

SOUTHCENTRAL REGIONAL OFFICE CLEAN WATER PROGRAM

Application Type	Renewal	NPDES PERMIT FACT SHEET	Application No.	PA0008869
Facility Type	IW	INDIVIDUAL INDUSTRIAL WASTE (IW)	APS ID	8869
Major / Minor	Major	AND IW STORMWATER	Authorization ID	909218

Applicant and Facility Information				
Applicant Name		pecialty Solutions, LLC P.H. Glatfelter Company)	Facility Name	Spring Grove Mill (formerly P.H. Glatfelter Company-Spring Grove Mill
Applicant Address	228 S Mai	n Street	Facility Address	228 S Main Street
	Spring Gro	ove, PA 17362-1000	_	Spring Grove, PA 17362
Applicant Contact	Stacey Ca	ımpbell	Facility Contact	Jonas Pantalone
Applicant Phone	717-995-8	301	Facility Phone	717-955-8234
Client ID	82539		Site ID	249607
SIC Code	2621		Municipality	Spring Grove Borough
SIC Description	Manufactu	ıring - Paper Mills	County	York
Date Application Re	eceived	December 29, 2011	EPA Waived?	No
Date Application Accepted		January 6, 2012	If No, Reason	Major Facility
Purpose of Applicat	ion	NPDES Renewal.		

Summary of Review

P.H. Glatfelter Company (Glatfelter) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. During the permit term, a transfer permit application was submitted to DEP, requesting all existing permits associated with Glatfelter be amended to reflect a change in ownership from Glatfelter to Pixelle Specialty Solutions, LLC (Pixelle). This fact sheet will address both renewal and transfer. Also, the terms, Pixelle and Glatfelter, will be used interchangeably as the name of the permittee throughout the fact sheet.

Based on the review, it is recommended that the NPDES permit be drafted.

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge

Approve	Return	Deny	Signatures	Date
Х			Jinsu Kim Jinsu Kim / Environmental Engineering Specialist	November 16, 2023
Х			Daniel W. Martin Daniel Martin P.E. / Environmental Engineer Manager	November 17, 2023
Х			Maria D. Bebenek Maria D. Bebenek P.E. / Program Manager	November 17, 2023

Permit Status

The current NPDES permit renewal was issued on May 31, 2007 and became effective on July 1, 2007. The permit expired on June 30, 2012. The terms and conditions of the permit have been administratively extended since that time in accordance with 25 Pa Code §92a.7(b). The Water Quality Management (WQM) permit nos. 6780201 (1980), 6797201 (1997), 6709201 (2010, amended in 2011), and 6710201 (2010) were previously issued for construction and operation of the wastewater treatment units at this site. These WQM permits have been amended once again on June 22, 2021 to reflect a change in ownership from Glatfelter to Pixelle.

In addition to these permits, Pixelle is also required to obtain approvals from other Programs in DEP such Wase Management, Air Quality, Environmental Clean Up and Wasteways and Wetlands. All permits/approvals are available for file review at DEP Southcentral Regional Office located at 909 Elmerton Avenue, Harrisburg PA 17110.

Facility Information

Under the Standard Industrial Classification Code 2611, Pixelle owns and operates a fully integrated kraft pulp and paper mill located in Spring Grove Borough, York County, approximately 40 miles southwest of Harrisburg, Pennsylvania. This mill has been producing bleached kraft pulp and fine paper (coated and uncoated) since 1864. Considering a number of industrial activities performed and type of wastewater generated at the mill, Pixelle is categorized a major industrial facility less than 250 MGD under 25 Pa Code §92a.26(c). Given that the permit was last reissued in 2007, EPA NPDES Permit Rating Work Sheet was prepared for this permit renewal to confirm that the facility is considered a major industrial waste facility. The Work Sheet is included in Appendix A of this fact sheet. The entire site consists of the paper mill, raw material storage areas (i.e., coal pile, wood logs, etc.), loading/unloading areas, water intake structures, primary and secondary wastewater treatment plants, office building, closed landfill areas, and parking lots.

I. INDUSTIRAL PROCESS

Pixelle uses softwood (pine) and hardwood in production. The past five-year paper/pulp production data supplied by Pixelle were summarized below:

	2016	2015	2014	2013	2012
Total Annual Paper Production (tons)	423879	427990	442341	445598	453881
Annual Average* Paper Production (tons/day)	1183	1192	1233	1236	1255
Total Annual Hardwood Pulp Production (ADT**)	119166	113248	116524	112539	120903
Annual Average* Hardwood Pulp Production (ADT**/day)	336	330	331	322	342
Total Annual Softwood Pulp Production (ADT**)	108469	99370	105352	106120	105439
Annual Average* Softwood Pulp Production (ADT**/day)	306	291	300	308	306
*Average based on actual total operating days; **ADT	= Air Dried M	letric Tons (t	ons*1.10231)	

Although these data were from more than 6 years ago, a representative from Pixelle has recently confirmed that no changes have been identified in terms of the industrial operations performed at the site. As a result, these data will still be used for this permit renewal.

All logs delivered to the wood yard located southwest of the facility are debarked, chipped and then segregated by the wood type. Any reject and bark will later be transported to the boilers for use as fuel. Purchased chips can also be delivered directly to the mill. All woodchips are then screened and stored outside prior to pulping process.

Pixelle utilizes the kraft chemical pulping process to separate the cellulose fiber from the lignin. Wood chips are first cooked in a digester using white liquor (cooking chemical) and heated water. The pine pulp is produced in a continuous digester and hardwood pulp is produced in nine (9) batch digesters. The pulp is then washed and screened to separate spent-white liquor (i.e., black liquor) and uncooked woodchips. Black liquor is then treated and recycled back to digesters for reuse.

The pulp formed (i.e., brown stock) is then sent to the extended oxygen delignification stage where any remaining lignin and color being removed from the pulp. All washed/screened pulps are then bleached through a chlorine dioxide stage, hydrogen peroxide reinforced caustic extraction stage, and then through a final chlorine dioxide stage prior to paper making processing. Both hardwood and softwood pulps are bleached using the elemental chlorine free bleaching (ECF) technique in which chlorine dioxide (CIO2) is used in lieu of chlorine (CI2) and hypochlorite (CIO-),

generating reduced levels of chlorinated wastewater. Pixelle indicated that the facility produces approximately 55% bleached hardwood pulp and 45% bleached softwood pulp.

During the paper making process, materials are dewatered, pressed, dried and wound into large rolls of finished product. For the entire process, Glatfelter utilizes four (4) paper machines, two (2) coasters, one coal-fired power boiler, two (2) gas-fired power boilers and one kraft recovery boiler. The recovery boiler is used to burn the concentrated black liquor extracted from the pulp.¹

II. SOURCES OF WASTEWATER

According to the renewal application, the facility generates about 13 MGD (average monthly) and 19 MGD (daily maximum) of process wastewater from pulping and paper making process. According to Glatfelter, of the entire process wastewater to the on-site wastewater treatment plant, 34% of influent comes from the paper machine sewer, 48% from the bleach plant and 18% from all other sources including filter plant blowdown and backwash water, boiler and cooling tower blowdown, miscellaneous pulp mill flows, coater sewer flows and collected storm water. It is noteworthy that the paper machine sewer produces significant amount of heated wastewater within this 34% flow contribution.

About 18 MGD (average monthly) and 23 MGD (daily maximum) of non-contact cooling water is generated from No. 1 turbine generator condenser (No. 2 Surface condenser is no longer being used as of June 2011) and is discharged via Outfall 002. This is once-through non-contact cooling water.

Backwash water generated from two (2) existing water treatment plants is either commingled with process wastewater or directly sent to the onsite wastewater treatment plant. About 0.12 MGD of backwash water generated from these water treatment plants.

Any sanitary wastewater generated from Pixelle is sent to Spring Grove WWTP. Previously, Pixelle received partially treated sanitary wastewater from Spring Grove Borough and Jackson Township wastewater treatment facilities and uses them as a nutrient source for its treatment processes. Glatfelter notified both municipalities via a letter dated December 11, 2013 that additional treatment will no longer be provided by Pixelle beyond June 2017. As a result, Spring Grove Borough proposed an upgrade to its treatment process in 2014 and requested an NPDES permit to discharge its effluent to the Codorus Creek. This upgrade was completed in June 2017 and Spring Grove is currently authorized under NPDES permit no. PA0266086 to discharge its effluent to Codorus Creek. Jackson Township is also currently in the process of obtaining the NPDES permit and WQM permit for upgrade/expansion of its sewage treatment plant (i.e., based on a review of Jackson Township's planning module, the termination of service is seemingly extended up to July 31, 2019). All process wastewater generated from this facility as well as sanitary wastewater, if any, is sent to an on-site wastewater treatment plant prior to discharging via Outfall 001.

Groundwater is pumped at four (4) different locations within the site and discharged to either primary wastewater treatment units or to the secondary treatment plant.

Stormwater runoff is discharged via a number of stormwater outfalls located throughout the site.

III. WASTEWATER TREATMENT TECHNOLOGY

Pixelle utilizes an on-site activated sludge wastewater treatment facility for its process wastewater. While the primary wastewater treatment units are located just south east of the mill, the rest of the treatment units ("secondary plant") are located about a mile east from the mill. These primary treatment units, except for the equalization basin, have been used since 1940s (i.e., the equalization basin was permitted in 1980s) and the secondary plant was permitted in 1997. The treatment process is as follows:

Bar Screens \rightarrow Primary Clarifiers (3) \rightarrow Equalization Basin \rightarrow Contact Stabilization Basin/ Aeration Basins (2) \rightarrow Secondary Clarifiers (4) \rightarrow Effluent Cooling Basins (2) \rightarrow Outfall 001 to Codorus Creek

A site visit dated December 14th of 2017 revealed that the existing stabilization and aeration basins directly receive condensate from the papermill continuously. The current environmental site representative indicated that discharges of condensate must be made to the treatment process where the biological activity occurs per its current permit issued by DEP Air Quality Program. Due to the significant amount of heated water is discharged to the on-site wastewater treatment facility, Glatfelter was required by the last permit renewal to address thermal discharge issue by installing

¹ Source Water Baseline Biological Characterization Study Plan for P.H. Glatfelter's Spring Grove mill, June 2017, Normandeau Associates.

cooling technology. As a result, Glatfelter under the WQM permit no. 6709201 (issued on June 24, 2010) constructed two (2) cooling basins equipped with spray coolers. During the site visit conducted on December 14, 2017, Glatfelter indicated that these cooling basins are capable of removing heat from effluent up to 15°F.

There are two (2) emergency basins located adjacent to the existing aeration basins. These emergency basins are used for the temporary storage of wastewater in case the wastewater treatment plant receives highly-concentrated residual wastes. The basins are either lined or concrete-based.

Sludge generated from the on-site wastewater treatment facility is processed through existing thickeners (2), flocculation tank, and filter press. According to Glatfelter, most of the waste treatment plant sludge generated on the site is burned in the boiler as supplemental fuel. Any remainder is hauled off-site to a permitted facility that composts it which other organic waste and uses the resulting product as a soil amendment in mine reclamation efforts.

According to Pixelle, there is currently no treatment associated with non-contact cooling water discharged via 002.

IV. OUTFALLS / INTERNAL MONITORING POINTS

The discharges from all existing active outfalls are to Codorus Creek. Outfall 001 is located east of the mill, just north of the treatment facility at RMI of 24.45 (39°52'42", -76°50'51"). Outfall 002 is located south of the mill at RMI of 26.3 ((39°52'13", -76°52'16"). Between these two (2) outfalls, Spring Grove discharges its treated sewage at RMI of 26.14 (39°52'24", -76°51'28") and Jackson Township is expected to discharge its treated sewage at RMI of 25.57 (39°52'44", -76°51'12"). There are fifty-six (56) stormwater outfalls located throughout the site. Most of these stormwater outfalls discharge directly into Codorus Creek or dry swale which ultimately discharges into Codorus Creek. More details on these stormwater outfalls are discussed starting on page 7 of this fact sheet.

Throughout the manufacturing process, Pixelle has been consistently monitoring certain influent wastestreams at two (2) internal monitoring points; MP-101 and MP-102. MP-101 receives bleach plant effluent from the Softwood fiber line and MP-102 receives bleach plant effluent from the Hardwood fiber line. Both internal monitoring points currently have effluent limits and monitoring requirements associated with its wastestream. More details will be discussed later in this fact sheet.

V. WATER SUPPLY

Codorus Creek is the source of water for Pixelle. The mill withdraws water from two (2) intake points in the Mill Pond, an impounded portion of Codorus Creek created by the Mill Dam located near the mill. These intake points are Powerhouse intake and New Filter Plant intake. All withdrawn water from these intake structures is used for industrial purposes only. The Powerhouse intake withdraws a maximum of 16 MGD, of which approximately 15 MGD is used for cooling water purpose(s) such as non-contact cooling, boiler water make-up, and co-gen cooling tower make-up. The New Filter Plant intake withdraws a maximum of 12 MGD, of which a majority of withdrawn water is used for process water and only small volume (i.e., 0.5 MGD) is used as cooling tower make-up. The water level of the Mill Pond is currently managed by Glatfelter in order to sufficiently supply water to the mill and maintain the water levels of Codorus Creek at the same time. In addition, Pixelle controls the dam and water releases of Lake Marburg, a 1,275-acre impoundment of Codorus Creek located approximately 8 miles upstream of the mill. A file review indicates that Pixelle has consistently expressed that the "cold water" releases from the lake lower the temperature of the main stem of the Codorus Creek.

Historically, Pixelle owned and operated a water treatment plant for public potable water supply uses. This plant however was previously sold to York Water Company; therefore, Pixelle no longer produces potable water for the Company or Spring Grove Borough.

Receiving Surface Water Information

Codorus Creek (Stream ID: 08032) is a tributary of Susquehanna River. The headwaters of the Codorus Creek begins near the PA/MD border line west of Glenville, PA, approximately 17 river miles upstream from the mill. Codorus Creek at RM 32 meets the West Branch Codorus Creek which flows into Lake Marburg and then feeds into the Codorus Creek. Codorus

Creek then flows past the Borough of Spring Grove and Borough of New Salem, through the City of York before joining the Susquehanna River. Under 25 Pa Code §93.9o, Codorus Creek is designated as Trout Stocking and Migratory fishery (TSF, MF) from source to confluence with West Branch Codorus Creek, High Quality – Cold Water and Migratory fishery (HQ-CWF, MF) from confluence with West Branch Codorus Creek to confluence with Oil Creek, and Warm Water and Migratory fishery (WWF, MF) from confluence with Oil Creek to the mouth. Since all of Pixelle's outfalls are currently located on the stream segment(s) between confluence with Oil Creek to the mouth of Codorus Creek, no special protection water(s) is currently impacted by the discharge from Pixelle. Further, no Class A Wild Trout Fishery is not impacted by this discharge.

USGS StreamStats available at https://streamstats.usgs.gov/ss/ estimates an upstream drainage area of 75.7 sq.mi. for Outfall 001 and 70.4 sq.mi. for Outfall 002. This is slightly different from the previous upstream drainage area of 78 sq.mi. determined through the use of a digital planimeter. The drainage area upstream of the regulated USGS gauging station no. 01574500 is 75.5 sq.mi. and this station is located about 0.35 miles (i.e., ~1,800 ft.) upstream of Outfall 001. Considering the distance between this station and Outfall 001, the drainage areas taken directly from USGS StreamStats are seemingly more accurate and therefore will be used for this renewal.

USGS StreamStats produces a Q7-10 flow of 8.97 ft³/s at Outfall 001. While Outfall 001 is located less than a half mile downstream from the gauging station no. 01574500, the latest USGS low-flow statistics report² published Q7-10 flows of 24 ft³/s (post-regulation period 1968-2008) and 7.1 ft³/s (pre-regulation period 1930-1966) for this station. This station is a regulated station where flow is regulated by dam on Lake Marburg, in which a minimum release from the dam is currently managed by Pixelle. Further, discussions with USGS during this permit renewal as well as the previous permit renewal fact sheet revealed that low flow statistics for this gauging station no. 01574500 documented on the USGS report have been consistently computed based on the daily mean values of flows measured at the gauge station plus the daily mean values of discharge flows from Pixelle's Outfall 001 given the location of Outfall 001 in relation to this station. As a result, DEP performed a water quality analysis during the 2002 permit renewal using the re-computed low flow statistics supplied by USGS that were solely based on the stream flows measured at the station. For this permit renewal, USGS provided the readjusted daily mean flow data that were calculated by subtracting Outfall 001 discharge daily data from the published daily flow data for the period from 1993 to 2016. Using this data, DFLOW was utilized by DEP to re-compute the Q7-10 flow based on "actual" stream flow data. The results were shown below:

	2002 Permit Renewals (Data based on 1984-2002)	Upcoming Permit Renewal (Data based on 1993-2016)
Annual Q7-10	16.0 cfs	16.2 cfs
Monthly Q7-10 – January	16 cfs	16.9 cfs
Monthly Q7-10 – February	17 cfs	16.2 cfs
Monthly Q7-10 – March	21 cfs	25.4 cfs
Monthly Q7-10 – April	21 cfs	22.2 cfs
Monthly Q7-10 – May	23 cfs	21.5 cfs
Monthly Q7-10 – June	25 cfs	23.6 cfs
Monthly Q7-10 – July	24 cfs	26.6 cfs
Monthly Q7-10 – August	24 cfs	23.8 cfs
Monthly Q7-10 – September	22 cfs	21.1 cfs
Monthly Q7-10 – October	21 cfs	20.6 cfs
Monthly Q7-10 – November	18 cfs	18.4 cfs
Monthly Q7-10 – December	18 cfs	16.4 cfs

Based on the calculated low-flow yield of 0.214 cfs/sq.mi. (16.2 cfs / 75.5 sq.mi.), the Q7-10 flow at discharge points are determined to be 16.2 cfs (75.8 sq.mi. x 0.214 cfs/sq.mi.) for Outfall 001 and 15.1 cfs (70.4 sq.mi. x 0.214 cfs/sq.mi.) for Outfall 002. DFLOW also produces a Q30-10 of 19 cfs and harmonic flow of 42.2 cfs at the station, resulting in a Q30-10 of 19.07 cfs and harmonic flow of 42.37 cfs at Outfall 001.

The last permit renewal fact sheet indicates that DEP has been consistently used two (2) separate Q7-10 flow values to perform a water quality analysis; 21.3 cfs for the summer period (May 1 – October 31) and 15.8 cfs during the winter period (November 1 – April 30). It was still relevant to use these flows at the time of the 2002/2007 permit renewal review as Glatfelter can control its releases from Lake Marburg to ensure these flows are met. These values are still more conservative compared to monthly Q7-10 flows computed based on the daily mean data collected from 1993 to 2016. As such, these two (2) values will still be used to perform a water quality analysis for conventional and other pollutants subject to seasonal compliance periods. For all other pollutants, the annual Q7-10 will be used in the water quality analysis.

_

² Stuckey, M.H., and Roland, M.A., 2011, Selected streamflow statistics for Streamgage locations in and near Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2011-1070, 88p.

Pennsylvania's integrated water quality monitoring and assessment report which satisfies the requirements of section 305(b) and 303(d) of the Clean Water Act was last updated in 2022 to provide the current water quality status of surface waters of the Commonwealth. This report indicates that upstream of the mill is not impaired. This report however indicates that about 10.23 mile of Codorus Creek, starting near the on-site wastewater treatment facility, is impaired for thermal modifications as a result of industrial point source. Given that Pixelle is the only industrial facility associated with a significant amount of thermal discharges within this 10-mile stream stretch, the report seemingly points out Pixelle as a main source of this increase in natural water temperatures. This report identifies this segment of Codorus Creek in 2002 as Category 4b – impaired but no TMDL is needed as it is expected to meet uses within a reasonable timeframe. More details on this impairment will be discussed later in this fact sheet.

Downstream Public Water Supply Information

The nearest downstream public potable water supply intake is located on the Susquehanna River, approximately 32 miles from the mill. This intake is managed by the Wrightsville Borough Municipal Authority. Considering the distance to this intake, the discharge is not expected to significantly impact the water supply intake. The 32-mile distance was previously determined as follows:

	From Outfall 001 to confluence with Susquehanna River	24.45 mi
+	RMI of Susquehanna River at confluence with Codorus Creek	50.94 mi
-	RMI of the intake on Susquehanna River	<u>43.54 mi</u>
		31.85 mi

Considering its distance from this intake, the discharge from Pixelle is not expected to significantly impact the source water intake.

A summary of discharge, receiving water and water supply information is presented starting on the next page. All above-mentioned information will be considered in developing appropriate permit requirements.

Summary of Discharge, Receiving Waters and Water Supply Information				
Outfall No. 001	Design Flow (MGI	D) <u>13.7</u>		
Latitude 39º 52' 42"	Longitude	-76° 50' 51"		
Wastewater Description: Process Wastewater cov	ered by ELGs			
Internal Monitoring Point No. MP-101	Wastewater Description S	Coffwood blooch plant offwort		
	· -	Softwood bleach plant effluent Hardwood bleach plant effluent		
Internal Monitoring Point No. MP-102	wastewater Description	nardwood bleach plant eindent		
Outfall No. 002	Design Flow (MGI	D) 18		
Latitude 39° 52' 13"	Longitude	-76° 52' 16"		
Wastewater Description: Noncontact Cooling Wate	- -			
	·			
Receiving Waters Codorus Creek	Stream Code	08032		
		24.45 (Outfall 001)		
NHD Com ID 5747-	RMI	26.30 (Outfall 002)		
75.8 sq.mi. (Outfall 001) Drainage Area 70.4 sq. mi. (Outfall 002)	Yield (cfs/mi²)	0.214		
16.2 (Outfall 001)		USGS gage no. 01574500		
Q ₇₋₁₀ Flow (cfs) 15.1 (Outfall 002)	Q ₇₋₁₀ Basis	& DFLOW		
Elevation (ft) 421 (Outfall 001)	Slope (ft/ft)	Unknown		
Watershed No. 7-H	Chapter 93 Class.	WWF, MF		
Existing Use None	Existing Use Qualifie	r <u>N</u> /A		
Exceptions to Use None	Exceptions to Criteria	a <u>N/A</u>		
Assessment Status Impaired				
Cause(s) of Impairment Thermal Modifications				
Source(s) of Impairment Industrial Point Source	 			
TMDL Status Not Needed	Name _ N/A			
Background/Ambient Data	Data Sour	ce		
Median Temperature (°F) 65 (summer) / 5	51 (winter) 2012-2017	7 DMR Data		
90 th Percentile Temperature (°F) 67.3 (summer) / 6	60.4 (winter) 2012-2017	7 DMR Data		
CBOD5 (mg/L)1.40	12-month	data in 1995		
NH3-N (mg/L) 0.06	12-month	data in 1995		
Nearest Downstream Public Water Supply Intake	Wrightsville Borough Munici			
PWS Waters Susquehanna River	_ Flow at Intake (cfs)	Unknown		
PWS RMI 43.54	Distance from Outfall (m	ni) <u>31.85</u>		

	:	Stormwater Outfalls Description	
Outfall No.	SW-1	Drainage Area (acres)	_0.5
Latitude	39º 52' 6.2"	Longitude	-76º 51' 58.9"
	Drainage Area Description:	Concrete Swale; East of New Filter Plant	
Outfall No.	SW-2	Drainage Area (acres)	0.14
Latitude	39º 52' 9.6"	Longitude	76º 52' 1.2"
	Drainage Area Description:	Nos.7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-3	Drainage Area (acres)	0.14
Latitude	39° 52' 9.0"	Longitude	-76º 52' 1.2"
	Drainage Area Description:	Nos. 7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-4	Drainage Area (acres)	0.19
Latitude	39° 52′ 14.4″	Longitude	-76° 51' 46.8"
	Drainage Area Description:	Coater Building Roof Drain	
Outfall No.	SW-5	Drainage Area (acres)	0.14
Latitude	39° 52′ 8.4	Longitude	-76° 52' 0.0"
	Drainage Area Description:	Nos. 7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-6	Drainage Area (acres)	0.01
Latitude	39° 52′ 8.4″	Longitude	-76° 51' 59.4"
	Drainage Area Description:	Exterior Walkway Floor Drain	
Outfall No.	SW-7	Drainage Area (acres)	0.14
Latitude	-	Longitude	
	Drainage Area Description:	Nos. 7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-8	Drainage Area (acres)	0.14
Latitude	-	Longitude	
	Drainage Area Description:	Nos. 7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-9	Drainage Area (acres)	0.14
Latitude		Longitude	
	Drainage Area Description:	Nos. 7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-10	Drainage Area (acres)	0.14
Latitude	-	Longitude	<u>-</u>
		Nos 7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-11		0.14
Latitude	-	Longitude	<u>-</u>
	- · · · · · · · · · · · · · · · · · · ·	Nos 7 and 8 Paper Machine Building Roof	<u>Drain</u>
Outfall No.	SW-12	Drainage Area (acres)	0.14
Latitude	-	Longitude	
	- · · · · · · · · · · · · · · · · · · ·	Nos 7 and 8 Paper Machine Building Roof	•
Outfall No.	SW-13	Drainage Area (acres)	0.14
Latitude	-	Longitude	-
	=	Nos 7 and 8 Paper Machine Building Roof	•
Outfall No.	SW-14	Drainage Area (acres)	0.06
Latitude	39º 52' 12.2"	Longitude	-76º 51' 52.5"
	=	Discharge from Curb Inlet at northwest corr	
Outfall No.	SW-15	Drainage Area (acres)	0.17
Latitude	39° 52' 12.6"	Longitude	<u>-76° 51' 52.2"</u>
	=	Storm Sewer Outlet at northeast corner of	
Outfall No.	SW-16	Drainage Area (acres)	0.19

		Stormwater Outfalls Description	
Latitude	39° 52' 12.6"	Longitude	-76º 51'51.5"
	Drainage Area Description:	Coater Building Roof Drain	
Outfall No.	SW-17	Drainage Area (acres)	0.19
Latitude	39° 52′ 12.9″	Longitude	-76º 51' 50.9"
	Drainage Area Description:	Coater Building Roof Drain	
Outfall No.	SW-18	Drainage Area (acres)	0.35
Latitude	39° 52′ 13.5″	Longitude	-76º 51' 49.7"
	Drainage Area Description:	Coater Building Driveway (west)	
Outfall No.	SW-19	Drainage Area (acres)	0.19
Latitude	39º 52' 13.9"	Longitude	-76º 51' 49.0"
	Drainage Area Description:	Coater Building Roof Drain	
Outfall No.	SW-20	Drainage Area (acres)	0.23
Latitude	39º 52' 14.2"	Longitude	-76º 51' 48.1"
	Drainage Area Description:	Coater Building Driveway (east)	
Outfall No.	SW-21	Drainage Area (acres)	0.19
Latitude	39º 52' 14.4"	Longitude	-76º 51' 47.8"
	- · · · · · · · · · · · · · · · · · · ·	Coater Building Roof Drain	
Outfall No.	SW-22	Drainage Area (acres)	0.19
Latitude	39° 52' 14.5"	Longitude	-76º 51' 45.6"
	=	Coater Building Roof Drain	
Outfall No.	SW-23	Drainage Area (acres)	0.19
Latitude	39° 52' 15.4"	Longitude	-76º 51' 46.2"
	=	Coater Building Roof Drain	
Outfall No.	SW-24	Drainage Area (acres)	0.19
Latitude	39° 52' 15.5"	Longitude	76º 51' 46.1"
0.4.11.11	•	Coater Building Roof Drain	
Outfall No.	SW-25	Drainage Area (acres)	0.19
Latitude	39° 52' 15.7"	Longitude	-76º 51' 45.7"
Outfall No	- · · · · · · · · · · · · · · · · · · ·	Coater Building Roof Drain	4.42
Outfall No. Latitude	SW-26	Drainage Area (acres)	760 54' 56 4"
Lalliude	39° 51' 37.2" Drainage Area Description:	Longitude Foot Side of DK Truck Let	-76º 51' 56.4"
Outfall No.	SW-27	Drainage Area (acres)	2.5
Latitude	39º 52' 17.8"	Longitude	-76° 51' 42.3"
Latitude		Swale East of Coater Building	-70 31 42.3
Outfall No.	SW-28	Drainage Area (acres)	2.43
Latitude	39º 52' 18.9"	Longitude	-76° 51' 44.5"
Latitado	•	Swale from Roll Grinder Area	70 01 44.0
Outfall No.	SW-29	Drainage Area (acres)	0.14
Latitude	-	Longitude	-
	Drainage Area Description:	Nos. 7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-30	Drainage Area (acres)	0.14
Latitude	-	Longitude	-
	Drainage Area Description:	Nos. 7 and 8 Paper Machine Building Roof	
Outfall No.	SW-31	Drainage Area (acres)	0.14
Latitude	-	Longitude	
			-

