UNNAMED TRIBUTARY TO BIG COVE CREEK FULTON COUNTY

WATER QUALITY STANDARDS REVIEW DRAFT STREAM EVALUATION REPORT

Segment: Basin Stream Code: 60532 Drainage List: Z

WATER QUALITY MONITORING SECTION
WATER QUALITY DIVISION
BUREAU OF CLEAN WATER
DEPARTMENT OF ENVIRONMENTAL PROTECTION

Prepared by:

Mark A. Brickner
Pennsylvania Department of Environmental Protection
Office of Water Programs
Bureau of Clean Water
11th Floor: Rachel Carson State Office Building
Harrisburg, PA 17105

2024

INTRODUCTION

The Department of Environmental Protection (DEP) conducted an evaluation of the Unnamed Tributary (UNT) to Big Cove Creek basin in Fulton County in response to an existing use evaluation request by the DEP South Central Regional Office. The entire UNT to Big Cove Creek basin is currently designated Cold Water Fishes, Migratory Fishes (CWF, MF).

The stream redesignation process begins with an evaluation of the "existing uses" and the "designated uses" of a stream. "Existing uses" are water uses actually attained in the waterbody. Existing uses are protected through permit or approval actions taken by the DEP. "Designated uses" are water uses identified in regulations that protect a waterbody. Candidates for stream redesignation may be identified by the DEP based on routine waterbody investigations or based on requests initiated by other agencies or from the general public through a rulemaking petition to the Environmental Quality Board (EQB).

GENERAL WATERSHED DESCRIPTION

The UNT to Big Cove Creek is a first order, high gradient tributary to Big Cove Creek within the Potomac River basin and is located within Ayres Township, Fulton County. The UNT to Big Cove Creek has a drainage area of approximately 0.8 square miles and consists of 1.63 stream miles. According to the National Land Cover Database (NLCD) 2019, the basin consists of 90% forested, 9.1% planted/cultivated, 0.6% developed lands and 0.3% other land cover (Dewitz 2021). There is one National Pollutant Discharge Elimination System (NPDES) discharge located within the UNT to Big Cove Creek basin.

WATER QUALITY

Discrete Physiochemical

DEP staff collected in-situ field meter data and water chemistry data in March 2022 from the UNT to Big Cove Creek station and the Jones Mill Run reference station (Figure 1, Table 1). Physicochemical data for the UNT to Big Cove Creek is indicative of excellent water quality conditions (Table 2).

Table 1. Station Locations – UNT to Big Cove Creek and Reference (REF).

DESCRIPTION
e Creek 500 meters upstream of mouth
n County Long: -78.05171
Long: -78.05171
eek Townships, Somerset County
Long: -79.24178

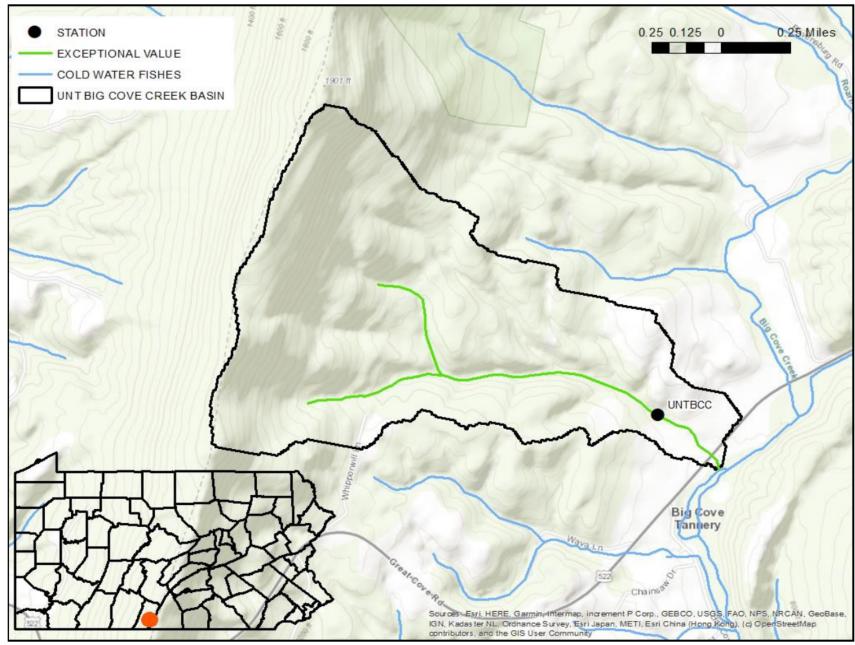


Figure 1. UNT Big Cove Creek Station Location and Redesignation Recommendation.

