

Southwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0004685

 APS ID
 1087837

 Authorization ID
 1438533

Applicant Name	Penna	Flame Industries, Inc.	Facility Name	Penna Flame Industries		
Applicant Address	1856 F	Route 588	Facility Address	1856 Route 588		
	Zelien	ople, PA 16063-3902	<u> </u>	Zelienople, PA 16063-3902		
Applicant Contact	Micha	el Orr, VP Operations	Facility Contact	***same as applicant***		
Applicant Phone	(724)	452-8750	Facility Phone	***same as applicant***		
Applicant Email	mikeo	@pennaflame.com	Application Email	***same as applicant***		
Client ID	43749		Site ID	243144		
SIC Code(s)	3398		Municipality	Franklin Township		
SIC Description	Manuf	acturing - Metal Heat Treating	County	Beaver		
Date Application Recei	ved	May 1, 2023	EPA Waived?	Yes		
Date Application Accepted August 16, 2023		August 16, 2023	If No, Reason			

Summary of Review

On May 1, 2023, Penna Flame Industries, Inc. (PFI) submitted an application to renew NPDES Permit PA0004685 for discharges from PFI's facility in Zelienople, PA. The current permit was issued on August 20, 2018 with an effective date of September 1, 2018 and an expiration date of August 31, 2023. The renewal application was due by March 4, 2023. DEP received the renewal application on May 1, 2023. The application was not timely.

PFI specializes in heat treating metal machine parts through flame hardening, precision surface hardening, and robotic flame hardening. PFI's operations also include cryogenics, tempering, stress relieving, straightening, metallurgical testing, roll manufacturing, roll refurbishing, and roll repair. Heat treated parts are quenched with contact cooling water, which is treated by an oil/water separator and then discharged through Outfall 001 (relocated during the last renewal) to Connoquenessing Creek. PFI's contact cooling water discharges are subject to Federal Effluent Limitations Guidelines under 40 CFR Part 438 – Metal Products and Machinery Point Source Category. However, PFI's existing limits at Outfall 001 are more stringent than those given by Part 438, so the technology-based limits at Outfall 001 will remain unchanged. Water quality-based effluent limits also are imposed for Total Copper at Outfall 001. The Total Copper limits imposed in the renewed permit are less stringent than the Total Copper limits imposed in the 2018 permit, so the limits will take effect on the effective date of the renewed permit. Other monitoring requirements previously imposed at Outfall 001 for Total Dissolved Solids, Chloride, Bromide, Sulfate, and Total Silver are removed from the permit.

Outfall 002 discharges storm water runoff from a series of catch basins that receive runoff from loading/unloading areas where spills or leaks may occur to a drainage channel that leads to an old strip mine pond and then to Connoquenessing Creek. Semi-annual monitoring requirements are included based on Appendix B of DEP's PAG-03 NPDES General Permit for Discharges of Stormwater Associated with Industrial Activities to monitor the quality of storm water runoff and the effectiveness of PFI's Best Management Practices. The monitoring requirements of Appendix B of the PAG-03 are unchanged except for the addition of Total Nitrogen and Total Phosphorus reporting.

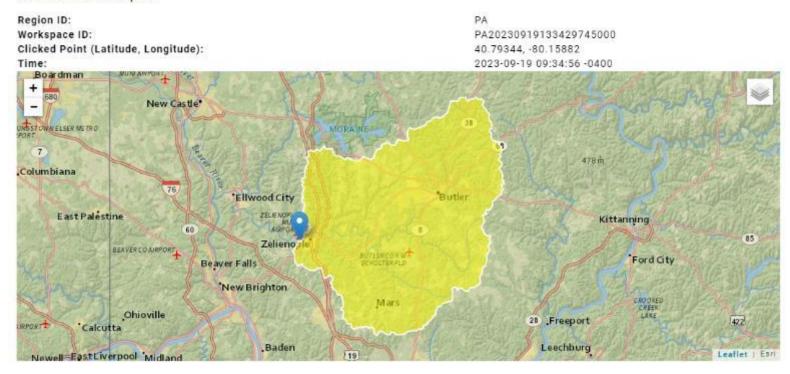
Approve	Deny	Signatures	Date
✓		Ryan C. Decker, P.E. / Environmental Engineer	September 25, 2023
Х		Michael E. Fifth, P.E. / Environmental Engineer Manager	September 29, 2023

Summary of Review

No significant changes to the facility have occurred since the last permit renewal.

There are no open violations for PFI and no reported violations within the last permit cycle.

Public Participation


DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

	Discharge, Receiving Wa	ters and Water Supply Informa	tion			
Outfall No. 001		Design Flow (MGD)	0.147			
Latitude 40°	47' 36.52"	Longitude	-80° 9' 31.00"			
Quad Name 1	204	Quad Code	Zelienople			
Wastewater Desc	ription: Contact cooling water					
Receiving Waters	Connoquenessing Creek	Stream Code	34025			
NHD Com ID	134395523	RMI	19.73			
Drainage Area	323	Yield (cfs/mi²)	0.06657			
			USGS Gage 03106000			
Q ₇₋₁₀ Flow (cfs)	21.5 (see Section 001.B)	Q ₇₋₁₀ Basis	& DFLOW 4.0			
Elevation (ft)	900	Slope (ft/ft)	0.00065			
Watershed No.	20-C	Chapter 93 Class.	WWF			
Existing Use		Existing Use Qualifier				
Exceptions to Use	e None	Exceptions to Criteria	None			
Assessment Statu	ıs Impaired					
Cause(s) of Impai	rment Organic Enrichment					
Source(s) of Impa	irment Agriculture					
TMDL Status	None	Name				
Nearest Downstre	eam Public Water Supply Intake	Beaver Falls Municipal Author	rity – Eastvale			
PWS ID	5040012	PWS Withdrawal (MGD)	_10			
PWS Waters	Beaver River	Flow at Intake (cfs)	640			
PWS RMI	2.85	Distance from Outfall (mi)	36.62			

Changes Since Last Permit Issuance: The Q_{7-10} flow of Connoquenessing Creek has changed from 18.93 to 21.50 based on the use of updated stream data from USGS Gage 03106000 – Connoquenessing Creek near Zelienople, PA.

Other Comments: None

StreamStats Report

> Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	323	square miles
ELEV	Mean Basin Elevation	1195	feet

DFLOW Results														ı ×
File Edit View Help														
All available data from Apr 1, 1993 are i Climatic year defined as Apr 1 - Mar 31.	•							(Copy to Clipbe	oard				
Gage	Period	Days in Record	Zero/Missing	1B3	Percentile	Excur per+	7Q10	Percentile	Excur per+	7Qy Type	xQy	Percentile	Harmonic	Percentile
03106000 - Connoquenessing Creek +	1992/04/01 - 2023/04/01	11,322	0/1	20.3	0.15%	0.97	23.7	0.50%	1.94	7Q11	12.3	0.00%	1.39E+02	32.22%

		Discharge, Receiving Wa	aters and Water Supply Informa	tion
Outfall No. 00	2		Design Flow (MGD)	Variable
Latitude 40	° 47' 35.5	0"	Longitude	-80° 9' 28.70"
Quad Name	1204		Quad Code	Zelienople
Wastewater Des	cription:	Storm water	_	
Receiving Water		amed tributary to noquenessing Creek	Stream Code	N/A
NHD Com ID	-	95523	RMI	0.40
Drainage Area	323		Yield (cfs/mi²)	0.06657
		(see Section 001.B)	Q ₇₋₁₀ Basis	USGS Gage 03106000 & DFLOW 4.0
Elevation (ft)			Slope (ft/ft)	0.00065
Watershed No.	20-C		Chapter 93 Class.	WWF
Existing Use			Existing Use Qualifier	
Exceptions to Us	e		Exceptions to Criteria	
Assessment Sta	:us	Impaired		
Cause(s) of Impa	airment	Organic Enrichment		
Source(s) of Imp	airment	Agriculture		
TMDL Status		None	Name	
Nearest Downsti	eam Pub	lic Water Supply Intake	Beaver Falls Municipal Author	rity – Eastvale
PWS ID	5040012		PWS Withdrawal (MGD)	_10
PWS Waters	Beaver	River	Flow at Intake (cfs)	640
PWS RMI 2.85			Distance from Outfall (mi)	36.62

Changes Since Last Permit Issuance: None

Other Comments: None

Image Source and Date: Google Earth Pro, November 2021. Annotations by DEP.

	Treatment Facility Summary							
Treatment Faci	Treatment Facility: Oil/water separator							
WQM Permit No. Issuance Date			Purp	Purpose				
0401201 May 7, 2001		May 7, 2001	Permit issued to Penna Flame Indus for an oil/water separator.	Permit issued to Penna Flame Industries, Inc. by the Pennsylvania DEP for an oil/water separator.				
Waste Type	Waste Type Degree		Process Type	Disinfection	Avg Annual Flow (MGD)			
Industrial		Primary	Oil/water separation	N/A	_			

Changes Since Last Permit Issuance: None

Other Comments: None

Compliance History

DMR Data for Outfall 001 (from August 1, 2022 to July 31, 2023)

Parameter	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22
Flow (MGD)												
Average Monthly	0.021	0.031	0.029	0.033	0.037	0.028	0.027	0.029	0.033	0.028	0.028	0.028
Flow (MGD)												
Daily Maximum	0.044	0.053	0.058	0.061	0.059	0.196	0.197	0.197	0.199	0.198	0.205	0.208
pH (S.U.)												
Instantaneous												
Minimum	7.7	7.9	7.8	7.3	7.3	7.6	7.8	7.6	7.7	7.7	7.7	7.6
pH (S.U.)												
Instantaneous												
Maximum	8.0	8.1	7.8	8.1	7.9	7.9	8.2	7.9	7.9	8.1	7.8	8.0
TSS (mg/L)												
Average Monthly	9.8	< 5.0	< 5.0	< 6.5	< 7.8	7.8	< 5.0	< 5.0	< 5.0	< 11.3	< 5.0	< 5.0
TSS (mg/L)												
Daily Maximum	11.0	< 5.0	< 5.0	8.0	10.5	10.5	< 5.0	< 5.0	< 5.0	17.5	< 5.0	< 5.0
Total Dissolved Solids												
(mg/L)												
Daily Maximum	2590	2570	2420	2450	2480	2320	2360	2270	2280	2100	2160	2240
Oil and Grease (mg/L)												
Average Monthly	10.3	33.2	6.6	8.6	< 7.4	9.4	7.0	7.5	6.5	6.8	6.6	7.7
Oil and Grease (mg/L)												
Daily Maximum	12.7	58.9	7.5	10.4	9.5	12.4	7.2	8.5	7.9	7.4	7.9	9.2
Total Copper (mg/L)												
Average Monthly	0.041	0.021	0.014	0.074	0.014	0.038	0.033	0.021	0.019	0.079	0.039	0.0151
Total Copper (mg/L)												
Daily Maximum	0.043	0.024	0.016	0.133	0.015	0.067	0.042	0.024	0.022	0.126	0.041	0.0384
Total Iron (mg/L)												
Average Monthly	1.20	0.65	0.263	3.1	0.326	0.648	0.493	0.298	< 0.200	1.59	0.633	0.7
Total Iron (mg/L)												
Daily Maximum	1.48	1.07	0.325	5.68	0.348	0.969	0.560	0.319	< 0.200	2.52	0.837	1.1
Total Silver (mg/L)												
Average Monthly	< 0.004	< 0.004	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total Silver (mg/L)	0.004	0.004			0.004							0.004
Daily Maximum	< 0.004	< 0.004	0.004	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.004	< 0.004	< 0.004
Sulfate (mg/L)	40.0	40.4	50.4		40.0	00.0	00.4	00.0	40.4	04.0	40.7	50.4
Daily Maximum	16.0	40.1	50.1	57.7	42.3	38.2	30.4	20.6	48.1	64.6	42.7	53.4
Chloride (mg/L)	4040	4000	4000	4000	4400	4400	4000	4400	4440	4050	4000	4.450
Daily Maximum	1210	1280	1200	1320	1180	1130	1320	1100	1110	1050	1020	1450
Bromide (mg/L)	0.00	0.04	0.00	0.05	0.00	7 70	0.00	0.40	0.44	7.0	0.00	0.04
Daily Maximum	8.29	8.84	8.36	8.85	8.38	7.73	9.66	8.49	8.14	7.2	6.98	9.24

DMR Data for Outfall 002 (from August 1, 2022 to July 31, 2023)

Parameter	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22
Flow (MGD)												
Daily Maximum		0.021						0.009				
pH (S.U.)												
Maximum		8.5						7.6				
TSS (mg/L)												
Daily Maximum		295						13.0				
Oil and Grease (mg/L)												
Daily Maximum		< 5.0						< 5.0				
Total Aluminum												
(mg/L)												
Daily Maximum		3.13						< 0.200				
Total Copper (mg/L)												
Daily Maximum		0.018						< 0.007				
Total Iron (mg/L)												
Daily Maximum		6.66						0.229				
Total Lead (mg/L)												
Daily Maximum		0.008						< 0.007				
Total Zinc (mg/L)												
Daily Maximum		0.087						0.018				

	Development of Effluent Limitations							
Outfall No.	001	Design Flow (MGD)	0.147					
Latitude	40° 47' 36.52"	Longitude	-80° 9' 31.00"					
Wastewater D	escription: Contact cooling water	3						

Discharges from Outfall 001 are currently subject to the following effluent limits and monitoring requirements.