	:	Stormwater Outfalls Description	
	Drainage Area Description:	Nos. 7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-32	Drainage Area (acres)	0.14
Latitude	-	Longitude	
	Drainage Area Description:	Nos. 7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-33	Drainage Area (acres)	0.14
Latitude		Longitude	
	Drainage Area Description:	Nos. 7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-34	Drainage Area (acres)	0.14
Latitude		Longitude	
	Drainage Area Description:	Nos. 7 and 8 Paper Machine Building Roof	Drain
Outfall No.	SW-35	Drainage Area (acres)	7.0
Latitude	39° 52' 55"	Longitude	-76º 50' 29"
	Drainage Area Description:	East of Lagoons 15, 16, 19	
Outfall No.	SW-36	Drainage Area (acres)	> 15
Latitude	39° 52' 24"	Longitude	-76º 51' 27"
	Drainage Area Description:	Swale immediately west of equalization bas	sin
Outfall No.	SW-37	Drainage Area (acres)	> 15
Latitude	39° 52′ 16.2″	Longitude	-76º 51' 33.6"
	Drainage Area Description:	Swale in Hedgerow between ag field	
Outfall No.	SW-38	Drainage Area (acres)	25
Latitude	39° 52′ 12.6″	Longitude	-76º 52' 16.2"
	Drainage Area Description:	Pulpmill Storm Sewer	
Outfall No.	SW-39	Drainage Area (acres)	0.19
Latitude	39° 52′ 12.6″	Longitude	-76º 52' 17.4"
	Drainage Area Description:	Swale West of Cooling Towers	
Outfall No.	SW-40	Drainage Area (acres)	0.46
Latitude	39° 52′ 12.0″	Longitude	-76º 52' 16.8"
	Drainage Area Description:	Outlet Between Pulpmill Sewer and Railroa	d Tracks
Outfall No.	SW-41	Drainage Area (acres)	0.58
Latitude	39º 52' 11.4"	Longitude	-76º 52' 5.4"
	Drainage Area Description:	Adjacent to Transformer Station	
Outfall No.	SW-42	Drainage Area (acres)	> 50
Latitude	39° 52' 38.4"	Longitude	-76º 51' 18.6"
	Drainage Area Description:	Stream East of No. 1 Supernatant Station	
Outfall No.	SW-43	Drainage Area (acres)	> 50
Latitude	39º 52' 41.4"	Longitude	-76º 51' 13.2"
	Drainage Area Description:	Swale West of Hershey Road	·
Outfall No.	SW-44	Drainage Area (acres)	15
Latitude	39° 52' 45"	Longitude	-76º 51' 5.4"
	•	Outlet of Marsh North of No. 11 Lagoon	
Outfall No.	SW-45	Drainage Area (acres)	9
Latitude	39° 52' 53.4"	Longitude	-76° 50' 38.4"
		Swale between Nos. 18 and 16 Lagoon	
Outfall No.	SW-46	Drainage Area (acres)	_110
Latitude	39° 52' 49.8"	Longitude	-76º 50' 17.4"
	Drainage Area Description:	Outlet of Landfill Sedimentation Pond	

	Stormwater Outfalls Description					
Outfall No.	SW-47	Drainage Area (acres)	0.82			
Latitude	39° 52′ 8.8″	Longitude	-76º 51' 54.6"			
	Drainage Area Description:	Run-off from Inlets on north side of PK Lot				
Outfall No.	SW-48	Drainage Area (acres)	0.08			
Latitude	39° 52' 7.3"	Longitude	-76º 51' 51.1"			
	Drainage Area Description:	East Side of PK Truck Lot				
Outfall No.	SW-49	Drainage Area (acres)	0.03			
Latitude	39° 52′ 9.6″	Longitude	-76º 51' 51.6"			
	Drainage Area Description:	East Side of PK Truck Lot				
Outfall No.	SW-50	Drainage Area (acres)	6			
Latitude	39° 52' 39.6"	Longitude	-76° 50' 54.6"			
	Drainage Area Description:	Swale East of Secondary Clarifiers				
Outfall No.	SW-51	Drainage Area (acres)	3.5			
Latitude	39° 52' 39.6"	Longitude	-76° 50' 57.6"			
	Drainage Area Description:	Swale East of Lagoons 11 and 12				
Outfall No.	SW-52	Drainage Area (acres)	1			
Latitude	39° 52′ 3.0″	Longitude	-76º 52' 1.8"			
	Drainage Area Description:	Swale West of New Filter Plant Intake				
Outfall No.	SW-53	Drainage Area (acres)	10.5			
Latitude	39° 52′ 12.9″	Longitude	-76° 52' 27.8"			
	Drainage Area Description:	Outlet of New Dredge Pond				
Outfall No.	SW-54	Drainage Area (acres)	2.75			
Latitude	39° 52′ 48.5″	Longitude	-76° 50' 23.5"			
	Drainage Area Description:	Spring East of No. 19 Lagoon				
Outfall No.	SW-55	Drainage Area (acres)	18.4			
Latitude	39° 52′ 9.4″	Longitude	-76° 52' 34.2"			
	Drainage Area Description:	Runn-off from Inlets on north side of PK Lot				
Outfall No.	SW-56	Drainage Area (acres)	> 15			
Latitude	39° 52′ 22.8″	Longitude	-76° 51' 27.6"			
	Drainage Area Description:	Runn-off from Inlets on north side of PK Lot				

	Treatment Facility Summary						
Treatment Facility Name: Spring Grove Mill (formerly P.H. Glatfelter Company-Spring Grove Mill							
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)			
	Biological (Industrial Waste)	Activated Sludge	No Disinfection				
	vvaotoj	7 tottvatoa Olaago	140 Biolineodich				
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal			
		Not Overloaded	Dewatering	Combination of methods			

Compliance History

Summary of DMRs: A summary of past 12-month DMR data is presented starting on page 22 of this fact sheet. Summary of 7/02/2021: Brandon Bettinger, DEP Water Quality Specialist, conducted an incident inspection Inspections: as a result of an unauthorized discharge of industrial wastes as a result of sludge pump faulted. 6/12/2021: Tracy Tomtishen, DEP Water Quality Specialist, conducted an incident inspection as a result of a discharge of cationic starch slurry reported by Pixelle. The discharge was caused by a pipe break. The inspection report indicates that replacement of leaking section pipe is planned to be completed on 6/13/2021. 7/29/2020: Austen Randecker conducted an inspection and noted that unauthorized discharge of process water occurred as a result of a power outage due to a heavy storm. The discharge was stormwater runoff from a coal pile. The sump pump used to pump stormwater to the treatment plant was not functional, resulting in an overflow. 8/20/2019: Austen Randecker conducted an incident inspection as a result of an unauthorized discharge of IW from the site. A power loss on 8/17/2019 caused an overflow from the pump station that last about 10 minutes. At the time of the inspection all treatment units were online. The inspection report indicates that there was no evidence of industrial wastewater on the ground or in Codorus Creek during the inspection. 6/25/2019: Austen Randecker conducted an incident inspection as a result of a fish kill reported by the permittee. About 45 dead fish were observed in the vicinity of the site. The cause was not identified at the time of inspection, but the inspection report indicates that the pond was sprayed for algae on 6/24/2019. 4/23/2019: Austen Randecker, former DEP Water Quality Specialist, conducted a routine inspection. No significant issues were noted at the time of inspection. 01/12/2017: Bob Haines, former DEP Water Quality Specialist, conducted a routine inspection and noted that all treatment units were online at the time of the inspection. The inspection report also indicates that pH and DO readings from Outfall 001 were within permitted limits. No significant issues were noted at the time of inspection. 08/30/2016: Bob Haines conducted a routine inspection. The inspection report documented DEP's recommendation/request of 1) log calibrations of dissolved oxygen meters, 2) submit supplemental forms in eDMR for January 2016 monitoring period, and 3) improve housekeeping in solids handling area and around final clarifier no. 2. No significant issues were noted at the time of inspection. 01/08/2016: Austin Pardoe, former DEP Water Quality Specialist, conducted a follow-up inspection on a reported discharged of cloudy water into the Codorus Creek. During the inspection, Mr. Pardoe noticed cloudy water being presented within a U-shaped sand-bagged area within the Codorus Creek along the northern streambank immediately downstream of the Rt. 116 bridge. Glatfelter indicated that wastes had leaked from a concrete vault located on the north side of stream in which the wastes is the influent waste going to the primary wastewater treatment plant. A truck later pumped out the wastes contained within the U-shape. 08/05/2015: Bob Haines conducted a routine inspection. The inspection report documented that significant effluent violations occurred in March due to two (2) plant upsets. Mr. Haines recommended/requested Glatfelter to 1) include (<) qualifiers on supplemental forms and eDMR report when reporting non-detects using contact lab's detection limit, 2) improve maintenance of final clarifier weirs, and 3) have flow meters calibrated at least annual by a third party provider. 07/21/2014: Bob Haines conducted a follow-up inspection in response to a notice of violation issued for a non-stormwater discharge to waters of the Commonwealth observed on 4/30/2014 during a stormwater inspection to confirm that measures taken to prevent non-stormwater discharges were implemented as outlined in the NOV response letter from Glatfelter. As part of

the implementation, Glatfelter constructed a new concrete pads and storage area for lime and coal ash, central u-drain that collects run-off and sends to treatment plant.

04/30/2014: Bob Haines conducted a stormwater inspection the day after a routine inspection for industrial wastes. The inspection was performed on a very rainy day so most of the outfalls had significant flow and most of the outfalls had clear stormwater discharge. However, poor housekeeping conditions were observed around the sludge storage pad and access road leading from coal ash shed which resulted in the runoff of residual material (sludge and coal ash) in stormwater discharge to Codorus Creek. Mr. Haines recognized this as a violation of the NPDES permit and recommended Glatfelter to address these issues to prevent non-stormwater runoff from entering Codorus Creek.

04/29/2014: Bob Haines conducted a routine inspection and indicated that all treatment units were online at the time of inspection, except for a sludge thickener. During the inspection, a small amount of petroleum product was spilled on the ground near final clarifier no. 1, and had the potential to enter the clarifier. Once discovered, Glatfelter staff initiated containment and clean-up of the spill. Mr. Haines recommended/requested Glatfelter to 1) improve housekeeping around sludge pad, 2) address sedimentation issues around final clarifiers 1 and 2, and 3) have flow meters calibrated at least annual by a third-party provider. No violations were noted at the time of inspection.

10/07/2013: Bob Haines conducted a complaint inspection reported to DEP's emergency response hotline on 10/5/2013 regarding the color of Glatfelter industrial waste discharge in the Codorus Creek. During the inspection, Mr. Haines observed the usual tea colored brown from discharge which is permitted to a certain limit. No dead or distressed aquatic life was observed. Overall, no issues noted with the color of the receiving stream or the effluent discharge.

Other Comments:

DEP's database shows that there is no open violation associated with this permittee or facility.

The following Notice of Violations (NOVs) and other associated enforcement orders were prepared during the last permit term:

- 1) An NOV was prepared on May 15, 2014 for final effluent violations as reported on the DMRs for the reporting periods from October 2012 to March 2014. Another NOV was prepared on September 15, 2015 for final effluent violations reported in the March and June 2015 DMRs.
- 2) An NOV was prepared on May 12, 2014 for poor housekeeping practices around the sludge processing and coal ash storage areas determined by DEP Water Quality Specialist during the stormwater inspection conducted on April 30, 2014.
- 3) An NOV was prepared on January 14, 2016 for discharge of unknown volume of raw, untreated industrial wastewater leaked from a crack in the concrete influent box at the onsite wastewater treatment facility into the Codorus Creek.
- 4) One gallon of flocculant chemical was spilled into industrial wastewater processes that discharge from Outfall 002 into Codorus Creek.
- 5) On October 11, 2013, untreated industrial wastewater from the Zone 5 lagoon was spilled into Codorus Creek due to a heavy rain events.
- 6) On October 4, 2019, an NOV was prepared for unauthorized discharge of IW from the site into Codorus Creek based on the inspection performed on August 20, 2019.
- 7) On November 2, 2018, an NOV was prepared for effluent limit violations occurred between March and September of 2018.

Item nos. 1 through 5 were resolved through the Consent Assessment of Civil Penalty (CACP) finalized on August 1st, 2016.

Effluent Violations & Enforcement Actions

Effluent Violations since 2012, based on the eDMR data

Date	Sampling Point	PARAMETER	Results	Limits	Units	SBC
5/31/2012	Final Effluent	Biochemical Oxygen Demand (BOD5)	2452	2335	lbs/day	Daily Maximum
5/31/2012	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5	2	°F	Instantaneous Maximum
6/30/2012	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3	2	٥F	Instantaneous Maximum
7/31/2012	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	6	2	٥F	Instantaneous Maximum
6/30/2013	Final Effluent	2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 1	0.035	pg/L	Daily Maximum
8/31/2012	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	°F	Instantaneous Maximum
9/30/2012	Final Effluent	Biochemical Oxygen Demand (BOD5)	2402	2335	lbs/day	Daily Maximum
9/30/2012	Final Effluent	Biochemical Oxygen Demand (BOD5)	1267	1168	lbs/day	Average Monthly
9/30/2012	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	°F	Instantaneous Maximum
10/31/2012	Final Effluent	Biochemical Oxygen Demand (BOD5)	1188	1168	lbs/day	Average Monthly
10/31/2012	Final Effluent	Ammonia-Nitrogen	4.52	3	mg/L	Daily Maximum
10/31/2012	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3	2	۰F	Instantaneous Maximum
1/31/2013	Final Effluent	Biochemical Oxygen Demand (BOD5)	1821	1751	lbs/day	Average Monthly
4/30/2013	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	°F	Instantaneous Maximum
5/31/2013	Final Effluent	Biochemical Oxygen Demand (BOD5)	3686	2335	lbs/day	Daily Maximum
5/31/2013	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	°F	Instantaneous Maximum
5/31/2013	Final Effluent	Biochemical Oxygen Demand (BOD5)	34	25	mg/L	Daily Maximum
5/31/2013	Final Effluent	Total Suspended Solids	70	60	mg/L	Daily Maximum
6/30/2014	Final Effluent	2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 2	0.035	pg/L	Daily Maximum
8/31/2013	Final Effluent	Biochemical Oxygen Demand (BOD5)	1417	1168	lbs/day	Average Monthly
8/31/2013	Final Effluent	Biochemical Oxygen Demand (BOD5)	29	25	mg/L	Daily Maximum
8/31/2013	Final Effluent	Biochemical Oxygen Demand (BOD5)	3217	2335	lbs/day	Daily Maximum
9/30/2013	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3	2	°F	Instantaneous Maximum
10/31/2013	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3	2	٩F	Instantaneous Maximum
11/30/2013	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	٩F	Instantaneous Maximum
11/30/2013	Final Effluent	Biochemical Oxygen Demand (BOD5)	3751	3503	lbs/day	Daily Maximum
11/30/2013	Final Effluent	Ammonia-Nitrogen	5.4	4	mg/L	Daily Maximum
1/31/2014	Final Effluent	Biochemical Oxygen Demand (BOD5)	35	34	mg/L	Daily Maximum
1/31/2014	Final Effluent	Biochemical Oxygen Demand (BOD5)	3649	3503	lbs/day	Daily Maximum
2/28/2014	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3	2	°F	Instantaneous Maximum
3/31/2014	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	٩F	Instantaneous Maximum
6/30/2014	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3	2	°F	Instantaneous Maximum
7/31/2014	Final Effluent	Biochemical Oxygen Demand (BOD5)	1261	1168	lbs/day	Average Monthly
7/31/2014	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3	2	°F	Instantaneous Maximum
7/31/2014	Final Effluent	Biochemical Oxygen Demand (BOD5)	2575	2335	lbs/day	Daily Maximum
6/30/2015	Final Effluent	2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 4	0.035	pg/L	Daily Maximum
8/31/2014	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3	2	٥F	Instantaneous Maximum
10/31/2014	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	٩F	Instantaneous Maximum
11/30/2014	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	٥F	Instantaneous Maximum
12/31/2014	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	٥F	Instantaneous Maximum
1/31/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	٥F	Instantaneous Maximum
12/31/2015	Final Effluent	2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 4.000	0.035	pg/L	Daily Maximum

2/28/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5	2	٥F	Instantaneous Maximum
3/31/2015	Final Effluent	Total Suspended Solids	78	60	mg/L	Daily Maximum
3/31/2015	Final Effluent	Biochemical Oxygen Demand (BOD5)	5870	3503	lbs/day	Daily Maximum
3/31/2015	Final Effluent	Biochemical Oxygen Demand (BOD5)	51	34	mg/L	Daily Maximum
3/31/2015	Final Effluent	Biochemical Oxygen Demand (BOD5)	18	17	mg/L	Average Monthly
3/31/2015	Final Effluent	Color (Pt-Co Units)	316	246	Pt-Co Units	Daily Maximum
3/31/2015	Final Effluent	Total Suspended Solids	9064	4113	lbs/day	Daily Maximum
3/31/2015	Final Effluent	Total Suspended Solids	2308	2057	lbs/day	Average Monthly
3/31/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	6	2	°F	Instantaneous Maximum
3/31/2015	Final Effluent	Biochemical Oxygen Demand (BOD5)	2006	1751	lbs/day	Average Monthly
4/30/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5	2	°F	Instantaneous Maximum
5/31/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3	2	٥F	Instantaneous Maximum
6/30/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	٥F	Instantaneous Maximum
7/31/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3	2	٥F	Instantaneous Maximum
8/31/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	٥F	Instantaneous Maximum
9/30/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	٥F	Instantaneous Maximum
10/31/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	۰F	Instantaneous Maximum
11/30/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	۰F	Instantaneous Maximum
11/30/2015	Downstream Monitoring	Temperature (deg F)	69	66	۰F	Daily Maximum
11/30/2015	Downstream Monitoring	Temperature (deg F)	60	53	۰F	Average Monthly
12/31/2015	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3	2	٥F	Instantaneous Maximum
12/31/2015	Downstream Monitoring	Temperature (deg F)	56	53	٥F	Average Monthly
1/31/2016	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4	2	٥F	Instantaneous Maximum
1/1/2016	Final Effluent	2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 10.000	.035	pg/L	Daily Maximum
5/1/2016	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	°F	Instantaneous Maximum
6/1/2016	Final Effluent	Biochemical Oxygen Demand (BOD5)	2359	2335	lbs/day	Daily Maximum
6/1/2016	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
7/1/2016	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
8/1/2016	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
9/1/2016	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
10/1/2016	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
11/1/2016	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
1/1/2017	Downstream Monitoring	Temperature (deg F)	52	50	٥F	Average Monthly
1/1/2017	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
1/1/2017	Final Effluent	2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 10.000	.035	pg/L	Daily Maximum
2/1/2017	Downstream Monitoring	Temperature (deg F)	56	52	٥F	Average Monthly
2/1/2017	Downstream Monitoring	Temperature (deg F)	67	59	٥F	Daily Maximum
2/1/2017	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
3/1/2017	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	7.0	2.0	٥F	Instantaneous Maximum
4/1/2017	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
5/1/2017	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
7/1/2017	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5.0	2.0	٥F	Instantaneous Maximum
8/1/2017	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
10/1/2017	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
11/1/2017	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
12/1/2017	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
1/1/2018	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	7.0	2.0	٥F	Instantaneous Maximum

1/1/2018	Final Effluent	2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 5.190	.035	pg/L	Daily Maximum
3/1/2018	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	ρg/∟ °F	Instantaneous Maximum
4/1/2018	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	6.0	2.0	°F	Instantaneous Maximum
5/1/2018	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	°F	Instantaneous Maximum
6/1/2018	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	°F	Instantaneous Maximum
7/1/2018	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	°F	Instantaneous Maximum
8/1/2018	Final Effluent	Biochemical Oxygen Demand (BOD5)	48	2.0		Daily Maximum
	Final Effluent		5564	2335	mg/L	
8/1/2018		Biochemical Oxygen Demand (BOD5)			lbs/day ⁰F	Daily Maximum
8/1/2018	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0		Instantaneous Maximum
9/1/2018	Final Effluent	Biochemical Oxygen Demand (BOD5)	29	25	mg/L	Daily Maximum
9/1/2018	Final Effluent	Biochemical Oxygen Demand (BOD5)	3289	2335	lbs/day	Daily Maximum
11/1/2018	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	°F	Instantaneous Maximum
1/1/2019	Final Effluent	2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 5.000	.035	pg/L	Daily Maximum
6/1/2019	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5.0	2.0	٥F	Instantaneous Maximum
7/1/2019	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
8/1/2019	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5.0	2.0	٥F	Instantaneous Maximum
9/1/2019	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
10/1/2019	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5.0	2.0	٥F	Instantaneous Maximum
11/1/2019	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5.0	2.0	٥F	Instantaneous Maximum
12/1/2019	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
1/1/2020	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5.0	2.0	٥F	Instantaneous Maximum
1/1/2020	Final Effluent	2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 2.000	.035	pg/L	Daily Maximum
3/1/2020	Downstream Monitoring	Temperature (deg F)	56	55	°F	Average Monthly
6/1/2020	Final Effluent	Ammonia-Nitrogen	4.33	3.0	mg/L	Daily Maximum
6/1/2020	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	۰F	Instantaneous Maximum
7/1/2020	Final Effluent	Biochemical Oxygen Demand (BOD5)	2679	2335	lbs/day	Daily Maximum
7/1/2020	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
8/1/2020	Final Effluent	Biochemical Oxygen Demand (BOD5)	2469	2335	lbs/day	Daily Maximum
9/1/2020	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
10/1/2020	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5.0	2.0	٥F	Instantaneous Maximum
10/1/2020	Instream Monitoring	Stream Flow, Minimum	20.0	21.3	cfs	Daily Minimum Average
11/1/2020	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	6.0	2.0	٥F	Instantaneous Maximum
12/1/2020	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5.0	2.0	۰F	Instantaneous Maximum
1/1/2021	Downstream Monitoring	Temperature (deg F)	51	50	°F	Average Monthly
1/1/2021	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	°F	Instantaneous Maximum
1/1/2021	Final Effluent	2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 3.280	.035	pg/L	Daily Maximum
2/1/2021	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5.0	2.0	<u> </u>	Instantaneous Maximum
3/1/2021	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5.0	2.0	°F	Instantaneous Maximum
5/1/2021	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	°F	Instantaneous Maximum
6/1/2021	Downstream Monitoring	Temperature (deg F)	86	83	°F	Daily Maximum
6/1/2021	Final Effluent	Biochemical Oxygen Demand (BOD5)	3479	2335	lbs/day	Daily Maximum
6/1/2021	Final Effluent	Biochemical Oxygen Demand (BOD5) Biochemical Oxygen Demand (BOD5)	41	25		Daily Maximum Daily Maximum
6/1/2021			3.0	2.0	mg/L °F	i i
	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)				Instantaneous Maximum
6/1/2021	Instream Monitoring	Stream Flow, Minimum	19.1	21.3	cfs	Daily Minimum Average
7/1/2021	Final Effluent	Biochemical Oxygen Demand (BOD5)	2690	2335	lbs/day	Daily Maximum
7/1/2021	Final Effluent	Total Suspended Solids	62	60	mg/L	Daily Maximum
7/1/2021	Final Effluent	Total Suspended Solids	6670	4113	lbs/day	Daily Maximum

7/1/2021	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	7.0	2.0	٥F	Instantaneous Maximum
8/1/2021	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	6.0	2.0	٥F	Instantaneous Maximum
8/1/2021	Instream Monitoring	Stream Flow, Minimum	21.0	21.3	cfs	Daily Minimum Average
9/1/2021	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
10/1/2021	Downstream Monitoring	Temperature (deg F)	70	69	٥F	Average Monthly
10/1/2021	Final Effluent	Biochemical Oxygen Demand (BOD5)	1215	1168	lbs/day	Average Monthly
10/1/2021	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
11/1/2021	Final Effluent	Total Suspended Solids	2159	2057	lbs/day	Average Monthly
11/1/2021	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
12/1/2021	Downstream Monitoring	Temperature (deg F)	58	53	٥F	Average Monthly
12/1/2021	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
1/1/2022	Downstream Monitoring	Temperature (deg F)	63	62	٥F	Daily Maximum
1/1/2022	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	6.0	2.0	٥F	Instantaneous Maximum
1/1/2022	Final Effluent	2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 1.980	.035	pg/L	Daily Maximum
2/1/2022	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	°F	Instantaneous Maximum
3/1/2022	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
6/1/2022	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
7/1/2022	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
8/1/2022	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
9/1/2022	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
11/1/2022	Downstream Monitoring	Temperature (deg F)	75	71	٥F	Daily Maximum
11/1/2022	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
12/1/2022	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
1/1/2023	Final Effluent	2,3,7,8-Tetrachlorodibenzofuran	35.6	31.9	pg/L	Daily Maximum
2/1/2023	Downstream Monitoring	Temperature (deg F)	57	52	٥F	Average Monthly
2/1/2023	Downstream Monitoring	Temperature (deg F)	64	59	٥F	Daily Maximum
3/1/2023	Downstream Monitoring	Temperature (deg F)	58	55	٥F	Average Monthly
3/1/2023	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	5.0	2.0	٥F	Instantaneous Maximum
4/1/2023	Downstream Monitoring	Temperature (deg F)	68	65	٥F	Average Monthly
4/1/2023	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	4.0	2.0	٥F	Instantaneous Maximum
4/1/2023	Final Effluent	pH	9.1	9.0	S.U.	Maximum
6/1/2023	Downstream Monitoring	Temperature (deg F)	84	83	٥F	Daily Maximum
6/1/2023	Final Effluent	Ammonia-Nitrogen	4.0	3.0	mg/L	Daily Maximum
6/1/2023	Final Effluent	Biochemical Oxygen Demand (BOD5)	2527	2335	lbs/day	Daily Maximum
6/1/2023	Final Effluent	pH	9.3	9.0	S.U.	Maximum
6/1/2023	Instream Monitoring	Temperature, Delta (Discharge - Intake) (deg F)	3.0	2.0	٥F	Instantaneous Maximum
9/1/2023	Instream Monitoring	Stream Flow, Minimum	21.1	21.3	cfs	Daily Minimum Average

Previous DEP Enforcement Actions

Violation ID	Violation Date	Violation Description	Resolved Date	Inspection ID	Inspection Date	Inspection Type	Inspector	Violation Comment
		Polluting substance(s) allowed					-	
		to discharge into Waters of the				Incident- Response	ROTH,	discharge of sludge to a wet land
535052	3/17/2008	Commonwealth.	3/17/2008	1693152	3/17/2008	to Accident or Event	JOSEPH	area

