

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Major

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0002372

APS ID 1030100

Authorization ID 1339067

Applicant Name	Intern	ational Waxes Inc.	Facility Name	International Waxes Plant
Applicant Address	45 Roi	ute 446	Facility Address	Valley Plant 45 Route 446
	Smeth	port, PA 16749-5413		Smethport, PA 16749
Applicant Contact	Daniel	Goldsmith	Facility Contact	Daniel Goldsmith
Applicant Phone	(814) 8	387-4056	Facility Phone	(814) 887-4056
Applicant E Mail	dgolds	mith@igiwax.com	Facility E Mail	
Client ID	24224	4	Site ID	264504
Municipality	Keatin	g Township	County	McKean
SIC Code	2999		NAIC Code	324199
SIC Description	Mfg - F	Petroleum And Coal Products, NEC	NAIC Description	All Other Petroleum & Coal Products Mfg
Date Application Rec	eived	December 24, 2020	EPA Waived?	No
Date Application Accepted Februa		February 23, 2021	If No, Reason	Major Facility

Summary of Review

No current open violations. 9/21/2023 CWY

Proposed are aluminum and copper limitations based on daily maximums.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		William H. Mentzer	
		William H. Mentzer, P.E.	
		Environmental Engineering Specialist	June 22, 2023
X		Chad .W. Yurisic Chad W. Yurisic, P.E.	
		Environmental Engineer Manager	9/21/2023

Discharge, Receiving	g Waters and Water Supply Info	rmation		
Outfall No.	002	Design Flow (MGD)	0.069	
Latitude DP	41° 51' 23.55"	Longitude DP	-78° 26' 31.20"	
Latitude NHD	41° 51' 23.43"	Longitude NHD	-78° 26' 31.79"	
Quad Name	Smethport	Quad Code	0418	
Wastewater Descri	ption: Noncontact Cooling Wat	er (NCCW) and storm water		
Receiving Waters	Potato Creek	Stream Code	57625	
NHD Com ID	112369381	RMI	6.62	
Drainage Area	167.9	Yield (cfs/mi²)	0.08	
Q ₇₋₁₀ Flow (cfs)	7.42	Q ₇₋₁₀ Basis	Potato Creek	
Elevation (ft)	1441.75	Slope (ft/ft)	0.00056	
Watershed No.	16-C	Chapter 93 Class.	TSF	
Existing Use	statewide	Existing Use Qualifier	none	
Exceptions to Use	none	Exceptions to Criteria	none	
Comments	The outfall is at Potato Creek no	ode RMI (NHD) 0.05 and above C	Cole Creek	
	0.069-MGD is the current and a	inticipated discharge. 1.0-MGD is	the South Pond design flow.	
Assessment Status	Attaining Use(s)			
Cause(s) of Impairr	ment			
Source(s) of Impair	ment			
TMDL Status		Name		
Background/Ambie	nt Data	Data Source		
pH (SU)				
Temperature (°F)				
Hardness (mg/L)				
Other:		WQN 862 and Blue Eye Run		
Nearest Downstrea	m Public Water Supply Intake	State of New York		
PWS Waters	Allegheny River	Flow at Intake (cfs)	102.12	
	264.32	Distance from Outfall (mi)	19.925	

Changes Since Last Permit Issuance: none

Other Comments: none

Discharge, Receivin	g Waters and Water Supply Info	rmation		
Outfall No.	001	Design Flow (MGD)	0.712	
Latitude DP	41° 51' 26.55"	Longitude DP	-78° 26' 27.22"	
Latitude NHD	41° 51' 26.60"	Longitude NHD	-78° 26' 27.25"	
Quad Name	Smethport	Quad Code	0418	
Wastewater Descri	ption: Outfall 101, non-contact	cooling and storm water		
Receiving Waters	Potato Creek	Stream Code	57625	
NHD Com ID	112369321	RMI	6.51	
Drainage Area	204.98	Yield (cfs/mi²)	0.08	
Q ₇₋₁₀ Flow (cfs)	9.114	Q ₇₋₁₀ Basis	Potato Creek	
Elevation (ft)	1441.44	Slope (ft/ft)	0.00056	
Watershed No.	16-C	Chapter 93 Class.	WWF	
Existing Use	statewide	Existing Use Qualifier	none	
Exceptions to Use	none	Exceptions to Criteria	none	
Comments	The outfall is at Potato Creek no	ode RMI (NHD) 0.89 and below 0	Cole Creek	
	Only Outfall 101 is a process mo	odelling concern.		
	Potato Creek has a stream class	sification change at Cole Creek to	o WWF	
	0.712-MGD is the current and a	nticipated discharge. 6.7-MGD is	North Pond design discharge,	
Assessment Status	Attaining Use(s)			
Cause(s) of Impair	ment			
Source(s) of Impair	ment			
TMDL Status		Name		
Background/Ambie	nt Data	Data Source		
pH (SU)				
Temperature (°F)				
Hardness (mg/L)				
Other:		WQN 862 and Blue Eye Run		
Nearest Downstrea	am Public Water Supply Intake	State of New York		
PWS Waters	Allegheny River	Flow at Intake (cfs)	102.12	
PWS RMI	264.32	Distance from Outfall (mi)	19 17	

Changes Since Last Permit Issuance: none

Other Comments: none

Discharge, Receiving Waters and Water Supply Information							
Outfall No.	101	Design Flow (MGD)	0.576				
Latitude DP	41º 51' 28.31"	Longitude DP	-78° 26' 31.55"				
Latitude NHD	41° 51' 26.42"	Longitude NHD	-78° 26' 27.56"				
Quad Name	Smethport	Quad Code	0418				
Wastewater	Lubrication production (process	water), domestic and other misce	ellaneous waste & storm water				
Receiving Waters	Potato Creek through Outfall 001	Stream Code	NA				
NHD Com ID	112369321	RMI	NA				
Drainage Area	204.98	Yield (cfs/mi²)	NA				
Q ₇₋₁₀ Flow (cfs)	NA	Q ₇₋₁₀ Basis	NA				
Elevation (ft)	1441.44	Slope (ft/ft)	NA				
Watershed No.	16-C	Chapter 93 Class.	WWF				
Existing Use	NA	Existing Use Qualifier	none				
Exceptions to Use	none	Exceptions to Criteria	none				
Comments	Internal monitoring point prior to	final polishing by heat removal and cooling water dilution.					
	0.576-MGD is the effluent design	n, current and anticipated dischar	rge.				
	0.72-MGD is the treatment facilit	y influent design flow.					
Assessment Status	Attaining Use(s)						
Cause(s) of Impairn	nent						
Source(s) of Impairs	ment						
TMDL Status		Name					
Background/Ambier	nt Data	Data Source					
pH (SU)							
Temperature (°F)							
Hardness (mg/L)							
Other:		WQN 862 and Blue Eye Run					
Nearest Downstream	m Public Water Supply Intake	State of New York					
PWS Waters	Allegheny River	Flow at Intake (cfs)	102.12				
PWS RMI 2	264.32	Distance from Outfall (mi)	19.17				

Changes Since Last Permit Issuance: none

Other Comments: none

Discharge, Receiving Waters and Water Supply Information						
.	117					
Outfall No.	003	Design Flow (MGD)	NA			
Latitude DP	41° 51' 29.44"	Longitude DP	-78° 26' 44.27"			
Latitude NHD	41° 51' 30.16"	Longitude NHD	78° 26' 46.73"			
Quad Name	Smethport	Quad Code	0418			
Wastewater Descrip	otion: Stormwater					
Receiving Waters	Cole Creek	Stream Code	57625			
NHD Com ID	112369323	RMI	0.25			
Drainage Area	36.8	Yield (cfs/mi²)	0.08			
Q ₇₋₁₀ Flow (cfs)	2.94	Q ₇₋₁₀ Basis	Potato Creek			
Elevation (ft)	1446,68	Slope (ft/ft)	0.00177			
Watershed No.	16-C	Chapter 93 Class.	CWF			
Existing Use	statewide	Existing Use Qualifier	none			
Exceptions to Use	none	Exceptions to Criteria	none			
Comments	The outfall is at Cole Creek nod	e RMI (NHD) 0.25 above its conf	luence with Potato Creek.			
Assessment Status						
Cause(s) of Impairr						
Source(s) of Impair	ment					
TMDL Status		Name				
5		D 0				
Background/Ambie	nt Data	Data Source				
pH (SU)						
Temperature (°F)						
Hardness (mg/L)		WON 600 151 5 5				
Other:		WQN 862 and Blue Eye Run				
Nearest Downstrea	m Public Water Supply Intake	State of New York				
	Allegheny River	Flow at Intake (cfs)	102.12			
_	264.32	Distance from Outfall (mi)	19.43			
	-0 1.02	Diotarioo ironii Gatiaii (iiii)				

Changes Since Last Permit Issuance: none Other Comments: none

Treatment Facility Summary

Treatment Facility Name: International Waxes Plant

WQM Permit No.	Issuance Date
4271201	December 1, 1971
4271201 T3	
4277201	February 28, 1978
4277201 T3	

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Industrial	Other Processes (Industrial Waste)	Temperature Control (Cooling)	No Disinfection	0.576
ydraulic Capacity	Organic Capacity			Biosolids

Hydraulic Capacity
(MGD)Organic Capacity
(Ibs/day)Load StatusBiosolids TreatmentUse/Disposal_0.576638Not OverloadedOff-site

Changes Since Last Permit Issuance: None

Other Comments: Two stage oil removal, equalization, and biological treatment (built for petroleum refinery operations)

WQM application files do not contain the original facility designs nor can the facility descriptions be verified.

WQM permit 4277201 is for gravity and DAF oil treatment followed by aeration and clarification. Facility reworking may have changed the DAF and aeration system. The 0.576-MGD design flow is a refinery discharge design average flow including storm water, process, and other wastes. The influent design average flow is 0.072-MGD. Both influent and effluent maximum flow is 1.008-MGD. The average design load was 638-PPD at 133-mg/L with a maximum 2520-PPD BOD5 load. Storm water was included as it was not separately collected and equalized for treatment. Higher waste flows were considered to be storm water related and used to adjust the refinery permit requirements for storm water treatment.

WQM permit 4271201 is for the North and South Spray Ponds. Treatment is limited to evaporative cooling. Phenol destruction may have been permitted but known to be used only at the Bradford Refinery where it was replaced as it could not provide permit compliance. No organic load should be associated with this permit. Design (maximum) Discharge is 6.7-MGD at the North Pond and 1.0-MGD at the South Pond.

The EPA end-of-pipe treatment is equalization, two stage oil removal, and biological treatment. Storm water and process wastes are to be separately equalized with independent flow measurement prior to treatment so that a storm water allowance can be calculated (petroleum refinery operations).

The first NPDES permit was issued to Quaker State Refining by the EPA on February 28, 1975 for a topping facility with lube processing. The NPDES permit was re-issued in 1985. These permits were production (petroleum refinery with topping and lube production) based with mass limitations.

In 1990 the facility was transferred from Quaker State Refining to Petrowax Pa. At this time the facility quit crude oil topping and started processing reduced Oklahoma crude into lubrication oils for this facility and the Emlenton Refinery. With this change the technology requirements changed from the refinery promulgated best available treatment (BAT) to lube processing best professional treatment (BPJ).

The BPJ requirements were derived from the Quaker State Refining Emlenton facility effluent requirements. This facility was originally a topping refinery with lube processing but by the time the Commonwealth reviewed the NPDES application production was limited to lube processing. Since then the Emlenton Refinery has been, transferred to new owner/operators, shutdown, and dismantled. During the Emlenton Refinery NPDES application review, the EPA objected to applying the refining guidelines directly and recommended using the development document concentrations and factors to develop the NPDES permit requirements. This BPJ development predates the Department's BPJ procedures but indirectly incorporates most BPJ procedures through the EPA Petroleum Refining Point Source Category review dated April 1974. End-of-pipe treatment is the same as for refineries – equalization, two stage oil removal and biological treatment.

The Organic Chemicals and Synthetic Fabrics Category does not cover SIC code 2999 listed industries but does cover the NAICS Code 324199 equivalent. Also, none of the sector parts address lubrication oils and greases. Thus, the existing BPJ basis remains.