Table 2. Discrete Physiochemical Data.

PARAMETERS		UNITS	STATION1	REF ¹
			UNTBCC	JMR
	ALUMINUM D	ug/L	<15.0	19.600
	ALUMINUM T	ug/L	39.600	43.200
	BARIUM T	ug/L	32.00	38.300
	BORON T	ug/L	<200.0	<200.0
	BROMIDE	ug/L	<25.0	<25.0
	CADMIUM D	ug/L	<0.200	<0.200
	CALCIUM T	mg/L	2.530	9.510
	CHLORIDE T	mg/L	1.50	-
	COPPER D	ug/L	<4.00	<4.00
	COPPER T	ug/L	<4.00	<4.00
"	IRON D	ug/L	<100.0	<100.0
ž	IRON T	ug/L	<100.0	<100.0
2	LEAD D	ug/L	<1.0	<1.00
R	LEAD T	ug/L	<1.0	<1.00
A	LITHIUM D	ug/L	<25.0	<25.0
METALS AND IONS	LITHIUM T	ug/L	<25.0	<25.0
ΤA	MAGNESIUM T	mg/L	1.49	1.20
ഴ	MANGANESE D	ug/L	<10.0	3.340
_	MANGANESE T	ug/L	<10.0	7.60
	NICKEL D	ug/L	<50.0	<8.0
	NICKEL T	ug/L	<50.0	<8.0
	POTASSIUM T	mg/L	<1.00	<1.00
	SELENIUM D	ug/L	<4.00	<4.00
	SELENIUM T	ug/L	<4.00	<4.00
	SODIUM T	mg/L	1.56	8.89
	STRONTIUM T	ug/L	13.00	20.00
	SULFATE T	mg/L	6.60	6.44
	ZINC D	ug/L	<30.0	6.380
	ZINC T	ug/L	<30.0	6.320
	AMMONIA D	mg/L	<.02	0.0430
	AMMONIA T	mg/L	<.02	0.04
S	NITRATE & NITROGEN D	mg/L	0.52	0.77
Ë	NITRATE & NITROGEN T	mg/L	0.52	0.76
Ē	NITROGEN D	mg/L	0.559	-
TR	NITROGEN T	mg/L	0.52	0.80
NUTRIENTS	ORTHO PHOSPHORUS D	mg/L	<.01	<.01
_	ORTHO PHOSPHORUS T	mg/L	<0.01	<0.01
	PHOSPHORUS D	mg/L	<0.01	<0.01
	PHOSPHORUS T	mg/L	<.01	<.01
~	ALKALINITY	mg/L	7.4	13.4
Hi H	DISSOLVED OXYGEN	mg/L	12.78	11.27
王	HARDNESS	mg/L	12	29
0	TEMPERATURE	°C	2.7	6.9
PHYSICAL / OTHER	OSMOTIC PRESSURE	mosm/kg	<1	1
S	pH SPECIFIC COND	pH units	6.4	7.39
S	SPECIFIC COND TDS	μS/cm ^c mg/L	39.40 <20	113.00 34
Ĕ	TOC	mg/L	1.10	0.56
<u>a</u>	TSS	mg/L	<20	<20
er to Figure 1 and/or Table 1 for station locations				

Biological

The indigenous aquatic community is an excellent indicator of long-term conditions and is used as a measure of water quality. DEP staff collected macroinvertebrate data from one station on the UNT to Big Cove Creek and from one reference station on Jones Mill Run in Somerset County. Data was collected using the DEP benthic macroinvertebrate data collection protocols, which is a modification of

[&]quot;<" indicate concentrations below the reporting limit.

[&]quot;-" indicate tests not reported

the U.S. Environmental Protection Agency's (EPA) Rapid Bioassessment Protocols (Plafkin et al. 1989, Barbour et al. 1999). Data collected from both the UNT to Big Cove Creek and Jones Mill Run were collected using DEP's *Wadeable Riffle-Run Stream Macroinvertebrate Data Collection Protocol* (Shull 2017).