		Polluting substance(s) allowed						leak from eq basin spray pump to
		to discharge into Waters of the				Incident- Response	ROTH,	a storm water ditch which led to
540255	6/1/2008	Commonwealth.	1/5/2009	1711149	6/1/2008	to Accident or Event	JOSEPH	the Codorus Creek
	3, 1, = 0 0	Industrial waste was discharged	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0, 1,=000	Incident- Response	ROTH,	
543863	7/14/2008	without permit.	7/15/2008	1722459	7/14/2008	to Accident or Event	JOSEPH	overflow from ps to codorus creek
		Administrative review of DMR				Compliance	ROTH,	·
552673	10/22/2008	reveals violation(s).	1/5/2009	1756014	10/22/2008	Evaluation	JOSEPH	color reporting discrepancy
		Industrial waste was discharged				Incident- Response	ROTH,	Unpermitted discharge of cooling
572734	9/23/2009	without permit.	11/6/2009	1832650	9/23/2009	to Accident or Event	JOSEPH	tower water at Outfall 002.
								Unpermitted discharge from
570705	0/00/0000	Industrial waste was discharged	44/0/0000	4000054	0/00/0000	Incident- Response	ROTH,	supernatant P.S. 14 into Codorus
572735	9/20/2009	without permit.	11/6/2009	1832651	9/20/2009	to Accident or Event	JOSEPH	Creek at Outfall 001.
		Industrial waste was discharged				Incident- Response	SWEGER	IW discharged after sludge transfer line ruptured spilling sludge into
578069	12/18/2009	without permit.	1/4/2010	1850817	12/18/2009	to Accident or Event	, BARRY	Codorus Creek.
370003	12/10/2009	Polluting substance(s) allowed	1/4/2010	1030017	12/10/2003	to Accident of Event	, DAIRIN	Codords Creek.
		to discharge into Waters of the				Incident- Response	ROTH,	oily/sheen discharge from Outfall
581169	1/5/2010	Commonwealth.	2/22/2010	1862687	1/5/2010	to Accident or Event	JOSEPH	002.
		Industrial waste was discharged				Follow-up	ROTH,	Unpermitted discharge of black
581560	2/4/2010	without permit.	2/22/2010	1864079	2/4/2010	Inspection	JOSEPH	liquor through Outfall 002
								IW transfer pump failure at primary
		Industrial waste was discharged				Incident- Response	HAINES,	treatment plant. Manhole overflow
649143	9/14/2012	without a permit	9/14/2012	2099806	9/14/2012	to Accident or Event	ROBERT	to Codorus Creek.
						0, 14, ,		Stormwater discharge contained
		NPDES - Violation of Part C				Storm Water Industrial-Non-	HAINES,	process solids and coal ash. Email addressing remaining concerns
695330	4/30/2014	permit condition(s)	1/23/2015	2269135	4/30/2014	Sampling	ROBERT	after fui sent 1/23/15
093330	4/30/2014	permit condition(s)	1/23/2013	2209133	4/30/2014	Sampling	ROBERT	10/12 NH3 and temp, 1/13 bod
								monthly, 4/13 temp, 5/13 BOD and
								TSS, 8/13 BOD, 10/13 temp, 11/13
		NPDES - Violation of effluent				Administrative/File	HAINES,	NH3 BOD and Temp, 1/14 BOD
697295	5/15/2014	limits in Part A of permit	6/4/2014	2275181	5/15/2014	Review	ROBERT	and Temp
		NPDES - Violation of effluent				Compliance	HAINES,	
734499	8/5/2015	limits in Part A of permit		2406524	8/5/2015	Evaluation	ROBERT	Various DMR vioaltions
		CSL - Unauthorized,						
		unpermitted discharge of						
74445	4/44/0040	industrial wastes to waters of the		0440047	4/44/0040	Incident- Response	HAINES,	Contents of emergency basin
744415	1/14/2016	Commonwealth		2443847	1/14/2016	to Accident or Event	ROBERT	leaked to underdrain system.
		CSL - Unauthorized, unpermitted discharge of						discharge if influent IW from bank
		industrial wastes to waters of the				Incident- Response	PARDOE,	into Codorus downstream of Rt
745212	1/8/2016	Commonwealth		2447350	1/8/2016	to Accident or Event	AUSTIN	116 Bridge
. 10212	.,0,2010	CSL - Unauthorized,			1,0,2010	15 / IOOIGOIN OF EVOIN		. To Bridge
		unpermitted discharge of						
		industrial wastes to waters of the				Incident- Response	PARDOE,	
753549	1/8/2016	Commonwealth		2462103	1/8/2016	to Accident or Event	AUSTIN	

Existing Effluent Limits and Monitoring Requirements

All tables below summarize effluent limits and monitoring requirements specified in the existing permit.

Outfall 001

Cuttaii 661			Effluent L	imitations			Monitoring Re	quirements
Davamatan	Mass Unit	s (lbs/day) ⁽¹⁾		Concentra	Minimum (2)	Required		
Parameter	Average	Daily		Average	Daily	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	Continuous	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
								24-Hr
TSS	2,057	4,113	XXX	30	60	75	1/day	Composite
BOD5								24-Hr
(5/1 – 10/31)	1,168	2,335	XXX	14	25	25	1/day	Composite
BOD5								24-Hr
(11/1 – 4/30)	1,751	3,503	XXX	17	34	38	1/ay	Composite
NH3-N		Report						24-Hr
(5/1 – 10/31)	XXX	Total Monthly	XXX	1,5	3.0	3.8	1/day	Composite
NH3-N		Report						24-Hr
(11/1 – 4/30)	XXX	Total Monthly	XXX	2.0	4.0	5.0	1/day	Composite
Color (PCU)								8-Hr
(Upstream)	XXX	XXX	XXX	Report	Report	XXX	1/day	Composite
Color (PCU)								24-Hr
(Influent)	XXX	XXX	XXX	Report	Report	XXX	1/day	Composite
Color (PCU)								
(Effluent)								24-Hr
(5/1 – 10/31)	XXX	XXX	XXX	140	280	350	1/day	Composite
Color (PCU)								
(Effluent)	2001							24-Hr
(11/1 – 4/30)	XXX	XXX	XXX	123	246	307	1/day	Composite
Color (PCU)	2001					,,,,,		24-Hr
(Downstream)	XXX	XXX	XXX	Report	Report	XXX	1/day	Composite
	2007	242	1004	Б.,		2007	47 11	24-Hr
Absorbable Organic Halides	XXX	812	XXX	Report	Report	XXX	1/month	Composite
	1	364	1004	2007	2004	2007		
Absorbable Organic Halides	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Temperature (°F)	1	1000	1004	2007			.,,	
(Effluent)	XXX	XXX	XXX	XXX	Report	110	1/day	I-S
Temperature (°F)	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1000	NAA 4			2004	.,,	
(Upstream)	XXX	XXX	XXX	Report	Report	XXX	1/day	I-S

NPDES Permit No. PA0008869

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Temperature (°F)								
(Downstream)	XXX	XXX	XXX	Footn	ote 7,8	XXX	Continuous	I-S
Hourly Instream (°F)								
Temperature Change	XXX	XXX	XXX	XXX	Report	2.0	Continuous	I-S
	Report	Report						24-Hr
Total Phosphors	Total Monthly	Total Annual	XXX	Report	2.0	2.5	1/week	Composite
Fecal Coliform								
(No. / 100 mL)	XXX	XXX	XXX	XXX	Report	XXX	1/month	Grab
	Report			_				24-Hr
TKN	Total Monthly	XXX	XXX	Report	XXX	XXX	1/week	Composite
T	Report	Report	V0.07	5 .	2007	2007	47 11	
Total Nitrogen	Total Monthly	Total Annual	XXX	Report	XXX	XXX	1/month	Calculation
Chloroform	XXX	xxx	XXX	0.02	0.04	005	1/week	Grab
COD								24-Hr
(influent)	XXX	XXX	XXX	Report	Report	XXX	1/month	Composite
COD								24-Hr
(effluent)	XXX	XXX	XXX	Report	Report	XXX	1/month	Composite
								24-Hr
Total Aluminum	XXX	XXX	XXX	XXX	Report	XXX	1/month	Composite
								24-Hr
Total Boron	XXX	XXX	XXX	XXX	Repot	XXX	1/month	Composite
								24-Hr
2,3,7,8-TCDD (pg/L)	XXX	XXX	XXX	XXX	0.035	XXX	1/year	Composite
2270 TODE (22/1)	VVV	VVV	VVV	VVV	Depart	VVV	1/100	24-Hr
2,3,7,8-TCDF (pg/L)	XXX	XXX	XXX	XXX	Report	XXX	1/year	Composite

Outfall 002

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/day	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
TSS	XXX	XXX	XXX	XXX	Report	XXX	1/month	Grab
BOD5	XXX	XXX	XXX	XXX	Repot	XXX	1/month	Grab

		Effluent Limitations							
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra	Minimum (2)	Required			
Faranietei	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Temperature (°F) (Effluent)	XXX	XXX	XXX	Report	Report	110	1/shit	Grab	
Temperature (°F) (Upstream)	XXX	XXX	XXX	Report	Report	XXX	1/shift	Grab	
Temperature (°F) (at Gage) (5/1 – 10/31)	21.3 Min 7- day average	Report Daily Min	XXX	XXX	XXX	XXX	Continuous	Recorded	
Temperature (°F) (at Gage) (11/1 – 4/30)	15.8 Min 7- day average	Report Daily Min	XXX	XXX	XXX	XXX	Continuous	Recorded	

IMP-101

			Effluent L	imitations.			Monitoring Requireme	
Darameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
				20				
Kappa Number	XXX	XXX	XXX	Annual Avg	Report	XXX	1/week	Grab
Color (PCU)	XXX	XXX	XXX	Report	Report	XXX	1/week	Grab
Chloroform	2.72	4.55	XXX	Report	Report	XXX	1/quarter	Grab
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/week	Measured
2,3,7,8-TCDD	XXX	XXX	XXX	< 10 pg/L	XXX	XXX	2/year	Grab
2,3,7,8-TCDF	XXX	XXX	XXX	31.9 pg/L	XXX	XXX	2/year	Grab
Trichlorosyringol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
3,4,5-trichlorocatechol	XXX	XXX	XXX	< 0.005	XXX	XXX	2/year	Grab
3,4,6-trichlorocatechol	XXX	XXX	XXX	< 0.005	XXX	XXX	2/year	Grab
Tetrachlorocatechol	XXX	XXX	XXX	< 0.005	XXX	XXX	2/year	Grab
3,4,5-trichloroguaiacol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
3,4,6-trichloroguaiacol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
4,5,6-trichloroguaiacol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
Tetrachloroguaiacol	XXX	XXX	XXX	< 0.005	XXX	XXX	2/year	Grab
2,4,5-trichlorophenol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
2,4,6-trichlorophenol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
2,3,4,6-tetrachlorophenol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
Pentachlorophenol	XXX	XXX	XXX	< 0.005	XXX	XXX	2/year	Grab

IMP-102

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average	Daily		Average	Daily	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
				13				
Kappa Number	XXX	XXX	XXX	Annual Avg	Report	XXX	1/week	Grab
Color (PCU)	XXX	XXX	XXX	Report	Report	XXX	1/week	Grab
Chloroform	3.16	5.28	XXX	Report	Report	XXX	1/quarter	Grab
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/week	Measured
2,3,7,8-TCDD	XXX	XXX	XXX	< 10 pg/L	XXX	XXX	2/year	Grab
2,3,7,8-TCDF	XXX	XXX	XXX	31.9 pg/L	XXX	XXX	2/year	Grab
Trichlorosyringol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
3,4,5-trichlorocatechol	XXX	XXX	XXX	< 0.005	XXX	XXX	2/year	Grab
3,4,6-trichlorocatechol	XXX	XXX	XXX	< 0.005	XXX	XXX	2/year	Grab
Tetrachlorocatechol	XXX	XXX	XXX	< 0.005	XXX	XXX	2/year	Grab
3,4,5-trichloroguaiacol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
3,4,6-trichloroguaiacol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
4,5,6-trichloroguaiacol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
Tetrachloroguaiacol	XXX	XXX	XXX	< 0.005	XXX	XXX	2/year	Grab
2,4,5-trichlorophenol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
2,4,6-trichlorophenol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
2,3,4,6-tetrachlorophenol	XXX	XXX	XXX	< 0.0025	XXX	XXX	2/year	Grab
Pentachlorophenol	XXX	XXX	XXX	< 0.005	XXX	XXX	2/year	Grab

Stormwater Outfalls

	Monitoring Requirements									
Parameter	Composite Sample	Grab Sample	Monitoring Frequency							
BOD5	XXX	Report	1/year							
COD	XXX	Report	1/year							
Oil and Grease	XXX	Report	1/year							
рН	XXX	Report	1/year							
TSS	XXX	Report	1/year							
TP	XXX	Report	1/year							
TKN	XXX	Report	1/year							
Total Manganese	XXX	Report	1/year							
Total Iron	XXX	Report	1/year							

Effluent Data

DMR Data for Outfall 001 (from July 1, 2020 to June 30, 2021)

				EED 04	141104	DE0 00	1101/ 00	00T 00	055.00	4110.00	
JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
12.7	14.0	13.4	13.1	13.4	13.3	13.3	13.1	13.1	13.8	14.0	13.0
16.0	14.9	14.6	14.8	14.7	14.3	15.6	14.9	15.5	18.3	15.3	15.6
7.8	7.6	8.0	8.3	8.4	8.1	8.0	7.6	7.3	7.3	7.7	7.4
8.8	8.5	8.7	8.7	8.7	8.7	8.5	8.3	8.5	8.2	8.1	8.3
6.0	7.7	7.7	8.1	8.7	8.5	8.4	8.0	7.0	7.5	7.4	6.9
114	121	120	119	114	115	111	114	122	125	132	134
55	59	53	42	52	52	54	59	63	52	48	54
301	359	353	336	295	307	310	278	324	291	320	318
17	16	15	14	16	12	21	19	20	13	16	18
190	156	155	155	148	146	147	170	174	173	189	205
83	90	80	57	75	70	80	78	88	68	63	81
680	645	770	610	595	855	630	455	680	640	675	660
40	43	24	37	53	52	98	40	35	26	48	86
77	69	64	55	49	51	51	61	67	70	75	77
		_			-	-		-		-	
70	63	57	49	38	40	42	52	59	64	70	72
	12.7 16.0 7.8 8.8 6.0 114 55 301 17 190	JUN-21 MAY-21 12.7 14.0 16.0 14.9 7.8 7.6 8.8 8.5 6.0 7.7 114 121 55 59 301 359 17 16 190 156 83 90 680 645 40 43 77 69	JUN-21 MAY-21 APR-21 12.7 14.0 13.4 16.0 14.9 14.6 7.8 7.6 8.0 8.8 8.5 8.7 6.0 7.7 7.7 114 121 120 55 59 53 301 359 353 17 16 15 190 156 155 83 90 80 680 645 770 40 43 24 77 69 64	12.7 14.0 13.4 13.1 16.0 14.9 14.6 14.8 7.8 7.6 8.0 8.3 8.8 8.5 8.7 8.7 6.0 7.7 7.7 8.1 114 121 120 119 55 59 53 42 301 359 353 336 17 16 15 14 190 156 155 155 83 90 80 57 680 645 770 610 40 43 24 37 77 69 64 55	JUN-21 MAY-21 APR-21 MAR-21 FEB-21 12.7 14.0 13.4 13.1 13.4 16.0 14.9 14.6 14.8 14.7 7.8 7.6 8.0 8.3 8.4 8.8 8.5 8.7 8.7 8.7 6.0 7.7 7.7 8.1 8.7 114 121 120 119 114 55 59 53 42 52 301 359 353 336 295 17 16 15 14 16 190 156 155 155 148 83 90 80 57 75 680 645 770 610 595 40 43 24 37 53 77 69 64 55 49	JUN-21 MAY-21 APR-21 MAR-21 FEB-21 JAN-21 12.7 14.0 13.4 13.1 13.4 13.3 16.0 14.9 14.6 14.8 14.7 14.3 7.8 7.6 8.0 8.3 8.4 8.1 8.8 8.5 8.7 8.7 8.7 8.7 6.0 7.7 7.7 8.1 8.7 8.5 114 121 120 119 114 115 55 59 53 42 52 52 301 359 353 336 295 307 17 16 15 14 16 12 190 156 155 155 148 146 83 90 80 57 75 70 680 645 770 610 595 855 40 43 24 37 53 52	JUN-21 MAY-21 APR-21 MAR-21 FEB-21 JAN-21 DEC-20 12.7 14.0 13.4 13.1 13.4 13.3 13.3 16.0 14.9 14.6 14.8 14.7 14.3 15.6 7.8 7.6 8.0 8.3 8.4 8.1 8.0 8.8 8.5 8.7 8.7 8.7 8.5 8.4 114 121 120 119 114 115 111 55 59 53 42 52 52 54 301 359 353 336 295 307 310 17 16 15 14 16 12 21 190 156 155 155 148 146 147 83 90 80 57 75 70 80 680 645 770 610 595 855 630 77 <	JUN-21 MAY-21 APR-21 MAR-21 FEB-21 JAN-21 DEC-20 NOV-20 12.7 14.0 13.4 13.1 13.4 13.3 13.3 13.1 16.0 14.9 14.6 14.8 14.7 14.3 15.6 14.9 7.8 7.6 8.0 8.3 8.4 8.1 8.0 7.6 8.8 8.5 8.7 8.7 8.7 8.5 8.3 6.0 7.7 7.7 8.1 8.7 8.5 8.4 8.0 114 121 120 119 114 115 111 114 55 59 53 42 52 52 54 59 301 359 353 336 295 307 310 278 17 16 15 14 16 12 21 19 190 156 155 155 148 146 147 170	JUN-21 MAY-21 APR-21 MAR-21 FEB-21 JAN-21 DEC-20 NOV-20 OCT-20 12.7 14.0 13.4 13.1 13.4 13.3 13.3 13.1 13.1 16.0 14.9 14.6 14.8 14.7 14.3 15.6 14.9 15.5 7.8 7.6 8.0 8.3 8.4 8.1 8.0 7.6 7.3 8.8 8.5 8.7 8.7 8.7 8.5 8.3 8.5 6.0 7.7 7.7 8.1 8.7 8.5 8.4 8.0 7.0 114 121 120 119 114 115 111 114 122 55 59 53 42 52 52 54 59 63 301 359 353 336 295 307 310 278 324 17 16 15 14 16 12 21	JUN-21 MAY-21 APR-21 MAR-21 FEB-21 JAN-21 DEC-20 NOV-20 OCT-20 SEP-20 12.7 14.0 13.4 13.1 13.4 13.3 13.3 13.1 13.1 13.8 16.0 14.9 14.6 14.8 14.7 14.3 15.6 14.9 15.5 18.3 7.8 7.6 8.0 8.3 8.4 8.1 8.0 7.6 7.3 7.3 8.8 8.5 8.7 8.7 8.7 8.5 8.3 8.5 8.2 6.0 7.7 7.7 8.1 8.7 8.5 8.4 8.0 7.0 7.5 114 121 120 119 114 115 111 114 122 125 55 59 53 42 52 52 54 59 63 52 301 359 353 336 295 307 310 278 324<	JUN-21 MAY-21 APR-21 MAR-21 FEB-21 JAN-21 DEC-20 NOV-20 OCT-20 SEP-20 AUG-20 12.7 14.0 13.4 13.1 13.4 13.3 13.3 13.1 13.1 13.8 14.0 16.0 14.9 14.6 14.8 14.7 14.3 15.6 14.9 15.5 18.3 15.3 7.8 7.6 8.0 8.3 8.4 8.1 8.0 7.6 7.3 7.3 7.7 8.8 8.5 8.7 8.7 8.7 8.5 8.3 8.5 8.2 8.1 6.0 7.7 7.7 8.1 8.7 8.5 8.4 8.0 7.0 7.5 7.4 114 121 120 119 114 115 111 114 122 125 132 55 59 53 42 52 52 54 59 63 52 48

Parameter	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
Temperature (°F)	00.1.2.		7111121			0711121	220 20		00: 20	02. 20	7.00 20	00110
Daily Maximum	97	83	84	79	71	70	73	82	81	87	87	88
Temperature (°F)										<u> </u>		
Downstream												
Monitoring												
Daily Maximum	86	77	75	65	54	55	61	69	72	75	78	79
Temperature (°F)					-		-			-	_	-
Upstream Monitoring												
Daily Maximum	77	71	67	59	43	43	49	60	64	69	73	74
Delta T (°F)												
Instream Monitoring												
Instantaneous												
Maximum	3.0	4.0	2.0	5.0	5.0	4.0	5.0	6.0	5.0	4.0	2.0	3.0
BOD5 (lbs/day)												
Average Monthly	1104	817	722	587	762	771	885	926	764	1164	1129	883
BOD5 (lbs/day)												
Daily Maximum	3479	1496	1401	1034	1103	1553	1506	1721	1705	2147	2469	2679
BOD5 (mg/L)												
Average Monthly	10	7	6	5	7	7	8	8	7	10	10	8
BOD5 (mg/L)												
Daily Maximum	41	13	12	10	9	14	14	16	14	18	21	22
COD (mg/L)												
Average Monthly	170	102	95	122	132	484	123	89	76	106	104	216
COD (mg/L)												
Industrial Influent												
Average Monthly	702	766	836	820	740	677	598	384	193	421	547	440
COD (mg/L)												
Daily Maximum	170	102	95	122	132	484	123	89	76	106	104	216
COD (mg/L)												
Industrial Influent												
Daily Maximum	702	766	836	820	740	677	598	384	193	421	547	440
TSS (lbs/day)												
Average Monthly	974	896	842	988	1310	1171	1232	1200	1062	992	997	1060
TSS (lbs/day)												
Daily Maximum	2858	2072	1670	1728	2252	1868	2052	2797	1701	1651	1664	3513
TSS (mg/L)												
Average Monthly	10	8	8	9	12	11	11	11	10	9	9	9
TSS (mg/L)												
Daily Maximum	29	18	14	15	20	16	20	26	15	15	15	27
Fecal Coliform												
(No./100 ml)												
Daily Maximum	53	2	4	5	70	13	387	13	4	33	61	5
Nitrate-Nitrite (mg/L)												
Average Monthly	< 0.2	< 0.1	< 0.1	< 0.1	< 0.7	< 0.1	< 0.1	< 0.1	< 0.1	< 0.4	< 0.1	< 0.1

Parameter	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
Nitrate-Nitrite (lbs)	001121		7			0711121	220 20	110120	00: 20	02. 20	7100 20	002.20
Total Monthly	< 530	< 360	< 330	< 330	< 2470	< 350	< 338	< 320	< 330	< 1230	< 360	< 360
Total Nitrogen (mg/L)												
Average Monthly	< 3.0	< 1.8	< 2.3	< 1.8	< 2.5	< 2.1	< 1.7	< 1.6	< 2.2	< 2.1	< 1.7	< 2.7
Total Nitrogen (lbs)												
Total Monthly	< 9090	< 6500	< 7410	< 5930	< 8140	< 7310	< 5740	< 5110	< 7360	< 6880	< 6160	< 9670
Total Nitrogen (lbs) Total Annual										84620		
Ammonia (mg/L)												
Average Monthly	< 0.24	< 0.15	< 0.33	< 0.29	< 0.11	< 0.1	0.11	< 0.11	< 0.10	< 0.1	< 0.12	< 0.18
Ammonia (mg/L)												
Daily Maximum	2.68	1.20	2.35	2.56	0.29	< 0.1	0.32	0.18	0.16	0.12	0.64	0.68
Ammonia (lbs)												
Total Monthly	< 620	< 550	< 960	< 990	< 340	< 340	< 385	< 380	< 350	< 350	< 430	< 610
TKN (mg/L)												
Average Monthly	< 2.8	1.7	2.2	< 1.7	1.8	2.0	1.6	< 1.5	2.1	< 1.7	1.6	2.6
TKN (lbs)												
Total Monthly	< 8560	6140	7080	< 5610	5680	6960	5400	< 4790	7020	< 5650	5790	9310
Total Phosphorus												
(mg/L)	0.00	0.44	0.40	0.4	0.44	0.00	0.40	0.40	0.47	0.40	0.44	0.07
Daily Maximum	0.23	0.11	0.10	< 0.1	0.11	0.23	0.13	0.10	0.17	0.10	0.11	0.27
Total Phosphorus (lbs) Total Monthly	< 380	< 370	< 330	< 330	< 330	< 470	< 369	< 320	< 390	< 335	< 370	< 520
Total Phosphorus (lbs)	< 360	< 370	< 330	< 330	< 330	< 470	< 309	< 320	< 390	< 333	< 370	< 520
Total Annual										4440		
Total Aluminum										4440		
(mg/L)												
Daily Maximum	0.613	0.482	0.330	0.597	0.708	0.596	1.18	0.468	0.575	0.510	0.70	0.352
Total Boron (mg/L)	0.0.0	51.62	0.000	0.00.	0.7.00	0.000		000	0.0.0	0.0.0	00	0.002
Daily Maximum	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
2,3,7,8-TCDF (pg/L)												
Daily Maximum							< 2.00					
2,3,7,8-TCDD (pg/L)												
Daily Maximum							< 2.000					
Chloroform (mg/L)												
Average Monthly	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Chloroform (mg/L)												
Daily Maximum	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
AOX (lbs/day)												
Daily Maximum	127	198	< 115	192	233	166	153	433	109	161	128	150
AOX (lbs/day)												
Total Annual	180	182	174	185	180	172	163	166	140	143	143	154
AOX (mg/L)	4.5	4.5	4.5	4.5				0.0	4.0		1	4.5
Average Monthly	1.0	1.8	< 1.0	1.9	2.1	1.5	1.4	3.9	1.0	1.4	1.1	1.3

Parameter	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
AOX (mg/L)												
Daily Maximum	1.0	1.8	< 1.0	1.9	2.1	1.5	1.4	3.9	1.0	1.4	1.1	1.3

DMR Data for Outfall 002 (from July 1, 2020 to June 30, 2021)

Parameter	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
Flow (MGD)												
Average Monthly				3.4	6.0	5.9	6.4	7.7	7.8	8.1	8.1	4.0
Flow (MGD)												
Daily Maximum				6.9	6.7	6.0	7.6	8.2	8.2	8.2	8.5	8.6
pH (S.U.)												
Minimum				7.3	7.3	7.4	7.1	7.2	7.1	7.3	7.1	6.9
pH (S.U.)												
Vlaximum				8.2	8.1	8.3	8.1	8.1	7.9	8.0	7.8	7.8
Temperature (°F)												
Average Monthly				57	52	52	54	61	68	71	77	78
Temperature (°F)												
Jpstream Monitoring												
Average Monthly	64	60	55	47	38	39	41	51	56	59	64	66
Temperature (ºF)												
Daily Maximum				67	58	55	59	69	72	76	80	81
Temperature (°F)												
Jpstream Monitoring												
Daily Maximum	71	66	64	58	42	43	48	59	60	65	69	68
BOD5 (mg/L)												
Daily Maximum				2	< 2	< 2	< 2	Е	< 2	< 2	< 2	< 2
ΓSS (mg/L)												
Daily Maximum				59	9	8	5	E	8	14	18	9
Minimum Stream Flow												
cfs)												
nstream Monitoring												
Daily Minimum	15.0	20.7	18.9	34.5	15.0	14.7	13.9	15.2	10.8	28.8	35.3	32.0
Minimum Stream Flow												
cfs)												
nstream Monitoring												
Daily Minimum						4= 0		4-0				
Average	19.1	21.8	22.3	44.0	18.1	17.3	20.7	17.0	20.0	31.1	36.7	33.6

DMR Data for Stormwater Outfalls (December 2020)

