

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Major

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0007498

 APS ID
 1075007

 Authorization ID
 1416395

Applicant and Facility Information

Applicant Name	Wise Foods, Inc.	Facility Name	Wise Foods, Inc.
Applicant Address	228 Raseley Street	Facility Address	228 Raseley Street
	Berwick, PA 18603-4533		Berwick, PA 18603-4533
Applicant Contact	Richard Wolfe	Facility Contact	Richard Wolfe
Applicant Phone	(570) 759-4203	Facility Phone	(570) 759-4203
Client ID	401	Site ID	254524
SIC Code	2096	Municipality	Berwick Borough
SIC Description	Manufacturing - Potato Chips, Corn Chips and Similar Snacks	County	Columbia
Date Application Receiv	ved November 2, 2022	EPA Waived?	No
Date Application Accep	ted December 15, 2022	If No, Reason	Major Facility, Significant CB Discharge
Purpose of Application	Renewal of an existing NPDES perm	t for the discharge of tr	eated industrial waste.

1.0 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		Derek S. Garner / Project Manager	8/14/2023
х		M. Z. M. Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	8/24/2023

2.0 Facility Summary

The Berwick Snack Food Plant manufactures snack foods that include potato and corn-based chips.

The facility's onsite industrial wastewater treatment plant ("IWTP") treats wastewater from potato processing (hydrosieve and starch recovery) and the oil-water separation system. The IWTP is covered under WQM Permit Nos. 1986201 and 1972204. The treatment plant consists of:

- Primary clarification
 - One (1) primary settling basin
 - Activated sludge biological treatment
 - Two (2) aeration basins, in parallel
- Secondary clarification
 - Three (3) clarifiers, in parallel
- Sludge thickening
 - One (1) sludge plate press, dewatered solids taken off site for disposal.

The wastewater is ultimately discharged to the Susquehanna River via Outfall 001.

All sanitary waste and process water from the corn-based operations are treated at the Berwick Area Joint Sewer Authority Wastewater Treatment Plant, NPDES Permit No. PA0023248.

See Attachment A for the Facility and Discharge Location Map.

3.0 Discharge, Receiving Waters and Water Supply Information

3.1 Outfall 001

Outfall 001 continuously discharges IWTP effluent 24 hours a day, 7 days a week.

	Table 3-1. Outfall	001 Information		
Outfall No. 001		Design Flow (MGD)	0.2357	
Latitude 41° 2	2' 42.21"	Longitude	-76º 14' 50.38"	
Quad Name Be	erwick	Quad Code	1036	
Wastewater Descrip	tion: <u>IW Process Effluent with ELG</u>			
Receiving Waters	Susquehanna River	Stream Code	6685	
NHD Com ID	65639377	RMI	160.13	
Drainage Area	10,500	Yield (cfs/mi ²)	0.105	
Q7-10 Flow (cfs)	1,104	Q7-10 Basis	Streamgage No. 01540500	
Elevation (ft)	473	Slope (ft/ft)	n/a	
Watershed No.	5-D	Chapter 93 Class.	WWF	
Existing Use	n/a	Existing Use Qualifier	n/a	
Exceptions to Use	n/a	Exceptions to Criteria	n/a	
Assessment Status	Impaired			
Cause(s) of Impairm	nent Mercury, PCBs			
Source(s) of Impairr	ment Source(s) Unknown			
TMDL Status	Final	Name Susquehanr	a River PCB	

3.2 Susquehanna River

The specific reach of the Susquehanna River that Outfall 001 is located on is currently impaired by mercury and PCBs, both originating from unknown sources. The outfall is not expected to contribute to the mercury or PCB impairments based on sampling results completed for the application.

The Q7-10 of the Susquehanna River at Wise was calculated by using USGS Stream Gage No. 01540500, located at Danville, PA, as a reference gage. The gage has a drainage area of 11,220 mi². and a Q7-10 of 1,180 cfs; resulting in a low-flow yield of 0.105 cfs/mi². Applying the low-flow yield to Outfall 001's drainage area of 10,500 mi² results in a calculated Q7-10 of 1,104 cfs. A Q7-10 of 1,108 was calculated at downstream node RMI 157.9 for modeling purposes.

See Attachment B for Q7-10 calculations and supporting documentation.

3.3 Downstream Public Water Supply Intake

The nearest downstream water supply intake is the Danville Municipal Authority located in Danville, PA, approximately 22 river miles downstream at RMI 138.06. The discharge is not expected to impact the water intake.

4.0 Compliance History

The facility was most recently inspected by DEP on April 17, 2023. The inspection report recommended that the secondary clarifiers are cleaned and recoated and that general housekeeping needs improvement around the treatment plant.

A review of historic eDMR data dating back to the existing permit's effective date yielded the following effluent violations:

Noncompliance		Sample	Violation	Permit		
Date	Parameter	Value	Condition	Value	Units	SBC
12/27/2018	CBOD5	373	>	250	mg/L	Daily Maximum
4/27/2020	Total Suspended Solids	500	>	450	mg/L	Daily Maximum
9/25/2020	CBOD5	288	>	250	mg/L	Daily Maximum
11/25/2020	Oil and Grease	22	>	15	mg/L	Average Monthly
11/25/2020	Oil and Grease	69.5	>	20	mg/L	Daily Maximum
12/28/2020	Oil and Grease	34.8	>	20	mg/L	Daily Maximum
8/23/2021	CBOD5	422	>	250	mg/L	Daily Maximum
8/23/2021	CBOD5	787	>	580	lbs/day	Daily Maximum
8/23/2021	Total Suspended Solids	504	>	450	mg/L	Daily Maximum
3/28/2022	Oil and Grease	45	>	20	mg/L	Daily Maximum
5/27/2022	CBOD5	1068	>	580	lbs/day	Daily Maximum
5/27/2022	CBOD5	396	>	250	mg/L	Daily Maximum
4/27/2023	CBOD5	129	>	125	mg/L	Average Monthly
4/27/2023	CBOD5	385	>	250	mg/L	Daily Maximum
4/27/2023	Total Suspended Solids	1250	>	1050	lbs/day	Daily Maximum
4/27/2023	Total Suspended Solids	790	>	450	mg/L	Daily Maximum

Table 4-1. eDMR Violation Summary

Operations Section is aware of the abovementioned violations and has been in contact with the permittee.

There are no open violations associated with the permittee.

5.0 Development of Effluent Limitations

Effluent limits are the most stringent of technology-based effluent limitations ("TBELs"), water quality-based effluent limitations ("WQBELs"), or best professional judgment ("BPJ").

5.1 Technology-based Effluent Limitations

The first step in developing effluent limitations is to recognize and develop applicable TBELs based on the industrial activity that takes place at the facility. TBELs are subject to the development of more stringent WQBELs or BPJ.

ELG Parameters

Outfall 001 discharges treated industrial waste from the IWTP, described in Section 2.0 above. Wise's potato chip process wastewater is covered under 40 CFR Part 407, Subpart H - Canned and Miscellaneous Specialties Subcategory. The effluent limit guidelines ("ELGs") in Subpart H establish best practicable control technology currently available ("BPT") and best conventional pollutant control technology ("BCT") effluent limitations as follows:

Pollutant	Instant. Max.	Maximum Daily	Average Monthly	Annual Average	BPT	BCT				
BOD5 (lb/1,000 lb product)		3.46	2.17	1.58	Х	Х				
TSS (lb/1,000 lb product)		6.25	4.49	2.97	Х	Х				
Oil and Grease (mg/l)	20				Х	Х				
рН		Х	Х							

Table 5-1. ELG Parameters

Since the ELGs for BOD5 and total suspended solids ("TSS") are production-based (lb/1,000 lb), DEP must calculate the appropriate mass limitations. The following methodology was used to calculate the mass limits:

- 40 CFR § 407.81(o) states that the average monthly and daily maximum shall be based on the, "daily average mass of final product produced during the peak thirty consecutive day production period." The renewal application lists production data for years 2017 through 2021. The month with the highest production was August 2019, at 4,529,177 lbs. Accordingly, average monthly and daily maximum mass limits are based off this average.
- 40 CFR § 407.81(n) states that the annual average shall be calculated by, "multiplying the total mass (kkg or 1000 lb) of each final product produced for the entire processing season or calendar year by the applicable annual average limitation." Accordingly, the average annual limits are based off the average annual production over the past five years; 41,358,931 lbs.

