 percent of A 0.0000 Acres 2. Frequency.....yr = 10 3. Rainfall,P(24-hour)....in = 3.570 4. Initial abstraction, Ia..... = 0.3529 5. Compute Ia/P..... = 0.0989 6. Unit peak discharge, qu.....csm/in = 729.901 7. Runoff,Q....in = 2.077 8. Pond & swap adjustment factor,...Fp = 1.00 9. Peak Discharge, qp.....cfs = 6.160

Time of Concentration (SCS) Wed May 28 11:51:21 2025

ROCKWOOD Project: By: CGY Date: 05/28/25 Location: CD-2A(2) Checked: Date: 05/28/25

Developed

Curve Number : 85
Length of Flow : 1945.00 ft
Average Land Slope : 9.00 %

Time of Concentration : 0.255 hrs, 15.3 mins

Project: ROCKWOOD By: CGY Date: 05/28/25 Location: CD-2A(3) Checked: Date: Developed 1. Data: Drainage area:..... A = 7.5000Acres Runoff Curve Number:.....CN = 85 Time of Concentration:.....Tc = 18.60 min Storm Type:.... = II Pond and swamp areas spread throughout watershed..... = 0.00 percent of A 0.0000 Acres 2. Frequency.....yr = 10 3. Rainfall, P(24-hour)....in = 3.570 4. Initial abstraction, Ia..... = 0.3529 5. Compute Ia/P..... = 0.0989 6. Unit peak discharge, qu.....csm/in = 673.546 7. Runoff,Q....in = 2.077 8. Pond & swap adjustment factor,...Fp = 1.00 9. Peak Discharge, qp......cfs = 16.398

Wed May 28 12:03:05 2025

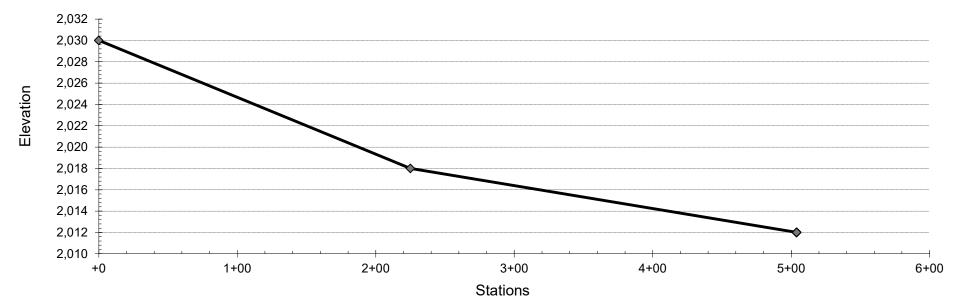
Graphical Peak Discharge

Time of Concentration (SCS) Wed May 28 11:51:58 2025

Project: ROCKWOOD By: CGY Date: 05/28/25 Location: CD-2A(3) Checked: Date: 05/28/25

Developed

Curve Number : 85


Length of Flow : 2478.00 ft Average Land Slope : 9.00 %

Time of Concentration : 0.309 hrs, 18.6 mins

12.1 Diversion/Collection Ditch Data Sheet

Tit	e: COLLECTION DITCH CD-2B								Site:				Company:					Permit Number:						
			COLL	ECTIO	N DITC	H CD-2	2B			R	OCKWO	OD QU	ARRY		RO	CKWOC	D ST	ONE, L	LC					
Prep	ared	d By:				Initials:			Telepho	one Nur	nber:				Date:					Sheet	1	of	1	
		Ea	rthtech	, Inc.		CGY					(814)2	66-640	2			JUI	NE 202	25						
\vdash	(Statio	n	1									Channel									W	th Freeb	oard
	Start	t			ge Area cres)	Design Storm	Average Watershe d Slope	Curve Numbe	Peak Di Q (C	_	Channel Bed Slope	Free- board	-	Manning's Coefficient	Bottom	Channel Side Slopes	Flow Area	Flow Depth	Top Flow Width	Flow Velocity		Channel	Тор	
	End		Elevation	Section	Cum.	(yrs)	(%)	r	Section	Cum.	(%)	(ft)	size)	(n)	(ft)	(H:V)	(sq ft)	(ft)	(ft)	(ft/sec)	(CFS)	(ft)	(ft)	(CFS)
0	+		2030.0																					
2	+	25	2018.0	6.0	6.0	10	9.0%	85	16.8	16.8	5.3%	0.2	R-3	0.041	5.0	2:1	3.7	0.60	7.4	5.11	19.0	0.75	8.0	28.2
5	+	04	2012.0	24.5	30.5	10	9.0%	85	64.4	81.2	2.2%	0.5	R-4	0.042	5.0	2 : 1	15.5	1.80	12.2	5.76	89.2	2.30	14.2	145.2

Ditch Profile

Channel Name:	COLLEC	TION DIT	CH CD-2B	Peak Disch & Base Flow:	16.8
Section Number:		1		Peak Discharge (Cum):	16.8
End Station:	2	+	25	Drainage Acreage:	6.0
End Elevation:	d Elevation: 2,018.0		Watershed Slope:	9.0%	

0.	1		T										
Given:													
	low Depth, d (1	,	=	0.6									
	Bottom Width (f	-	=	5									
	ide Slopes (H:		=	2									
	/hat size Rip R		=	R-3									
(d ₅₀ size (inches	s)	=	3									
Ma	nnings Coeffic	ient	=	0.041									
Cha	annel Slope, s (=	5.33%									
	Flow Rate, Q _{design} (cfs)												
$Q = (1.486/n) \times a \times r^{2/3} \times s^{1/2}$													
	Q =	18.99	cfs										
	Q =	28.21	cfs	WITH FR	EEBOARD								
	<u></u>	Velocit	y, V (fps)	I									
Velocity, V (fps) Use V to size rip rap if s < 10%, grouted, or d _{actual} ≤ 0													
	V = Q/A		, 0	,									
	V =	5.11	fps										
	V _{MAX} =	6.50	fps										
	Account f	or 40% V	oid Space	in Rip Rap)								
			≥ 10%										
Rip Rai	p Thickness, t		=	9									
A _{void} =0.4*		(
- void													
	$A_{\text{void}} =$	N/A	sa.ft.										
	70.0		•										
Ain shannal fl	low=A-A _{void}												
· in-channern	ow 7 7 Void												
	A _{in-channel flow} =	#\/ALUF!	sa ft										
	• In-channel flow	" V' LOL.	04.11.										
	h . /	h2 + 4 - =	. ^										
d _{in-channe}	$_{1 \text{ flow}} = \frac{-b + }{}$	D* + 4 * Z	* A _{in} –channel	flow									
		2 *	Z										
	d _{in-channel flow} =	#VAI UF!	ft										
			s Calculat	tion									
			rip rap if s										
	Sh = 62.4 x d _i												
	2 V G	n-channer now											
Allow	able Shear Str	ess =	1	1.00	psf								
Calcu	lated Shear St	ress =		2.00	psf								

		\A/ 44							
Cross S	Sectional A			ter &					
	Hydra	ulic Radi	us						
$A = bd + zd^2$									
A =	3.72	sq.ft.							
A =	4.88	sq.ft.	WITH F	REEBOARD					
P = b + 2d SQRT	(z ² +1)								
P =	7.68	feet							
P =	8.35	feet	WITH F	REEBOARD					
r = A/P									
r =	0.48	feet							
r =	0.58	feet	WITH F	REEBOARD					
	Top V	Vidth (fee	et)						
T = b + 2*z*d									
T =	7.40	feet							
T =	8.00	feet	WITH F	REEBOARD					
	Ditch S	izing Ch	eck						
Q CHECK =			PASS						
VELOCITY CHEC	CK =		PASS						
SHEAR STRESS	CHECK =	USE VELOCITY							
OVERALL CI	HECK =	PASS							

Channel Name:	COLLEC	TION DIT	64.4			
Section Number:		2			Peak Discharge (Cum):	81.2
End Station:	5	+	04		Drainage Acreage:	24.5
End Elevation:	2,012.0			Watershed Slope:	9.0%	

	ı		T										
Given:													
	low Depth, d (1		=	1.8									
	Bottom Width (1	•	=	5									
	ide Slopes (H:		=	2									
	hat size Rip R		=	R-4									
C	d ₅₀ size (inches	s)	=	6									
Ma	nnings Coeffic	ient	=	0.042									
Cha	annel Slope, s		=	2.15%									
	F	Iow Rate	, Q _{design} (c	fs)									
2 (4 422) 2/3 4/2													
$Q = (1.486/n) \times a \times r^{2/3} \times s^{1/2}$													
	Q =	89.22	cfs										
	Q =	145.21	cfs	WITH FR	EEBOARD								
	1												
Velocity, V (fps) Use V to size rip rap if s < 10%, grouted, or d _{actual} ≤ 0													
	V = Q/A		, J	acti	-								
	V =	5.76	fps										
	V _{MAX} =	9.00	fps										
		or 40% V	oid Space	in Rip Rap)								
	7.0000		≥ 10%										
Rin Rai	Thickness, t		=,.	18									
A _{void} =0.4*		(11101100)		10									
, void O. I													
	A _{void} =	N/A	sa ft										
	Void	14/71	Jq.1t.										
۸	- A A												
^ in-channel fl	ow=A-A _{void}												
	A _{in-channel flow} =	#\/∧LLI⊑I	ea ft										
	Ain-channel flow	#VALUE!	sq.it.										
	- 1												
din shanna	$_{1 \text{ flow}} = \frac{-b + }{}$	$b^2 + 4 * z$	* A _{in-channel}	flow									
MIII-CIIAIIIIE	illow	2 *	Z										
	d -	#\/\	£										
	d _{in-channel flow} =												
			s Calculat										
			rip rap if s	- 10%									
	$Sh = 62.4 \times d_i$	n-channel flow	^ S										
Allow	⊥ ⁄able Shear Str	ess =		2.00	psf								
	lated Shear St			2.42	psf								

C	ross Sec	tional A	rea, Wette	ed Perime	eter &				
	1000 000		ulic Radi		λίοι α				
A = bd + z	d^2	,							
	<u> </u>								
	A =	15.48	sq.ft.						
	A =	22.08	sq.ft.	WITH F	REEBOARD				
P = b + 2d	SQRT(z ²	+1)							
	P =	13.05	feet						
	P =	15.29	feet	WITH F	REEBOARD				
r = A/P									
	r =	1.19	feet						
	r =	1.44	feet	WITH F	REEBOARD				
		Top V	Vidth (fee	et)					
T = b + 2*2	z*d								
	T =	12.20	feet						
	T =	14.20	feet	WITH F	REEBOARD				
		Ditch S	izing Che	eck					
Q CHECK	=			PASS	6				
VELOCITY	CHECK	=		PASS	3				
SHEAR S	TRESS CI	HECK =	USE VELOCITY						
OVERA	LL CHE	CK =	PASS						

Graphical Peak Discharge Wed May 28 11:59:28 2025 Project: ROCKWOOD By: CGY Date: 05/28/25 Location: CD-2B(1) Checked: Date: Developed 1. Data: Drainage area:..... A = 6.0000Acres Runoff Curve Number:.....CN = 85 Time of Concentration:.....Tc = 9.70 min Storm Type:.... = II Pond and swamp areas spread throughout watershed..... = 0.00 percent of A 0.0000 Acres 2. Frequency.....yr = 10 3. Rainfall, P(24-hour)....in = 3.570 4. Initial abstraction, Ia..... = 0.3529 5. Compute Ia/P..... = 0.0989 6. Unit peak discharge, qu.....csm/in = 861.396 7. Runoff,Q....in = 2.077 8. Pond & swap adjustment factor,...Fp = 1.00 9. Peak Discharge, qp.....cfs = 16.777

Time of Concentration (SCS) Wed May 28 11:49:45 2025

ROCKWOOD Project: By: CGY Date: 05/28/25 Location: CD-2B(1) Checked: Date: 05/28/25

Developed

Curve Number : 85
Length of Flow : 1100.00 ft
Average Land Slope : 9.00 %

Time of Concentration : 0.162 hrs, 9.7 mins

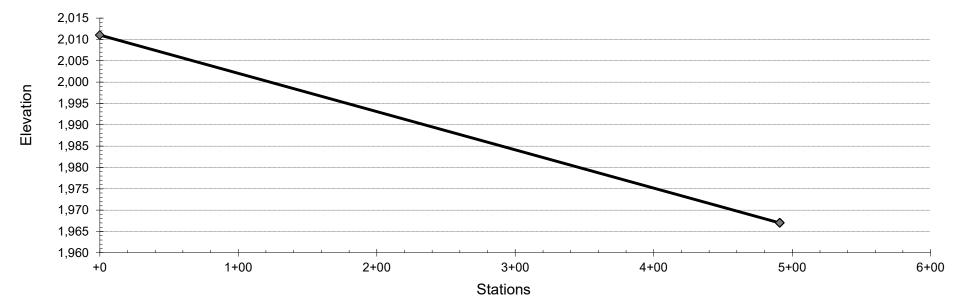
Graphical Peak Discharge Wed May 28 12:01:13 2025 Project: ROCKWOOD By: CGY Date: 05/28/25 Location: CD-2B(2) Checked: Date: Developed 1. Data: Runoff Curve Number:.....CN = 85 Time of Concentration:.....Tc = 11.60 min Storm Type:.... = II Pond and swamp areas spread throughout watershed..... = 0.00 percent of A 0.0000 Acres 2. Frequency.....yr = 10 3. Rainfall,P(24-hour)....in = 3.570 4. Initial abstraction, Ia..... = 0.3529 5. Compute Ia/P..... = 0.0989 6. Unit peak discharge, qu.....csm/in = 809.782 7. Runoff,Q....in = 2.077 8. Pond & swap adjustment factor,...Fp = 1.00 9. Peak Discharge, qp......cfs = 64.400

Time of Concentration (SCS) Wed May 28 11:50:26 2025

Project: ROCKWOOD By: CGY Date: 05/28/25 Location: CD-2B(2) Checked: Date: 05/28/25

Developed

Curve Number : 85


Length of Flow : 1379.00 ft Average Land Slope : 9.00 %

Time of Concentration : 0.194 hrs, 11.6 mins

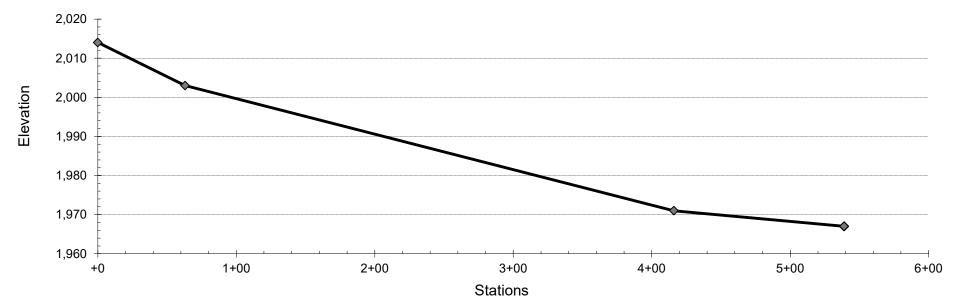
12.1 Diversion/Collection Ditch Data Sheet

Titl	e:								Site:						Compa	any:				Permit N	Number:			
			COLL	ECTIO	N DIT	CH CD	-4			R	OCKWO	OD QU	ARRY		RO	CKWOC	D ST	ONE, L	LC					
Prep	ared	Ву:				Initials:			Telepho	one Nur	nber:				Date:					Sheet	1	of	1	_
		Ea	rthtech,	Inc.		CGY					(814)2	66-640	2		JUNE 2025						-		_	
 	S	tatior	า										Channel									Wi	th Freeb	oard
	Start				ge Area res)	Design Storm	Average Watershe d Slope	Curve Numbe	Peak Di		Channel Bed Slope	Free- board		Manning's Coefficient	Bottom	Channel Side Slopes	Flow Area	Flow Depth	Top Flow Width	Flow Velocity	Q Available	Channel Depth	Top Channel Width	Q Available
	End		Elevation		Cum.	(yrs)	(%)	r	Section	Cum.	(%)	(ft)	size)	(n)	(ft)	(H:V)	(sq ft)	(ft)	(ft)	(ft/sec)	(CFS)	(ft)	(ft)	(CFS)
0			2011.0																					
4	+	91	1967.0	0.99	0.99	10	10.0%	85	3.2	3.2	9.0%	0.1	R-3	0.047	2.0	2 : 1	1.1	0.40	3.6	4.22	4.7	0.50	4.0	7.1