Parameter	Outfall 011	Outfall 026	Outfall 027	Outfall 036	Outfall 047	Outfall 050
pH (S.U.)						
Maximum	7.35	8.04	7.40	7.64	8.12	7.98
BOD5 (mg/L)						
Annual Average	5.7	< 2.0	< 2.0	2.5	< 2.0	< 2.0
BOD5 (mg/L)						
Maximum	5.7	< 2.0	< 2.0	2.5	< 2.0	< 2.0
COD (mg/L)						
Annual Average	150	< 15	< 15	25	< 15	23
COD (mg/L)						
Maximum	150	< 15	< 15	25	< 15	23
TSS (mg/L)						
Annual Average	22	36	< 5	13	16	8
TSS (mg/L)						
Maximum	22	36	< 5	13	16	8
Oil and Grease (mg/L)						
Maximum	< 3.8	< 3.9	< 3.7	< 3.7	< 3.9	< 3.8
TKN (mg/L)						
Annual Average	2.3	< 1.0	< 1.0	1.2	< 1.0	1.7
TKN (mg/L)						
Maximum	2.3	< 1.0	< 1.0	1.2	< 1.0	1.7
Total Phosphorus (mg/L)						
Annual Average	< 0.1	< 0.10	< 0.1	0.16	< 0.10	0.33
Allilual Avelage	₹ 0.1	< 0.10	< 0.1	0.10	< 0.10	0.55
Total Phosphorus (mg/L)						
Maximum	< 0.1	< 0.10	< 0.1	0.16	< 0.10	0.33
Total Iron (mg/L)						
Annual Average	0.094	0.42	< 0.030	0.38	0.29	0.17
Total Iron (mg/L)						
Maximum	0.094	0.42	< 0.030	0.38	0.29	0.17
T-1-1 M / // // /						
Total Manganese (mg/L)	0.000	0.005	.0.0005	0.044	0.007	0.000
Annual Average	0.026	0.035	< 0.0025	0.044	0.027	0.023
Total Manganese (mg/L)						
Maximum	0.026	0.035	< 0.0025	0.044	0.027	0.023

DMR Data for IMP 101 (from July 1, 2020 to June 30, 2021)

Flow (MGD) 3.70 3.62 3.63 3.56 3.63 3.58 3.58 3.58 Flow (MGD) 3.70 3.70 3.60 3.70	OV-20 OCT-20 3.54 3.55 3.70 3.70	3.58 3.70	AUG-20 3.64	JUL-20 3.58
Average Monthly 3.70 3.62 3.63 3.56 3.63 3.58 3.58 3.58 Flow (MGD) Daily Maximum 3.70 3.70 3.60 3.70 <t< td=""><td>3.70 3.70</td><td></td><td>3.64</td><td>3 58</td></t<>	3.70 3.70		3.64	3 58
Flow (MGD) 3.70 3.70 3.60 3.70	3.70 3.70		0.07	
Daily Maximum 3.70 3.70 3.60 3.70 3.70 3.70 Kappa Number (No.) 3.70 3.70 3.70 3.70 3.70		3 70		0.00
Kappa Number (No.)		3.70	3.70	3.70
	0.9 10.8	10.7	10.8	10.8
Kappa Number (No.)				
	2.4 12.5	10.6	13.1	13.6
Color (Pt-Co Units)				
	415 354	383	407	428
Color (Pt-Co Units)				
	492 388	495	478	636
Pentachloro-phenol				
(mg/L)				
Daily Maximum < 0.002 < 0.0020				
2,3,4,6-Tetra-				
chlorophenol (mg/L) Daily Maximum < 0.0010 < 0.0010				
				
2,3,7,8-TCDF (pg/L) Daily Maximum < 5.00 < 4.00				
2,3,7,8-TCDD (pg/L)				
Daily Maximum < 5.00 < 4.00				
3,4,5-Trichloro-				
catechol (mg/L)				
Daily Maximum < 0.002 < 0.0020				
2,4,5-Trichloro-phenol				
(mg/L)				
Daily Maximum < 0.0020 < 0.0020				
3,4,6-Trichloro-				
catechol (mg/L)				
Daily Maximum < 0.004 < 0.0040				
3,4,5-Trichloro-				
guaiacol (mg/L)				
Daily Maximum < 0.0010 < 0.0010				
3,4,6-Trichloro-				
guaiacol (mg/L) Daily Maximum < 0.0010 < 0.0010				
Daily Maximum < 0.0010				
guaiacol (mg/L)				
gualacol (flig/L)				
2,4,6-Trichlorophenol				
(mg/L)				
Daily Maximum < 0.0010 < 0.0010				

Chloroform (lbs/day)					
Average Monthly	0.27	0.16	0.19	0.14	
Chloroform (lbs/day)					
Daily Maximum	0.27	0.16	0.19	0.14	
Chloroform (mg/L)					
Average Monthly	0.009	0.005	0.006	0.005	
Chloroform (mg/L)					
Daily Maximum	0.009	0.005	0.006	0.005	
Tetrachloro-catechol					
(mg/L)					
Daily Maximum	< 0.002		< 0.0020		
Tetrachloro-guaiacol					
(mg/L)					
Daily Maximum	< 0.002		< 0.0020		
Trichloro-syringol					
(mg/L)					
Daily Maximum	< 0.0010		< 0.0010		

DMR Data for IMP 102 (from July 1, 2020 to June 30, 2021)

Parameter	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
Flow (MGD)												
Average Monthly	2.65	2.90	2.90	2.92	2.90	2.83	2.85	2.88	2.95	2.90	2.86	2.85
Flow (MGD)												
Daily Maximum	2.80	3.10	2.90	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Kappa Number (No.)												
Annual Average	8.8	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.8	8.8	8.7	8.6
Kappa Number (No.)												
Daily Maximum	8.6	10.3	10.0	10.6	9.7	9.3	9.1	8.6	10.1	9.1	11.0	10.0
Color (Pt-Co Units)												
Average Monthly	286	363	443	390	435	369	453	319	431	403	420	354
Color (Pt-Co Units)												
Daily Maximum	295	472	548	508	508	384	561	494	514	489	499	510
Pentachloro-phenol												
(mg/L)												
Daily Maximum	< 0.002						< 0.0020					
2,3,4,6-Tetra-												
chlorophenol (mg/L)												
Daily Maximum	< 0.0010						< 0.0010					
2,3,7,8-TCDF (pg/L)												
Daily Maximum	< 3.92						< 4.00					
2,3,7,8-TCDD (pg/L)												
Daily Maximum	< 3.92						< 4.00					

Parameter	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
3,4,5-Trichloro-												
catechol (mg/L)												
Daily Maximum	< 0.002						< 0.0020					
2,4,5-Trichloro-phenol												
(mg/L)												
Daily Maximum	< 0.0020						< 0.0020					
3,4,6-Trichloro-												
catechol (mg/L)												
Daily Maximum	< 0.002						< 0.0020					
3,4,5-Trichloro-												
guaiacol (mg/L)												
Daily Maximum	< 0.0010						< 0.0010					
3,4,6-Trichloro-												
guaiacol (mg/L)												
Daily Maximum	< 0.0010						< 0.0010					
4,5,6-Trichloro-												
guaiacol (mg/L)												
Daily Maximum	< 0.0010						< 0.0010					
2,4,6-Trichlorophenol												
(mg/L)												
Daily Maximum	< 0.0010						< 0.0010					
Chloroform (lbs/day)												
Average Monthly	0.20			0.12			0.13			0.14		
Chloroform (lbs/day)												
Daily Maximum	0.20			0.12			0.13			0.14		
Chloroform (mg/L)												
Average Monthly	0.008			0.005			0.005			0.006		
Chloroform (mg/L)												
Daily Maximum	0.008			0.005			0.005			0.006		
Tetrachloro-catechol												
(mg/L)												
Daily Maximum	< 0.002						< 0.0020					
Tetrachloro-guaiacol												
(mg/L)												
Daily Maximum	< 0.002						< 0.0020					
Trichloro-syringol												
(mg/L)	0.0045											
Daily Maximum	< 0.0010						< 0.0010					

Development of Effluent Limitations and Monitoring Requirements

Under the federal Clean Water Act (CWA) and the state Clean Streams Law (CSL), the discharge of pollutants through any point source is prohibited without an NPDES permit unless such discharge is exempted by the CWA and/or CSL. The NPDES permit is the mechanism used to apply the requirements from CWA and CSL to point sources to achieve water quality goals. The NPDES permit is developed in accordance with state and federal regulations. For Pixelle, discharges from each of existing outfalls have been evaluated to determine appropriate effluent limitations and other requirements for the upcoming permit term.

Technology-Based Effluent Limitations (TBELs)

As defined in 40 CFR § 125.3, technology-based treatment requirements represent the minimum level of control that must be imposed in a permit to meet the best practicable control technology currently available (BPT) for conventional and other pollutants (i.e., some metals), the best conventional pollutant control technology (BCT) for conventional pollutants, and the available technology economically achievable (BAT) for toxic and other non-conventional pollutants. Where no technology-based effluent guidelines are available, case-by-case effluent limitations can be established under Section 402(a)(1)(B) of the CWA. The discharge from Pixelle, in accordance with 40 CFR § 122.44(a)(1) and Subpart A of 40 CFR § 125, must meet technology-based requirements established based on effluent limitations guidelines (ELGs) and standards found in 40 CFR Part 430 (i.e., *The Pulp, Paper, And Paperboard Point Source Category*), other standards found in 40 CFR § 133.102 and 25 Pa. Code §§§ 92a.47, 92a.48, and 95.2, and/or a case-by-case determination using Best Professional Judgment (BPJ).

Water Quality-Based Effluent Limitations (WQBELs)

Per 40 CFR § 122.44(d), more stringent requirements must be included in the NPDES permit when applicable technology-based requirements are not sufficient to protect water quality standards in the receiving stream. Specifically, limitations must be developed when pollutants, in the opinion of DEP, are discharged at levels that have the reasonable potential to cause or contribute to an exceedance of water quality standards (40 CFR § 122.44(d)(1)(i)). In order to develop appropriate WQBELs, DEP performs a reasonable potential analysis through the application of computer-based water quality models such as WQM 7.0 ver. 1.1, Toxics Screening Management Spreadsheet (TMS), Thermal Discharge Limit Calculation Spreadsheet (TDCS) and TRC_CALC Spreadsheet. These models recommend a wasteload allocation (WLA) for each pollutant calculated based on stream and discharge characteristics.

Dye Study

Dye studies were performed in 1991 and 2004. The first and second dye studies conducted in September and October 1991 revealed a velocity of 0.58 ft./sec and 0.56 ft./sec, respectively. Another study conducted in August 2004 showed the velocity of 0.93 ft./sec. The value of 0.56 ft./sec has been consistently considered in water quality modeling as it provides a better representation of low flow conditions for Codorus Creek. In the opinion of DEP, it is still acceptable to use 0.56 ft./sec as an in-stream velocity for modeling purposes considering the upstream streamflow has been consistently regulated as no significant hydrologic changes have been identified within the affected area for years.

Instream Compliance Point

According to the last permit renewal fact sheet, a monitoring point at or near the point of complete mix was required to be established for the purpose of instream monitoring and compliance for color and temperature effluent limitations. Consequently, the final permit renewal issued on May 31, 2007 specifies 1,230 feet downstream of Outfall 001 as a point of compliance for final effluent limits for temperature and 1,800 feet downstream of Outfall 001 as an instream color monitoring location in which net color (i.e., upstream minus downstream color sample results) was required to be reported and must not exceed the criterion of 75 PCUs, in addition to the actual end-of-pipe effluent limits of 140 PCU (summer) and 123 PCU (winter). Throughout the next few pages, this fact sheet will address the basis of these effluent limits and compliance points and will also discuss DEP's reevaluation as to whether these site-specific requirements are still warranted.

Additional requirements will also be considered based on DEP's current technical guidance, directives, Standard Operating Procedures (SOPs), and other related policies. The published policies/regulations established by those government agencies having water quality control authority over water that may be affected by this permit will also be considered in developing permit requirements.

Development of Effluent Limitations and Monitoring Requirements – Internal Monitoring Points

As mentioned earlier, Pixelle has been consistently monitoring certain influent wastestreams at two (2) internal monitoring points (IMPs); IMP-101 and IMP-102. MP-101 receives bleach plant effluent from the Softwood fiber line and MP-102 receives bleach plant effluent from the Hardwood fiber line. Wastestreams from both IMPs are ultimately discharged via Outfall 001. DEP previously determined that internal monitoring points are necessary to establish effluent limits for specific wastestreams for Pixelle given the complexity of plant operations, various wastestream lines and etc. This approach is supported by 40 CFR§122.45(h).

The actual BAT ELG found in 40 CFR§430.24(b)(1) also requires internal monitoring points for certain toxic pollutants based on each fiber line. For this renewal, DEP therefore has decided to revisit existing permit requirements (TBELs) for these IMPs. It is noteworthy that a water quality analysis in developing WQBELs will be performed at Outfall 001 as it is an ultimate stream discharge point.

All conventional pollutants under BPT ELGs in Subpart B of 40 CFR §430.22 have been applied to Outfall 001. For toxics, as Pixelle enrolled in the Voluntary Advanced Technology Incentives Program (VATIP), BAT ELGs listed below in 40 CFR §430.24(b) apply to each IMPs. See TBEL-Toxics for Outfall 001 for more information about VATIP.

Dellestant as nellestant necessity	BAT effluent limitations	
Pollutant or pollutant property	Maximum for any 1 day	Minimum level
TCDD	<minimum (ml)<="" level="" td=""><td>10 pg/L</td></minimum>	10 pg/L
TCDF	31.9	
Chloroform	6.92 (daily max); 4.1	4 (average monthly)
Trichlorosyringol	<ml< td=""><td>2.5 ug/L</td></ml<>	2.5 ug/L
3,4,5-trichlorocatechol	<ml< td=""><td>5.0 ug/L</td></ml<>	5.0 ug/L
3,4,6-trichlorocatechol	<ml< td=""><td>5.0 ug/L</td></ml<>	5.0 ug/L
3,4,5-trichloroguaiacol	<ml< td=""><td>2.5 ug/L</td></ml<>	2.5 ug/L
3,4,6-trichloroguaiacol	<ml< td=""><td>2.5 ug/L</td></ml<>	2.5 ug/L
4,5,6-trichloroguaiacol	<ml< td=""><td>2.5 ug/L</td></ml<>	2.5 ug/L
2,4,5-trichlorophenol	<ml< td=""><td>2.5 ug/L</td></ml<>	2.5 ug/L
2,4,6-trichlorophenol	<ml< td=""><td>2.5 ug/L</td></ml<>	2.5 ug/L
Tetrachlorocatechol	<ml< td=""><td>5.0 ug/L</td></ml<>	5.0 ug/L
Tetrachloroguaiacol	<ml< td=""><td>5.0 ug/L</td></ml<>	5.0 ug/L
2,3,4,6-tetrachlorophenol	<ml< td=""><td>2.5 ug/L</td></ml<>	2.5 ug/L
Pentachlorophenol	<ml< td=""><td>5.0 ug/L</td></ml<>	5.0 ug/L

The current permit contains Part C conditions required the permittee to use specific EPA analytical methods to analyze these pollutants. This condition will be removed from the permit as the permittee, regardless of the pollutant types (or groups), is already required to conduct the analysis using the method that is sufficiency sensitive according to Part A.III standard conditions and 40 CFR 122.44(i)(1)(iv)) which states that "Test procedures (methods) for the analysis of pollutants or pollutant parameters shall be sufficiently sensitive. A method is sufficiently sensitive when 1) the method minimum level is at or below the level of the effluent limit established in the permit for the measured pollutant or pollutant parameter; or 2) the method has the lowest minimum level of the analytical methods approved under 40 CFR Part 136 or required under 40 CFR Chapter I, Subchapters N or O, for the measured pollutant or pollutant parameter; or 3) the method is specified in this permit or has been otherwise approved in writing by DEP for the measured pollutant or pollutant parameter."

For Chloroform, these ELGs are expressed in grams per 1,000 kilograms. Each of these IMPs has been evaluated as follows:

IMP 101: Average Monthly Limit: 4.14 g/1,000 kg * 302,000 kg/day * 1 lb./453.592 g = 2.75 lbs/day.Daily Maximum Limits: 6.92 g/1,000 kg * 302,000 kg/day * 1 lb./453.592 g = 4.60 lbs/day.

IMP 102: Average Monthly Limit: 4.14 g/1,000 kg * 332,000 kg/day * 1 lb./453.592 g = 3.03 lbs/day.Daily Maximum Limits: 6.92 g/1,000 kg * 332,000 kg/day * 1 lb./453.592 g = 5.06 lbs/day.

IMP 101 effluent limits have slightly increased while IMP 102 effluent limits have slightly decreased when comparing these values with existing effluent limits. These limits along with the above-mentioned BAT ELGs will be included for each of these IMPs. While the ELG requires a monthly sampling for these parameters, the existing permit requires 2/year sampling requirement. This was based on the fact that the ELG allows a relaxation on the monitoring frequency for facilities under the VATIP. Past DMR data shows that all of these chlorinated organics, except for Chloroform have not been detected consistently. The existing 2/year will therefore remain unchanged.

The BAT ELG in 40 CFR§430.24(b)(1) also specifies an effluent standard of 0.623 kg/kkg as average monthly for AOX, absorbable organic halides. It is a bulk parameter that measures the total mass of chlorinated organic matter in wastewater. 40 CFR§430.24(b)(1) requires effluent limits for AOX to be developed at the end of pipe based on loadings attributable to each of fiber lines. As a result, DEP has been developing effluent limits for AOX for Outfall 001 as opposed to these IMPs.

The BAT ELG in 40 CFR§430.24(b)(4) has annual average effluent standards of 20 (softwood furnish) and 13 (hardwood furnish) for Kappa number for those facilities under Tier 1 of the VATIP. Kappa number is the lignin content of pulp, as measured by a modified permanganate test corrected to 50 percent consumption of the chemical, according 40 CFR §430.02(f)(7). These existing limits will remain unchanged in the permit.

The existing permit contains routine monitoring requirements for color and flow at these IMPs. These requirements will continue to be included in the permit in accordance with 40 CFR §122.44(i)(1)(iii) and 25 Pa Code §92a.61(c).

Development of Effluent Limitations and Monitoring Requirements - Outfall 001

Outfall No. 001 Design Flow (MGD) 13.7

Latitude 39° 52' 42.00" **Longitude** -76° 50' 51.00'

Wastewater Description: IW Process Effluent with ELG

TBELs

1) Conventional Pollutants

Pixelle utilizes a bleached kraft pulping process and is subject to BPT ELGs found in Subpart B of 40 CFR §430.22 for bleached kraft facilities where pulp and fine papers are produced:

	kg/kkg (or pounds per 1,000 lbs) of product		
Pollutant or	Continu	ous dischargers	
pollutant	Maximum for any	Average of daily values	Non-continuous dischargers
parameters	1 day	for 30 consecutive days	(annual average)
BOD5	10.6	5.5	3.09
TSS	22.15	11.9	6.54
pН	Within the range of 5.0 to 9.0 at all times.		

40 CFR §430.01(n)(1) defines the production as the annual off-the machine production divided by the number of operating days during that year. An average of last 5-year annual average final paper production data is calculated to be 1,219.8 tons/day or 2,439,600 lbs/day. Using this, TBELs are calculated to be:

Pollutant	Maximum for any 1 day	Average of daily values for 30 consecutive days
BOD5	25,859.76 lbs/day	13,417.8 lbs/day
TSS	54,037.14 lbs/day	29,031.24 lbs/day
pН	5.0 to 9.0 at all times	

These calculated BOD5 and TSS mass loading TBELs are significantly higher than those specified in the existing permit renewal. Also, the state effluent standard found in 25 Pa Code §95.2(1) require industrial waste effluents to have a pH of not less than 6.0 and not greater than 9.0 which is more stringent than the ELG.

While the facility is not equipped with a system particularly designed to remove oil and grease, three (3) non-detect effluent samples results (i.e., <4.9 mg/L) demonstrate that Oil and Grease is not a pollutant of concern for effluents discharged via Outfall 001. Based on this, DEP determines that wastewater generated from this facility is not considered oil-bearing wastewater; therefore, the state effluent standard found in 25 Pa Code §95.2 (2)(ii) is not applicable to this discharge. Since all sanitary wastewater generated from Pixelle is sent to Spring Grove WWTP, secondary treatment standards for sewage found in 40 CFR Part 133 are not applicable.

40 CFR §430.03(h)(2) requires a routine monitoring for influent organic content such as COD or TOC. The existing influent COD monitoring requirement will therefore remain unchanged for the upcoming permit renewal.

2) Toxic Pollutants

During the development of the BAT ELGs for pulp and paper mill industries, US EPA introduced a Voluntary Advanced Technology Incentives Program (VATIP) to encourage facilities to achieve greater pollutant reductions than they could achieve through baseline BAT limitations and New Source Performance Standards (NSPS). As part of this program, US EPA has assembled a number of "incentives", in exchange of requiring the greater pollutant reduction, relating to permitting and enforcement matters and public recognition for those facilities voluntarily decided to enroll this program. For example, if facilities accept enforceable NPDES permit limitations at one of the given Tier levels, such facilities will be qualified for the incentive program at that level.³ The VATIP also categorizes each Tier level with different compliance schedule so that while facilities in more advanced tiers tend to provide greater pollutant reductions by installing more advanced bleaching technology, they would also be given more additional compliance time to meet such pollutant reductions (i.e., 6 years for Tier I, 11 years for Tier II, and 16 years for Tier III). A file review reveals that Glatfelter decided to participate in Tier I of the VATIP. Through the commitment of this participation, Glatfelter installed new pulp

³ Voluntary Advanced Technology Incentives Program Technical Support Document, US EPA, Document ID EPA821-R-97-014, Oct 97.

washing and screening units on the hardwood fiber line, new oxygen delignification on the hardwood line, and complete substitution of chlorine dioxide for elemental chlorine on both hardwood and pine fiber lines. 40 CFR §430.24(b)(4)(ii) required all dischargers enrolled in Tier I of the VATIP must achieve the Tier I limitations by April 15, 2004. Glatfelter is in the Advanced Elemental Chlorine Free Bleaching (ECF) Tier I category which it achieved in 2003, according to the last NPDES permit renewal fact sheet.

For those enrolled in the VATIP, 40 CFR §430.24(b)(3)(i) requires BAT effluent limitations of toxic pollutants found in 40 CFR §430.24(a)(1) be achieved, except for the Absorbable Organic Halides (AOX) in which the AOX BAT ELGs of 0.58 kg per kkg pulp production (daily maximum) and 0.26 kg per kkg production (annual average) found in 40 CFR §430.24(b)(4)(i) must apply to dischargers subject to Tier I. Pixelle provided the last 5-year pulp production data for each fiber line. An average of the 5-year annual average pulp production data is determined to be 332 kkg (hardwood) and 302 kkg (softwood) which results in an annual average total pulp production of 634 kkg/day (or ADTD). Based on this, effluent limits are calculated to be:

Daily Maximum = 0.58 kg/kkg production x 634 kkg production/day = 367.72 kg/day or 810.7 lbs/day = 811 lbs/day

Annual Average = 0.26 kg/kkg production x 634 kkg production/day = 164.84 kg/day or 363.4 lbs/day = 363 lbs/day

These proposed effluent limits are slightly different than current effluent limits of 364 lbs/day (annual average) and 812 lbs/day (daily maximum).

As per 40 CFR §430.24 (a)(1), BAT effluent limitations for other toxic pollutants have been evaluated at each internal monitoring point associated with each fiber line.

WQBELs

1) BOD5, NH3-N and Dissolved Oxygen

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and Dissolved Oxygen. DEP's technical guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. DEP recently updated this model (ver. 1.1) to include the new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. Spring Grove Borough and Jackson Township now discharge their sewage effluents to Codorus Creek. BAE Systems also discharges its sewage effluent to Codorus Creek. Given that all of these discharges, including Pixelle's Outfall 001, are located within the 5-river mile stretch, a multi-discharge analysis is performed to evaluate the cumulative impacts on the stream as a result of these discharges. Further, since the existing permit renewal contains BOD5 effluent limits for Pixelle, a typical CBOD5 to BOD5 ratio of 1.2 will be considered in developing effluent limits for BOD5.

The median and 90th percentile of upstream temperature data collected per the existing permit requirement are used as design criteria for water quality analysis for NH3-N and CBOD5/DO, respectively. This approach is consistent with DEP's technical guidance no. 391-2000-006.

As mentioned earlier, dye studies were performed in 1991 and 2004. The first and second dye studies conducted in September and October 1991 revealed a velocity of 0.58 ft./sec and 0.56 ft./sec, respectively. Another study conducted in August 2004 showed the velocity of 0.93 ft./sec. The value of 0.56 ft./sec has been consistently considered in water quality modeling as it provides a better representation of low flow conditions for Codorus Creek. In the opinion of DEP, it is still acceptable to use 0.56 ft./sec as an in-stream velocity for modeling purposes considering the upstream streamflow has been consistently regulated. A reaeration rate (Kr) of 6.0 day-1 was used in the previous modeling and the previous fact sheet documented that this value was based on historical data from January 1997 Water Quality Protection Report. Also, tributary background concentrations of 1.4 mg/L (CBOD5) and 0.06 mg/L (NH3-N) were entered as input values in the previous modeling. It appears these concentration values are averages of 12 monthly samples collected by DEP during 1995 at the Hershey Road bridge (approximately 1,500 feet upstream from Outfall 001 and further downstream from both Spring Grove Borough and Jackson Township discharge points). Also, dissolved oxygen saturation values of 8.10 mg/L (summer) and 12.6 mg/L (winter) at Outfall 001 were used as tributary background concentrations in previous modeling. Using all of these input parameters, the model output indicates that existing effluent limits are still protective of water quality. Given that data were collected more than 20 years ago and there are now new upstream discharges, it would be reasonable for Pixelle to collect, for the subsequent permit renewal application, instream data of CBOD5, NH3-N, and DO as well as other stream characteristics further upstream from Spring Grove and Jackson Township discharge locations. A new Part C permit condition is recommended to inform

that default values will be considered for the next permit renewal unless site-specific data is collected and submitted along with the next permit renewal application.

2) Toxic Pollutants

The initial screening using DEP's previous models including Toxics Screening Analysis worksheet and PENTOXSD resulted a reasonable potential for permit requirements for the following pollutants: Total Antimony, Total Cadmium, Hexavalent Chromium, Total Copper, Total Lead, Total Phenols, Total Selenium, Total Thallium, Carbon Tetrachloride, Chlorodibromomethane, Dichlorobromomethane, 1,2-Dichloroethane, 1,3-Dichloropropylene, Tetrachloroethane, Tetrachloroethylene, 1,1,2-Trichloroethane, and Vinyl Chloride. It appears however these pollutants, except for Total Copper and Total Lead, were non-detected in effluent samples and the worksheet recommended PENTOXSD modeling for these pollutants because samples were analyzed using the method detection limits (MDLs) higher than the state water quality criteria or DEP's current target quantitation levels (QLs). Following this initial review, DEP requested additional three (3) samples to be collected and analyzed for these pollutants using DEP's current target QLs in order for Pixelle to demonstrate the actual presence of these pollutants in the effluent without any uncertainty. On March 21, 2018, additional sample results submitted by Pixelle ruled out the need of permit requirements for these pollutants.