Op	cration		Design			licat			
		MGD	MGD				•	-	Waste Source/Comments
101		1		0.143	24	7	365	12	Steam stripping wax distillates vacuum distil rerun condensate
		2		0.036	24	7	365	12	Hydrocarbon contact propane extraction condensate
		3		0.071	24	7	365	12	Wax & soft wax steam stripping MEK deoiler condensate
		4		0.116	24	7	365	12	filter house wet scrubber hydrocarbon contact bauxite filter condensate
		5		0.045	24	7	7365	12	hydrocarbon contact filter house air washer slurry blowdown water and condensate
		6		0.004	*	*		*	naphtha recovery process rerun unit filter wash
		7		0.098	24	7	365	12	process unit drains
				0.0599	24	7	365	12	Tankage steam condensate-minor error source 900-
									gallons missing in Outfall 101 total
				0.004	24	7	365	12	sanitary wastes
	Total	0.677	0.566	0.576	24	7	365	12	720 000 square feet storm water drainage (5,049MGD
									with a 4" storm event)
	Total			0.559	24	7	365	12	March 25, 2015 application
001				0.033	24	7	365	12	MEK Cooling
				0.003	24	7	365	12	Filterhouse cooling
				0.027	24	7	*	*	PDR cooling
				0.007	24	7	365	12	Rerun unit cooling
				0.058	*	*	365	*	Vacuum distillation
				0.008	24	7	365	12	boiler blowdown and NCCW
	Total	1.334		0.136	24	7	365	12	with 180 000 square feet storm water drainage
									(3.366-MGD with a 4" storm event)
	Total			0.128					March 25, 2015 application
001		2.011	3.229	0.712					
001				0.352	24	7	365	12	March 25, 2015 application
002		0.129		0.069	24	7	365	12	vacuum distillation and storm water
	Total	0.129	0.436	0.069	24	7	365	12	with 5 000 square feet storm water drainage
002				0.128	24	7	365	12	March 25, 2015 application
003	}								Storm water drainage

^{*} varies

Storm water contribution to Outfalls 101 and 001 is significant. The industrial waste component of Outfall 001 is 0.713-MGD. Adding a storm water contribution to 0.712-MGD approximates the 1.334-MGD DMR reported discharge. Tankage stream condensate is reported as 0.059 and 0.0599-MGD. This not a significant error.

2019 annual production	146 000 000 pounds
2019 Annual average production	400 000 pounds daily
2019 Maximum monthly production	15 500 000 pounds in June
2019 annual production	25 768- barrels
2019 Annual average production	70.60 barrels daily
2019 Maximum monthly production	2 419 barrels in June

The permit requirements are BPJ based on oil refinery development documents and discharge volume consequently production data was not used to set effluent requirements:

Notes

This is a reasonable production based Best Professional Judgment permit. Reasonable production for this site is defined as the current production as reported by the permittee and is expected to continue.

Industrial waste design is for the anticipated daily maximum production and over states production and generates relaxed effluent requirements and should not be used to calculate NPDES permit requirements.

Treatment design was for an average 0.576-MGD and a maximum 1.00-MGD discharge and an average 120-PPD and a maximum 242-PPD BOD5. The North Pond design flow was 6.7-MGD while the South Pond design flow was for 1.0-MGD. The pond discharges should be daily maximums

The effluent requirements were developed for the lubrication production facilities at the Quaker State Emlenton refinery after the refinery quit refining crude petroleum. During the NPDES permit drafting Larry Liu, an EPA petroleum refining expert recommended using the Petroleum Oil Refining Point Source Development Document effluent concentrations to determine NPDES technology-based requirements.

By using the development document effluent requirements and the EPA's recommended end-of-pipe treatment independent feasibility cost analysis is avoided.

As long as the Quaker State Farmers Valley facility was processing crude oil EPA's Petroleum effluent guidelines were used to set technology requirements. Once the facility quit processing Pennsylvania Crude, shut down its topping units and started processing reduced Oklahoma crude petroleum the facility was no longer operating as a refinery and the EPA Petroleum Refinery Guidelines were no longer appropriate. As both the Farmers Valley and Emlenton facilities were not operating as refineries and had similar waste treatment facilities the same BPJ requirements were applied to both,

Grab samples for Oil and Grease have been retained. Previously 24-hour composite samples were required. The 24-composite sample technique was not well understood and for clarification was replaced by a daily grab sample.

Oil and grease composite sampling is done according to the volatile organics composite sample but with a different final step. In the laboratory volatile organic grab samples are mixed and a single analysis done. For oil and grease the grab samples are individually a analyzed and the results averaged.

Outfall	Part	Source	Design	2010	2015	2021
101	1	Steam stripping condensate	C	0.143	0.135	0.143
	2	Propane Extraction Condensate		0.034	0.034	0.036
	3	MEK desalter condensate		0.069	0.068	0.071
	4	Bauxite filtering condensate		0.116	0.115	0.116
	5	Boiler House air washer condensate and blow down		0.045	0.045	0.045
	6	Rerun filter wash		0.004	0.004	0.004
	7	Process Unit Drains		0.098	0.098	0.098
	8					
	9	Tankage		0.055	`0.056	0.0599
		Sanitary		0.002	0.004	0.004
		Total	0.72	0.566	0.559	0.576
001	1					
	2	MEK NCCW		1.775	0.113	0.033
	3	Filterhouse NCCW		0.061	0.008	0.003
	4	PDR NCCW		0.826	0.086	0.027
	5	Rerun NCCW		0.168	0.020	0.007
	6	Vacuum Distillation NCCW		0.393	0.117	0.058
`	7	Boiler blowdown		0.006	0.008	0.008
\		Total		3.229	0.352	0.136
		Total Outfall 001 (with Outfall 101)	6.7	3.795	0.911	0.713
002	1					
	2	Vacuum Distillation NCCW		0.393	0.018	0.069
	8	Total Vacuum Distillation & Storm water	1.0	0.436	0.128	0.128
003						

Compliance History							
Summary of Inspections:	The last known inspection was by Don Hanna on May 19, 2011. Facility in decent shape. Some confusion on 24-hour oil and grease monitoring. E-DMR reporting expected.						

Other Comments: No recent inspections filed. Correspondence file has a Consent Assessment of Civil Penalty documentation dated August 11, 2021 resolving a November 1, 2017 Notice of Violation (NOV). The NOV was a result of September 14 and 28, 2017 inspections and a reported Potato Creek fish kill. The NOV cited: fire-retardant discharge, wax spills, North Spray pond low freeboard, settling tank missing bricks, bauxite storm water contamination, no aeration in the either spray pond, unstable North Pond banks, North Spray Pond wax discharge, un-useable wax tank, leaking salt tank, wax in new main line drain excavation, broken cooling line to south side #2 pump station, weeds obstructing the south side pump station #2, could not fine Outfall 003, Outfall 002 obstructed by weeds and could not be located, aeration basins had large wax balls, temperature meter was not calibrated and reading incorrectly, laboratory biffer out-of-date.

Compliance History

DMR Data for Outfall 001 (from April 1, 2022 to March 31, 2023)

Parameter	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22
Flow (MGD)												
Average Monthly	1.601	1.405	1.482	1.349	1.343	1.308	1.467	1.216	1.292	1.113	1.186	1.098
Flow (MGD)												
Daily Maximum	1.850	1.580	1.580	1.580	2.430	1.850	1.850	1.850	3.430	1.850	1.580	1.330
pH (S.U.)												
Minimum	6.92	6.91	6.89	6.75	6.85	6.82	6.77	7.01	6.70	6.92	6.75	6.63
pH (S.U.)												
Maximum	7.17	7.19	7.27	7.31	7.22	7.12	7.56	7.52	7.52	7.56	7.28	7.31
Temperature (°F)												
Daily Average	88.90	84.07	83.03	77.74	87.27	89.35	87.17	89.81	92.32	88.20	87.48	88.87

DMR and application median 7.07 SU

DMR Data for Outfall 002 (from April 1, 2022 to March 31, 2023)

Parameter	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22
Flow (MGD)												
Average Monthly	0.078	0.112	0.042	0.070	0.138	0.173	0.171	0.173	0.293	0.085	0.110	0.089
Flow (MGD)												
Daily Maximum	0.270	0.350	0.26	0.130	0.240	0.340	0.420	0.360	0.430	0.110	0.170	0.130
pH (S.U.)												
Minimum	7.03	6.97	6.94	6.84	6.89	6.96	6.92	6.98	6.75	7.07	6.82	6.86
pH (S.U.)												
Maximum	7.60	7.38	7.61	7.61	7.32	7.24	7.76	7.84	7.70	7.68	7.42	7.33
Temperature (°F)												
Daily Average	57.94	54.86	49.39	55.32	58.40	61.58	69.10	70.58	71.19	70.40	66.14	59.67
TOC (mg/L)												
Daily Maximum	2.03	2.92	2.52	2.43	2.31	2.63	5.21	2.55	2.66	2.32	2.45	2.55

DMR and application median 7.6 SU.

DMR Data for Outfall 101 (from April 1, 2022 to March 31, 2023)

Parameter	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22
Flow (MGD)												
Average Monthly	0.713	0.687	0.755	0.640	0.777	0.689	0.683	0.675	0.670	0.556	0.561	0.599
Flow (MGD)												
Daily Maximum	0.770	0.770	0.850	0.780	0.920	0.840	1.060	0.770	0.780	0.660	0.700	1.340
pH (S.U.)												
Minimum	6.40	6.80	6.8	6.94	6.40	6.80	6.60	6.80	6.80	6.90	6.60	6.90
pH (S.U.)												
Maximum	7.80	7.63	7.51	7.60	7.57	7.80	8.00	7.80	7.80	8.00	7.60	7.49
BOD5 (mg/L)												
Average Monthly	3.14	3.00	3.00	4.24	4.03	5.80	3.18	3.00	3.00	3.00	3.35	3.00
BOD5 (mg/L)												
Daily Maximum	3.60	3.00	3.00	9.20	7.10	13.40	3.90	3.00	3.00	3.00	4.40	3.00
COD (mg/L)												l
Average Monthly	15.68	12.73	10.40	11.44	14.98	15.40	11.86	11.73	10.23	11.62	12.25	13.03
COD (mg/L)												
Daily Maximum	19.90	15.20	11.10	12.80	24.60	29.90	17.90	13.20	10.90	14.60	14.60	19.40
TSS (mg/L)												
Average Monthly	3.60	3.50	3.00	3.00	4.25	3.00	3.40	3.25	3.50	4.40	3.50	3.00
TSS (mg/L)												
Daily Maximum	6.00	4.00	3.00	3.00	6.00	3.00	5.00	4.00	5.00	9.00	5.00	3.00
Oil and Grease (mg/L)								- 00				ı -
Average Monthly	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Oil and Grease (mg/L)						- 00		- 00				. .
Daily Maximum	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Ammonia (mg/L)	0.47	0.50	0.44	0.00	0.40	0.00	0.04	0.00	0.00	0.05	4.00	0.44
Average Monthly	0.47	0.52	0.11	0.69	0.19	0.23	0.21	0.33	0.38	0.35	1.28	0.41
Ammonia (mg/L)	0.00	0.05	0.40	0.00	0.04	0.04	0.00	0.54	0.04	0.01	4.00	0.45
Daily Maximum	0.68	0.85	0.13	2.20	0.24	0.31	0.36	0.54	0.61	0.61	4.08	0.45

DMR and application median 7.20 SU.

Compliance History

Effluent Violations for Outfall 002, from: May 1, 2022 To: March 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TOC	09/30/22	Daily Max	5.21	mg/L	5	mg/L

Other Comments:

The water supply is local wells that should be checked for TOC concentrations as they may be contaminated through refinery best management practices.

Development of Effluent Limitations							
Outfall No.	002	Design Flow (MGD)	0.436				
Latitude	41° 51' 23.54"	Longitude	78° 26' 31.19"				
Wastewater Description: non-contact cooling water and storm water							

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit	SBC		Federal Reg	State Regulation		
	(mg/l)		Minimum	Mean	Maximum	Maximum	
Flow	Report	NA	Report	NA			
Temperature	110°F	NA	NA	110	NA		NA
pН	6 to 9 SU	NA	6 SU			9 SU	6 to 9 SU
Total Organic Carbon	5				5	10	NA

Water Quality-Based Limitations

Comments: The non-contact cooling water and storm water should be not contaminated. TOC is a federal non-contact cooling water daily maximum requirement with a 10-mg/L instantaneous maximum (refinery technology based),

The permitted discharge is 0.436-MGD. Reported discharge is 0.069-MGD. Maximum monthly DMR discharge is 0.293-MGD in March 2023. Estimated stream flow is 7.42-cfs (4.80-MGD). The total stream to waste flow is 12:1 at 0.436-MGD, 17.4 at 0.293-MGD and 70.5:1 at 0.0690-MGD.

No temperature model was run as the maximum reported temperature was 71.2°F which is less than the safety based regulated temperature. That was previously determined to be more stringent than the water-quality based requirements.

At the 0.436-MGD design flow 0.0405-mg/L AML, 0.0632-mg/L MDL, and 0.101-mg/L I Max hexavalent chromium based WQBEL. Because the sample results for hexavalent chromium are below the detection limit, no monitoring will be required. A 0.031-mg/L AML, 0.048-mg/L MDL and a 0.076-mg/L I Max copper WQBEL was calculated. Because the discharge concentration for Copper exceeds 10% of the calculated WQBEL, monitoring will be included in this permit. 9/21/2023 CWY

Anti-Backsliding

The discharge is complying with its requirements.