The resulting limits for BOD5 and TSS are as follows:

	Table 5-2. Calculated ELG Limits										
Pollutant	Maximum Daily (lbs/day)	Average Monthly (lbs/day)	Average Annual (lbs/yr)								
BOD5	653	410	65,347								
TSS	1,179	847	122,836								

See Attachment C for ELG calculations.

Chapter 95 Industrial Waste Treatment Standards

In addition to the ELG requirements above, 25 PA Code Chapter 95 establishes industrial waste treatment standards for pH, oil and grease, and dissolved iron as follows:

Table 5-5. Chapter 55 Treatment Standards										
Parameter	Limit	SBC	State Regulation							
	6.0	Minimum	95.2(1)							
рп	9.0	IMAX	95.2(1)							
Oil and Crassa (mg/l)	15	Average Monthly	95.2(2)							
Oil and Grease (mg/l)	30	IMAX	95.2(2)							
Dissolved Iron (mg/l) ⁽¹⁾	7.0	Average Monthly	95.2(4)							

Table 5-3. Chapter 95 Treatment Standards

NPDES Permit Fact Sheet Wise Foods, Inc.

⁽¹⁾ Sampling performed for the renewal application indicates a maximum dissolved iron concentration of 0.214 mg/l at Outfall 001. Since there is no reasonable potential to exceed the 7.0 mg/l TBEL, a dissolved iron limitation will not be established in the permit.

5.2 Water Quality-based Effluent Limitations

After developing the TBELs, the next step is to determine if there are more stringent WQBELs that must be applied. An analysis using DEP's WQM 7.0 v1.0b and Toxics Management Spreadsheet v1.4 ("TMS") was performed for the discharges. WQM 7.0 is a multiple source discharge model that is used to determine NPDES effluent limits for ammonianitrogen, CBOD5, and dissolved oxygen, if applicable. TMS is a single discharge model that is used to determine NPDES effluent limits for the NPDES effluent limitations for toxics, if applicable. A thermal discharge analysis was not completed since there is no thermal loading added to the discharges.

Background data of Susquehanna River was taken from WQN0302, a gage located upstream of Wise that is part of DEP's water quality network. The background data was entered in the appropriate models to better characterize the water quality of the acute and chronic mixing zones.

<u>WQM 7.0</u>

WQM 7.0 was used to determine if ammonia-nitrogen, CBOD5, or dissolved oxygen WQBELs are appropriate for the discharge at Outfall 001. A reach was created in WQM 7.0 from Outfall 001 to the mouth of Briar Creek (RMI 157.92) to accurately model in-stream conditions downstream of the discharge. The model indicates that there is minimal impact on the dissolved oxygen levels in the Susquehanna River; therefore, the reach size and number of reaches utilized is appropriate.

Table e 41 Main ne eatlair eet medeling Resulte									
Baramatar	Effluent Limit (mg/l)								
Farameter	Average Monthly	Daily Maximum	Minimum						
CBOD5 ⁽¹⁾	125								
Ammonia-nitrogen	39	78							
Dissolved Oxygen			3						

Table 5-4. WQM 7.0 Outfall 001 Modeling Results

(1) The TBELs are expressed in BOD5 rather than CBOD5. The WQM model is primarily geared towards sewage discharges which typically have limits expressed in CBOD5. However, sampling indicates minimal amounts of ammonia-n are present in the effluent, meaning the nitrogenous demand in the effluent is negligible. Therefore, establishing CBOD5 limits in place of BOD5 limits should not introduce unwarranted conservatism. This approach is consistent with the previous renewal of the permit.

The input concentrations for CBOD5 and ammonia-nitrogen are the average monthly limits in the existing permit. A dissolved oxygen concentration of 3 mg/l was used as a baseline value to determine if dissolved oxygen limits are necessary. The deoxygenation rate (Kc') was changed to reflect the high discharge concentration of BOD5. The Kc' was calculated by multiplying the BOD5 discharge concentration by 0.06, as recommended in the *Technical Reference Guide* (*TRG*) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.0 (385-2000-007, 6/26/04).

The model output indicates that the existing requirements for CBOD5, ammonia-nitrogen, and dissolved oxygen are protective of the Susquehanna River.

Toxics Management Spreadsheet

The TMS was used to determine if WQBELs are appropriate for toxics found in the discharge. Most of the input data was taken from the renewal application's pollutant group sampling. However, for total copper and total iron, large enough data sets for were available from sampling required by the existing permit to calculate average monthly concentrations and daily coefficients of variation using the TOXCONC spreadsheet. The TOXCONC output was used as input values for TMS.

The TMS compares the abovementioned input data to the most stringent criterion and recommends either taking no action, establishing monitoring requirements, or establishing effluent limits. The TMS does not recommend any monitoring requirements or effluent limits. Accordingly, existing requirements for total copper and total iron have been removed from the permit.

See Attachment D for model input/output data and supporting documentation.

5.3 Best Professional Judgment (BPJ) Limitations

Total Suspended Solids

Existing TSS limits were developed by applying the percent reduction between technology-based BOD5 limits and the more stringent water quality-based CBOD5 limits to the technology-based TSS limits. DEP believes the existing TSS limits are still appropriate and should remain in the permit.

Total Dissolved Solids

In 2013, the permit was renewed and established TDS monitoring requirements. The permit was subsequently renewed again in 2018. As part of the 2018 renewal, the TDS results taken during the permit's previous five-year term were reviewed. The review indicated that TDS concentrations dd not approach the § 95.10 "trigger' concentration of 2,000 mg/l and since a baseline characterization of the wastewater has been developed, monitoring may be removed from the permit. TDS requirements do not need to be reevaluated unless the permittee proposes an expansion or change in waste stream.

Monitoring Requirements

Monitoring requirements remain unchanged from the existing permit.

5.4 Chesapeake Bay

The Phase 3 Watershed Implementation Plan ("WIP") Wastewater Supplement, Table 7, identifies Wise as one of the 23 significant industrial wastewater facilities in Pennsylvania, and establishes final cap loads for Total Nitrogen and Total Phosphorus of 19,957 lbs/yr and 898 lbs/yr, respectively.

5.5 Anti-Backsliding

Requirements for total copper and total iron have been removed from the permit based on sampling data that was not available at the time of the previous renewal. This approach is consistent with exceptions to anti-backsliding at 40 CFR § 122.44(I)(2)(i)(B)(1)

6.0 Existing Effluent Limitations and Monitoring Requirements

The existing effluent limitations and monitoring requirements are as follows:

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations							quirements
Parameter	Mass Units (Ibs/day)		Concentrations (mg/L)			Minimum	Required	
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	xxx	ххх	Continuous	Metered
pH (S.U.)	ХХХ	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	290	580	XXX	125.0	250.0	310	5/week	24-Hr Composite
CBOD5 (Total Load, lbs)	ХХХ	75781 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Suspended Solids	600	1050	XXX	258.0	450.0	645	5/week	24-Hr Composite
Total Suspended Solids (Total Load, lbs)	ХХХ	142450 Total Annual	XXX	XXX	ХХХ	ХХХ	1/year	Calculation
Oil and Grease	Report	Report	XXX	15.0	20.0	ХХХ	2/week	Grab
Ammonia-Nitrogen	90	175	XXX	39.0	75.0	95	2/week	24-Hr Composite
Copper, Total	ХХХ	Report	XXX	XXX	Report	ХХХ	1/month	24-Hr Composite
Iron, Total	5.90	11.8	XXX	2.53	5.06	6.32	1/week	24-Hr Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): Outfall 001

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations							Monitoring Requirements	
Parameter	Mass Ur	nits (Ibs)		Concentrat		Minimum	Required		
Parameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
AmmoniaN	Report	Report	xxx	Report	xxx	xxx	2/week	24-Hr Composite	
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite	
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation	
Total Phosphorus	Report	Report	xxx	Report	XXX	xxx	2/week	24-Hr Composite	
Net Total Nitrogen	Report	19957	XXX	XXX	XXX	XXX	1/month	Calculation	
Net Total Phosphorus	Report	898	XXX	XXX	XXX	XXX	1/month	Calculation	

7.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Red	quirements					
Parameter	Mass Units (Ibs/day)			Concentrat	ions (mg/L)		Minimum	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	245	490	XXX	125.0	250.0	310	5/week	24-Hr Composite
CBOD5 (Total Load, lbs) (lbs)	XXX	75781 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Suspended Solids	500	880	XXX	258.0	450.0	645	5/week	24-Hr Composite
Total Suspended Solids (Total Load, lbs) (lbs)	XXX	142450 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Oil and Grease	Report	Report	XXX	15.0	20.0	XXX	2/week	Grab
Ammonia-Nitrogen	75	145	XXX	39.0	75.0	95	2/week	24-Hr Composite
Total Phosphorus	Report	XXX	XXX	Report	XXX	xxx	2/week	24-Hr Composite

Compliance Sampling Location: Outfall 001

NPDES Permit Fact Sheet Wise Foods, Inc.