For Total Copper and Total Lead, these pollutants were in fact detected in effluent samples. It is noteworthy that DEP considers Total Copper and Total Lead as two of pollutants that are naturally occurring in the aquatic environment (Technical Guidance no. 391-2000-022). Given the type of industrial activities performed at the site, a question is raised as to whether the facility truly produces quantifiable levels of Total Copper and Total Lead or whether effluent levels of these pollutants actually represent the background water quality of Codorus Creek that is being used for water supply source of Glatfelter. Ten (10) samples of Total Copper and Total Lead as well as Hardness were requested for both effluent and influent. The data were received from the permittee via email on March 2018. The sample datasets presented below provide, in the opinion of DEP, a better representation of the current operations than the samples collected for the 2011 permit renewal application:

				Data	collected	in 2018 (µ	ıg/L)				
Copper Upstream	<3.3	<3.3	<3.3	<3.3	<3.3	3.3	<3.3	<3.3	<3.3	3.3	<3.3
Copper Effluent	<3.3		<3.3	<3.3	<3.3	3.6	5.0	5.8	<3.3	<3.3	
Lead Upstream	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8
Lead Effluent	2.0		<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8
Hardness Upstream	135000	127000	114000	115000	115000	109000	113000	96600	107000	88300	111000
Hardness Effluent	252000		237000	234000	225000	239000	244000	255000	246000	231000	

As shown above, effluent concentrations were mostly identical to upstream concentrations. There are some samples events when Total Copper and Total Lead were detected in effluent but these levels are much lower than the current state water quality criteria. Consequently, no permit requirements will be needed for Total Copper and Total Lead.

The follow-up review using DEP's Toxics Management Spreadsheet (last modified on March 2021 ver. 1.3) was conducted. DEP utilizes this TMS to facilitate calculations necessary for completing a reasonable potential analysis and determining WQBELs for toxic pollutants. The worksheet combines the functionality of DEP's Toxics Screening Analysis worksheet and PENTOXSD. While TMS recommended monitoring requirements for Total Arsenic, Hexavalent Chromium, Total Cobalt, Dissolved Iron, and Total Silver, the initial review using Toxics Screening Analysis and PENTOXSD showed no reasonable potential for these pollutants and they were non-detected at below the current water quality criteria (WQC). As a result, DEP determined no permit requirements are needed for these pollutants. For Total Cadmium, Total Manganese, Total Nickel and Total Zinc, a routine monitoring is recommended as they were detected in the effluent and recommended by TMS.

The existing permit contains a routine monitoring requirement for Total Aluminum and Total Boron. DEP's TOXCON worksheet was utilized using the latest DMR data from May 2014 to July 2022 to determine a statistical average monthly value (AMEC) with a daily coefficient of variation (CV) for these pollutants. Once AMEC and CV were obtained, these values were entered into TMS. Based on this, the effluent limits of 0.879 mg/L (average monthly) and 1.351 mg/L (daily

maximum) are recommended for Total Aluminum. TMD recommended no further requirements for Total Boron; as a result, the existing monitoring requirement for Total Boron will be removed from the permit.

It appears existing Chloroform effluent limits of 0.02 mg/L (average monthly) and 0.04 mg/L (daily maximum) were previously developed using the best professional judgment (BPJ). Chloroform has state water quality criteria of 0.39 mg/L (chronic fish and aquatic life), 1.9 mg/L (acute fish and aquatic life), and 0.0057 mg/L (human health). The 0.0057 mg/L value is a cancer risk level (CRL) human health criterion. Under 25 Pa Code §96.4(g), DEP evaluates the CRL human health impact at a harmonic mean flow (Qh). As mentioned in page 5 of this fact sheet, the Qh at Outfall 001 is estimated to be 42.37 cfs based on DFLOW's result at the gage station. A reasonable potential analysis using TMS indicates that WQBELs of 0.017 mg/L (average monthly) and 0.026 mg/L (daily maximum) are needed for protection of water quality standards. A review of past DMR data showed Chloroform has been consistently not detected in effluent at a concentration of 0.001 mg/L. Therefore, more stringent effluent limits, WQBELs, will be written in the draft permit as opposed to the existing BPJ effluent limits in accordance with 25 Pa Code §§92a.11 and 96.4(f)(2).

3) Color

a) Case History / Data Analysis

The fact sheet prepared during the last NPDES permit renewal contains the details on color from Glatfelter as follows:

The PA Department of Health, Sanitary Water Board issued a Water Quality Management (WQM) permit to Glatfelter on November 1, 1949 for operation of the treatment facility in existence at that time. Subsequently, WQM Permit No. 2007 was issued on April 6, 1960 and was amended on December 4, 1967. On August 7, 1968, the Sanitary Water Board issued an Administrative Order that made instream color limitations more stringent than existing limits, and Glatfelter appealed. The WQM permit was revised accordingly on February 25, 1969. On February 21,1973, the Environmental Hearing Board (EHB) entered into a Consent Agreement with Glatfelter, establishing instream color limits and sampling procedures and resolving the appeal of the Order. The limits were subject to revision every two years based upon available technology.

An NPDES permit was issued to Glatfelter by Department of Environmental Resources (DER) on May 22, 1984. Pursuant to the Consent Agreement, Glatfelter demonstrated it is not technologically possible to meet the water quality criteria for instream color. On May 16, 1989, an Amended Consent Adjudication was executed which modified the 1973 Consent Agreement and included the following schedule: 1) Submit an annual report detailing efforts made to achieve regulatory color limits (25 Pa. Code § 95.4) including a review of technological developments; 2) Complete pilot studies on the pulp bleaching process by December 31, 1990 and submit the results by April 1, 1991 (completed on schedule); 3) Submit a preliminary plan for pilot plant studies of external color reduction technologies by January 1, 1994 (submitted on January 4, 1994) and submit a final plan by August 31, 1994 (received on September 1, 1994); 4) Submit a report of pilot plant studies within 180 days of completion which includes an implementation plan and schedule (External Color Reduction Plan), and implement the plan as approved.

Following the expiration of the 1984-issued NPDES permit, in 1989, a draft renewed permit was issued in 1990 and again in 1991. A third draft permit was not issued until March 4, 1997; the delays were due, in part, to the development of EPA guidance on the basis for technology limits, stream surveys and studies and other Glatfelter projects. Following issuance of the third draft permit, a meeting was held on October 9, 1997 with EPA to discuss comments, followed by a meeting with Glatfelter and EPA on November 3, 1997. Revised draft NPDES permits were sent out December 24, 1997, February 29, 1998 and December 29, 1998. A public meeting was held on April 23, 1998. A Consent Order and Agreement (COA) was drafted and issued to Glatfelter on January 26, 1999. Meetings were held on June 10 and July 12, 1999 with Glatfelter and EPA to discuss the Best Demonstrated Technology (BDT) requirements for color. Another draft NPDES permit was issued on October 4, 1999, which was approved by EPA on January 10, 2000. On February 26, 2000, the Department published a draft Consent Adjudication/COA and draft NPDES permit in the Pennsylvania Bulletin. On March 20, 2000, EPA notified the Department that it is objecting to the NPDES permit on the basis that the Consent Adjudication/COA modifies the draft NPDES permit. A public hearing was held on April 5, 2000. A formal objection letter was received from EPA on May 12, 2000, and EPA withdrew the objection on August 9, 2000.

The final NPDES permit and an Administrative Order were issued on September 7, 2000. Glatfelter and a citizens group appealed the permit. A Petition for Supersedeas was also filed and a hearing was held on September 27-28, 2000. Partial Supersedeas was granted on September 29, 2000 for meeting existing water quality criteria of 50 color units. Supersedeas was denied for meeting the proposed criteria of 75 color units. On October 13, 2000, the citizens were granted their petition to intervene. A Consent Assessment of Civil Penalty (CACP) was executed on

September 24, 2001, which included a settlement in the amount of \$84,750 for failure to report pollution incidents and effluent violations. A Consent Decree was filed in U.S. District Court on October 26, 2001, and signed by Commonwealth Court on November 26, 2001, requiring Glatfelter to come into compliance with limits based on 75 color units and to pay \$2.5 million in penalties. The EHB dismissed the appeal on December 4, 2001. An NPDES permit amendment was issued on November 2, 2001, which incorporates the interim limits and schedule from the Consent Decree as follows: 1) Start construction of oxygen delignification (OD) by April 2003 (Glatfelter began on June 21, 2002); 2) Start construction of chlorine dioxide bleach by October 1, 2003 (began May 1, 2003); 3) Complete construction of chlorine dioxide by January 15, 2004 (completed October 31, 2003); 4) Complete construction of OD by February 15, 2004 (completed October 1, 2003); and 5) meet final color limits by April 15, 2004.

In 2001, Glatfelter began a series of environmental-related projects that was collectively called the "New Century Project" that is intended to comply with the Maximum Achievable Control Technology (MACT) requirements of the EPA Cluster Rule. The New Century Project was first announced on April 20, 1999, when Glatfelter announced ISO 14001 certification for its environmental management system. Projects that have been completed to reduce effluent color and local odors include: 1) Collection and incineration of gases from the softwood fiber line, hardwood fiber line, and softwood chip bin; 2) Collection and scrubbing of vent gases from bleach plants; 3) Implementation of a new washing and screening system on the hardwood fiber line; 4) Elimination of the use of elemental chlorine for bleaching on both fiber lines through the use of 100% chlorine dioxide in the first bleaching stage of the softwood line and by using ozone and chlorine dioxide for the first stage of the hardwood line; and 5) Use of oxygen delignification on the hardwood fiber line to match the existing system on the softwood line. As of February 2004, all systems were installed and operating.

The improvements to the paper mill have not, by themselves, provided the color reduction needed to meet final effluent limits for color (123 PCU in winter, 140 PCU in summer). Glatfelter has been introducing a color-reducing polymer into the secondary plant to meet limits. Without the polymer, Glatfelter believes that effluent color would be 160 to 180 PCU on average.

According to an international expert on treatment of pulp mill wastes in a report prepared for the Maine Department of Environmental Protection, the Glatfelter facility is the "lowest effluent discharger in the US, and one of the lowest in the world" (referring to the overall quality of the effluent in comparison with other mill discharges).

During the past permit term, Glatfelter has collected daily color samples, as required by the permit, at four different locations; effluent and influent of the treatment plant and upstream and downstream of Codorus Creek. Upstream data were collected just above Outfall 001. The downstream data were collected within 1,800 ft. downstream of Outfall 001. Consequently, over 3,000 raw daily data points from May 2012 through July 2022⁴ submitted to DEP were extracted from DMR Supplemental Forms for evaluation.

A data analysis shows effluent and influent color levels were fairly-consistent throughout these years, except for the period between late May and early June of each year where both effluent and influent levels seem to be dropped exponentially resulting lowering the downstream color levels ultimately. This "drop" could be caused by annual maintenance occurring at the mill when a temporary shutdown occurs. Effluent color was typically in between 90 and 150 PCU⁵ whereas influent color was in between 200 and 500 PCU. For instream color, both upstream and downstream color levels show much greater fluctuation than those monitored at influent and effluent of the treatment plant. While upstream color levels widely varied, no seasonal or year-to-year changes can be identified in upstream color data. The downstream color levels in first few months of the year were, to some extent, lower than those observed during the remainder of the year. Upstream color were typically in between 5 to 35 PCU whereas downstream color were in between 20 and 80 PCU. The table below summarizes the basic statistical analysis on each monitoring locations:

in PCU	Upstream	Downstream	Effluent	Influent
Typical Range	5 to 35	20 to 80	90 to 150	200 to 500
Maximum	136	146	339	1935
Minimum	0	0	9	10
Median	14	47	119	295
Average	16.5	46.4	118	315.2

⁴ DEP's database shows past DMR & DMR Supplemental forms submitted by Glatfelter since May 2012; presumably this is when Glatfelter first elected to register for eDMR system to submit required reports.

⁵ Platinum cobalt unit or Pt/Co scale; this measurement unit is used to measure the appearance of trace amounts of yellowness in water. See ASTM D1209 or ASTM D5386 test methods for more detailed information.

90 th Percentile	28	66	150	475

Further, a typical treatment removal efficiency calculation (i.e., (influent – effluent)/influent) estimates an average removal efficiency of 40-60% each year. See the table below for more detailed information. The maximum removal efficiency in each year was also calculated to be 90-95%. It is noteworthy that these calculations were performed without considering day-to-day retention time at each treatment units.

	Basic Color Removal Efficiency Rate* throughout the treatment process (in %)											
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
Max	90	92.3	93	94.5	90.5	92.8	92.7	88.6	96.3	93.5	96.2	
Median	62.6	64.5	61.7	56.3	61.6	61.5	54	57.8	57.4	58.2	58.6	
Average	61.4	62.6	59.5	53.5	58.1	59.3	50.5	54.7	56.3	55.8	56	
90 th	76.5	78.6	77.5	75.8	75.9	78.4	71.9	74	74.9	73.5	74	

*Calculated by Influent Color minus Effluent Color divided by Influent Color

All raw data as well as statistical analysis/graphs are available for further review in Appendix of this fact sheet.

b) Existing Effluent Limitations

The existing permit renewal contains effluent limits of 140 PCU (average monthly), 280 PCU (daily maximum), and 350 PCU (instantaneous maximum) for the summer periods from May through October and 123 PCU (average monthly), 246 PCU (daily maximum), and 307 PCU (instantaneous maximum) for the winter periods from November through April. These limits appeared to be developed by a mass balance equation using the assumed background color of 10 PCU, Q7-10 streamflow, discharge flow and the state water quality criterion of 75 PCU. This calculation is shown below:

Summer: 75 PCU * 42.5 cfs (Q7-10 plus discharge flow) = (Color Effluent Limit * 21.2 cfs) + (10 PCU * 21.3 cfs) Color Effluent Limit = 140 PCU

Winter: 75 PCU * 37 cfs (Q7-10 plus discharge flow) = (Color Effluent Limit * 21.2 cfs) + (10 PCU * 15.8 cfs) Color Effluent Limit = 123 PCU

The last permit renewal fact sheet pointed out that these limits should have been imposed as daily maximum effluent limits as opposed to average monthly effluent limits since 25 Pa Code §93.7(a) defines this criterion as "maximum" 75 units on the platinum-cobalt scale; no other colors perceptible to the human eye. When this issue was discussed with Glatfelter during the last permit renewal, DEP ultimately agreed to express these effluent limits as average monthly end-of-pipe requirements as long as the instream water quality standard of 75 PCU after mixed with discharge is being met. This agreement essentially resulted in a continuation of average monthly effluent limits with the 1,800 feet downstream compliance point to meet the net color effluent limit of 75 PCU. During the site visit dated December 14, 2017, Glatfelter expressed that perhaps it is unnecessary to continue to comply with this net color effluent limit as Glatfelter has been consistently achieving compliance with this limit and upstream color could potentially attribute to the net color limit exceedance.

c) Recommended Effluent Limits @ Outfall 001

DEP developed a Standard Operating Procedure (SOP) no. BCW-PMT-035 for implementing General Water Quality Criteria. This SOP discusses the development of color effluent limits using a water quality model for those facilities that may potentially exceed the 75 PCU water quality criterion. As recommended by this SOP, DEP determined to use TMS to determine appropriate color effluent limits.

As mentioned earlier, the default value of 10 PCU was previously used as a background concentration to determine existing effluent limit. Since Pixelle has been collecting upstream color, DMR data will be used as a background color concentration in the water quality analysis. First, using equations listed on pages 3 and 4 of DEP's technical guidance no. 391-2000-022, the long-term average background concentration and its variability were calculated (TOXCON Worksheet only accepted up to 100 datasets and there are over 1,000 datasets available for more accurate analysis). These values are 17.6 PCU with CV of 0.587 for summer and 15.2 PCU with CV of 0.616 for winter. Once these values were entered into TMS and TMS produced effluent limits of 133 PCU (average monthly limit) and 207 PCU (daily maximum limit) for summer and 120 PCU (average monthly limit) and 187 PCU (daily maximum limit) for winter. These effluent limits are stringent than existing effluent limits, particularly, due to the fact that actual background color data was used as opposed to the default value of 10 PCU. The table below summarizes the proposed effluent limits vs. DMR data from 2012 through 2022.

No. of Exceeda	No. of Exceedance if Proposed Effluent Limits were placed in the current permit.								
AML (Summer)	DML (Summer)	AML (Winter)	DML (Winter)						
9	5	2	2						

As shown above, Pixelle would have exceeded effluent limits if the current permit has these limits only a few times based on over 1,000 datasets. No compliance schedule is therefore needed to achieve compliance with these effluent limits. These effluent limits will be placed in the permit in accordance with 40 CFR §122.44(d)(1)(i).

4) Temperature

Under 25 Pa Code §96.6(c), facilities associated with heated wastewater discharges must achieve compliance with the temperature water quality standards specified in 25 Pa Code §93.7 unless alternative effluent limitations for the control of the thermal component of such discharges are considered in accordance with section 316(a) of the CWA in order to necessarily prevent potential adverse impacts on the receiving water. The 316(a) variance condition has been authorized to Pixelle. A further detail of temperature requirements will be discussed later in the Additional Consideration Section of this fact sheet.

BPJ Limitations

1) Total Suspended Solids

The existing permit contains numerical effluent Total Suspended Solids (TSS) limits of 30 mg/L/2,057 lbs/day (average monthly), 60 mg/L/4,113 lbs/day (daily maximum), and 75 mg/L (instantaneous maximum). As stated in the August 10, 2006 fact sheet, it appears these limits were developed using BPJ. The federal ELGs identified TSS as one of pollutants of concern for paper and pulp manufacturing facilities which demonstrate the need of effluent limits. However, the calculated BAT TBELs are significantly higher than existing limits (i.e., 29,031 lbs/day v. 2,057 lbs/day for average monthly and 54,037 lbs/day v. 4,113 lbs/day for daily maximum). DEP has decided to reevaluate existing limits through a brief BPT BPJ analysis to further support the basis of existing effluent limits that may not well be documented previously. Past effluent data prove that Pixelle has been consistently achieving compliance with existing effluent limits. Therefore, no additional cost is necessary to further meet these limits (40 CFR §125.3(d)(1)(i)). While the original treatment plant was built in 1940's, the treatment technology equipped at the on-site wastewater treatment facility was last upgraded in last 90's and is well capable of treating TSS down to these limits (40 CFR §§§\$125.3(d)(1)(i), (iii), (iii) and (iv)). No treatment process has been changed and any non-water quality environmental impact associated with this BPJ effluent limits would be minimal (40 CFR §125.3(d)(1)(vi)). Based on the review, no more stringent permit requirements are necessary at this time and it is still appropriate to impose existing effluent limits in the upcoming permit renewal. No reasonable justification is available to relax or remove these limits; therefore, these existing effluent limits should still remain unchanged in the permit in accordance with 40 CFR §122.44(I)(1).

Sediment Monitoring Study

A sediment issue was previously recognized by DEP and Glatfelter (Pixelle) has previously acknowledged that the solids discharged from Outfall 001 cause a perceptible visual difference in surficial sediments at nearby downstream locations while believing that there is no indication that there is toxicity associated with the solids discharged from Outfall 001. DEP determined that a sediment monitoring study for chemicals of concern with comparison to published standards would be another method to evaluate the need for further effluent controls or even sediment remediation. As a result, DEP requested Glatfelter to perform a sediment monitoring study to evaluate the need for further effluent controls or even sediment remediation. This decision was made presumably due to the fact that segments of the Codorus Creek have been evidently impaired for solids and also downstream sediment issues, to a certain degree, recognized by Glatfelter previously. As part of the sediment monitoring study performed during the last permit term, four (4) sediment samples (i.e., 2 downstream 2 upstream) were collected and analyzed for Total Copper, Total Iron, Total Manganese, Total Zinc, Total Sulfides, Total Phenol, Total Organic Carbon, Total Solids and wet/dry densities. The study report was submitted on April 26, 2012. The report concluded that upstream and downstream sediments differ significantly and consistently only in sulfide content, most probably due to the known difference in sulfate concentrations of the overlying water and an actual impact to the biotic condition of the stream from any difference between the upstream and downstream sediment samples collected in the study is likely minimal. These numbers have compared with Upper Effects Threshold (UET) values listed in NOAA's Screening Quick Reference Tables as shown below:

		Toxics in Sediment (mg/kg (dry weight))					
	NOAA UET	Upstream Downstream					
Copper	86	0.034	17.8	11.8	16.2		

Iron	4% (40,000)	33.9	20100	12100	18400
Manganese	1,100	1.5	987	1280	1090
Zinc	520	0.23	137	96.1	143
Sulfides	130	<25	<1	30	150
Phoenol	0.048	3.0	<2.7	<2.4	<2.6

Except for manganese, both downstream and upstream sediment data for toxics are below UET values. The downstream manganese is significantly higher than upstream manganese. Manganese is typically found in iron and steel manufacturers or dry cell battery manufacturers. A water quality analysis conducted for Outfall 001 showed a routine monitoring of Total Manganese is needed. Other than those listed above in WQBEL section, no further requirement including any additional sediment monitoring study is recommended for the upcoming permit renewal.

Dissolved Oxygen

The existing dissolved oxygen effluent limit is minimum 5.0 mg/L. This is consistent with the current state water quality criterion for warm water fishes surface waters found on 25 Pa Code §93.7(a). Since DO is likely a parameter of concern for Outfall 001 discharge, it is appropriate to retain this effluent limit for the upcoming permit renewal to ensure that existing water quality standards be protected and maintained.

3) Dioxin (2,3,7,8-tetrachloro-p-dibenzo-dioxin or 2,3,7,8 TCDD)

The existing permit contains a daily maximum effluent concentration limit of 0.035 pg/L for 2,3,7,8- TCDD for Outfall 001 effluent. As mentioned earlier, it appears this limit was developed using the BPJ but the basis of this effluent limit is not defined clearly. The latest report⁶ prepared by US Department of Health and Human Services documents that polychlorinated dibenzo-p-dioxins (CDDs) including TCDD are inadvertently produced by paper and pulp bleaching and the greatest unintentional production of CDDs occurs from waste incineration, metal production, and fossil-fuel and wood combustion. As part of this application review, DEP has decided to revisit this limit. Annual sampling of this pollutant required by the permit produced six (6) results since 2012. The pollutant was evidently non-detected in all of six (6) samples at different MDLs (i.e., 1 pg/L, 4 pg/L, and 10 pg/L). These MDLs are much higher than the actual effluent limit; yet, the current manufacturing technology as well as process controls practiced by Glatfelter is seemingly not designed to produce significant levels of dioxins (40 CFR §§§§125.3 (d)(3)(i)(ii)(iii) and (iv)). During the site visit on December 14, 2017, Glatfelter expressed that 0.035 pg/L is not practically achievable by its laboratory. While the current state water quality criteria is 0.00086 pg/L CRL (or 8.6x10⁻¹⁰ µg/L), DEP confirmed that EPA analytical method 1613 which is likely the most sensitive EPA analytical method for dioxin, has the MDL of 10 pg/L for 2,3,7,8-TCDD. As a result, the cost to achieve compliance with this effluent limit is questionable (40 CFR §§§§125.3 (d)(3)(v)). In the opinion of DEP, it is reasonable to request Glatfelter to use 10 pg/L as the MDL to demonstrate the presence of dioxin in the effluent. Accordingly, the upcoming permit renewal will continue to include 0.035 pg/L as Part A numerical effluent limit in accordance with 40 CFR §122.44 (I)(1), but will contain Part C condition that will allow Glatfelter to use 10 pg/L as the MDL. This means if dioxin is not detected in effluent samples at 10 pg/L, Glatfelter will still be in compliance with the permit requirement despite the fact that the Glatfelter would fail to analyze the data down to 0.035 pg/L.

4) Total Phosphorus

The existing permit requires 2.0 mg/L (average monthly) and 2.5 mg/L (daily maximum) for Total Phosphorus effluent levels. These effluent limits were presumably developed on a case-by-case basis using the BPJ. Almost all point source dischargers located within the lower Susquehanna River sub-basin were assigned with the average monthly effluent limit of either 2.0 mg/L or less for the protection of associated local watersheds. This has consistently been a standard practice and the approach was evidently derived from DEP's technical guidance no. 391-2000-018. Past DMR data proved Glatfelter has not had any non-compliance with this limit nor this requirement would place a significant financial burden on Glatfelter. Based on the review, the existing effluent limits will remain unchanged in the upcoming permit renewal in accordance with 40 CFR §122.44 (I)(1).

Monitoring Requirements

1) Existing Instream Monitoring Program

The existing permit requires an instream monitoring at five (5) different stream locations: Codorus Creek (below mil dam and across from primary treatment plant; within 1,230 ft. downstream of Outfall 001; at Marlines Bridge; Spring entering Codorus Creek east of Lagoon No. 19) and Unnamed Tributary of Codorus Creek east of No.1 Supernatant Pump Station (SW-42). As part of this monitoring program, Pixelle is required to collect samples and analyze them for Total

⁶ "2,3,7,8-Tetrachlorodibenzo-p-dioxin", Report on Carcinogens, 14th edition, National Toxicology Program, US Department of Health and Human Services, 2016

Boron, Total Cadmium, Total Iron, pH, Ammonia-Nitrogen, Total Aluminum, Chloride, Total Manganese, Sulfate, Total Dissolved Solids, COD and Fluoride. This requirement was developed mainly due to the fact that certain lagoons were not capped at that time and also even capping lagoons may not fully prevent from leaching which could potentially generate groundwater pollution according to the fact sheet developed for the last permit renewal. A continuation of this monitoring requirement is recommended.

2) Total Nitrogen, Total Kjeldahl Nitrogen, and Nitrate-Nitrite as N The existing permit requires a weekly monitoring of Total Nitrogen and its major constituents including Total Kjeldahl Nitrogen and Nitrate-Nitrite as N as part of DEP's implementation strategy for the Chesapeake Bay TMDL. See Additional Considerations section of this fact sheet for more detailed information regarding the Chesapeake Bay TMDL.

Fecal Coliform

The existing permit requires a monthly monitoring for fecal coliform. This monitoring requirement was included in the previous permit renewal based on submitted data (i.e., three samples produced maximum of 156,000/100 mL and average of 54,800/100 mL). The source is unknown but recent DMR data from September 2017 through July 2022 that is summarized below showed that fecal coliform is not of concern. The existing fecal coliform monitoring will therefore be removed from the permit.

	Fecal Coliform (no. per 100 mL)
Maximum	530
Minimum	1
Average	95
Median	36
90th Percentile	362.7

	Devel	opment of Effluent Limitation	s and Monitoring Requiremen	nts - Outfall 002
Outfall No.	002		Design Flow (MGD)	18
Latitude	39º 52' 13"		Longitude	76º 52' 16"
Wastewater Description: Non		Noncontact Cooling Water		·

As mentioned earlier, about 18 MGD (average monthly) and 23 MGD (daily maximum) of non-contact cooling water is generated from No. 1 turbine generator condenser (No. 2 Surface condenser is no longer being used as of June 2011) and is discharged via Outfall 002. Typically, non-contact cooling water does not generate pollutants, other than heated wastewater. This is once-through non-contact cooling water; therefore, it is not process wastewater as defined in 40 CFR §430.01(m). It is still considered an industrial waste and existing pH limits of 6.0-9.0 derived from 25 Pa Code §95.2(1) will therefore remain in the permit. The existing permit requires a routine monitoring for BOD5 and Total Suspended Solids. Past DMR since 2012 shows fairly consistent data trend at 2 mg/L for BOD5 (or non-detected) but somewhat variability on TSS. Further monitoring is needed for TSS but the existing monitoring requirement for BOD5 will be removed from the permit as BOD5 is not a parameter of concern for this type of discharge.

Heated wastewater is subject to requirements under 25 Pa Code §96.6. Pixelle has been continuously monitoring for effluent temperature as well as upstream temperature for Outfall 002. These data since March 2012 has been summarized as follows:

These figures clearly show a consistent pattern occurs throughout the year with both effluent and upstream temperature decreases in winter months but increases in summer months, providing a direct relationship between upstream and effluent data. The differences in average monthly and daily maximum are very low in both effluent and upstream; meaning temperature has been steadily changing throughout the year. The requirement to monitor for temperature in both effluent and upstream will be continued. Given the fact that Outfall 002 is located upstream of Outfall 001 and the distance between these outfalls is very short, any numerical or narrative effluent limits based on water quality standards or any requirements under 25 Pa Code §96.6 have been established at Outfall 001. This same approach will apply to this permit renewal.