Macroinvertebrate data collected from the UNT to Big Cove Creek is consistent with excellent water quality conditions (Table 3). The UNT to Big Cove Creek had a total taxa richness of 27 with an Ephemeroptera Plecoptera and Trichoptera (EPT) richness of 16. While Ephemeroptera richness was lower compared to the Jones Mill Run reference (3 vs. 7), Plecoptera richness was higher (8 vs. 5) and Tricoptera richness was the same (5). The lower Ephemeroptera richness at the UNT to Big Cove Creek station is also consistent with the lower % modified mayfly metric (8.8%) compared to Jones Mill Run (40.1%). Although the mayfly (Ephemeroptera) community is not quite as robust as the reference station, other metrics including Hilsenhoff Biotic Index (HBI; 2.35) are indicative of a very healthy macroinvertebrate community (Tables 3 & 5).

Table 3. Benthic Macroinvertebrate Data.

TAXA		STATION1	REF ¹
		UNTBCC	JMR
Ephemeroptera	(Mayflies)		
Baetidae	Baetis	-	2
	Diphetor	1	1
	Plauditus	-	6
Ephemerellidae	Ephemerella	-	31
Heptegeniidae	Epeorus	-	26
	Maccaffertium	3	3
Leptophlebiidae	Paraleptophlebia	18	13
Plecoptera (Sto	oneflies)		
Capniidae	Allocapnia	5	2
	Paracapnia Paracapnia	47	1
Chloroperlidae	Alloperla	2	1
	Sweltsa	5	-
Leutridae	Leuctra	3	-
Perlidae	Acroneuria	14	-
	Eccoptura	17	-
Perlodidae	Isoperla	2	6
Taeniopteryx	Taeniopteryx	-	2
Tricoptera (Cad			
Hydropsychidae	Cheumatopsyche	3	-
	Diplectrona	20	12
	Hydropsyche	-	2
Limnephilidae	Pycnopsyche	4	-
Polycentropidae	Dolophilodes	6	3 3
Psychomyiidae	Lype	-	3
Rhyacophilidae	Rhyacophila	3	14
Uenoidae	Neophylax	-	14
Megaloptera (Dobsonflies/Alderflies)			
Corydalidae	Nigronia	2	-
Odonata (Dragon / Damselflies)			
Aeshnidae	Boyeria	1	-
Gomphidae	Lanthus	1	-

Table 3 (cont.). Benthic Macroinvertebrate Data.

TAXA		STATION1	REF ¹
		UNTBCC	JMR
Dip	otera (True Flies)		
Ceratopogonidae	Probezzia	-	2
Chironomidae	hironomidae		22
Tipulidae	oulidae <i>Antocha</i>		1
	Dicranota	31	-
	Hexatoma	2	3
	Limnophila	-	2
	Tipula	5	-
Coleoptera (Aquatic Beetles)			
Elmidae	Optioservus	-	1
	Oulimnius	-	21
	Stenelmis	3	-
Psephenidae	Ectopria	-	3
	Psephenus	1	-
N	lon-Insect Taxa		
Oligochaeta		2	-
Cambaridae	Cambarus	1	-
-	Taxa Richness	27	26
Т	otal Organisms	238	197

¹ Refer to Figure 1 and/or Table 1 for station locations

Physical

Instream habitat was evaluated at each station where benthic macroinvertebrates were collected (Table 4). The habitat evaluation consists of rating twelve parameters to derive a station habitat score. The total habitat score for the UNT to Big Cove Creek fell within the suboptimal range (132-192) and the total habitat score at the reference station (198) was above the optimal threshold (192). Both candidate and reference stations had fairly low embeddedness and sediment deposition scores, which indicates at least moderate siltation effects.

[&]quot;-" indicate taxa was not identified at a particular station

Table 4. Habitat Evaluation Data.

PARAMETERS	STATION ¹	REF ¹
PARAMETERS	UNTBCC	JMR
INSTREAM COVER	15	18
2. EPIFAUNAL SUBSTRATE	13	19
3. EMBEDDEDNESS	10	11
4. VELOCITY/DEPTH	9	17
CHANNEL ALTERATIONS	20	19
SEDIMENT DEPOSITION	13	10
7. RIFFLE FREQUENCY	10	19
8. CHANNEL FLOW STATUS	9	20
9. BANK CONDITION	12	13
10. BANK VEGETATIVE PROTECTION	19	17
11. GRAZING/DISRUPTIVE PRESSURES	19	17
12. RIPARIAN VEG. ZONE WIDTH	16	18
Total Score	165	198
Rating ²	SUB	OPT