Ditch Profile

Channel Name:	COLLECTION DITCH CD-4		Peak Disch & Base Flow:	3.2	
Section Number:	1		Peak Discharge (Cum):	3.2	
End Station:	4 + 91		Drainage Acreage:	0.99	
End Elevation:	1,967.0		Watershed Slope:	10.0%	

Given:					
F	low Depth, d (f	ft)	=	0.4	
E	Bottom Width (f	ft)	=	2	
S	ide Slopes (H:	1)	=	2	
W	/hat size Rip R	ар	=	R-3	
C	d ₅₀ size (inches	s)	=	3	
Ма	nnings Coeffic	ient	=	0.047	
Cha	annel Slope, s ((ft/ft)	=	8.96%	
	F	Iow Rate	, Q _{design} (c	fs)	
	Q = (1.486/n)	x a x r ^{2/3} >	(S ^{1/2}		
	Q =	4.72	cfs		
	Q =	7.14	cfs	WITH FR	EEBOARD
		Velocit	y, V (fps)	I	
U	se V to size ri			ited, or d _{acti}	ıal ≤ 0
	V = Q/A		, 0	,	
	V =	4.22	fps		
	V _{MAX} =	6.50	fps		
		or 40% V	oid Space	in Rip Rap)
			≥ 10%		
Rip Ra	p Thickness, t		=	9	
A _{void} =0.4*		,			
	$A_{\text{void}} =$	N/A	sq.ft.		
A _{in-channel fl}	low=A-A _{void}				
iii ondiiioi ii	ow void				
	A _{in-channel flow} =	#VALUE!	sa.ft.		
	in-charmer now	-	'		
	h . /	h2 1 + 7	μΛ		
d _{in-channel}	$_{1 \text{ flow}} = \frac{-b + }{}$	0 T 4 * Z	* Ain-channel	flow	
		۷.	۷.		
	d _{in-channel flow} =	#VALUE!	ft		
			s Calculat	tion	
			rip rap if s		
	Sh = 62.4 x d _i				
		in Granner now			
Allow	able Shear Str	ess =	1	1.00	psf
Calcu	llated Shear St	ress =		2.24	psf


	Prose Sac	tional A	rea, Wett	ad Parima	otor &			
ì	J1033 060		ulic Radi		iei u			
A = bd + z	rd ²	,	1					
/								
	A =	1.12	sq.ft.					
	A =	1.50	sq.ft.	WITH FREEBOA				
P = b + 2c	SQRT(z ² -	+1)						
	P =	3.79	feet					
	P =	4.24	feet	WITH F	REEBOARD			
r = A/P								
	r =	0.30	feet					
	r =	0.35	feet					
		Top \	Width (fee	et)				
T = b + 2*	z*d							
	T =	3.60	feet					
	T =	4.00	feet	WITH F	REEBOARD			
		Ditch	Sizing Ch	eck				
Q CHECK	(=			PASS	3			
VELOCIT	Y CHECK	=		PASS	<u></u>			
SHEAR STRESS CHECK =				USE VELC	CITY			
OVERA	ILL CHE	CK =		PAS	S			

Graphical Peak Discharge Mon Jun 2 12:19:41 2025 Project: ROCKWOOD By: CGY Date: 06/02/25 Location: CD-4 Checked: Date: Developed 1. Data: Drainage area:..... A = 0.9900Acres Runoff Curve Number:.....CN = 85 Time of Concentration:.....Tc = 6.00 min Storm Type:.... = II Pond and swamp areas spread throughout watershed..... = 0.00 percent of A 0.0000 Acres 2. Frequency.....yr = 10 3. Rainfall, P(24-hour)....in = 3.570 4. Initial abstraction, Ia..... = 0.3529 5. Compute Ia/P..... = 0.0989 6. Unit peak discharge, qu....csm/in = 1000.000 7. Runoff,Q....in = 2.077 8. Pond & swap adjustment factor,...Fp = 1.00 9. Peak Discharge, qp......cfs = 3.214

12.1 Diversion/Collection Ditch Data Sheet

Tit	e:		0011	FOTIC	NI DIT	on	_		Site:	_	001/14/04	2	ADDV		Compa	-	D 074	I		Permit N	Number:			
Pre	oared				ON DITO	Initials:			Telepho	one Nur		66-640			Date:	JUI	NE 202	•	LC	Sheet	1	of	1	- -
	S	tatio	n	I									Channel									Wi	ith Freebo	oard
	Start End		Elevation	(ac		Design Storm (yrs)	Average Watershe d Slope (%)	Curve Numbe	Peak Di Q (C	FS)	Channel Bed Slope (%)	Free- board (ft)	Lining (specify average rock size)	Manning's Coefficient (n)	Bottom	Channel Side Slopes (H:V)	Flow Area (sq ft)	Flow Depth (ft)	Top Flow Width (ft)	Flow Velocity (ft/sec)	Available	Depth	Top Channel Width (ft)	Available
0			2014.0		Cuiii.	(313)	(70)		Section	Cuiii.	(70)	(11)	3120)	(11)	(11)	(II. V)	(54 11)	(11)	(11)	(10300)	(0, 0)	(ft)	(11)	(CFS)
0		63	2003.0		0.99	10	10.0%	85	3.2	3.2	17.5%	0.1	R-3	0.052	2.0	2 : 1	0.8	0.30	3.2	4.50	3.5	0.38	3.5	5.2
4	+	16	1971.0	0.00	0.99	10	10.0%	85	0.0	3.2	9.1%	0.5	R-3	0.047	2.0	2 : 1	1.1	0.40	3.6	4.24	4.7	0.90	5.6	22.5
5	+	39	1967.0	0.00	0.99	10	10.0%	85	0.0	3.2	3.3%	0.5	GRASS	0.060	2.0	2 : 1	1.5	0.50	4.0	2.23	3.3	1.00	6.0	12.9
	•																							

Ditch Profile

Channel Name:	COLLECTION DITCH CD-5		Peak Disch & Base Flow:	3.2
Section Number:	1		Peak Discharge (Cum):	3.2
End Station:	0 + 63		Drainage Acreage:	0.99
End Elevation:	2,003.0		Watershed Slope:	10.0%

Given:					
F	low Depth, d (f	t)	=	0.3	
Е	Bottom Width (f	t)	=	2	
S	ide Slopes (H:	1)	=	2	
W	hat size Rip R	ар	=	R-3	
C	d ₅₀ size (inches	5)	=	3	
Ма	nnings Coeffic	ient	=	0.052	
Cha	nnel Slope, s ((ft/ft)	=	17.46%	
	F	low Rate	, Q _{design} (c	fs)	
	Q = (1.486/n)	x a x r ^{2/3}	x s ^{1/2}		
	Q =	3.51	cfs		
	Q =	5.25	cfs	WITH FR	EEBOARD
		Veloci	ty, V (fps)		
U	se V to size ri			uted. or dans	≤ 0
	V = Q/A		, , <u>, , , , , , , , , , , , , , , , , </u>	acti	-
	V =	4.50	fps		
	V _{MAX} =	6.50	fps		
		or 40% V	oid Space	in Rip Rap)
			≥ 10%		
Rip Rap A _{void} =0.4*	o Thickness, t b*t		=	9	
	$A_{\text{void}} =$	0.60	sq.ft.		
A _{in-channel fl}	ow=A-A _{void}				
	$A_{\text{in-channel flow}} =$	0.18	sq.ft.		
	-b + ./	$b^2 + 4 * 7$	* Ain_channa	I flow	
d _{in-channel}	$_{\text{l flow}} = \frac{-b + }{}$	2 *	· Z	<u> </u>	
	d _{in-channel flow} =		ft		
			ss Calcula		
			rip rap if s	> 10%	
	$Sh = 62.4 \times d_{i}$	n-channel flow	x s		
Allow	able Shear Str	- Acc =		1.00	psf
	lated Shear St			0.91	psi

	ross Cor	tional A	roo Mott	ad Barima	ntor 9			
	JIUSS SEC		rea, Wett Iulic Radi		eter ox			
	.2	пуша	ulic Kaul	us				
A = bd + z	:d-							
	A =	0.78	sq.ft.					
	A =	1.03	sq.ft.	WITH F	REEBOARD			
P = b + 2c	SQRT(z ² -	+1)						
	P =	3.34	feet					
	P =	3.68	feet	WITH F	REEBOARD			
r = A/P								
	r =	0.23	feet					
	r =	0.28	feet					
		Top \	Nidth (fee	et)				
$T = b + 2^*$	z*d							
	T =	3.20	feet					
	T =	3.50	feet	WITH F	REEBOARD			
		Ditch S	Sizing Ch	eck				
Q CHECK	(=			PASS	3			
VELOCIT	Y CHECK	=	GREAT	TER THAN	10% SLOPE			
SHEAR S	TRESS CI	HECK =		PASS	3			
OVERA	LL CHE	CK =		PAS	<u> </u>			

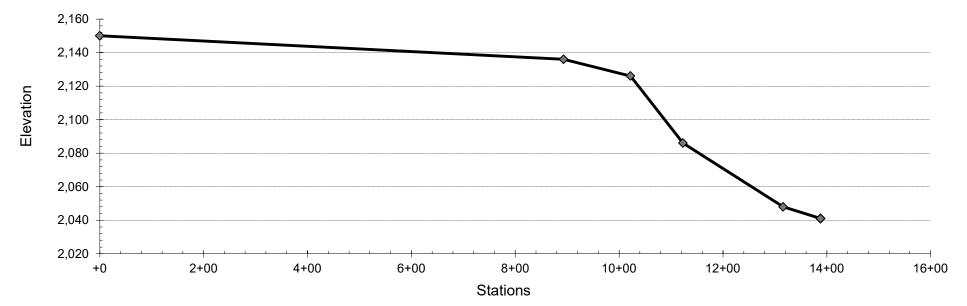
Channel Name:	COLLECTION DITCH CD-5		Peak Disch & Base Flow:	0.0	
Section Number:	2		Peak Discharge (Cum):	3.2	
End Station:	4 + 16		Drainage Acreage:	0.0	
End Elevation:	1,971.0		Watershed Slope:	10.0%	

Given:					
F	low Depth, d (f	t)	=	0.4	
Е	Bottom Width (f	t)	=	2	
S	Side Slopes (H:	1)	=	2	
W	/hat size Rip R	ap	=	R-3	
C	d ₅₀ size (inches	s)	=	3	
Ma	nnings Coeffic	ient	=	0.047	
Cha	annel Slope, s (ft/ft)	=	9.07%	
	F	low Rate	, Q _{design} (c	fs)	·
	Q = (1.486/n)	x a x r ^{2/3} x	(S ^{1/2}		
	Q =	4.75	cfs		
	Q =	22.46	cfs	WITH FR	EEBOARD
		Velocit	y, V (fps)	I	
U	se V to size ri			ited. or dage	≤ 0
	V = Q/A		, 5	acti	
	V =	4.24	fps		
	V _{MAX} =	6.50	fps		
			oid Space	in Rip Rap)
			≥ 10%		
Rin Rai	p Thickness, t		=,	9	
A _{void} =0.4*		(· ·	
, void o	~ .				
	$A_{\text{void}} =$	N/A	sa.ft.		
	75.0		'		
A:	low=A-A _{void}				
• •n-channel ii	ow , , , void				
	A _{in-channel flow} =	#\/AI LIF!	sa ft		
	, in-channel now	// V/ LOL.	04		
	1- 1	1-2 - 4	. А		
d _{in-channe}	$_{1 \text{ flow}} = \frac{-b + }{}$	D* + 4 * Z :	* A _{in-channel}	flow	
		2 *	Z		
	d _{in-channel flow} =	#\/AI LIF!	ft		
			s Calculat	lion	
			rip rap if s		
	Sh = 62.4 x d _{ii}			- 10/0	
	JZ.17. U	I-CHAIIIIEI HOW			
Allow	able Shear Str	ess =		1.00	psf
	lated Shear St			2.26	psf

C	Yantiamal A	\A/-44	ad Daviss	-4 O					
Cross S	Sectional A			eter &					
	Hydra	ulic Radi	us						
$A = bd + zd^2$									
A =	1.12	sq.ft.							
A =	3.42	sq.ft.	WITH F	REEBOARD					
P = b + 2d SQRT((z^2+1)								
P =	3.79	feet							
P =	6.02	feet	WITH F	REEBOARD					
r = A/P									
r =	0.30	feet							
r =	0.57	feet							
	Top V	Vidth (fee	et)						
T = b + 2*z*d									
T =	3.60	feet							
T =	5.60	feet	WITH F	REEBOARD					
Ditch Sizing Check									
Q CHECK =			PASS	6					
VELOCITY CHEC	K =		PASS	3					
SHEAR STRESS	CHECK =		USE VELO	CITY					
OVERALL CH	IECK =	PASS							

Channel Name:	COLLECTION DITCH CD-5		Peak Disch & Base Flow:	0.0	
Section Number:	3		Peak Discharge (Cum):	3.2	
End Station:	5 + 39		Drainage Acreage:	0.0	
End Elevation:	1,967.0		Watershed Slope:	10.0%	

	Т		I .	I .	
Given:					
	low Depth, d (f		=	0.5	
	Bottom Width (f	•	=	2	
S	ide Slopes (H:	1)	=	2	
W	hat size Rip R	ар	=	GRASS	
(d ₅₀ size (inches	s)	=	#N/A	
Ma	nnings Coeffic	ient	=	0.060	
Cha	annel Slope, s (=	3.25%	
	F	low Rate	, Q _{design} (c	fs)	
	Q = (1.486/n)	x a x r ^{2/3} x	(S ^{1/2}		
	Q =	3.34	cfs		
	Q =	12.94	cfs	WITH FR	EEBOARD
	1		y, V (fps)		
U	se V to size ri			ited. or dass	≤ 0
	V = Q/A	,p c	10,0, 9.00	action, or traction	iai — -
	V =	2.23	fps		
	V _{MAX} =	3.50	fps		
		or 40% V	oid Space	in Rip Rap)
	7.0000		≥ 10%		
Rin Rai	p Thickness, t		=,.	#N/A	
$A_{\text{void}} = 0.4^{*}$		(11101100)		// 1 4// 1	
, void O. i					
	A _{void} =	N/A	sa ft		
	void	14// (04.11.		
٨	- A A				
^ in-channel fl	ow=A-A _{void}				
	A _{in-channel flow} =	#\/∧LLI⊑I	ea ft		
	Ain-channel flow	#VALUE!	sq.it.		
	- /	- 0			
din shanna	$_{1 \text{ flow}} = \frac{-b + }{}$	$b^2 + 4 * z =$	* A _{in-channe}	flow	
MIII-CIIAIIIIE	illow	2 *	Z		
	d -	₩/ /\	£1		
	d _{in-channel flow} =				
			s Calcula		
			rip rap if s	- 10%	
	$Sh = 62.4 \times d_i$	n-channel flow	Λ S		
Allow	⊥ ⁄able Shear Str	-229 =		#N/A	psf


	Proce Soc	stional A	rea, Wett	ad Darima	otor 8		
`	51055 360		aulic Radi		eter &		
	.2	пуша	ulic Naul	us	T		
A = bd + z	zd						
	A =	1.50	sq.ft.				
	A =	4.00	sq.ft.	WITH F	REEBOARD		
P = b + 2c	d SQRT(z ² -	+1)					
	P =	4.24	feet				
	P =	6.47	feet	WITH F	REEBOARD		
r = A/P							
	r =	0.35	feet				
	r =	0.62	feet	WITH FREEBOARD			
		Top \	Width (fee	et)			
$T = b + 2^*$	z*d						
	T =	4.00	feet				
	T =	6.00	feet	WITH F	REEBOARD		
		Ditch S	Sizing Ch	eck			
Q CHECK	(=			PASS	3		
VELOCIT	VELOCITY CHECK =			PASS	3		
SHEAR S	SHEAR STRESS CHECK =			USE VELO	CITY		
OVERA	LL CHE	CK =		PAS	<u> </u>		