Development of Effluent Limitations and Monitoring Requirements - Stormwater Outfalls

Pixelle utilizes fifty-six (56) stormwater outfalls collecting stormwater draining from different areas within the site. The current permit requires annual stormwater sampling for the following parameters: BOD5, COD, Oil/Grease, pH, Total Suspended Solids, Total Phosphorus, Total Kjeldahl Nitrogen, Total Manganese, and Total Iron. The basis of requiring these parameters to be analyzed is not clear but DEP generally establishes the monitoring requirement that is aligned with the NPDES PAG-03 General Permit requirements. Given the facility's current SIC code (2611), the facility would be identified under Appendix E of the current NPDES PAG-03 General Permit which requires a semi-annual sampling for pH, COD and TSS. Past DMR data (see Appendix for the entire data) show that Total Manganese, Oil/Grease, Total Kjeldahl Nitrogen, Total Phosphorus levels are consistently very low (below the water quality criteria) while Total Iron is still detected at a level higher than the current water quality criteria. It is recommended that the existing monitoring requirements for Total Manganese, Oil/Grease, Total Kjeldahl Nitrogen, and Total Phosphorus be removed from the permit. Total Iron will still be included in one of parameters to be sampled for stormwater. For BOD5, while it is still detected, the levels have been consistently low around 4 to 5 mg/L. BOD5 can be detected in stormwater generally because of plant debris, animal waste, gasoline/motor oil, fertilizers and pesticides. The average BOD5 concentration in forest runoff and urban runoff is about 3-4 mg/L.⁷. It appears BOD5 is not a parameter of concern in stormwater discharged from this facility; therefore, BOD5 will be removed from the monitoring requirement. The monitoring frequency has increased from 1/year to 2/year to be consistent with the NPDES PAG-03 General Permit requirements.

Additional Considerations

⁷ K.McCabe, E.Smith, S.Lang, C.Osburn, C.Benitez-Nelson, Jan. 2021 Particulate and Dissolved Organic Matter in Stormwater Runoff Influences Oxygen Demand in Urbanized Headwater Catchments,

1) Local TMDL

DEP has not yet developed a Total Maximum Daily Load (TMDL) strategy to address impairments identified in the Codorus Creek watershed. As a result, no local TMDL has been taken into consideration during this permit review. In the event the TMDL is developed, DEP may reopen this permit to implement any requirements specified in the TMDL in accordance with 40 CFR §122.62.

2) Chesapeake Bay TMDL

The Chesapeake Bay and its tributaries contain excess nutrients and sediment from various sources which ultimately lead to adverse environmental impacts. The Chesapeake Bay TMDL identifies the necessary pollution reductions from these sources across the Bay jurisdictions and sets pollution limits necessary to meet water quality standards. Pennsylvania and other states with river basins that drain into the Chesapeake Bay are each creating a Watershed Implementation Plan that describes the work to be done to reduce pollution from these sources. DEP has developed its TMDL implementation plans in 2004 (i.e. Chesapeake Bay TMDL Strategy), 2011 (Chesapeake Bay Watershed Implementation Plan Phase I), and 2012 (Chesapeake Bay Watershed Implementation Plan Phase II). In 2019, DEP finalized Pennsylvania's Chesapeake Bay Watershed Implementation Plan Phase 3 (i.e., Phase 3 WIP). This Phase 3 WIP to ensure that all practices and controls be in place by 2025 to achieve the nutrient and sediment reduction planning targets. A more detailed history of DEP's TMDL initiative is available at www.dep.pa.gov.

DEP previously categorized Pixelle as a significant industrial discharger which resulted in the development of a routine monitoring requirement for nutrients in the permit. While long-term data recently provided by Pixelle clearly demonstrated that effluent discharged via Outfall 001 consistently exceeds the significant discharger thresholds of 75 lbs/day TN or 25 lbs/day TP, it is important not to neglect the fact that Codorus Creek withdrawn by Pixelle already contains quantifiable levels of TN and TP based on upstream long-term data also provided by Pixelle. When considering the net contribution, Pixelle does not meet the thresholds. In all sampling data, the TN concentration in effluent was, in fact, less than those identified in upstream data, causing a "net sink" for TN. Most of sampling events for TP also indicated this net sink. For those sampling events when TP effluent concentrations were higher than TP upstream concentrations, the 25 lbs/day gross load threshold exceedance did not occur. DEP previously recognized this issue in many other industrial facilities in which DEP then ultimately declassified these facilities from significant to non-significant dischargers using the following explanation documented in the Phase 3 WIP:

DEP has discovered that the industrial facilities listed in Table 3 withdraw water from the same stream where the discharge occurs. The WLAs provided to these facilities in the TMDL are gross loads that include background nutrients withdrawn from those streams. When reviewing the net contribution from the facilities, it appears that the facilities do not meet the original thresholds used (75 lbs/day TN or 25 lbs/day TP) to determine the Significant IW discharger list, i.e., if their net loads had been considered, they would not have been considered significant. Facilities that are no longer considered significant have had their loads transferred to the non-significant sector.

As a result, Pixelle has become a non-significant discharger and all of its pending⁸ wasteload allocations has been moved to the non-significant sector. These loads were then assigned to Jackson Township and Spring Grove Borough as these facilities have decided to withdraw their discharges from Pixelle and proposed new stream discharges. The Phase 3 WIP documented this case with DEP's permitting approach as follows:

Jackson Township and Spring Grove Borough in York County have sewage treatment plants that discharge effluent into PH Glatfelter Company's industrial wastewater treatment facility (PA0008869). Glatfelter uses the effluent as a nutrient source for its treatment processes. Glatfelter has notified Jackson and Spring Grove that they must remove their discharges into Glatfelter's facility. Glatfelter was originally considered a Significant IW discharger in the Bay TMDL. As discussed in Section II.B, below, Glatfelter has not been assigned Cap Loads to date because of the current belief that they do not actually meet the criteria for a Significant IW discharger. The WLAs assigned to Glatfelter have been moved to the Non-Significant sector. Normally DEP would authorize no new loads to a facility proposing a stream discharge that withdraws from another facility with Cap Loads; however, since Glatfelter does not have Cap Loads, DEP will authorize new loads for Jackson (proposed 0.6 MGD discharge) and Spring Grove (proposed 0.33 MGD discharge). Jackson will be considered a Significant Sewage discharger upon issuance of its NPDES permit, while Spring Grove will be considered a non-significant discharger. Cap loads that are assigned to both facilities will be moved from the Non-Significant sector (from Glatfelter's original WLAs).

Pixelle has demonstrated based on data from 2012 through 2021 that the facility is not considered a non-significant discharger. Consequently, the requirement to monitor for Total Nitrogen and its major constituents is not necessary in the upcoming permit renewal. The existing TP effluent limits with a weekly sampling requirement were developed for

-

⁸ The previously-determined wasteload allocations of 117,588 lbs TN/yr and 6,821 lbs TP/yr were never officially included in Pixelle's permit. Thus, Glatfelter was never required to achieve compliance with these wasteload allocations.

the purpose of the local watershed protection rather than of the Chesapeake Bay watershed protection. Thus, the existing TP permit requirements will be maintained in the upcoming permit renewal as discussed previously in this fact sheet.

3) Whole Effluent Toxicity (WET) Testing

Pixelle has completed four (4) Whole Effluent Toxicity Testing as part of the application package in accordance with Part C.G of the existing permit. Chronic testing was conducted using a dilution series of 100%, 75%, 56%, 42% and 32% effluent for *Ceriodpahinia dubia and Pimephales promelas*. Also, acute testing was conducted using a 50% dilution series for *Selenastrum capricornutum*. These testing has been summarized as follows:

		ohnia Results Effluent)	•	es Results luent)	Selenastrum capricomutum (% Effluent)	Pass? *
	NOEC	NOEC	NOEC NOEC			
Test Date	Survival	Reproduction	Survival	Growth	LC25	
Oct 2010	100	100	100	100	100	Yes
Dec 2010	100	100	100	100	100	Yes
Feb 2011	100	100	100	100	100	Yes
June 2011	100	100	100	100	100	Yes

^{*} A "passing" result is that which is greater than or equal to the TIWC value.

DEP's Whole Effluent Toxicity Analysis worksheet was utilized and confirmed this finding. Given the nature of this discharge and also the fact that these WET testing was conducted almost 20 year ago, it is recommended that another set (i.e., four tests) of chronic WETT be conducted for the subsequent permit renewal application. The permit will include a condition that requires Pixelle to conduct an annual WET testing.

4) Chemical Additives

A chemical additive is a chemical product introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Pixelle reported a number of chemical products used throughout the manufacturing plant. The term generally excludes chemicals used for neutralization of waste streams, the production of goods, and treatment of wastewater. The application pointed out that, except for ACT-400 WB, there is no chemical substance that is known or expected to be present in the effluent. A further analysis is needed to determine if permit requirements are necessary. A list of these chemical products is described below:

BYO-GON PX 109

An average rate of 42 lbs/day with a maximum rate of 84 lbs/day of this chemical product is used in the wastewater treatment facility. It appears, according to the manufacturer's website, this product is a non-toxic, non-corrosive, 100% organic and biodegradable safe product that assists in development of a healthy facultative bacterial population improving biological treatment. DEP determined that this is considered a chemical product used for wastewater treatment; therefore, it is not a chemical additive.

Parafloc 710

Pixelle uses about 180 lbs/day (average) and 375 lbs/day (maximum) of this chemical product as a flocculant in the wastewater treatment plant. It is used for wastewater treatment; therefore, it is not a chemical additive.

ACT 1625C

Same as Parafloc 710, Pixelle uses about 180 lbs/day (average) and 375 lbs/day (maximum) of this chemical product as a flocculant in the wastewater treatment plant. It is used for wastewater treatment; therefore, it is not a chemical additive.

ACT-400WB

Pixelle uses about 180 lbs/day (average) and 375 lbs/day (maximum) of this chemical product as a flocculant in the wastewater treatment plant. It is used for wastewater treatment; therefore, it is not a chemical additive.

Hydrogen Peroxide (50%)

Pixelle uses about 14,400 lbs/day (average) and 21,000 lbs/day (maximum) of this chemical product as a flocculant in the wastewater treatment plant. It is used for wastewater treatment; therefore, it is not a chemical additive.

Phosphoric Acid

Pixelle uses about 180 lbs/day (average) and 375 lbs/day (maximum) of this chemical product as a flocculant in the wastewater treatment plant. It is used for wastewater treatment; therefore, it is not a chemical additive.

Polymer A & Polymer B

Pixelle uses a polyaluminum chloride polymer (Polymer A) Pixelle uses about 180 lbs/day (average) and 375 lbs/day (maximum) of this chemical product as a flocculant in the wastewater treatment plant. It is used for wastewater treatment; therefore, it is not a chemical additive.

5) Temperature

a) Thermal Discharge under 316(a) thermal variances

The existing permit renewal contains interim and final effluent limits for temperature and requires Glatfelter to meet these effluent limits at the instream compliance point of 1,230 feet. Based on a review of this permit renewal fact sheet, it appears these effluent limits were not developed using DEP's current Thermal Discharge Limit Calculation worksheet, but rather, were 316(a) variance effluent limits developed based on actual temperature data collected during the 2001 316(a) variance study conducted by Glatfelter. Within two (2) years following the permit effective date, Glatfelter was required to submit the WQM permit application for the cooling system to meet the final effluent limits. This cooling system is the existing spray cooling basins constructed in 2010. Previously, DEP determined that applying effluent limits at the instream compliance point was warranted as there is no known upstream thermal sources and Glatfelter can, to a large extent, control upstream temperatures through its releases from Lake Marburg.

For this permit renewal, all existing permit requirements will remain unchanged as no significant changes in facility wastewater were indicated. The basis of these requirements is specified in the fact sheet developed for the previous permit renewal; however, the facility will be required to conduct another biological monitoring study to support continuation of the thermal variance for the subsequent permit renewal.

b) 316(b) Cooling Water Intake Structure Requirements

The facility has conducted a source water base line study; yet no further studies have been conducted to fully support impingement and entrainment compliance. As a result, the following conditions along with other standard conditions related to 316(b) cooling water intake structure will be provided in Part C of the permit.

The Department acknowledges that no detailed studies have not been conducted to support both impingement and entrainment compliance. The Department has therefore determined to provide the following 316(b) Cooling Water Intake Structure Project Milestones:

- a) The permittee shall conduct an Impingement and Entrainment Reduction Study to investigate the feasibility of implementing alternatives to present operations to reduce both impingement and entrainment resulting from operation of cooling water intake structures. A minimum of three alternatives must be evaluated in the report. The report should also include details of the source water physical data, cooling water intake structure data, cooling water system data, and operational status. For all alternatives that are evaluated, the report shall include an assessment of the estimated reductions in impingement and entrainment in the surface waters in which withdrawals are made and a schedule for implementation. The permittee shall select and justify their choice of alternative.
 - i. The permittee shall first submit an Impingement and Entrainment Reduction Study plan within three (3) months from permit effective date for the Department's review and approval.
 - ii. Within sixteen (16) months from the Department's written approval, the permittee shall conduct and submit an Impingement and Entrainment Reduction Study report.
- b) The permittee shall implement, if necessary, technologies that constitute Best Technology Available (BTA) for impingement and entrainment within sixteen (16) months from the Department's written approval of an Impingement and Entrainment Reduction Study report.
- c) The permittee shall conduct an impingement and entrainment study during the post- implementation of selected BTA technologies, if any, for twelve (12) months. The study report shall be included in the subsequent permit renewal application.
- d) The permittee shall submit a progress report by the anniversary of the effective date of the permit each year

detailing the status of activities being conducted until BTA for impingement and entrainment is implemented.

e) The annual progress report described above shall include any modifications to the operation of any unit at the facility that impacts cooling water withdrawals or operation of the cooling water intake structure(s) during a calendar year. If not applicable, the permittee shall indicate that no modifications have occurred.

c) Additional Consideration

DEP's technical guidance no. 391-2000-017 recommends thermal discharges not to exceed 110°F at any point accessible to the public in order to protect public safety. Thermal discharges may also not cause a change of surface water temperature of more than 2°F during any 1-hour period according to 25 Pa. Code §96.6(b). The maximum temperature limit of 110 °F will continue to be included in the permit. The 2°F requirement will also continue to be included in the permit but will be moved from Part A to Part C condition.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

			Effluent L	imitations			Monitoring Requirements	
	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum (2)	Required
Outfall 001 Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	Continuous	Grab
Dissolved Oxygen	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
Color (Pt-Co Units) (Pt-Co Units) Nov 1 - Apr 30	XXX	XXX	XXX	120	187	300	1/day	24-Hr Composite
Color (Pt-Co Units) (Pt-Co Units) May 1 - Oct 31	XXX	XXX	XXX	133	207	332	1/day	24-Hr Composite
Color (Pt-Co Units) (Pt-Co Units) Industrial Influent	XXX	XXX	XXX	Report	Report	XXX	1/day	24-Hr Composite
Color (Pt-Co Units) (Pt-Co Units) Downstream Monitoring (3)	XXX	XXX	XXX	Report	Report	XXX	1/day	24-Hr Composite
Color (Pt-Co Units) (Pt-Co Units) Upstream Monitoring (3)	XXX	XXX	XXX	Report	Report	XXX	1/day	24-Hr Composite
Temperature (deg F) (°F) Upstream Monitoring (4)	XXX	XXX	XXX	Report	Report	XXX	Continous	I-S
Temperature (deg F) (°F) Effluent	XXX	XXX	xxx	Report	Report	110	1/day	I-S
Temperature (deg F) (°F) Downstream Monitoring January (4)(5)	XXX	XXX	XXX	50	62	XXX	Continuous	I-S
Temperature (deg F) (°F) Downstream Monitoring February 4)(5)	XXX	XXX	XXX	52	59	XXX	Continuous	I-S

			Effluent L	imitations			Monitoring Re	quirements
	Mass Units	(lbs/day) (1)		Concentrations (mg/L)				Required
Outfall 001 Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Temperature (deg F) (°F) Downstream Monitoring March (4)(5)	XXX	XXX	XXX	55	70	XXX	Continuous	I-S
Temperature (deg F) (°F) Downstream Monitoring April (4)(5)	XXX	XXX	XXX	65	78	XXX	Continuous	I-S
Temperature (deg F) (°F) Downstream Monitoring May (4)(5)	XXX	XXX	XXX	74	81	XXX	Continuous	I-S
Temperature (deg F) (°F) Downstream Monitoring June ⁽⁴⁾⁽⁵⁾	XXX	XXX	XXX	82	83	XXX	Continuous	I-S
Temperature (deg F) (°F) Downstream Monitoring July ⁽⁴⁾⁽⁵⁾	XXX	XXX	XXX	87	87	XXX	Continuous	I-S
Temperature (deg F) (°F) Downstream Monitoring August ⁽⁴⁾⁽⁵⁾	XXX	xxx	XXX	87	87	XXX	Continuous	I-S
Temperature (deg F) (°F) Downstream Monitoring September (4)(5)	XXX	XXX	XXX	81	82	XXX	Continuous	I-S
Temperature (deg F) (°F) Downstream Monitoring October (4)(5)	XXX	XXX	XXX	69	78	XXX	Continuous	I-S
Temperature (deg F) (°F) Downstream Monitoring November (4)(5)	XXX	XXX	XXX	62	71	XXX	Continuous	I-S
Temperature (deg F) (°F) Downstream Monitoring December (4)(5)	XXX	XXX	XXX	53	66	XXX	Continuous	I-S
Biochemical Oxygen Demand (BOD5) Nov 1 - Apr 30	1751	3503	XXX	17.0	34.0	38	1/day	24-Hr Composite
Biochemical Oxygen Demand (BOD5) May 1 - Oct 31	1168	2335	XXX	14.0	25.0	25	1/day	24-Hr Composite
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	Report	XXX	1/month	24-Hr Composite

NPDES Permit No. PA0008869

	Effluent Limitations							quirements
	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Outfall 001	Average	Daily		Average	Daily	Instant.	Measurement	Sample .
Parameter	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Chemical Oxygen Demand								
(COD)				_	_			24-Hr
Industrial Influent	XXX	XXX	XXX	Report	Report	XXX	1/month	Composite
Total Suspended Solids	2057	4113	XXX	30.0	60.0	75	1/day	24-Hr
Total Suspended Solids	Report	4113	^^^	30.0	00.0	75	17uay	Composite
Total Nitrogen	Total Mo	xxx	XXX	Report	XXX	xxx	1/month	Calculation
Ammonia-Nitrogen	TOTAL IVIO	Report	ХХХ	report	XXX	XXX	1/111011111	24-Hr
Nov 1 - Apr 30	XXX	Total Mo	XXX	2.0	4.0	5	1/day	Composite
Ammonia-Nitrogen	7000	Report	7000	2.0	7.0	Ŭ .	17day	24-Hr
May 1 - Oct 31	XXX	Total Mo	XXX	1.5	3.0	3.8	1/day	Composite
	Report							24-Hr
Total Kjeldahl Nitrogen	Total Mo	XXX	XXX	Report	XXX	XXX	1/week	Composite
	Report			•				24-Hr
Total Phosphorus	Total Mo	XXX	XXX	Report	2.0	2.5	1/week	Composite
								24-Hr
Aluminum, Total	XXX	XXX	XXX	0.879	1.351	XXX	1/week	Composite
2,3,7,8-								24-Hr
Tetrachlorodibenzofuran (pg/L)	XXX	XXX	XXX	XXX	Report	XXX	1/year	Composite
2,3,7,8-Tetrachlorodibenzo-p-								24-Hr
dioxin (pg/L)	XXX	XXX	XXX	XXX	0.035	XXX	1/year	Composite
Chloroform	XXX	XXX	xxx	0.017	0.026	xxx	1/week	Grab
Adsorbable Organic Halides	7001	7000	7001	0.011	0.020	7001	i, wook	24-Hr
(AOX)	XXX	812	XXX	Report	Report	XXX	1/month	Composite
Adsorbable Organic Halides		364		•	'			'
(AOX)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
								24-Hr
Total Cadmium	Report	Report	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Total Manganese	Report	Report	XXX	Report	Report	XXX	1/week	Composite
	_			_	_			24-Hr
Total Nickel	Report	Report	XXX	Report	Report	XXX	1/week	Composite
	Б		2007	Б.,		V0/0/	47	24-Hr
Total Zinc	Report	Report	XXX	Report	Report	XXX	1/week	Composite

NPDES Permit No. PA0008869

			Effluent L	imitations			Monitoring Requirements		
Outfall 002	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required			
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (cfs)	15.8	Report							
Upstream Monitoring	Min Weekly	Minimum							
Nov 1 - Apr 30	Avg	Daily	XXX	XXX	XXX	XXX	Continuous	Recorded	
Flow (cfs)	21.3	Report							
Upstream Monitoring	Min Weekly	Minimum							
March 1 - Oct 31	Avg	Daily	XXX	XXX	XXX	XXX	Continuous	Recorded	
		Report							
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	1/day	Measured	
			6.0						
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	Report	1/day	Grab	
			Report	Report					
Temperature (deg F) (°F)	XXX	XXX	Avg Mo	Daily Max	XXX	110	1/shift	Grab	
Temperature (deg F) (°F)			Report	Report					
Upstream Monitoring	XXX	XXX	Avg Mo	Daily Max	XXX	XXX	1/shift	Grab	
Biochemical Oxygen Demand									
(BOD5)	XXX	XXX	XXX	XXX	Report	XXX	1/month	Grab	
	,,,,,	,,,,,	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2007		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \			
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/month	Grab	

			Effluent l	_imitations			Monitoring Red	quirements
IMP 404	Mass Units	(lbs/day) (1)		Concentrati	ons (mg/L)		Minimum (2)	Required
IMP 101 Parameter	Average Quarterly	Daily Maximum	Minimum	Semi-Annual Average	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report							
Internal Monitoring Point	Avg Mo	Report	XXX	XXX	XXX	XXX	1/week	Measured
Kappa Number (No.)				20				
Internal Monitoring Point	XXX	XXX	XXX	Avg Mo	Report	XXX	1/week	Grab
Color (Pt-Co Units) (Pt-Co								
Units)				Report				
Internal Monitoring Point	XXX	XXX	XXX	Avg Mo	Report	XXX	1/week	Grab
Pentachlorophenol								
Internal Monitoring Point	XXX	XXX	XXX	0.005	XXX	XXX	2/year	Grab
2,3,4,6-Tetrachlorophenol								
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab
2,3,7,8-								
Tetrachlorodibenzofuran (pg/L)								
Internal Monitoring Point	XXX	XXX	XXX	0.319	XXX	XXX	2/year	Grab
2,3,7,8-Tetrachlorodibenzo-p-								
dioxin (pg/L)								
Internal Monitoring Point	XXX	XXX	XXX	0.01	XXX	XXX	2/year	Grab
3,4,5-Trichlorocatechol							•	
Internal Monitoring Point	XXX	XXX	XXX	0.005	XXX	XXX	2/year	Grab
2,4,5-Trichlorophenol								
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab
3,4,6-Trichlorocatechol								
Internal Monitoring Point	XXX	XXX	XXX	0.005	XXX	XXX	2/year	Grab
3,4,5-Trichloroguaiacol							·	
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab
3,4,6-Trichloroguaiacol							•	
Internal Monitoring Point	XXX	XXX	XXX	0.025	XXX	XXX	2/year	Grab
4,5,6-Trichloroguaiacol								
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab
2,4,6-Trichlorophenol							·	
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab
Chloroform				Report				
Internal Monitoring Point	2.72	4.55	XXX	Avg Qrtly	Report	XXX	1/quarter	Grab
Tetrachlorocatechol					•		•	
Internal Monitoring Point	XXX	XXX	XXX	0.005	XXX	XXX	2/year	Grab
Tetrachloroguaiacol							·	
Internal Monitoring Point	XXX	XXX	XXX	0.005	XXX	XXX	2/year	Grab

NPDES Permit No. PA0008869

			Effluent L	imitations			Monitoring Requirements	
IMP 101	Mass Units (lbs/day) (1)			Concentrati	Minimum ⁽²⁾	Required		
Parameter	Average Quarterly	Daily Maximum	Minimum	Semi-Annual Average	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Trichlorosyringol								
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab

			Effluent L	imitations			Monitoring Requirements	
IMP 400	Mass Units	(lbs/day) (1)		Concentrati	Minimum (2)	Required		
IMP 102 Parameter	Average	Daily		Semi-Annual	Daily	Instant.	Measurement	Sample
	Quarterly	Maximum	Minimum	Average	Maximum	Maximum	Frequency	Type
Flow (MGD)	Report							
Internal Monitoring Point	Avg Mo	Report	XXX	XXX	XXX	XXX	1/week	Measured
Kappa Number (No.)				13				
Internal Monitoring Point	XXX	XXX	XXX	Avg Mo	Report	XXX	1/week	Grab
Color (Pt-Co Units) (Pt-Co								
Units)				Report				
Internal Monitoring Point	XXX	XXX	XXX	Avg Mo	Report	XXX	1/week	Grab
Pentachlorophenol								
Internal Monitoring Point	XXX	XXX	XXX	0.005	XXX	XXX	2/year	Grab
2,3,4,6-Tetrachlorophenol								
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab
2,3,7,8-								
Tetrachlorodibenzofuran (pg/L)								
Internal Monitoring Point	XXX	XXX	XXX	0.319	XXX	XXX	2/year	Grab
2,3,7,8-Tetrachlorodibenzo-p-								
dioxin (pg/L)								
Internal Monitoring Point	XXX	XXX	XXX	0.01	XXX	XXX	2/year	Grab
3,4,5-Trichlorocatechol								
Internal Monitoring Point	XXX	XXX	XXX	0.005	XXX	XXX	2/year	Grab
2,4,5-Trichlorophenol								
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab
3,4,6-Trichlorocatechol								
Internal Monitoring Point	XXX	XXX	XXX	0.005	XXX	XXX	2/year	Grab
3,4,5-Trichloroguaiacol								
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab
3,4,6-Trichloroguaiacol							•	
Internal Monitoring Point	XXX	XXX	XXX	0.025	XXX	XXX	2/year	Grab
4,5,6-Trichloroguaiacol							•	
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab
2,4,6-Trichlorophenol							,	
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab
Chloroform				Report			,	
Internal Monitoring Point	3.16	5.28	XXX	Avg Qrtly	Report	XXX	1/quarter	Grab
Tetrachlorocatechol				3 3,	-			
Internal Monitoring Point	XXX	XXX	XXX	0.005	XXX	XXX	2/year	Grab
Tetrachloroguaiacol			2				_, ,	
Internal Monitoring Point	XXX	XXX	XXX	0.005	XXX	XXX	2/year	Grab

NPDES Permit No. PA0008869

			Effluent L	imitations			Monitoring Requirements	
IMP 102	Mass Units (lbs/day) (1)			Concentrati	Minimum (2)	Required		
Parameter	Average Quarterly	Daily Maximum	Minimum	Semi-Annual Average	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Trichlorosyringol	_							
Internal Monitoring Point	XXX	XXX	XXX	0.0025	XXX	XXX	2/year	Grab

NPDES Permit No. PA0008869

		Effluent Limitations								
	Mass Units	Mass Units (lbs/day) (1)		Concentrati	Minimum ⁽²⁾	Required				
Stormwater Outfalls Parameter	Average Quarterly	Daily Maximum	Minimum	Semi-Annual Average	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
COD	XXX	XXX	XXX	XXX	Report	XXX	2/year	Grab		
pH	XXX	XXX	XXX	XXX	Report	XXX	2/year	Grab		
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	2/year	Grab		
Total Iron	XXX	XXX	XXX	XXX	Report	XXX	2/year	Grab		

	Tools and References Used to Develop Permit
	WOM (an Windows Markel (and Attack and the
\vdash	WQM for Windows Model (see Attachment)
\vdash	PENTOXSD for Windows Model (see Attachment)
\vdash	TRC Model Spreadsheet (see Attachment)
\vdash	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
Щ	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Щ	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
$\overline{\sqcap}$	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
$\overline{\Box}$	SOP:
	Other:

Appendices

Appendix A – Facility Information

- US EPA NPDES Permit Rating Work Sheet
- Site Location Map
- Process Flow Diagram
- Wastewater Treatment Technology

Appendix B – Water Quality Analysis (RP Analysis)

- USGS StreamStats
- WQM 7.0 VER. 1.1
- Toxics Screening Analysis
- WET Analysis Spreadsheet

Appendix C – Data Analysis for Color

Appendix D – Data Analysis for Temperature

Appendix E – Previous Records w/DMR Summary

Appendix A – EPA Rating Sheet

			NPDE	S Permit	Rating W	ork St	neet [Discre	ar Additio	ldition
NPDES	No.: PA00088	69					Ĺ	ᆜ stat	change, bi us change	it no
Facility N	_{lame:} e Specialty S	Solutions	LLC (forr	merly P.H.	Glatfelter C	ompany	/) 	Deleti	on	
_{City:} Sp	ring Grove									_
Receivin	Codor	us Creek	(
Reach N										_
1. Pow 2. A nu 3. Coo	facility a steam ene or more of the er output 500 MW aclear power plant ling water discharg; score is 600 (stop	following ch or greater (n e greater tha	haracteristics ot using a coo in 25% of the	? ling pond/lake) receiving stream	's 7Q10 flow rate	Se.	this permit for a mun rving a population gu ES; score is 700 (stop IO (continue)	reater tha		
FACTO	OR 1:Toxic Pol	lutant Po								
PCS SIC	Code:		Prin	nary SIC Code:	2611					
Other SI	C Codes:									
Industria	Subcategory Cod	e:	(Cod	e 000 if no subc	ategory)					
Detern	nine the Toxicit	y potentia	I from App	endix A. (Be s	ure to use the T	OTAL toxicit	ty potential column and	d check o	one)	
Toxicit	y Group Cod	de Points		Toxicity Grou	up Code	Points	Toxicity	Group	Code	Po
No prod	-	e romis		3.	3	15	7	отопр	7	3
waste :	streams 0		ŀ	4. 5.	4 5	20 25	H ₉ .		8 9	4
7. 2.	2		ŀ	6.	6	30	7 10.		10	
_							Code	e Numbe	er Checke	d:
									ts Factor	
									no r dotor	
							B; check only one			
	n A - Wastewat	er Flow Or	-				astewater and Stre		v Consid	erea
	ater type structions)		C00	de Points			Percent of Instream Wastewater Concer			
	Flow < 5 MGD		H 11		,	,	tration at Receiving			
	Flow 5 to 10 MG Flow>10 to 50 M		12				Stream Low Flow		Code	Point
	Flow> 50 MGD	GD	14		Type I	ли-	<10%		41	0
					1,700.		≥10% to <50%		42	10
			1 1 24	10			≥50%	\checkmark	43	20
Type II:	Flow<1 MGD		H 21							,
Type II:	Flow 1 to 5 MGD		22		Tune I		<10%		51	0
Type II:			1 1	30	Type I	ı	<10% ≥10% to <50%		52	21
Type II:	Flow 1 to 5 MGD Flow >5 to 10 MG		22 23	30	Type I	ı	<10% ≥10% to <50% ≥50%		52 53	
	Flow 1 to 5 MGD Flow >5 to 10 MG Flow>10 MGD Flow <1 MGD	GD	22 23 24	30 50 0	Type I	1	≥10% to <50%			
	Flow 1 to 5 MGD Flow >5 to 10 MG Flow>10 MGD Flow <1 MGD Flow 1 to 5 MGD	GD O	22 23 24 31 32	30 50 0	Type I	I	≥10% to <50%			
	Flow 1 to 5 MGD Flow>5 to 10 MG Flow>10 MGD Flow <1 MGD Flow 1 to 5 MGD Flow >5 to 10 MG	GD O	22 23 24 31 32 33	30 50 0 10 20	Type I	1	≥10% to <50%	В		30
	Flow 1 to 5 MGD Flow >5 to 10 MG Flow>10 MGD Flow <1 MGD Flow 1 to 5 MGD	GD O	22 23 24 31 32	30 50 0 10 20	Туре І	ı	≥10% to <50%	from Sec	53	3

	NPDE	S Permit Rating Wo	ork Sh	eet			
FACTOR 3: Conventional Pollutan	ts		NPDES	No.: PA000	08869		
(only when limited by the permit) A. Oxygen Demanding Pollutants (or	check one	у √вор ПсорПотн	IER:				
,		,	Code	Points			
Permit Limits (check one)		<100 lbs/day	1	0			
	Ц	100 to 1000 lbs/day	2	5			
	\checkmark	>1000 to 3000 lbs/day	3	15			
	ш	>3000 lbs/day	4	20			
						hecked:	
					Points	Scored: 1	<u> </u>
B. Total Suspended Solids (TSS)							
Book Himita (abada ana)		at 00 Bartelan	Code	Points			
Permit Limits (check one)	Н	<100 lbs/day 100 to 1000 lbs/day	1 2	0 5			
	7	>1000 to 1000 lbs/day	3	15			
		>5000 lbs/day	4	20			
					Code C	hecked:	
						Scored: 1	5
C. Nitrogen Pollutants (check one)		✓ Ammonia □ OTH	HER:			_	_
C. Nitrogen Politiants (check one)		Nitrogen Equivalent	Code	Points			-
Permit Limits (check one)	1	<300 lbs/day	1	0			
	Ŭ	300 to 1000 lbs/day	2	5			
		>1000 to 3000 lbs/day	3	15			
	Ш	>3000 lbs/day	4	20			
					Code C	hecked: _	_
					Points	Scored: 0	_
					Total Points F	actor 3: 3	0_
FACTOR 4: Public Health Impact Is there a public drinking water supply water to which the receiving water is a methods of conveyance that ultimately YES (if yes, check toxicity potential NO (if no, go to Factor 5)	tributary) get wate	? A public drinking water so from the above referenced	upply ma				of
Determine the human health toxicity p Factor 1. (Be sure to use the human	health tox	icity group column and che			subcategory refe	rence as	in
Toxicity Group Code Points	_	Toxicity Group Code			oxicity Group		Poin
No process waste streams 0 0	-	3. 3 4. 4	0	Н	7. 8.	7 8	15 20
1. 1 0	-	5. 5	5	Н	9.	9	25
		6. 6	10		10.	10	30
2. 2 0							
<u> </u>		-			Code Number C	hecked:	

NPDES Permit Rating Work Sheet

FACTOR 5:	Water Quality	Factors
-----------	---------------	---------

NPDES No.: PA0008869

A. Is (or will) one or more of the effluent discharge limits based on water quality factors of the receiving stream (rather than technology-based federal effluent guidelines, or technology-based state effluent guidelines), or has a wasteload allocation been assigned to the discharge?

	Code	Points
YES	1	10
√ NO	2	0

B. Is the receiving water in compliance with applicable water quality standards for pollutants that are water quality limited in the permit?

	Code	Point
YES	1	0
√ NO	2	5

c. Does the effluent discharged from this facility exhibit the reasonable potential to violate water quality standards due to whole effluent toxicity?

	Code	Points
YES	1	10
NO	2	0

Code Number Checked: A. B. C. Total Points Factor 5 A. 0 +B. 5 +C. 0 = 5

FACTOR 6: Proximity to Near Coastal Waters

A. Base Score: Enter flow code here (from Factor 2): _____

Check appropriate facility HPRI Code (from PSC):

HPRI#	Code	HPRI Score
□ 1	1	20
2	2	0
3	3	30
✓ 4	4	0
5	5	20

Enter the multiplication factor that corresponds to the flow code: 0.00

11, 31, or 41 0.00 12, 32, or 42 0.05 13, 33, or 43 0.10	Flow code	Multiplication Factor
14 or 34 0.15 21 or 51 0.10 22 or 52 0.30 23 or 53 0.60 24 1.00	12, 32, or 42 13, 33, or 43 14 or 34 21 or 51 22 or 52 23 or 53	0.05 0.10 0.15 0.10 0.30 0.60

HPRI Code Checked:

Base Score (HPRI Score) 0 x (Multiplication Factor) 0.00 = 0 (Total Points)

B. Additional Points - NEP Program For a facility that has an HPRI code of 3, does the facility discharge to one of the estuaries enrolled in the National Estuary Protection (NEP) program (see instructions) or the Chesapeake Bay?

	Code	Points
YES	1	10
√ NO	2	0

c. Additional Points - Great Lakes Area of Concern For a facility that has an HPRI code of 5, does the facility discharge any of the pollutants of concern into one of the Great Lakes' 31 areas of concern (see instructions)?

	Code	Points
YES	1	10
√ NO	2	0

Code Number Checked: A. ____ B. ___ C. ___ Total Points Factor 6 A. 0 +B. 0 +C. 0 = 0

		NPDES Permit R	ating Wo	rk Sheet	
Score Summ	narv	220 / 01111111	ating tro	NPDES No.: PA0008869	
	Factor	Description Toxic Pollutant Potential	Total Points		
	2.	Flow/Streamflow Volume	20		
	3.	Conventional Pollutants	30 30		
	4. 5.	Public Health Impacts Water Quality Factors	5		
	6.	Proximity to Near Coastal Waters	0		
		TOTAL (Factors 1 through 6)	135		
S1. Is the total s	score equal to or great	ter than 80? YES (Facilit	y is a major)	NO	
S2. If the answe	er to the above question	on is no, would you like this facility to	be discretionar	y major?	
√ NO					
YES	(Add 500 points to the	e above score and provide reason be	elow:		
Reas		,			
ricas	ore.				
:W SCORE:	135				
	135				
	135				
	135		Jineu I	Sim	
	135		Jinsu l	Kim Permit Reviewer's Nar	me
	135		Jinsu I		me
	135		Jinsu l	Permit Reviewer's Nar (717) 705-4825 Phone Numb	_
	135		Jinsu l	Permit Reviewer's Nar (717) 705-4825 Phone Numb 08/22/2022	per
	135		Jinsu l	Permit Reviewer's Nar (717) 705-4825 Phone Numb 08/22/2022	_
EW SCORE: LD SCORE:	135		Jinsu I	Permit Reviewer's Nar (717) 705-4825 Phone Numb 08/22/2022	per
	135		Jinsu l	Permit Reviewer's Nar (717) 705-4825 Phone Numb 08/22/2022	per
	135		Jinsu I	Permit Reviewer's Nar (717) 705-4825 Phone Numb 08/22/2022	per
	135		Jinsu l	Permit Reviewer's Nar (717) 705-4825 Phone Numb 08/22/2022	per
	135		Jinsu I	Permit Reviewer's Nar (717) 705-4825 Phone Numb 08/22/2022	per
	135		Jinsu l	Permit Reviewer's Nar (717) 705-4825 Phone Numb 08/22/2022	per

Appendix A – Site Location Map, Process Flow Diagram & Wastewater Treatment Technology

Appendix B - USGS StreamStats

StreamStats Report

Region ID:

Workspace ID: PA20211001140609727000

Clicked Point (Latitude, Longitude): 39.87846, -76.84726

2021-10-01 10:06:30 -0400

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	75.7	square miles
BSLOPD	Mean basin slope measured in degrees	5.6193	degrees
ROCKDEP	Depth to rock	4.5	feet
URBAN	Percentage of basin with urban development	3.7059	percent

Low-Flow Statistics Parameters [Low Flow Region 1]

https://streamstats.usgs.gov/ss/

1/3

10/1/21, 10:09 AM StreamStats

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	75.7	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	5.6193	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.5	feet	4.13	5.21
URBAN	Percent Urban	3.7059	percent	0	89

Low-Flow Statistics Flow Report [Low Flow Region 1]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	16.5	ft^3/s	46	46
30 Day 2 Year Low Flow	20.8	ft^3/s	38	38
7 Day 10 Year Low Flow	8.69	ft^3/s	51	51
30 Day 10 Year Low Flow	11.1	ft^3/s	46	46
90 Day 10 Year Low Flow	15.6	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

https://streamstats.usgs.gov/ss/

Input Data WQM 7.0 PWS Withdrawal SWP Basin Stream Code RMI Elevation Drainage Stream Name (ft) (sq mi) (ft/ft) (mgd) • 07H 8032 CODORUS CREEK 438.00 0.00 26.140 74.00 0.00000 Stream Data LFY Trib Stream Rch Rch WD Rch Rch Tributary <u>Stream</u> Temp Temp Flow Velocity Ratio Width Depth Design Flow Trav Time Cond. (cfsm) (cfs) (cfs) (fps) (ft) (°C) (°C) (days) (ft) Q7-10 0.000 0.00 0.00 25.00 7.00 0.00 0.00 0.214 0.00 0.00 0.000 0.0 0.000 Q1-10 0.00 0.00 0.000 Q30-10 0.00 0.00 0.000 0.000 Discharge Data Existing Permitted Design Disc Disc Disc Disc Disc Reserve Name Permit Number Flow Flow Flow Factor (°C) (mgd) (mgd) (mgd) Spring Grove PA02860860 0.3300 0.3300 0.3300 0.000 20.00 7.00 Parameter Data Disc Trib Fate Coef Stream Conc Conc Conc Parameter Name (mg/L) (mg/L) (mg/L) (1/days) CBOD5 21.00 1.40 0.00 1.50 Dissolved Oxygen 5.00 8.10 0.00 6.00 NН3-N 7.50 0.06 0.00 0.70

Friday, October 1, 2021 Version 1.1 Page 1 of 7

Input Data WQM 7.0

	SWP Basir	Stres Cod		Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)		. Wi	PWS thdrawal (mgd)	Apply FC
	07H	80	032 CODO	RUS CR	EEK		25.7	10	431.00	75.	80 0.0	0000	0.00	•
					St	ream Dat	ı							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> p p	Н	<u>Stre</u> Temp	<u>eam</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.214	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.6	00 2	5.00	7.00	0.00	0.00)
					Di	scharge [)ata							
			Name	Pei	rmit Number	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd)	Dis Flo	sc Res	erve T	Disc Femp (°C)	Disc pH		
		Jacks	son Towns	hi PA	02865860	0.8000	0.800	00 0.	8000	0.000	20.00	7.00	5	
					Pa	arameter [)ata							
		Parameter Name		Di: Co		Trib Conc	Stream Conc	Fate Coef						
			(m	g/L) (r	ng/L)	(mg/L)	(1/days)							
			CBOD5			2	22.00	1.40	0.00	1.50)			
			Dissolved	Oxygen			5.00	8.10	0.00	6.00)			
			NH3-N				8.00	0.06	0.00	0.70)			

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)		ope /ft)	PWS Nithdrawal (mgd)	Apply FC
	07H	80	32 CODO	RUS CRE	EEK		25.26	60	428.00	75.	80 0.0	0000	0.0	0 🗸
					St	ream Data	ι							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> p p	Н	<u>S</u> Temp	tream pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.214	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000		0.0	0.00	0.0	00 2	5.00	7.00	0.0	00 0.0	00
¥20-10		0.00	0.00	0.000		scharge D	-4-							
			Name	Per	mit Number	Existing Disc		Dis Flo	c Res	erve T	Disc Temp (°C)	Disc pH		
						0.0000	0.000	0.0	0000	0.000	0.00	7.	.00	
					Pa	rameter D								
			Parameter Name			Dis Co		Trib Conc	Stream Conc	Fate Coef				
						(mg	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			2	5.00	1.40	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.10	0.00	6.00)			
			NH3-N			2	5.00	0.06	0.00	0.70)			

	SWP Basir			Stre	eam Name		RMI		evation (ft)	Drainag Area (sq mi)		ope t/ft)	PW: Withdr (mg	awal	Apply FC
	07H	80	032 CODO	RUS CR	EEK		24.45	50	421.00	76	.00 0.0	08000		0.00	•
					St	ream Data	ı								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p	ί pH	Tem	<u>Stream</u> p	рН	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
27-10 21-10 230-10	0.214	0.00 0.00 0.00	0.00	0.000 0.000 0.000		40.0	0.00	0.0	00 2	5.00	7.00	(0.00	0.00	
					Di	scharge D)ata								
			Name	Per	mit Number	Existing Disc		Dis Flo	c Res		Disc Temp (°C)	Dis p			
		Pixell	le 001	PA	000888900	13.7000	13.700	00 13.7	7000	0.000	33.00	0	7.30		
					Pa	rameter D)ata								
			,	Paramete	r Name	Dis Co		Trib Conc	Stream Conc	Fate Coef					
						(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			1	14.00	1.40	0.00	1.5	0				
			Dissolved	Oxygen			5.00	8.10	0.00	6.0	0				
			NH3-N				1.50	0.06	0.00	0.7	0				

	SWP Basir			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slo (ft/	Witho	VS drawal gd)	Apply FC
	07H	80	32 CODO	RUS CR	EEK		23.90	00	419.00	76.4	0.00	0000	0.00	•
					St	ream Data	ı							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ip pl	н	<u>Strear</u> Temp	m pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10	0.214	0.00	0.00 0.00	0.000	0.000	0.0	0.00	0.0	00 2	5.00	7.00	0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000									
					Di	scharge D	ata							
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	Dis Flo	sc Res xw Fa	erve To	Disc emp °C)	Disc pH		
						0.0000	0.000	0.0	0000	0.000	0.00	7.00		
					Pa	rameter D	ata							
				Paramete	r Nama	Dis Co		Trib Conc	Stream Conc	Fate Coef				
				aramete		(mg	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			2	5.00	1.40	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.10	0.00	6.00				
			NH3-N			2	5.00	0.06	0.00	0.70				

	SWP Basir			Stre	eam Name		RMI	Ele	evation (ft)	Draina Are: (sq n	8	Slope (ft/ft)	PW: Withdr (mg	awal	Apply FC
	07H	80	032 CODO	RUS CRE	EEK		21.00	00	408.00	8	3.60 0	.00080		0.00	•
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributs</u> p	pH	Tem	Stream np	рН	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	3)		
Q7-10 Q1-10 Q30-10	0.214	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	40.0	0.00	0.0	00 2	5.00	7.00		0.00	0.00	
¥30-10		0.00	0.00	0.000		scharge [lata								
			Name	Per	mit Number	Existing Disc		Dis Flo	sc Res	erve	Disc Temp (°C)		isc hH		
		BAE	Systems	PAG	00092530	0.0710	0.071	0.0	0710	0.000	20.0	00	7.00		
					Pa	arameter [)ata								
			ı	Paramete	r Name	Di: Co		Trib Conc	Stream Conc	Fate Coe					
						(m	g/L) (n	ng/L)	(mg/L)	(1/day	/s)				
			CBOD5			2	25.00	1.40	0.00	1.	.50				
			Dissolved	Oxygen			5.00	8.10	0.00	6.	.00				
			NH3-N			2	23.00	0.06	0.00	0.	.70				

	SWP Basir			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slo (ft/	Withdr	awal	Apply FC
	07H	80	32 CODO	RUS CRE	EEK		20.6	00	408.00	88.2	20 0.00	0000	0.00	•
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p p	н	<u>Stream</u> Temp	рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10 21-10	0.214	0.00	0.00	0.000	0.000	0.0	0.00	0.	00 2	5.00	7.00	0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000									
					Di	scharge [Data							
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd	Dis	sc Res	erve T ctor	Disc emp (°C)	Disc pH		
						0.0000	0.00	00 0.	0000	0.000	0.00	7.00		
					Pa	rameter [
				Paramete	r Nama	Dis Co		Trib Conc	Stream Conc	Fate Coef				
				aramete	T-ame	(m	g/L) (ı	mg/L)	(mg/L)	(1/days)				
			CBOD5			2	25.00	1.40	0.00	1.50				
			Dissolved	Oxygen			3.00	8.10	0.00	6.00				
			NH3-N			2	25.00	0.06	0.00	0.70				

Friday, October 1, 2021

WQM 7.0 D.O.Simulation

SWP Basin Str	ream Code			Stream Name	
07H	8032		С	ODORUS CREEK	
<u>RMI</u> 26.140	Total Discharge) Ana	lysis Temperature (°C 24.844	Analysis pH 7.000
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
54.977	0.79		_	69.217	0.374
Reach CBOD5 (mg/L) 2.01	Reach Ko 0.46		В	each NH3-N (mg/L) 0.29	Reach Kn (1/days) 1.016
Reach DO (mg/L)	Reach Kr	-		Kr Equation	Reach DO Goal (mg/L)
8.003	6.73	10		User Supplied	5
Reach Travel Time (days) 0.070	TravTime	Subreach CBOD5	Results NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.007	2.00	0.29	7.58	
	0.014	2.00	0.29	7.56	
	0.021		0.29	7.58	
	0.028		0.28	7.58	
	0.035		0.28	7.56	
	0.042		0.28	7.56	
	0.049		0.28	7.58	
	0.058		0.28 0.27	7.58 7.58	
	0.063 0.070		0.27	7.56	
	0.070	1.83	0.21	7.50	
<u>RMI</u> 25.710	Total Discharge) Ana	lysis Temperature (°C 24.512) <u>Analysis pH</u> 7.000
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)
60.143	0.81	8		73.512	0.384
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
3.31	0.90	_		0.80	0.991
Reach DO (mg/L)	Reach Kr (6.67			Kr Equation User Supplied	Reach DO Goal (mg/L) 5
7.392	0.07	•		Oser Supplied	5
Reach Travel Time (days) 0.075	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.008	3.28	0.80	7.38	
	0.015	3.25	0.79	7.36	
	0.023	3.22	0.78	7.35	
	0.030		0.78	7.34	
	0.038		0.77	7.33	
	0.045		0.77	7.32	
	0.053		0.76	7.31	
	0.060		0.78	7.30	
	0.068		0.75	7.30	
	0.075	3.04	0.74	7.29	

Version 1.1

Page 1 of 3

WQM 7.0 D.O.Simulation

<u>SWP Basin</u> S 07H	Stream Code 8032		c	Stream Name ODORUS CREEK	
RMI 25.260 Reach Width (ft) 59.361 Reach CBOD5 (mg/L) 3.04 Reach DO (mg/L) 7.293	Total Discharge 1.13 Reach De 0.81 Reach Kc.(0.83 Reach Kr.(6.67	0 pth (ft) 3 (1/days) 1 1/days)		lysis Temperature (°C) 24.514 Reach WDRatio 73.055 Reach NH3-N (mg/L) 0.74 Kr Equation User Supplied	Analysis pH 7.000 Reach Velocity (fps) 0.373 Reach Kn (1/days) 0.991 Reach DO Goal (mg/L) 5
Reach Travel Time (days) 0.133	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.013 0.027 0.040 0.053 0.066 0.080 0.093 0.108 0.120 0.133	3.00 2.96 2.92 2.88 2.84 2.80 2.76 2.72 2.69 2.65	0.73 0.72 0.71 0.70 0.70 0.69 0.68 0.67 0.68	7.29 7.29 7.29 7.29 7.29 7.29 7.30 7.30 7.31 7.32	
RMI 24.450 Reach Width (ft) 86.689 Reach CBOD5 (mg/L) 7.90 Reach DO (mg/L) 6.309	Total Discharge 14.83 <u>Reach De</u> 0.91 <u>Reach Kc (</u> 1.38 <u>Reach Kr (</u> 7.35	00 pth (ft) 8 (1/days) 3 1/days)		lysis Temperature (°C) 28.610 Reach WDRatio 94.481 leach NH3-N (mg/L) 0.98 Kr Equation User Supplied	Analysis pH 7.118 Reach Velocity (fps) 0.580 Reach Kn (1/days) 1.358 Reach DO Goal (mg/L) 5
0.309 Reach Travel Time (days) 0.080		Subreach	Results NH3-N (mg/L) 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91	D.O. (mg/L) 6.20 6.10 6.01 5.92 5.84 5.76 5.69 5.62 5.56 5.50	-

Friday, October 1, 2021

Version 1.1

Page 3 of 3

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
07H	8032			ODORUS CREEK	
	5552			ODOMOO OMEEN	
<u>RMI</u> 23.900	Total Discharge) Ana	lysis Temperature (°C) 28.603	Analysis pH 7.117
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)
85.534	0.90			94.766	0.578
Reach CBOD5 (mg/L)	Reach Ko		E	each NH3-N (mg/L)	Reach Kn (1/days)
6.99	1.30 Reach Kr	_		0.90 Kr Equation	1.357 Reach DO Goal (mg/L)
Reach DO (mg/L) 5.504	7.35			User Supplied	5
				ота таррита	-
Reach Travel Time (days) 0.307	TravTime	Subreach CBOD5	Results NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.031	6.58	0.87	5.30	
	0.061	6.21	0.83	5.17	
	0.092	5.85	0.80	5.10	
	0.123	5.51	0.77	5.08	
	0.153	5.20	0.73	5.10	
	0.184	4.90	0.70	5.14	
	0.215	4.62	0.68	5.20	
	0.245		0.65	5.27	
	0.276		0.62	5.38	
	0.307	3.87	0.60	5.45	
RMI 21.000	Total Discharge) Ana	lysis Temperature (°C) 28.463	Analysis pH 7.113
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)
87.577	0.90	16		96.713	0.584
Reach CBOD5 (mg/L)	Reach Ko		E	each NH3-N (mg/L)	Reach Kn (1/days)
3.83	1.21	_		0.63	1.343
Reach DO (mg/L)	Reach Kr 7.33			Kr Equation User Supplied	Reach DO Goal (mg/L) 5
5.537	7.53	-		Oser Supplied	5
Reach Travel Time (days) 0.042	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	(,-,				
	0.004	3.81	0.63	5.55	
			0.63 0.63	5.55 5.56	
	0.004	3.78			
	0.004	3.78 3.75	0.63	5.58	
	0.004 0.008 0.013	3.78 3.75 3.72	0.63 0.62	5.58 5.58	
	0.004 0.008 0.013 0.017	3.78 3.75 3.72 3.69	0.63 0.62 0.62	5.58 5.59	
	0.004 0.008 0.013 0.017 0.021	3.78 3.75 3.72 3.69 3.67	0.63 0.62 0.62 0.61	5.56 5.58 5.59 5.60	
	0.004 0.008 0.013 0.017 0.021	3.78 3.75 3.72 3.69 3.67 3.64	0.63 0.62 0.62 0.61 0.61	5.56 5.58 5.59 5.60 5.62	
	0.004 0.008 0.013 0.017 0.021 0.025	3.78 3.75 3.72 3.69 3.67 3.64 3.61 3.58	0.63 0.62 0.62 0.61 0.61	5.56 5.58 5.59 5.60 5.62 5.63	