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations							Monitoring Requirements	
Parameter	Mass Unit	s (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required	
Falameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite	
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite	
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation	
Total Phosphorus	Report	Report	xxx	Report	xxx	xxx	2/week	24-Hr Composite	
Net Total Nitrogen	XXX	19957	XXX	XXX	XXX	XXX	1/month	Calculation	
Net Total Phosphorus	XXX	898	XXX	xxx	XXX	xxx	1/month	Calculation	

Compliance Sampling Location: Outfall 001

ATTACHMENT A

Facility and Discharge Location Map

ATTACHMENT B

Q7-10 Calculations and Supporting Documentation

Prepared in cooperation with the Pennsylvania Department of Environmental Protection

Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Open-File Report 2011-1070

U.S. Department of the Interior U.S. Geological Survey

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued

[Latitude and Longitude in decimal degrees; mi2, square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01508803	West Branch Tioughnioga River at Homer, N.Y.	42.638	-76.176	71.5	Ν
01509000	Tioughnioga River at Cortland, N.Y.	42.603	-76.159	292	Ν
01510000	Otselic River at Cincinnatus, N.Y.	42.541	-75.900	147	Ν
01512500	Chenango River near Chenango Forks, N.Y.	42.218	-75.848	1,483	Ν
01515000	Susquehanna River near Waverly, N.Y.	41.985	-76.501	4,773	Ν
01516350	Tioga River near Mansfield, Pa.	41.797	-77.080	153	Ν
01516500	Corey Creek near Mainesburg, Pa.	41.791	-77.015	12.2	Ν
01518000	Tioga River at Tioga, Pa.	41.908	-77.129	282	Y
01518700	Tioga River at Tioga Junction, Pa.	41.953	-77.115	446	Y
01518862	Cowanesque River at Westfield, Pa.	41.923	-77.532	90.6	Ν
01520000	Cowanesque River near Lawrenceville, Pa.	41.997	-77.140	298	Y
01520500	Tioga River at Lindley, N.Y.	42.029	-77.132	771	Y
01521500	Canisteo River at Arkport, N.Y.	42.396	-77.711	30.6	Y
01523500	Canacadea Creek near Hornell, N.Y.	42.335	-77.683	57.9	Y
01524500	Canisteo River below Canacadea Creek at Hornell, N.Y.	42.314	-77.651	158	Y
01526500	Tioga River near Erwins, N.Y.	42.121	-77.129	1,377	Y
01527000	Cohocton River at Cohocton, N.Y.	42.500	-77.500	52.2	Ν
01527500	Cohocton River at Avoca, N.Y.	42.398	-77.417	152	Ν
01528000	Fivemile Creek near Kanona, N.Y.	42.388	-77.358	66.8	Ν
01529000	Mud Creek near Savona, N.Y.	42.308	-77.197	76.6	Y
01529500	Cohocton River near Campbell, N.Y.	42.253	-77.217	470	Ν
01529950	Chemung River at Corning, N.Y.	42.146	-77.057	2,006	Y
01530332	Chemung River at Elmira, N.Y.	42.086	-76.801	2,162	Y
01530500	Newtown Creek at Elmira, N.Y.	42.105	-76.798	77.5	Y
01531000	Chemung River at Chemung, N.Y.	42.002	-76.635	2,506	Y
01531500	Susquehanna River at Towanda, Pa.	41.765	-76.441	7,797	Y
01532000	Towanda Creek near Monroeton, Pa.	41.707	-76.485	215	Ν
01532850	MB Wyalusing Creek near Birchardville, Pa.	41.863	-76.007	5.67	Ν
01533400	Susquehanna River at Meshoppen, Pa.	41.607	-76.050	8,720	Y
01533500	North Branch Mehoopany Creek near Lovelton, Pa.	41.531	-76.156	35.2	Ν
01533950	SB Tunkhannock Creek near Montdale, Pa.	41.575	-75.642	12.6	Ν
01534000	Tunkhannock Creek near Tunkhannock, Pa.	41.558	-75.895	383	Ν
01534300	Lackawanna River near Forest City, Pa.	41.680	-75.472	38.8	Y
01534500	Lackawanna River at Archbald, Pa.	41.505	-75.542	108	Y
01536000	Lackawanna River at Old Forge, Pa.	41.359	-75.744	332	Y
01536500	Susquehanna River at Wilkes-Barre, Pa.	41.251	-75.881	9,960	Y
01537000	Toby Creek at Luzerne, Pa.	41.281	-75.896	32.4	Y
01537500	Solomon Creek at Wilkes-Barre, Pa.	41.228	-75.904	15.7	Ν
01538000	Wapwallopen Creek near Wapwallopen, Pa.	41.059	-76.094	43.8	Ν
01539000	Fishing Creek near Bloomsburg, Pa.	41.078	-76.431	274	Ν
01539500	Little Fishing Creek at Evers Grove, Pa.	41.080	-76.511	56.5	Ν
01540200	Trexler Run near Ringtown, Pa.	40.853	-76.280	1.77	Ν
01540500	Susquehanna River at Danville, Pa.	40.958	-76.619	11,220	Y
01541000	West Branch Susquehanna River at Bower, Pa.	40.897	-78.677	315	N
01541200	West Branch Susquehanna River near Curwensville, Pa.	40.961	-78.519	367	Y

DFLOW Results

All available data from Apr 1, 1991 through Mar 31, 2021 are included in analysis.

Gage	Period	Days in Record	Zero/Missing	1B3	Percentile	Excur per 3 yr	1Q10	Percentile	Excur per 3 yr	1Qy Type	xQy	Percentile	Harmonic	Percentile
01540500 - Susquehanna River at Danville, PA	1990/04/01 - 2020/04/01	10,958	0/0	1.09E+03	0.26%	1	1.14E+03	0.44%	1.3	1Q11	9.69E+02	0.11%	6.65E+03	31.15%
Gage	Period	Days in Record	Zero/Missing	1B3	Percentile	Excur per 3 yr	7Q10	Percentile	Excur per 3 yr	7Qy Type	xQy	Percentile	Harmonic	Percentile
01540500 - Susquehanna River at Danville, PA	1990/04/01 - 2020/04/01	10,958	0/0	1.09E+03	0.26%	1	1.18E+03	0.48%	1.5	7Q11	1.02E+03	0.25%	6.65E+03	31.15%
Gage	Period	Days in Record	Zero/Missing	1B3	Percentile	Excur per 3 yr	30Q10	Percentile	Excur per 3 yr	30Qy Type	xQy	Percentile	Harmonic	Percentile
01540500 - Susquehanna River at Danville, PA	1990/04/01 - 2020/04/01	10,958	0/0	1.09E+03	0.26%	1	1.43E+03	1.16%	2.7	30Q18	1.09E+03	0.26%	6.65E+03	31.15%

Wise Foods, Inc.