Graphical Peak Discharge Mon Jun 2 12:20:48 2025 Project: ROCKWOOD By: CGY Date: 06/02/25 Location: CD-5 Checked: Date: Developed 1. Data: Drainage area:..... A = 0.9900Acres Runoff Curve Number:.....CN = 85 Time of Concentration:.....Tc = 6.00 min Storm Type:.... = II Pond and swamp areas spread throughout watershed..... = 0.00 percent of A 0.0000 Acres 2. Frequency.....yr = 10 3. Rainfall, P(24-hour)....in = 3.570 4. Initial abstraction, Ia..... = 0.3529 5. Compute Ia/P..... = 0.0989 6. Unit peak discharge, qu....csm/in = 1000.000 7. Runoff,Q....in = 2.077 8. Pond & swap adjustment factor,...Fp = 1.00 9. Peak Discharge, qp......cfs = 3.214

12.1 Diversion/Collection Ditch Data Sheet

Title	:							Site:						Compa	any:				Permit N	Number:			
		DIV	ERSION	N DITC	H DD-1				R	OCKWO	OD QU	ARRY		RO	CKWOC	D ST	ONE, L	LC					
Prepa	red By:				Initials:			Telepho	one Nur	nber:				Date:					Sheet	1	of	1	_
	Ea	rthtech,	Inc.			CGY				(814)2	66-640	2			JUI	NE 202	25						
_	Statio	un.			I							Channel									Wi	th Freeb	oard
	Statio	1	Draina	^				Dook Di				Lining									***	uiiiieeb	Jaiu
S	tart		(ac	ge Area res)	Design	Average Watershe	Curve	Peak Di	_	Channel	Free-	(specify	Manning's		Channel Side	Flow	Flow	Top Flow	Flow	Q	Channel	Top	Q
					Storm	d Slope	Numbe			Bed Slope		_	Coefficient		Slopes	Area	Depth	Width	Velocity			Width	Available
	nd	Elevation	Section	Cum.	(yrs)	(%)	r	Section	Cum.	(%)	(ft)	size)	(n)	(ft)	(H:V)	(sq ft)	(ft)	(ft)	(ft/sec)	(CFS)	(ft)	(ft)	(CFS)
0	+ 00	2150.0																					
8	+ 93	2136.0	18.0	18.0	10	8.0%	75	22.1	22.1	1.6%	0.3	GRASS	0.050	5.0	2 : 1	7.9	1.10	9.4	3.20	25.3	1.38	10.5	38.5
10	+ 22	2126.0	0.0	18.0	10	8.0%	75	0.0	22.1	7.8%	0.5	R-3	0.041	5.0	2:1	3.7	0.60	7.4	6.16	22.9	1.10	9.4	68.2
11	+ 23	2086.0	0.0	18.0	10	8.0%	75	0.0	22.1	39.6%	0.5	R-4	0.064	5.0	2:1	3.0	0.50	7.0	8.15	24.4	1.00	9.0	84.0
13	+ 16	2048.0	0.0	18.0	10	8.0%	75	0.0	22.1	19.7%	0.5	R-4	0.058	5.0	2:1	3.7	0.60	7.4	6.94	25.8	1.10	9.4	76.8
13	+ 88	2041.0	0.0	18.0	10	8.0%	75	0.0	22.1	9.7%	0.5	R-4	0.055	5.0	2:1	4.5	0.70	7.8	5.66	25.4	1.20	9.8	67.5

Ditch Profile

Channel Name:	DIVERSION DITCH DD-1		DIVERSION DI		Peak Disch & Base Flow:	22.1
Section Number:	1		Peak Discharge (Cum):	22.1		
End Station:	8	+	93	Drainage Acreage:	18.0	
End Elevation:		2,136.0		Watershed Slope:	8.0%	

Given:					
F	Flow Depth, d (f	t)	=	1.1	
Е	Bottom Width (f	t)	=	5	
S	Side Slopes (H:	1)	=	2	
W	/hat size Rip R	ap	=	GRASS	
(d ₅₀ size (inches	s)	=	#N/A	
Ma	nnings Coeffic	ient	=	0.050	
	annel Slope, s (=	1.57%	
			, Q _{design} (c		
			, accign (
	Q = (1.486/n)	x a x r ^{2/3} x	(S ^{1/2}		
	,				
	Q =	25.35	cfs		
	Q =	38.47	cfs	WITH ED	EEBOARD
	Q -		y, V (fps)	VVIIIIIIX	LLDOAND
11				لمينم لممكن	٠,0
U	se V to size ri	ргарпѕ	< 10%, grou	itea, or a _{acti}	_{ial} ≤ U
	V = Q/A				
			-		
	V =	3.20	fps		
	V _{MAX} =	3.50	fps		
	Account for		-	in Rip Rap)
			≥ 10%		
	p Thickness, t	(inches)	=	#N/A	
$A_{\text{void}}=0.4^*$	b*t				
	_				
	$A_{\text{void}} =$	N/A	sq.ft.		
A _{in-channel fl}	$_{low}$ =A-A $_{void}$				
	A _{in-channel flow} =	#VALUE!	sq.ft.		
	$-b + \sqrt{}$	$b^2 + 4 * z$	* Ain-channel	flow	
d _{in–channe}	$_{\text{l flow}} = \frac{-b + }{}$	2 *	Z.	110W	
	d _{in-channel flow} =	#VALUE!	ft		
			s Calculat	tion	
			rip rap if s		
	Sh = 62.4 x d _{ii}				
	vable Shear Str			#N/A	psf
Calcu	ılated Shear St	ress =		1.08	psf

(Cross Sec	ctional A	rea, Wett	ed Perime	eter &	
			ulic Radi			
A = bd + 2	zd ²					
	A =	7.92	sq.ft.			
	A = 7.92 A = 10.66			WITH F	REEBOARD	
D = h ± 2/	d SQRT(z ²	±1\				
F - D + 20	JOUNT	T 1)				
	P =	9.92	feet			
	P =	11.15	feet	WITH FREEBOARD		
r = A/P	1					
	r =	0.80	feet			
	r =	0.96	feet	WITH F	REEBOARD	
		Top \	Nidth (fee	et)		
$T = b + 2^*$	z*d					
	T =	9.40	feet			
	T =	10.50	feet	WITH F	REEBOARD	
		Ditch S	Sizing Ch	eck		
Q CHEC	(=			PASS	3	
VELOCIT	Y CHECK	=	PASS			
SHEAR S	TRESS CI	HECK =		USE VELO	CITY	
OVERA	ALL CHE	CK =		PAS	S	

Channel Name:	DIVERSION DITCH DD-1		DIVERSION DITCH DD-1		DIVERSION DITCH DD-1		Peak Disch & Base Flow:	0.0
Section Number:	2		Peak Discharge (Cum):	22.1				
End Station:	10	+	22	Drainage Acreage:	0.0			
End Elevation:		2,126.0		Watershed Slope:	8.0%			

Given:					
F	low Depth, d (1	ft)	=	0.6	
Е	Bottom Width (f	t)	=	5	
S	ide Slopes (H:	1)	=	2	
W	hat size Rip R	ар	=	R-3	
C	d_{50} size (inches	s)	=	3	
Ма	nnings Coeffic	ient	=	0.041	
Cha	annel Slope, s		=	7.75%	
	F	Iow Rate	, Q _{design} (c	fs)	
	Q = (1.486/n)	x a x r ^{2/3} >	(S ^{1/2}		
	Q =	22.90	cfs		
	Q =	68.16	cfs	WITH FR	EEBOARD
		Velocit	y, V (fps)		
U	se V to size ri			ited, or d _{acti}	_{ial} ≤ 0
	V = Q/A		, U	,	au.
	V =	6.16	fps		
	V _{MAX} =	6.50	fps		
	Account f	or 40% V	oid Space	in Rip Rap)
			≥ 10%		
	p Thickness, t	(inches)	=	9	
A _{void} =0.4*	D^T				
	A _{void} =	N/A	sa.ft.		
	70.0		'		
A _{in-channel fl}	ow=A-A _{void}				
	^ -	#\/^ =	og ft		
	A _{in-channel flow} =	#VALUE!	sq.it.		
ے	$_{1 \text{ flow}} = \frac{-b + }{}$	$b^2 + 4 * z$	* A _{in-channel}	flow	
a _{in-channe}	I flow = ——	2 *	Z		
	d _{in-channel flow} =	#VALUE!	ft		
	Sh	ear Stres	s Calculat	tion	
			rip rap if s	> 10%	
	$Sh = 62.4 \times d_i$	n-channel flow	x s		
	able Shear Str		I	1.00	psf
Calcu	lated Shear St	ress =		2.90	psf

^-	**** C	tional A	*** \N/s++	ad Davissa	-4a # 0		
C	ross Sec		rea, Wette		eter &		
		Hydra	ulic Radii	us			
A = bd + zd	l ²						
	A =	3.72	sq.ft.				
	A =	7.92	sq.ft.	WITH F	REEBOARD		
P = b + 2d	SQRT(z²-	+1)					
	P =	7.68	feet				
	P =	9.92	feet	WITH F	REEBOARD		
r = A/P							
	r =	0.48	feet				
	r =	0.80	feet	WITH F	REEBOARD		
		Top V	Vidth (fee	t)			
T = b + 2*z	*d						
	T =	7.40	feet				
	T =	9.40	feet	WITH F	REEBOARD		
		Ditch S	Sizing Che	eck			
Q CHECK	=		PASS				
VELOCITY	CHECK	=	PASS				
SHEAR ST	RESS CH	HECK =		USE VELC	CITY		
OVERAL	LL CHE	CK =		PAS	S		

Channel Name:	DIVERSION DITCH DD-1		DIVERSION DITCH DD-1		DIVERSION DITCH DD-1		Peak Disch & Base Flow:	0.0
Section Number:	3		Peak Discharge (Cum):	22.1				
End Station:	11	+	23	Drainage Acreage:	0.0			
End Elevation:		2,086.0		Watershed Slope:	8.0%			

Given:					
F	low Depth, d (f	it)	=	0.5	
Е	Bottom Width (f	t)	=	5	
S	ide Slopes (H:	1)	=	2	
W	hat size Rip R	ар	=	R-4	
C	d ₅₀ size (inches	s)	=	6	
Ma	nnings Coeffic	ient	=	0.064	
Cha	annel Slope, s ((ft/ft)	=	39.60%	
	F	low Rate	, Q _{design} (c	fs)	
	Q = (1.486/n)	x a x r ^{2/3}	x s ^{1/2}		
	Q =	24.44	cfs		
	Q =	84.00	cfs	WITH FR	EEBOARD
		Veloci	ty, V (fps)		
U	se V to size ri			uted. or dagg	. ⊿ ≤ 0
	V = Q/A			acti	-
	V =	8.15	fps		
	V _{MAX} =	9.00	fps		
		or 40% V	oid Space	in Rip Rap)
			≥ 10%		
Rip Rap A _{void} =0.4*	p Thickness, t (b*t		=	18	
	$A_{\text{void}} =$	3.00	sq.ft.		
A _{in-channel fl}	_{ow} =A-A _{void}				
	$A_{\text{in-channel flow}} =$	0.00	sq.ft.		
	-b +	$b^2 + 4 * z$	* Ain_channa	l flow	
d _{in-channel}	$_{1 \text{ flow}} = \frac{-b + }{}$	2 *	Z	<u> 1110 w</u>	
	d _{in-channel flow} =		ft		
	_		ss Calcula		
			rip rap if s	> 10%	
	Ch = 60 4 · · ·				
	Sh = 62.4 x d _{ii}	n-channel flow	X S		
Allow	Sh = 62.4 x d _{ii}		x s	2.00	psf

	Prose Sac	tional A	rea, Wett	ad Parima	tor &		
`	31033 060		ulic Radi		iter Q		
A = bd + z	rd ²	,	1				
7	_u						
	A =	3.00	sq.ft.				
	A = 7.00		sq.ft.	WITH F	REEBOARD		
P = b + 2c	SQRT(z ² -	+1)					
	P =	7.24	feet				
	P =	9.47	feet	WITH FREEBOARD			
r = A/P							
	r =	0.41	feet				
	r =	0.74	feet	WITH F	REEBOARD		
		Top \	Width (fee	et)			
T = b + 2*	z*d						
	T =	7.00	feet				
	T =	9.00	feet	WITH F	REEBOARD		
		Ditch \$	Sizing Ch	eck	-		
Q CHECK	(=			PASS	;		
VELOCIT	Y CHECK	=		PASS			
SHEAR S	SHEAR STRESS CHECK =			USE VELC	CITY		
OVERA	LL CHE	CK =		PAS	S		

Channel Name:	DIVERSION DITCH DD-1			Peak Disch & Base Flow:	0.0
Section Number:	4		Peak Discharge (Cum):	22.1	
End Station:	13	+	16	Drainage Acreage:	0.0
End Elevation:		2,048.0		Watershed Slope:	8.0%

Given:								
Flow Depth, d (ft)			=	0.6				
Bottom Width (ft)			=	5				
Side Slopes (H:1)			=	2				
What size Rip Rap			=	R-4				
d ₅₀ size (inches)			=	6				
Mannings Coefficient			=	0.058				
Channel Slope, s (ft/ft)			=	19.69%				
Flow Rate, Q _{design} (cfs)								
(Q = (1.486/n)	x a x r ^{2/3} x	(S ^{1/2}					
	Q =	25.81	cfs					
	Q =	76.83	cfs	WITH FR	EEBOARD			
Velocity, V (fps)								
Use V to size rip rap if s < 10%, grouted, or d _{actual} ≤ 0								
	/ = Q/A							
	V =	6.94	fps					
	V _{MAX} =	9.00	fps					
Account for 40% Void Space in Rip Rap								
if s ≥ 10%								
Rip Rap A _{void} =0.4*b³	Thickness, t (*t	18						
	$A_{\text{void}} =$	3.00	sq.ft.					
A _{in-channel flow} =A-A _{void}								
A _{in-channel flow} = 0.72 sq.ft.								
$d_{\text{in-channel flow}} = \frac{-b + \sqrt{b^2 + 4 * z * A_{\text{in-channel flow}}}}{2 * z}$								
$d_{\text{in-channel flow}} = \frac{1}{2 * z}$								
	i							
C	d _{in-channel flow} =							
Shear Stress Calculation								
			rip rap if s	> 10%				
8	$Sh = 62.4 \times d_{ii}$	n-channel flow	X S					
Allowo	ble Shear Str	2.00	nef					
	ated Shear St	1.68	psf psf					
Jaioaic		Calculated Official Official -						

	Cross Soc	stional A	roa Wott	ad Darima	otor 8				
Cross Sectional Area, Wetted Perimeter & Hydraulic Radius									
A - ll	12	Tiyura	iulic Itaul	us					
A = bd + z	za-								
	A =	3.72	sq.ft.						
	A =	7.92	sq.ft.	WITH F	WITH FREEBOARD				
$P = b + 2d SQRT(z^2 + 1)$									
	P =	7.68	feet						
	P =	9.92	feet	WITH FREEBOARD					
r = A/P									
	r =	0.48	feet						
	r =	0.80	feet	WITH F	WITH FREEBOARD				
		Top	Width (fee	et)					
T = b + 2*z*d									
	T =	7.40	feet						
	T =	9.40	feet	WITH F	REEBOARD				
		Ditch S	Sizing Ch	eck					
Q CHECK =				PASS					
VELOCITY CHECK =			GREAT	GREATER THAN 10% SLOPE					
SHEAR STRESS CHECK =				PASS					
OVERA	ALL CHE	CK =		PASS					

Trapezoidal/Triangle Section Ditch

Channel Name:	DIVERSION DITCH DD-1			Peak Disch & Base Flow:	0.0
Section Number:	5		Peak Discharge (Cum):	22.1	
End Station:	13	+	88	Drainage Acreage:	0.0
End Elevation:		2,041.0		Watershed Slope:	8.0%