¹ Refer to Figure 1 and/or Table 1 for station locations

INTEGRATED BENTHIC MACROINVERTEBRATE SCORING TEST

The DEP applied its integrated benthic macroinvertebrate scoring test described at 25 Pa. Code § 93.4b(a)(2)(i)(A) to the UNT to Big Cove Creek. Selected benthic macroinvertebrate community metrics from the UNT Big Cove Creek station were compared to the reference station from Jones Mill Run. Jones Mill Run was used as a reference because it has demonstrated an existing use of Exceptional Value (EV) based on biological measures and the macroinvertebrate community has demonstrated best attainable biological communities by scoring well above the top 25th percentile of Pennsylvania EV reference streams. In addition, the Jones Mill Run reference station has optimal habitat and similar gradient, drainage area, pH and alkalinity to the candidate stream station (DEP 2013). The comparisons were done using the following metrics that were selected as being indicative of community health: taxa richness, modified EPT index, modified Hilsenhoff Biotic Index (HBI), percent dominant taxon, and percent modified mayflies (Table 5).

Based on these five metrics, the candidate station on from the UNT to Big Cove Creek exceeded the HQ qualifying criterion of 83% (Table 5).

² OPT = Optimal (≥192), SUB = Suboptimal (132-192)

 Table 5. Benthic Macroinvertebrate Metric Comparison.

METRIC	STATION1	REF ¹
METRIC	UNTBCC	JMR
1. TAXA RICHNESS	27	26
Cand/Ref (%)	104	-
Biol. Cond. Score	8	8
2. MOD. EPT INDEX	14	15
Cand/Ref (%)	93	-
Biol. Cond. Score	8	8
3. MOD. HBI	2.35	2.40
Cand-Ref	-0.05	-
Biol. Cond. Score	8	8
4. % DOMINANT TAXA	19.7	15.7
Cand-Ref	4	-
Biol. Cond. Score	8	8
5. % MOD. MAYFLIES	8.8	40.1
Ref-Cand	31.3	-
Biol. Cond. Score	3	8
TOTAL BIOLOGICAL	35	40
CONDITION SCORE	35	40
% COMPARABILITY	88	
TO REFERENCE	00	

¹ Refer to Table 1 and/or Figure 1 for station locations

PUBLIC NOTICE AND REQUEST FOR TECHNICAL DATA

The DEP provided public notice of this redesignation evaluation and requested any technical data from the general public through publication in the *Pennsylvania Bulletin* on October 29, 2022 (52 Pa.B. 6785) and on the DEP website on October 28, 2022. Fulton County, Ayr Township, and Fulton County Conservation District were notified of the redesignation evaluation in an emailed letter dated October 28, 2022. In addition, notifications were distributed through the DEP eNotice. In response to the notices, the DEP received a letter of support from the Theodore Roosevelt Conservation Partnership.

RECOMMENDATION

Based on applicable regulatory definitions in 25 Pa. Code § 93.4b(a)(2)(i)(A) (the DEP's integrated benthic macroinvertebrate scoring test), the DEP recommends that the UNT to Big Cove Creek basin be redesignated to High Quality – Cold Water Fishes, Migratory Fishes (HQ-CWF, MF) based on a score greater than 83% when compared to a reference station.

This recommendation adds 1.63 miles of High Quality stream miles to Chapter 93.

LITERATURE CITED

- Barbour, M. T., Gerritsen, J., Snyder, B. D., Stribling, J. B. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. Second Edition. United States Environmental Protection Agency. EPA 841-B-99-002.
- DEP. 2013. Water Quality Antidegradation Implementation Guidance. Pennsylvania Department of Environmental Protection. Harrisburg, Pennsylvania.
 - http://www.depgreenport.state.pa.us/elibrary/GetDocument?docId=7842&DocName=WATER %20QUALITY%20ANTIDEGRADATION%20IMPLEMENTATION%20GUIDANCE.PDF%20
- Dewitz, J., and U.S. Geological Survey, 2021, National Land Cover Database (NLCD) 2019 Products (ver. 2.0, June 2021): U.S. Geological Survey data release, https://doi.org/10.5066/P9KZCM54
- Plafkin, J. L., Barbour, M. T., Porter, K. D., Gross, S. K., Hughes, R. M. 1989. Rapid Bioassessment Protocols for use in streams and rivers: Benthic Macroinvertebrates and Fish. United States Environmental Protection Agency. EPA/444/4-89-001.
- Shull, D. R. (editor). 2017. Wadeable riffle-run stream macroinvertebrate data collection protocol. Chapter 3.1, pages 2–8 in M. J. Lookenbill, and R. Whiteash (editors). Water quality monitoring protocols for streams and rivers. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania.