

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0002038

APS ID 1016759

Authorization ID 1314996

Applicant Name	Borcl	hers America Inc.	Facility Name	Borchers America
Applicant Address	P.O. I	Box 111	Facility Address	240 Two Mile Run Road
	Frank	din, PA 16323111	_	Franklin, PA 16323-6250
Applicant Contact	Jame	s Daugherty	Facility Contact	Steve Graf
Applicant Phone	(814)	437-6002	Facility Phone	(814) 437-6055
Client ID	3725	7	Site ID	242125
SIC Code	2819		Municipality	Sugarcreek Borough
SIC Description		facturing - Industrial Inorganic nicals, Nec	County	Venango
Date Application Rec	eived	May 12, 2020	EPA Waived?	Yes
Date Application Acc	epted	May 26, 2020	If No, Reason	

Summary of Review

This is a specialty chemical manufacturing plant engaged primarily in batch production of metal carboxylates. Wastewater consists of cooling tower and boiler blowdown, sand filter backflushes, and stormwater.

Outfall 001 and 006 have been removed since the previous permit was issued. Outfall 001 was permanently disconnected in 2016 and Outfall 006 is now the responsibility of AM Stabilizers, who have obtained a separate NPDES Permit.

There are four chemical additives currently being used at this facility.

Outfall 002 discharges to the Allegheny River, which is known to contain threatened and endangered mussel species. A summary of threatened and endangered mussel species concerns and considerations is included on Page 14 of this Fact Sheet.

There are currently no open violations listed in EFACTS for this permittee (5/03/2023).5/5/2023 CWY

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Adam J. Pesek Adam J. Pesek, E.I.T. / Project Manager	5/03/2023
Х		Chad W. Yurisic Chad W. Yurisic, P.E. / Environmental Program Manager	5/5/2023

Discharge, Receiving Waters and Water Supply Information	mation	
Outfall No. 002	Design Flow (MGD)	0.1332*
Latitude 41° 24' 28.94"	Longitude	-79° 47' 32.15"
Quad Name Franklin	Quad Code	0707
	boiler blowdown and filter backy	vash (Suboutfall 602) and
Wastewater Description: non-contact cooling water	(Suboutfall 702)	_
Descripting Western Alleghens Direct	Chronin Codo	40400
Receiving Waters Allegheny River	Stream Code	42122
NHD Com ID 100476827	RMI	125.7
Drainage Area 4745.9	Yield (cfs/mi²)	0.246 Allegheny River @ Franklin
		gage minus French Creek
Q ₇₋₁₀ Flow (cfs) <u>1169.08</u>	Q ₇₋₁₀ Basis	flow
Elevation (ft) 968.5	Slope (ft/ft)	
Watershed No. 16-E	Chapter 93 Class.	WWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Impaired		
Cause(s) of Impairment MERCURY		
Source(s) of Impairment SOURCE UNKNOWN		
TMDL Status Pending	Name	
Background/Ambient Data	Data Source	
pH (SU)	WQN #805 – Allegheny River	@ West Hickory (July-Sept.)
Temperature (°C) <u>25</u>	Default (WWF)	
Hardness (mg/L)	WQN #805 – Allegheny River	@ West Hickory (July-Sept.)
Other:		
Nearest Downstream Public Water Supply Intake	Aqua Pennsylvania, Inc. – I	Emlenton
PWS Waters Allegheny River	Flow at Intake (cfs)	1450
PWS RMI 90	Distance from Outfall (mi)	30

Changes Since Last Permit Issuance:

Other Comments: Suboutfalls 602 and 702 are internal outfalls that discharge via Outfall 002.

^{*}Discharge flow is derived from a 92.5 GPM discharge rate over approximately 3.5 hours occurring 4-6 times a month.

Discharge, Red	ceiving	Waters	and Water Supply Info	rmation	
Outfall No.	003			Design Flow (MGD)	0
Latitude	410 24	l' 45.74'	1	Longitude	-79º 47' 51.75"
Outfall No.	004			Design Flow (MGD)	0
Latitude	410 24	1' 40.06'	1	Longitude	-79° 47' 44.35"
Outfall No.	007			Design Flow (MGD)	0
Latitude	410 24	1' 40.29'	ı	Longitude	-79° 47' 47.94"
Outfall No.	800			Design Flow (MGD)	0
Latitude	41º 24	l' 43.10'	1	Longitude	-79° 47' 50.38"
Outfall No.	010			Design Flow (MGD)	0
Latitude	410 24	1' 34.71'	1	Longitude	-79° 47′ 37.38″
Quad Name	Frai	nklin		Quad Code	0707
Wastewater I	Descrip	tion:	Stormwater associated w	vith industrial activities	
Receiving Wand NHD Com ID Drainage Are Q ₇₋₁₀ Flow (cf Elevation (ft) Watershed N	ea fs)			Stream Code RMI Yield (cfs/mi²) Q7-10 Basis Slope (ft/ft) Chapter 93 Class.	54096 0.1 Default
Existing Use	=	10-6		Existing Use Qualifier	CVVF
Exceptions to	-			Exceptions to Criteria	
Assessment	-	·	Attaining Use(s)	Exceptions to Criteria	
Cause(s) of I Source(s) of TMDL Status	mpairm Impairn	-	Attaining 036(3)	Name	
Background/ pH (SU)		t Data	_7	Data Source Default	
Temperature	· (°F)				•
Hardness (m Other:	ıg/L)		100	Default	
Nearest Dow		n Public	Water Supply Intake	Aqua Pennsylvania, Inc. – Em Flow at Intake (cfs)	nlenton
PWS RMI		0.0		Distance from Outfall (mi)	30

Changes Since Last Permit Issuance:

Other Comments: A Point of First Use Determination was conducted on Race Run on August 26, 2015 by the Department to determine if it was a perennial stream in the area passing beside the facility and if the stream path of what was once Tributary 54096 to Two Mile Creek was redirected at some point in time to flow around the west side of the facility. The Determination concluded that Race Run was indeed perennial in the area flowing beside the facility and that it is part of Tributary 54096, whose flow pattern was redirected around the facility

Discharge, Receiving Waters and Water Su	pply Information
Outfall No. 009	
Latitude 41° 24' 43.79"	Longitude79° 47' 42.30"
Outfall No. 011	Design Flow (MGD) 0
Latitude 41° 24' 41.82"	Longitude79 ^o 47' 40.72"
Quad Name Franklin	Quad Code 0707
Wastewater Description: Stormwater As	sociated with Industrial Activities
Receiving Waters Twomile Run	Stream Code 54094
NHD Com ID 100476653	RMI
Drainage Area 20.1 mi ²	Yield (cfs/mi²) 0.1
Elevation (ft) Watershed No. 16-E	Slope (ft/ft) Chapter 93 Class. CWF
·	
Existing Use	
Exceptions to Use Assessment Status Attaining Use(s	Exceptions to Criteria
	5)
Cause(s) of Impairment	·
Source(s) of Impairment	No
TMDL Status	Name
Background/Ambient Data	Data Source
pH (SU) 7	Default
Temperature (°F)	
Hardness (mg/L) 100	Default
Other:	
Nearest Downstream Public Water Supply I	ntake Aqua Pennsylvania, Inc. – Emlenton
PWS Waters Allegheny River	Flow at Intake (cfs)
PWS RMI 90.0	Distance from Outfall (mi) 30

Changes Since Last Permit Issuance:

	Compliance History
Summary of DMRs:	No effluent violations were reported in the last 5 years.
Summary of Inspections:	Last site inspection was conducted on 4/25/2019. The inspection report did not indicate any violations or major issues. It was noted that Outfall 011 has been redirected to a concrete trap area in the case of a spill near the tank farm before it discharges to a stream.

Compliance History

DMR Data for Outfall 002 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD)	0.00408	0.00369	0.00427	0.00400	0.00414	0.00402	0.00573	0.00378	0.00366	0.00344		0.00393
Average Monthly	6	7	8	4	8	4	4	3	6	0	0.00379	2

DMR Data for Outfall 003 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD) Annual Average										0.0123		
pH (S.U.) Annual Average										7.4		
COD (mg/L) Annual Average										49.4		
TSS (mg/L) Annual Average										30		
Total Aluminum (mg/L) Annual Average										0.257		
Total Iron (mg/L) Annual Average										0.686		
Total Zinc (mg/L) Annual Average										0.056		

DMR Data for Outfall 004 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD)												
Annual Average										0.02615		
pH (S.U.)												
Annual Average										8.0		
COD (mg/L)												
Annual Average										66.7		
TSS (mg/L)												
Annual Average										80		
Total Aluminum												
(mg/L)												
Annual Average										0.63		

NPDES Permit Fact Sheet Borchers America

NPDES Permit No. PA0002038

Total Iron (mg/L)						
Annual Average					2.39	
Total Zinc (mg/L)						
Annual Average					0.146	

DMR Data for Outfall 007 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD) Annual Average										0.00508		
pH (S.U.) Annual Average										7.6		
COD (mg/L) Annual Average										25.6		
TSS (mg/L) Annual Average										10		
Total Aluminum (mg/L) Annual Average										0.123		
Total Iron (mg/L) Annual Average										0.877		
Total Zinc (mg/L) Annual Average										0.0746		

DMR Data for Outfall 008 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD)										0.00976		
Annual Average										3		
pH (S.U.)												
Annual Average										7.9		
COD (mg/L)												
Annual Average										42.9		
TSS (mg/L)												
Annual Average										21		
Total Aluminum												
(mg/L)												
Annual Average										0.269		
Total Iron (mg/L)												
Annual Average										0.848		
Total Zinc (mg/L)												
Annual Average										0.0779		

DMR Data for Outfall 009 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD)										0.02138		
Annual Average										9		
pH (S.U.)												
Annual Average										7.1		
COD (mg/L)												
Annual Average										< 25		
TSS (mg/L)												
Annual Average										5		
Total Aluminum												
(mg/L)												
Annual Average										0.116		
Total Iron (mg/L)												
Annual Average										0.194		
Total Zinc (mg/L)												
Annual Average										0.163		

DMR Data for Outfall 010 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD) Annual Average										0.03527		
pH (S.U.) Annual Average										7.7		
COD (mg/L) Annual Average										55.9		
TSS (mg/L) Annual Average										23		
Total Aluminum (mg/L) Annual Average										0.271		
Total Iron (mg/L) Annual Average										4.22		
Total Zinc (mg/L) Annual Average										0.0482		

DMR Data for Outfall 011 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD)										0.00095		
Annual Average										5		

NPDES Permit No. PA0002038

pH (S.U.) Annual Average				7.6	
COD (mg/L) Annual Average				34.3	
TSS (mg/L) Annual Average				16	
Total Aluminum (mg/L) Annual Average				0.177	
Total Iron (mg/L) Annual Average				0.472	
Total Zinc (mg/L) Annual Average				0.0548	

DMR Data for Outfall 602 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD)												
Internal Monitoring												
Point hr/> Average	0.00408	0.00369	0.00427	0.00400	0.00414	0.00402	0.00573	0.00378	0.00366	0.00344		0.00393
Monthly	6	7	8	4	8	4	4	3	6	0	0.00379	2
pH (S.U.)												
Internal Monitoring												
Point br/> Minimum	7.3	7.6	7.2	7.0	7.3	7.9	7.8	7.9	7.6	8.0	7.9	7.9
pH (S.U.)												
Internal Monitoring												
Point br/>												
Instantaneous Maximum	7.8	7.8	7.8	7.6	8.0	8.7	8.1	8.3	8.8	8.2	8.2	8.4
	7.8	7.8	7.8	7.0	8.0	8.7	8.1	8.3	8.8	8.2	8.2	8.4
TSS (mg/L) Internal Monitoring												
Point br/> Average												
Monthly	< 4	8	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4
Total Aluminum	\ 7		\ 7	\ 7	\ 7	\ 7	_ ` -	_ ` -	\ 7	\ 7	\ 7	_ ` -
(mg/L)												
Internal Monitoring												
Point br/> Average												
Monthly	0.0756	0.0665	0.184	1.11	1.25	1.23	0.887	0.95	0.524	1.21	0.85	0.699
Total Iron (mg/L)												
Internal Monitoring												
Point hr/> Average												
Monthly	0.498	0.514	0.56	0.512	0.411	0.59	0.509	1.14	0.146	0.367	0.199	0.218

Development of Effluent Limitations								
Outfall No.	002	Design Flow (MGD)	0.1332					
Latitude	41º 24' 28.9		-79° 47' 32.15"					
	Cooling tower blowdown, boiler blowdown and filter backwash (Suboutfall 602) and non-							
Wastewater D	Description:	contact cooling water (Suboutfall 702)	•					

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

There are no technology-based limits for the boiler blowdown and non-contact cooling water. Technology-based limits for the filter backwash are applied at Suboutfall 602.

Water Quality-Based Limitations

Comments: None were determined using the Department's Toxic Management Spreadsheet or Thermal Discharge Limit Calc Spreadsheet.

Best Professional Judgment (BPJ) Limitations

Comments: Flow will continue to be monitored at this main outfall.

Other Considerations

The facility has a surface water intake on Two Mile Run Creek. The intake does not meet the criteria for 40 CFR §316(b) cooling water intake applicability. The Department's SOP entitled "Establishing Best Technology Available (BTA) using BPJ for Cooling Water Intake Structures at Existing NPDES Facilities" was alternately considered but was not applied because the facility does not use any BTA equipment for impingement or entrainment avoidance.

There is also a return of excess water from the intake pumps that are returned to the Two Mile Run Creek when it is not needed for plant operations. This is considered a "water transfer" as defined in 40 CFR §122.3(i) and does not require permitting under the NPDES Program.

Anti-Backsliding

N/A

	Development of Effluent Limitations									
Outfall No.	602	Design Flow (MGD)	0.1332							
Latitude	41º 24' 44.6'	7" Longitude	-79° 47' 44.58"							
Wastewater [Description:	Combined water from cooling tower blowdown, boiler blow backwash	down (on annual basis) and filter							

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
Total Suspended		Average Monthly		
Solids	30			362-2183-003
Total Suspended		Daily Maximum		362-2183-003
Solids	40			
Aluminum	4.0	Average Monthly		362-2183-003
Aluminum	8.0	Daily Maximum		362-2183-003
Manganese	1.0	Average Monthly		362-2183-003
Manganese	2.0	Daily Maximum		362-2183-003
Total Iron	2.0	Average Monthly		362-2183-003
Total Iron	4.0	Daily Maximum		362-2183-003
Total Residual Chlorine	0.5	Average Monthly		92a.48(b)(2)
Total Residual Chlorine	1.0	Daily Maximum		362-2183-003
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)

Comments: 362-2183-003 References the Department's technical guidance document entitled "Technology-based Control Requirements for Water Treatment Plant Wastes." The limits are BPT (Best Practical Control Technology) and are not based on actual regulation. The Department has identified the TSD requirements as the Best Available Treatment (BAT) that, as a minimum, the permittee will be required to meet. Since no federal effluent limitation guidelines (ELGs) have been promulgated, the Department's Best Professional Judgment of BAT, as outlined in the TSD, satisfies the Federal requirements of the 40 CFR 125.3(d) regulations.

Please note that the BPJ TRC limits above will not be applied because the source water does not contain residual chlorine, nor is it added anywhere in the facility' processes.

Manganese was previously omitted as it was only present in trace amounts. A review of application data finds that it still only found in trace amounts and therefore will continue to be omitted in the renewed permit.

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Comments: Determination for need of WQBELs was made at Outfall 002.

Best Professional Judgment (BPJ) Limitations

Comments: See Tech-Based Limitations section above.

Anti-Backsliding

N/A

Development of Effluent Limitations								
Outfall No.	702	Design Flow (MGD)	0.007					
Latitude	41° 24' 43.01"	Longitude	-79° 47' 43.43"					
Wastewater D	Wastewater Description: Non-contact cooling water (on an annual basis)							

Comments: None

Water Quality-Based Limitations

Comments: Determination for need of WQBELs was made at Outfall 002.

Best Professional Judgment (BPJ) Limitations

Comments: Flow monitoring will remain in the permit in the event an emergency discharge occurs. The special condition in Part C.I.E. in the proposed permit states there shall be no net addition of pollutants to non-contact cooling water over intake values.

Anti-Backsliding

N/A

		Development of Effluent Limitations	
Outfall No.	003	Design Flow (MGD)	0
Latitude	41° 24' 45.74"	Longitude	-79° 47' 51.76"
Outfall No.	004	Design Flow (MGD)	0
Latitude	41° 24' 40.06"	Longitude	79° 47' 44.35"
Outfall No.	007	Design Flow (MGD)	0
Latitude	41° 24' 40.29"	Longitude	79° 47' 47.94"
Outfall No.	008	Design Flow (MGD)	0
Latitude	41° 24' 43.1"	Longitude	79° 47' 50.38"
Outfall No.	009	Design Flow (MGD)	0
Latitude	41° 24' 43.79"	Longitude	79° 47' 42.3"
Outfall No.	010	Design Flow (MGD)	0
Latitude	41° 24' 34.71"	Longitude	79° 47' 37.38"
Outfall No.	011	Design Flow (MGD)	0
Latitude	41° 24' 41.82"	Longitude	79° 47' 40.72"
Wastewater I		ociated with industrial activities	

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Comments: None applied

Water Quality-Based Limitations

Comments: None applied

Best Professional Judgment (BPJ) Limitations

Comments: Monitoring Requirements and Benchmark values from the PAG-03 General Permit, Appendix F, will be placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Industrial Permits."

	Monitoring Requ	irements ^{(1),(2)}	
Pollutant	Minimum Measurement Frequency	Sample Type	Benchmark Values
Total Nitrogen (mg/L) (3)	1 / 6 months	Calculation	XXX
Total Phosphorus (mg/L)	1 / 6 months	Grab	XXX
pH (S.U.)	1 / 6 months	Grab	9.0
Chemical Oxygen Demand (COD) (mg/L)	1 / 6 months	Grab	120
Total Suspended Solids (TSS) (mg/L)	1 / 6 months	Grab	100
Nitrate + Nitrite-Nitrogen (mg/L)	1 / 6 months	Grab	3.0
Total Lead (mg/L)	1 / 6 months	Grab	XXX
Total Zinc (mg/L)	1 / 6 months	Grab	XXX
Total Iron (mg/L)	1 / 6 months	Grab	XXX
Total Aluminum (mg/L)	1 / 6 months	Grab	XXX

Anti-Backsliding

Threatened and Endangered Mussel Species Concerns and Considerations

This segment of the Allegheny River is known to also contain federal and state listed threatened and endangered mussel species. Due to the Outfall 002 discharging directly to the Allegheny River, potential impacts to endangered mussel species were evaluated.

The USFWS has indicated in comment letters and email correspondence on other NPDES permits, that to protect threatened and endangered mussel species, wastewater discharges containing ammonia-nitrogen (NH3-N), chloride (CI-) dissolved nickel, dissolved zinc, and total copper where mussels or their habitat exist, can be no more than 1.9 mg/l, 78 mg/l, $7.3 \mu g/l$, $13.18 \mu g/l$, and $10 \mu g/l$ respectively. Therefore, the Department has considered all of these parameters in this evaluation.

The calculated site- specific criteria based on WQN Station 805 stream background pH data and default temperature for a WWF (pH of 7.43 and temperature of 25) results in NH3-N criteria of 1.07 mg/l.

A summary of the sampling data for ammonia-nitrogen (NH3-N), nickel, zinc, and copper are based on three samples at Outfall 001 for the 2020 renewal application, and chloride (Cl-) and temperature based on data and information provided from the permittee is as follows:

		Outfall (001		
PARAMETER	UNITS	Max	Avg. Value	No. Samples	Comments
NH ₃ -N	mg/l	<0.49	<0.23	3	
Chloride	mg/l	21.5	11.4	28	Cooling Tower Chloride Levels (Jan 2021 – Apr 2023)
Total Nickel	μg/l	<10	<10	3	
Total Zinc	μg/l	51.8	42.7	3	
Total Copper	μg/l	14.4	10.1	3	
Temperature	(°F)	85	35 (min)	N/A	Expected max in summer and minimum in winter (estimated – see attached correspondence).

As can be seen from the sampling above, ammonia nitrogen and chloride are well below protective levels for threatened and endangered mussels. It is not expected that there will be impacts to threatened and endangered mussels due to temperature as the wastewater typically sits for many days prior to being batch discharged and mixing with filter backwash wastewater prior to discharging.

The attached Mussel Impact Evaluation Sheet was used to determine the area of river that will be required to assimilate the maximum reported effluent concentrations of nickel, zinc, and copper to achieve pollutant concentrations that at or below the USFWS criteria in the river. The spreadsheet showed areas of impact in the Allegheny River at less than 0.00 square meters for all three of these metals.

In summary, due to the type of wastewater being discharged, the sporadic nature of the discharge, and significant amount of assimilative capacity in the stream, the Department does not find this discharge to have any potential impacts to threatened and endangered species. The Department does not propose monitoring for any of the above discussed parameters in the renewed NPDES Permit.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/day	Measured

Compliance Sampling Location: Outfall 002 (prior to mixing with any other waters)

Other Comments: Suboutfall 702 only discharges once per year and no samples are collected. Therefore, Sampling for 002 is conducted at Suboutfall 602.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 003, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Calculation
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab

Compliance Sampling Location: Outfall 003 (prior to mixing with any other waters)

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 004, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Faranietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Calculation
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab

Compliance Sampling Location: Outfall 004 (prior to mixing with any other waters)

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 007, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Faranietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Calculation
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab

Compliance Sampling Location: Outfall 007 (prior to mixing with any other waters)

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 008, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
rarameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Calculation
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab

Compliance Sampling Location: Outfall 008 (prior to mixing with any other waters)

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 009, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
rarameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Calculation
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab

Compliance Sampling Location: Outfall 009 (prior to mixing with any other waters)

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 010, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
rarameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Calculation
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab

Compliance Sampling Location: Outfall 010 (prior to mixing with any other waters)

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 011, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
rarameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Calculation
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab

Compliance Sampling Location: Outfall 011 (prior to mixing with any other waters)

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 602, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
Faranietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)								
Internal Monitoring Point	Report	XXX	XXX	XXX	XXX	XXX	1/day	Measured
pH (S.U.)								
Internal Monitoring Point	XXX	XXX	6.0	XXX	XXX	9.0	1/month	Grab
Total Suspended Solids								
Internal Monitoring Point	XXX	XXX	XXX	30	XXX	60	1/month	Grab
Aluminum, Total								
Internal Monitoring Point	XXX	XXX	XXX	4.0	XXX	8	1/month	Grab
Iron, Total								
Internal Monitoring Point	XXX	XXX	XXX	2.0	XXX	4	1/month	Grab

Compliance Sampling Location: Sub outfall 602 (prior to mixing with any other waters)

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 702, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
Faranietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)								
Internal Monitoring Point	Report	Report XXX XXX XXX XXX XXX						Measured

Compliance Sampling Location: Sub outfall 702 (prior to mixing with any other waters)

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Disch	narge	Stream					
Facility:	Borche	ers Ame	erica		NPDES Permit No.:	PA0002038	Outfall No.:	002
Evaluation 1	Гуре:	Major	Sewage / Ind	dustrial Waste	 Wastewater Descrip	tion: Cooling Tower	Blowdown, boile	er blowdow