Table 1. Outfall 001 – Current Effluent Limits and Monitoring Requirements

Parameter	Average Monthly	Daily Maximum	IMAX	Units	Measurement Frequency	Sample Type	Basis
Flow	Report	Report		MGD	Continuous	Metered	25 Pa. Code § 92.61(d)(1)
pН	6.0 (min)	-	9.0	s.u.	2/month	Grab	25 Pa. Code § 95.2(1)
TSS	30.0	60.0		mg/L	2/month	8-hr Comp	BPJ TBELs
TDS	_	Report	ı	mg/L	1/month	Grab	25 Pa. Code § 92a.61(b)
Oil and Grease	15.0	30.0	_	mg/L	2/month	Grab	BPJ TBELs
Copper, Total	0.159	0.247		mg/L	2/month	8-hr Comp	WQBELs
Iron, Total	2.0	4.0		mg/L	2/month	8-hr Comp	BPJ TBELs
Silver, Total	_	Report	1	mg/L	2/month	8-hr Comp	25 Pa. Code § 92a.61(b)
Sulfate, Total	_	Report		mg/L	1/month	Grab	25 Pa. Code § 92a.61(b)
Chloride, Total	_	Report	_	mg/L	1/month	Grab	25 Pa. Code § 92a.61(b)
Bromide	_	Report	_	mg/L	1/month	Grab	25 Pa. Code § 92a.61(b)

The effluent limits in Table 1 will remain in effect at Outfall 001 in the renewed permit pursuant to anti-backsliding requirements under Section 402(o) of the Clean Water Act and/or 40 CFR § 122.44(l) (incorporated by reference at 25 Pa. Code § 92a.44) 1—unless the limits are superseded by more stringent limits developed for this renewal or are relaxed pursuant to the anti-backsliding exceptions listed in Section 402(o) of the Clean Water Act or 40 CFR § 122.44(l).

001.A. <u>Technology-Based Effluent Limitations (TBELs)</u>

DEP previously determined that PFI is not subject to Federal Effluent Limitations Guidelines (ELGs) promulgated under 40 CFR Part 433 – Metal Finishing Point Source Category. That determination was based on the applicability description given in 40 CFR § 433.10(a), which states:

Except as noted in paragraphs (b) and (c), of this section, the provisions of this subpart apply to plants which perform any of the following six metal finishing operations on any basis material: Electroplating, Electroless Plating, Anodizing, Coating (chromating, phosphating, and coloring), Chemical Etching and Milling, and Printed Circuit Board Manufacture. If any of those six operations are present, then this part applies to discharges from those operations and also to discharges from any of the following 40 process operations: Cleaning, Machining, Grinding, Polishing, Tumbling, Burnishing, Impact Deformation, Pressure Deformation, Shearing, Heat Treating, Thermal Cutting, Welding, Brazing, Soldering, Flame Spraying, Sand Blasting, Other Abrasive Jet Machining, Electric Discharge Machining, Electrochemical Machining, Electron Beam Machining, Laser Beam Machining, Plasma Arc Machining, Ultrasonic Machining, Sintering, Laminating, Hot Dip Coating, Sputtering, Vapor Plating, Thermal Infusion, Salt Bath Descaling, Solvent Degreasing, Paint Stripping, Painting, Electrostatic Painting, Electropainting, Vacuum Metalizing, Assembly, Calibration, Testing, and Mechanical Plating.

PFI performs heat treating, which is one of the 40 process operations identified in § 433.10(a), but PFI does not perform any of the six metal finishing operations (Electroplating, Electroless Plating, Anodizing, Coating, Chemical Etching and Milling, and Printed Circuit Board Manufacture). DEP's interpretation of the portion of the applicability description that states, "If any of those six operations are present, then this part applies to discharges from those operations and also to discharges from any of the following 40 process operations..." was that wastewaters from any of the 40 process operations are only subject to the Metal Finishing ELGs if those operations are conducted in conjunction with one of the six metal finishing operations.

Even though 40 CFR Part 433 is not applicable, in 2003, EPA promulgated ELGs for the Metal Products and Machinery (MP&M) Point Source Category under 40 CFR Part 438. The MP&M ELGs regulate discharges from certain industrial

Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued, interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under § 122.62.)

sectors' process operations such as those listed in the § 433.10(a) excerpt above that are not conducted in conjunction with another activity that is subject to another existing ELG (e.g., standalone heat treating that is not conducted in conjunction with a metal finishing operation).

Effluent Limitations Guidelines for the Metal Products and Machinery Point Source Category

The general applicability description for the MP&M ELGs under 40 CFR § 438.1(a) states:

As defined more specifically in subpart A, except as provided in paragraphs (b) through (e) of this section, this part applies to process wastewater discharges from oily operations (as defined at §438.2(f) and appendix B of this part) to surface waters from existing or new industrial facilities (including facilities owned and operated by Federal, State, or local governments) engaged in manufacturing, rebuilding, or maintenance of metal parts, products, or machines for use in the Metal Product & Machinery (MP&M) industrial sectors listed in this section. The MP&M industrial sectors consist of the following:

Aerospace; Aircraft; Bus and Truck; Electronic Equipment; Hardware; Household Equipment; Instruments; Miscellaneous Metal Products; Mobile Industrial Equipment; Motor Vehicle; Office Machine; Ordnance; Precious Metals and Jewelry; Railroad; Ships and Boats; or Stationary Industrial Equipment.

The 16 industrial sectors regulated by the MP&M ELGs include facilities that manufacture, maintain, and rebuild metal products under more than 200 different Standard Industrial Classification (SIC) codes. The two NAICS/SIC codes that PFI operates under are 33281 (SIC 3398) – Coating, Engraving, Heat Treating and Allied Activities and 33351 (SIC 3547) – Metalworking Machinery Manufacturing.

Pursuant to Appendix A of EPA's "Development Document For the Final Effluent Limitations Guidelines and Standards for the Metal Products and Machinery Point Source Category", PFI's SIC codes are covered under the Hardware and Stationary Industrial Equipment MP&M industrial sectors, respectively (see **Attachment A** to this Fact Sheet for the relevant pages from Appendix A of the Development Document).

As described in § 438.1, the MP&M ELGs apply to process wastewater discharges from "oily operations" conducted at facilities within one of the 16 MP&M industrial sectors. "Oily operations" is defined in § 438.2(f):

Oily operations means one or more of the following: abrasive blasting; adhesive bonding; alkaline cleaning for oil removal; alkaline treatment without cyanide; aqueous degreasing; assembly/disassembly; burnishing; calibration; corrosion preventive coating (as defined in paragraph (c) of this section); electrical discharge machining; floor cleaning (in process area); grinding; heat treating; impact deformation; iron phosphate conversion coating; machining; painting-spray or brush (including water curtains); polishing; pressure deformation; solvent degreasing; steam cleaning; testing (e.g., hydrostatic, dye penetrant, ultrasonic, magnetic flux); thermal cutting; tumbling/barrel finishing/mass finishing/vibratory finishing; washing (finished products); welding; wet air pollution control for organic constituents; and numerous sub-operations within those listed in this paragraph. In addition, process wastewater also results from associated rinses that remove materials that the preceding processes deposit on the surface of the workpiece. These oily operations are defined in appendix B of this part.

PFI flame hardens (i.e., heat treats) metal parts, so it conducts "oily operations" that are subject to the limitations under Subpart A of 40 CFR Part 438. Section 438.12 imposes the following Best Practicable Control Technology (BPT) effluent limitations on process wastewaters from oily operations:

Table 2. BPT/BCT Effluent Limits for Oily Wastes

Parameter	Maximum Daily (mg/L)					
Total Suspended Solids	62					
O&G (as HEM) ¹	46					
pН	within the range of 6 to 9					

¹ Total recoverable oil and grease measured as n-hexane extractable material

Effluent limits for the Best Control Technology for Conventional Pollutants (BCT) under § 438.13 are equivalent to those specified in § 438.12. There are no Best Available Technology (BAT) limits because Part 438 only controls conventional pollutants and conventional pollutants are not regulated by the BAT level of control.

Best Professional Judgment (BPJ) Effluent Limitations and Anti-backsliding

Prior to promulgation of the MP&M ELGs in 2003, DEP established TBELs for PFI's contact cooling water discharges. The limits that were previously imposed—shown in Table 3—are more stringent than those specified in 40 CFR Part 438.

Table 3. Outfall 001 BPJ TBELs

Parameter	Average Monthly Maximum Daily (mg/L) (mg/L)		Instant Max (mg/L)		
Total Suspended Solids	30	60			
Oil and Grease	15	_	30		
Iron, Total	2.0	4.0	_		
рН	within the range of 6 to 9				

The effluent limitations in Table 3 will be maintained at Outfall 001 pursuant to EPA's anti-backsliding regulation at 40 CFR § 122.44(I)(1), which requires that "when a permit is renewed or reissued, interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit." Section 122.44(I)(2) further requires that "in the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA [i.e., case-by-case TBELs], a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit." The latter citation means that the promulgation of less stringent ELGs after the development and imposition of case-by-case TBELs in a permit does not compel the relaxation of effluent limits in the permit to be consistent with the ELGs' effluent limits; the most stringent limits always control as long as there are no exceptions to anti-backsliding. There are no exceptions to anti-backsliding for PFI.

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1). Effluent standards for pH are imposed on industrial wastes by 25 Pa. Code § 95.2(1). The § 95.2(1) pH limits are the same as those previously imposed.

As oil-bearing wastewaters, discharges from Outfall 001 are subject to effluent standards for Oil and Grease from 25 Pa. Code § 95.2(2). The Oil and Grease limits are the same as those previously imposed.

DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat such as PFI's contact cooling waters. The limit is intended as a safety measure to protect sampling personnel or anyone who may come in contact with the heated discharge where it enters the receiving water. However, previous permit writers have forgone imposition of the 110°F effluent standard because 1) effluent data indicated that maximum historical discharge temperatures never exceeded 86°F and 2) water quality-based effluent limits for temperature were never needed to maintain designated uses in the receiving stream, thus indicating that the discharge temperatures are not significant. Consistent with these justifications, the 110°F effluent standard will not be imposed at this time. However, thermal WQBELs will be evaluated in Section 001.B, below.

001.B. Water Quality-Based Effluent Limitations (WQBELs)

Toxics Management Spreadsheet Water Quality Modeling Program and Procedures for Evaluating Reasonable Potential

WQBELs are developed pursuant to Section 301(b)(1)(C) of the Clean Water Act and, per 40 CFR § 122.44(d)(1)(i), are imposed to "control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) that are or may be discharged at a level that will cause, have the reasonable potential to cause, or contribute to an excursion above any state water quality standard, including state narrative criteria for water quality." The Department of Environmental Protection developed the DEP Toxics Management Spreadsheet (TMS) to facilitate calculations necessary to complete a reasonable potential (RP) analysis and determine WQBELs for discharges of toxic and some nonconventional pollutants.

The TMS is a single discharge, mass-balance water quality modeling program for Microsoft Excel® that considers mixing, first-order decay, and other factors to determine WQBELs for toxic and nonconventional pollutants. Required input data including stream code, river mile index, elevation, drainage area, discharge flow rate, low-flow yield, and the hardness and pH of both the discharge and the receiving stream are entered into the TMS to establish site-specific discharge conditions. Other data such as reach dimensions, partial mix factors, and the background concentrations of pollutants in the stream also may be entered to further characterize the discharge and receiving stream. The pollutants to be analyzed by the model are identified by inputting the maximum concentration reported in the permit application or Discharge Monitoring Reports,

or by inputting an Average Monthly Effluent Concentration (AMEC) calculated using DEP's TOXCONC spreadsheet for datasets of 10 or more effluent samples. Pollutants with no entered concentration data and pollutants for which numeric water quality criteria in 25 Pa. Code Chapter 93 have not been promulgated are excluded from the modeling. Ammonianitrogen, CBOD-5, and dissolved oxygen are analyzed separately using DEP's WQM 7.0 model, if necessary.

The TMS evaluates each pollutant by computing a wasteload allocation for each applicable criterion, determining the most stringent governing WQBEL, and comparing that governing WQBEL to the input discharge concentration to determine whether permit requirements apply in accordance with the following RP thresholds:

- Establish limits in the permit where the maximum reported effluent concentration or calculated AMEC equals or exceeds 50% of the WQBEL. Use the average monthly, maximum daily, and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).
- For non-conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated AMEC is between 25% 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated AMEC is between 10% 50% of the WQBEL.

In most cases, pollutants with effluent concentrations that are not detectable at the level of DEP's Target Quantitation Limits (Target QLs) are eliminated as candidates for WQBELs and water quality-based monitoring.

Reasonable Potential Analysis and WQBEL Development for Outfall 001

Table 4. TMS Inputs for 001

Parameter	Value
River Mile Index	19.73
Discharge Flow (MGD)	0.147
Basin/Stream Characteris	tics
Parameter	Value
Area in Square Miles	323
Q ₇₋₁₀ (cfs)	21.50
Low-flow yield (cfs/mi ²)	0.06657
Elevation (ft)	900
Slope (dimensionless)	0.00065
Hardness (mg/L)	118

Discharges from Outfall 001 are evaluated based on the maximum concentrations reported on the application and on DMRs. The TMS model is run for Outfall 001 with the modeled discharge and receiving stream characteristics shown in Table 4. Pollutants for which specific water quality criteria have not been promulgated (e.g., TSS, oil and grease, etc.) are excluded from the modeling.

Outfall 001 discharges to Connoquenessing Creek. The basin and stream characteristics in Table 4 are based on data reported at USGS Gaging Station 03106000 – Connoquenessing Creek near Zelienople, PA, which is located downstream of PFI. The $Q_{7\text{-}10}$ flow of Connoquenessing Creek at the Outfall 001 discharge point is extrapolated from the $Q_{7\text{-}10}$ flow at the gaging station (23.7 cfs) using the last 30 years of stream flow data and the drainage area contributing to flow at the gaging station's location (356 square miles) as shown below.

Low Flow Yield = $(Q_{7-10} \text{ at Gage}) \div (Drainage Area at Gage}) = 23.7 \text{ cfs} \div 356 \text{ mi}^2 = 0.06657 \text{ cfs/mi}^2$

 Q_{7-10} at 001 = Low Flow Yield × (Drainage Area at 001) = 0.06657 cfs/mi² × 323 mi² = 21.50 cfs

Based on the results of the TMS modeling, the WQBELs and monitoring requirements shown in Table 5 apply to Outfall 001's discharges. Output from the TMS model run is included in **Attachment B** to this Fact Sheet.

Table 5. Water Quality-Based Effluent Limits for Outfall 001

		Permit Limits	S	Discharge	Governing	
Parameter	Avg Mo. (μg/L)	Max Daily (μg/L)	IMAX (μg/L)	Conc. (µg/L) †	Target QL (µg/L)	WQBEL Basis [‡]
Copper, Total	0.207	0.323	0.517	0.124	0.2	AFC

[†] Maximum concentration reported in the last two years (August 2021 – August 2023)

The WQBELs for Total Copper are slightly less stringent than the WQBELs in the current permit due to the higher Q_{7-10} flow used for modeling. PFI currently complies with more stringent WQBELs for Total Copper, so DEP expects PFI to comply with the less stringent WQBELs calculated for this renewal. No schedule of compliance will be included in the permit for the new WQBELs for Total Copper.

[‡] AFC = Acute Fish Criterion

Reporting for Total Silver is no longer recommended by the TMS model, so the reporting requirement for Total Silver at Outfall 001 will be removed from the permit pursuant to the exception to anti-backsliding in 40 CFR § 122.44(I)(2)(i)(B)(1) regarding the availability of new information (i.e., effluent data for silver) that justifies the application of less stringent limits. Reporting for Total Dissolved Solids, Chloride, Bromide, and Sulfate also is no longer recommended by the TMS model. When PFI's permit was renewed in 2018, DEP was implementing a monitoring initiative for those emerging pollutants of concern based on the recommendations of Pennsylvania's Environmental Quality Board and the U.S. Environmental Protection Agency. The monitoring initiative for those pollutants ended in 2021. Therefore, the reporting requirements for those parameters will be removed from Outfall 001 pursuant to the exception to anti-backsliding in 40 CFR § 122.44(I)(2)(i)(B)(1) regarding the availability of new information (i.e., DEP's policy revisions) that justifies the application of less stringent limits.

Thermal WQBELs for Heated Discharges

Thermal WQBELs are evaluated using a DEP program called "Thermal Discharge Limit Calculation Spreadsheet" created with Microsoft Excel for Windows. The program calculates temperature WLAs through the application of a heat transfer equation, which takes two forms in the program depending on the source of the facility's cooling water. In Case 1, intake water to a facility is from the receiving stream. In Case 2, intake water is from a source other than the receiving stream (e.g., a municipal water supply). The determination of which case applies to a given discharge is determined by the input data which include the receiving stream flow rate (Q_{7-10} or the minimum regulated flow for large rivers), the stream intake flow rate, external source intake flow rates, consumptive flow rates and site-specific ambient stream temperatures. Case 1 limits are generally expressed as heat rejection rates while Case 2 limits are usually expressed as temperatures.

Since the temperature criteria from 25 Pa. Code Chapter 93.7(a) are expressed on monthly and semi-monthly bases for three different aquatic life-uses—cold water fishes, warm water fishes and trout stocking—the program generates monthly and semi-monthly limits for each use. DEP selects the output that corresponds to the aquatic life-use of the receiving stream and consequently which limits apply to the discharge. Temperature WLAs are bounded by an upper limit of 110°F (as discussed in Section 001.A) for the safety of sampling personnel and anyone who may come in contact with the heated discharge where it enters the receiving water. If no WLAs below 110°F are calculated, then an instantaneous maximum limit of 110°F is recommended by the program.

DEP's "Implementation Guidance for Temperature Criteria" directs permit writers to assume instantaneous complete mixing of the discharge with the receiving stream when calculating thermal effluent limits unless adverse factors exist. DEP is not aware of any adverse factors, so the full Q₇₋₁₀ flow of Connoquenessing Creek is used for modeling.

Discharges from Outfall 001 are classified under Case 2 because PFI's water is obtained from the local municipal supply. The flow rate used for modeling is 0.147 MGD, which is the maximum flow rate at Outfall 001. The results of the thermal analysis indicate that no WQBELs for temperature are required at Outfall 001. As a secondary check on the analysis, DEP also ran the model using a partial mix factor of 0.193, which is the acute partial mix factor calculated by the TMS model. No temperature WQBELs were calculated using the reduced stream flow based. The results of the thermal analysis using the most limiting modeling conditions (i.e., the 0.193 partial mix factor) are included in **Attachment C** to this Fact Sheet.

Aquatic Life Impairment of Connoquenessing Creek

A 14.38-mile long segment of Connoquenessing Creek was listed on DEP's 2014 Integrated Water Quality Monitoring and Assessment Report as impaired for aquatic life uses and requiring a Total Maximum Daily Load. The cause of the impairment is listed as "organic enrichment" and the source as "agriculture." PFI does not discharge wastewaters that contribute to organic enrichment or low D.O., so PFI is not affected by the impairment.

001.C. Effluent Limitations and Monitoring Requirements for Outfall 001

In accordance with 25 Pa. Code §§ 92a.12 and 92a.61 and anti-backsliding requirements under Section 402(o) of the Clean Water Act and 40 CFR § 122.44(I) (incorporated in Pennsylvania's regulations at 25 Pa. Code § 92a.44), effluent limits for Outfall 001 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in the table below.

Table 6. Effluent Limits and Monitoring Requirements for Outfall 001

	Mass (pounds)		Coi	ncentration (µ		
Parameter	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	Basis
Flow (MGD)	Report	Report	_	_	_	25 Pa. Code § 92a.61(d)(1)

Table 6 (continued). Effluent Limits and Monitoring Requirements for Outfall 001

	Mass (pounds)		Concentration (µg/L)			
Parameter	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	Basis
Total Suspended Solids	ı		30.0	60.0	_	BPJ TBELs; 40 CFR §122.44(I)
Oil and Grease	-	1	15.0	30.0	_	BPJ TBELs; 40 CFR §122.44(I)
Copper, Total			0.207	0.323	0.517	WQBELs; 25 Pa. Code § 92a.12
Iron, Total	1		2.0	4.0	_	BPJ TBELs; 40 CFR §122.44(I)
рН		within	the range of 6		BPJ; § 122.44(I); § 95.2(1)	

Monitoring frequencies and sample types are imposed based on those in the existing permit and on Chapter 6, Table 6-4 of DEP's "Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits" [Doc. No. 386-0400-001]. Flow must be measured continuously (metered). TSS, Total Copper, and Total Iron will require 2/month sampling using 8-hour composite samples. Oil and Grease and pH will require 2/month grab sampling. Copper will require 2/month sampling using 8-hour composite samples.

	Development of Effluent Limitations						
Outfall No.	002	Design Flow (MGD)	Variable				
Latitude	40° 47' 35.50"	Longitude	-80° 9' 28.70"				
Wastewater D	escription: Storm water		-				

Discharges from Outfall 002 are currently subject to the following monitoring requirements.

Table 7. Outfall 002 - Current Monitoring Requirements

Parameter	Average Monthly	Daily Maximum	IMAX	Units	Measurement Frequency	Sample Type	Basis
Flow	_	Report	_	MGD	1/6 months	Estimate	25 Pa. Code § 92.61(h)
pН	_	Report	_	s.u.	1/6 months	Grab	25 Pa. Code § 92.61(h)
TSS	_	Report	_	mg/L	1/6 months	Grab	25 Pa. Code § 92.61(h)
Oil and Grease	_	Report	_	mg/L	1/6 months	Grab	25 Pa. Code § 92.61(h)
Aluminum, Total	_	Report	_	mg/L	1/6 months	Grab	25 Pa. Code § 92.61(h)
Copper, Total	_	Report	_	mg/L	1/6 months	Grab	25 Pa. Code § 92.61(h)
Iron, Total	_	Report	_	mg/L	1/6 months	Grab	25 Pa. Code § 92.61(h)
Lead, Total	_	Report	_	mg/L	1/6 months	Grab	25 Pa. Code § 92.61(h)
Zinc, Total	_	Report	_	mg/L	1/6 months	Grab	25 Pa. Code § 92.61(h)

The monitoring requirements in Table 7 will remain in effect at Outfall 002 in the renewed permit pursuant to anti-backsliding requirements under Section 402(o) of the Clean Water Act and/or 40 CFR § 122.44(I) (incorporated by reference at 25 Pa. Code § 92a.44)—unless the limits are superseded by more stringent limits developed for this renewal or are relaxed pursuant to the anti-backsliding exceptions listed in Section 402(o) of the Clean Water Act or 40 CFR § 122.44(I).

002.A. Technology-Based Effluent Limitations (TBELs)

Discharges of storm water from Outfall 002 are not subject to any Federal Effluent Limitations Guidelines. Therefore, requirements are based on applicable regulatory effluent standards and monitoring requirements.

Outfall 002 is subject to reporting requirements for flow and pH based on 25 Pa. Code § 92.61(h). Also, consistent with 25 Pa. Code § 92a.61(h) and DEP's policy for permitting storm water discharges associated with industrial activities², minimum standards described in DEP's PAG-03 NPDES General Permit for Discharges of Stormwater Associated with Industrial Activity will be applied to Outfall 002's storm water discharges. Based on PFI's SIC Code of 3398, the facility would be classified under Appendix B – "Primary Metals" of the PAG-03 General Permit.³ The monitoring requirements of Appendix B, summarized in Table 8, will be imposed at Outfall 002 to the extent that they are not superseded by more stringent requirements.

Table 8. PAG-03 Appendix B - Minimum Monitoring Requirements

rabio of the obligation in the state of the							
Pollutant	Units	Sample Type	Measurement Frequency	Benchmark Value			
Total Nitrogen	mg/L	Calculation [†]	1/6 months	_			
Total Phosphorus	mg/L	Grab	1/6 months	_			
Total Suspended Solids	mg/L	Grab	1/6 months	100			
Oil and Grease	mg/L	Grab	1/6 months	30			
Total Aluminum	mg/L	Grab	1/6 months	_			
Total Zinc	mg/L	Grab	1/6 months				
Total Copper	mg/L	Grab	1/6 months				
Total Iron	mg/L	Grab	1/6 months				
Total Lead	mg/L	Grab	1/6 months				

[†] Total Nitrogen is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO₂+NO₃-N), where TKN and NO₂+NO₃-N are measured in the same sample.

² See Note 8 in DEP's "Standard Operating Procedure (SOP) for Clean Water Program: Establishing Effluent Limitations for Individual Industrial Permits" [SOP No. BCW-PMT-032, Version 1.6, October 1, 2023]

³ The PAG-03 General Permit imposes requirements on industrial storm water discharges based on a facility's SIC Code, as enumerated in 40 CFR § 122.26(b)(14).

To the extent that effluent limits are necessary to ensure that storm water Best Management Practices (BMPs) are adequately implemented, effluent limits are developed for industrial storm water discharges based on a determination of Best Available Technology (BAT) using Best Professional Judgment (BPJ). BPJ of BAT typically involves the evaluation of end-of-pipe wastewater treatment technologies, but DEP considers the use of BMPs to be BAT for storm water outfalls unless effluent concentrations indicate that BMPs provide inadequate pollution control.

Table 9 summarizes the effluent data reported for the general chemistry pollutants listed on Module 1 of the NPDES permit application and effluent data for additional parameters reported on Discharge Monitoring Reports between January 2018 and June 2023. Not all Module 1 parameters are analyzed under the requirements of the current permit. Some results are based on only one sample collected to complete the permit application. For mixed datasets consisting of detected and non-detect results, the '<' symbol is ignored when calculating the average and then added back to the calculated result.

Table 9. Effluent Concentrations Reported at Outfall 002

Parameter	Module 1 Application Results (mg/L)	DMR Average Conc. (mg/L)	DMR Maximum Conc. (mg/L)	No. of Samples	No Exposure Threshold	PAG-03 Benchmark Value	Permit Benchmark Value
Oil and Grease	<5.0	_	_	1	≤5.0	30	
BOD ₅	11.2	_	_	1	≤10	_	_
COD	<5.0	_	_	1	≤30	120	
TSS	295	<63.2	295	9	≤30	100	100
Total Nitrogen	<1.25	_	_	1	≤2	_	_
Total Phosphorus	0.719	_	_	1	≤1	_	_
Total Aluminum	3.13	<1.063	3.13	9		_	0.75
Total Copper	0.0175	<0.0455	0.131	9	_	_	
Total Iron	6.66	<1.64	6.66	9		_	1.5
Total Lead	0.008	<0.0092	0.014	9		_	
Total Zinc	0.087	0.162	0.362	9			
pH (S.U.)	7.9 Min; 8.5 Max	7.3	8.5	9	6.0 to 9.0	_	6.0 to 9.0

Based on the results in Table 9, no additional requirements are imposed at Outfall 002. PFI has reported high concentrations of TSS, aluminum, and iron, but not during consecutive monitoring periods. No Corrective Action Plans were required or submitted.

Even though no additional requirements are imposed, the benchmark values in the current permit will be maintained in the renewed permit. DEP uses benchmark monitoring in the PAG-03 General Permit as an indicator of the ongoing effectiveness of a facility's best management practices. The storm water benchmark values in the PAG-03 differ from the "No Exposure" thresholds because the PAG-03's benchmark values presume that storm water is exposed to industrial activities. The benchmark values represent values achievable by storm water controls as opposed to storm water that is not exposed to industrial activities, which is generally free of contamination and therefore does not require controls.

002.B. Water Quality-Based Effluent Limitations (WQBELs)

Generally, DEP does not develop numerical WQBELs for storm water discharges. Pursuant to 25 Pa. Code § 96.4(g), mathematical modeling used to develop WQBELs must be performed at Q_{7-10} low-flow conditions. Storm water discharges generally do not occur at Q_{7-10} conditions because the precipitation that causes a storm water discharge also will increase the receiving stream's flow (or, in this case, generate a non-zero flow in the drainage channel that leads to the former strip mine pond) and that increased stream flow will provide additional assimilative capacity during a storm event. Consequently, there should be no reasonable potential for storm water discharges to cause or contribute to an exceedance of water quality criteria at design conditions.

Even though no mathematical modeling is performed, the permit will ensure compliance with water quality standards through a combination of best management practices including pollution prevention and exposure minimization, good housekeeping, erosion and sediment control, and spill prevention and response.

Aquatic Life Impairment of Connoquenessing Creek

As explained in Section 001.B of this Fact Sheet, Connoquenessing Creek has an impaired for aquatic life use caused by organic enrichment from agriculture. BOD₅, nitrogen, and phosphorus concentrations in Outfall 002's storm water discharges are either low, less than the corresponding 'no exposure' thresholds, or not detectable. Based on those results, PFI does not discharge wastewaters that contribute to organic enrichment, so PFI is not affected by the impairment. Data collected under the permit will allow DEP to monitor Outfall 002's contribution to the impairment, if any.

002.C. Effluent Limitations and Monitoring Requirements for Outfall 002

In accordance with 25 Pa. Code §§ 92a.12 and 92a.61 and anti-backsliding requirements under Section 402(o) of the Clean Water Act and 40 CFR § 122.44(I) (incorporated in Pennsylvania's regulations at 25 Pa. Code § 92a.44), effluent limits for Outfall 002 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in the table below.

Table 10. Effluent Limits and Monitoring Requirements for Outfall 002

Mass		Mass (pounds)		ncentration (µ	ıg/L)	
Parameter	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	Basis
Flow (MGD)		Report		_	_	25 Pa. Code § 92a.61(h)
Total Suspended Solids	_	_		Report	_	§ 92a.61(h); PAG-03, Appendix B
Oil and Grease	ı	_		Report	_	§ 92a.61(h); PAG-03, Appendix B
Nitrogen, Total	_	_	_	Report	_	§ 92a.61(h); PAG-03, Appendix B
Phosphorus, Total	_	_	_	Report	_	§ 92a.61(h); PAG-03, Appendix B
Aluminum, Total	_	_	_	Report	_	§ 92a.61(h); PAG-03, Appendix B
Copper, Total	_	_	_	Report	_	§ 92a.61(h); PAG-03, Appendix B
Iron, Total	_	_	_	Report	_	§ 92a.61(h); PAG-03, Appendix B
Lead, Total	_	_	_	Report	_	§ 92a.61(h); PAG-03, Appendix B
Zinc, Total	_	_	_	Report	_	§ 92a.61(h); PAG-03, Appendix B
pH (s.u.)	_	_	_	Report	_	§ 92a.61(h)

The sampling frequency for all parameters will be 1/6 months based on the sampling frequency in Appendix B of the PAG-03 General Permit. Grab sampling is required for all parameters except Total Nitrogen, which must be calculated as the sum of Total Kjeldahl Nitrogen (TKN) plus Nitrite-Nitrate as N (NO₂+NO₃-N), where TKN and NO₂+NO₃-N are measured in the same sample.

	Tools and References Used to Develop Permit
<u> </u>	
	WQM for Windows Model (see Attachment)
<u> </u>	Toxics Management Spreadsheet (see Attachment B)
	TRC Model Spreadsheet (see Attachment)
<u> </u>	Temperature Model Spreadsheet (see Attachment C)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002,
	12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
\boxtimes	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
П	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
\boxtimes	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	Standard Operating Procedure (SOP) for Clean Water Program: Establishing Effluent Limitations for Individual Industrial Permits [SOP No. BCW-PMT-032, Version 1.6, October 1, 2023]
	Other:

ATTACHMENT A

SIC Codes Covered by MP&M Effluent Limitations Guidelines

Appendix A - Example NAICS & SIC codes for MP&M Sectors

Table A-1 (Continued)

	Example NAICS and SIC Codes for the MP&M Industrial Sectors						
NAICS Code	SIC Code	Standard Industrial Classification Groups					
Bus and Truck (Continued)							
49211010 49221000	4215	Courier Services, Except by Air					
48849020	4231	Trucking Terminal Facilities					
		Electronic Equipment					
33421000	3661	Telephone and Telegraph Apparatus					
33422010	3663	Radio and Television Broadcast and Communications Equipment					
33429000	3669	Communications Equipment, N.E.C.					
33441100	3671	Electron Tubes					
33441400	3675	Electronic Capacitors					
33441610 33441620	3677	Electronic Coils and Transformers					
33441700	3678	Connectors for Electronic Applications					
33422020 33441820 33441900 33632210	3679	Electronic Components, N.E.C.					
3345 1010 3345 1110 3345 1610 3345 1910 3351 2920 3359 9920 3391 1410	3699	Electrical Machinery, Equipment, and Supplies, N.E.C.					
		Hardware					
32312220	2796	Platemaking and Related Services					
33281100	3398	Metal Heat Treating					
33243910	3412	Metal Shipping Barrels, Drums, Kegs, Pails					
33221110	3421	Cutlery					
33221210 33221240	3423	Hand and Edge Tools, Except Machine Tools and Handsaws					
33221300	3425	Hand Saws and Saw Blades					
33243920	3429	Hardware, N.E.C.					

ATTACHMENT B

Toxics Management Spreadsheet Results for Outfall 001

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Facility: Penna Flame Industries, Inc.

NPDES Permit No.: PA0004685

Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste

Wastewater Description: Contact cooling water

			Discharge	Characterist	tics							
Design Flow	Hardness (mg/l)*	ь ц /с п)*	Partial Mix Factors (PMFs) Complete Mix Times (min)									
(MGD)*	nardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
0.147	181.67	7.9										

Discharge Pollutant Units						0 If lef	t blank	0.5 M le	eft blank	0) If left blan	k	1 If left	t blank
Chloride (PWS) mg/L 1450 mg/L 1450 mg/L 160 mg/L 160 mg/L 169 mg/L 159 mg/L 159 mg/L 159 mg/L 160 mg/L 1740 mg/L 1740		Discharge Pollutant	Units	Ма	_		l	-				FOS		
Bromide		Total Dissolved Solids (PWS)	mg/L		2770									
Fluoride (PWS) mg/L 1.59	7	Chloride (PWS)	mg/L		1450									
Fluoride (PWS) mg/L 1.59	18	Bromide	mg/L		9.66									
Total Aluminum	ច	Sulfate (PWS)	mg/L		199									
Total Antimony		Fluoride (PWS)	mg/L		1.59									
Total Arsenic μg/L 4.97 1740 1740 1741		Total Aluminum	μg/L		50									
Total Barium		Total Antimony	μg/L		2									
Total Beryllium	1	Total Arsenic	μg/L		4.97									
Total Boron	1	Total Barium	μg/L		1740									
Total Cadmium	1	Total Beryllium	μg/L	٧	0.8									
Total Cadmium	1	Total Boron	μg/L		248									
Hexavalent Chromium	1	Total Cadmium			0.077									
Total Cobalt		Total Chromium (III)	μg/L		4									
Total Copper		Hexavalent Chromium	μg/L		0.26									
Free Cyanide	1	Total Cobalt	μg/L	٧	0.8									
Prec Cyanide		Total Copper	μg/L		126									
Total Cyanide	2	Free Cyanide	μg/L											
Total Iron	1 8	Total Cyanide		<	6									
Total Lead	ច	Dissolved Iron	μg/L		29									
Total Manganese		Total Iron	μg/L		2900									
Total Mercury μg/L 0.2 Total Nickel μg/L 0.8 Total Phenolics (Phenolics) (PWS) μg/L 2.5 Total Selenium μg/L 12.4 Total Silver μg/L 4 Total Thallium μg/L 0.8 Total Zinc μg/L 107 Total Molybdenum μg/L 0.8 Acrolein μg/L 2 Acrylamide μg/L 2 Acrylonitrile μg/L 2 Benzene μg/L 0.5	1	Total Lead	μg/L	<	0.8									
Total Nickel μg/L < 0.8	1	Total Manganese	μg/L		101									
Total Phenols (Phenolics) (PWS) μg/L < 2.5	1	Total Mercury	μg/L	<	0.2									
Total Phenols (Phenolics) (PWS) μg/L < 2.5		Total Nickel	μg/L	<	0.8									
Total Silver		Total Phenols (Phenolics) (PWS)		<	2.5									
Total Thallium μg/L 0.8 Total Zinc μg/L 107 Total Molybdenum μg/L 0.8 Acrolein μg/L 2 Acrylamide μg/L Acrylonitrile μg/L Benzene μg/L 0.5		Total Selenium	μg/L		12.4									
Total Zinc μg/L 107 Total Molybdenum μg/L < 0.8		Total Silver	μg/L	<	4									
Total Molybdenum μg/L < 0.8 Acrolein μg/L 2 Acrylamide μg/L Acrylonitrile μg/L 2 Benzene μg/L 0.5		Total Thallium	μg/L	<	0.8									
Acrolein μg/L 2 Acrylamide μg/L Acrylonitrile μg/L 2 Benzene μg/L 0.5		Total Zinc	μg/L		107									
Acrylamide μg/L < Acrylonitrile μg/L 2 Benzene μg/L <	L	Total Molybdenum	μg/L	<	0.8									
Acrylonitrile μg/L 2 Benzene μg/L 0.5		Acrolein		<	2									
Acrylonitrile μg/L 2 Benzene μg/L 0.5		Acrylamide	μg/L	<										
Benzene µg/L < 0.5		Acrylonitrile		<	2									
				<	0.5									
		Bromoform		<	0.5									

		_	_		 _				
	Carbon Tetrachloride	μg/L	<	0.5					
	Chlorobenzene	μg/L	<	0.5					
	Chlorodibromomethane	μg/L	<	0.5					
	Chloroethane	μg/L	<	0.5					
	2-Chloroethyl Vinyl Ether	µg/L	<	5					
			<		_			_	
	Chloroform	μg/L	-	0.6					
	Dichlorobromomethane	μg/L	<	0.5					
	1,1-Dichloroethane	μg/L	<	0.5					
es	1,2-Dichloroethane	μg/L	<	0.5					
	1,1-Dichloroethylene	μg/L	<	0.5					
Group	1,2-Dichloropropane	μg/L	<	0.5					
Ö	1,3-Dichloropropylene	µg/L	<	0.5					
	1 11		-		_				
	1,4-Dioxane	μg/L	<	5					
	Ethylbenzene	μg/L	<	0.5					
	Methyl Bromide	μg/L	<	0.5					
	Methyl Chloride	μg/L	<	0.5					
	Methylene Chloride	μg/L	<	0.5					
	1,1,2,2-Tetrachloroethane	μg/L	<	0.5					
	Tetrachloroethylene	μg/L	<	0.5					
	Toluene	µg/L	<	0.5					
	1,2-trans-Dichloroethylene	µg/L	<	0.5					
			_						
	1,1,1-Trichloroethane	μg/L	<	0.5					
	1,1,2-Trichloroethane	μg/L	<	0.5					
	Trichloroethylene	μg/L	<	0.5					
L	Vinyl Chloride	μg/L	<	0.5					
	2-Chlorophenol	μg/L	<	5	_				
	2,4-Dichlorophenol	μg/L	<	5					
	2,4-Dimethylphenol	µg/L	<	5					
	4,6-Dinitro-o-Cresol		<	10					
4		µg/L	-		_				
0	2,4-Dinitrophenol	μg/L	<	10					
Group	2-Nitrophenol	μg/L	<	10					
Ō	4-Nitrophenol	μg/L	<	5					
	p-Chloro-m-Cresol	μg/L	<	5					
	Pentachlorophenol	μg/L	<	10					
	Phenol	μg/L	<	2.5					
	2,4,6-Trichlorophenol	μg/L	<	5					
\vdash	Acenaphthene	µg/L	<	2.5					
	Acenaphthylene		<	2.5	_				
		µg/L	-		_				
	Anthracene	μg/L	<	2.5					
	Benzidine	μg/L	<	50					
	Benzo(a)Anthracene	μg/L	<	2.5					
	Benzo(a)Pyrene	μg/L	<	2.5	_				
	3,4-Benzofluoranthene	μg/L	<	2.5					
	Benzo(ghi)Perylene	μg/L	<	2.5					
	Benzo(k)Fluoranthene	µg/L	<	2.5					
	Bis(2-Chloroethoxy)Methane	µg/L	<	5					
	Bis(2-Chloroethyl)Ether	µg/L	<	5					
	Bis(2-Chloroisopropyl)Ether		<	5					
	, , , , , , ,	µg/L	_						
	Bis(2-Ethylhexyl)Phthalate	μg/L	<	5					
	4-Bromophenyl Phenyl Ether	μg/L	<	5					
	Butyl Benzyl Phthalate	μg/L	<	5					
	2-Chloronaphthalene	μg/L	<	5					
	4-Chlorophenyl Phenyl Ether	μg/L	<	5					
	Chrysene	μg/L	<	2.5					
	Dibenzo(a,h)Anthrancene	µg/L	<	2.5					
	1,2-Dichlorobenzene	µg/L	<	0.5					
			<	0.5					
	1,3-Dichlorobenzene	µg/L	-						
2	1,4-Dichlorobenzene	µg/L	<	0.5					
roup	3,3-Dichlorobenzidine	μg/L	<	5					
9	Diethyl Phthalate	μg/L	<	5					
9	Dimethyl Phthalate	μg/L	<	2.5					
	Di-n-Butyl Phthalate	μg/L	<	5					
1	2,4-Dinitrotoluene	μg/L	<	5					
1					 	 	 	 	

- 1	2,6-Dinitrotoluene	μg/L	<	5	\blacksquare	7		-				
	Di-n-Octyl Phthalate	µg/L	<	5	Ħ	#	Ш					
	1,2-Diphenylhydrazine	µg/L	<	5	Ħ	+	Ħ	_				
- 1	Fluoranthene	µg/L	<	2.5	Ħ	7	Ħ	-				
- 1	Fluorene	µg/L	<	2.5	Ħ	#	Ħ	-				
			_	5	₩	+	₩	-				
	Hexachlorobenzene	μg/L	<		H	7	#	-				
	Hexachlorobutadiene	μg/L	<	0.5		#	Ħ	-				
	Hexachlorocyclopentadiene	μg/L	<	5	H	+	₩		 			
	Hexachloroethane	μg/L	<	2.5	Ħ	7	Ħ		 			
	Indeno(1,2,3-cd)Pyrene	μg/L	<	2.5		#	Н					
	Isophorone	μg/L	<	5	H	4	₩					
	Naphthalene	μg/L	<	0.5		1	Ш					
	Nitrobenzene	μg/L	<	5		1	₩					
	n-Nitrosodimethylamine	μg/L	<	5	H	+	\mathbb{H}					
	n-Nitrosodi-n-Propylamine	μg/L	<	5	\Box	Ŧ	H					
	n-Nitrosodiphenylamine	μg/L	<	5		Ī						
	Phenanthrene	μg/L	<	2.5	Ħ	Ŧ	Ħ					
	Pyrene	μg/L	<	2.5	\Box	ļ	\Box					
	1,2,4-Trichlorobenzene	μg/L	<	0.5	Ħ	Ī	Ħ					
\dashv	Aldrin	µg/L	<		H	+	H					
- 1	alpha-BHC	μg/L	<		Ħ	Ť	Ħ					
-	beta-BHC	µg/L	<			+	#					
- 1	gamma-BHC		<		H	7	H	-				
-	gamma-BHC delta BHC	µg/L	<				Ħ					
		μg/L	<		H	÷	₩	-				
	Chlordane	μg/L	_		Н	+	Н					
	4,4-DDT	μg/L	<		Ħ	#	Ħ	1				
	4,4-DDE	μg/L	<		H	+	H	-				
	4,4-DDD	μg/L	<		\Box	7	П					
	Dieldrin	μg/L	<			#	Π					
	alpha-Endosulfan	μg/L	<		H	+	$^{+}$					
	beta-Endosulfan	μg/L	<		\Box	Ţ	\square					
9	Endosulfan Sulfate	μg/L	<									
Group	Endrin	μg/L	<		H	7	\mathbb{H}	1				
5	Endrin Aldehyde	μg/L	<		\Box	Ŧ	H					
	Heptachlor	μg/L	<			7						
	Heptachlor Epoxide	μg/L	<		Ħ	Ť	H					
	PCB-1016	μg/L	<		Ħ	Ŧ	H					
	PCB-1221	μg/L	<		Ħ	#	Ħ					
	PCB-1232	μg/L	<		Ħ	+	Ħ	_				
- 1	PCB-1242	μg/L	<		Ħ	7	Ħ	-				
- 1	PCB-1248	μg/L	<		Ħ	#	Ħ	-				
- 1	PCB-1254	μg/L	<		₩	+	₩	_				
- 1	PCB-1280		<		Ħ	7	Ħ	-				
		µg/L	<			#	Ħ	-	 			
	PCBs, Total	µg/L	-									
	Toxaphene	μg/L	<		H	Ť	H					
	2,3,7,8-TCDD	ng/L	<			#	Ħ					
	Gross Alpha	pCi/L				+	H					
	Total Beta	pCi/L	<		\Box	7	Щ	1				
롸	Radium 226/228 Total Strontium Total Uranium	pCi/L	<		\bowtie	#	Н					
잁	Total Strontium	μg/L	<		H	+	₩					
١	Total Uranium	μg/L	<		\Box	Ţ	П					
	Osmotic Pressure	mOs/kg			苴	#	ш					
					H	1	\blacksquare					
					H	Ŧ	H					
- 1						Ī	Ħ					
- 1					H	1	H					
					H	Ŧ	H					
							Ħ					
- 1					H	+	H					
						1	Ħ					
			1									
					₩	4	щ.					
						+						

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Penna Flame Industries, Inc., NPDES Permit No. PA0004685, Outfall 001

Instructions Disch	arge Str	ream													
Receiving Surface W	/ater Name:	Connoquer	essing Cree	ek			No. Rea	iches to M	lodel:	1	~	tewide Criteri eat Lakes Crit			
Location	Stream Co	de* RMI	Elevati	DA (mi	²)* SI	ope (ft/ft)		Withdrawa MGD)	Apply f Criter		OR	SANCO Crite	eria		
Point of Discharge	034025	19.7	3 900	323	(0.00065			Yes	5					
End of Reach 1	034025	19	899.	5 325	(0.00065			Yes	5					
Q ₇₋₁₀		LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	maver	Tribi	ıtary	Strea	m	Analys	eie
Location	RMI	(cfs/mi ²)*	Stream	Tributary	Ratio		(ft)	y (fps)	Time	Hardness		Hardness*	pH*	Hardness	pН
Point of Discharge	19.73	0.06657		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4-7	(-7	7 (1-7	(avch)			118	7		p
End of Reach 1	19	0.06657													
Q _h															
Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Trib	itary	Strea	m	Analys	sis
Location	IXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(daye)	Hardness	pH	Hardness	pН	Hardness	pН
Point of Discharge	19.73														
End of Reach 1	19														

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Penna Flame Industries, Inc., NPDES Permit No. PA0004685, Outfall 001

Instructions Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	All Inputs	O Results	O Limits
☐ Hydrodynamics						
✓ Wasteload Allocations						
☑ AFC	CCT (min): 15	PMF: 0.193	Analysis Hardness (mg/l):	121.31	Analysis pH:	7.02

Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(uall.)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	14,414	
Total Antimony	0	0		0	1,100	1,100	21,141	
Total Arsenic	0	0		0	340	340	6,535	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	403,602	
Total Boron	0	0		0	8,100	8,100	155,675	
Total Cadmium	0	0		0	2.430	2.6	49.9	Chem Translator of 0.936 applied
Total Chromium (III)	0	0		0	667.443	2,112	40,594	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	313	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	1,826	
Total Copper	0	0		0	16.122	16.8	323	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	79.649	104	2,007	Chem Translator of 0.763 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	31.7	Chem Translator of 0.85 applied
Total Nickel	0	0		0	551.378	552	10,618	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	4.485	5.28	101	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	1,249	
Total Zinc	0	0		0	138.022	141	2,712	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	57.7	

Acrylonitrile	0	0	!	0	650	650	12,492	
Benzene	0	0		0	640	640	12,432	
Bromoform	0	0		0	1,800	1,800	34,594	
Carbon Tetrachloride	0	0		0	2,800	2,800	53,814	
Chlorobenzene	0	0		0	1,200	1,200	23,063	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
		0		0	18,000	18,000	345,945	
2-Chloroethyl Vinyl Ether	0	_						
Chloroform	0	0		0	1,900	1,900	36,516	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	15,000	15,000	288,287	
1,1-Dichloroethylene	0	0		0	7,500	7,500	144,144	
1,2-Dichloropropane	0	0		0	11,000	11,000	211,411	
1,3-Dichloropropylene	0	0		0	310	310	5,958	
Ethylbenzene	0	0		0	2,900	2,900	55,736	
Methyl Bromide	0	0		0	550	550	10,571	
Methyl Chloride	0	0		0	28,000	28,000	538,136	
Methylene Chloride	0	0		0	12,000	12,000	230,630	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	19,219	
Tetrachloroethylene	0	0		0	700	700	13,453	
Toluene	0	0		0	1,700	1,700	32,673	
1,2-trans-Dichloroethylene	0	0		0	6,800	6,800	130,690	
1,1,1-Trichloroethane	0	0		0	3,000	3,000	57,657	
1,1,2-Trichloroethane	0	0		0	3,400	3,400	65,345	
Trichloroethylene	0	0		0	2,300	2,300	44,204	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	560	560	10,763	
2,4-Dichlorophenol	0	0		0	1,700	1,700	32,673	
2,4-Dimethylphenol	0	0		0	660	660	12,685	
4,6-Dinitro-o-Cresol	0	0		0	80	80.0	1,538	
2,4-Dinitrophenol	0	0		0	660	660	12,685	
2-Nitrophenol	0	0		0	8,000	8,000	153,753	
4-Nitrophenol	0	0		0	2,300	2,300	44,204	
p-Chloro-m-Cresol	0	0		0	160	160	3,075	
Pentachlorophenol	0	0		0	8.902	8.9	171	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	460	460	8,841	
Acenaphthene	0	0		0	83	83.0	1,595	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	5,766	
Benzo(a)Anthracene	0	0		0	0.5	0.5	9.61	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3.4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	576,574	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	86,486	
		0			270			
4-Bromophenyl Phenyl Ether	0	0		0		270	5,189	
Butyl Benzyl Phthalate	U	U		U	140	140	2,691	

0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	820	820	15,760	
0	0		0	350	350	6,727	
0	0		0	730	730	14,030	
0	0		0	N/A	N/A	N/A	
0	0		0	4,000	4,000	76,877	
0	0		0	2,500	2,500	48,048	
0	0		0	110	110	2,114	
0	0		0	1,600	1,600	30,751	
0	0		0	990	990	19,027	
0	0		0	15	15.0	288	
0	0		0	200	200	3,844	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	10	10.0	192	
0	0		0	5	5.0	96.1	
0	0		0	60	60.0	1,153	
0	0		0	N/A	N/A	N/A	
0	0		0	10,000	10,000	192,191	
0	0		0	140	140	2,691	
0	0		0	4,000	4,000	76,877	
0	0		0	17,000	17,000	326,725	
0	0		0	N/A	N/A	N/A	
0	0		0	300	300	5,766	
0	0		0	5	5.0	96.1	
0	0		0	N/A	N/A	N/A	
0	0		0	130	130	2,498	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0 0 N/A 0 0 0 N/A 0 0 0 0 N/A 0 0 0 0 350 0 0 0 0 730 0 0 0 0 N/A 0 0 0 0 N/A 0 0 0 0 110 0 0 0 0 1,600 0 0 0 0 1,600 0 0 0 0 1,600 0 0 0 0 1,600 0 0 0 0 1,600 0 0 0 0 1,600 0 0 0 0 1,600 0 0 0 0 1,600 0 0 0 0 1,600 0 0 0 0	0 0 0 N/A N/A 0 0 0 N/A N/A 0 0 0 N/A N/A 0 0 0 350 350 0 0 0 730 730 0 0 0 N/A N/A 0 0 0 N/A N/A 0 0 0 0 N/A N/A 0 0 0 0 1,600 4,000 4,000 4,000 0 <td< td=""><td>0 0 N/A N/A N/A 0 0 0 N/A N/A N/A 0 0 0 0 N/A N/A N/A 0 0 0 0 350 350 6,727 0 0 0 0 730 730 14,030 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A 0 0 0 4,000 4,000 76,877 0 0 0 1,600 4,000 76,877 0 0 0 1,600 30,751 10 2,500 48,048 0 0 0 1,600 1,600 30,751 30 30,751 30 30 30,751 30 30 30,751 30 30 30,751 30 30<</td></td<>	0 0 N/A N/A N/A 0 0 0 N/A N/A N/A 0 0 0 0 N/A N/A N/A 0 0 0 0 350 350 6,727 0 0 0 0 730 730 14,030 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A 0 0 0 4,000 4,000 76,877 0 0 0 1,600 4,000 76,877 0 0 0 1,600 30,751 10 2,500 48,048 0 0 0 1,600 1,600 30,751 30 30,751 30 30 30,751 30 30 30,751 30 30 30,751 30 30<

☑ CFC	CCT (min): ######	PMF: 1	Analysis Hardness (mg/l):	118.67	Analysis pH:	7.00	Ī
-------	-------------------	--------	---------------------------	--------	--------------	------	---

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	21,022	
Total Arsenic	0	0		0	150	150	14,333	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	391,766	
Total Boron	0	0		0	1,600	1,600	152,884	
Total Cadmium	0	0		0	0.277	0.31	29.4	Chem Translator of 0.902 applied
Total Chromium (III)	0	0		0	85.266	99.1	9,474	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	993	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	1,815	

Total Copper	0	0		0	10.366	10.8	1,032	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	143,329	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	3.031	3.96	378	Chem Translator of 0.766 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	86.6	Chem Translator of 0.85 applied
Total Nickel	0	0		0	60.109	60.3	5,761	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	477	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	1,242	
Total Zinc	0	0		0	136.575	139	13,235	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	287	
Acrylonitrile	0	0		0	130	130	12,422	
Benzene	0	0		0	130	130	12,422	
Bromoform	0	0		0	370	370	35,354	
Carbon Tetrachloride	0	0		0	560	560	53,509	
Chlorobenzene	0	0		0	240	240	22,933	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	334,434	
Chloroform	0	0		0	390	390	37,266	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	296,213	
1,1-Dichloroethylene	0	0		0	1,500	1,500	143,329	
1,2-Dichloropropane	0	0		0	2,200	2,200	210,216	
1,3-Dichloropropylene	0	0		0	61	61.0	5,829	
Ethylbenzene	0	0		0	580	580	55,421	
Methyl Bromide	0	0		0	110	110	10,511	
Methyl Chloride	0	0		0	5,500	5,500	525,539	
Methylene Chloride	0	0		0	2,400	2,400	229,326	
1,1,2,2-Tetrachloroethane	0	0		0	210	210	20,066	
Tetrachloroethylene	0	0		0	140	140	13,377	
Toluene	0	0		0	330	330	31,532	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	133,774	
1,1,1-Trichloroethane	0	0		0	610	610	58,287	
1,1,2-Trichloroethane	0	0		0	680	680	64,976	
Trichloroethylene	0	0		0	450	450	42,999	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	10,511	
2,4-Dichlorophenol	0	0		0	340	340	32,488	
2,4-Dimethylphenol	0	0		0	130	130	12,422	
4,6-Dinitro-o-Cresol	0	0		0	16	16.0	1,529	
2,4-Dinitrophenol	0	0		0	130	130	12,422	
2-Nitrophenol	0	0		0	1,600	1,600	152,884	
	0	0		0	470	470	44,910	

p-Chloro-m-Cresol	0	0	0	500	500	47,776	
Pentachlorophenol	0	0	0	6.830	6.83	653	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	8,695	
Acenaphthene	0	0	0	17	17.0	1,624	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	5,638	
Benzo(a)Anthracene	0	0	0	0.1	0.1	9.56	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3.4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6.000	6.000	573,316	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	86,953	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	5,160	
Butyl Benzyl Phthalate	0	0	0	35	35.0	3,344	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	15,288	
1,3-Dichlorobenzene	0	0	0	69	69.0	6,593	
1,4-Dichlorobenzene	0	0	0	150	150	14,333	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	76,442	
Dimethyl Phthalate	0	0	0	500	500	47,776	
Di-n-Butyl Phthalate	0	0	0	21	21.0	2,007	
2,4-Dinitrotoluene	0	0	0	320	320	30,577	
2,6-Dinitrotoluene	0	0	0	200	200	19,111	
1,2-Diphenylhydrazine	0	0	0	3	3.0	287	
Fluoranthene	0	0	0	40	40.0	3,822	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	191	
Hexachlorocyclopentadiene	0	0	0	1	1.0	95.6	
Hexachloroethane	0	0	0	12	12.0	1,147	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	200,660	
Naphthalene	0	0	0	43	43.0	4,109	
Nitrobenzene	0	0	0	810	810	77,398	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	324,879	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	5,638	
Phenanthrene	0	0	0	1	1.0	95.6	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	2,484	

☑ THH CCT (min): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

		_	·					
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
Folidiants	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	535	
Total Arsenic	0	0		0	10	10.0	956	
Total Barium	0	0		0	2,400	2,400	229,326	
Total Boron	0	0		0	3,100	3,100	296,213	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	28,666	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	95,553	
Total Mercury	0	0		0	0.050	0.05	4.78	
Total Nickel	0	0		0	610	610	58,287	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	22.9	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	287	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	9,555	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	545	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	3,153	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	6,498	
Eury III STILL OTTO				,		55.6	0,100	<u> </u>

Methyl Bromide	0	0	 0	100	100.0	9,555	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A N/A	
	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	57	57.0		
Toluene	_	_	_	100	100.0	5,446	
1,2-trans-Dichloroethylene	0	0	0	I	ı	9,555	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	955,526	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	2,867	
2,4-Dichlorophenol	0	0	0	10	10.0	956	
2,4-Dimethylphenol	0	0	0	100	100.0	9,555	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	191	
2,4-Dinitrophenol	0	0	0	10	10.0	956	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	382,210	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	6,689	
Anthracene	0	0	0	300	300	28,666	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	19,111	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	9.56	
2-Chloronaphthalene	0	0	0	800	800	76,442	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	95,553	
1,3-Dichlorobenzene	0	0	0	7	7.0	669	
1,4-Dichlorobenzene	0	0	0	300	300	28,666	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	57,332	
Dimethyl Phthalate	0	0	0	2,000	2,000	191,105	
Di-n-Butyl Phthalate	0	0	0	20	20.0	1,911	
2.4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,4-Dirindoloidene	U	U	U	19/7	IN//A	IN//N	

2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	1,911	
Fluorene	0	0	0	50	50.0	4,778	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	382	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	3,249	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	956	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	1,911	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	6.69	

THE CALL CONTINUING THE THE TAIL AND THE TAI		CCT (min): ######	PMF: 1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A
--	--	-------------------	--------	---------------------------	-----	--------------	-----

Chloride (PWS) 0 0 0 N/A N/A I Sulfate (PWS) 0 0 0 N/A N/A I	LA (μg/L) Comments
Sulfate (PWS) 0 0 N/A N/A I	N/A
` '	N/A
	N/A
Fluoride (PWS) 0 0 N/A N/A I	N/A
Total Aluminum 0 0 0 N/A N/A I	N/A
Total Antimony 0 0 N/A N/A I	N/A
Total Arsenic 0 0 N/A N/A I	N/A
Total Barium 0 0 N/A N/A I	N/A
Total Boron 0 0 0 N/A N/A I	N/A
Total Cadmium 0 0 N/A N/A I	N/A
Total Chromium (III) 0 0 0 N/A N/A I	N/A
Hexavalent Chromium 0 0 0 N/A N/A I	N/A
Total Cobalt 0 0 N/A N/A I	N/A
Total Copper 0 0 0 N/A N/A I	N/A
Dissolved Iron 0 0 N/A N/A I	N/A
Total Iron 0 0 0 N/A N/A I	N/A
Total Lead 0 0 0 N/A N/A I	N/A
Total Manganese 0 0 0 N/A N/A I	N/A
Total Mercury 0 0 N/A N/A I	N/A
Total Nickel 0 0 N/A N/A I	N/A
Total Phenols (Phenolics) (PWS) 0 0 N/A N/A I	N/A
Total Selenium 0 0 N/A N/A I	N/A

Total Cilver	0	0	 0	N/A	NI/A	N/A	T
Total Silver	_	_			N/A		
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	0.06	0.06	28.7	
Benzene	0	0	0	0.58	0.58	277	
Bromoform	0	0	0	7	7.0	3,348	
Carbon Tetrachloride	0	0	0	0.4	0.4	191	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	383	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	0.95	0.95	454	
1,2-Dichloroethane	0	0	0	9.9	9.9	4,735	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	430	
1,3-Dichloropropylene	0	0	0	0.27	0.27	129	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	9,566	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	95.7	
Tetrachloroethylene	0	0	0	10	10.0	4,783	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	263	
Trichloroethylene	0	0	0	0.6	0.6	287	
Vinyl Chloride	0	0	0	0.02	0.02	9.57	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	14.3	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	717	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.048	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.48	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.048	

3.4-Benzoftuoranthene				 				
Bis(2-Chioroeltry) Ether	3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.48	
Bis(2-Chloroisopropy) Ether		0	0	0				
Bis(2-Ethylhexyl)Phthalate		_	_					
4-Bromophenyl Phenyl Ether 0 0 N/A N/A N/A Butyl Benzyl Phthalate 0 0 N/A N/A N/A 2-Chloronaphthalene 0 0 0 N/A N/A N/A Chrysene 0 0 0 0.12 0.12 57.4 Dibenzo(a,h)Anthrancene 0 0 0 0.0001 0.0064 1,2-Dichlorobenzene 0 0 0 N/A N/A N/A 1,3-Dichlorobenzene 0 0 0 N/A N/A N/A 1,4-Dichlorobenzene 0 0 0 N/A N/A N/A 1,4-Dichlorobenzidine 0 0 0 0.05 23.9 0 Diethyl Phthalate 0 0 0 N/A N/A N/A Din-Butyl Phthalate 0 0 0 N/A N/A N/A 2,6-Dinitrobluene 0 0 0.05 0.05 23.9		0	0	0				
Butyl Benzyl Phthalate 0 0 N/A N/A N/A 2-Chloronaphthalene 0 0 0 N/A N/A N/A Chysene 0 0 0 0.12 0.12 57.4 Dibenzo(a,h)Anthrancene 0 0 0.0001 0.0001 0.0048 1,2-Dichlorobenzene 0 0 0 N/A N/A N/A 1,3-Dichlorobenzene 0 0 0 N/A N/A N/A 1,4-Dichlorobenzidine 0 0 0 0.5 23.9 0 0iettyl Phthalate 0 0 0 N/A N/A N/A Dimetryl Phthalate 0 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0 0.5 23.9 23.9 2,5-Dinitrotoluene 0 0 0 0.05 0.5 23.9 1,2-Dipherythydrazine 0 0 0 0.05		0	0	0	0.32	0.32		
2-Chloronaphthalene 0 0 N/A N/A N/A Chrysene 0 0 0.12 57.4 Dibenzo(a),Nathrancene 0 0 0.0001 0.0001 1,2-Dichlorobenzene 0 0 0 N/A N/A N/A 1,3-Dichlorobenzene 0 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0 N/A N/A N/A 9 Dietryl Prthalate 0 0 0 N/A N/A N/A 10-n-Butyl Prthalate 0 0 0 N/A N/A N/A 10-n-Butyl Prthalate 0 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0 0.05 0.05 23.9 2,6-Dinitrotoluene 0 0 0 0.03 0.03 14.3 Fluoranthene 0 0 0 0.03 0.03 14.3 Hexach		0		0				
Chrysene 0 0 0.12 0.12 0.12 0.57.4 Dibenzo(a,h)Anthrancene 0 0 0.0001 0.0001 0.0048 1,2-Dichlorobenzene 0 0 0.01/A N/A N/A 1,3-Dichlorobenzene 0 0 0.01/A N/A N/A 1,4-Dichlorobenzene 0 0 0.05 0.05 23.9 Diethyl Phthalate 0 0 0.05 0.05 23.9 Diethyl Phthalate 0 0 0.01/A N/A N/A Din-Butyl Phthalate 0 0 0.01/A N/A N/A Di-Butyl Phthalate 0 0 0.05 0.05 23.9 2,4-Dinitrotoluene 0 0 0.05 0.05 23.9 2,5-Dinitrotoluene 0 0 0.05 0.05 23.9 1,2-Diphenylhydraine 0 0 0.03 0.03 14.3 Fluoranthene 0 0 0 <t< td=""><td></td><td>0</td><td>0</td><td>0</td><td>N/A</td><td>N/A</td><td></td><td></td></t<>		0	0	0	N/A	N/A		
Dibenzo(a,h)Anthrancene	2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene 0 0 N/A N/A N/A 1,3-Dichlorobenzene 0 0 0 N/A N/A N/A 1,4-Dichlorobenzidine 0 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0 0.05 23.9 Diethyl Phthalate 0 0 0 N/A N/A N/A Dimethyl Phthalate 0 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 0 N/A N/A N/A 2,4-Dinitrofoluene 0 0 0 0.5 23.9 1.2-Diphenylhydrazine 0 0 0.05 0.05 23.9 1,2-Diphenylhydrazine 0 0 0 0.03 0.03 14.3 Fluoranthene 0 0 0 0.03 0.03 14.3 Fluoranthene 0 0 0 N/A N/A N/A Hexachl	Chrysene	0	0	0	0.12	0.12	57.4	
1,3-Dichlorobenzene 0 0 N/A N/A N/A N/A 1,4-Dichlorobenzene 0 0 0 N/A N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0 0.05 23.9 Dienbyl Phthalate 0 0 N/A N/A <td>Dibenzo(a,h)Anthrancene</td> <td>0</td> <td>0</td> <td>0</td> <td>0.0001</td> <td>0.0001</td> <td>0.048</td> <td></td>	Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.048	
1,4-Dichlorobenzene 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0.05 0.05 23.9 Diethyl Phthalate 0 0 N/A N/A N/A Dimethyl Phthalate 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 N/A N/A N/A 2,4-Dintrotoluene 0 0 0.05 0.05 23.9 2,6-Dintrotoluene 0 0 0.05 0.05 23.9 1,2-Diphenylhydrazine 0 0 0.03 0.03 14.3 Fluoranthene 0 0 0 N/A N/A N/A Fluoranthene 0 0 0 N/A N/A N/A Fluoranthene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0	1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate 0 0 N/A N/A N/A Dimethyl Phthalate 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0.05 0.05 23.9 2,6-Dinitrotoluene 0 0 0.05 0.05 23.9 1,2-Diphenylhydrazine 0 0 0.03 0.03 14.3 Fluoranthene 0 0 0.03 0.03 14.3 Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.038 0.038 Hexachlorobutadiene 0 0 0.01 0.01 4.78 Hexachlorocyclopentadiene 0 0 0.01 0.01 4.78 Hexachlorochtane 0 0 0.1 0.1 47.8 Indeno(1,2,3-cd)Pyrene 0 0 0.001 0.04	1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	3,3-Dichlorobenzidine	0	0	0	0.05	0.05	23.9	
Di-n-Butyl Phthalate 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0.05 0.05 23.9 2,6-Dinitrotoluene 0 0 0.05 0.05 23.9 1,2-Diphenylhydrazine 0 0 0.03 0.03 14.3 Fluoranthene 0 0 N/A N/A N/A Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.0008 0.038 Hexachlorocyclopentadiene 0 0 0 0.01 4.78 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachlorocyclopentadiene 0 0 0 1.01 4.78 1.47.8 Indeno(1,2,3-cd)Pyrene 0 0 0 0.01 0.01 0.48 Isophorone 0 0 0 N/A N/A N/A Nitrobenzene 0	Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene 0 0 0.05 0.05 23.9 2,6-Dinitrotoluene 0 0 0.05 0.05 23.9 1,2-Diphenyfhydrazine 0 0 0 0.03 14.3 Fluoranthene 0 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 0.0008 0.0008 0.038 Hexachlorobutadiene 0 0 0 0.01 0.01 4.78 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachlorothane 0 0 0 0.1 0.1 47.8 Indenot1,2,3-cd)Pyrene 0 0 0 0.001 0.001 0.48 Isophorone 0 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A <td>Dimethyl Phthalate</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene 0 0 0.05 0.05 23.9 1,2-Diphenylhydrazine 0 0 0.03 0.03 14.3 Fluoranthene 0 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.0008 0.038 Hexachlorobutadiene 0 0 0.01 0.01 4.78 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachloroethane 0 0 0 0.1 0.1 47.8 Indeno(1,2,3-cd)Pyrene 0 0 0 0.01 0.01 0.48 Isophorone 0 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0 0.0007 0.0007 0.33 <	Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine 0 0 0.03 0.03 14.3 Fluoranthene 0 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 0.00008 0.038 Hexachlorobutadiene 0 0 0 0.01 0.01 4.78 Hexachloroethane 0 0 0 N/A N/A N/A Indeno(1,2,3-cd)Pyrene 0 0 0 0.001 0.001 0.48 Isophorone 0 0 0 N/A N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A N/A n-Nitrosodimethylamine 0 0 0 0.005 0.005 0.239 n-Nitrosodiphenylamine 0 0 0 0.005 0.005 0.239 Phenanthrene 0 0 0 <	2,4-Dinitrotoluene	0	0	0	0.05	0.05	23.9	
Fluoranthene 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.0008 0.038 Hexachlorobutadiene 0 0 0.01 0.01 4.78 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachloroethane 0 0 0.1 0.1 47.8 Indeno(1,2,3-cd)Pyrene 0 0 0.001 0.001 0.48 Isophorone 0 0 0 N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0 0.005 0.005 2.39 n-Nitrosodiphenylamine 0 0 0 N/A N/A N/A Pyrene	2,6-Dinitrotoluene	0	0	0	0.05	0.05	23.9	
Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.0008 0.038 Hexachlorobutadiene 0 0 0.01 0.01 4.78 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachloroethane 0 0 0 0.1 47.8 1.0 Indeno(1,2,3-cd)Pyrene 0 0 0 0.001 0.001 0.48 Isophorone 0 0 0 N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0 0.0007 0.0007 0.33 n-Nitrosodiphenylamine 0 0 0 N/A N/A N/A Phenanthrene 0 0 0 N/A N/A N/A </td <td>1,2-Diphenylhydrazine</td> <td>0</td> <td>0</td> <td>0</td> <td>0.03</td> <td>0.03</td> <td>14.3</td> <td></td>	1,2-Diphenylhydrazine	0	0	0	0.03	0.03	14.3	
Hexachlorobenzene 0 0 0.00008 0.00008 0.038 Hexachlorobutadiene 0 0 0.01 0.01 4.78 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachlorocyclopentadiene 0 0 0 0.1 0.1 47.8 Hexachlorocyclopentadiene 0 0 0.1 0.1 47.8 Indeno(1,2,3-cd)Pyrene 0 0 0.001 0.048 Isophorone 0 0 0 N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A N/A n-Nitrosodimethylamine 0 0 0 0.005 0.005 0.33 n-Nitrosodiphenylamine 0 0 0 N/A N/A N/A Phenanthrene 0 0 0 N/A N/A	Fluoranthene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene 0 0 0.01 0.01 4.78 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachlorocyclopentadiene 0 0 0 0.1 0.1 47.8 Hexachlorocyclopentadiene 0 0 0.1 0.1 47.8 Indeno(1,2,3-cd)Pyrene 0 0 0.001 0.001 0.48 Isophorone 0 0 0 N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0 0.005 0.005 0.33 n-Nitrosodiphenylamine 0 0 0 0.005 0.005 2.39 Phenanthrene 0 0 0 N/A N/A N/A Pyrene 0 0 0 N/A N/A N/A </td <td>Fluorene</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene 0 0 N/A N/A N/A Hexachloroethane 0 0 0.1 0.1 47.8 Indeno(1,2,3-cd)Pyrene 0 0 0.001 0.001 0.48 Isophorone 0 0 0 N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0 0.005 0.005 0.33 n-Nitrosodiphenylamine 0 0 0 3.3 3.3 1,578 Phenanthrene 0 0 0 N/A N/A N/A Pyrene 0 0 0 N/A N/A N/A	Hexachlorobenzene	0	0	0	0.00008	0.00008	0.038	
Hexachloroethane	Hexachlorobutadiene	0	0	0	0.01	0.01	4.78	
Indeno(1,2,3-cd)Pyrene	Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Isophorone	Hexachloroethane	0	0	0	0.1	0.1	47.8	
Naphthalene 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0 0.0007 0.0007 0.33 n-Nitrosodi-n-Propylamine 0 0 0 0.005 0.005 2.39 n-Nitrosodiphenylamine 0 0 0 3.3 3.3 1,578 Phenanthrene 0 0 0 N/A N/A N/A Pyrene 0 0 0 N/A N/A N/A	Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.48	
Nitrobenzene 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0.0007 0.0007 0.33 n-Nitrosodi-n-Propylamine 0 0 0.005 0.005 2.39 n-Nitrosodiphenylamine 0 0 0 3.3 3.3 1,578 Phenanthrene 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A	Isophorone	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine 0 0 0.0007 0.0007 0.33 n-Nitrosodi-n-Propylamine 0 0 0.005 0.005 2.39 n-Nitrosodiphenylamine 0 0 0 3.3 3.3 1,578 Phenanthrene 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A	Naphthalene	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine 0 0 0 0.005 2.39 n-Nitrosodiphenylamine 0 0 0 3.3 3.3 1,578 Phenanthrene 0 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A	Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine 0 0 0 3.3 3.3 1,578 Phenanthrene 0 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A	n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.33	
n-Nitrosodiphenylamine 0 0 0 3.3 3.3 1,578 Phenanthrene 0 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A	n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	2.39	
Phenanthrene 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A		0	0	0	3.3	3.3	1,578	
7		0	0	0	N/A	N/A		
1,2,4-Trichlorobenzene	Pyrene	0	0	0	N/A	N/A	N/A	
	1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.25	0.4	207	323	517	μg/L	207	AFC	Discharge Conc ≥ 50% WQBEL (RP)

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	9,239	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	535	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	956	μg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	229,326	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	99,781	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	29.4	μg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	9,474	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	201	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	1,170	μg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	28,666	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	143,329	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	378	μg/L	Discharge Conc < TQL
Total Manganese	95,553	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	4.78	μg/L	Discharge Conc < TQL
Total Nickel	5,761	μg/L	Discharge Conc < TQL
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Selenium	477	μg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	65.0	μg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	22.9	μg/L	Discharge Conc < TQL
Total Zinc	1,739	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	37.0	μg/L	Discharge Conc < TQL
Acrylonitrile	28.7	μg/L	Discharge Conc < TQL
Benzene	277	μg/L	Discharge Conc < TQL
Bromoform	3,348	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	191	μg/L	Discharge Conc < TQL
Chlorobenzene	9,555	μg/L	Discharge Conc < TQL
Chlorodibromomethane	383	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	221,737	μg/L	Discharge Conc < TQL
Chloroform	545	μg/L	Discharge Conc ≤ 25% WQBEL

Dichlorobromomethane	454	uall	Discharge Conc < TQL
	454 N/A	µg/L	No WQS
1,1-Dichloroethane		N/A	
1,2-Dichloroethane	4,735	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	3,153	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	430	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	129	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	6,498	μg/L	Discharge Conc < TQL
Methyl Bromide	6,775	μg/L	Discharge Conc < TQL
Methyl Chloride	344,923	μg/L	Discharge Conc < TQL
Methylene Chloride	9,566	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	95.7	μg/L	Discharge Conc < TQL
Tetrachloroethylene	4,783	μg/L	Discharge Conc < TQL
Toluene	5,446	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	9,555	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	36,956	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	263	μg/L	Discharge Conc < TQL
Trichloroethylene	287	μg/L	Discharge Conc < TQL
Vinyl Chloride	9.57	μg/L	Discharge Conc < TQL
2-Chlorophenol	2,867	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	956	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	8,130	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	191	µg/L	Discharge Conc < TQL
2.4-Dinitrophenol	956	µg/L	Discharge Conc < TQL
2-Nitrophenol	98,550	μg/L	Discharge Conc < TQL
4-Nitrophenol	28,333	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	1,971	μg/L	Discharge Conc < TQL
Pentachlorophenol	14.3	μg/L	Discharge Conc < TQL
Phenol	382,210	μg/L	Discharge Conc < TQL
2.4.6-Trichlorophenol	717	μg/L	Discharge Conc < TQL
Acenaphthene	1,022	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	28,666	μg/L	Discharge Conc < TQL
Benzidine	0.048	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.48	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.048	μg/L	Discharge Conc < TQL
3.4-Benzofluoranthene	0.48	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	4.78	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	4.76 N/A	μg/L N/A	No WQS
Bis(2-Chloroethyl)Ether	14.3	μg/L	Discharge Conc < TQL
			Discharge Conc < TQL Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate	19,111 153	μg/L	Discharge Conc < TQL Discharge Conc < TQL
		μg/L	_
4-Bromophenyl Phenyl Ether	3,326	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	9.56	μg/L	Discharge Conc < TQL

4-Chlorophenyl Phenyl Ether N/A N/A No WQS Chrysene 57.4 μg/L Discharge Conc < TQL Dibenzo(a,h)Anthrancene 0.048 μg/L Discharge Conc < TQL 1,2-Dichlorobenzene 669 μg/L Discharge Conc < TQL 1,3-Dichlorobenzene 8,993 μg/L Discharge Conc < TQL 3,3-Dichlorobenzidine 23.9 μg/L Discharge Conc < TQL Diethyl Phthalate 49,275 μg/L Discharge Conc < TQL Dimethyl Phthalate 30,797 μg/L Discharge Conc < TQL 2,4-Dinitrotoluene 23.9 μg/L Discharge Conc < TQL 2,6-Dinitrotoluene 23.9 μg/L Discharge Conc < TQL 1,2-Diphenylhydrazine 14.3 μg/L Discharge Conc < TQL Fluoranthene 1,911 μg/L Discharge Conc < TQL	2-Chloronaphthalene	76,442	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene 0.048 μg/L Discharge Conc < TQL 1,2-Dichlorobenzene 10,101 μg/L Discharge Conc < TQL	4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
1,2-Dichlorobenzene 10,101 μg/L Discharge Conc < TQL	Chrysene	57.4	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene 669 μg/L Discharge Conc < TQL 1,4-Dichlorobenzene 8,993 μg/L Discharge Conc < TQL 3,3-Dichlorobenzidine 23.9 μg/L Discharge Conc < TQL Diethyl Phthalate 49,275 μg/L Discharge Conc < TQL Dimethyl Phthalate 30,797 μg/L Discharge Conc < TQL Dimethyl Phthalate 1,355 μg/L Discharge Conc < TQL Din-Butyl Phthalate 1,355 μg/L Discharge Conc < TQL Di-n-Butyl Phthalate 1,355 μg/L Discharge Conc < TQL Di-n-Butyl Phthalate 23.9 μg/L Discharge Conc < TQL Di-n-Octyl Phthalate N/A No WQS Discharge Conc < TQL Di-n-Octyl Phthalate N/A No WQS Discharge Conc < TQL Di-n-Octyl Phthalate N/A No WQS Discharge Conc < TQL Di-n-Octyl Phthalate N/A No WQS Discharge Conc < TQL Di	Dibenzo(a,h)Anthrancene	0.048	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene 8,993 µg/L Discharge Conc < TQL 3,3-Dichlorobenzidine 23.9 µg/L Discharge Conc < TQL Diethyl Phthalate 49,275 µg/L Discharge Conc < TQL Dimethyl Phthalate 30,797 µg/L Discharge Conc < TQL Din-Butyl Phthalate 1,355 µg/L Discharge Conc < TQL Di-n-Butyl Phthalate 1,355 µg/L Discharge Conc < TQL 2,4-Dinitrotoluene 23.9 µg/L Discharge Conc < TQL Di-n-Octyl Phthalate N/A N/A NO WQS 1,2-Diphenylhydrazine 14.3 µg/L Discharge Conc < TQL Fluoranthene 1,911 µg/L Discharge Conc < TQL Hexachlorobenzene 0.038 µg/L Discharge Conc < TQL Hexachlorobenzene 4.778 µg/L Discharge Conc < TQL Hexachlorobutadiene 4.78 µg/L Discharge Conc < TQL Hexachlorobethane 61.6 µg/L Discharge Conc < TQL Hexachloroethane 47.8 µg/L Discharge Conc < TQL Indeno(1,2,3-cd)Pyrene 0.48 µg/L Discharge Conc < TQL Naphthalene 1,725 µg/L Discharge Conc < TQL Nitrobenzene 956 µg/L Discharge Conc < TQL Nitrobenzene 956 µg/L Discharge Conc < TQL Nitrosodimethylamine 0.33 µg/L Discharge Conc < TQL N-Nitrosodimethylamine 0.33 µg/L Discharge Conc < TQL N-Nitrosodimethylamine 0.33 µg/L Discharge Conc < TQL N-Nitrosodimethylamine 1,578 µg/L Discharge Conc < TQL Phenanthrene 61.6 µg/L Discharge Conc < TQL Phenanthrene 61.6 µg/L Discharge Conc < TQL Discharge Conc <	1,2-Dichlorobenzene	10,101	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine 23.9 µg/L Diethyl Phthalate 49,275 µg/L Dimethyl Phthalate 30,797 µg/L Dinethyl Phthalate 30,797 µg/L Discharge Conc < TQL Dinethyl Phthalate 1,355 µg/L Discharge Conc < TQL 2,4-Dinitrotoluene 23.9 µg/L Discharge Conc < TQL 2,6-Dinitrotoluene 23.9 µg/L Discharge Conc < TQL Di-n-Octyl Phthalate N/A N/A No WQS 1,2-Diphenylhydrazine 14.3 µg/L Discharge Conc < TQL Fluoranthene 1,911 µg/L Discharge Conc < TQL Discharge Conc < TQ	1,3-Dichlorobenzene	669	μg/L	Discharge Conc < TQL
Diethyl Phthalate 49,275 μg/L Discharge Conc < TQL Dimethyl Phthalate 30,797 μg/L Discharge Conc < TQL	1,4-Dichlorobenzene	8,993	μg/L	Discharge Conc < TQL
Dimethyl Phthalate 30,797 µg/L Discharge Conc < TQL Di-n-Butyl Phthalate 1,355 µg/L Discharge Conc < TQL 2,4-Dinitrotoluene 23.9 µg/L Discharge Conc < TQL 2,6-Dinitrotoluene 23.9 µg/L Discharge Conc < TQL Di-n-Octyl Phthalate N/A N/A No WQS 1,2-Diphenylhydrazine 14.3 µg/L Discharge Conc < TQL Fluoranthene 1,911 µg/L Discharge Conc < TQL Fluorene 4,778 µg/L Discharge Conc < TQL Hexachlorobenzene 0.038 µg/L Discharge Conc < TQL Hexachlorobutadiene 4.78 µg/L Discharge Conc < TQL Hexachlorocyclopentadiene 61.6 µg/L Discharge Conc < TQL Hexachlorocyclopentadiene 47.8 µg/L Discharge Conc < TQL Indeno(1,2,3-cd)Pyrene 0.48 µg/L Discharge Conc < TQL Isophorone 3,249 µg/L Discharge Conc < TQL Naphthalene 1,725 µg/L Discharge Conc < TQL Nitrobenzene 956 µg/L Discharge Conc < TQL Nitrosodimethylamine 0.33 µg/L Discharge Conc < TQL n-Nitrosodimethylamine 1,578 µg/L Discharge Conc < TQL Phenanthrene 61.6 µg/L Discharge Conc < TQL Pyrene 1,911 µg/L Discharge Conc < TQL Discha	3,3-Dichlorobenzidine	23.9	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate1,355μg/LDischarge Conc < TQL2,4-Dinitrotoluene23.9μg/LDischarge Conc < TQL	Diethyl Phthalate	49,275	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene23.9μg/LDischarge Conc < TQL2,6-Dinitrotoluene23.9μg/LDischarge Conc < TQL	Dimethyl Phthalate	30,797	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene 23.9 μg/L Discharge Conc < TQL	Di-n-Butyl Phthalate	1,355	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate N/A N/A No WQS 1,2-Diphenylhydrazine 14.3 μg/L Discharge Conc < TQL	2,4-Dinitrotoluene	23.9	μg/L	Discharge Conc < TQL
1,2-Diphenylhydrazine 14.3 μg/L Discharge Conc < TQL	2,6-Dinitrotoluene	23.9	μg/L	Discharge Conc < TQL
Fluoranthene 1,911	Di-n-Octyl Phthalate	N/A	N/A	No WQS
Fluorene 4,778 μg/L Discharge Conc < TQL Hexachlorobenzene 0.038 μg/L Discharge Conc < TQL	1,2-Diphenylhydrazine	14.3	μg/L	Discharge Conc < TQL
Hexachlorobenzene 0.038 μg/L Discharge Conc < TQL Hexachlorobutadiene 4.78 μg/L Discharge Conc < TQL	Fluoranthene	1,911	μg/L	Discharge Conc < TQL
Hexachlorobutadiene 4.78 μg/L Discharge Conc < TQL Hexachlorocyclopentadiene 61.6 μg/L Discharge Conc < TQL	Fluorene	4,778	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene 61.6 μg/L Discharge Conc < TQL Hexachloroethane 47.8 μg/L Discharge Conc < TQL	Hexachlorobenzene	0.038	μg/L	Discharge Conc < TQL
Hexachloroethane	Hexachlorobutadiene	4.78	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene 0.48 μg/L Discharge Conc < TQL	Hexachlorocyclopentadiene	61.6	μg/L	Discharge Conc < TQL
Isophorone 3,249 μg/L Discharge Conc < TQL	Hexachloroethane	47.8	μg/L	Discharge Conc < TQL
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Indeno(1,2,3-cd)Pyrene	0.48	μg/L	Discharge Conc < TQL
Nitrobenzene 956 $\mu g/L$ Discharge Conc < TQL n-Nitrosodimethylamine 0.33 $\mu g/L$ Discharge Conc < TQL n-Nitrosodi-n-Propylamine 2.39 $\mu g/L$ Discharge Conc < TQL n-Nitrosodiphenylamine 1,578 $\mu g/L$ Discharge Conc < TQL Phenanthrene 61.6 $\mu g/L$ Discharge Conc < TQL Pyrene 1,911 $\mu g/L$ Discharge Conc < TQL	Isophorone	3,249	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine 0.33 $\mu g/L$ Discharge Conc < TQL n-Nitrosodi-n-Propylamine 2.39 $\mu g/L$ Discharge Conc < TQL n-Nitrosodiphenylamine 1,578 $\mu g/L$ Discharge Conc < TQL Phenanthrene 61.6 $\mu g/L$ Discharge Conc < TQL Pyrene 1,911 $\mu g/L$ Discharge Conc < TQL	Naphthalene	1,725	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine 2.39 μg/L Discharge Conc < TQL n-Nitrosodiphenylamine 1,578 μg/L Discharge Conc < TQL	Nitrobenzene	956	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine 1,578 μ g/L Discharge Conc < TQL Phenanthrene 61.6 μ g/L Discharge Conc < TQL Pyrene 1,911 μ g/L Discharge Conc < TQL	n-Nitrosodimethylamine	0.33	μg/L	Discharge Conc < TQL
Phenanthrene 61.6 μg/L Discharge Conc < TQL Pyrene 1,911 μg/L Discharge Conc < TQL	n-Nitrosodi-n-Propylamine	2.39	μg/L	Discharge Conc < TQL
Pyrene 1,911 µg/L Discharge Conc < TQL	n-Nitrosodiphenylamine	1,578	μg/L	Discharge Conc < TQL
	Phenanthrene	61.6	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene 6.69 µg/L Discharge Conc < TQL	Pyrene	1,911	μg/L	Discharge Conc < TQL
	1,2,4-Trichlorobenzene	6.69	μg/L	Discharge Conc < TQL

ATTACHMENT C

Temperature Modeling Results for Outfall 001

Facility: Penna Flame Industries, Inc.

Permit Number: PA0004685 PMF

Stream Name: Connoquenessing Creek 0.19

Analyst/Engineer: Ryan Decker

Stream Q7-10 (cfs): 21.5

	Facility Flows				Stream Flows			
	Intake (Stream) (MGD)	Intake (External) (MGD)	Consumptive Loss (MGD)	Discharge Flow (MGD)	Upstream Stream Flow (cfs)	Adjusted Stream Flow (cfs)	Downstream Stream Flow (cfs)	
Jan 1-31	0	0.147	0	0.147	68.80	68.80	69.03	
Feb 1-29	0	0.147	0	0.147	75.25	75.25	75.48	
Mar 1-31	0	0.147	0	0.147	150.50	150.50	150.73	
Apr 1-15	0	0.147	0	0.147	199.95	199.95	200.18	
Apr 16-30	0	0.147	0	0.147	199.95	199.95	200.18	
May 1-15	0	0.147	0	0.147	109.65	109.65	109.88	
May 16-30	0	0.147	0	0.147	109.65	109.65	109.88	
Jun 1-15	0	0.147	0	0.147	64.50	64.50	64.73	
Jun 16-30	0	0.147	0	0.147	64.50	64.50	64.73	
Jul 1-31	0	0.147	0	0.147	36.55	36.55	36.78	
Aug 1-15	0	0.147	0	0.147	30.10	30.10	30.33	
Aug 16-31	0	0.147	0	0.147	30.10	30.10	30.33	
Sep 1-15	0	0.147	0	0.147	23.65	23.65	23.88	
Sep 16-30	0	0.147	0	0.147	23.65	23.65	23.88	
Oct 1-15	0	0.147	0	0.147	25.80	25.80	26.03	
Oct 16-31	0	0.147	0	0.147	25.80	25.80	26.03	
Nov 1-15	0	0.147	0	0.147	34.40	34.40	34.63	
Nov 16-30	0	0.147	0	0.147	34.40	34.40	34.63	
Dec 1-31	0	0.147	0	0.147	51.60	51.60	51.83	

Please forward all comments to Tom Starosta at 717-787-4317, tstarosta@state.pa.us.

Version 2.0 -- 07/01/2005 Reference: Implementation Guidance for Temperature Criteria, DEP-ID: 391-2000-017

NOTE: The user can only edit fields that are blue.

NOTE: MGD x 1.547 = cfs.

Facility: Penna Flame Industries, Inc.

Permit Number: PA0004685

Stream: Connoquenessing Creek

	WWF Criteria	CWF Criteria	TSF Criteria	316 Criteria	Q7-10 Multipliers (Used in	Q7-10 Multipliers (Default - Info
	(°F)	(°F)	(°F)	(°F)	Ànalysis)	` Only)
Jan 1-31	40	38	40	0	3.2	3.2
Feb 1-29	40	38	40	0	3.5	3.5
Mar 1-31	46	42	46	0	7	7
Apr 1-15	52	48	52	0	9.3	9.3
Apr 16-30	58	52	58	0	9.3	9.3
May 1-15	64	54	64	0	5.1	5.1
May 16-30	72	58	68	0	5.1	5.1
Jun 1-15	80	60	70	0	3	3
Jun 16-30	84	64	72	0	3	3
Jul 1-31	87	66	74	0	1.7	1.7
Aug 1-15	87	66	80	0	1.4	1.4
Aug 16-31	87	66	87	0	1.4	1.4
Sep 1-15	84	64	84	0	1.1	1.1
Sep 16-30	78	60	78	0	1.1	1.1
Oct 1-15	72	54	72	0	1.2	1.2
Oct 16-31	66	50	66	0	1.2	1.2
Nov 1-15	58	46	58	0	1.6	1.6
Nov 16-30	50	42	50	0	1.6	1.6
Dec 1-31	42	40	42	0	2.4	2.4

NOTES:

WWF= Warm water fishes

CWF= Cold water fishes

TSF= Trout stocking

Facility: Penna Flame Industries, Inc.

Permit Number: PA0004685

Stream: Connoquenessing Creek 0.19

	WWF			WWF	WWF	
	Ambient		Target			
	Stream	Ambient Stream	Maximum	Daily	Daily	
	Temperature	Temperature				
	(°F)	(°F)	Stream Temp.1	WLA ²	WLA^3	at Discharge
		(Site-specific		(Million		
	(Default)	data)	(°F)	BTUs/day)	(°F)	Flow (MGD)
Jan 1-31	35	0	40	N/A Case 2	110.0	0.147
Feb 1-29	35	0	40	N/A Case 2	110.0	0.147
Mar 1-31	40	0	46	N/A Case 2	110.0	0.147
Apr 1-15	47	0	52	N/A Case 2	110.0	0.147
Apr 16-30	53	0	58	N/A Case 2	110.0	0.147
May 1-15	58	0	64	N/A Case 2	110.0	0.147
May 16-30	62	0	72	N/A Case 2	110.0	0.147
Jun 1-15	67	0	80	N/A Case 2	110.0	0.147
Jun 16-30	71	0	84	N/A Case 2	110.0	0.147
Jul 1-31	75	0	87	N/A Case 2	110.0	0.147
Aug 1-15	74	0	87	N/A Case 2	110.0	0.147
Aug 16-31	74	0	87	N/A Case 2	110.0	0.147
Sep 1-15	71	0	84	N/A Case 2	110.0	0.147
Sep 16-30	65	0	78	N/A Case 2	110.0	0.147
Oct 1-15	60	0	72	N/A Case 2	110.0	0.147
Oct 16-31	54	0	66	N/A Case 2	110.0	0.147
Nov 1-15	48	0	58	N/A Case 2	110.0	0.147
Nov 16-30	42	0	50	N/A Case 2	110.0	0.147
Dec 1-31	37	0	42	N/A Case 2	110.0	0.147

¹ This is the maximum of the WWF WQ criterion or the ambient temperature. The ambient temperature may be either the design (median) temperature for WWF, or the ambient stream temperature based on site-specific data entered by the user. A minimum of 1°F above ambient stream temperature is allocated.

² The WLA expressed in Million BTUs/day is valid for Case 1 scenarios, and disabled for Case 2 scenarios.

³ The WLA expressed in ^oF is valid only if the limit is tied to a daily discharge flow limit (may be used for Case 1 or Case 2). WLAs greater than 110°F are displayed as 110°F.