Outfall No.	101	Design Flow (MGD)	0.566
Latitude	41° 51' 28.31"	Longitude	78° 26' 31.55"

Wastewater Description: Lubrication production, miscellaneous wastes, and storm water

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit	SBC		Federal Regulation					
	(mg/l)		Minimum	Mean	Maximum	Maximum	Minimum		
Ph	6 to 9 SU		6 SU			9 SU	6 to 9 SU		
5-day BOD	25.5			25.5	48.0	25.5			
COD	128			128	248	320			
TSS	21.0			21.0	33	52.50			
Oil and Grease	8			8.0	15.0	20.0			
Ammonia	10.5			10.5		10.5			

The miscellaneous wastes include septic tank discharges, laboratory glassware cleaning, protective equipment rinse water and other un-named minor sources.

Independent of the discharge flow and as a stream discharge without downstream dilution aluminum, hexavalent chromium, copper, and zinc monitoring is recommended. With cooling water dilution no water-quality limitations are necessary. Because the discharge concentrations for Aluminum, Hexavalent chromium, Copper, and Zinc exceed 10% of the calculated WQBELs, monitoring for these parameters will be included in this permit. 9/21/2023 CWY

Anti-Backsliding

The discharge is complying with its requirements.

Outfall No.	001	Design Flow (MGD)	3.229
Latitude	41° 51' 26.55"	Longitude	78° 26' 27.21"

Wastewater Description: Outfall 101, non-contact cooling water and storm water

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
Flow	Report	NA	Report	NA
Temperature	110°F	NA	NA	NA
рН	6 to 9 SU	NA	6 to 9 SU	6 to 9 SU

Water Quality-Based Limitations

Comments: The temperature limit is safety based. PH is from the minimum the Commonwealth's minimum industrial waste requirements and the federal refinery subcategory guidance. Note that this facility is a former refinery for which the storm water requirements have been retained.

The permitted discharge is 3.229-MGD. Reported discharge is 0.069-MGD. Monthly maximum DMR discharge is 1.601MGD in March 2023. Annual average discharge is 1.321667-MGD. Estimated stream flow is 9.114-cfs (5,89-MGD). The total stream to waste flow is 1:1 at 3.229-MGD, 4.7:1 at 1.601-MGD, and 9.3:1 at 0.713-MGD.

No temperature model was run as the maximum reported temperature was 92.3°F which is less than the safety based permitted temperature. That was previously determined to be more stringent than the water-quality based requirements.

Aluminum limitations and hexavalent chromium, copper, dissolved iron, and zinc monitoring are recommended at any discharge volume greater than 0.713-MGD.

The application 0.712 (0.713)-MGD waste flow is the facility industrial waste flow as the DMR waste flows are higher and include storm water flows.

Aluminum at 0.54-mg/L (previous application 0.39-mg/L maximum) appears to increase with treatment with a 1.629-mg/L (33%) AFC WQBEL controlling at Outfall 101 and 1.401-mg/L(39%) AFC WQBEL controlling at Outfall 001. With a 0.713-MGD discharge monitoring is recommended. As aluminum-based settling aids are reported aluminum control is recommended. Because the discharge concentration for Aluminum exceeds 10% of the calculated WQBEL, monitoring will be added to this permit. 9/21/2023 CWY

Hexavalent chromium at less than 0.005-mg/L (previous application ND) in the process raw waste and at Outfalls 101 and 001. Based on being constantly less than detection no regulation is proposed. (Chromium is a refinery point source parameter based on petroleum refinery chromate use. Chromate use was discontinued during guideline development resulting in annual monitoring being implemented.)

Total copper effluent at 0.003-mg/L (previous application 0.013-mg/L maximum) is approximately Hems reported surface water concentration, near the antidegradation 0.0045-mg/L average ambient concentration, 11% of the 0.027-mg/L Outfall 101 WQBEL and 12% of the Outfall 001 0.025-mg/LWQBEL. With a 0.713-MGD discharge monitoring is recommended.

*Because the discharge concentration for Copper exceeds 10% of the calculated WQBEL, monitoring will be added to this permit.

Zinc at less than 0.025-mg/L(previous application 0.019-mg/L maximum) at Outfalls 101 and 001. Based on zinc being constantly less than detection no regulation is proposed.

Anti-Backsliding

The discharge is complying with its requirements.

Outfall No.	003	Design Flow (MGD)	NA
Latitude	41° 51' 29.44"	Longitude	78° 26' 44.27"

Outfall 003 is a non-contaminated storm water only discharge whose requirements have been relocated. See the Storm water conditions for requirements.

Anti-Backsliding

The discharge is complying with its requirements.

Discharge Information

Instruction	s Discharge Stream		
Facility:	International Waxes	NPDES Permit No.: PA0002372	Outfall No.: 101
Evaluation 7	Type: Major Sewage / Industrial Waste	Wastewater Description: Process wastes	

			Discharge	Characteris	tics			
Design Flow	Hondress (marth)*	*II (CID*	F	artial Mix Fa	s)	Complete Mix Times (
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
0.566	59.8	7.2						

					0 if lef	t blank	0.5 if le	eft blank	0	if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transi
	Total Dissolved Solids (PWS)	mg/L		315.33									
7	Chloride (PWS)	mg/L		1					i				
Group	Bromide	mg/L		0.38									
اق	Sulfate (PWS)	mg/L		15.7									
	Fluoride (PWS)	mg/L	<	0.5					ĺ				
	Total Aluminum	μg/L		470							Ì		
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L		20									
	Total Beryllium	μg/L											
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L	<	5									
	Hexavalent Chromium	μg/L	<	5									
	Total Cobalt	μg/L											
	Total Copper	mg/L		0.003									
2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L											
ច	Dissolved Iron	μg/L		390								6	
	Total Iron	μg/L		110									
	Total Lead	μg/L											
	Total Manganese	μg/L		40									
	Total Mercury	μg/L					e e						
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L		10									
	Total Selenium	μg/L											
	Total Silver	μg/L											
	Total Thallium	μg/L											
	Total Zinc	mg/L	<	0.025									
	Total Molybdenum	μg/L		20									
	Acrolein	μg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	٧										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										

	AND ALL WAS IN ANY PROPERTY.	25			 				,	
	Carbon Tetrachloride	μg/L	<							
	Chlorobenzene	μg/L								
	Chlorodibromomethane	μg/L	<							
	Chloroethane	μg/L	<							
	2-Chloroethyl Vinyl Ether	μg/L	<							
	Chloroform	μg/L	<	1						
	Dichlorobromomethane	μg/L	<							
	1,1-Dichloroethane	μg/L	<							
	1,2-Dichloroethane	μg/L	<							
р 3	1,1-Dichloroethylene	μg/L	<							
I O	1,2-Dichloropropane	μg/L	<						t e	
Group	1,3-Dichloropropylene		<							
	1,4-Dioxane	μg/L	<							
	- X	μg/L	_					_		
	Ethylbenzene	μg/L	<							
	Methyl Bromide	μg/L	<							
	Methyl Chloride	μg/L	<							
	Methylene Chloride	μg/L	<	J.						
	1,1,2,2-Tetrachloroethane	μg/L	<							
	Tetrachloroethylene	μg/L	<							
	Toluene	μg/L	<							
	1,2-trans-Dichloroethylene	μg/L	<							
	1,1,1-Trichloroethane	μg/L	<							
	1,1,2-Trichloroethane	μg/L	<							
	Trichloroethylene	μg/L	<							
	Vinyl Chloride	µg/L	<							
	2-Chlorophenol	µg/L	<							
	2,4-Dichlorophenol	μg/L	<							
	2,4-Dimethylphenol	μg/L	<							
			-							
4	4,6-Dinitro-o-Cresol	μg/L	<					-		
٩	2,4-Dinitrophenol	μg/L	<				-			
Group 4	2-Nitrophenol	μg/L	<							
ပ	4-Nitrophenol	μg/L	<							
	p-Chloro-m-Cresol	μg/L	<							
	Pentachlorophenol	μg/L	<							
	Phenol	μg/L	<							
	2,4,6-Trichlorophenol	μg/L	<							
	Acenaphthene	μg/L	<							
	Acenaphthylene	μg/L	<							
	Anthracene	μg/L	<							
	Benzidine	μg/L	<							
	Benzo(a)Anthracene	μg/L	<							
	Benzo(a)Pyrene	μg/L	<							
	3,4-Benzofluoranthene	μg/L	<							
	Benzo(ghi)Perylene		_							
	Benzo(k)Fluoranthene	μg/L	<							
		μg/L	- 37							
	Bis(2-Chloroethoxy)Methane	μg/L	<							
	Bis(2-Chloroethyl)Ether	μg/L	<							
	Bis(2-Chloroisopropyl)Ether	μg/L	<							
	Bis(2-Ethylhexyl)Phthalate	μg/L	<							
	4-Bromophenyl Phenyl Ether	μg/L	<							
	Butyl Benzyl Phthalate	μg/L	<							
	2-Chloronaphthalene	μg/L	<							
	4-Chlorophenyl Phenyl Ether	μg/L	٧							
	Chrysene	μg/L	<							
	Dibenzo(a,h)Anthrancene	μg/L	<	1						
	1,2-Dichlorobenzene	μg/L	<							
	1,3-Dichlorobenzene	μg/L	<							
ا	1,4-Dichlorobenzene	μg/L	<							
p 5	3,3-Dichlorobenzidine	μg/L	<							
Group	Diethyl Phthalate		<							
้อ		μg/L	<							
	Dimethyl Phthalate	μg/L	_							
	Di-n-Butyl Phthalate	μg/L	<							
	2,4-Dinitrotoluene	μg/L	<		ı					

	2,6-Dinitrotoluene	μg/L	<							
	Di-n-Octyl Phthalate	μg/L	<							
	1,2-Diphenylhydrazine	μg/L	<							
	Fluoranthene	µg/L	<							
	Fluorene	µg/L	<							
	Hexachlorobenzene	µg/L	<							
	Hexachlorobutadiene	µg/L	<							
	Hexachlorocyclopentadiene	μg/L	<							
	Hexachloroethane	μg/L	<							
	Indeno(1,2,3-cd)Pyrene	μg/L	<							
			<							
	Isophorone Naphthalene	μg/L	<		-					
		μg/L								
	Nitrobenzene	μg/L	<							
	n-Nitrosodimethylamine	μg/L	<							
	n-Nitrosodi-n-Propylamine	μg/L	<							
	n-Nitrosodiphenylamine	μg/L	<							
	Phenanthrene	μg/L	<							
	Pyrene	μg/L	<							
	1,2,4-Trichlorobenzene	μg/L	<							
	Aldrin	μg/L	<							
	alpha-BHC	μg/L	<							
	beta-BHC	μg/L	<							
	gamma-BHC	μg/L	٧							
	delta BHC	μg/L	<							
	Chlordane	μg/L	<							
	4,4-DDT	μg/L	<	1						
	4,4-DDE	μg/L	<	J.						
	4,4-DDD	μg/L	<							
	Dieldrin	μg/L	<							
	alpha-Endosulfan	μg/L	<							
	beta-Endosulfan	μg/L	<							
9	Endosulfan Sulfate	μg/L	<							
Group (Endrin	μg/L	<							
570	Endrin Aldehyde	µg/L	<							
•	Heptachlor	µg/L	<							
	Heptachlor Epoxide	μg/L	<							
	PCB-1016	µg/L	<							
	PCB-1010	μg/L	<		_					
	PCB-1232	μg/L	<							
	PCB-1232		<							
	PCB-1242 PCB-1248	μg/L	<					-	-	
	G NATIONAL HOUSE PROF	μg/L	_						-	
	PCB-1254	μg/L	<							
	PCB-1260	μg/L	<							
	PCBs, Total	μg/L	<							
	Toxaphene	μg/L	<							
	2,3,7,8-TCDD	ng/L	<							
	Gross Alpha	pCi/L								
7	Total Beta	pCi/L	<							
Group	Radium 226/228	pCi/L	<							
310	Total Strontium	μg/L	<							
9	Total Uranium	μg/L	<							
	Osmotic Pressure	mOs/kg								
				1						
						4				
									8	
					1				8	

Stream / Surface Water Information

International Waxes, NPDES Permit No. PA0002372, Outfall 101

Receiving Surface v	/ater Name:	Potato Cr	eek					No. Rea	aches to Mo	del:	1	_	tewide Criteri at Lakes Crit			
Location	Stream Cod	e* RN	иI* Eleva	ation t)*	DA (mi²)	* Slo	pe (ft/ft)		Withdrawal MGD)	Apply Criter			SANCO Crite			
Point of Discharge	057625	6.5		1.14	204.98	79.42	- 1			Yes	5					
End of Reach 1	057625		143	8.48	224					Yes	5					
2 ₇₋₁₀ Location	RMI	LFY		ow (cfs)		W/D	Width	Depth		Time	Tribut		Stream		Analys	
		(cfs/mi ²)*	Stream	Iri	ibutary	Ratio	(ft)	(ft)	y (fps)	(daye)	Hardness	pН	Hardness*	pH*	Hardness	pl
Doint of Discharge	6.52	0.00		01110												
Point of Discharge End of Reach 1	6.52 0	0.08											100	7		
													100	/		
			Fig	ow (cfs)		W/D	Width	Denth	Velocit	rraver Time	Tribu	arv	Strea		Analys	is

Model Results

International Waxes, NPDES Permit No. PA0002372, Outfall 101

Instructions Results	RETURN	TO INPU	тѕ	SAVE AS	PDF	PRINT	т) • /	All Inputs Results Limits
☐ Hydrodynamics								
Wasteload Allocations								
✓ AFC CCT	Γ (min):	15	PMF:	0.128	Ana	lysis Hardne	ss (mg/l):	88.135 Analysis pH: 7.05
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(uall)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	2,541	
Total Barium	0	0		0	21,000	21,000	71,151	
Total Chromium (III)	0	0		0	513.774	1,626	5,509	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	55.2	Chem Translator of 0.982 applied
Total Copper	0	0		0	11.931	12.4	42.1	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	105.288	108	365	Chem Translator of 0.978 applied
☑ CFC CC	Γ (min): 7	20	PMF:	0.883	1 64.853,65	alysis Hardne	ess (mg/l):	97.709 Analysis pH: 7.01
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	4,100	4,100	71,937	
Total Chromium (III)	0	0		0	72.721	84.6	1,484	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	182	Chem Translator of 0.962 applied
Total Copper	0	0		0	8 780	0.15	160	Chem Translator of 0.96 applied

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	29,592	WQC = 30 day average; PMF = 1
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	115.842	117	2,061	Chem Translator of 0.986 applied

✓ THH	CCT (min):	720	PMF:	0.883	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	1
-------	------------	-----	------	-------	---------------------------	-----	--------------	-----	---

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	2,400	2,400	42,110	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	5,264	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	17,546	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

✓ CRL	CCT (min): ######	PMF: 1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	
-------	-------------------	--------	---------------------------	-----	--------------	-----	--

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	-

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

2	Mass	Limits		Concentra	tion Limits				-
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	1,629	AFC	Discharge Conc > 10% WQBEL (no RP)
Hexavalent Chromium	Report	Report	Report	Report	Report	μg/L	35.4	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	mg/L	0.027	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.23	AFC	Discharge Conc > 10% WQBEL (no RP)

$\ensuremath{ \ \, }$ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Barium	42,110	μg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	1,484	μg/L	Discharge Conc ≤ 10% WQBEL
Dissolved Iron	5,264	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	29,592	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	17,546	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Molybdenum	N/A	N/A	No WQS

Discharge Information

Instruction	s Disc	harge Stream				
Facility:	Interna	itional Waxes		NPDES Permit No.:	PA0002372	Outfall No.: 001
Evaluation 1	Гуре:	Major Sewage / Indust	rial Waste	Wastewater Descrip	tion: Process wastes	

			Discharge	Characteris	tics			
Design Flow	Hordness (ma/l)*	n∐ (CII)*	P	artial Mix Fa	actors (PMFs	s)	Complete Mix	(Times (min)
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
3.229	63	7.2						

					0 if lef	t blank	0.5 if le	eft blank	0	if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		330									
7	Chloride (PWS)	mg/L					:						
l a	Bromide	mg/L		0.52									
Group	Sulfate (PWS)	mg/L		15.9									
	Fluoride (PWS)	mg/L	<	0.5									
	Total Aluminum	μg/L		540									
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L		20									
	Total Beryllium	μg/L											
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L	<	5									
	Hexavalent Chromium	μg/L	٧	5									
	Total Cobalt	μg/L											
	Total Copper	mg/L		0.004									
Group 2	Free Cyanide	μg/L											
l lo	Total Cyanide	μg/L					,						
ច	Dissolved Iron	μg/L		390									2
	Total Iron	μg/L		110									
	Total Lead	μg/L									Ì		
	Total Manganese	μg/L		60									
	Total Mercury	μg/L											
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L		10									
	Total Selenium	μg/L											
	Total Silver	μg/L											
	Total Thallium	μg/L											
	Total Zinc	mg/L	<	0.025									
	Total Molybdenum	μg/L		20									
	Acrolein	μg/L	٧										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										

	Carbon Tetrachloride	μg/L	<							
	Chlorobenzene	μg/L	_							
			-							
	Chlorodibromomethane	μg/L	<							
	Chloroethane	μg/L	<							
	2-Chloroethyl Vinyl Ether	μg/L	<							
	Chloroform	μg/L	<				-			
	Dichlorobromomethane	μg/L	<							
	1,1-Dichloroethane	μg/L	٧							
60	1,2-Dichloroethane	μg/L	<							
유	1,1-Dichloroethylene	μg/L	<							
Group	1,2-Dichloropropane	μg/L	<							
O	1,3-Dichloropropylene	μg/L	<							
	1,4-Dioxane	μg/L	<							
	Ethylbenzene	μg/L	<							
i	Methyl Bromide	µg/L	<							
i	Methyl Chloride	µg/L	<				ļ		-	
	Methylene Chloride		<			-				
		μg/L	<							
	1,1,2,2-Tetrachloroethane	μg/L								
	Tetrachloroethylene	μg/L	<							
	Toluene	μg/L	<							
	1,2-trans-Dichloroethylene	μg/L	<							
	1,1,1-Trichloroethane	μg/L	<							
	1,1,2-Trichloroethane	μg/L	<							
	Trichloroethylene	μg/L	<							
	Vinyl Chloride	μg/L	٧							
	2-Chlorophenol	μg/L	<							
	2,4-Dichlorophenol	μg/L	<							
	2,4-Dimethylphenol	μg/L	<							
	4,6-Dinitro-o-Cresol	μg/L	<							
4	2,4-Dinitrophenol	µg/L	<							
Group	2-Nitrophenol	µg/L	<							
2	4-Nitrophenol	μg/L	<							
ဗ			<							
	p-Chloro-m-Cresol	μg/L								
1	Pentachlorophenol	μg/L	<						-	
	Phenol	μg/L	<							
_	2,4,6-Trichlorophenol	μg/L	<							
	Acenaphthene	μg/L	<							
	Acenaphthylene	μg/L	<							
	Anthracene	μg/L	<							
	Benzidine	μg/L	<							
	Benzo(a)Anthracene	μg/L	<							
	Benzo(a)Pyrene	μg/L	<	1						
i	3,4-Benzofluoranthene	μg/L	<	1						
	Benzo(ghi)Perylene	μg/L	<	1						
	Benzo(k)Fluoranthene	µg/L	<							
	Bis(2-Chloroethoxy)Methane	μg/L	<							
	Bis(2-Chloroethyl)Ether	µg/L	<							
	Bis(2-Chloroisopropyl)Ether	μg/L	<							
1			<							
	Bis(2-Ethylhexyl)Phthalate	μg/L								
	4-Bromophenyl Phenyl Ether	μg/L	<							
	Butyl Benzyl Phthalate	μg/L	<							
	2-Chloronaphthalene	μg/L	<							
1	4-Chlorophenyl Phenyl Ether	μg/L	<							
ı	Chrysene	μg/L	<							
ı	Dibenzo(a,h)Anthrancene	μg/L	<							
	1,2-Dichlorobenzene	μg/L	<							
	1,3-Dichlorobenzene	μg/L	<							
	1,4-Dichlorobenzene	μg/L	<							
S.			-							
lp 5	3,3-Dichlorobenzidine	µg/L	<		CO. C.					
roup 5	3,3-Dichlorobenzidine Diethyl Phthalate	μg/L μg/L	<							
Group 5	Diethyl Phthalate	μg/L	<							
Group 5										

2.6-Dinitrotoluene	µa/L	<										
		- 1										
		_										
		_										
						-						
						71						
						-						
										_		
						:		-				
N. SCHOOL AND ST.												
		-										
	μg/L											
	μg/L	_										
	μg/L											
PCB-1254	μg/L											
PCB-1260	μg/L											
PCBs, Total	μg/L	<										
Toxaphene	μg/L	<										
2,3,7,8-TCDD	ng/L	<										
Gross Alpha	pCi/L											
Total Beta	pCi/L	<										
Radium 226/228	pCi/L	<										
Total Strontium	μg/L	<										
Total Uranium	μg/L	<										
Osmotic Pressure	mOs/kg											
	PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	Di-n-Octyl Phthalate µg/L 1,2-Diphenylhydrazine µg/L Fluoranthene µg/L Fluoranthene µg/L Hexachlorobenzene µg/L Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L Indeno(1,2,3-cd)Pyrene µg/L Isophorone µg/L Naphthalene µg/L Nitrobenzene µg/L n-Nitrosodimethylamine µg/L n-Nitrosodimethylamine µg/L n-Nitrosodiphenylamine µg/L n-Nitrosodiphenylamine µg/L phenanthrene µg/L Pyrene µg/L 1,2-4-Trichlorobenzene µg/L Aldrin µg/L alpha-BHC µg/L beta-BHC µg/L gamma-BHC µg/L delta BHC µg/L Chlordane µg/L 4,4-DDD µg/L pieldrin	Di-n-Octyl Phthalate μg/L 1,2-Diphenylhydrazine μg/L Fluoranthene μg/L Fluoranthene μg/L Hexachlorobenzene μg/L Hexachlorocytopentadiene μg/L Hexachlorocytopentadiene μg/L Hexachlorocytopentadiene μg/L Indeno(1,2,3-cd)Pyrene μg/L Isophorone μg/L Naphthalene μg/L Nitrobenzene μg/L n-Nitrosodimethylamine μg/L n-Nitrosodiphenylamine μg/L n-Nitrosodiphenylamine μg/L Phenanthrene μg/L Pyrene μg/L 1,2-4-Trichlorobenzene μg/L Aldrin μg/L 1ghha-BHC μg/L beta-BHC μg/L gamma-BHC μg/L	Di-n-Octyl Phthalate µg/L <	Di-n-Octyl Phthalate μg/L <	Di-n-Octyl Phthalate	Di-n-Octyl Phthalate	Di-n-Octyl Phthalate	Di-n-Octyl Phthalate	Din-Octyl Phthalate	Din-Octy Phthalate	District District

Stream / Surface Water Information

International Waxes, NPDES Permit No. PA0002372, Outfall 001

Receiving Surface V	Vater Name:	Potato Cr	eek					No. Rea	ches to N	lodel:	1	0	tewide Criteri eat Lakes Crit			
Location	Stream Co	de* RN	Eleva	200000000	DA (mi²)	* Slo	pe (ft/ft)		Withdrawa	Apply Criter		_	SANCO Crite			
Point of Discharge	057625	6.5	2 144	1.14	204.98					Ye	5					
End of Reach 1	057625	(1438	3.48	224					Ye	3					
Q ₇₋₁₀																
Lecotes	DM	LFY	Flo	w (cfs))	W/D	Width	Depth	Velocit	Traver	Tribut	ary	Strea	m	Analys	is
Location	RMI	(cfs/mi ²)*	Stream	Tri	butary	Ratio	(ft)	(ft)	y (fps)	Time (days)	Hardness	рН	Hardness*	рН*	Hardness	pl
Point of Discharge	6.52	0.08											100	7		
End of Reach 1	0	0.08														

 Q_h

Location	RMI	LFY	Flov	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analys	sis
Location	LZIAII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	рН	Hardness	рН	Hardness	рН
Point of Discharge	6.52														
End of Reach 1	0														

Model Results

International Waxes, NPDES Permit No. PA0002372, Outfall 001

Instructions Results	RETURN	TO INPU	TS)	SAVE AS	PDF	PRINT	r	All Onputs OResults OLimits
☐ Hydrodynamics								
✓ Wasteload Allocations								
☑ AFC cc	Γ (min):	15	PMF:	0.148	Ana	lysis Hardne	ss (mg/l):	75.112 Analysis pH: 7.12
Pollutants	Conc	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	1,115	
Total Barium	0	0		0	21,000	21,000	31,220	
Total Chromium (III)	0	0		0	450.716	1,426	2,120	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	24.2	Chem Translator of 0.982 applied
Total Copper	0	0		0	10.263	10.7	15.9	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	91.949	94.0	140	Chem Translator of 0.978 applied
☑ CFC CC	Γ (min): ###	_	PMF:	1		alysis Hardne	ess (mg/l):	91.361 Analysis pH: 7.04
Pollutants	Conc	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	4,100	4,100	17,559	
Total Chromium (III)	0	0		0	68.828	80.0	343	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	44.5	Chem Translator of 0.962 applied
Total Copper	0	0		0	8 290	8 64	37.0	Chem Translator of 0.96 applied

Model Results

Total Zinc		0	0		0	N/A	N/A	N/A			
THH	0.0000000000000000000000000000000000000	0				1,500	1,500	6,424		WQC = 30 day average; PMF = 1	
Total Zinc	Total Manganese	0	0		0	N/A	N/A	N/A			
THH	Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A			
Pollutants	Total Zinc	0	0		0	109.432	111	475		Chem Translator of 0.986 applied	
Pollutants	☑ THH CC	Γ (min): ###	11111	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A	Analysis pH: N/A	
Sufate (PWS)	Pollutants	Conc		10.00.00.00.00.00.00.00.00	300000 m.	120000000000000000000000000000000000000		WLA (µg/L)		Comments	
Fluoride (PWS)	Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A			
Total Aluminum	Sulfate (PWS)	0	0		0	250,000	250,000	N/A			
Total Barium	Fluoride (PWS)	0	0		0	2,000	2,000	N/A			
Total Chromium (III)	Total Aluminum	0	0		0	N/A	N/A	N/A			
Hexavalent Chromium	Total Barium	0	0		0	2,400	2,400	10,279			
Total Copper	Total Chromium (III)	0	0		0	N/A	N/A	N/A			
Dissolved Iron	Hexavalent Chromium	0	0		0	N/A	N/A	N/A			
Total Iron	Total Copper	0	0		0	N/A	N/A	N/A			
Total Manganese		^	0		0	300	300	1,285	7		
Total Phenolic (Phenolics) (PWS)	Dissolved Iron	U	(A)			(No. 10.17)		NIGE			
Total Zinc O O N/A N/A N/A N/A	E009400300000000000000000000000000000000	- 23	1/8		0	N/A	N/A	N/A			
CRL CCT (min): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A	Total Iron	0	0		100	50100.9	10000	3,000.00			
Pollutants	Total Iron Total Manganese	0	0		0	1,000	1,000	4,283			
Total Dissolved Solids (PWS)	Total Iron Total Manganese Total Phenols (Phenolics) (PWS) Total Zinc	0 0 0 0	0 0 0		0 0	1,000 5 N/A	1,000 5.0 N/A	4,283 N/A N/A			
Sulfate (PWS) 0 0 0 N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A	Total Iron Total Manganese Total Phenolis (Phenolics) (PWS) Total Zinc CRL CCI	0 0 0 0 (min): ###	0 0 0 0	Trib Conc	0 0 0	1,000 5 N/A Ana	1,000 5.0 N/A alysis Hardne	4,283 N/A N/A ess (mg/l):	N/A	4	
Fluoride (PWS)	Total Iron Total Manganese Fotal Phenols (Phenolics) (PWS) Total Zinc CCI Pollutants	0 0 0 0 (min): ### Sueam Conc	0 0 0 0 0 Stream	Trib Conc	0 0 0	1,000 5 N/A Ana WQC (µg/L)	1,000 5.0 N/A alysis Hardne WQ Obj (µg/L)	4,283 N/A N/A **ss (mg/l):	N/A	4	
Total Aluminum 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese Fotal Phenols (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS)	0 0 0 0 (min): ###	0 0 0 0 0 5tream CV 0	Trib Conc	0 0 0 1 Fate Coef	1,000 5 N/A Ana WQC (µg/L)	1,000 5.0 N/A alysis Hardne WQ Obj (µg/L)	4,283 N/A N/A N/A ess (mg/l): WLA (µg/L) N/A	N/A	4	
Total Barium 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Phenois (Phenolics) (PWS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese Fotal Phenols (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS)	0 0 0 0 (min): ### Sueam Conc (mall) 0	0 0 0 0 0 Stream CV 0	Trib Conc	0 0 0 1 Fate Coef 0	1,000 5 N/A Ana WQC (µg/L) N/A	1,000 5.0 N/A N/A WQ Obj (µg/L) N/A N/A	4,283 N/A N/A N/A ess (mg/l): WLA (µg/L) N/A	N/A	4	
Total Chromium (III) 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Phenois (Phenolics) (PWS) 0 0 N/A N/A N/A	Total Iron Total Manganese Total Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS)	0 0 0 0 0 (min): ### Sueam Conc (mall) 0	0 0 0 0 0 0 0 Stream CV 0 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A	1,000 5.0 N/A N/A allysis Hardne WQ Obj (µg/L) N/A N/A N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (µg/L) N/A N/A N/A	N/A	4	
Hexavalent Chromium 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Phenois (Phenolics) (PWS) 0 0 N/A N/A N/A	Total Iron Total Manganese Total Phenolis (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum	0 0 0 0 0 0 ### Sueam Conc (u.d.) 0 0 0 0 0 0 0 0	0 0 0 0 0 *### CV 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A	1,000 5.0 N/A slysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (µg/L) N/A N/A N/A N/A	N/A	4	
Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Phenois (Phenolics) (PWS) 0 0 N/A N/A N/A	Total Iron Total Manganese Fotal Phenols (Phenolics) (PWS) Total Zinc CRL CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium	0 0 0 0 0 0 F (min): ### Sueam Conc (unit) 0 0 0 0	0 0 0 0 0 0 0 Stream CV 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A	1,000 5.0 N/A Allysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (µg/L) N/A N/A N/A N/A N/A	N/A	4	
Dissolved Iron	Total Iron Total Manganese Fotal Phenols (Phenolics) (PWS) Total Zinc CRL CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III)	0 0 0 0 0 F (min): ### Sueam Conc (unit) 0 0 0 0	0 0 0 0 0 0 Stream CV 0 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	1,000 5.0 N/A llysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A	NA]	4	
Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Phenois (Phenolics) (PWS) 0 0 N/A N/A N/A	Total Iron Total Manganese Total Phenolis (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium	0 0 0 0 0 F (min): ### Conc (mail) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 Stream CV 0 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	1,000 5.0 N/A N/A alysis Hardne WQ Obj (µg/L) N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	4	
Total Manganese 0 0 0 N/A N/A N/A Total Phenois (Phenolics) (PWS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese Fotal Phenols (Phenolics) (PWS) Total Zinc CRL CCT Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper	0 0 0 0 0 F (min): ### Conc (mail) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 Stream CV 0 0 0 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A	1,000 5.0 N/A N/A alysis Hardne WQ Obj (µg/L) N/A	4,283 N/A N/A N/A WLA (µg/L) N/A	N/A	4	
Total Phenols (Phenolics) (PWS)	Total Iron Total Manganese Fotal Phenols (Phenolics) (PWS) Total Zinc CRL CCT Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron	0 0 0 0 0 F (min): ### Conc (mail) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 0 1 1 Fate Coef 0 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A	1,000 5.0 N/A N/A alysis Hardne WQ Obj (µg/L) N/A	4,283 N/A N/A N/A WLA (µg/L) N/A	N/A]	4	
	Total Iron Total Manganese Fotal Phenols (Phenolics) (PWS) Total Zinc CRL Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Iron	0 0 0 0 0 F (min): ### Conc (mail) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 0 1 1 Fate Coef 0 0 0 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A	1,000 5.0 N/A N/A N/A N/A N/A N/A N/A N/A	4,283 N/A N/A N/A WLA (µg/L) N/A	N/A]	4	
Total Zinc 0 0 0 1 N/A N/A N/A	Total Iron Total Manganese Fotal Phenolis (Phenolics) (PWS) Total Zinc CRL CCT Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Iron Total Manganese	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 0 1 1 Fate Coef 0 0 0 0 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A	1,000 5.0 N/A WQ Obj (µg/L) N/A	4,283 N/A N/A N/A WLA (µg/L) N/A	N/A	4	
Total Aluminum 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese Total Phenols (Phenolics) (PWS) Total Zinc CRL CC	0 0 0 0 (min): ###	0 0 0 0	Trib Conc	0 0 0	1,000 5 N/A Ana	1,000 5.0 N/A alysis Hardne	4,283 N/A N/A N/A	N/A	4	
Total Chromium (III)	Total Iron Total Manganese Total Phenols (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS)	0 0 0 0 (min): ### Sueam Conc (mall) 0	0 0 0 0 0 Stream CV 0	Trib Conc	0 0 0 1 Fate Coef 0	1,000 5 N/A Ana WQC (µg/L) N/A	1,000 5.0 N/A N/A WQ Obj (µg/L) N/A N/A	4,283 N/A N/A N/A ess (mg/l): WLA (µg/L) N/A	N/A	4	
Total Chromium (III) 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Phenolics) (PWS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese Total Phenols (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS)	0 0 0 0 0 (min): ### Sueam Conc (mall) 0	0 0 0 0 0 0 0 Stream CV 0 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A	1,000 5.0 N/A N/A allysis Hardne WQ Obj (µg/L) N/A N/A N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (µg/L) N/A N/A N/A	N/A]	4	
Hexavalent Chromium	Total Iron Total Manganese otal Phenolis (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum	0 0 0 0 0 0 ### Sueam Conc (u.d.) 0 0 0 0 0 0 0 0	0 0 0 0 0 *### CV 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A	1,000 5.0 N/A slysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (µg/L) N/A N/A N/A N/A	N/A	4	
Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A otal Phenolics (PWS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese otal Phenois (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium	0 0 0 0 0 0 F (min): ### Sueam Conc (unit) 0 0 0 0	0 0 0 0 0 0 0 Stream CV 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A	1,000 5.0 N/A Allysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (µg/L) N/A N/A N/A N/A N/A	N/A	4	
Dissolved Iron	Total Iron Total Manganese Otal Phenois (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III)	0 0 0 0 0 F (min): ### Sueam Conc (unit) 0 0 0 0	0 0 0 0 0 0 Stream CV 0 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	1,000 5.0 N/A llysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A	4	
Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Phenolics (PWS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese Otal Phenois (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III)	0 0 0 0 0 F (min): ### Sueam Conc (unit) 0 0 0 0	0 0 0 0 0 0 Stream CV 0 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	1,000 5.0 N/A llysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A	4	
Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Phenolics (PWS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese Total Phenols (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium	0 0 0 0 0 F (min): ### Conc (mail) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 Stream CV 0 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	1,000 5.0 N/A N/A alysis Hardne WQ Obj (µg/L) N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A]	4	
Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A otal Phenolics (PHS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese otal Phenois (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium	0 0 0 0 0 F (min): ### Conc (mail) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 Stream CV 0 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	1,000 5.0 N/A N/A alysis Hardne WQ Obj (µg/L) N/A	4,283 N/A N/A N/A SSS (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	4	
Total Manganese 0 0 0 N/A N/A N/A Total Phenolics (PHS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese Otal Phenois (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper	0 0 0 0 0 F (min): ### Conc (mail) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 Stream CV 0 0 0 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A	1,000 5.0 N/A N/A alysis Hardne WQ Obj (µg/L) N/A	4,283 N/A N/A N/A WLA (µg/L) N/A	N/A	4	
otal Phenolics (Phenolics) (PWS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese Total Phenols (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron	0 0 0 0 0 F (min): ### Conc (mail) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 0 1 1 Fate Coef 0 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A	1,000 5.0 N/A N/A alysis Hardne WQ Obj (µg/L) N/A	4,283 N/A N/A N/A WLA (µg/L) N/A	N/A	4	
otal Phenolis (Phenolics) (PWS) 0 0 0 N/A N/A N/A	Total Iron Total Manganese Total Phenols (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Iron	0 0 0 0 0 F (min): ### Conc (mail) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 0 1 1 Fate Coef 0 0 0 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A	1,000 5.0 N/A N/A N/A N/A N/A N/A N/A N/A	4,283 N/A N/A N/A WLA (µg/L) N/A	N/A	4	
	Total Iron Total Manganese Total Phenols (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Iron	0 0 0 0 0 F (min): ### Conc (mail) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 0 1 1 Fate Coef 0 0 0 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A	1,000 5.0 N/A N/A N/A N/A N/A N/A N/A N/A	4,283 N/A N/A N/A WLA (µg/L) N/A	N/A	4	
	Total Iron Total Manganese Total Phenols (Phenolics) (PWS) Total Zinc CCI Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Iron Total Manganese	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 0 1 1 Fate Coef 0 0 0 0 0 0 0 0	1,000 5 N/A Ana WQC (µg/L) N/A	1,000 5.0 N/A WQ Obj (µg/L) N/A	4,283 N/A N/A N/A WLA (µg/L) N/A	N/A]	4	

5/31/2023

Page 6

	Mass	Limits		Concentra	ition Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	20.2	30.0	750	1,115	1,115	μg/L	750	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Hexavalent Chromium	Report	Report	Report	Report	Report	μg/L	16.3	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	mg/L	0.011	AFC	Discharge Conc > 10% WQBEL (no RP)
Dissolved Iron	Report	Report	Report	Report	Report	μg/L	1,285	THH	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.094	AFC	Discharge Conc > 10% WQBEL (no RP)

○ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Barium	10,279	μg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	343	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	6,424	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	4,283	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Molybdenum	N/A	N/A	No WQS

Discharge Information

			Discharge	Characteris	tics			
Design Flow	Hordness (mail)*	L (CII)*	P	artial Mix Fa	actors (PMF	s)	Complete Mix	(Times (min)
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
0.713	63	7.1						

		327			0 if lef	t blank	0.5 if le	eft blank	() if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		330									
1	Chloride (PWS)	mg/L											
la	Bromide	mg/L		0.52									
Group	Sulfate (PWS)	mg/L		15.9									
22.2	Fluoride (PWS)	mg/L	<	0.5									
1 70	Total Aluminum	µg/L		540									
	Total Antimony	µg/L		1									
	Total Arsenic	µg/L											
	Total Barium	µg/L		20									
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	µg/L	<	5									
	Hexavalent Chromium	µg/L	<	5									
	Total Cobalt	µg/L											
	Total Copper	mg/L		0.004									
2	Free Cyanide	µg/L											
Group	Total Cyanide	µg/L											
5	Dissolved Iron	μg/L		390									
0.50	Total Iron	µg/L		110									
	Total Lead	µg/L											
	Total Manganese	µg/L		60									
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L		10									
	Total Selenium	μg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	mg/L	<	0.025									
	Total Molybdenum	µg/L		20									
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

	Carbon Tetrachloride	µg/L	<									
	Chlorobenzene	µg/L	_									
	Chlorodibromomethane		<									
		µg/L	<					-		_		
	Chloroethane	µg/L										
	2-Chloroethyl Vinyl Ether	µg/L	<									
	Chloroform	μg/L	<									
	Dichlorobromomethane	μg/L	<									
	1,1-Dichloroethane	μg/L	<									
e	1,2-Dichloroethane	µg/L	<									
Group	1,1-Dichloroethylene	μg/L	٧									
5	1,2-Dichloropropane	µg/L	<									
O	1,3-Dichloropropylene	µg/L	<									
	1,4-Dioxane	µg/L	<									
	Ethylbenzene	µg/L	<									
	Methyl Bromide	µg/L	<									
	Methyl Chloride	µg/L	<				-					
	Methylene Chloride	-	<				-				_	
		µg/L	<									
	1,1,2,2-Tetrachloroethane	µg/L	-									
	Tetrachloroethylene	μg/L	<									
	Toluene	μg/L	<									
	1,2-trans-Dichloroethylene	μg/L	<									
	1,1,1-Trichloroethane	μg/L	<									
	1,1,2-Trichloroethane	µg/L	<									
	Trichloroethylene	µg/L	<									
	Vinyl Chloride	μg/L	<									
	2-Chlorophenol	µg/L	<									
	2,4-Dichlorophenol	µg/L	<									
	2,4-Dimethylphenol	µg/L	<									
	4,6-Dinitro-o-Cresol	µg/L	<									
4	2,4-Dinitrophenol	µg/L	<									
Group	2-Nitrophenol	µg/L	<									
5	4-Nitrophenol	µg/L	<									
O	p-Chloro-m-Cresol		<						_		_	
		µg/L	<									
	Pentachlorophenol	μg/L								_		
	Phenol	μg/L	<									
_	2,4,6-Trichlorophenol	μg/L	<									
	Acenaphthene	μg/L	<									
	Acenaphthylene	µg/L	<									
	Anthracene	μg/L	<									
	Benzidine	μg/L	<									
	Benzo(a)Anthracene	µg/L	<									
	Benzo(a)Pyrene	μg/L	<									
	3,4-Benzofluoranthene	µg/L	<									
	Benzo(ghi)Perylene	µg/L	<									
	Benzo(k)Fluoranthene	µg/L	<									
	Bis(2-Chloroethoxy)Methane	µg/L	<	- 11								
	Bis(2-Chloroethyl)Ether	µg/L	<	1								
	Bis(2-Chloroisopropyl)Ether	µg/L	<									
	Bis(2-Chloroisopropyi)Ether Bis(2-Ethylhexyl)Phthalate		<									
		µg/L			 							
	4-Bromophenyl Phenyl Ether	µg/L	<									
	Butyl Benzyl Phthalate	μg/L	<									
	2-Chloronaphthalene	μg/L	<									
	4-Chlorophenyl Phenyl Ether	μg/L	<	l l								
	Chrysene	µg/L	<									
	Dibenzo(a,h)Anthrancene	μg/L	<									
	1,2-Dichlorobenzene	µg/L	<									
	1,3-Dichlorobenzene	μg/L	<									
2	1,4-Dichlorobenzene	µg/L	<									
Group (3,3-Dichlorobenzidine	µg/L	<	- 1		1		1				
5	Diethyl Phthalate	µg/L	<									
	Dimethyl Phthalate	µg/L	<									
ອັ					modification political and the							* CONTRACTOR STORES
ອັ	Di-n-Butyl Phthalate	µg/L	<									

	2,6-Dinitrotoluene	µg/L	<		1		1				
	Di-n-Octyl Phthalate	µg/L	<								
	1,2-Diphenylhydrazine	µg/L	<								
	Fluoranthene	µg/L	<			-					1
	Fluorene		<								
	Hexachlorobenzene	μg/L μg/L	\ <								
	Hexachlorobutadiene	µg/L	<								
	Hexachlorocyclopentadiene	µg/L	<					_			
	Hexachloroethane	µg/L	<	-						_	
			_				_				
	Indeno(1,2,3-cd)Pyrene Isophorone	µg/L	<								
		µg/L	<								
	Naphthalene	µg/L									-
	Nitrobenzene	µg/L	<								
	n-Nitrosodimethylamine	μg/L	<								
	n-Nitrosodi-n-Propylamine	μg/L	<								
	n-Nitrosodiphenylamine	μg/L	<								
	Phenanthrene	µg/L	<								
	Pyrene	μg/L	<								
_	1,2,4-Trichlorobenzene	μg/L	<								
	Aldrin	μg/L	<								
	alpha-BHC	μg/L	<		i .						
	beta-BHC	μg/L	<								
	gamma-BHC	μg/L	<								
	delta BHC	µg/L	<								
	Chlordane	µg/L	<								
	4,4-DDT	µg/L	<								
	4,4-DDE	μg/L	<								
	4,4-DDD	μg/L	<								
	Dieldrin	µg/L	<								
	alpha-Endosulfan	μg/L	<								
	beta-Endosulfan	μg/L	<								
o d	Endosulfan Sulfate	μg/L	<								
e dnose	Endrin	µg/L	٧								
5	Endrin Aldehyde	µg/L	٧								
	Heptachlor	µg/L	<								
	Heptachlor Epoxide	μg/L	<								
	PCB-1016	µg/L	٧								
	PCB-1221	µg/L	<								
	PCB-1232	µg/L	<								
	PCB-1242	µg/L	<								
	PCB-1248	μg/L	<								
	PCB-1254	μg/L	<								
	PCB-1260	μg/L	<								
	PCBs, Total	µg/L	<								
	Toxaphene	µg/L	<								
	2,3,7,8-TCDD	ng/L	<								
1	Gross Alpha	pCi/L									
_	Total Beta	pCi/L	٧		Sept.						
d	Radium 226/228	pCi/L	٧								
eroup	Total Strontium	µg/L	٧								
9	Total Uranium	μg/L	<								
	Osmotic Pressure	mOs/kg		1							
Ī	Other (TYPE HERE)										
				1							
					i i						

Stream / Surface Water Information

International Waxes, NPDES Permit No. PA0002372, Outfall 001

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	sis
Location	LZIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	рН	Hardness*	pH*	Hardness	рН
Point of Discharge	6.52	0.08										100	7		
End of Reach 1	0	0.08													

Q,

Location	DMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ıry	Strea	m	Analys	is
Location	RMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	рН
Point of Discharge	6.52														
End of Reach 1	0														

Model Results

International Waxes, NPDES Permit No. PA0002372, Outfall 001

- 1 to	0	0		0	N/A	N/A	N/A			
Total Iron	0	0		0	1,500	1,500	23,800		WQC = 30 day	y average; PMF = 1
Total Manganese	0	0		0	N/A	N/A	N/A			
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A			
Total Zinc	0	0		0	115.536	117	1,671		Chem Transla	tor of 0.986 applied
☑ THH CC	T (min): 7	20	PMF:	0.892	Ana	alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)		Co	mments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A			
Sulfate (PWS)	0	0		0	250,000	250,000	N/A			
Fluoride (PWS)	0	0		0	2,000	2,000	N/A			
Total Aluminum	0	0		0	N/A	N/A	N/A			
Total Barium	0	0		0	2,400	2,400	34,216			
Total Chromium (III)	0	0		0	N/A	N/A	N/A			
Hexavalent Chromium	0	0		0	N/A	N/A	N/A			
Total Copper	0	0		0	N/A	N/A	N/A			
Dissolved Iron	0	0		0	300	300	4,277			
Total Iron	0	0		0	N/A	N/A	N/A			
Total Manganese	0	0		0	1,000	1,000	14,256			
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A			
Total Zinc CRL CC	0 T (min): ##	0	PMF:	1	N/A Ana	N/A N/Sis Hardne	N/A	N/A	Analysis pH:	N/A
☑ CRL CC	T (min): ##		PMF:	1 Fate	18	NVA alysis Hardne WQ Obj	ess (mg/l):	N/A	Analysis pH:	N/A mounts
	T (min): ##	####	31.3890.790	1	Ana	alysis Hardne		N/A		N/A mments
☑ CRL CC	T (min): ## Sueam Conc	#### Stream	Trib Conc	1 Fate	Ana WQC	alysis Hardne	ess (mg/l):	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS)	T (min): ### Conc (ug/l) 0	#### Stream CV 0	Trib Conc	1 Fate Coef 0	WQC (µg/L) N/A N/A	WQ Obj (µg/L) N/A	WLA (µg/L) N/A N/A	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS)	T (min): ### Conc (ug/l) 0 0	Stream	Trib Conc	1 Fate Coef 0	WQC (µg/L) N/A N/A N/A	WQ Obj (µg/L) N/A N/A	WLA (µg/L) N/A N/A N/A	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum	Sueam Conc	#### CV 0 0 0	Trib Conc	Fate Coef 0 0 0 0	WQC (µg/L) N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium	Sueam Conc (und) 0 0 0 0 0	Stream CV 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A	ess (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III)	Sueam Conc (unt) 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0	Trib Conc	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A	ess (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A N/A	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium	Sueam Conc (114h) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A	ess (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A N/A N/	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper	Sueam Conc (1971) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#### Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron	Sueam Conc (1971) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0	Trib Conc	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Iron	Sueam Conc (114th) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Iron Total Manganese	Sueam Conc (114th) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream	Trib Conc	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Iron Total Manganese Total Phenols (Phenolics) (PWS)	Sueam Conc (114th) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Trib Conc	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Iron Total Manganese	Sueam Conc (114th) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream	Trib Conc	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	N/A		0.000
Pollutants Total Dissolved Solids (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Barium Total Chromium Total Chromium Total Copper Dissolved Iron Total Iron Total Iron Total Phenols (Phenolics) (PWS)	Sueam Conc (1971) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV O O O O O O O O O	Trib Conc (μg/L)	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A	N/A		0.000

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	1,401	AFC	Discharge Conc > 10% WQBEL (no RP)
Hexavalent Chromium	Report	Report	Report	Report	Report	μg/L	30.4	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	mg/L	0.023	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.2	AFC	Discharge Conc > 10% WQBEL (no RP)

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Barium	34,216	μg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	1,202	μg/L	Discharge Conc ≤ 10% WQBEL
Dissolved Iron	4,277	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	23,800	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	14,256	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Molybdenum	N/A	N/A	No WQS

Discharge Information

			Discharge	Characteris	tics			
Design Flow	Hardness (mg/l)*	L (CII)*	F	Partial Mix Fa	actors (PMF:	s)	Complete Mix	(Times (min)
(MGD)*	nardness (mg/l)	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
0.069	63	7.6						

	75	<i>34</i> – 3	2		0 if let	t blank	0.5 if le	eft blank	() if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		68									
p 1	Chloride (PWS)	mg/L											
Group	Bromide	mg/L											
G	Sulfate (PWS)	mg/L											
333	Fluoride (PWS)	mg/L	<										
7.	Total Aluminum	µg/L											
	Total Antimony	µg/L)									
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L	<	5									
	Hexavalent Chromium	µg/L	<	5									
	Total Cobalt	µg/L											
	Total Copper	mg/L		0.022									
2	Free Cyanide	µg/L											
'n	Total Cyanide	µg/L											
Group	Dissolved Iron	µg/L	<	150									
150	Total Iron	µg/L											
	Total Lead	µg/L											
	Total Manganese	µg/L											
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	mg/L	<	0.025									
	Total Molybdenum	µg/L											
- 1	Acrolein	µg/L	<	1									
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

Discharge Information 6/5/2023 Page 1

SupplierChemical Test

Est

ľ	Carbon Tetrachloride	µg/L	<			ľ				
	Chlorobenzene	µg/L								
	Chlorodibromomethane		<							
		µg/L								
	Chloroethane	µg/L	<							
	2-Chloroethyl Vinyl Ether	μg/L	<							
	Chloroform	μg/L	<							
	Dichlorobromomethane	μg/L	<							
	1,1-Dichloroethane	μg/L	<							
m	1,2-Dichloroethane	µg/L	<							
Group	1,1-Dichloroethylene	μg/L	<							
5	1,2-Dichloropropane	µg/L	٧							
ပ	1,3-Dichloropropylene	µg/L	<							
	1,4-Dioxane	µg/L	<							
	Ethylbenzene	µg/L	<							
	Methyl Bromide	µg/L	<							
	Methyl Chloride	µg/L	<							
	Methylene Chloride	µg/L	<				_			
	1,1,2,2-Tetrachloroethane	µg/L	<							
			<							
	Tetrachloroethylene	µg/L	<							
	Toluene	μg/L								
	1,2-trans-Dichloroethylene	μg/L	<							
	1,1,1-Trichloroethane	μg/L	<							
	1,1,2-Trichloroethane	μg/L	<							
	Trichloroethylene	µg/L	<					1		
_	Vinyl Chloride	µg/L	<							
	2-Chlorophenol	µg/L	<							
	2,4-Dichlorophenol	µg/L	<							
	2,4-Dimethylphenol	μg/L	<	1						
	4,6-Dinitro-o-Cresol	µg/L	<							
4	2,4-Dinitrophenol	µg/L	<							
늘	2-Nitrophenol	µg/L	<							
Group	4-Nitrophenol	µg/L	<							
0	p-Chloro-m-Cresol	µg/L	<							
	Pentachlorophenol	µg/L	<							
	Phenol	µg/L	<							
			<							
-	2,4,6-Trichlorophenol	µg/L	<							
	Acenaphthene	µg/L								
	Acenaphthylene	μg/L	<							
	Anthracene	μg/L	<							
	Benzidine	µg/L	<							
	Benzo(a)Anthracene	μg/L	<							
	Benzo(a)Pyrene	μg/L	<							
	3,4-Benzofluoranthene	μg/L	<	Ţ.						
	Benzo(ghi)Perylene	µg/L	٧							
	Benzo(k)Fluoranthene	µg/L	<							
	Bis(2-Chloroethoxy)Methane	μg/L	<	- Y						
	Bis(2-Chloroethyl)Ether	µg/L	<							
	Bis(2-Chloroisopropyl)Ether	µg/L	<							
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	1						
	4-Bromophenyl Phenyl Ether	µg/L	<							
	Butyl Benzyl Phthalate	µg/L	<							
	2-Chloronaphthalene	µg/L	<							
	4-Chlorophenyl Phenyl Ether	µg/L	<							
		µg/L	<							
	Chrysene Dibanzo(a h) Anthropeana		<							
	Dibenzo(a,h)Anthrancene	µg/L								
	1,2-Dichlorobenzene	µg/L	<							
Group 5	1,3-Dichlorobenzene	μg/L	<	4						
	1,4-Dichlorobenzene	μg/L	<							
	3,3-Dichlorobenzidine	μg/L	<				1			
	Diethyl Phthalate	μg/L	<							
	Dimethyl Phthalate	µg/L	<							
O										
б	Di-n-Butyl Phthalate	µg/L	<							

ľ	2,6-Dinitrotoluene	µg/L	<							
	Di-n-Octyl Phthalate	µg/L	<							
	1,2-Diphenylhydrazine	µg/L	<							
	Fluoranthene	µg/L	<							
	Fluorene		<							
		µg/L	_							
	Hexachlorobenzene	μg/L	<							
	Hexachlorobutadiene	μg/L	<							
	Hexachlorocyclopentadiene	μg/L	<							
	Hexachloroethane	µg/L	<							
	Indeno(1,2,3-cd)Pyrene	μg/L	<							
	Isophorone	µg/L	<							
	Naphthalene	µg/L	<	П						
	Nitrobenzene	µg/L	<							
	n-Nitrosodimethylamine	µg/L	<							
	n-Nitrosodi-n-Propylamine	µg/L	<							
	n-Nitrosodiphenylamine	µg/L	<							
	Phenanthrene	µg/L	<							
	Pyrene	µg/L	<							
	1,2,4-Trichlorobenzene	µg/L	<							
\vdash	Aldrin	μg/L	<							
	alpha-BHC	μg/L	<							
	beta-BHC		<							
	The State of the S	μg/L								
	gamma-BHC	µg/L	<							
	delta BHC	µg/L	<							
	Chlordane	µg/L	<							
	4,4-DDT	µg/L	<							
	4,4-DDE	μg/L	<							
	4,4-DDD	μg/L	<							
	Dieldrin	µg/L	<	- J						
	alpha-Endosulfan	µg/L	<							
	beta-Endosulfan	µg/L	<							
9	Endosulfan Sulfate	µg/L	<							
Group	Endrin	µg/L	<							
5	Endrin Aldehyde	µg/L	<							
0	Heptachlor	µg/L	<							
	Heptachlor Epoxide	µg/L	<							
	PCB-1016		<				-	-		
		µg/L	_							
	PCB-1221	µg/L	<							
	PCB-1232	μg/L	<							
	PCB-1242	μg/L	<							
	PCB-1248	μg/L	<							
	PCB-1254	μg/L	<							
	PCB-1260	µg/L	<							
	PCBs, Total	µg/L	<							
	Toxaphene	μg/L	<	I						
	2,3,7,8-TCDD	ng/L	<							
	Gross Alpha	pCi/L				1	1			
_	Total Beta	pCi/L	<							
ď	Radium 226/228	pCi/L	<							
Group	Total Strontium	µg/L	<							
ច	Total Uranium		<							
1000		µg/L	<							
_	Osmotic Pressure	mOs/kg								
	Other (TYPE HERE)									
				1			j j			
				11						
69					1	0 0				

Discharge Information 6/5/2023 Page 3

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

International Waxes, NPDES Permit No. PA0002372, Outfall 002

100

_	
n	
w	L

Point of Discharge

End of Reach 1

6.62

0.08

0.08

Location	RMI	LFY	Flov	(cfs)	W/D	Width	Depth	Velocit	Time -	Tributary		Stream	m	Analys	sis
		(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)		Hardness	pН	Hardness	рН	Hardness	pН
Point of Discharge	6.62														
End of Reach 1	0					1.									

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

International Waxes, NPDES Permit No. PA0002372, Outfall 002

Instructions Results	RETURN	TO INPU	TS)	SAVE AS	PDF	PRINT	Γ) ⊕ Α	all () Inputs () Results () Limits
☐ Hydrodynamics ☐ Wasteload Allocations ☐ AFC CC	Γ (min): 1	15	PMF:	0.140	Ana	lysis Hardne	ss (mg/l):	98.01 Analysis pH: 7.02
Pollutants	Conc	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	560.462	1,774	32,982	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	303	Chem Translator of 0.982 applied
Total Copper	0	0		0	13.187	13.7	255	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	115.202	118	2,190	Chem Translator of 0.978 applied
☑ CFC CC		20	PMF:	0.969	Ana	alysis Hardne	ess (mg/l):	99.699 Analysis pH: 7.00
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
T.1.10: 1.10:1.0:1.0:1.0:1.0	(uall.)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	73.932	86.0	10,566	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	1,278	Chem Translator of 0.962 applied
Total Copper	0	0		0	8.933	9.3	1,144	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	117.838	120	14,689	Chem Translator of 0.986 applied

Model Results 6/5/2023 Page 5

School S	CT (min): 7	20									
			PMF:	0.969	Ana	alysis Hardne	ss (mg/l):	N/A	Analysis pH:	N/A	
Pollutants	Conc	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments	
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A				
Total Chromium (III)	0	0		0	N/A	N/A	N/A				
Hexavalent Chromium	0	0		0	N/A	N/A	N/A				
Total Copper	0	0		0	N/A	N/A	N/A				
Dissolved Iron	0	0		0	300	300	36,873				
Total Zinc	0	0		0	N/A	N/A	N/A				
		1 1									
☑ CRL CC	CT (min): ##	####	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A	
20-20 	Sueam	#### Stream	PMF:	1 Fate	Ana	alysis Hardne			1-2		
Pollutants		Stream CV		Fate Coef	WQC (µg/L)	WQ Obj	WLA (µg/L)		1-2	N/A Domments	
Pollutants Total Dissolved Solids (PWS)	Conc (ug/l)	Stream CV 0	Trib Conc	Fate	WQC (µg/L) N/A	WQ Obj (µg/L) N/A	WLA (µg/L) N/A		1-2		
Pollutants	Conc (ug/l) 0	Stream CV	Trib Conc	Fate Coef	WQC (µg/L)	WQ Obj	WLA (µg/L)		1-2		
Pollutants Total Dissolved Solids (PWS) Total Chromium (III) Hexavalent Chromium	Conc (ug/l) 0	Stream CV 0 0	Trib Conc	Fate Coef 0 0	WQC (µg/L) N/A N/A	WQ Obj (µg/L) N/A N/A N/A	WLA (µg/L) N/A N/A N/A		1-2		
Pollutants Total Dissolved Solids (PWS) Total Chromium (III)	Conc (ugll) 0 0	Stream CV 0 0	Trib Conc	Fate Coef 0	WQC (µg/L) N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A		1-2		
Pollutants Total Dissolved Solids (PWS) Total Chromium (III) Hexavalent Chromium	Conc (ug/l) 0	Stream CV 0 0	Trib Conc	Fate Coef 0 0	WQC (µg/L) N/A N/A	WQ Obj (µg/L) N/A N/A N/A	WLA (µg/L) N/A N/A N/A		1-2		
Pollutants Total Dissolved Solids (PWS) Total Chromium (III) Hexavalent Chromium Total Copper	Conc (ugll) 0 0	Stream CV 0 0	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A		1-2		
Pollutants Total Dissolved Solids (PWS) Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron	Sueam Conc (ugl) 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A		1-2		
Pollutants Total Dissolved Solids (PWS) Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron	Sueam Conc (ugl) 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A		1-2		
Pollutants Total Dissolved Solids (PWS) Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron	Sueam Conc (ugl) 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A		1-2		
Pollutants Total Dissolved Solids (PWS) Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron	Sueam Conc (ugl) 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A		1-2		
Pollutants Total Dissolved Solids (PWS) Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron	Sueam Conc (ugl) 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A		1-2		
Pollutants Total Dissolved Solids (PWS) Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron	Sueam Conc (ugl) 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A		1-2		
Pollutants Total Dissolved Solids (PWS) Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron	Sueam Conc (ugl) 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A		1-2		

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	mg/L	0.16	AFC	Discharge Conc > 10% WQBEL (no RP)

○ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Total Chromium (III)	10,566	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	194	μg/L	Discharge Conc ≤ 10% WQBEL
Dissolved Iron	36,873	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	1.4	mg/L	Discharge Conc ≤ 10% WQBEL

Model Results 6/5/2023 Page 7

Name	Use		Acute	Test Eff	Chrn	нн с	Dutfall	Use	Disch	Scning Crit	•	
NOVUS CE2694	flocculant	Species Ceriodaphia Fathead Minnow Daphnis magna	0.4		mg/L	mg/L	001	PPD 60	mg/L ~0 1.6 0.17		mg/L 2.8	mg/L` Comments Acceptable 2.8>0 Acceptable 22.1>0 Acceptable 2.3>0
Listed Petroleum Distillates CAS 64742-	47-8	Dapiniis inagila	0.015	40	0.0017				0.11	2.0	0.02	Acceptable 0.02>0
UNIVAR Diammonium phosphate Not listed with chemical additives ar		Fathead Minnow dditive. Used as m		48 feed	and requ	uired for		44.45 gical wa		18 atment	2.3 of indus	Acceptable 18>0.3 strial waste.
GE Water Cortrol IS105 Now by Veolia WTS listed for boiler Listed Critical aquatic use is chronic at 1.5	treatment	r Daphnia magna Rainbow Trout	203 58 13.61	48 96	1.51			35	0.95 26	102 360	1410 20.8	Acceptable 102>0.95 Acceptable 26>0.95 Acceptable 20.8>0.95
SUEZ Depositrol BL6507 Now by Veolia WTS Listed for Chronic aquatic life at Listed Phosphonic acid, (1-hydoxyethyle	•	Daphnia magna	2900	96 48 11.54	12.4 112.394		001	84			33810 33810 170 170	Acceptable 4300>9.9 Acceptable 2460>9.99 Acceptable 12.4>9.98 Acceptable 170>8.8
Suez Spectrus OX909* Listed Now by Veolia WTS chronic critical	biocide	Bluegill Sunfish Rainbow Trout	3.8 3 0.188	96 96	0.021	nd roun	001	120	0.32	1.9	26.2 0.28	Acceptable 1.9>0.32 Acceptable 0.3~0.3
SUEZ Solus AP24* Listed Now by Veolia WTS Human Health	boiler water	Daphnia magna Fathead minnow	3674	48 96	25.51	21.88	001	51	1.07		22550 34500 300	Acceptable 1634>1.07 Acceptable 25000>1.07 Acceptable 300< 1.06
GE Water Gengard GN8141* Listed Now by Veolia WTS chronic aquation	corrosion inhibitor	Rainbow trout	386 65 4.06	48 96	0.45	46.6	001	20	0.32	193 37	2665 510 6.2	Acceptable 193>0.32 Acceptable 37>0,32 Acceptable 6.2>0.32
GE Water Klaraid CDP1314* Listed Now by Veolia WTS chronic aquation	coagulant	Daphnia magna Fathead minnow 024-mg/L	5.5 14.2 0.21	48 96	0.024		001	60	0	2.6 7.1	35.9 100 0.33	No discharge No discharge No discharge

Name	Use		Acute	Test Eff	Chrn	нн (Outfall	Use	Disch	Scning Crit	WQ Limit	
SUEZ NOVUS CE7091 Not listed	flocculant	Species fish	mg/L 10-100	hrs	mg/L	mg/L	001	PPD 60	mg/L 0*	mg/L 5	mg/L <u>70</u>	Comments No discharge Not listed
GE Water Novus Polyfloc CE2694	flocculant	Ceriodaphia Fathead minnow	0.4 3.2	48 96			001	250	0	0.2	2.8	No discharge
Listed Controlling criteria is chronic Aquation	c life at is 0.0017-mg		0.015	96	0.0017	0.09				1.6	22.1 0.02	No discharge No discharge
SUEZ Steamate FM1000 Controlling criteria is chronic Aquatic	steam condensate			96 48			001	35	0	34 78	470 1075	No discharge No discharge
Listed	7 mc at 13 0.23 mg/L	Dapinila magna	2.58	40	0.29					70	4.0	No discharge
GE Water Steamate NA702	condensate return	fathead minnow Daphnia magna	758 319	96 96			001	35	0	379 159	5230 2195	No discharge No discharge
Listed Controlling criteria is chronic Aquatic	c life at is 1.36-mg/L		12.27	00	1.36	3.69				100	18.8	No discharge
·	· ·											
UNIVAR Sodium Hypochlorite		rainbow trout Fathead minnow	0.06 5.9	96 96			001	35	0	0.011	0.15	Acceptable 0.011>0
Listed Promulgated criteria controlling.		Tatricad milinow	0.01	00	0.0011	0.21					0.02	Acceptable 0.02>0
SUEZ Bioplus 2950 Use is in the wastewater treatment phosphorus and nitrogen.	Wastewater treatn Dlant and Bioplus sh		fied as a	an ad	ditive. It ı	replace	101 s diam	42 moniu	m phos	3.8 phate,	Monitor	No criteria ring is through

⁽⁾ data taken from application PentoxSD print out.

Default Safety factor 0.5

Bioplus 2950 and Diammonium phosphate are microbial foods used to maintain biological treatment. The microbial food design requirements are established during the treatment facility design with the NPDES program monitoring verifying design adequacy.

SUEZ NOVUS CE7091 is not listed.

Reference: Bureau of Clean Water at 717-787-5017 or RA-EPNPDES_Permits@pa.gov.

^{*}Continued use included in the March 25, 2015 dated renewal.

^{**} Submitted as a revision

NPDES Permit Fact Sheet

NPDES Permit No. PA0002372 International Waxes Plant

Parameter	Influent and Effluent Data												
May		Units	MDL	Infl	#	001	#	002	002	#	101	101	#
BOD													
COD	BOD	ma/L	ma/L		1								52
Hardness mg/L 51		-	3			< 5	1	14		1			
TSS		-					1			1			
Name		-											
Mammonia as N mg/L mg/L		_										=	
Note							•	00		•			
TKN													
Phosphorus as P Pmograture - winter max Temperature - winter max Temperature - winter max Temperature - winter Temperature -													
Temperature - winter max Temperature - winter max Temperature - winter Temperature - winter Temperature - winter Su						< 0.15	1	< 0.15		1			
Temperature - winter	•	g, <u>_</u>		10.10	•						10.10	1 01.10	Ŭ
Temperature - summer max	•												
PH min	•						153			153	72 9	74.3	3
DH min	•									.00	. 2.0		Ŭ
DH max	•	SU		7 71	1					366	6.2		3
Color	•				•					000			Ū
Fecal Coliform #/100			5		1	01.10	000	0.00				< 5	3
Fluoride													
Diland Grease mg/L 0.005			=										
Bromide						7	1	6		1			
TRC													
Sulfate mg/L 0.005 15.2 1 1 15.7 15.9 3 Sulfide mg/L 0.0005 < 0.05 1 ND ND ND 3 Sulfite mg/L 0.0001 < 0.1 1 < 0.1 1 < 0.1 ND ND ND 3 Surfactants mg/L 0.0001 < 0.1 1 < 0.1 1 < 0.1 ND ND ND 3 Total Aluminum mg/L 0.000005 0.014 1 < 0.1 ND ND ND 3 Total Boron mg/L 0.00001 < 0.01 1 < 0.02 0.02 0.02 3 Total Boron mg/L 0.0001 0.038 1 < 0.011 0.04 0.08 3 Total Cobalt mg/L 0.0001 0.075 1 0.091 1 < 0.15 1 0.39 0.39 3 Total Manganese mg/L 0.0001													
Sulfide mg/L 0.00005 < 0.05 1 ND ND 3 Sulfite mg/L 0.0001 < 0.01		-				0.00	-	1 0.00		•			
Sulfite mg/L 0.002 < 1.0 1 < 0.1 1 < 0.1 1 ND ND 3 Total Aluminum mg/L 0.0001 < 0.1		_											
Surfactants													
Total Aluminum mg/L 0.0001 0.403 1 0.47 0.54 3 Total Barium mg/L 0.000005 0.014 1 0.02 0.02 0.02 3 Total Boron mg/L 0.0001 < 0.02		_				< 0.1	1	< 0.1		1			
Total Barium mg/L 0.000005 0.014 1 Use of the control of the c		-					•	<u> </u>		•			
Total Boron mg/L 0.0001 < 0.1 < 0.002 1 ND ND 3 Total Cobalt mg/L 0.0001 < 0.002		-											
Total Cobalt		-			•								
Total Iron mg/L 0.0001 0.198 1 0.015 1 0.11 0.13 3 Dissolved Iron mg/L 0.0001 0.075 1 0.015 1 0.39 0.39 3 Total Manganese mg/L 0.0001 7.94 1 1.83 0.98 52 2.52 3.16 3 Magnesium mg/L 0.0001 7.94 1 1.83 0.98 52 2.52 3.16 3 Molybdenum mg/L 0.0001 0.015 1 4.22 1 4.89 5.24 3 Molybdenum mg/L 0.0001 0.015 1 4.22 1 4.89 5.24 3 Molybdenum mg/L 0.0001 0.025 1 ND ND <td< td=""><td></td><td>_</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		_			1								
Dissolved Iron mg/L 0.0001 0.075 1 0.091 1 < 0.15 1 0.39 0.39 3 Total Manganese mg/L 0.0001 0.030 1 1 1.83 0.98 52 2.52 3.16 3 Magnesium mg/L 0.0001 4.31 1 5.43 1 4.22 1 4.89 5.24 3 Molybdenum mg/L 0.0001 4.31 1 5.43 1 4.22 1 4.89 5.24 3 Molybdenum mg/L 0.0001 <0.25		_											
Total Manganese mg/L 0.0001 0.030 1 1.83 0.98 52 2.52 3.16 3 Total Organic Carbon mg/L 0.0001 7.94 1 1.83 0.98 52 2.52 3.16 3 Magnesium mg/L 0.0001 4.31 1 5.43 1 4.22 1 4.89 5.24 3 Molybdenum mg/L 0.0001 <0.025						0.091	1	< 0.15		1			
Total Organic Carbon mg/L 0.001 7.94 1 1.83 0.98 52 2.52 3.16 3 Magnesium mg/L 0.0001 4.31 1 5.43 1 4.22 1 4.89 5.24 3 Molybdenum mg/L 0.0001 0.015 1 4.22 1 4.89 5.24 3 Total Titanium mg/L 0.0001 < 0.25		_											
Magnesium mg/L 0.0001 4.31 1 5.43 1 4.22 1 4.89 5.24 3 Molybdenum mg/L 0.0001 0.015 1 0.02 0.02 3 Total Tin mg/L 0.0001 < 0.25								1.83	0.98	52			
Molybdenum mg/L 0.0001 0.015 1 0.02 0.02 3 Total Tin mg/L 0.0001 < 0.25						5.43	1						
Total Tin mg/L 0.0001 < 0.25 1 ND ND 3 Total Titanium mg/L 0.0001 < 0.025	•	_											
Total Titanium mg/L 0.0001 < 0.025 1 ND ND ND 3 Total Antimony mg/L 0.000006 < 0.025	•				1								
Total Antimony mg/L 0.000006 < 0.025 1 ND ND ND 3 Total Arsenic mg/L 0.000001 < 0.005				< 0.025	1								3
Total Arsenic mg/L 0.000001 < 0.005 1 ND ND ND ND 3 Total Beryllium mg/L 0.000001 < 0.002		-			1								
Total Beryllium mg/L 0.000001 < 0.002 1 ND ND 3 Total Cadmium mg/L 0.000001 < 0.002	Total Arsenic	-			1								
Total Cadmium mg/L 0.000001 < 0.002 1 ND ND 3 Total Chromium mg/L 0.000005 < 0.007	Total Beryllium	-			1						ND	ND	
Total Chromium mg/L 0.000005 < 0.007 1 < 0.005 1 < 0.005 1 ND ND 3 Hexavalent Chromium mg/L 0.0000005 < 0.05		_	0.000001	< 0.002	1						ND	ND	3
Hexavalent Chromium mg/L 0.000005 < 0.05 1 0.005 1 ND ND 3 Total Copper mg/L 0.0000001 0.009 1 0.005 1 0.002 1 0.003 0.004 3 Total Lead mg/L 0.0000005 < 0.002		_			1	< 0.005	1	< 0.005		1		ND	
Total Copper mg/L 0.000001 0.009 1 0.005 1 0.022 1 0.003 0.004 3 Total Lead mg/L 0.0000005 < 0.002	Hexavalent Chromium									1	ND	ND	
Total Lead mg/L 0.0000005 < 0.002 1 ND ND 3 Total Mercury mg/L 0.00000002 < 0.0002 1	Total Copper	_	0.000001	0.009	1	0.005	1	0.022		1	0.003	0.004	
Total Mercury mg/L 0.00000002 < 0.0002 1 ND ND 3 Total Nickel Mg/L 0.000005 < 0.005		_	0.0000005	< 0.002	1						ND	ND	
Total Nickel Mg/L 0.000005 < 0.005 1 ND ND 3 Total Selenium mg/L 0.000005 < 0.008	Total Mercury	_	0.00000002	< 0.0002	1						ND	ND	3
Total Selenium mg/L 0.000005 < 0.008 1 ND ND 3 Total Silver mg/L 0.000001 < 0.002	Total Nickel		0.000005	< 0.005	1						ND	ND	
Total Silver mg/L 0.000001 < 0.002 1 ND ND 3 Total Thallium mg/L 0.000005 < 0.005	Total Selenium	_			1						ND	ND	
Total Thallium mg/L 0.000005 < 0.005 1 ND ND 3 Total Zinc mg/L 0.00001 < 0.025	Total Silver				1						ND	ND	
Total Zinc mg/L 0.00001 < 0.025 1 < 0.025 1 < 0.025 1 ND ND 3 Total Cyanide mg/L 0.000005 < 0.005		-			1								
Total Cyanide mg/L 0.000005 < 0.005 1 ND ND 3 Total Phenols mg/L 0.000005 0.021 1 0.01 0.01 3		-			1	< 0.025	1	< 0.025		1			
Total Phenols mg/L 0.000005 0.021 1 0.01 0.01 3		-											
	•	_			1							0.01	3
					Th	ne MDL	may l	be low b	y a fac	ctor of	1000.		

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

				Monitoring Re	quirements			
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/day	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Recorded
Temperature (deg F)	XXX	XXX	XXX	110	XXX	XXX	1/day	I-S
Aluminum, Total	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	24-Hr Composite
								24-Hr
Copper, Total	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite

Compliance Sampling Location: Outfall 001 prior to mixing with other waste waters

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	grab
Temperature (deg F)	XXX	XXX	XXX	110	XXX	XXX	1/day	I-S
Total Organic Carbon (TOC)	XXX	XXX	XXX	XXX	5.0	10.0	1/week	24-Hr Composite
Copper, Total	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	24-Hr Composite

Compliance Sampling Location: Outfall 002 prior to mixing with other waste waters

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 003, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum ⁽²⁾	Required
	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Type

See Storm Water condition

Compliance Sampling Location: Outfall 003 prior to mixing with other waste waters

Other Comments: See Storm water conditions

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 101, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter		Monitoring Requirements						
	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6,0 Inst Min	XXX	XXX	9.0	Continuous	Recorded
Biochemical Oxygen Demand	7000	7001	mot wiii	7001	7001	0.0	Continuous	24-Hr
(BOD5)	XXX	XXX	XXX	25.5	48,0	65.0	1/week	Composite
Chemical Oxygen Demand					,			24-Hr
(COD)	XXX	XXX	XXX	128.0	248.0	250.0	1/week	Composite
								24-Hr
Total Suspended Solids	XXX	XXX	XXX	21.0	33.0	52.5	1/week	Composite
Oil and Grease	XXX	XXX	XXX	8.0	15.0	XXX	1/week	Grab
								24-Hr
Ammonia-Nitrogen	XXX	XXX	XXX	10.5	23	26.5	1/week	Composite
	V0.07	2004	2007	2007		2007		24-Hr
Aluminum, Total	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite
Copper, Total	XXX	xxx	xxx	XXX	Report	XXX	1/quarter	24-Hr Composite
					•		•	24-Hr
Hexavalent Chromium	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite
								24-Hr
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite

Compliance Sampling Location: Outfall 101 prior to mixing with other waste waters.