Drainage area at Outfall 001

Collapse All

□ Basin Characteristics **Parameter** Value Unit Code **Parameter Description BSLOPD** 7.1739 degrees Mean basin slope measured in degrees **BSLOPDRAW** 7.3914 Unadjusted basin slope, in degrees degrees **BSLPDRPA20** Unadjusted basin slope, in degrees, from PA vI 7.5496 degrees CARBON Percentage of area of carbonate rock 1.1 percent CENTROXA83 X coordinate of the centroid, in NAD_1983_Albers, 152464.6108 meters meters CENTROYA83 Basin centroid horizontal (y) location in NAD 1983 346483.0251 meters Albers DRN Drainage quality index from STATSGO 3.8 dimensionless DRNAREA Area that drains to a point on a stream 10500 square miles

Parameter Code	Parameter Description	Value	Unit
ELEV	Mean Basin Elevation	1458	feet
ELEVMAX	Maximum basin elevation	2735	feet
FOREST	Percentage of area covered by forest	67.8962	percent
GLACIATED	Percentage of basin area that was historically covered by glaciers	98.7646	percent
IMPNLCD01	Percentage of impervious area determined from NLCD 2001 impervious dataset	1.2355	percent
LCOIDEV	Percentage of land-use from NLCD 2001 classes 21- 24	6.4013	percent
LCIIDEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	6.3832	percent
LCIIIMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	1.34	percent
LONG_OUT	Longitude of Basin Outlet	-76.247052	degrees
MAXTEMP	Mean annual maximum air temperature over basin area from PRISM 1971-2000 800-m grid	55.9	degrees F
OUTLETXA83	X coordinate of the outlet, in NAD_1983_Albers,meters	4735 .3543	meters
OUTLETYA83	Y coordinate of the outlet, in NAD_1983_Albers, meters	228567.0565	meters
PRECIP	Mean Annual Precipitation	38	inches
ROCKDEP	Depth to rock	4.6	feet
STORAGE	Percentage of area of storage (lakes ponds reservoirs wetlands)	4.16	percent
STRDEN	Stream Density total length of streams divided by drainage area	1.72	miles per square mile
STRMTOT	total length of all mapped streams (1:24,000-scale) in the basin	18024.84	miles
URBAN	Percentage of basin with urban development	3.1474	percent

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.16.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

Low-Flow (Q ₇₋₁₀) (Calculation
Facility: Wise Foods, Inc.	
NPDES Permit No. PA0007498	
Gage Information	Outfall Information
Drain ıge Area <u>11220</u> mi ²	Drainage Area: <u>10500</u> mi ²
Q ₇₋₁₀ : 1180 cfs	Q ₇₋₁₀ : <u>1104</u> cfs
LFY: <u>0.105</u> cfsm	
Downstream Lo	ocations
RMI: 157.9	RMI:
Drainage Area: <u>10533</u> mi ²	Drainage Area : mi ²
Q ₇₋₁₀ : 1108 cfs	Q ₇₋₁₀ : cfs
RMI: Drainage Area: mi ² Q ₇₋₁₀ : c s	RMI: Drainage Area:mi ² Q ₇₋₁₀ :cfs
RMI: Drainage Area: mi ² Q ₇₋₁₀ : c s	RMI: Drainage Area:mi ² Q ₇₋₁₀ :cfs
RMI: Drainage Area: mi ² Q ₇₋₁₀ : c s	RMI: Drainage Area:mi ² Q ₇₋₁₀ :cfs

ATTACHMENT C

ELG Calculations

Part 407 - Canned and Preserved Fruits and Vegetables Processing Point Source Category

Subpart H -Canned and Miscellaneous Specialties Subcategory

Average Annual Production =	41358931 lbs
Max Monthly Production =	4529177 lbs
Avg Production Days/Month =	24 days
Daily Average Production =	188716 lbs/day

407.82(a)

		BOD5	(lbs/day)		BOD5 (lbs/yr)				
Commodity (specialties)	Maximum Daily	Calculated Limit	Average Monthly	Calculated Limit	Average Annual	Calculated Limit			
Potato Chips	3.46	653	2.17	410	1.58	65347			

407.82(b)

		TSS (I	bs/day)		TSS (I	bs/yr)
Commodity (specialties)	Maximum Daily	Calculated Limit	Average Monthly	Calculated Limit	Average Annual	Calculated Limit
Potato Chips	6.25	1179	4.49	847	2.97	122836

ATTACHMENT D

Model Input/Output Data and Supporting Documentation

1																	
	Facility		Wise Foods Inc.														
	NPDES #:		PA0007498														
	Outfall No: p (Samples/Mon	athly.	001														
	Reviewer/Permi	t Engineer:	Derek Gamer														
Parameter Name	Total Copper	Lotal Hon					-				-	 					
Units	mg/L	mgL															
Detection Limit	0.005	0.3								 			 	 			
Sample Date	when entering v	alues below the	detection limit, en	ler "ND" or use fi	ne < notation (eg. <	a.az)											
	0.0145	1.05															
	0.0271	0.976															
	0.0783	1.24															
	0.0243	1.89															
	0.0474	2.09															
	0.0464	0.278															
	0.0462	0.564															
	0.0982	1.37															
	0.064	15															
	0.1	1															
	0.059	0.91															
	0.057	2.3															
	0.1	0.1															
	0.14	1.6															
	0.32	29										 					
	0.088	0.86			-									 			
	0.082	0.86															
	0.13	1.8			T					 		 					
	0.094	0.92										 					
	0.084	1.2															
	0.093	27															
	0.072	4.1										 					
	0.042	0.97															
	0.061	1.4															
	0.082	2										 					
	0.063	1.6			<u> </u>							 					
	0.1	1.9															
	0.095	1.4															
	0.044	15															
	0.083	43															
	0.03	0.66															
	0.083 ND	0.72															
	0.097	0.44															
	0.097	0.4															
	0.19	24															
	0.14	1															
	0.15	3.8															
	02	23															
	0.054	1.3															
	0.1	2.8															
	0.039	0.57															
	0.078	1.5															
	0.06	0.78															
	0.086	21															
	0.21	2.1															
	0.48	0.84															
	u.48	0.61										 					
					-												
					-												
		-								 							
					-							 					
		-	-		_	-						-				-	-

1

		Reviewer/Permit Engineer:	Derek Garner
Facility:	Wise Foods, Inc.		
NPDES #:	PA0007498		
Outfall No:	001		
n (Samples/Month):	4		
Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Total Copper (mg/L)	Delta-Lognormal	0.7983999	0.2235238
Total Iron (mg/L)	Lognormal	0.8404550	3.7212025

Discharge Information

Instructions Di	scharge Stream				
Facility: Wise	Foods, Inc.		NPDES Permit No.:	A0007498	Outfall No.: 001
Evaluation Type:	Major Sewage / In	dustrial Waste	Wastewater Descriptio	n: Industrial Waste	

Discharge Characteristics											
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	5)	Complete Mix Times (min)					
(MGD)*			AFC	CFC	тнн	CRL	Q ₇₋₁₀	Qh			
0.2357	229	7	0.071								

		0 if lef	t blank	0.5 if le	eft blank	() if left blan	k	1 if left blank				
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		458		132			-		-		
р.	Chloride (PWS)	mg/L		81.4		24.536							
Group	Bromide	mg/L	<	0.093		17.322							
	Sulfate (PWS)	mg/L		42.7									
	Fluoride (PWS)	mg/L		0.085									
	Total Aluminum	µg/L		171		591							
	Total Antimony	µg/L	<	0.3									
	Total Arsenic	µg/L	<	0.44									
	Total Barium	µg/L		56.8									
	Total Beryllium	µg/L	<	0.1									
	Total Boron	µg/L		44.4									
	Total Cadmium	µg/L		0.23									
	Total Chromium (III)	µg/L		2									
	Hexavalent Chromium	µg/L		0.0854									
oup 2	Total Cobalt	µg/L	<	0.81									
	Total Copper	µg/L		22.3		2.19	0.798						
	Free Cyanide	µg/L											
	Total Cyanide	µg/L		15									
Ğ	Dissolved Iron	µg/L		214									
	Total Iron	µg/L		3721		1010	0.84						
	Total Lead	µg/L		1.1		0.633							
	Total Manganese	µg/L		40.2		120.5							
	Total Mercury	µg/L	<	0.4									
	Total Nickel	µg/L		1.8		7							
	Total Phenols (Phenolics) (PWS)	µg/L	<	16									
	Total Selenium	µg/L	<	1									
	Total Silver	µg/L	<	0.53									
	Total Thallium	µg/L	<	0.081									
	Total Zinc	µg/L		64		20.334							
	Total Molybdenum	µg/L	<	0.34									
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