Discharge Characteristics										
Design Flow	Hordness /ma/l*	»U /CII)*	F	Partial Mix Fa	Complete Mix	olete Mix Times (min)				
(MGD)*	(MGD)* Hardness (mg/l)* PH (SU)* AFC CFC THH CRL									
0.1332 100 7.8										

					0 if lef	t blank	0.5 if le	eft blank	0	if left blan	k	1 if left	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transi
	Total Dissolved Solids (PWS)	mg/L	<	224			ĺ						
=	Chloride (PWS)	mg/L	1 3										
Ιä	Bromide	mg/L											
Group,	Sulfate (PWS)	mg/L											
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L		3110									
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L		23)							j
	Total Beryllium	μg/L											Í
	Total Boron	μg/L	<	50									j
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L	<	5		ĵ							
	Hexavalent Chromium	μg/L											
	Total Cobalt	μg/L		45.8									
	Total Copper	μg/L		14.4									
2	Free Cyanide	μg/L)							
Ιž	Total Cyanide	μg/L											
Group	Dissolved Iron	μg/L											
	Total Iron	μg/L		1330									
	Total Lead	μg/L	<	5									
	Total Manganese	μg/L		66.6									
	Total Mercury	μg/L											
	Total Nickel	μg/L	<	10)							
	Total Phenols (Phenolics) (PWS)	μg/L	3)							
	Total Selenium	μg/L											
	Total Silver	μg/L											
	Total Thallium	μg/L											
	Total Zinc	μg/L		51.8									
	Total Molybdenum	μg/L											
	Acrolein	μg/L	<										
1	Acrylamide	μg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										
1	Carbon Tetrachloride	μg/L	٧										

1	Chlorobenzene	μg/L							
	Chlorodibromomethane	μg/L	<					-	
	The state of the s	μg/L	/						
	Chloroethane		- 10					-	
	2-Chloroethyl Vinyl Ether	μg/L	٧					-	
	Chloroform	μg/L	<						
	Dichlorobromomethane	μg/L	<						
	1,1-Dichloroethane	μg/L	<						
က	1,2-Dichloroethane	μg/L	<						
Group	1,1-Dichloroethylene	μg/L	٧						
1 %	1,2-Dichloropropane	μg/L	<						
10	1,3-Dichloropropylene	μg/L	٧						
	1,4-Dioxane	μg/L	٧						
	Ethylbenzene	μg/L	٧					ĺ	
	Methyl Bromide	μg/L	<					1	
	Methyl Chloride	μg/L	٧						
	Methylene Chloride	μg/L	<						
	1,1,2,2-Tetrachloroethane	μg/L	<						
	Tetrachloroethylene	μg/L	<						
	Toluene	µg/L	<						
	1,2-trans-Dichloroethylene	μg/L	<						
1	1,1,1-Trichloroethane	μg/L	\ \						
	1,1,2-Trichloroethane		\ \						
1		µg/L							
	Trichloroethylene	μg/L	<						
\vdash	Vinyl Chloride	μg/L	<						
	2-Chlorophenol	μg/L	٧						
	2,4-Dichlorophenol	μg/L	<						
	2,4-Dimethylphenol	μg/L	٧						
10	4,6-Dinitro-o-Cresol	μg/L	<						
4	2,4-Dinitrophenol	μg/L	<						
Group	2-Nitrophenol	μg/L	<						
ີ່ວັ	4-Nitrophenol	μg/L	٧						
552	p-Chloro-m-Cresol	μg/L	٧						
	Pentachlorophenol	μg/L	<						
	Phenol	μg/L	<						
	2,4,6-Trichlorophenol	µg/L	<						
	Acenaphthene	μg/L	٧						
	Acenaphthylene	μg/L	٧						
	Anthracene	μg/L	<						
	Benzidine	µg/L	<						
	Benzo(a)Anthracene	µg/L	` \						
	Benzo(a)Pyrene	μg/L	·					-	
			_						
1	3,4-Benzofluoranthene	μg/L	٧						
1	Benzo(ghi)Perylene	μg/L	٧						
	Benzo(k)Fluoranthene	μg/L	<						
1	Bis(2-Chloroethoxy)Methane	μg/L	<						
1	Bis(2-Chloroethyl)Ether	μg/L	٧						
	Bis(2-Chloroisopropyl)Ether	μg/L	٧						
	Bis(2-Ethylhexyl)Phthalate	μg/L	<						
1	4-Bromophenyl Phenyl Ether	μg/L	٧						
1	Butyl Benzyl Phthalate	μg/L	٧						
I	2-Chloronaphthalene	μg/L	٧						
I	4-Chlorophenyl Phenyl Ether	μg/L	٧					Î	
I	Chrysene	μg/L	٧						
1	Dibenzo(a,h)Anthrancene	µg/L	<						
I	1,2-Dichlorobenzene	µg/L	<						
I	1,3-Dichlorobenzene	µg/L	<						
92	1,4-Dichlorobenzene	µg/L	<						
b 5	3,3-Dichlorobenzidine	μg/L	/ /						
Group	Diethyl Phthalate	μg/L	/ V						
ច			/						
223	Dimethyl Phthalate	μg/L	_						
1	Di-n-Butyl Phthalate	μg/L	٧						
1	2,4-Dinitrotoluene	μg/L	٧.						
1	2,6-Dinitrotoluene	μg/L	<						

Î	Di-n-Octyl Phthalate	Luga	<						
		μg/L μg/L	<						
	1,2-Diphenylhydrazine Fluoranthene	μg/L μg/L	<						
	Fluorene		<						
	Hexachlorobenzene	μg/L μg/L	<						
	Hexachlorobutadiene	μg/L	<						
	, Owice and records was reached the analysis and seek according	μg/L μg/L	<						
	Hexachlorocyclopentadiene		<						
	Hexachloroethane	μg/L	<						
	Indeno(1,2,3-cd)Pyrene	μg/L	<						
	Isophorone	μg/L	<						
	Naphthalene	μg/L	- 10						
	Nitrobenzene	μg/L	<						
	n-Nitrosodimethylamine	μg/L	-						
	n-Nitrosodi-n-Propylamine	μg/L	<						
	n-Nitrosodiphenylamine	μg/L	<						
	Phenanthrene	μg/L	<						
	Pyrene	μg/L	<						
	1,2,4-Trichlorobenzene	μg/L	<						
	Aldrin	μg/L	<						
	alpha-BHC	μg/L	<						
	beta-BHC	μg/L	<						
	gamma-BHC	μg/L	<						
	delta BHC	μg/L	<						
	Chlordane	μg/L	<						
	4,4-DDT	μg/L	<						
	4,4-DDE	μg/L	<						
	4,4-DDD	μg/L	<						
	Dieldrin	μg/L	<						
	alpha-Endosulfan	μg/L	<						
and the	beta-Endosulfan	μg/L	<						
9 d	Endosulfan Sulfate	μg/L	<						
Group	Endrin	μg/L	<						
Ġ	Endrin Aldehyde	μg/L	٧						
620.	Heptachlor	μg/L	٧		Î				
	Heptachlor Epoxide	μg/L	٧		Î				
	PCB-1016	μg/L	٧		Î				
	PCB-1221	μg/L	٧		Ì				
	PCB-1232	μg/L	٧						
	PCB-1242	μg/L	٧						
	PCB-1248	μg/L	٧						
	PCB-1254	μg/L	٧						
	PCB-1260	μg/L	٧						
	PCBs, Total	μg/L	<						
	Toxaphene	μg/L	<						
	2,3,7,8-TCDD	ng/L	<						
	Gross Alpha	pCi/L							
2	Total Beta	pCi/L	<						
ď	Radium 226/228	pCi/L	<						
Group	Total Strontium	µg/L	<						
G	Total Uranium	µg/L	<						
	Osmotic Pressure	mOs/kg							
	A Marie Co.								
		1							
		1							