	T		T	T	T	
Given:						
	low Depth, d (f		=	0.7		
	Bottom Width (f	•	=	5		
	ide Slopes (H:		=	2		
	hat size Rip R		=	R-4		
(d ₅₀ size (inches	s)	=	6		
Ma	nnings Coeffic	ient	=	0.055		
Cha	nnel Slope, s (=	9.72%		
	F	Iow Rate	, Q _{design} (c	fs)		
	Q = (1.486/n)	x a x r ^{2/3} >	(S ^{1/2}			
	Q =	25.35	cfs			
	Q =	67.53	cfs	WITH FR	EEBOARD	
	-		y, V (fps)			
U	se V to size ri			ited. or dacti	.al ≤ 0	
	V = Q/A		, 5	acti	-	
	V =	5.66	fps			
	V _{MAX} =	9.00	fps			
		or 40% V	oid Space	in Rip Rap)	
	71000011101		≥ 10%			
Rin Rai	Thickness, t		=,.	18		
$A_{\text{void}} = 0.4^{*}$		(11101100)		10		
, void O. i						
	A _{void} =	N/A	sa ft			
	· Void	14/71	oq.it.			
۸	- A A					
^ in-channel fl	_{ow} =A-A _{void}					
	A _{in-channel flow} =	#\/ALLIEI	ea ft			
	Ain-channel flow	#VALUE!	sq.it.			
	- /					
din shanna	$_{1 \text{ flow}} = \frac{-b + }{}$	$b^2 + 4 * z$	* A _{in–channel}	flow		
MIII-CIIAIIIIE	illow	2 *	Z			
- //\/\						
d _{in-channel flow} = #VALUE! ft						
			s Calculat			
			rip rap if s	- 1U%		
	$Sh = 62.4 \times d_i$	n-channel flow	Λ S			
Allow	able Shear Str	ess =		2.00	psf	
,	lated Shear St	4.25	psf			

0	C	Alamal A	\N/a++	d Danker	40		
Cr	oss sec		rea, Wette		eter &		
		Hydra	ulic Radiu	ıs	1		
$A = bd + zd^2$	2						
	A =	4.48	sq.ft.				
	A =	8.88	sq.ft.	WITH F	REEBOARD		
P = b + 2d S	SQRT(z ² -	⊦ 1)					
	P =	8.13	feet				
P = 10.37		10.37	feet	WITH FREEBOARD			
r = A/P							
	r =	0.55	feet				
	r =	0.86	feet	WITH FREEBOARD			
		Top V	Vidth (fee	t)			
T = b + 2*z*	d						
	T =	7.80	feet				
	T =	9.80	feet	WITH F	REEBOARD		
		Ditch S	Sizing Che	ck			
Q CHECK =	=			PASS			
VELOCITY	CHECK	=		PASS	3		
SHEAR STRESS CHECK =			ı	USE VELC	CITY		
OVERAL	L CHE	CK =	PASS				

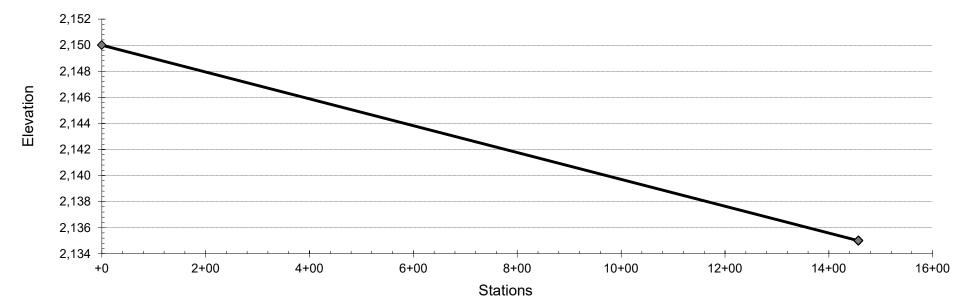
Graphical Peak Discharge Fri Dec 6 10:20:53 2024 Project: ROCKWOOD QUARRY Date: 12/06/24 By: CGY Location: DD-1 Checked: Date: Developed 1. Data: Time of Concentration:.....Tc = 22.10 min Storm Type:.... = II Pond and swamp areas spread throughout watershed..... = 0.00 percent of A 0.0000 Acres 2. Frequency.....yr = 10 3. Rainfall, P(24-hour)....in = 3.570 4. Initial abstraction, Ia..... = 0.6667 5. Compute Ia/P..... = 0.1867 6. Unit peak discharge, qu.....csm/in = 580.427 7. Runoff,Q....in = 1.352 8. Pond & swap adjustment factor,...Fp = 1.00 9. Peak Discharge, qp......cfs = 22.064

Time of Concentration (SCS) Fri Dec 6 10:19:38 2024

Project: ROCKWOOD QUARRY By: CGY Date: 12/06/24 Location: DD-1 Checked: Date: 12/06/24

Developed

Curve Number : 75


Length of Flow : 1930.72 ft Average Land Slope : 8.00 %

Time of Concentration : 0.368 hrs, 22.1 mins

12.1 Diversion/Collection Ditch Data Sheet

							Site:						Compa	any:				Permit N	Number:			
	DIVI	ERSIO	N DITC	H DD-2	2			R	OCKWO	OD QU	ARRY		RO	CKWOC	D STO	ONE, L	LC					
red By:				Initials:			Telepho	one Nur					Date:					Sheet	1	of	1	-
Ea	rthtech,	, Inc.			CGY				(814)2	66-640)2			JUI	NE 202	25						
Statio	n	I									Channel									Wi	th Freeh	oard
art		(ac	cres)	Design Storm	Average Watershe d Slope	Curve Numbe	Q (C	_	Channel	Free- board	Lining (specify average		Bottom	Channel Side Slopes	Flow Area	Flow Depth	Top Flow Width	Flow Velocity		Channel	Тор	
			Cum.	(yrs)	(%)	r	Section	Cum.	(%)	(ft)	size)	(n)	(ft)	(H : V)	(sq ft)	(ft)	(ft)	(ft/sec)	(CFS)	(ft)	(ft)	(CFS)
+ 57	2135.0	109.4	109.4	10	5.0%	75	72.9	72.9	1.0%	0.6	GRASS	0.060	5.0	2 : 1	23.5	2.40	14.6	3.29	77.4	3.00	17.0	122.6
	Statio art	Station art Blevation Blevation Control Con	Station Draina (acount of the control of the contro	Station Oralinage Area (acres) Ind Elevation Section Cum. H 00 2150.0	Initials: Initials:	Earthtech, Inc. CGY Station Drainage Area (acres) Design Watershe d Slope (yrs) and Elevation Section Cum. (yrs) (%)	Station Drainage Area (acres) Design Watershe Curve Numbe r Elevation Section Cum. (yrs) (%) r	Station Drainage Area (acres) Design Watershe of Section Cum. (yrs) (%) Peak Di Q (Complete of Complete of Complet	Station Drainage Area (acres) Design Storm d Elevation Section Cum. (yrs) (%) r Section Cum.	Station Drainage Area (acres) Design Storm d Slope nd Elevation Section Cum. (yrs) Peak Discharge (%) Peak Discharge (%) Peak Discharge (%) Channel Bed Slope (%) Peak Discharge (%) Peak Discharge (%) Channel Bed Slope (%) Peak Discharge (%) Channel Bed Slope (%) Peak Discharge (%) Channel (%) Peak Discharge (%) Peak Discharge (%) Channel (%) Peak Discharge (%) Peak Discharg	Station Drainage Area (acres) Design Storm Storm Design Storm Storm Design Storm Storm Storm Design Storm Storm	Station Drainage Area (acres) Design Storm d Elevation Section Cum. (yrs) Peak Discharge (%) Free-Bed Slope hd Elevation Section Cum. (yrs) Telephone Number: (814)266-6402 Telephone Number: (814)266-6402 Channel Lining (specify average board rock size)	Telephone Number: (814)266-6402 Station Drainage Area (acres) Design Storm d Elevation Section Cum. (yrs) Design Storm (yrs) Average Watershe Rumber: Curve Q (CFS) Channel Lining (specify average board rock Coefficient (ft) size) Channel Channel Free-Bed Slope board rock (ft) Design Storm (yrs) Design Storm (yrs)	Telephone Number: CGY Companies Com	Telephone Number: Cay Telephone Number: Date: Date:	Telephone Number: CGY Telephone Number: Date: Station Drainage Area (acres) Design Storm Storm Storm Storm Storm G Storm Cyrs C	Telephone Number: CGY Channel Channel	Telephone Number: Earthtech, Inc. Date: Station Drainage Area (acres) Design Storm Storm Storm G Storm G Section Cum. (yrs) (%) Flow Flow Section Cum. (%) (ft) (Telephone Number: CGY Telephone Number: Date: Date: Sheet	Telephone Number: CGY Companies Com	Telephone Number: CGY Telephone Number: Date: Date:	Telephone Number: CGY Telephone Number: Date: Date: Sheet 1 of 1

Ditch Profile

Trapezoidal/Triangle Section Ditch

Channel Name:	DIVERSION DITCH DD-2		DIVERSION DITCH DD-2		DIVERSION DITCH DD-2		Peak Disch & Base Flow:	72.9
Section Number:	1		Peak Discharge (Cum):	72.9				
End Station:	14	+	57	Drainage Acreage:	109.4			
End Elevation:	2,135.0		2,135.0		Watershed Slope:	5.0%		

Given:							
F	low Depth, d (1	ft)	=	2.4			
Е	Bottom Width (1	ft)		5			
S	ide Slopes (H:	1)	=	2			
W	What size Rip Rap			GRASS			
(d ₅₀ size (inches	s)	II	#N/A			
Ма	nnings Coeffic	ient	II	0.060			
	annel Slope, s		=	1.03%			
	F	low Rate	, Q _{design} (c	fs)			
	Q = (1.486/n)	x a x r ^{2/3} x	(S ^{1/2}				
	Q =	77.38	cfs				
	Q =	122.58	cfs	WITH FR	EEBOARD		
			y, V (fps)				
- 11	se V to size ri			ited ord .	. < 0		
	V = Q/A	ртартз	10 /0, gro	atou, or u _{acti}	ual = 0		
	V - Q/A						
	V =	2 20	fno				
	V – V _{MAX} =	3.29 3.50	fps fps				
			•	in Rip Rap	<u> </u>		
	Account		oiu Space ≥ 10%	III KIP Kap	,		
Die De	- Thiskness 6			44N1/A			
	p Thickness, t	(inches)	=	#N/A			
A _{void} =0.4*	ы						
	A _{void} =	NI/A	og ff				
	A _{void} –	IN/A	sq.ii.				
A _{in-channel fl}	_{ow} =A-A _{void}						
		//\ /A -					
	A _{in-channel flow} =	#VALUE!	sq.π.				
d	$l_{\text{flow}} = \frac{-b + \sqrt{b}}{10000000000000000000000000000000000$	$b^2 + 4 * z$	∗ A _{in–channe}	l flow			
uin-channe	I flow —	2 *	Z				
	Ī						
d _{in-channel flow} = #VALUE! ft							
			s Calcula				
			rip rap if s	> 10%	I		
	$Sh = 62.4 \times d_i$	n-channel flow	X S				
A II	iahla Chaas Ct			#N1/A			
	able Shear Str lated Shear St			#N/A	psf		
Calcu	iaieu Sileal Si	1000 -		1.54	psf		

	rose Soc	rtional A	roa Wott	ed Perime	otor &		
`	21033 360		ulic Radi		ster &		
A = bd + 2	rd ²	Tiyata	Tane Radi	u3			
A - bu + 2	<u>2</u> u						
	۸ _	22.52	· ft				
	A = A =	23.52 33.00	sq.ft.	WITH F	REEBOARD		
	Λ-	33.00	5 4 .11.	VVIIIII	RELBOARD		
D = b + 20	l SQRT(z²-	<u>+</u> 1\					
1 - 5 - 20	JOQITI	. 1)					
	P =	15.73	feet				
			feet	WITH F	REEBOARD		
r = A/P		13.42	1000	********	I LEED OF II LE		
7-7-7-1	r =	1.49	feet				
	r =	1.79	feet	WITH F	REEBOARD		
	•	_	Width (fee	_			
		100					
T = b + 2*	z*d						
	T =	14.60	feet				
	T =	17.00	feet	WITH F	REEBOARD		
		Ditch S	Sizing Ch	eck			
Q CHECK	(=			PASS	3		
VELOCIT	Y CHECK	=		PASS	3		
SHEAR S	TRESS CI	HECK =		USE VELO	CITY		
OVERA	LL CHE	CK =		PAS	S		

Graphical Peak Discharge Fri Dec 6 11:53:16 2024 Project: ROCKWOOD QUARRY Date: 12/06/24 By: CGY Location: DD-2 Checked: Date: Developed 1. Data: Time of Concentration:.....Tc = 65.10 min Storm Type:.... = II Pond and swamp areas spread throughout watershed..... = 0.00 percent of A 0.0000 Acres 2. Frequency.....yr = 10 3. Rainfall, P(24-hour)....in = 3.570 4. Initial abstraction, Ia..... = 0.6667 5. Compute Ia/P..... = 0.1867 6. Unit peak discharge, qu.....csm/in = 315.538 7. Runoff,Q....in = 1.352 8. Pond & swap adjustment factor,...Fp = 1.00 9. Peak Discharge, qp......cfs = 72.901

Time of Concentration (SCS) Fri Dec 6 11:52:05 2024

Project: ROCKWOOD QUARRY By: CGY Date: 12/06/24 Location: DD-2 Checked: Date: 12/06/24

Developed

Curve Number : 75

Length of Flow : 5563.50 ft Average Land Slope : 5.00 %

Time of Concentration : 1.086 hrs, 65.1 mins

Design Parameters

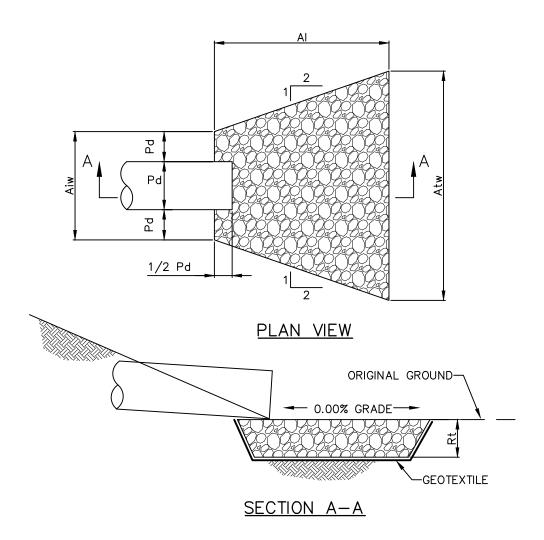
Section

Shape: Circular
Material: HDPE
Diameter: 12.00 in
Manning's n: 0.0120
Number of Barrels: 1

Inlet

Inlet Type: Mitered to Slope

Ke: 0.70


Inverts

Inlet Invert Elevation: 1987.000 ft
Outlet Invert Elevation: 1986.400 ft
Length: 30.000 ft
Slope: 2.00 %

Culvert Calculation

Discharge: 5.46 cfs Headwater Elevation: 1990.000 ft Tailwater Elevation: 0.000 ft ft/s Downstream Velocity: 7.92 Downstream Flow Depth: 0.820 ft Critical Flow Depth: 0.938 ft Normal Flow Depth: 0.820 ft

Flow Control Type: Inlet Control, Submerged

	PIPE	RIP	RAP	APRON			
OUTLET NO.	DIA Pd (IN)	SIZE R	THICK. Rt (IN)	LENGTH AI (FT)	INITIAL WIDTH Aiw (FT)	TERMINAL WIDTH Atw (FT)	
CULV-1	36	5	27	20	9	29	
CULV-2	12	4	18	8	3	11	
SP-1 PRINCIPAL	18	4	18	8	4.5	12.5	
SP-2 PRINCIPAL	(2X) 18	4	18	12	7	19	
DD-1	N/A	4	18	16	5	21	
DD-2	N/A	3	9	26	5	31	

NOTES:

ALL APRONS SHALL BE CONSTRUCTED TO THE DIMENSIONS SHOWN. TERMINAL WIDTHS SHALL BE ADJUSTED AS NECESSARY TO MATCH RECEIVING CHANNELS.