	Carbon Tetrachloride	µg/L	<					
	Chlorobenzene	µg/L						
	Chlorodibromomethane	µg/L	<					
	Chloroethane	ua/L	<					
	2-Chloroethyl Vinyl Ether	ua/L	<					
	Chloroform	µg/L	<					
	Dichlorobromomethane	ua/L	<					
	1.1-Dichloroethane	ua/l	<					
	1.2-Dichloroethane	µg/=	_					
p 3	1 1-Dichloroethylene	µg/∟ ⊔g/l						
no	1.2-Dichloropropage	µg/∟ µg/l	\ 					
ē	1.3-Dichloropropylene	µg/∟ µg/l	` _					
		µg/∟	< <u> </u>				 	
		µg/∟	<					
	Ethylbenzene Mathul Dramida	µg/∟	<					
	Methyl Bromide	µg/∟	<					
	Methyl Chloride	µg/L	<					
	Methylene Chloride	µg/L	<		 	 	 	
	1,1,2,2-I etrachloroethane	µg/L	<					
	Tetrachloroethylene	µg/L	<					
	Ioluene	µg/L	<					
	1,2-trans-Dichloroethylene	µg/L	<					
	1,1,1-Trichloroethane	µg/L	<					
	1,1,2-Trichloroethane	µg/L	<					
	Trichloroethylene	µg/L	<					
	Vinyl Chloride	µg/L	<					
	2-Chlorophenol	µg/L	<					
	2,4-Dichlorophenol	µg/L	<					
	2,4-Dimethylphenol	µg/L	۸					
	4,6-Dinitro-o-Cresol	µg/L	<					
04	2,4-Dinitrophenol	µg/L	<					
'n	2-Nitrophenol	µg/L	<					
5 D	4-Nitrophenol	µg/L	<					
-	p-Chloro-m-Cresol	µg/L	<					
	Pentachlorophenol	µg/L	<					
	Phenol	µg/L	<					
	2,4,6-Trichlorophenol	µg/L	<					
	Acenaphthene	µg/L	<					
	Acenaphthylene	µg/L	<					
	Anthracene	ua/L	<					
	Benzidine	ua/L	<					
	Benzo(a)Anthracene	ua/l	<					
	Benzo(a)Pyrene	ug/l	<					
	3 4-Benzofluoranthene	µg/=	~					
	Benzo(abi)Pervlene	µg/⊏ ug/l	~					
	Benzo(k)Eluoranthene	µg/⊑ µg/I	~					
	Bis(2-Chloroethoxy)Methane	µg/L	~					
	Bis(2-Chloroethyl)Ether	µg/∟ ug/l	\ 					
	Bis(2-Chloroisopropyl)Ether	µg/∟ µg/l	\ 					
	Bis(2-Ethylbeyyl)Ethel	µg/∟ ug/l	` _					
	4 Bromonhanyl Bhonyl Ethor	µg/∟	`				 	
	4-Bromophenyi Phenyi Eulei	µg/L	<					
		µg/L	< _					
	4 Chlorophonyl Phonyl Ethor	µg/∟	< <u> </u>				 	
		µg/L	<					
	Dibonzo(a b)Anthronoona	µg/L	<					
	1.2 Dichlorobonzono	µg/L	<					
		µg/L	<					
		µg/L	<					
5 5		µg/L	<					
μc		µg/L	<					
5 5		µg/L	<					
	Dimethyl Phthalate	µg/L	<		 			
	Di-n-Butyl Phthalate	µg/L	<					
	2,4-Dinitrotoluene	µg/L	<					

1	2,6-Dinitrotoluene	µg/L	<						
	Di-n-Octvl Phthalate	ua/L	<						
	1.2-Diphenylhydrazine	ua/L	<						
	Fluoranthene	ua/L	<						
	Fluorene	ua/L	<						
	Hexachlorobenzene	ua/L	<						
	Hexachlorobutadiene	ua/L	<						
	Hexachlorocyclopentadiene	ua/L	<						
	Hexachloroethane	ug/l	<						
	Indeno(1.2.3-cd)Pvrene	ua/L	<						
	Isophorone	ua/L	<			 			
	Naphthalene	ug/l	<			 			
	Nitrobenzene	ug/l	<						
	n-Nitrosodimethylamine	ug/L	<						
	n-Nitrosodi-n-Pronylamine	µg/=	~						
	n-Nitrosodiphenylamine	µg/⊏ ug/l	~						
	Phenanthrene	µg/⊏ ug/l	~						
	Pyrene	µg/L	~			 		 	
	1 2 4-Trichlorobenzene	µg/∟ ug/l	\ 			 			
	Aldrin	µg/∟ ug/l	`	0.03		 			
		µg/∟ ug/l	< <u> </u>	0.03		 			
		µg/L	<	0.01		 		 	
		µg/L	<	0.02		 		 	
		µg/L	<	0.02		 			
		µg/∟	<	0.02		 			
		µg/∟	<	0.2		 			
	4,4-DDT	µg/∟	<	0.06		 			
	4,4-DDE	µg/∟	<	0.01		 			
	4,4-DDD	µg/∟	<	0.01		 			
		µg/∟	<	0.0033		 			
	alpha-Endosulfan	µg/∟	<	0.01		 			
9	Deta-Endosullari	µg/∟	<	0.02		 			
dr		µg/∟	<	0.01		 			
rol	Endrin Endrin Aldebude	µg/∟	<	0.04		 			
G	Endrin Aldenyde	µg/L	<	0.02		 			
	Heptachlor	µg/L	<	0.01	 	 		 	
	Heptachlor Epoxide	µg/L	<	0.004		 		 	
	PCB-1016	µg/L	<	0.2		 			
	PCB-1221	µg/L	<	0.19		 		 	
	PCB-1232	µg/L	<	0.19		 		 	
	PCB-1242	µg/L	<	0.22		 		 	
	PCB-1248	µg/L	<	0.08		 		 	
	PCB-1254	µg/L	<	0.27		 		 	
	PCB-1260	µg/L	<	0.15		 			
	PCBs, Total	µg/L	<			 			
	Toxaphene	µg/L	<	0.19		 			
	2,3,7,8-TCDD	ng/L	<			 			
	Gross Alpha	pCi/L				 			
7	Total Beta	pCi/L	<			 			
dno	Radium 226/228	pCi/L	<			 			
Эro	Total Strontium	µg/L	<			 			
•	Total Uranium	µg/L	<			 			
	Osmotic Pressure	mOs/kg				 			

Stream / Surface Water Information

Wise Foods, Inc., NPDES Permit No. PA0007498, Outfall 001

Instructions Disch	arge Stream									
Receiving Surface W	/ater Name: Sus	squehanna I	River			No. Reaches to Mod	del: <u>1</u>	● Sta ◯ Gre	atewide Criteria eat Lakes Criteria	
Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*		SANCO Criteria	
Point of Discharge	006685	160.13	473	10500			Yes			
End of Reach 1	006685	157.92	470	10533			Yes			
Q ₇₋₁₀							Travel	Talkatan	Ctro pro	Anghais

Location	D MI	LFY	Flow	/ (cts)	W/D	Width	Depth	Velocit	Timo	l ributa	ary	Stream	n	Analys	SIS
Location		(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	рН
Point of Discharge	160.13	0.105										69	1		
End of Reach 1	157.92	0.105										69	7		

 \boldsymbol{Q}_h

Location	D MI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Timo	Tributa	ary	Stream	m	Analys	sis
Location	TXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	160.13														
End of Reach 1	157.92														

Model Results

Wise Foods, Inc., NPDES Permit No. PA0007498, Outfall 001

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT) All	⊖ Inputs	⊖ Results	⊖ Limits	

✓ Hydrodynamics

Q 7-10

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
160.13	1102.50		1102.50	0.365	0.00026	1.116	768.819	688.692	1.285	0.105	42809.762
157.92	1105.97		1105.965								

\boldsymbol{Q}_h

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
160.13	3388.66		3388.66	0.365	0.00026	1.829	768.819	420.245	2.41	0.056	20415.128
157.92	3397.964		3397.96								

✓ Wasteload Allocations

✓ AFC CC	T (min):	15	PMF:	0.071	Anal	lysis Hardnes	ss (mg/l):	69.742 Analysis pH: 7.00
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PVVS)	132000	0		U	IN/A	N/A	N/A	
Chloride (PWS)	24536.1	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	591	0		0	750	750	34,884	
Total Antimony	0	0		0	1,100	1,100	237,246	
Total Arsenic	0	0		0	340	340	73,330	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	4,529,233	
Total Boron	0	0		0	8,100	8,100	1,746,990	
Total Cadmium	0	0		0	1.418	1.48	319	Chem Translator of 0.959 applied
Total Chromium (III)	0	0		0	424.146	1,342	289,490	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	3,514	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	20,489	
Total Copper	2.19	0		0	9.570	9.97	1,680	Chem Translator of 0.96 applied

Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	1010	0		0	N/A	N/A	N/A	
Total Lead	0.633	0		0	43.530	51.6	10,994	Chem Translator of 0.844 applied
Total Manganese	120.5	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	355	Chem Translator of 0.85 applied
Total Nickel	7	0		0	345.191	346	73,097	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	1.731	2.04	439	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	14,019	
Total Zinc	20.334	0		0	86.347	88.3	14,677	Chem Translator of 0.978 applied
Aldrin	0	0		0	3	3.0	647	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	0.95	0.95	205	
Chlordane	0	0		0	2.4	2.4	518	
4,4-DDT	0	0		0	1.1	1.1	237	
4,4-DDE	0	0		0	1.1	1.1	237	
4,4-DDD	0	0		0	1.1	1.1	237	
Dieldrin	0	0		0	0.24	0.24	51.8	
alpha-Endosulfan	0	0		0	0.22	0.22	47.4	
beta-Endosulfan	0	0		0	0.22	0.22	47.4	
Endosulfan Sulfate	0	0		0	N/A	N/A	N/A	
Endrin	0	0		0	0.086	0.086	18.5	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0		0	0.52	0.52	112	
Heptachlor Epoxide	0	0		0	0.5	0.5	108	
Toxaphene	0	0		0	0.73	0.73	157	
☑ CFC CC	T (min): 7	20	PMF:	0.130	Ana	alysis Hardne	ss (mg/l):	69.407 Analysis pH: 7.00
	<u>.</u>		E					
Dellutente	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj	$\lambda \lambda (1 \wedge (1 + \alpha/1))$	Commonto
Poliulanis	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)	VVLA (µg/L)	Comments
I OTAL DISSOIVED SOLIDS (PVVS)	(µg/L) 132000	0			N/A	N/A	N/A	
Chloride (PWS)	24536.1	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	591	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	86.487	
Total Arsenic	0	0		0	150	150	58 969	Chem Translator of 1 applied
Total Barium	0	0		0	4 100	4 100	1 611 809	
Total Boron	0	0		0	1,100	1,100	628 000	
Total Codmium	0	0		0	0.404	0.04	020,999	Cham Translator of 0.024 applied
	0	0		0	0.191	0.21	01.2	
	0	0		0	54.956	63.9	25,121	Unem Translator of 0.86 applied
Hexavalent Chromium	0	0		U	10	10.4	4,087	Chem Translator of 0.962 applied
I otal Cobalt	0	0		0	19	19.0	7,469	
Total Copper	2.19	0		0	6.555	6.83	1,826	Chem Translator of 0.96 applied

Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	1010	0		0	1,500	1,500	1,483,079	WQC = 30 day average; PMF = 1
Total Lead	0.633	0		0	1.687	2.0	538	Chem Translator of 0.844 applied
Total Manganese	120.5	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	356	Chem Translator of 0.85 applied
Total Nickel	7	0		0	38.184	38.3	12,311	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	1,961	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	5,111	
Total Zinc	20.334	0		0	86.699	87.9	26,594	Chem Translator of 0.986 applied
Aldrin	0	0		0	0.1	0.1	39.3	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	N/A	N/A	N/A	
Chlordane	0	0		0	0.0043	0.004	1.69	
4,4-DDT	0	0		0	0.001	0.001	0.39	
4,4-DDE	0	0		0	0.001	0.001	0.39	
4,4-DDD	0	0		0	0.001	0.001	0.39	
Dieldrin	0	0		0	0.056	0.056	22.0	
alpha-Endosulfan	0	0		0	0.056	0.056	22.0	
beta-Endosulfan	0	0		0	0.056	0.056	22.0	
Endosulfan Sulfate	0	0		0	N/A	N/A	N/A	
Endrin	0	0		0	0.036	0.036	14.2	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0		0	0.0038	0.004	1.49	
Heptachlor Epoxide	0	0		0	0.0038	0.004	1.49	
Toxaphene	0	0		0	0.0002	0.0002	0.079	
<i>⊡ THH</i> CC	T (min): 7	20	PMF:	0.130	Ana	Ilysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(µg/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	(10)	
Total Dissolved Solids (PVVS)	132000	0		0	500,000	500,000	N/A	
Chloride (PWS)	24536.1	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	591	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	2,201	
Total Arsenic	0	0		0	10	10.0	3,931	
Total Barium	0	0		0	2,400	2,400	943,498	
Total Boron	0	0		0	3,100	3,100	1,218,685	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	

Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	2.19	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	117,937	
Total Iron	1010	0		0	N/A	N/A	N/A	
Total Lead	0.633	0		0	N/A	N/A	N/A	
Total Manganese	120.5	0		0	1,000	1,000	345,873	
Total Mercury	0	0		0	0.050	0.05	19.7	
Total Nickel	7	0		0	610	610	237,061	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	94.3	
Total Zinc	20.334	0		0	N/A	N/A	N/A	
Aldrin	0	0		0	N/A	N/A	N/A	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	4.2	4.2	1,651	
Chlordane	0	0		0	N/A	N/A	N/A	
4,4-DDT	0	0		0	N/A	N/A	N/A	
4,4-DDE	0	0		0	N/A	N/A	N/A	
4,4-DDD	0	0		0	N/A	N/A	N/A	
Dieldrin	0	0		0	N/A	N/A	N/A	
alpha-Endosulfan	0	0		0	20	20.0	7,862	
beta-Endosulfan	0	0		0	20	20.0	7,862	
Endosulfan Sulfate	0	0		0	20	20.0	7,862	
Endrin	0	0		0	0.03	0.03	11.8	
Endrin Aldehyde	0	0		0	1	1.0	393	
Heptachlor	0	0		0	N/A	N/A	N/A	
Heptachlor Epoxide	0	0		0	N/A	N/A	N/A	
Toxaphene	0	0		0	N/A	N/A	N/A	
	T (min): 7	20	PMF:	0.188	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(µg/L)	Cv	(µg/L)	Coer	(µg/L)	(µg/L)		
Total Dissolved Solids (PVVS)	132000	0		0	N/A	N/A	N/A	
	24536.1	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PVVS)	0	0		0	N/A	N/A	N/A	
	591	0		0	N/A	N/A	N/A	
I otal Antimony	0	0		0	N/A	N/A	N/A	
I otal Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	

Total Chromium (III)	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	2.19	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	1010	0	0	N/A	N/A	N/A	
Total Lead	0.633	0	0	N/A	N/A	N/A	
Total Manganese	120.5	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	7	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	20.334	0	0	N/A	N/A	N/A	
Aldrin	0	0	0	0.000008	8.00E-07	0.001	
alpha-BHC	0	0	0	0.0004	0.0004	0.7	
beta-BHC	0	0	0	0.008	0.008	14.0	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0003	0.0003	0.52	
4,4-DDT	0	0	0	0.00003	0.00003	0.052	
4,4-DDE	0	0	0	0.00002	0.00002	0.035	
4,4-DDD	0	0	0	0.0001	0.0001	0.17	
Dieldrin	0	0	0	0.000001	0.000001	0.002	
alpha-Endosulfan	0	0	0	N/A	N/A	N/A	
beta-Endosulfan	0	0	0	N/A	N/A	N/A	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	N/A	N/A	N/A	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.000006	0.000006	0.01	
Heptachlor Epoxide	0	0	0	0.00003	0.00003	0.052	
Toxaphene	0	0	0	0.0007	0.0007	1.22	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
4,4-DDT	0.0001	0.0002	0.052	0.082	0.13	µg/L	0.052	CRL	Discharge Conc ≥ 50% WQBEL (RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	22,359	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	943,498	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	628,999	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	81.2	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	25,121	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	2,252	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	7,469	µg/L	Discharge Conc < TQL
Total Copper	1,421	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	117,937	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	1,483,079	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	538	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	345,873	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	19.7	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	12,311	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	1,961	µg/L	Discharge Conc < TQL
Total Silver	281	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	94.3	µg/L	Discharge Conc < TQL
Total Zinc	9,407	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Aldrin	0.001	µg/L	Discharge Conc < TQL
alpha-BHC	0.7	µg/L	Discharge Conc < TQL
beta-BHC	14.0	µg/L	Discharge Conc < TQL
gamma-BHC	131	µg/L	Discharge Conc < TQL
delta BHC	N/A	N/A	No WQS
Chlordane	0.52	µg/L	Discharge Conc < TQL
4,4-DDE	0.035	µg/L	Discharge Conc < TQL
4,4-DDD	0.17	µg/L	Discharge Conc < TQL
Dieldrin	0.002	µg/L	Discharge Conc < TQL
alpha-Endosulfan	22.0	µg/L	Discharge Conc < TQL
beta-Endosulfan	22.0	µg/L	Discharge Conc < TQL

Endosulfan Sulfate	7,862	µg/L	Discharge Conc < TQL
Endrin	11.8	µg/L	Discharge Conc < TQL
Endrin Aldehyde	393	µg/L	Discharge Conc < TQL
Heptachlor	0.01	µg/L	Discharge Conc < TQL
Heptachlor Epoxide	0.052	µg/L	Discharge Conc < TQL
PCB-1016	N/A	N/A	No WQS
PCB-1221	N/A	N/A	No WQS
PCB-1232	N/A	N/A	No WQS
PCB-1242	N/A	N/A	No WQS
PCB-1248	N/A	N/A	No WQS
PCB-1254	N/A	N/A	No WQS
PCB-1260	N/A	N/A	No WQS
Toxaphene	0.079	µg/L	Discharge Conc < TQL

Input Data WQM 7.0

		Strea Coo	am le	Stre	eam Name		RMI	Elevat (ft)	ion D	0rainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgc	S awal I)	Apply FC
		66	685 SUSQ	UEHANN	A RIVER		160.13	30 47	73.00	10500.00	0.00000		0.00	\checkmark
					S	tream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Ti</u> Temp	<u>ributary</u> pH	Tem	<u>Stream</u> p	рН	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
Q7-10	0.105	0.00	0.00	0.000	0.000	0.0	0.00	0.00	25.0	0.7 0	0 (0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									
					D	ischarge I	Data							
			Name	Per	mit Numbe	Existing Disc Flow (mad)	Permitte Disc Flow (mad)	ed Design Disc Flow (mgd)	Reser Facto	Disc ve Tem or (ºC)	; Dis p pl	sc H		

		(mgd) (mgd)	(mgd)		(°C)	
Wise Foods	PA0007498A1	0.2357	0.2357	0.2357	0.000	25.00	7.00
	Par	ameter Data					
	Deremeter Neme	Disc Conc	Trib Conc	Stream Conc	n Fate Coef		
		(mg/L)	(mg/L	_) (mg/L) (1/days)		
CBOD5		125.0	0 2	.00 0.0	00 7.50)	
Dissolve	d Oxygen	3.0	0 8	.24 0.0	0.00)	
NH3-N		39.0	0 0	.00 0.0	0.70)	

Input Data WQM 7.0

		Strea Coo	am de	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
		6	685 SUSQ	UEHANN	A RIVER		157.92	20	470.00	10533.00	0.00000	0.0	0 🗸
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Temp	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C)		
Q7-10	0.105	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 25	5.00 7.0	0 0	.00 0.0	00
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
						laaharaa	Data						

Discharge Data											
Name Permit Number	Existing Per Disc E Flow F (mgd) (n	mitted De Disc D Tow F ngd) (r	esign Disc Rese Flow Fac mgd)	D erve Te ctor (⁴	Pisc emp PC)	Disc pH					
	0.0000 0	.0000 0	0.0000 0	.000	25.00	7.00					
Para	ameter Data										
Parameter Name	Disc Conc	Trib Conc	Stream Conc	Fate Coef							
r drameter wante	(mg/L)	(mg/L)	(mg/L)	(1/days)							
CBOD5	25.00	2.00	0 0.00	1.50		_					
Dissolved Oxygen	3.00	8.24	4 0.00	0.00							
NH3-N	25.00	0.00	0.00	0.70							
NH3-N	25.00	0.00	0 0.00	0.70							

Input Data WQM 7.0

		Strea Coo	am Je	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdraw (mgd)	al	Apply FC
		6	685 SUSQ	UEHANN	A RIVER		138.00	60	438.00	11200.00	D.00000	6	5.50	\checkmark
					S	tream Da	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Temp	<u>Stream</u> p p	н	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C)			
Q7-10	0.105	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 25	5.00 7.0	00 0).00 (0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									
						iaaharaa	Data							

Discharge Data										
Existing Per Disc E Flow F (mgd) (n	mitted Des Disc Di low Fl ngd) (m	sign isc Rese low Fac 1gd)	D erve Te ctor (⁴	visc emp PC)	Disc pH					
0.0000 0	.0000 0	.0000 C	0.000	25.00	7.00					
ameter Data										
Disc Conc	Trib Conc	Stream Conc	Fate Coef							
(mg/L)	(mg/L)	(mg/L)	(1/days)							
25.00	2.00	0.00	1.50							
3.00	8.24	0.00	0.00							
25.00	0.00	0.00	0.70							
	Charge Data Existing Peri Disc E Flow F (mgd) (n 0.0000 0 rameter Data Disc Conc (mg/L) 25.00 3.00 25.00	Charge Data Existing Permitted Despective Disc Disc D Flow Flow F (mgd) (mgd) (m 0.0000 0.0000 0 cameter Data Disc Trib Conc Conc (mg/L) (mg/L) (mg/L) 25.00 3.00 8.24 25.00 0.00	Charge Data Existing Permitted Design Disc Disc Disc Disc Flow Flow Flow Flow No000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 cmeter Data Disc Trib Disc Trib Stream Conc Conc Conc (mg/L) (mg/L) (mg/L) 25.00 2.00 0.00 3.00 8.24 0.00 25.00 0.00 0.00	Charge Data Existing Permitted Design D Disc Disc Disc Reserve Termitted Design D Disc Disc Disc Reserve Termitted Design D Flow Flow Flow Flow Factor (* 0.0000 0.0000 0.0000 0.000 0.000 cameter Data Disc Trib Stream Fate Conc Conc Conc Coef (mg/L) (1/days) 25.00 2.00 0.00 1.50 3.00 8.24 0.00 0.00 25.00 0.00 0.00 0.70 0.70 0.70	Charge Data Disc Disc Disc Temp Existing Permitted Design Flow Disc Reserve Flow Temp Temp Flow Flow Flow Flow Factor (°C) 0.0000 0.0000 0.0000 0.0000 25.00 ommeter Data Disc Conc Coef (mg/L) (mg/L) (mg/L) (1/days) 25.00 2.00 0.00 1.50 3.00 8.24 0.00 0.00					