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Borchers America, NPDES Permit No. PA0002038, Outfall 002

Receiving Surface W	/ater Name:	Allegheny	River				No. Rea	aches to M	odel:	1		tewide Criteri			
Location	Stream Co	de* RN	/II* Eleva		ni²)* Sle	ope (ft/ft)		Withdrawa MGD)	Apply Crite			eat Lakes Crit SANCO Crite			
Point of Discharge	042122	125	5.7 968	.5 4745	.9				Ye	s					
End of Reach 1	042122	9	0 86	5 639	0				Ye	s					
Q 7-10 Location	RMI	LFY (cfs/mi ²)*		w (cfs)	W/D Ratio	Width (ft)	Depth (ft)	Velocit y (fps)	Time	Tributa Hardness	ary pH	Streat		Analys	sis pł
Point of Discharge	125.7	0.246	1169.08	Tributary	Katio	(11)	(11)	y (ips)	(days)	naidiless	рп	41.6	pH* 7.43	naruness	pi
End of Reach 1	90	0.248	1450									100	7.43		
Q,															
· n	0000000000	LFY	Flo	w (cfs)	W/D	Width	Depth	Velocit	пачег	Tributa	arv	Strea	m	Analys	sis
									Time			-200-000000			
Location	RMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (tps)	(-1)	Hardness	pН	Hardness	pН	Hardness	pl
Location Point of Discharge	RMI 125.7	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(daye)	Hardness	рН	Hardness	рН	Hardness	p.

Page 5

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Model Results

Borchers America, NPDES Permit No. PA0002038, Outfall 002

ructions Results	RETU	RN TO INPUT	S	SAVE AS PI	OF .	PRINT) ● All	○ Inputs	○ Results	O Limits	
Hydrodynamics											
-10											
RMI Stream PV Flow (cfs)	VS Withdrawal (cfs)	Net Stream Flow (cfs)		rge Analysis ow (cfs)	Slope (ft/f	Depth (f	ft) Width (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
125.7 1169.08		1169.08		0.206	0.00055	1.059	707.914	668.372	1.559	1.399	26882.728
90 1450.00	J	1,450									
e e											
	VS Withdrawal (cfs)	Net Stream Flow (cfs)		rge Analysis ow (cfs)	Slope (ft/f	Depth (f	ft) Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
				270 270 027	THE RESIDENCE OF THE PARTY OF T	4.70	707.914	409.154	2.912	0.740	12878.922
125.7 3566.85		3566.85		0.206	0.00055	1.73	707.914	409.104	2.912	0.749	12878.922
90 4305.508 Wasteload Allocations	CCT (min):	3566.85 4305.51	PMF:								12878.922
90 4305.508 Wasteload Allocations ✓ AFC	CCT (min):	4305.51		0.024 Fate	Analys	is Hardness	s (mg/l): 42		Analysis pH:	7.43	12878.922
90 4305.508 Wasteload Allocations AFC Pollutants	Conc	4305.51	PMF:	0.024 Fate Coef	Analys WQC (µg/L)	is Hardness WQ Obj (μg/L)	s (mg/l): 42		Analysis pH:		12878.922
90 4305.508 Wasteload Allocations AFC Pollutants Total Dissolved Solids (PV	Conc (ug/L)	4305.51 15 Stream CV 0	PMF:	0.024 Fate Coef 0	Analys WQC (µg/L) N/A	is Hardness WQ Obj (µg/L) N/A	s (mg/l): 42 WLA (µg/L) N/A		Analysis pH:	7.43	12878.922
90 4305.508 Wasteload Allocations AFC Pollutants Total Dissolved Solids (PV Total Aluminum	Conc (ug/l) WS) 0	4305.51 15 Stream CV 0 0	PMF:	0.024 Fate Coef 0 0	Analys WQC (µg/L) N/A 750	wQ Obj (µg/L) N/A 750	s (mg/l): 42 WLA (µg/L) N/A 101,262		Analysis pH:	7.43	12878.922
90 4305.508 Wasteload Allocations Pollutants Total Dissolved Solids (Purotal Aluminum Total Barium		4305.51 15 Stream CV 0 0 0	PMF:	0.024 Fate Coef 0 0 0 0	Analys WQC (μg/L) N/A 750 21,000	wQ Obj (µg/L) N/A 750 21,000	s (mg/l): 42 WLA (µg/L) N/A 101,262 2,835,349		Analysis pH:	7.43	12878.922
90 4305.508 Wasteload Allocations Pollutants Total Dissolved Solids (PV Total Barium Total Barium Total Boron	Stream Conc (unl)	4305.51 15 Stream CV 0 0 0 0	PMF:	0.024 Fate Coef 0 0 0 0	Analys WQC (μg/L) N/A 750 21,000 8,100	is Hardness WQ Obj (µg/L) N/A 750 21,000 8,100	s (mg/l): 42 WLA (µg/L) N/A 101,262 2,835,349 1,093,635	.033	Analysis pH:	7.43 omments	
90 4305.508 Wasteload Allocations Pollutants Total Dissolved Solids (Plantial Barium Total Barium Total Boron Total Chromium (III)	Stream Conc (100 100	15 Stream CV 0 0 0 0 0 0 0 0 0	PMF:	0.024 Fate Coef 0 0 0 0 0	Analys WQC (μg/L) N/A 750 21,000 8,100 280.163	is Hardness WQ Obj (µg/L) N/A 750 21,000 8,100 887	s (mg/l): 42 WLA (μg/L) N/A 101,262 2,835,349 1,093,635 119,705	.033	Analysis pH:	7.43 omments	
90 4305.508 Wasteload Allocations Pollutants Total Dissolved Solids (Purotal Aluminum Total Barium Total Boron Total Chromium (III) Total Cobalt	Stream Conc (unl)	4305.51 15 Stream CV 0 0 0 0	PMF:	0.024 Fate Coef 0 0 0 0	Analys WQC (μg/L) N/A 750 21,000 8,100	is Hardness WQ Obj (µg/L) N/A 750 21,000 8,100	s (mg/l): 42 WLA (µg/L) N/A 101,262 2,835,349 1,093,635	.033	Analysis pH:	7.43 omments ator of 0.316	3 applied
90 4305.508 Wasteload Allocations Pollutants Total Dissolved Solids (Plantial Barium Total Barium Total Boron Total Chromium (III)	Stream Conc (ugh) 0 0 0 0 0 0 0 0 0	4305.51 15 Stream CV 0 0 0 0 0 0 0	PMF:	0.024 Fate Coef 0 0 0 0 0 0 0	Analys WQC (μg/L) N/A 750 21,000 8,100 280.163 95	is Hardness WQ Obj (µg/L) N/A 750 21,000 8,100 8,87 95.0	s (mg/l): 42 WLA (µg/L) N/A 101,262 2,835,349 1,093,635 119,705 12,827	.033	Analysis pH:	7.43 omments ator of 0.316	3 applied
90 4305.508 Wasteload Allocations Pollutants Total Dissolved Solids (Pl Total Aluminum Total Barium Total Boron Total Chromium (III) Total Copper	Stream Conc (400) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4305.51 15 Stream CV 0 0 0 0 0 0 0 0	PMF:	0.024 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Analys WQC (µg/L) N/A 750 21,000 8,100 280.163 95 5.939	is Hardness WQ Obj (µg/L) N/A 750 8,100 8,100 887 95.0 6.19 N/A 27.1	s (mg/l): 42 WLA (µg/L) N/A 101,262 2,835,349 1,093,635 119,705 12,827 835	.033	Analysis pH:	7.43 omments ator of 0.316	5 applied applied
90 4305.508 Wasteload Allocations Pollutants Total Dissolved Solids (Pu Total Aluminum Total Barium Total Boron Total Chromium (III) Total Copper Total Iron Total Lead Total Manganese	Stream Conc (444) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4305.51 15 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.024 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Analys WQC (μg/L) N/A 750 21,000 8,100 280.163 95 5.939 N/A 24.846 N/A	is Hardness WQ Obj (µg/L) N/A 750 21,000 8,100 8,100 8,95.0 6,19 N/A 27.1 N/A	S (mg/l): 42 WLA (µg/L) N/A 101,262 2,836,349 1,093,635 119,705 12,827 835 N/A 3,657 N/A	.033	Analysis pH: C Chem Transl Chem Transl	7.43 omments ator of 0.316 lator of 0.96	6 applied applied 7 applied
90 4305.508 Wasteload Allocations Pollutants Total Dissolved Solids (Ptage 1) Total Barium Total Barium Total Chromium (III) Total Copper Total I Copper Total I Con Total Lead	One O O O O O O O O O O O O O O O O O O	15 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.024 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MQC (μg/L) N/A 750 21,000 8,100 280.163 95 5.939 N/A 24.846	is Hardness WQ Obj (µg/L) N/A 750 8,100 8,100 887 95.0 6.19 N/A 27.1	s (mg/l): 42 WLA (µg/L) N/A 101,262 2,835,349 1,093,635 119,705 12,827 835 N/A 3,657	.033	Analysis pH: C Chem Transl	7.43 omments ator of 0.316 lator of 0.96 ator of 0.997 ator of 0.998	6 applied applied 7 applied 3 applied