ALL APRONS SHALL BE INSPECTED AT LEAST WEEKLY AND AFTER EACH RUNOFF EVENT. DISPLACED RIPRAP WITHIN THE APRON SHALL BE REPLACED IMMEDIATELY.

EXTEND RIPRAP ON BACK SIDE OF APRON TO AT LEAST 1/2 DEPTH OF PIPE ON BOTH SIDES TO PREVENT SCOUR AROUND THE PIPE.

STANDARD CONSTRUCTION DETAIL #9-2 RIPRAP APRON AT PIPE OUTLET NO FLARED ENDWALL

STANDARD E&S WORKSHEET # 19

Sediment Trap Design Data

PROJECT NAME: ROCKWOOD STONE, LLC - ROCKWOOD QUARRY

LOCATION: BLACK TOWNSHIP, SOMERSET COUNTY

PREPARED BY: CGY DATE: JUNE 2025

CHECKED BY: BV DATE: JUNE 2025

TRAP NUMBER	ST-1	ST-2
DRAINAGE AREA (5 ACRES MAX) (AC)	0.99	0.99
REQUIRED CAPACITY (2,000 CF/AC) (CF)	1,980	1,980
CAPACITY PROVIDED AT ELEVATION h (CF)	2,197	2,197
SOIL TYPES IN DRAINAGE AREA	SILT LOAM	SILT LOAM
REQUIRED SURFACE AREA (5,300 x AC) ¹ (SQ. FT)	N/A	N/A
* AVERAGE BOTTOM LENGTH (FT)	25	25
* AVERAGE BOTTOM WIDTH (FT)	8	8
* AVERAGE TRAP LENGTH AT ELEVATION h (FT)	41	41
* AVERAGE TRAP WIDTH AT ELEVATION h (FT)	24	24
SURFACE AREA AT ELEVATION h (SQ FT)	984	984
BOTTOM ELEVATION (FT)	1963.0	1963.0
CLEAN-OUT ELEVATION (@ 700 CF/AC) ² (FT)	1965.0	1965.0
TOP OF EMBANKMENT ELEVATION ³ (FT	1968.0	1968.0
EMBANKMENT HEIGHT (FT)	5.0	5.0
CREST OF SPILLWAY ELEVATION ⁴ (FT)	1967.0	1967.0
FLOW LENGTH AT ELEVATION h (FT)	41	41
FLOW LENGTH/WIDTH RATIO AT ELEV. h ⁵ (2:1 MIN)	2:1	2:1

¹ If sandy clays, silty clays, silty clay loams, clay loams, or clays predominate soil types.

EMBANKMENT SPILLWAYS

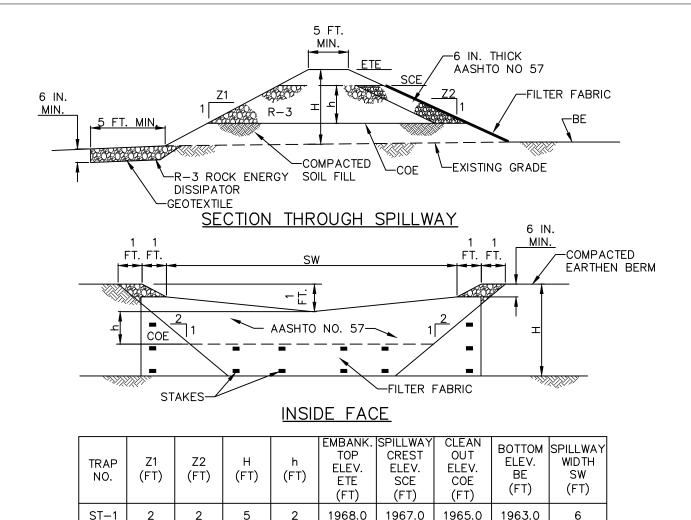
OUTLET WIDTH (2 x # ACRES MIN.) ¹	(FT)	6	6
SPILLWAY HEIGHT h	(FT)	2.0	2.0
OUTLET SIDE SLOPES	(2H:1V MAX.)	2H:1V	2H:1V
SPILLWAY OUTSIDE SLOPE Z1	(2 MIN.)	2	2
SPILLWAY INSIDE SLOPE Z2	(2 MIN.)	2	2

^{1 6} x # Acres Min. if not discharging directly to a waterway

RISER PIPE SPILLWAYS

Dr (RISER DIAMETER, 8" MIN.) (IN)	N/A	N/A
Db (BARREL DIAMETER, 6" MIN.) (IN)	N/A	N/A
SPILLWAY CAPACITY WITH 12" FREEBOARD(CFS)	N/A	N/A
BARREL OUTLET ELEVATION (FT)	N/A	N/A
MAX WATER SURFACE ELEVATION	NI/A	N/A
(@ 1.5 CFS/AC. DISCHARGE) (FT)	N/A	IN/A

OUTLET BASIN


LENGTH (6 Db)	(FT)	N/A	N/A
WIDTH (3 Db)	(FT)	N/A	N/A
DEPTH (Db)	(FT)	N/A	N/A
RIPRAP PROTECTION	(R-Size, R-3 min.)	N/A	N/A

² Minimum 12" above bottom of trap

³ Minimum 12" above elevation at which 1.5 cfs/acre discharge capacity is provided.

⁴ Minimum 24" above bottom of trap

^{5 4:1} Flow Length: Width ratio required for HQ and EV watersheds.

NOTES:

ST-2

2

2

5

EMBANKMENT OUTLET SHALL BE COMPOSED ENTIRELY OF ROCK ABOVE CLEAN OUT ELEVATION (COE); MAIN BODY R-3 OR LARGER -- R-4 TO BE USED FOR DRAINAGE AREAS GREATER THAN 3.0 ACRES, INSIDE FACE AASHTO # 57 STONE OR SMALLER. A 6 IN. THICK LAYER OF COMPOST, COMPOST SOCK, OR CLEAN SAND SHALL BE INSTALLED ON TOP OF THE AASHTO #57 STONE AND SECURELY ANCHORED IN HQ WATERSHEDS. 24 IN. DIAMETER COMPOST SOCK(S) SHALL BE USED IN PLACE OF FILTER FABRIC AND AASHTO #57 STONE IN EV WATERSHEDS.

1968.0

1967.0

1965.0

1963.0

6

FILL MATERIAL FOR THE EMBANKMENTS SHALL BE FREE OF ROOTS, OR OTHER WOODY VEGETATION, ORGANIC MATERIAL, LARGE STONES, AND OTHER OBJECTIONABLE MATERIALS. THE EMBANKMENT SHALL BE COMPACTED IN LAYERED LIFTS OF NOT MORE THAN 9 IN.. THE MAXIMUM ROCK SIZE SHALL BE NO GREATER THAN 6 IN. UPON COMPLETION, THE EMBANKMENT SHALL BE SEEDED AND MULCHED OR OTHERWISE STABILIZED ACCORDING TO THE SPECIFICATIONS OF THE E&S PLAN DRAWINGS.

ALL SEDIMENT TRAPS SHALL BE INSPECTED AT LEAST WEEKLY AND AFTER EACH RUNOFF EVENT.

ACCESS FOR SEDIMENT REMOVAL AND OTHER REQUIRED MAINTENANCE ACTIVITIES SHALL BE PROVIDED.

2

A CLEAN OUT STAKE SHALL BE PLACED NEAR THE CENTER OF EACH TRAP. ACCUMULATED SEDIMENT SHALL BE REMOVED WHEN IT HAS REACHED THE CLEAN OUT ELEVATION ON THE STAKE AND THE TRAP RESTORED TO ITS ORIGINAL DIMENSIONS. DISPOSE OF MATERIALS REMOVED FROM THE TRAP IN THE MANNER DESCRIBED IN THE E&S PLAN.

CHECK EMBANKMENTS, SPILLWAYS, AND OUTLETS FOR EROSION, PIPING AND SETTLEMENT. CLOGGED OR DAMAGED SPILLWAYS AND/OR EMBANKMENTS SHALL BE IMMEDIATELY RESTORED TO THE DESIGN SPECIFICATIONS.

DISPLACED RIPRAP WITHIN THE SPILLWAY OR OUTLET PROTECTION SHALL BE REPLACED IMMEDIATELY.

ACCUMULATED SEDIMENT SHALL BE REMOVED AND DISTURBED AREAS INSIDE THE TRAP SHALL BE STABILIZED BEFORE CONVERSION TO A STORMWATER MANAGEMENT FACILITY. TO ASSIST IN REMOVING SEDIMENT, WHICH MAY BE SATURATED, A DEVICE SUCH AS IS SHOWN IN STANDARD CONSTRUCTION DETAIL #7-18 MAY BE USED TO DEWATER THE SEDIMENT PRIOR TO ITS REMOVAL.

STANDARD CONSTRUCTION DETAIL #8-1
EMBANKMENT SEDIMENT TRAP

Top of dam elevation: 1968.0000 Bottom of pond elevation: 1963.0000

Top of dam width: 5.0000

Cut Slope: 50.00% 2.000:1 26.57° Fill Slope: 33.33% 3.000:1 18.43° Interior Slope: 50.00% 2.000:1 26.57°

Existing Surface: Z:\Mining\Rockwood Stone, LLC\Dwgs&Data\TIN Files\2020 PASDA.tin

Pond Earthwork Volumes

Total cut : 3,553.19 C.F., 131.60 C.Y. Total fill: 1,740.19 C.F., 64.45 C.Y.

Pond Storage Volumes

Water Elev	Storage(AcreFt)	(C.Y.)	(C.F.)	(Gallons)	Area(Acre)
1963.00	0.00000	0.0	0.0	0.0	0.005
1963.50	0.00269	4.3	117.2	876.5	0.006
1964.00	0.00623	10.0	271.3	2029.7	0.008
1964.50	0.01071	17.3	466.5	3489.7	0.010
1965.00	0.01622	26.2	706.7	5286.2	0.012
1965.50	0.02286	36.9	995.8	7449.4	0.014
1966.00	0.03072	49.6	1338.0	10008.9	0.017
1966.50	0.03988	64.3	1737.2	12994.9	0.020
1967.00	0.05044	81.4	2197.3	16437.2	0.023
1967.50	0.06250	100.8	2722.5	20365.7	0.026
1968.00	0.07614	122.8	3316.7	24810.4	0.029

Top of dam elevation: 1968.0000 Bottom of pond elevation: 1963.0000

Top of dam width: 5.0000

Cut Slope: 50.00% 2.000:1 26.57° Fill Slope: 33.33% 3.000:1 18.43° Interior Slope: 50.00% 2.000:1 26.57°

Existing Surface: Z:\Mining\Rockwood Stone, LLC\Dwgs&Data\TIN Files\2020 PASDA.tin

Pond Earthwork Volumes

Total cut : 3,421.64 C.F., 126.73 C.Y. Total fill: 1,463.51 C.F., 54.20 C.Y.

Pond Storage Volumes

0					
Water Elev	Storage(AcreFt)	(C.Y.)	(C.F.)	(Gallons)	Area(Acre)
1963.00	0.00000	0.0	0.0	0.0	0.005
1963.50	0.00269	4.3	117.2	876.5	0.006
1964.00	0.00623	10.0	271.3	2029.7	0.008
1964.50	0.01071	17.3	466.5	3489.7	0.010
1965.00	0.01622	26.2	706.7	5286.2	0.012
1965.50	0.02286	36.9	995.8	7449.4	0.014
1966.00	0.03072	49.6	1338.0	10008.9	0.017
1966.50	0.03988	64.3	1737.2	12994.9	0.020
1967.00	0.05044	81.4	2197.3	16437.2	0.023
1967.50	0.06250	100.8	2722.5	20365.7	0.026
1968.00	0.07614	122.8	3316.7	24810.4	0.029

Module 13: Impoundments/Treatment Facilities

[§§77.457/77.461/77.526/77.531/Chapter 105]

13.1 Treatment

Provide a plan for the treatment of surface and groundwater drainage from the areas disturbed by the mining activities. Include a construction and treatment narrative, flow diagram, design criteria, and design calculations (which include the proposed capacity) of the treatment facilities. Identify treatment chemicals to be used. Do not include any facilities included in Module 12.

Water treatment will consist primarily of clarification of the suspended solids associated with mining operations. Water will be clarified primarily by settling within the pit sump. Pit water may be pumped into a functioning sediment pond when necessary. Should it prove necessary, flocculants may be added at the sediment ponds via gel logs placed in the inflow. This should only be done if the water contains colloidal fine particles that cannot be settled with simple retention.

13.2 Quarry/Pit Sump

Provide a description of the sump including size, location, depth, method of pumping, etc. (Key location to Exhibits 6.2 and 9).

A pit sump will be constructed at the lowest point of all pits to collect runoff from the pit workings. Electric or diesel pumps will be used to pump water from the pit sump to Sediment Pond SP-1 or SP-2 for additional settling time and discharge. The pit sump has been designed to capture runoff from the entire pit footprint. A 10-year rainfall was used to size the pit sump. Water will be pumped out of the sump into SP-1 or SP-2 at an approximate rate of 1.5 cfs. Pumped water circulating through Sediment Pond SP-1 or SP-2 will provide approximately 12 hours of additional retention time prior to discharging.

13.3 Dams and Impoundments (General) Do not include any facilities included in Module 12

- a) Proposed use. Sediment Pond SP-1 will be used to control runoff from the proposed processing pad and part of the mining area (Phase 1 and part of Phase 3). Sediment Pond SP-2 will be used to control runoff from the remaining portion of the mining area (Phase 2 and part of Phase 3). Two process ponds will be constructed to settle fines generated by washing aggregate products.
- b) Map and location (key to maps). See Exhibit 9 for locations.
- c) Provide a design report and construction plans and specifications to include detailed cross-sections and plan view scale drawings of the proposed structure which show: principal spillway, dewatering devices, embankment details (including maximum height, top width, and cutoff trench), crest of emergency spillway and existing ground.

See Exhibit 13 Sheets 1, 2, and 3. Hydrocad software was used to perform the design calculations.

Sediment pond SP-1 will control 65.5 acres. It was designed with a minimum of 7,000 cubic feet per acre capacity with a minimum of 2,000 cubic feet per acre designated to sediment storage and 5,000 cubic feet per acre for the dewatering zone. The 50-year, 24-hour storm (5.05") was used to design the emergency spillway, while the 10-year, 24-hour storm (3.57") was used to size the principal spillway. The resulting emergency spillway has a crest length of 60 feet. The principal spillway has a diameter of 18 inches. The dewatering pipe was designed so that the pond would dewater in 4 to 7 days. A dewatering pipe of 6 inches was chosen due to the size of the pond and longevity of the site.

Sediment pond SP-2 will control 81.7 acres. It was designed with a minimum of 7,000 cubic feet per acre capacity with a minimum of 2,000 cubic feet per acre designated to sediment storage and 5,000 cubic feet per acre for the dewatering zone. The 50-year, 24-hour storm (5.05") was used to design the emergency spillway, while the 10-year, 24-hour storm (3.57") was used to size the principal spillway. The resulting emergency spillway has a crest length of 76 feet. The principal spillway has two barrels, each with a diameter of 18 inches. The dewatering pipe was designed so that the pond would dewater in 4 to 7 days. A dewatering pipe of 6 inches was chosen due to the size of the pond and longevity of the site.

Two process ponds will be constructed to settle fines created by a closed loop sand washing system. The water will be pumped from the lower pond to the washing area on the process pad. The washing will be done with equipment designed for this purpose such as sand screw or other type. The fines pulled from the product will flow through a pipe into the first process pond. The fines will settle out via gravity and primarily gather in the first pond. The water will then circulate into the second (lower) pond, where it will be pumped out and provided back to the wash plant. The system is closed loop. Cleaning will take place regularly, and will be performed by excavators dipping out the fines and loading haul trucks. The material will be taken back to open pits where the aggregate was mined from and placed in the backfill. The ponds have been designed to have large top widths for equipment access and will be constructed well in excess of minimum embankment criteria. The process water ponds cannot follow a typical sediment or treatment pond design and will likely involve some field changes to perfect the settling efficiency. Minimum 2.5h:1v out slopes and 25-foot top widths have been utilized to allow vegetation and stability. Flow curtains or baffles may be installed. Water for the system may be sourced from onsite ponds and pumping from Rhoades Creek.

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF MINING PROGRAMS

E-TEMPLATE SEDIMENT POND CERTIFICATION

Permittee: Roc	kwood Stone, LLC	_ Site Name: Roc	kwood Qua	arry	SMP No.: <u>56250301</u>		
	Surveyor: Earthtech, Inc.						
	of discharge): Latitude (DMS						
Drainage Area	- ·	-			-	nount: <u>5.05</u> inches	
•	rshed Slope: <u>6% </u>	-		Гуре: <u>С</u>		rve Number: 85	
_	•	•					
Peak Discharg	e: 156.8 cubic feet/second	NPDES Average F				ign Flow: <u>130.9</u> mgd	
Embankment	Top Width (Minimum) Outside Slope (Maximum) (H Inside Slope (Maximum) (H:V Top Elevation Bottom Elevation Upstream Toe Elevation Downstream Toe Elevation Type of Cover Incised Slope (if any) Inside Slope (Maximum Top Elevation Bottom Elevation		10' 3h:1v 1974.0 1959.0 1962.0 1928.0 Vegetation 0.25h:1v(v	n virgin rock or		As Constructed	
Principal Spillway	Type Conduit Diameter (if barrel/ris Inlet Elevation Outlet Protection Spillway Capacity (cubic feet/	,	Barrel 18" 1970.0 R-4 Rip-Ri 7.6 cfs	ар			
Dewatering Device	Type/Size Inlet Elevation Discharge Regulation (self-dra Discharge Capacity (cubic fee Time to Dewater Full Pond		6" Perf PV 1963.5 Valved 2.47 cfs 5.26 days	C w/capped	top		
Emergency Spillway	Type Width Depth (with 2 feet of freeboar Length Sideslopes (H:V) Crest Elevation Slope Type of Lining/Protection Spillway Capacity (provide des	,	Trapezoid: 60' 3.0' 50' / (20' C 2h:1v 1971.0 16.7% R-4 Rip-R: 202.5 cfs	Control)			
Storage Capacity Will the sedime	Length @ Bottom Width @ Bottom Length @ Dewatering Device Width @ Dewatering Device Volume @ Dewatering Device Length @ Principal Spillway Width @ Principal Spillway Volume @ Principal Spillway Length @ Crest of Emergency Width @ Crest of Emergency Volume @ Crest of Emergency I be constructed in preventions	e y Spillway Spillway cy Spillway	586' 35' 619' 62' 131,304 ct 652' 101' 467,486 ct 658' 107' 608,418 ct	f	ated materia	al? □ Yes ☒ No	
	the type of liner that will be use		iaciui c u, Ol	unconsului	מנסט ווומנטוומ	": [] 169 [] INO	
you, opening t	The type of miles that will be use	~·					

SEDIMENT POND CONSTRUCTION CERTIFICATION

Permittee: Rockwood Stone, LLC	Site Name: Rockwood Quarry	SMP No.: <u>56250301</u>				
Engineer/Land Surveyor: <u>Earthtech, Inc.</u>	Structure ID #: <u>SP-1</u>	_ NPDES	Outfall ID) #: <u>001</u>		
 Is the emergency spillway constructed Is the principal spillway constructed at Is the dewatering device constructed at 	e location shown in the approved permit? at the location shown in the approved plan? the location shown in the approved plan? the location shown in the approved plan? ucted at the location shown in the approved	☐ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Yes	No No No No	□NA		
6. Do the collection channel inlets have a	dequate inlet protection?	☐ Yes	□No			
 Has the liner been installed in accordar 	· · ·	☐ Yes	□No	□NA		
 Has the non-discharge alternative beer approved plan? 		□ Yes	□No	□NA		
 Was coal encountered during construct 	tion of the pond?	☐ Yes	□No			
10. If yes, was a liner used?	'	☐ Yes	□ No			
 Identify any conditions or deficiencies in 	n the facility that need to be corrected.			□NA		
construction, spillway/piping installation, non-discharge alternative construction) Supervising Professional Engineer/Registere Address and phone	Date of Inspection		Inspe	cted By		
I certify in accordance with 25 Pa Code Secomplete and has been constructed.	etion 77.531, 87.112, 89.101, or 90.112 that	the above	e-mention	ed structure		
Signature of Registered Professional Engineer/Registe	red Professional Land Surveyor Date					
Registration Number and Expiration Date			SEA	L		
Signature of Permittee or Responsible Official			Title			

Top of dam elevation: 1974.0000 Bottom of pond elevation: 1959.0000

Top of dam width: 10.0000

Cut Slope: 50.00% 2.000:1 26.57° Fill Slope: 33.33% 3.000:1 18.43° Interior Slope: 33.33% 3.000:1 18.43°

Existing Surface: Z:\Mining\Rockwood Stone, LLC\Dwgs&Data\TIN Files\2020 PASDA.tin

Pond Earthwork Volumes

Total cut: 975,554.63 C.F., 36,131.65 C.Y. Total fill: 650,214.26 C.F., 24,082.01 C.Y.

Pond Storage Volumes

Pond Storage	Volumes				
Water Elev	Storage(AcreFt)	(C.Y.)	(C.F.)	(Gallons)	Area(Acre)
1959.00	0.00000	0.0	0.0	0.0	0.473
1959.50	0.24663	397.9	10743.0	80363.2	0.515
1960.00	0.51484	830.6	22426.5	167762.2	0.558
1960.50	0.80486	1298.5	35059.7	262264.4	0.602
1961.00	1.11688	1801.9	48651.3	363937.2	0.646
1961.50	1.45112	2341.1	63210.6	472847.9	0.691
1962.00	1.80777	2916.5	78746.4	589064.0	0.736
1962.50	2.18705	3528.4	95267.8	712652.8	0.781
1963.00	2.58916	4177.2	112783.9	843681.8	0.827
1963.50	3.01431	4863.1	131303.5	982218.2	0.873
1964.00	3.46271	5586.5	150835.7	1128329.5	0.920
1964.50	3.93456	6347.8	171389.6	1282083.1	0.967
1965.00	4.43008	7147.2	192974.1	1443546.3	1.015
1965.50	4.94945	7985.1	215598.2	1612786.6	1.063
1966.00	5.49291	8861.9	239271.0	1789871.3	1.111
1966.50	6.06064	9777.8	264001.4	1974867.8	1.160
1967.00	6.65286	10733.3	289798.5	2167843.4	1.209
1967.50	7.26977	11728.6	316671.3	2368865.7	1.259
1968.00	7.91159	12764.0	344628.7	2578001.9	1.309
1968.50	8.57851	13840.0	373679.9	2795319.4	1.359
1969.00	9.27075	14956.8	403833.7	3020885.7	1.410
1969.50	9.98850	16114.8	435099.2	3254768.1	1.461
1970.00	10.73199	17314.3	467485.5	3497034.0	1.513
1970.50	11.50141	18555.6	501001.4	3747750.7	1.565
1971.00	12.29697	19839.1	535656.1	4006985.7	1.617
1971.50	13.11888	21165.1	571458.5	4274806.4	1.670
1972.00	13.96735	22534.0	608417.7	4551280.1	1.724
1972.50	14.84258	23946.0	646542.6	4836474.2	1.777
1973.00	15.74477	25401.6	685842.2	5130456.1	1.831
1973.50	16.67414	26901.0	726325.7	5433293.2	1.886
1974.00	17.63090	28444.5	768001.9	5745052.8	1.941

Time of Concentration (SCS) Mon Jan 20 10:45:13 2025

Project: ROCKWOOD By: CGY Date: 01/20/25 Location: SP-1 Checked: Date: 01/20/25

Developed

Curve Number : 85

Length of Flow : 4604.00 ft Average Land Slope : 6.00 %

Time of Concentration : 0.622 hrs, 37.3 mins

SP-1 Emergency Spillway Design

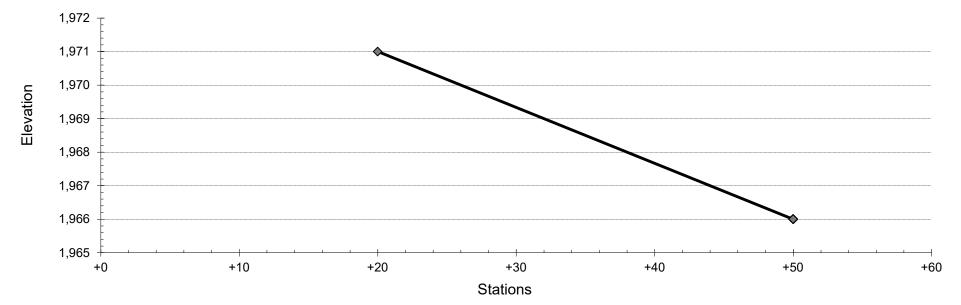
Thu May 29 11:50:28 2025

Shape: Trapezoidal

Side Slope Ratio (V:H): 0.50

Crest Length: 60.00 ft Invert Elevation: 1971.00 ft

Coefficient: 2.63 Number of Openings: 1


Calculation Result

Headwater Elevation: 1972.000 ft
Discharge: 202.510 cfs
Velocity: 3.266 ft/s

12.1 Diversion/Collection Ditch Data Sheet

Title:								Site:						Compa	-				Permit N	Number:			
			SP-	1 EMS				ROCKWOOD QUARRY			ROCKWOOD STONE, LLC				LC								
Prepar	-				Initials:			Telepho	one Nun					Date:					Sheet	1	of	1_	_
	Earthtech, Inc. CGY					(814)266-6402				MAY 2025													
	Statio	on										Channel									Wi	th Freeb	oard
Sta	art			ge Area res)	Design Storm	Average Watershe d Slope	Curve Numbe	Q (C	scharge CFS)	Channel Bed Slope	Free- board	Lining (specify average rock		Bottom	Channel Side Slopes	Flow Area	Flow Depth	Top Flow Width	Flow Velocity	Q Available	Channel Depth	Top Channel Width	I Q Available
Er		Elevation		Cum.	(yrs)	(%)	r	Section	Cum.	(%)	(ft)	size)	(n)	(ft)	(H:V)	(sq ft)	(ft)	(ft)	(ft/sec)	(CFS)	(ft)	(ft)	(CFS)
0 +		1971.0																					
0 +	50	1966.0	65.5	65.5	50	6.0%	85	202.5	202.5	16.7%	0.5	R-4	0.062	60.0	2 : 1	32.4	0.53	62.1	6.32	204.5	1.03	64.1	297.2

Ditch Profile

Trapezoidal/Triangle Section Ditch

Channel Name:	SP-1 EMS			Peak Disch & Base Flow:	202.5
Section Number:		1		Peak Discharge (Cum):	202.5
End Station:	0	+	50	Drainage Acreage:	65.5
End Elevation:	1,966.0			Watershed Slope:	6.0%

Given:					
F	Flow Depth, d (1	ft)	=	0.53	
Е	Bottom Width (f	t)	=	60	
S	Side Slopes (H:	1)	=	2	
W	/hat size Rip R	ар	=	R-4	
(d ₅₀ size (inches	s)	=	6	
Ma	nnings Coeffic	ient	=	0.062	
	annel Slope, s (=	16.67%	
	F	low Rate	, Q _{design} (c	fs)	
	Q = (1.486/n)	x a x r ^{2/3} x	(S ^{1/2}		
	Q =	204.54	cfs		
	Q =	297.18	cfs	WITH FR	EEBOARD
			y, V (fps)	I	
U	se V to size ri			ited. or dass	< 0
	V = Q/A	p	1070, 9.00	arou, or wacii	iai – v
	ψ ω,, ι				
	V =	6.32	fps		
	V _{MAX} =	9.00	fps		
		or 40% V	oid Space	in Rip Rap	<u> </u>
			≥ 10%		,
Rip Ra _l A _{void} =0.4*	p Thickness, t		=	18	
- void	A _{void} =	36.00	sq.ft.		
A _{in-channel fl}	low=A-A _{void}				
	A _{in-channel flow} =	-3.64	sq.ft.		
	1- 1	1-2 - 4	. А		
d _{in-channe}	$_{\text{l flow}} = \frac{-b + \sqrt{b}}{2}$	D* + 4 * Z	* A _{in–channel}	flow	
		۷*	Z		
	d _{in-channel flow} =	-0.06	ft		
	Sh	ear Stres	s Calculat	tion	
			rip rap if s	> 10%	
	$Sh = 62.4 \times d_i$	n-channel flow	x s		
-					
	vable Shear Str			2.00	psf
Calcu	ılated Shear St	ress =		N/A	psf

(Cross Se	ctional A	rea, Wett	ed Perime	eter &
			ulic Radi		
A = bd + z	zd ²				
	A =	32.36	sq.ft.		
	A = A =	40.63	sq.ft.	WITH F	REEBOARD
P = b + 20	SQRT(z²	+1)			
	P =	62.37	feet		
	P =	62.96	feet	WITH F	REEBOARD
r = A/P					
	r =	0.52	feet		
	r =	0.65	feet	WITH F	REEBOARD
		Top \	Vidth (fee	et)	
$T = b + 2^*$	z*d				
	T =	62.12	feet		
	T =	62.65	feet	WITH F	REEBOARD
		Ditch S	Sizing Ch	eck	
Q CHECK	(=			PASS	3
VELOCIT	Y CHECK	=		PASS	· ·
SHEAR S	TRESS C	HECK =		USE VELO	CITY
OVERA	LL CHE	CK =		PAS	S

Design Parameters

Section
Shape: Circular
Material: HDPE
Diameter: 18.00 in
Manning's n: 0.0120
Number of Barrels: 1

TIITE (

Inlet Type: Thin Edge Projecting

Ke: 0.90

Inverts

Inlet Invert Elevation: 1970.000 ft
Outlet Invert Elevation: 1969.200 ft
Length: 40.000 ft
Slope: 2.00 %

Culvert Calculation

Discharge: 7.55 cfs Headwater Elevation: 1972.000 ft Tailwater Elevation: 0.000 ft ft/s Downstream Velocity: 8.96 Downstream Flow Depth: 0.723 ft Critical Flow Depth: 1.064 ft Normal Flow Depth: 0.723 ft

Flow Control Type: Outlet Control, Gradually Varied Flow

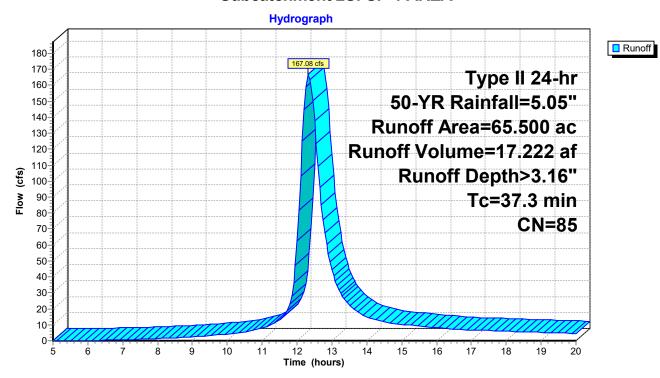
SP-1 DEWATERING

Elevation	Storage (cf)	Discharge (cfs)	Time (hr)	# of Openings	Orifice Size (in)
1963.5	131304	0.00	0	4	1.5
1964.0	150836	0.17	32.46		
1964.5	171390	0.24	24.16	4	1.5
1965.0	192974	0.46	13.13		
1965.5	215598	0.57	11.01	4	1.5
1966.0	239271	0.83	7.92		
1966.5	264001	0.98	7.01	4	1.5
1967.0	289799	1.27	5.63		
1967.5	316671	1.45	5.14	4	1.5
1968.0	344629	1.77	4.38		
1968.5	373680	1.98	4.07		
1969.0	403834	2.16	3.88		
1969.5	435099	2.32	3.74		
1970.0	467486	2.47	3.64		
		_	126.16	hours	

Total 126.16 hours 5.26 days

HydroCAD® 10.00-26 s/n 09668 © 2020 HydroCAD Software Solutions LLC

Page 1


Summary for Subcatchment 2S: SP-1 AREA

Runoff = 167.08 cfs @ 12.32 hrs, Volume= 17.222 af, Depth> 3.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-YR Rainfall=5.05"

_	Area	(ac)	CN	Desc	cription		
*	65.	.500	85				
_	65.	.500		100.	00% Pervi	ous Area	
	Тс	Leng	th S	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	37.3						Direct Entry,

Subcatchment 2S: SP-1 AREA

Volume

шл

HydroCAD® 10.00-26 s/n 09668 © 2020 HydroCAD Software Solutions LLC

Page 2

Summary for Pond 5P: SP-1

Inflow Area = 65.500 ac, 0.00% Impervious, Inflow Depth > 3.16" for 50-YR event

Inflow = 167.08 cfs @ 12.32 hrs, Volume= 17.222 af

Outflow = 156.79 cfs @ 12.42 hrs, Volume= 17.100 af, Atten= 6%, Lag= 6.0 min

Secondary = 156.79 cfs @ 12.42 hrs, Volume= 17.100 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Starting Elev= 1,971.00' Surf.Area= 0 sf Storage= 535,656 cf

700 000 of

Peak Elev= 1,972.00' @ 12.42 hrs Surf.Area= 0 sf Storage= 608,089 cf (72,433 cf above start)

Flood Elev= 1,972.00' Surf.Area= 0 sf Storage= 608,418 cf (72,762 cf above start)

Avail.Storage Storage Description

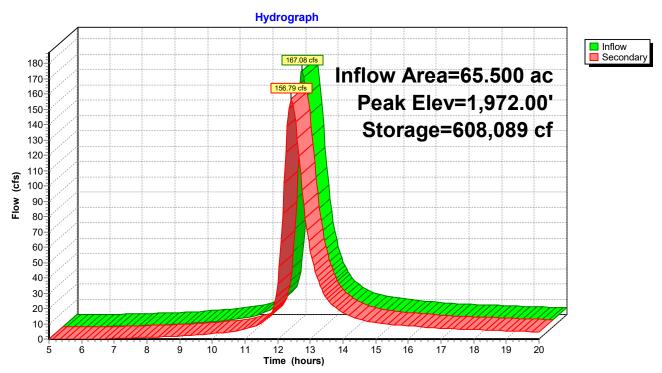
Plug-Flow detention time= 269.9 min calculated for 4.803 af (28% of inflow)

Center-of-Mass det. time= 9.5 min (801.5 - 792.0)

Invert

1,959.00'	768,002 cf	Custom Stage Data Listed below
0	0	
0 22,42	6	
0 /68,00	2	
	n Cum.Stor t) (cubic-fee 0 0 10,74 0 22,42 0 35,06 0 48,65 0 63,21 0 78,74 0 95,26 0 112,78 0 131,30 0 150,83 0 171,39 0 192,97 0 215,59 0 239,27 0 264,00 0 289,79 0 316,67 0 344,62 0 373,68 0 403,83 0 435,09 0 467,48 0 501,00 0 535,65 0 571,45 0 608,41 0 646,54 0 685,84 0 726,32	n Cum.Store t) (cubic-feet) 0 0 0 10,743 0 22,426 0 35,060 0 48,651 0 63,211 0 78,746 0 95,268 0 112,784 0 131,304 0 150,836 0 171,390 0 192,974 0 215,598 0 239,271 0 264,001 0 289,799 0 316,671 0 344,629 0 373,680 0 403,834 0 435,099 0 467,486 0 501,001 0 535,656 0 571,459 0 608,418 0 646,543 0 685,842 0 726,326

HydroCAD® 10.00-26 s/n 09668 © 2020 HydroCAD Software Solutions LLC


Printed 5/29/2025

Page 3

Device	Routing	Invert	Outlet Devices
#1	Secondary	1,971.00'	60.0' long x 20.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

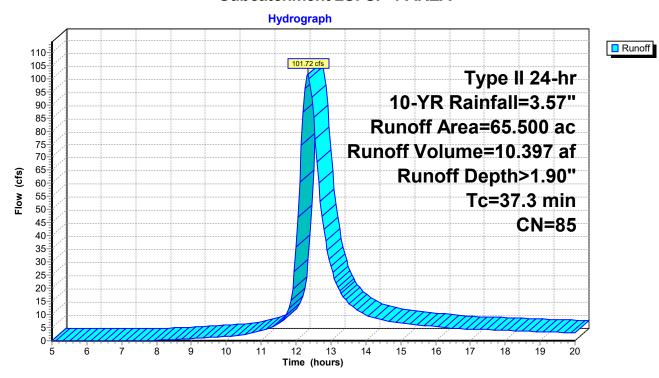
Secondary OutFlow Max=156.03 cfs @ 12.42 hrs HW=1,971.99' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 156.03 cfs @ 2.62 fps)

Pond 5P: SP-1

HydroCAD® 10.00-26 s/n 09668 © 2020 HydroCAD Software Solutions LLC

Printed 5/29/2025

Page 1


Summary for Subcatchment 2S: SP-1 AREA

Runoff = 101.72 cfs @ 12.33 hrs, Volume= 10.397 af, Depth> 1.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-YR Rainfall=3.57"

_	Area	(ac)	CN	Desc	cription		
*	65.	.500	85				
_	65.	.500		100.	00% Pervi	ous Area	
	Тс	Leng	th S	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	37.3						Direct Entry,

Subcatchment 2S: SP-1 AREA

Volume

HydroCAD® 10.00-26 s/n 09668 © 2020 HydroCAD Software Solutions LLC

Invert

Printed 5/29/2025

Page 2

Summary for Pond 1P: SP-1

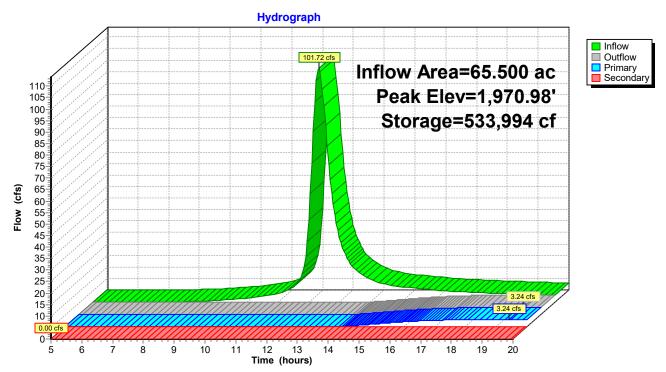
Inflow Area = 65.500 ac, 0.00% Impervious, Inflow Depth > 1.90" for 10-YR event
Inflow = 101.72 cfs @ 12.33 hrs, Volume= 10.397 af
Outflow = 3.24 cfs @ 19.41 hrs, Volume= 1.160 af, Atten= 97%, Lag= 424.7 min
Primary = 3.24 cfs @ 19.41 hrs, Volume= 1.160 af
Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Starting Elev= 1,963.50' Surf.Area= 0 sf Storage= 131,304 cf
Peak Elev= 1,970.98' @ 19.41 hrs Surf.Area= 0 sf Storage= 533,994 cf (402,690 cf above start)
Flood Elev= 1,972.00' Surf.Area= 0 sf Storage= 608,418 cf (477,114 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 258.5 min (1,061.6 - 803.1)

Avail.Storage Storage Description

VOIGITIO	IIIVOIT	7 tvaii. Otorago	Glorage Becomplion
#1	1,959.00'	768,002 cf	Custom Stage Data Listed below
Elevation	Cum.St		
(feet)	(cubic-fe	eet)	
1,959.00		0	
1,959.50	10,7		
1,960.00	22,4		
1,960.50	35,0		
1,961.00	48,6		
1,961.50	63,2		
1,962.00	78,7		
1,962.50	95,2		
1,963.00	112,		
1,963.50	131,3		
1,964.00	150,8		
1,964.50	171,3		
1,965.00	192,9		
1,965.50	215,		
1,966.00	239,2		
1,966.50	264,0		
1,967.00	289,7		
1,967.50	316,6		
1,968.00	344,6		
1,968.50	373,6		
1,969.00 1,969.50	403,8 435,0		
1,909.50	467,4		
1,970.50	501,0		
1,970.00	535,6		
1,971.50	571,4		
1,971.00	608,4		
1,972.50	646,		
1,973.00	685,8		
1,973.50	726,3		
1,974.00	768,0		
1,57 1.00	. 00,		


Page 3

Device	Routing	Invert	Outlet Devices
#1	Primary	1,970.00'	18.0" Round Culvert
			L= 40.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 1,970.00' / 1,969.20' S= 0.0200 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf
#2	Secondary	1,971.00'	60.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=3.23 cfs @ 19.41 hrs HW=1,970.98' (Free Discharge) 1=Culvert (Inlet Controls 3.23 cfs @ 2.66 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=1,963.50' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF MINING PROGRAMS

E-TEMPLATE SEDIMENT POND CERTIFICATION

Permittee: Roc	kwood Stone, LLC	Site Name: Roc	kwood Qua	arry	SMP	No.: <u>56250301</u>
	Surveyor: Earthtech, Inc.					
	of discharge): Latitude (DM					
	= '	ign Storm: <u>50</u> year			•	
-	rshed Slope: <u>6%</u> Land I	-				rve Number: <u>85</u>
_						
Peak Discharg	e: 231.2 cubic feet/second	NPDES Average F				ign Flow: 190.6 mgd
Embankment	Top Width (Minimum) Outside Slope (Maximum) (Hinside Slope (Maximum) (Minimum) (Minimu	/) `	10' 3h:1v 2010.0 1995.0 1995.0 1984.0 Vegetation 0.25h:1v(v	n virgin rock or		As Constructed
Principal Spillway	Type Conduit Diameter (if barrel/ris Inlet Elevation Outlet Protection Spillway Capacity (cubic feet	,	Barrel (2x) 18" 2006.0 R-4 Rip-R 15.1 cfs	ap		
Dewatering Device	Type/Size Inlet Elevation Discharge Regulation (self-dr. Discharge Capacity (cubic fe Time to Dewater Full Pond		6" Perf PV 1999.5 Valved 2.47 cfs 6.60 days	C w/capped	<u>top</u>	
Emergency Spillway	Type Width Depth (with 2 feet of freeboar Length Sideslopes (H:V) Crest Elevation Slope Type of Lining/Protection Spillway Capacity (provide descalculations)	,	Trapezoid 76' 3.1' 50' (28.6' 0 2h:1v 2006.9 2% R-4 Rip-R 294.9 cfs	Control)		
Storage Capacity	Length @ Bottom Width @ Bottom Length @ Dewatering Device Width @ Dewatering Device Volume @ Dewatering Device Length @ Principal Spillway Width @ Principal Spillway Volume @ Principal Spillway Length @ Crest of Emergency Width @ Crest of Emergency Volume @ Crest of Emergency	cy Spillway / Spillway cy Spillway	481' (avera 69' (avera 508' (avera 96' (avera 186,815 c 547' (avera 135' (avera 595,541 c 552.4' (avera 140.4' (avera	ge) age) ge) f age) age) age) ferage) erage) f		
	ent pond be constructed in pre		ractured, o	r unconsolid	ated materia	al? ∐ Yes ⊠ No
ii yes, specity t	the type of liner that will be use	a				

SEDIMENT POND CONSTRUCTION CERTIFICATION

Perr	mittee: Rockwood Stone, LLC	Site Name: Rockwood Quarry	SMF	No.: <u>562</u>	50301
Eng	ineer/Land Surveyor: <u>Earthtech, Inc.</u>	Structure ID #: SP-2	_ NPDES	Outfall ID) #: <u>002</u>
1. 2. 3. 4. 5.	Is the principal spillway constructed at the Is the dewatering device constructed at the Are the collection channel inlets constructed at the Island of the collection channel inlets have added to the collection channel inlets have added to the Island of	the location shown in the approved plan? e location shown in the approved plan? he location shown in the approved plan? eted at the location shown in the approved equate inlet protection?	☐ Yes	No No No No No No	□NA
7. 8.	Has the liner been installed in accordance Has the non-discharge alternative been of approved plan? Was coal encountered during construction	constructed in accordance with the	☐ Yes	□ No	□ NA
9. 10. 11.	Was coal encountered during construction of the second encountered encou	·	∐ Yes □ Yes	☐ No	□NA
	onstruction, spillway/piping installation, non-discharg alternative construction)	Date of Inspection		Inspe	cted By
•	ervising Professional Engineer/Registered	I Professional Land Surveyor			
	rtify in accordance with 25 Pa Code Secti plete and has been constructed.	on 77.531, 87.112, 89.101, or 90.112 that	the abov	e-mention	ed structure
Signa	ature of Registered Professional Engineer/Registered	d Professional Land Surveyor Date		SEA	L
Regis	stration Number and Expiration Date				
Signa	ature of Permittee or Responsible Official	Date		Title	

SP-2 Report

Top of dam elevation: 2010.0000 Bottom of pond elevation: 1995.0000

Top of dam width: 10.0000

Cut Slope: 50.00% 2.000:1 26.57° Fill Slope: 33.33% 3.000:1 18.43° Interior Slope: 33.33% 3.000:1 18.43°

Existing Surface: Z:\Mining\Rockwood Stone, LLC\Dwgs&Data\TIN Files\2020 PASDA.tin

Pond Earthwork Volumes

Total cut: 1,226,106.66 C.F., 45,411.36 C.Y. Total fill: 363,147.75 C.F., 13,449.92 C.Y.

Pond Storage Volumes

Pond Storage	Volumes				
Water Elev	Storage(AcreFt)	(C.Y.)	(C.F.)	(Gallons)	Area(Acre)
1995.00	0.00000	0.0	0.0	0.0	0.768
1995.50	0.39369	635.1	17149.0	128283.4	0.807
1996.00	0.80755	1302.9	35177.0	263142.1	0.848
1996.50	1.24182	2003.5	54093.8	404650.0	0.889
1997.00	1.69673	2737.4	73909.4	552881.0	0.931
1997.50	2.17249	3505.0	94633.7	707909.1	0.973
1998.00	2.66934	4306.5	116276.4	869808.1	1.015
1998.50	3.18750	5142.5	138847.6	1038652.0	1.058
1999.00	3.72720	6013.2	162357.0	1214514.6	1.101
1999.50	4.28867	6919.1	186814.6	1397470.0	1.145
2000.00	4.87213	7860.4	212230.2	1587591.9	1.189
2000.50	5.47782	8837.5	238613.7	1784954.4	1.234
2001.00	6.10595	9850.9	265975.0	1989631.4	1.279
2001.50	6.75675	10900.9	294324.0	2201696.7	1.324
2002.00	7.43045	11987.8	323670.6	2421224.3	1.370
2002.50	8.12729	13112.0	354024.6	2648288.0	1.417
2003.00	8.84747	14273.9	385396.0	2882961.9	1.464
2003.50	9.59124	15473.9	417794.5	3125319.8	1.511
2004.00	10.35882	16712.2	451230.1	3375435.6	1.559
2004.50	11.15043	17989.4	485712.7	3633383.3	1.607
2005.00	11.96630	19305.6	521252.2	3899236.8	1.656
2005.50	12.80666	20661.4	557858.3	4173069.9	1.705
2006.00	13.67174	22057.1	595541.1	4454956.6	1.755
2006.50	14.56176	23493.0	634310.4	4744970.9	1.805
2007.00	15.47695	24969.5	674176.0	5043186.6	1.856
2007.50	16.41754	26487.0	715147.9	5349677.6	1.907
2008.00	17.38374	28045.8	757235.9	5664517.9	1.958
2008.50	18.37580	29646.3	800450.0	5987781.4	2.010
2009.00	19.39394	31288.9	844799.9	6319541.9	2.062
2009.50	20.43838	32973.9	890295.6	6659873.5	2.115
2010.00	21.50934	34701.7	936947.0	7008850.0	2.169

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF MINING PROGRAMS

E-TEMPLATE SEDIMENT POND CERTIFICATION

Permittee: Roc	kwood Stone, LLC Site	Name: Rockwood Quarry	SMP No.: <u>56250301</u>
Engineer/Land	Surveyor: Earthtech, Inc.	Structure ID #: Process Pond	1 NPDES Outfall ID #: N/A
Location (point	of discharge): Latitude (DMS): 39° 5	54' 32"(non-discharge)	Longitude (DMS): 79° 09' 18"
Drainage Area	<u>0</u> acres Design Stor	m: <u>N/A</u> year / 24 hour	Rainfall Amount: N/A inches
•	shed Slope: <u>N/A</u> Land Use: <u>Qu</u>		
•	•	S Average Flow: 0 mgd	
	<u> </u>	Permit Applicati	
Embankment	Top Width (Minimum) Outside Slope (Maximum) (H:V) Inside Slope (Maximum) (H:V) Top Elevation Bottom Elevation Upstream Toe Elevation Downstream Toe Elevation Type of Cover Incised Slope (if any) Inside Slope (Maximum) (H:V) Top Elevation Bottom Elevation	25' 2.5h:1v 2h:1v 2030.0 2020.0 2020.0 2008.0 Vegetation or Rock-l	Lined
Principal Spillway	Type Conduit Diameter (if barrel/riser give Inlet Elevation Outlet Protection Spillway Capacity (cubic feet/second	2027.0 R-4 Rip-Rap	
Dewatering Device	Type/Size Inlet Elevation Discharge Regulation (self-draining or Discharge Capacity (cubic feet/secor Time to Dewater Full Pond		
Emergency Spillway	Type Width Depth (with 2 feet of freeboard) Length Sideslopes (H:V) Crest Elevation Slope Type of Lining/Protection Spillway Capacity (provide design calculations)	N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Storage Capacity	Length @ Bottom Width @ Bottom Length @ Dewatering Device Width @ Dewatering Device Volume @ Dewatering Device Length @ Principal Spillway Width @ Principal Spillway Volume @ Principal Spillway Length @ Crest of Emergency Spillway Width @ Crest of Emergency Spillway Volume @ Crest of Emergency Spillway Volume @ Crest of Emergency Spillway	ny <u>N/A</u>	

SEDIMENT POND CONSTRUCTION CERTIFICATION

Peri	nittee: Rockwood Stone, LLC	Site Name: Rockwood Quar	ry	SMP	No.: 562	50301
Eng	ineer/Land Surveyor: <u>Earthtech, Inc.</u>	Structure ID #: Proces	ss Pond 1	_ NPDES	Outfall ID) #: <u>N/A</u>
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Has the facility been constructed at the local structed at the last the principal spillway constructed at the last the dewatering device constructed at the Are the collection channel inlets constructed plan? Do the collection channel inlets have adeced that the liner been installed in accordance that the non-discharge alternative been comproved plan? Was coal encountered during construction of the second secon	cation shown in the approved the location shown in the approved location shown in the approved location shown in the approved at the location shown in the quate inlet protection? When with the approved plan? Constructed in accordance with the pond?	permit? roved plan? ed plan? ved plan? e approved the	_ NPDES _ Yes	Outfall ID No No No No No No No No No	□ NA □ NA
11.	Identify any conditions or deficiencies in the	ne facility that need to be corre	ected.	_		□NA
	Stage of Construction specify stage e.g. layout, impoundment/embankment onstruction, spillway/piping installation, non-discharge alternative construction)	Date of Inspe	ection		Insped	cted By
	ervising Professional Engineer/Registered ress and phone	Professional Land Surveyor _ -				
	rtify in accordance with 25 Pa Code Section plete and has been constructed.	on 77.531, 87.112, 89.101, or	90.112 that	the above	e-mention	ed structure i
Sign	ature of Registered Professional Engineer/Registered	Professional Land Surveyor [Date		SEA	ı
Regi	stration Number and Expiration Date				JEA	L
Sign	ature of Permittee or Responsible Official		Date		Title	

File: Z:\Mining\Rockwood Stone, LLC\LNC Application\Modules 9-14\Ponds\PROCESS PONDS\PROCESS PONDS.cap

<pre>Elev(Ft)</pre>	Storage(CF)	Area(SF)
2020.000	0.0	2750.000
2020.500	1518.2	3324.000
2021.000	3325.3	3906.000
2021.500	5425.5	4496.000
2022.000	7822.7	5094.000
2022.500	10520.8	5700.000
2023.000	13524.0	6314.000
2023.500	16836.2	6936.000
2024.000	20461.3	7566.000
2024.500	24403.5	8204.000
2025.000	28666.7	8850.000
2025.500	33254.8	9504.000
2026.000	38172.0	10166.000
2026.500	43422.2	10836.000
2027.000	49009.3	11514.000
2027.500	54937.5	12200.000
2028.000	61210.7	12894.000
2028.500	67832.8	13596.000
2029.000	74808.0	14306.000
2029.500	82140.2	15024.000
2030.000	89833.3	15750.000

in

Design Parameters

Section

Shape: Circular
Material: HDPE
Diameter: 12.00
Manning's n: 0.0120

Manning's n: 0.
Number of Barrels: 1

Inlet

Inlet Type: Thin Edge Projecting

Ke: 0.90

Inverts

Inlet Invert Elevation: 2027.000 ft
Outlet Invert Elevation: 2026.520 ft
Length: 24.000 ft
Slope: 2.00 %

Culvert Calculation

Discharge: 1.75 cfs Headwater Elevation: 2028.000 ft Tailwater Elevation: 0.000 ft Downstream Velocity: ft/s 6.19 Downstream Flow Depth: 0.390 ft Critical Flow Depth: 0.563 ft Normal Flow Depth: 0.390 ft

Flow Control Type: Outlet Control, Gradually Varied Flow

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF MINING PROGRAMS

E-TEMPLATE SEDIMENT POND CERTIFICATION

Permittee: Roc	<u>kwood Stone, LLC</u> Site Name: <u>Ro</u>	ckwood Quarry	SMP No.: <u>56250301</u>
Engineer/Land	Surveyor: Earthtech, Inc. Structure	e ID #: Process Pond 2	NPDES Outfall ID #: N/A
Location (point	of discharge): Latitude (DMS): 39° 54' 29"(noi	<u>n-discharge)</u> Lon	gitude (DMS): <u>79° 09' 20"</u>
Drainage Area	: <u>0</u> acres Design Storm: <u>N/A</u> ye	ar / 24 hour R	ainfall Amount: <u>N/A</u> inches
_	rshed Slope: <u>N/A</u> Land Use: <u>Quarry</u>		
-	e: <u>0</u> cubic feet/second NPDES Average	• •	DES Design Flow: <u>0</u> mgd
reak Dischary	e. <u>u</u> cubic leet/secolid NFDES Average		
	Top Width (Minimum)	Permit Application 25'	As Constructed
	Outside Slope (Maximum) (H:V)	2.5h:1v	
	Inside Slope (Maximum) (H:V)	2h:1v	
	Top Elevation	2030.0	
	Bottom Elevation	2020.0	
Embankment	Upstream Toe Elevation Downstream Toe Elevation	<u>2020.0</u> 2000.0	-
	Type of Cover	Vegetation or Rock-Lineo	
	Incised Slope (if any)		<u></u>
	Inside Slope (Maximum) (H:V)	0.25h:1v(virgin rock only)	
	Top Elevation		_
	Bottom Elevation		
	Туре	Pump	
Principal	Conduit Diameter (if barrel/riser give both)	6"	_
Spillway	Inlet Elevation	2027.0	
, ,	Outlet Protection Spillway Capacity (cubic feet/second)	N/A 1.45 cfs	<u> </u>
	, , , , ,		
	Type/Size	N/A	<u> </u>
Dewatering	Inlet Elevation Discharge Regulation (self-draining or valved)	N/A N/A	
Device	Discharge Capacity (cubic feet/second)	N/A	
	Time to Dewater Full Pond	N/A	
	Туре	N/A	
	Width	N/A	
	Depth (with 2 feet of freeboard)	N/A	
_	Length	N/A	
Emergency	Sideslopes (H:V)	N/A	
Spillway	Crest Elevation Slope	N/A N/A	_
	Type of Lining/Protection	N/A	
	Spillway Capacity (provide design	N/A	
	calculations)		
	Length @ Bottom	275'	
	Width @ Bottom	10'	_
	Length @ Dewatering Device	N/A	
	Width @ Dewatering Device Volume @ Dewatering Device	N/A N/A	<u> </u>
Storage	Length @ Principal Spillway	303'	
Capacity	Width @ Principal Spillway	38'	
	Volume @ Principal Spillway	49,009 cf	
	Length @ Crest of Emergency Spillway	N/A	
	Width @ Crest of Emergency Spillway	N/A	
Will the sedima	Volume @ Crest of Emergency Spillway ent pond be constructed in previously disturbed,	N/A fractured or unconsolidate	d material2 ☐ Ves ☑ No
	the type of liner that will be used:	madarea, or unconsolidate	a material: 🔲 163 🖂 140
ii yes, specity t	the type of liner that will be used:		

SEDIMENT POND CONSTRUCTION CERTIFICATION

Perr	nittee: Rockwood Stone, LLC	Site Name: Rockwood Qua	rry	SMP	No.: <u>562</u>	50301
Engi	neer/Land Surveyor: <u>Earthtech, Inc.</u>	Structure ID #: Proce	ess Pond 2	_NPDES	Outfall ID	#: <u>N/A</u>
1. 2. 3. 4. 5.	Has the facility been constructed at the lost the emergency spillway constructed at the principal spillway constructed at the sthe dewatering device constructed at the Are the collection channel inlets constructed.	t the location shown in the appose location shown in the approxime location shown in the approxime	oroved plan? ved plan? oved plan?	☐ Yes ☐ Yes ☐ Yes ☐ Yes	No No No No	□NA
c	plan?	anuata inlat mustastian?		∐ Yes	∐ No	
6. 7.	Do the collection channel inlets have add Has the liner been installed in accordance	·		∐ Yes □ Yes	∐ No □ No	□NA
8.	Has the non-discharge alternative been capproved plan?	• • • • •	n the	☐ Yes	□No	□NA
9.	Was coal encountered during construction	on of the pond?		☐ Yes	□ No	
10.	If yes, was a liner used?	on or the pond:		☐ Yes	□No	
11.	Identify any conditions or deficiencies in	the facility that need to be corn	rected.			□NA
	Stage of Construction specify stage e.g. layout, impoundment/embankmen instruction, spillway/piping installation, non-discharg alternative construction)		ection		Inspec	cted By
	ervising Professional Engineer/Registered	d Professional Land Surveyor				
	tify in accordance with 25 Pa Code Secti plete and has been constructed.	ion 77.531, 87.112, 89.101, oı	r 90.112 that	the above	e-mention	ed structure is
Signa	ture of Registered Professional Engineer/Registere	d Professional Land Surveyor	Date			
					_	_
Regis	tration Number and Expiration Date				SEA	L

File: Z:\Mining\Rockwood Stone, LLC\LNC Application\Modules 9-14\Ponds\PROCESS PONDS\PROCESS PONDS.cap

<pre>Elev(Ft)</pre>	Storage(CF)	Area(SF)
2020.000	0.0	2750.000
2020.500	1518.2	3324.000
2021.000	3325.3	3906.000
2021.500	5425.5	4496.000
2022.000	7822.7	5094.000
2022.500	10520.8	5700.000
2023.000	13524.0	6314.000
2023.500	16836.2	6936.000
2024.000	20461.3	7566.000
2024.500	24403.5	8204.000
2025.000	28666.7	8850.000
2025.500	33254.8	9504.000
2026.000	38172.0	10166.000
2026.500	43422.2	10836.000
2027.000	49009.3	11514.000
2027.500	54937.5	12200.000
2028.000	61210.7	12894.000
2028.500	67832.8	13596.000
2029.000	74808.0	14306.000
2029.500	82140.2	15024.000
2030.000	89833.3	15750.000

See attached Exhibit 14.1a and 14.1b for the X-X' and Y-Y' stream profiles. The stream bed is rocky and alternates between stretches of steep riffles and shallow pools. The riparian vegetation is characterized by coniferous forest with little undergrowth. Stream data was gathered using the Stream Stats database and is included in the attached report. Rhoades Creek has a 50-year recurrence interval base flow of 2.13 cfs, or 956 gpm. This volume will be used as the average daily stream flow to provide a conservative analysis of stream characteristics. Based on the relatively small size and efficiency of the proposed processing facility, it is anticipated that only 85 GPM would be needed to supplement the wash plant system. Assuming 8 hours per day and 5 days per week, this would equate to an estimated maximum daily withdrawal of 40,800 gallons and an average monthly withdrawal of 816,000 gallons. The actual pumping rate from the withdrawal facility may vary from the usage rate. However, the overall total water withdrawn is estimated to reflect the numbers above. The proposed periodic pumping rate is 500 gpm (1.11 cfs). For a pass-by flow equivalent to 20% of the average daily stream flow the stream must have a flow of 0.43 cfs. With a withdrawal rate of 500 gpm a passby flow of 1.02 cfs can be achieved, which greatly exceeds pass-by flow requirements. The proposed withdrawal rate is based on a consideration of mining needs, and allows for sufficient pass-by flow for resident aquatic community needs. To acquire an adequate water supply for mining needs, pumping may be increased, however a sufficient pass-by flow will be maintained during pumping. A survey of the crosssection and profile of the stream channel in Rhoades Creek at the withdrawal location will be performed prior to the installation of the water withdrawal equipment. This will allow for a minimum flow depth to be calculated to allow pumping activities. A staff gauge and the pump intake will then be set at the appropriate elevation with a visual indicator to show when stream conditions allow for pumping, while maintaining the minimum passthrough flow of 0.43 cfs during pumping activities. The detailed stream cross-section and profiles, along with flow calculations, can be submitted to the Department prior to implementing water withdrawal from Rhoades Creek. No pumping will be performed if stream conditions are lower than 1.54 cfs. thus maintaining a pass-by flow of 0.43 and withdrawal rate of 500 gpm. It is noted that the Q 7-10 flow value is approximately 33 gpm, as is indicated in the attached Stream Stats report. A pump mounted on a trailer or similar type will be used to retrieve water. An example brochure of the type of trailer which may be used is attached.

It is believed that pumping the proposed volume from the stream will not negatively impact resident aquatic species. By implementing the proposed pass-by flow plan, a sufficient volume of water will be available for downstream aquatic species. It is noted that it is a short distance from the Rhoades Creek withdrawal to its confluence with the Casselman River. The Rhoades Creek banks become steeply incised which concentrates water flow. There are no known water intake structures in the downstream length prior to the confluence with the Casselman River. The pass-by staff gauge must be surveyed and properly calibrated to ensure accurate readings prior to commencing water withdrawal operations. This information was prepared by Earthtech, Somerset office, 966 Pleasant Hill Road.

 A stream profile for the existing and proposed channel for a reasonable distance upstream, downstream and within the proposed change, showing bed slopes, pool-riffle ratios, normal and flood water surfaces, and existing obstructions;

See Exhibit 14.1a and 14.1b for stream profiles, bed slopes, pool-riffle ratios, and normal and flood water surfaces. There are no proposed changes to the stream bed or banks. There are no existing man-made obstructions. Some large cobbles/boulders are present in the stream channel.

- e) A hydrologic and hydraulic analysis which shall include:
 - 1. data on size, shape, and characteristics of the watershed;
 - 2. the size and frequency of the design storm;
 - 3. the hydraulic capacity of any structures or replacement channel;
 - 4. the hydraulic capacity of the channel upstream and downstream of the structure or the relocation/channel change;

The attached Stream Stats report for Rhoades Creek was used for watershed data. The drainage area for Rhoades Creek is 4.6 square miles and consists of an approximately even balance of cropland and forestland. Based on visual estimations using Google Earth Imagery, the forest is approximately 70% deciduous and 30% coniferous within the drainage area, and nearly 100% coniferous in the vicinity of the proposed installation. This project was designed to avoid impacts to FEMA delineated 100-year floodplains. See the attached National Flood Hazard Layer FIRMette for information on the floodplains. The water-pump trailer will be portable via pick-up truck and easily removed from the staging pad in case of a flood event. The suction hose can be handled by one man and can be removed during high flow or freezing conditions.