SW	<u>P Basin</u>	<u>Strea</u>	m Code				Stream I	Name					
	07K	6	685	SUSQUEHANNA RIVER									
Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)			
0 Flow													
1102.50	0.00	1102.50	.3646	0.00026	1.116	768.82	688.69	1.28	0.105	25.00	7.00		
1105.96	0.00	1105.96	.3646	0.00031	1.113	765.55	688.04	1.30	0.934	25.00	7.00		
0 Flow													
1069.43	0.00	1069.43	.3646	0.00026	NA	NA	NA	1.26	0.107	25.00	7.00		
1072.79	0.00	1072.79	.3646	0.00031	NA	NA	NA	1.28	0.951	25.00	7.00		
10 Flow													
1334.03	0.00	1334.03	.3646	0.00026	NA	NA	NA	1.43	0.094	25.00	7.00		
1338.22	0.00	1338.22	.3646	0.00031	NA	NA	NA	1.45	0.840	25.00	7.00		
	Stream Flow (cfs) 0 Flow 1102.50 1105.96 0 Flow 1069.43 1072.79 10 Flow 1334.03 1338.22	SWP Basin 07K Stream Flow PWS With (cfs) (cfs) 0 Flow 1102.50 0.00 1105.96 0.00 0 Flow 1069.43 0.00 1072.79 0.00 10 Flow 1334.03 0.00	SWP Basin Stream 07K 6 Stream PWS Net Flow With Stream (cfs) (cfs) (cfs) 0 Flow 0.00 1102.50 1102.50 0.00 1105.96 0 Flow 11069.43 0.00 1069.43 1069.43 0.00 1072.79 1072.79 10 Flow 1334.03 0.00 1334.03 1338.22 0.00 1338.22 1338.22	SWP Basin Stream Code 07K 6685 Stream Flow PWS With Vith Stream Flow (cfs) Disc Analysis Flow (cfs) (cfs) (cfs) (cfs) Disc Analysis Flow (cfs) 0 Flow (cfs) .000 1102.50 .3646 1102.50 0.00 1105.96 .3646 1069.43 0.00 1069.43 .3646 1072.79 0.00 1072.79 .3646 10 Flow 1334.03 .3646	SWP Basin Stream Code 07K 6685 Stream PWS Flow With Stream PWS Vith Stream Flow (cfs) Vith Stream Vith Stream Flow (cfs) Vith Stream Vith 1102.50 0.00 1102.50 0.00 1105.96 0.00 1069.43 0.00 1072.79 3646 0.00026 1072.79 0.00 1034.03 0.00 1334.03 0.00 1338.22 0.00	SWP Basin Stream Code 07K 6685 Stream PWS Flow With Stream PWS (cfs) (cfs) (cfs) (cfs) 0 Flow (cfs) (cfs) (cfs) (cfs) 0 Flow 1102.50 0.00 0.00 1102.50 0.00 1105.96 0.00 1105.96 0.00 1105.96 0.00 1069.43 1069.43 0.00 1072.79 0.00 1072.79 0.00 1334.03 0.00 1334.03 0.00 1338.22 0.00	SWP Basin Stream Code 07K 6685 SUS Stream PWS Net Disc Reach Depth Width Flow With Stream Analysis Slope Depth Width (cfs) (cfs) (cfs) (cfs) (ft/ft) (ft) (ft) 0 Flow 1102.50 0.00 1102.50 .3646 0.00026 1.116 768.82 1105.96 0.00 1105.96 .3646 0.00026 NA NA 1069.43 0.00 1069.43 .3646 0.00026 NA NA 1072.79 0.00 1072.79 .3646 0.00026 NA NA 1334.03 0.00 1334.03 .3646 0.00026 NA NA 1338.22 0.00 1338.22 .3646 0.00031 NA NA	SWP Basin Stream Code Stream I 07K 6685 SUSQUEHAN Stream PWS Net Disc Reach Depth Width W/D Flow With Stream Analysis Slope Depth Width W/D (cfs) (cfs) (cfs) (ft) (ft) (ft) (ft) 0 Flow .000 1102.50 .3646 0.00026 1.116 768.82 688.69 1105.96 0.00 1105.96 .3646 0.00026 NA NA NA 069.43 0.00 1069.43 .3646 0.00026 NA NA NA 1072.79 0.00 1072.79 .3646 0.00026 NA NA NA 1334.03 0.00 1334.03 .3646 0.00031 NA NA NA 1338.22 0.00 1338.22 .3646 0.00031 NA NA NA	SWP Basin Stream Code Stream Name 07K 6685 SUSQUEHANNA RIVER Stream PWS Net Disc Reach Depth Width W/D Velocity Flow With Stream Analysis Slope Depth Width W/D Velocity (cfs) (cfs) (cfs) (ff) (ft) (ft) (ft) (ft) Velocity 1102.50 0.00 1102.50 .3646 0.00031 1.116 768.82 688.69 1.28 1105.96 0.00 1105.96 .3646 0.00026 NA NA NA 1.28 1069.43 0.00 1069.43 .3646 0.00031 NA NA NA 1.28 10Flow .3646 0.00031 NA NA NA 1.28 1072.79 0.00 1072.79 .3646 0.00026 NA NA NA 1.28 1334.03 0.00 1334.03 .3646<	SWP Basin Stream Code Stream Name 07K 6685 SUSQUEHANNA RIVER Stream PWS Net Disc Reach Depth Width W/D Velocity Reach Flow With Stream Signe Depth Width W/D Velocity Reach Trav (cfs) (cfs) (cfs) (ft/ft) (ft) (ft) (ft) Velocity Reach Trav 1102.50 0.00 1102.50 .3646 0.00026 1.116 768.82 688.69 1.28 0.105 1105.96 0.00 1105.96 .3646 0.00026 NA NA NA 1.30 0.934 0169.43 0.00 1069.43 .3646 0.00026 NA NA NA 1.28 0.107 1072.79 0.00 1072.79 .3646 0.00026 NA NA NA 1.43 0.094 1334.03 0.00 1334.03 .3646	SWP Basin Stream Code Stream Name 07K 6685 SUSUEHANNA RIVER Stream PWS Net Disc Reach Depth Width W/D Velocity Reach Analysis Flow (cfs) (cfs) Stream Analysis Slope Depth Width W/D Velocity Reach Analysis Temp (cfs) (cfs) (cfs) (ft/ft) (ft) (ft)		

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.97	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.21	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

<u>SWP Basin</u> <u>Stream C</u> 07K 6685		ream Code		St			
		6685	85 SUSQUEHANNA RIVER				
H3-N	Acute Allocatio	ons					
RMI	Discharge Nar	Baseline ne Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
160.13	30 Wise Foods	11.07	78	11.07	78	0	0
157.92	20	NA	NA	11.07	NA	NA	NA
IH3-N	Chronic Alloca	tions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
160.13	30 Wise Foods	1.37	39	1.37	39	0	0
157.92	20	NA	NA	1.37	NA	NA	NA

Dissolved Oxygen Allocations

	Discharge Name	CBOD5		<u>NH3-N</u>		Dissolved Oxygen		Critical	Percent
RMI		Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
160.13 \ 157.92	Wise Foods	125 NA	125 NA	39 NA	39 NA	3 NA	3 NA	0 NA	0 NA

SWP Basin Stream Code				Stream Name			
07K	6685		SUS	QUEHANNA RIVER			
<u>RMI</u> 160.130	Total Discharge Flow (mgd) 0.236		<u>) Ana</u>	lysis Temperature (ºC) 25.000	<u>Analysis pH</u> 7.000		
Reach Width (ft)	Reach Depth (ft)			Reach WDRatio	Reach Velocity (fps)		
768.819	1.116 <u>Reach Kc (1/days)</u> 0.097 Beach Kr (1/daya)			688.692	1.285 <u>Reach Kn (1/days)</u>		
Reach CBOD5 (mg/L)			<u>F</u>	Reach NH3-N (mg/L)			
2.04				0.01	1.029		
Reach DO (mg/L)	<u>Reach KI (</u>	1 725		Trivoglou	Reach DO Goar (mg/L)		
8.241	1.75)		ISIVOGIOU	5		
Reach Travel Time (days)		Subreach	Results				
0.105	(days)	(mg/L)	NH3-N (mg/L)	D.O. (mg/L)			
	0.011	2.04	0.01	7.54			
	0.021	2.04	0.01	7.54			
	0.032	2.03	0.01	7.54			
	0.042	2.03	0.01	7.54			
	0.053	2.03	0.01	7.54			
	0.063	2.03	0.01	7.54			
	0.074	2.02	0.01	7.54			
	0.084	2.02	0.01	7.54			
	0.095	2.02	0.01	7.54			
	0.105	2.01	0.01	7.34			
<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	Analysis pH		
157.920	0.236	6		25.000	7.000		
Reach Width (ft)	<u>Reach De</u>	<u>pth (ft)</u>		Reach WDRatio	Reach Velocity (fps)		
765.547	1.11	3	_	688.036	1.299		
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>F</u>	Reach NH3-N (mg/L)	<u>Reach Kn (1/days)</u>		
Z.UT	0.000 Reach Kr (1	o 1/davs)		Kr Equation	Reach DO Goal (mg/L)		
<u>Reach DO (mg/L)</u> 7.541	2.082	<u>2</u>		Tsivoglou	5		
<u>Reach Travel Time (days)</u>		Subreach	Results				
0.934	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)			
	0.093	2.01	0.01	7.54			
	0.187	2.01	0.01	7.54			
	0.280	2.01	0.01	7.54			
	0.374	2.01	0.01	7.54			
	0.467	2.01	0.01	7.54			
	0.561	2.01	0.01	7.54			
	0.654	2.00	0.01	7.54			
	0.748	2.00	0.01	7.54			
	0.841	2.00	0.00	7.54 7.54			
	0.934	2.00	0.00	1.04			

WQM 7.0 D.O.Simulation

	<u>SWP Basin</u>	Stream Code		Stream Name	<u>e</u>		
	07K	6685	SUSQUEHANNA RIVER				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
160.130	Wise Food	ls PA0007498A1	0.236	CBOD5	125		
				NH3-N	39	78	
				Dissolved Oxygen			3

WQM 7.0 Effluent Limits