4/26/2023

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	4,100	4,100	3,810,927	
Total Boron	0	0		0	1,600	1,600	1,487,191	
Total Chromium (III)	0	0		0	36.181	42.1	39,104	Chem Translator of 0.86 applied
Total Cobalt	0	0		0	19	19.0	17,660	
Total Copper	0	0		0	4.238	4.41	4,103	Chem Translator of 0.96 applied
Total Iron	0	0		0	1,500	1,500	8,511,723	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	0.959	1.04	970	Chem Translator of 0.919 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	24.795	24.9	23,116	Chem Translator of 0.997 applied
Total Zinc	0	0		0	56.261	57.1	53,037	Chem Translator of 0.986 applied

☑ THH	CCT (min): 720	PMF: 0.164	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A
				8		

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	2,400	2,400	2,230,786	
Total Boron	0	0		0	3,100	3,100	2,881,433	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	929,494	
Total Nickel	0	0		0	610	610	566,992	
Total Zinc	0	0		0	N/A	N/A	N/A	

	Analysis pH:	N/A
--	--------------	-----

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	

Model Results 4/26/2023 Page 6

NPDES Permit No. PA0002038 **Borchers American**

_								•
	Total Lead	0	0	0	N/A	N/A	N/A	
	Total Manganese	0	0	0	N/A	N/A	N/A	
	Total Nickel	0	0	0	N/A	N/A	N/A	
	Total Zinc	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	1	Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	64,905	μg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	1,817,344	μg/L	Discharge Conc ≤ 10% WQBEL
Total Boron	N/A	N/A	Discharge Conc < TQL
Total Chromium (III)	39,104	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	8,221	μg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	535	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	8,511,723	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	970	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	929,494	μg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	19,503	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	4,975	μg/L	Discharge Conc ≤ 10% WQBEL

4/26/2023 Model Results Page 7 Thermal Discharge Recommended Permit Limits

Warm Water Fishes (WWF) Stream

Facility: **Borchers America** Permit Number: PA0002038 Stream: Allegheny River

	WWF			WWF	WWF		PMF
	Ambient Stream	Ambient Stream	Target Maximum	Daily	Daily		
	Temperature (°F)	Temperature (°F)	Stream Temp.1	WLA ²	WLA ³	at Discharge	
	(Default)	(Site-specific data)	(°F)	(Million BTUs/day)	(°F)	Flow (MGD)	
Jan 1-31	35	0	40	N/A Case 2	110.0	0.1332	0.02
Feb 1-29	35	0	40	N/A Case 2	110.0	0.1332	0.02
Mar 1-31	40	0	46	N/A Case 2	110.0	0.1332	0.02
Apr 1-15	47	0	52	N/A Case 2	110.0	0.1332	0.02
Apr 16-30	53	0	58	N/A Case 2	110.0	0.1332	0.02
May 1-15	58	0	64	N/A Case 2	110.0	0.1332	0.02
May 16-31	62	0	72	N/A Case 2	110.0	0.1332	0.02
Jun 1-15	67	0	80	N/A Case 2	110.0	0.1332	0.02
Jun 16-30	71	0	84	N/A Case 2	110.0	0.1332	0.02
Jul 1-31	75	0	87	N/A Case 2	110.0	0.1332	0.02
Aug 1-15	74	0	87	N/A Case 2	110.0	0.1332	0.02
Aug 16-31	74	0	87	N/A Case 2	110.0	0.1332	0.02
Sep 1-15	71	0	84	N/A Case 2	110.0	0.1332	0.02
Sep 16-30	65	0	78	N/A Case 2	110.0	0.1332	0.02
Oct 1-15	60	0	72	N/A Case 2	110.0	0.1332	0.02
Oct 16-31	54	0	66	N/A Case 2	110.0	0.1332	0.02
Nov 1-15	48	0	58	N/A Case 2	110.0	0.1332	0.02
Nov 16-30	42	0	50	N/A Case 2	110.0	0.1332	0.02
Dec 1-31	37	0	42	N/A Case 2	110.0	0.1332	0.02

¹ This is the maximum of the WWF WQ criterion or the ambient temperature. The ambient temperature may be either the design (median) temperature for WWF, or the ambient stream temperature based on site-specific data entered by the user. A minimum of 1°F above ambient stream temperature is allocated.

Borchers America-Thermal Discharge Limit Calc

5/3/2023

 $^{^{2}}$ The WLA expressed in Million BTUs/day is valid for Case 1 scenarios, and disabled for Case 2 scenarios.

³ The WLA expressed in °F is valid only if the limit is tied to a daily discharge flow limit (may be used for Case 1 or Case 2). WLAs greater than 110°F are displayed as 110°F.

Mussel Impact Evaluation Sheet - Outfall 002

Facility:		Borcher's America	
Permit I	Number:	PA0002038	Effective: Not reissued yet Expiration: N/A
Outfall I	No:	002	
Location	1:	Franklin PA	
Discharg		Allegheny River	
Site Spe	cific Mussel Survey Completed:	No	
	ge and Stream Characteristics		Comments
Q_S	Stream Flow	755 MGD / 1169 cfs	
Q_D	Discharge Flow	0.1332 MGD / 0.20612 cfs	
C _{s(cl7)}	Instream chloride Concentration	16.27 mg/L	8/29/2016 upstream stream sample in Reno, PA
C _{E(d")}	Discharge chloride (existing)	21.5 mg/L	See Fact Sheet
C _{P(Cl7)}	Discharge chloride (proposed)	21.5 mg/L	
C _{S(Ni)}	Instream nickel Concentration	2 µg/L	Average of three instream samples taken on 8/8, 8/19, and 8/29/2022 (< 0.002, < 0.002, and 0.002 mg/L) in Plum Boro, Allegheny County.
C _{E(Ni)}	Discharge nickel (existing)	10 μg/L	
C _{P(Ni)}	Discharge nickel (proposed)	10 μg/L	
C _{S(Zn)}	Instream zinc Concentration	6 μg/L	8/29/2016 upstream stream sample in Reno, PA
C _{E(Zn)}	Discharge zinc (existing)	51.8 μg/L	
Zn _{P(Zn)}	Discharge zinc (proposed)	51.8 μg/L	
C _{s(cu)}	Instream copper Concentration	0.909 μg/L	8/29/2016 upstream stream sample in Reno, PA
C _{E(Qu)}	Discharge copper (existing)	14.4 μg/L	
Zn _{P(Cu)}	Discharge copper (proposed)	14.4 μg/L	
C _{S(NH3-N)}	Instream NH ³ -N	0.023 mg/L	8/29/2016 upstream stream sample in Reno, PA
C _{E(NH3-N)}	Discharge NH ³ -N (existing)	0.49 mg/L	
C _{P(NH3-N)}	Discharge NH ³ -N (proposed)	0.49 mg/L	
pH₅	Instream pH	7.43 S.U.	WQN #805
Ts	Instream Temp.	25 °C	Default value for a WWF
C _{C(NH3-N)}	Ammonia criteria	1.070 mg/L	From ammonia criteria comparison spreadsheet -using instream pH and Temp
C _{c(d1)}	Chloride criteria	78 mg/L	USFWS criteria
C _{C(Ni)}	Nickel criteria	7.3 μg/L	USFWS criteria
C _{C(Zn)}	Zinc criteria	13.18 μg/L	USFWS criteria
C _{c(Ou)}	Copper criteria	10 μg/L	USFWS criteria
Ws	Stream width	30.5 meters	Google Earth (Approximate)

pH_s	7.43 9	S.U.	(Default value is 7	.0)		
T _S 25 °C (Default value is 2			(Default value is 2	0° for a CWF and 25° for a WWF)		
Acute	Criteria					
	METHOD and UNITS		CRITERIA		Comments	
	Old CMC (mg TAN/L) =		4.494			
	EPA 2013 CMC (mg TAN/L) :	=	6.758	Oncorhynchus pre sent	* formula on pg. 41 (plateaus at 15.7 C	
			6.758	Oncorhynchus absent	* formula on pg. 42 (plateaus at 10.2 C	
Chroni	onic Criteria	1				
	METHOD and UNITS		CRITERIA		COMMENTS	
	Old CMC (mg TAN/L) =		1.046			
CONHAI	(u) EPA 2013 CMC (mg TAN/L)	=	1.070		* formula on pg. 46 (plateaus at 7 C)	

Endangered Mussel Species Impact Area Calculations:

Existing Area of Impact

☑ N/A - No Site Specific Mussel Survey Completed for this Discharger

Approximate Area of Impact Determined from Survey =	N/A m ²
Existing Mussel Density within Area of Impact =	
Rabbitsfoot (Quadrula cylindrical)	per m ²
Northern Riffleshell (Epioblasma torulosa rangiana)	per m ²
Rayed Bean (Villosa fabalis)	per m ²
Club shell (Pleuro bema clava)	per m ²
Sheepnose (Plethobasus cyphyus)	per m ²
Snuffbox (Epioblasma triquetra)	per m ²
TOTAL	0 per m ²

(Enter N/A if no site specific survey has been completed)

Method 1 - Utilizing Site Specific Mussel Survey Information

☑ N/A - No Site Specific Mussel Survey Completed for this Discharger

This method utilizes a simple comparison of the size of the existing area of impact as determined from a site specific mussel survey and the chlorides in the existing discharge compared to the chlorides in the proposed discharge after the facility upgrades treatment technologies. This method is only applicable to where the stream impairment is caused by TDS and/or chlorides as the plume has been delineated through conductivity measurements.

A. Area of Impact Determined from Survey:	N/A	m ²
B. Chlorides in Existing Discharge:		22 mg/L
C. Chlorides in Proposed Discharge after Treatment Facility Upgrades:	ľ	21.5 mg/L
D. Approximate Area of Impact after Treatment Facility Upgrades:		N/A m ²

A/B = D/C

Therefore, D = (A*C)/B

Outfall 001

Facility:	Borchers America			
Permit Number:	PA0002038	Effective: Not reissued yet	Expiration: N/A	
Outfall No:	002			
Location:	Franklin PA			
Discharge to:	Allegheny River			
Site Specific Mussel Survey Completed:	No			

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 2 - Mass Balance Relationship of Loading and Assimilative Capacity of Stream

	$L_{S(CI)}$ = Available Chloride Loading in Stream = $C_{C(CI)}$ - $C_{S(CI)}$ X Q _S (MGD) X 8.34 =	388,695 lbs/Day
_	$L_{D-MAX(CT)} = Current Maximium Discharge Chloride Loading exceeding criteria = (C_{E(CLT)}, C_{E(CLT)}) X Q_D(MGD) X 8.34 =$	-63 lbs/Day
<u> </u>	$\Re_{E(Cl^{-})}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Cl^{-})}/L_{S(Cl^{-})}$ =	0% of Stream Capacity
Chloride (Cl ⁻)	$L_{D(CT)} = Proposed Discharge CI^- Loading exceeding criteria after Treatment Facility Upgrades = (C_{P(CT)} - C_{P(CT)}) \times Q_0(MGD) \times 8.34 =$	-62.765172 lbs/Day
	$\Re_{P(Cl^{-})}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Cl^{-})}/L_{S(Cl^{-})}$ =	-0.02% of Stream Capacity
0	Proposed Area of Impact due to Chloride * = $\left(\frac{9}{P(Cl_1)} \times W_S\right)^2 \times 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(N)}$ = Available Nickel Loading in Stream = $C_{C(N)} - C_{S(N)} \times Q_{S}(MGD) \times 8.34 =$	33,373 lbs/Day
	$L_{D-MAX(N)}$ = Current Maximium Discharge Nickel Loading exceeding criteria = $(C_{E(N)}, C_{E(N)}) \times Q_D(MGD) \times 8.34$ =	3 lbs/Day
Ē	% _{F(Ni)} = Percent of Stream Capacity for Current Loading = L _{D-MAX(Ni)} / L _{S(Ni)} =	0% of Stream Capacity
Nickel(Ni)	L _{D(Ni)} = Proposed Discharge Ni Loading exceeding criteria after Treatment Facility Upgrades = (C _{P(Ni)} - C _{P(Ni)}) X Q _D (MGD) X 8.34 =	2.9993976 lbs/Day
Nic	$\Re_{P(Ni)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Ni)} / L_{S(Ni)}$ =	0.01% of Stream Capacity
	Proposed Area of Impact due to Nickel * = $(\%_{P(N)} X W_S)^2 X 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
ì	$L_{S(Zn)}$ = Available Zinc Loading in Stream = $C_{C(Zn)}$ - $C_{S(Zn)}$ X $Q_S(MGD)$ X 8.34 =	45,210 lbs/Day
ſι	LD-MAX(Zn) = Current Maximium Discharge Zinc Loading exceeding criteria = (C _{E(Zn)} , C _{E(Zn)}) X Q _D (MGD) X 8.34 =	43 lbs/Day
	$\Re_{E[Z_D]}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Z_D)} / L_{S(Z_D)}$ =	0% of Stream Capacity
Zinc (Zn)	Logan = Proposed Discharge Zn Loading exceeding criteria after Treatment Facility Upgrades = (C _{P(Zn)} - C _{P(Zn)}) X Q ₀ (MGD) X 8.34 =	42.9024946 lbs/Day
Zin	$\Re_{P(Z_n)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Z_n)}/L_{S(Z_n)}$ =	0.09% of Stream Capacity
	Proposed Area of Impact due to Zinc * = (% _{P[Zn]} X W _s) ² X 0.5 =	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(Cu)}$ = Available Copper Loading in Stream = $C_{C(Cu)}$ - $C_{S(Cu)}$ X $Q_{S}(MGD)$ X 8.34 =	57,243 lbs/Day
	LD-MAXICUI = Current Maximium Discharge Copper Loading exceeding criteria = (C _{E(Cu)} , C _{E(Cu)}) X Q _D (MGD) X 8.34 =	5 lbs/Day
(3)	% _{F(O,I)} = Percent of Stream Capacity for Current Loading = L _{D-MAX(O,I)} / L _{S(O,I)} =	0% of Stream Capacity
- Fer	Lp(c) = Proposed Discharge Cu Loading exceeding criteria after Treatment Facility Upgrades = (C _{P(C)} - C _{P(C)}) X Q _D (MGD) X 8.34 =	4.8879072 lbs/Day
Copper (Cu)	$%_{P(Q_i)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Q_i)}/L_{S(Q_i)}$ =	0.01% of Stream Capacity
O	Proposed Area of Impact due to Copper* = $\{\%_{P(Cu)} \times W_S\}^2 \times 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	L _{S(NH3-N)} = Available NH3-N Loading in Stream = C _{C(NH3-N)} - C _{S(NH3-N)} X Q _S (MGD) X 8.34 =	6,593 lbs/Day
gen	L _{D-MAX(NH3-N1} = Current Maximium Discharge NH3-N Loading = C _{E(NH3-N1}) X Q _D (MGD) X 8.34 =	1 lbs/Day
tro.	% _{E(NH3-N)} = Percent of Stream Capacity for Current Loading = L _{D-MAX(NH3-N)} / L _{S(NH3-N)} =	0% of Stream Capacity
Ammonia-Nitrogen (NH3-N)	LDINH3-N) = Proposed Discharge NH3-N Loading after Treatment Facility Upgrades = Cp(NH3-N) - Cc(NH3-N) X QD(MGD) X 8.34 =	-1 lbs/Day
臣岂	% _{P(N)(3-N)} = Percent of Stream Capacity for Proposed Loading = L _{D(N)(3-N)} / L _{S(N)(3-N)} =	-0.02% of Stream Capacity
E	Proposed Area of Impact due to NH3-N * = $(\Re_{p(NH3-N)} \times \Im_{p(NH3-N)} \times \Im_{p(NH$	0.00 m ²
Ā	* assuming equal flow across transect and 90° spread at discharge	0.00 111
	a assuming equal now across transect and both spread at discribing	

Outfall 001

Facility:	Borchers America			
Permit Number:	PA0002038	Effective: Not reissued yet	Expiration: N/A	
Outfall No:	002			
Location:	Franklin PA			
Discharge to:	Allegheny River			
Site Specific Mussel Survey Completed:	No		_	

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 3 - Mass Balance Relationship of Stream Flow, Proposed Effluent Quality, and Mussel Protection Criteria

Q_{A}	$(cl^{-})C_{S(cl^{-})} + Q_{D}C_{P(cl^{-})} = Q_{T}C_{C(cl^{-})}$	*
	Q _{A(CIT)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D(cfs)$	
_ Q ₄	$(cl^{-})C_{S(Cl^{-})} + Q_{D}C_{P(Cl^{-})} = (Q_{D} + Q_{S})C_{C(Cl^{-})}$	
	LVING FOR $Q_{A(CF)} = [(Q_DC_{P(CF)}/C_{C(CF)}) - Q_D)]/(1 - C_{S(CF)}/C_{C(CF)}) =$	-0.18865673 cfs
mide %	ran = Percent of Stream Width Required to Assimilate Chlorides to Criteria	
E Co	ncentration = Q _{A(CII} / Q _S (cfs) =	-0.0161%
W ₁	(dT) = Proposed Width of Stream required to Assimilate Chlorides to Criteria	
Cor	ncentration = W _S X % _{P(Cl⁻)}	-0.004922 meters
Pro	posed Area of Impact due to Chloride * = $(W_{I(C T)})^2 \times 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
Q_{AI}	${}_{(Ni)}C_{S(Ni)} + Q_DC_{P(Ni)} = Q_TC_{C(Ni)}$	
	Q _{A(Ni)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	Ì
	$Q_{T} = Q_{S} + Q_{D}(cfs)$	
Qa	$(N_i)^C S(N_i) + Q_D C_{P(N_i)} = (Q_D + Q_S)^C C(N_i)$	
	LVING FOR $Q_{A(Ni)} = [(Q_DC_{P(Ni)}/C_{C(Ni)}) - Q_D)] / (1 - C_{S(Ni)}/C_{C(Ni)}) =$	0.10500453 cfs
	rdn = Percent of Stream Width Required to Assimilate Nickel to Criteria	
N Col		0.0090%
W _i	ncentration = $Q_{A(Ni)}/Q_S(cfs)$ = $Q_{A(Ni)}$ = Proposed Width of Stream required to Assimilate Nickel to Criteria	
Co	ncentration = W _S X % _{P(Ni)}	0.002740 meters
	oposed Area of Impact due to Nickel * = (W _{I(Ni)}) ² X 0.5 =	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
Q_{Al}	$(z_n)^{C}_{S(Zn)} + Q_{D}^{C}_{P(Zn)} = Q_{T}^{C}_{C(Zn)}$	
	Q _{A(Zn)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D(cfs)$	
Q_{Al}	$(z_n)C_{S(Zn)} + Q_DC_{P(Zn)} = (Q_D + Q_S)C_{C(Zn)}$	
	LVING FOR $Q_{A(Zn)} = [(Q_DC_{PZn})/C_{C(Zn)}) - Q_D]]/(1 - C_{S(Zn)}/C_{C(Zn)}) =$	1.10868446 cfs
	rga = Percent of Stream Width Required to Assimilate Zinc to Criteria	
i Co	ncentration = Q _{A(Zn)} / Q _S (cfs) =	0.0948%
Wi	(Zn) = Proposed Width of Stream required to Assimilate Zinc to Criteria	
Co	ncentration = W _S X % _{PZn)}	0.028926 meters
Pro	oposed Area of Impact due to Zinc * = $(W_{(Zn)})^2 \times 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
Q_{Al}	$(c_{ij})C_{S(c_{ij})} + Q_{D}C_{P(c_{ij})} = Q_{T}C_{C(c_{ij})}$	
	Q _{A(Cu)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D$ (cfs)	
Q _A	$(c_0)C_{S(C_0)} + Q_DC_{P(C_0)} = (Q_D + Q_S)C_{C(C_0)}$	
	LVING FOR $Q_{A(Cu)} = [(Q_DC_{PCu)}/C_{C(Cu)}) - Q_D)]/(1 - C_{S(Cu)}/C_{C(Cu)}) =$	0.09976108 cfs
ber %	Oil = Percent of Stream Width Required to Assimilate Copper to Criteria	
g Co		0.0085%
W	ncentration = $Q_{A(Q_0)}/Q_S$ (cfs) = $Q_{A(Q_0)}$ = Proposed Width of Stream required to Assimilate Copper to Criteria	
Co	ncentration = W _S X % _{PCu)}	0.002603 meters
Pro	pposed Area of Impact due to Copper * = $(W_{I(O_J)})^2 \times 0.5$ =	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
Q_{Ai}	$(NH3-N)C_{S(NH3-N)} + Q_{D}C_{P(NH3-N)} = Q_{T}C_{C(NH3-N)}$	
2	Q _{A(NH3-N)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
<u>₽</u>	$Q_{T} = Q_{S} + Q_{D}(cfs)$	
Z QA	$(NH3-N)C_S(NH3-N) + Q_DC_{P(NH3-N)} = (Q_D+Q_S)C_{C(NH3-N)}$	
so ge	LVING FOR $Q_{A(NH3-N)} = [(Q_DC_{P(NH3-N)}/C_{C(NH3-N)}) - Q_D)]/(1 - C_{S(NH3-N)}/C_{C(NH3-N)}) =$	-0.114183 cfs
# to	(NH3-N) = Percent of Stream Width Required to Assimilate NH3-N to Criteria	
Z Co		-0.0098%
Ammonia-Nitrogen (NH3-N)	ncentration = $Q_{\Delta(NH3:N)}$ / Q_S (cfs) = $\frac{1}{(NH3:N)}$ = Proposed Width of Stream required to Assimilate NH3-N to Criteria	
E Co	ncentration = W _S X % _{P(NHS-N)}	-0.002979 meters
⋖	pposed Area of Impact due to NH3-N * = $(W_{I(NH3-N)})^2$ X 0.5 =	0.00 m ²
1	* assuming equal flow across transect and 90° spread at discharge	I