Version 1.1

Friday, October 1, 2021

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		07H	8	3032			cc	DORUS	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10) Flow											
26.140	15.84	0.00	15.84	.5105	0.00308	.794	54.98	69.22	0.37	0.070	24.84	7.00
25.710	16.18	0.00	16.18	1.7481	0.00126	.818	60.14	73.51	0.38	0.075	24.51	7.00
25.260	16.22	0.00	16.22	1.7481	0.00164	.813	59.36	73.06	0.37	0.133	24.51	7.00
24.450	21.60	0.00	21.60	22.942	0.00080	.918	86.69	94.48	0.56	0.080	28.61	7.12
23.900	21.69	0.00	21.69	22.942	0.00072	.903	85.53	94.77	0.58	0.307	28.60	7.12
21.000	23.23	0.00	23.23	23.0518	0.00080	.908	87.58	96.71	0.58	0.042	28.46	7.11
Q1-10	0 Flow											
26.140	10.14	0.00	10.14	.5105	0.00308	NA	NA	NA	0.29	0.089	24.78	7.00
25.710	10.35	0.00	10.35	1.7481	0.00126	NA	NA	NA	0.29	0.094	24.28	7.00
25.260	10.38	0.00	10.38	1.7481	0.00164	NA	NA	NA	0.30	0.166	24.28	7.00
24.450	13.82	0.00	13.82	22.942	0.00080	NA	NA	NA	0.52	0.064	29.37	7.15
23.900	13.88	0.00	13.88	22.942	0.00072	NA	NA	NA	0.52	0.341	29.37	7.15
21.000	14.86	0.00	14.86	23.0518	0.00080	NA	NA	NA	0.52	0.047	29.23	7.14
Q30-	10 Flow	,										
26.140	25.34	0.00	25.34	.5105	0.00308	NA	NA	NA	0.48	0.054	24.90	7.00
25.710	25.89	0.00	25.89	1.7481	0.00126	NA	NA	NA	0.46	0.059	24.68	7.00
25.260	25.95	0.00	25.95	1.7481	0.00164	NA	NA	NA	0.47	0.104	24.68	7.00
24.450	34.56	0.00	34.56	22.942	0.00080	NA	NA	NA	0.67	0.050	27.80	7.09
23.900	34.70	0.00	34.70	22.942	0.00072	NA	NA	NA	0.67	0.266	27.79	7.09
21.000	37.16	0.00	37.16	23.0518	0.00080	NA	NA	NA	0.68	0.036	27.66	7.08

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.6	Temperature Adjust Kr	•
D.O. Saturation	90.00%	Use Balanced Technology	•
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
07H	8032	CODORUS CREEK

(mg/L) (mg/L) (mg/L) (mg/L) 26.140 Spring Grove 11.3 15 11.3 15 0 0 25.710 Jackson Townshi 11.57 16 11.76 16 0 0 25.260 NA NA 11.75 NA NA NA 24.450 Pixelle 001 6.37 3 6.68 3 0 0 23.900 NA NA 0.69 NA NA NA 21.000 BAE Systems 11.11 46 6.8 46 0 0 3-N Chronic Allocations Baseline Baseline Multiple Multiple Critical Percent		07H	8032		COD	ORUS CREEK	Κ	
RMI Discharge Name Criterion (mg/L) WLA (mg/L) Criterion (mg/L) WLA (mg/L) Reach (mg/L) Reduction (mg/L) 26.140 Spring Grove 11.3 15 11.3 15 0 0 25.710 Jackson Townshi 11.57 16 11.76 16 0 0 25.260 NA NA NA 11.75 NA NA NA 24.450 Pixelle 001 6.37 3 6.68 3 0 0 23.900 NA NA NA 6.89 NA NA NA 21.000 BAE Systems 11.11 46 6.8 46 0 0 3-N Chronic Allocations RMI Discharge Name Baseline Criterion (mg/L) Multiple WLA (mg/L) Multiple WLA (mg/L) Critical Reach Percent Reduction 26.140 Spring Grove 1.38 7.5 1.38 7.5 0 0 25.280 NA NA NA 1.4 NA NA NA	H3-N A	Acute Allocatio	ns					
25.710 Jackson Townshi	RMI	Discharge Name	e Criterion	WLA	Criterion	WLA		Percent Reduction
25.280	26.14	0 Spring Grove	11.3	15	11.3	15	0	0
24.450 Pixelle 001 6.37 3 6.68 3 0 0 23.900 NA NA 0.69 NA NA NA 21.000 BAE Systems 11.11 46 6.8 46 0 0 3-N Chronic Allocations Baseline Criterion (mg/L) Multiple Criterion (mg/L) Multiple Multiple (mg/L) Critical Reach Reduction Percent Reduction 26.140 Spring Grove 1.38 7.5 1.38 7.5 0 0 25.710 Jackson Townshi 1.39 8 1.4 8 0 0 25.260 NA NA 1.4 NA NA NA 24.450 Pixelle 001 1.08 1.5 1.1 1.5 0 0 23.900 NA NA NA 1.1 NA NA NA	25.71	0 Jackson Townshi	11.57	16	11.76	16	0	0
23,900	25.26	0	NA	NA	11.75	NA.	NA	NA
21.000 BAE Systems 11.11 46 6.8 46 0 0 3-N Chronic Allocations RMI Discharge Name Baseline Criterion (mg/L) Multiple Criterion (mg/L) Multiple WLA (mg/L) Critical MVLA (mg/L) Percent Reduction 26.140 Spring Grove 1.38 7.5 1.38 7.5 0 0 25.710 Jackson Townshi 1.39 8 1.4 8 0 0 25.280 NA NA 1.4 NA NA NA 24.450 Pixelle 001 1.08 1.5 1.1 1.5 0 0 23.900 NA NA NA 1.1 NA NA NA	24.45	0 Pixelle 001	6.37	3	6.68	3	0	0
3-N Chronic Allocations RMI Discharge Name Baseline Criterion (mg/L) Baseline WLA (mg/L) Multiple Criterion (mg/L) Multiple WLA (mg/L) Critical Reach Percent Reduction 26.140 Spring Grove 1.38 7.5 1.38 7.5 0 0 25.710 Jackson Townshi 1.39 8 1.4 8 0 0 25.280 NA NA 1.4 NA NA NA 24.450 Pixelle 001 1.08 1.5 1.1 1.5 0 0 23.900 NA NA NA 1.1 NA NA NA	23.90	0	NA	NA	6.69	NA	NA	NA
RMI Discharge Name Baseline Criterion (mg/L) Baseline WLA (mg/L) Multiple Criterion (mg/L) Multiple WLA (mg/L) Critical Reach Percent Reduction 26.140 Spring Grove 1.38 7.5 1.38 7.5 0 0 25.710 Jackson Townshi 1.39 8 1.4 8 0 0 25.280 NA NA 1.4 NA NA NA 24.450 Pixelle 001 1.08 1.5 1.1 1.5 0 0 23.900 NA NA NA 1.1 NA NA NA	21.00	0 BAE Systems	11.11	46	6.8	46	0	0
RMII Discharge Name Criterion (mg/L) WLA (mg/L) Criterion (mg/L) WLA (mg/L) Reach (mg/L) Reduction 26.140 Spring Grove 1.38 7.5 1.38 7.5 0 0 25.710 Jackson Townshi 1.39 8 1.4 8 0 0 25.280 NA NA 1.4 NA NA NA 24.450 Pixelle 001 1.08 1.5 1.1 1.5 0 0 23.900 NA NA NA 1.1 NA NA NA	H3-N (Chronic Allocat	ions					
25.710 Jackson Townshi 1.39 8 1.4 8 0 0 25.260 NA NA 1.4 NA NA NA 24.450 Pixelle 001 1.08 1.5 1.1 1.5 0 0 23.900 NA NA 1.1 NA NA NA	RMI	Discharge Name	Criterion	WLA	Criterion	WĽA		
25.280 NA NA 1.4 NA NA NA 24.450 Pixelle 001 1.08 1.5 1.1 1.5 0 0 23.900 NA NA NA 1.1 NA NA NA	26.14	0 Spring Grove	1.38	7.5	1.38	7.5	0	0
24.450 Pixelle 001 1.08 1.5 1.1 1.5 0 0 23.900 NA NA 1.1 NA NA NA	25.71	0 Jackson Townshi	1.39	8	1.4	8	0	0
23.900 NA NA 1.1 NA NA NA	25.26	0	NA	NA	1.4	NA	NA	NA
	24.45	0 Pixelle 001	1.08	1.5	1.1	1.5	0	0
21.000 BAE Systems 1.37 23 1.11 23 0 0	23.90	0	NA	NA	1.1	NA	NA	NA
	21.00	0 BAE Systems	1.37	23	1.11	23	0	0

Dissolved Oxygen Allocations

		CBC	DD5	NH	3-N	Dissolved	d Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
26.14 S	pring Grove	21	21	7.5	7.5	5	5	0	0	
25.71 Ja	ackson Townshi	22	22	8	8	5	5	0	0	
25.26		NA.	NA	NA	NA	NA	NA	NA	NA	
24.45 P	ixelle 001	14	14	1.5	1.5	5	5	0	0	
23.90		NA	NA	NA	NA	NA.	NA	NA	NA	
21.00 B	AE Systems	25	25	23	23	5	5	0	0	

WQM 7.0 Effluent Limits

		<u>n Code</u> 032		Stream Name CODORUS CRE			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
28.140	Spring Grove	PA02860860	0.330	CBOD5	21		
				NH3-N	7.5	15	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
25.710	Jackson Townshi	PA02665660	0.800	CBOD5	22		
				NH3-N	8	16	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
24.450	Pixelle 001	PA000886900	13.700	CBOD5	14		
				NH3-N	1.5	3	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
21.000	BAE Systems	PA00092530	0.071	CBOD5	25		
				NH3-N	23	46	
				Dissolved Oxygen			5

NPDES Permit Fact Sheet Spring Grove Mill

Appendix B – Toxics Screening Analysis

"New" Toxics

		Conce	entration in µg/I		
Pollutants	Average Monthly Limit	Daily Maximum Limit	Non- Detected?	MDL used	DEP's Target QL
1,1,2-Trichloroethane	Monitor	Monitor	Y	1.0	0.5
1,1,2,2-Tetrachloroethane	0.85	1.326	Y	1.0	0.5
1,2-Dichloroehtane	1.899	2.963	Y	1.0	0.5
1,3-Dichloropropylene	1.699	2.651	Y	1.0	0.5
Total Antimony	9.88	15.415	Y	6.0	2.0
Total Cadmium	0.842	1.314	Y	3.0	0.2
Carbon Tetrachloride	1.15	1.794	Y	1.0	0.5
Chlorodibromomethane	1.999	3.119	Y	1.0	0.5
Hexavalent Chromium	14.211	22.172	Y	50	1.0
Total Copper	28.861	45.028	N		
Dichlorobromomethane	Monitor	Monitor	Y	1.0	0.5
Total Lead	14.211	22.172	N		
Total Selenium	8.803	13.734	Y	8.0	5.0
Tetrachloroethylene	Monitor	Monitor	Y	1.0	0.5
Total Thallium	0.423	0.661	Y	10	2.0
Vinyl Chloride	0.125	0.195	Y	1.0	0.5
Total Dissolved Solids	Monitor	Monitor	N		
Sulfate	Monitor	Monitor	N		
Chloride	Monitor	Monitor	N		
Bromide	Monitor	Monitor	N		
1,4-dioxane	TBD	TBD			

"Existing" Toxics

		Concentration in µg	/L
Pollutants	Existing	Average Monthly Limit	Daily Maximum Limit
Total Aluminum	Monitor	TBD	TBD
Total Boron	Monitor	N/A	N/A
Chloroform	20	20	31
2,3,7,8 – TCDD (pg/L)	0.035	0.035	0.035

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.4

Facility: P.H. Glatfelter Pulp & Paper Mill NPDES Permit No.: PA0008869 Outfall: 001
Analysis Hardness (mg/L): 249 Discharge Flow (MGD): 13.7 Analysis pH (SU): 7

			aximum Concentration in	Most Stringent	Most Stringent	pent Screening	
_	Parameter		pplication or DMRs (µg/L)	Criterion (µg/L)	Candidate for PENTOX SD Modeling?	WQBEL (µg/L)	Recommendation
-	Total Dissolved Solids		1260000	500000	Yes		Monitor
	Chloride	_		250000			Monitor
Group	Bromide	\vdash	1000	N/A	No		Monitor
ျပ	Sulfate	\vdash	486000	250000	Yes		Monitor
\vdash	Fluoride	\vdash	230	2000	No		
	Total Auminum Total Antimony	\vdash	764 0.36	750 5.6	Yes No	9.88	
	Total Arsenic	<	5	10	No No	9.00	
	Total Barium	 `	147	2400	No No		
	Total Beryllium	<	1	N/A	No (Value < QL)		
	Total Boron	È	96.8074	1600	No (Value - QL)		
	Total Cadmium	\vdash	0.37	0.532	No	0.842	
	Total Chromium	<	3	N/A	No (Value < QL)	0.0-12	
	Hexavalent Chromium	<	2	10.4	No	14.211	
	Total Cobalt	<	5	19	No		
2	Total Copper		66.3	20.3	Yes	28.861	Establish Limits
₹	Total Cyanide	<	5	N/A	No (Value < QL)		
Group	Total Iron	<	70	1500	No		
٦	Dissolved Iron	<	70	300	No		
	Total Lead		17.3	10.2	Yes	14.879	Establish Limits
	Total Manganese		325	1000	No No		
	Total Mercury Total Molybdenum	<	0.2 20	0.05 N/A	No (Value < QL) No		
	Total Nickel	l-	37.1	112.9	No No		
	Total Phenois (Phenolics)	<	50	5	Yes	37051.79	No Limits/Monitoring
	Total Selenium	È	0.23	5.0	No	8.803	NO LITTLES MODITORING
	Total Silver	<	6	18.2	No	0.000	
	Total Thallium	<	0.028	0.24	No (Value < QL)	0.423	
	Total Zinc		24.7	259.5	No		
\Box	Acrolein	<	2	3	No (Value < QL)		
	Acrylamide	<		0.07			
1	Acrylonitrile	<	2	0.051	No (Value < QL)		
1	Benzene	<	1	1.2	No		
1	Bromoform	<	11	4.3	No		
	Carbon Tetrachloride	<	0.34	0.23	No (Value < QL)	1.15	
	Chlorobenzene	<	0.43	130 0.4	No No No Notation of OLD	1.999	
	Chlorodibromomethane Chloroethane	7	1	N/A	No (Value < QL) No	1.899	
	2-Chloroethyl Vinyl Ether	~	2	3500	No (Value < QL)		
1	Chloroform	<	1	5.7	No (Value - QL)		
1	Dichlorobromomethane	<	0.35	0.55	No (Value < QL)	2.749	
	1,1-Dichloroethane	<	1	N/A	No		
12	1,2-Dichloroethane	<	0.36	0.38	No (Value < QL)	1.899	
Group	1,1-Dichloroethylene	<	1	33	No		
5	1,2-Dichloropropane	<	1	2200	No		
1	1,3-Dichloropropylene	<	0.37	0.34	No (Value < QL)	1.699	
	Ethylbenzene	<	1	530	No		
	Methyl Chlorida	-	1.1	47 5500	No No		
	Methyl Chloride Methylene Chloride	<	1	5500 4.6	No No		
	1,1,2,2-Tetrachioroethane	7	0.34	0.17	No (Value < QL)	0.851	
	Tetrachloroethylene	<	0.33	0.69	No (Value < QL)	3.449	
	Toluene	<	1	330	No		
	1,2-trans-Dichloroethylene	<	1	140	No		
	1,1,1-Trichloroethane	<	1	610	No		
	1,1,2-Trichloroethane	<	0.45	0.59	No (Value < QL)	2.949	
	Trichloroethylene	<	11	2.5	No		
\vdash	Vinyl Chloride	<	0.31	0.025	No (Value < QL)	0.125	
	2-Chlorophenol	<		81			
	2,4-Dichlorophenol 2,4-Dimethylphenol	<		77 130			
	4,6-Dinitro-o-Cresol	~		13			
4	2,4-Dinitrophenol	7		69			
₹	2-Nitrophenol	<		1600			
Group	4-Nitrophenol	<		470			
١	p-Chloro-m-Cresol	<		30			
	Pentachlorophenol	<		0.27			
	Phenol	<		10400			
\vdash	2,4,6-Trichlorophenol	<		1.4			
	Acenaphthene	<		17			

Toxics Screening Analysis Spreadsheet (v 2.4)- revised, 11/13/2023

	Assessabilitations	<	NII A	
1	Acenaphthylene		N/A	
1	Anthracene	<	8300	
	Benzidine	<	0.000086	
	Benzo(a)Anthracene	<	0.0038	
1	Benzo(a)Pyrene	<	0.0038	
1	3,4-Benzofluoranthene	<	0.0038	
	Benzo(ghi)Perylene	<	N/A	
1	Benzo(k)Fluoranthene	<	0.0038	
	Bis(2-Chloroethoxy)Methane	<	N/A	
	Bis(2-Chloroethyl)Ether	<	0.03	
	Bis(2-Chloroisopropyl)Ether	<	1400	
	Bis(2-Ethylhexyl)Phthalate	<	1.2	
1	4-Bromophenyl Phenyl Ether	<	54	
	Butyl Benzyl Phthalate	<	35	
	2-Chloronaphthalene	<	1000	
	4-Chlorophenyl Phenyl Ether	<	N/A	
	Chrysene	<	0.0038	
		<		
	Dibenzo(a,h)Anthrancene		0.0038	
	1,2-Dichlorobenzene	<	160	
	1,3-Dichlorobenzene	<	69	
1	1,4-Dichlorobenzene	<	150	
2	3,3-Dichlorobenzidine	<	0.021	
1 🚊	Diethyl Phthalate	<	800	
	Dimethyl Phthalate	<	500	
۱۳	Di-n-Butyl Phthalate	<	21	
		<		
1	2,4-Dinitrotoluene		0.05	
1	2,6-Dinitrotoluene	<	0.05	
	1,4-Dioxane	<	N/A	
	Di-n-Octyl Phthalate	<	N/A	
	1,2-Diphenylhydrazine	<	0.036	
	Fluoranthene	<	40	
	Fluorene	<	1100	
1	Hexachlorobenzene	<	0.00028	
1				
1	Hexachlorobutadiene	<	0.44	
	Hexachlorocyclopentadiene	<	1	
	Hexachloroethane	<	1.4	
	Indeno(1,2,3-cd)Pyrene	<	0.0038	
	Isophorone	<	35	
1	Naphthalene	<	43	
1	Nitrobenzene	<	17	
1	n-Nitrosodimethylamine	<	0.00069	
1	n-Nitrosodi-n-Propylamine	<	0.005	
1		<	3.3	
1	n-Nitrosodiphenylamine			
1	Phenanthrene	<	1	
1	Pyrene	<	830	
\vdash	1,2,4-Trichlorobenzene	<	26	
1	Aldrin	<	0.000049	
1	alpha-BHC	<	0.0026	
1	beta-BHC	<	0.0091	
	gamma-BHC	<	0.098	
1	delta BHC	<	N/A	
1	Chlordane	<	0.0008	
	4,4-DDT	<	0.00022	
	4,4-DDE	<	0.00022	
1	4,4-DDD	<	0.00031	
1				
1	Dieldrin	<	0.000052	
		< <		
9	Dieldrin		0.000052	
9 dı	Dieldrin alpha-Endosulfan beta-Endosulfan	<	0.000052 0.056	
g dno.	Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate	< < <	0.000052 0.056 0.056 N/A	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin	< < < < < < < < < < < < < < < < < < <	0.000052 0.056 0.056 N/A 0.036	
₽	Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde	< < < < < < < < < < < < < < < < < < <	0.000052 0.056 0.056 N/A 0.036 0.29	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endosulfan Finderin Endrin Aldehyde Heptachlor	< < < < < < < < < < < < < < < < < < <	0.000052 0.056 0.056 N/A 0.036 0.29 0.000079	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide	< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	0.000062 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242	4 4 4 4 4 4 4 4 4 4 4 4	0.000062 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.000052 0.056 0.056 N/A 0.038 0.29 0.000079 0.000039 N/A N/A	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242	<td>0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A N/A</td> <td></td>	0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A N/A	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.000052 0.056 0.056 N/A 0.038 0.29 0.000079 0.000039 N/A N/A	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1254	<td>0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A N/A</td> <td></td>	0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A N/A	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1251 PCB-1232 PCB-1232 PCB-1248	4 4	0.000062 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A N/A N/A	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1254 PCB-1232 PCB-1232 PCB-1248 PCB-1260	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.000062 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A N/A N/A N/A	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1254 PCB-1221 PCB-1232 PCB-1288 PCB-1248 PCB-1260 PCB-1016		0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A N/A N/A N/A N/A	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1251 PCB-1251 PCB-1252 PCB-1260 PCB-1066 Toxaphene		0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1251 PCB-1232 PCB-1232 PCB-1248 PCB-1280 PCB-1016 Toxaphene 2,3,7,8-TCDD	<pre></pre>	0.000062 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A	
Group 6	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016 Toxaphene 2.3.7.8-TCDD Gross Alpha (pCVL)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A	
7 Group	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016 Toxaphene 2,3,7,8-TCDD Gross Alpha (pCVL) Total Beta (pCVL)		0.000052 0.056 0.056 N/A 0.038 0.29 0.000079 0.000039 N/A	
7 Group	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016 Toxaphene 2.3.7.8-TCDD Gross Alpha (pCVL)	<pre></pre>	0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A	
7 Group	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016 Toxaphene 2,3,7,8-TCDD Gross Alpha (pCVL) Total Beta (pCVL)		0.000052 0.056 0.056 N/A 0.038 0.29 0.000079 0.000039 N/A	
oup 7 Group	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1251 PCB-1251 PCB-1252 PCB-1260 PCB-1016 Toxaphene 2,3,7,8-TCDD Gross Alpha (pCl/L) Total Beta (pCl/L) Radium 226/228 (pCl/L)	<pre></pre>	0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000079 0.000038 N/A	
7 Group	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1251 PCB-1232 PCB-1232 PCB-1248 PCB-1280 PCB-1016 Toxaphene 2,3,7,8-TCDD Gross Alpha (pCVL) Total Strontium	<pre></pre>	0.000062 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A	
7 Group	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1251 PCB-1232 PCB-1232 PCB-1248 PCB-1280 PCB-1016 Toxaphene 2,3,7,8-TCDD Gross Alpha (pCVL) Total Strontium	<pre></pre>	0.000062 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A	
7 Group	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1251 PCB-1232 PCB-1232 PCB-1248 PCB-1280 PCB-1016 Toxaphene 2,3,7,8-TCDD Gross Alpha (pCVL) Total Strontium	<pre></pre>	0.000062 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A	
7 Group	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1251 PCB-1232 PCB-1232 PCB-1248 PCB-1280 PCB-1016 Toxaphene 2,3,7,8-TCDD Gross Alpha (pCVL) Total Strontium	<pre></pre>	0.000062 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A	
7 Group	Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 PCB-1254 PCB-1251 PCB-1232 PCB-1232 PCB-1248 PCB-1280 PCB-1016 Toxaphene 2,3,7,8-TCDD Gross Alpha (pCVL) Total Strontium	<pre></pre>	0.000062 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 N/A	

Toxics Screening Analysis Spreadsheet (v 2.4)- revised, 11/13/2023

11/13/2023

	Facility: NPDE3 #: Outfall No: n (3amples/Moni Reviewer/Permit		P.H. Glatfelter Pt. PA0008869 001 4 Jinsu Kim	ip and Paper Mil						
Parameter Name	Total Aluminum		Color (summer)							
Units Detection Limit	mg/L	mg/L 0.05	other	other						-
Delegion Clinic		0.03								
Sample Date	When entering v	alues below the	detection limit, er	iter "ND" or use t	the < notation (eg	. <0.02)				
5/1/2014	0.703	0.064								
5/1/2014	0.703	0.064								
6/1/2014	0.703	0.064								
7/1/2014	0.432	< 0.05								
8/1/2014	0.414	< 0.05								
9/1/2014		< 0.05								
10/1/2014		< 0.05								
11/1/2014		< 0.05								
12/1/2014		< 0.05								
1/1/2015		< 0.05								
2/1/2015		< 0.05								
3/1/2015	0.598	0.056								
4/1/2015	0.48	0.059								
5/1/2015	0.48	0.059								
6/1/2015	1.84	0.391								-
7/1/2015	0.431	0.071								
8/1/2015	0.428	0.088								
9/1/2015	0.444	0.122								
10/1/2015	0.539	0.054								
11/1/2015	0.502	0.056								
12/1/2015		< 0.05								
1/1/2016		< 0.05								-
2/1/2016	0.529									-
3/1/2016		< 0.050								
4/1/2016		< 0.05								_
5/1/2016		< 0.050								_
6/1/2016		< 0.050								_
7/1/2016		< 0.050								_
8/1/2016		< 0.050				-				+
9/1/2016		< 0.050					-		-	_
10/1/2016		< 0.050								_
11/1/2016		< 0.050					 			 +-
12/1/2016 1/1/2017		< 0.050 < 0.050					 			 _
1/1/2017 2/1/2017		< 0.050				_				 +-
2/1/2017 3/1/2017		< 0.050								+
4/1/2017		< 0.050								+
4/1/2017 5/1/2017		< 0.050 < 0.050								 -
6/1/2017		< 0.050								-
7/1/2017		< 0.050								_
8/1/2017		< 0.050								_
9/1/2017	0.603	< u.usu 0,0511								_
10/01/2017	0.603	0.051								_
11/01/2017	0.603	0.0511								_
12/01/2017	0.603	0.0511					 			 -
01/01/2018	0.663	< 0.050								+
02/01/2018	0.324	< 0.050								+
03/01/2018	0.264	< 0.050								 -
04/01/2018	0.435	< 0.050								_

87

Parameter Name	Total Aluminum	Total Boron	Color (summer)	Calar (winter)							
Units	mg/L	mg/L	other	other							
Detection Limit		0.05									
Sample Date	When entering v	alues helow the	detection limit, en	ter "ND" or use t	the < notation (ec	<0.021					
05/01/2018	0.346	< 0.050									
06/01/2018	0.346	< 0.050							_		
07/01/2018	0.346	< 0.050									
08/01/2018	0.334	< 0.050									_
09/01/2018	0.303	< 0.0500									
10/01/2018	0.303	< 0.050									
11/01/2018	0.38	< 0.050									
12/01/2018	0.351	< 0.050									
01/01/2019	0.496	< 0.050									
02/01/2019	0.414	< 0.050									
03/01/2019	0.414	< 0.050									
04/01/2019	0.414	< 0.050									_
05/01/2019	0.414	< 0.050									
06/01/2019	1.32	0.19									-
07/01/2019	0.35	0.057									
08/01/2019	0.415	0.057									
09/01/2019	0.305	0.066									
10/01/2019	0.439	0.058									
11/01/2019	0.697	0.053									-
12/01/2019	0.478	0.054									
01/01/2020	0.62	< 0.050									
02/01/2020	0.709	< 0.050									_
03/01/2020	0.522	< 0.050									
04/01/2020	0.522	< 0.0500									
05/01/2020	0.745	< 0.050									
06/01/2020	0.345	< 0.050									
07/01/2020	0.352	< 0.050									-
08/01/2020	0.7	< 0.050									
09/01/2020	0.51	< 0.050									-
10/01/2020	0.575	< 0.050									
11/01/2020	0.468	< 0.050									$\overline{}$
12/01/2020	1.18	< 0.050									
01/01/2021	0.596	< 0.050									
02/01/2021	0.708	< 0.050									
03/01/2021	0.597	< 0.050									
04/01/2021	0.33	< 0.050					1				
05/01/2021	0.482	< 0.050									
06/01/2021	0.613	< 0.050									
07/01/2021	0.523	< 0.050									
08/01/2021	0.503	< 0.050									
09/01/2021	0.474	< 0.050									
10/01/2021	0.646	< 0.050									
11/01/2021	0.108	< 0.050									
12/01/2021	0.749	< 0.050									
01/01/2022	1.28	< 0.050									
02/01/2022	1.07	< 0.050									
03/01/2022	1.27	0.054									
04/01/2022	1.18	0.0622									
05/01/2022	0.672	0.0853									
06/01/2022	0.672	0.0853									
07/01/2022	3.61	0.215									

11/13/2023

11/13/2023

Reviewer/Permit Engineer: Jinsu Kim

Facility: P.H. Glatfelter Pulp and Paper Mill NPDES #: PA0008869

Outfall No: 001
n (Samples/Month): 4

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Total Aluminum (mg/L)	Lognormal	0.4737515	0.9918290
Total Boron (mg/L)	Delta-Lognormal	0.4516499	0.0910889
Color (summer) (other)			
Color (winter) (other)			

TOXCON Output 11/13/2023

Appendix B - WET Analysis Spreadsheet

1	DEP Wh	ole E	ffluent Tox	icity (WET) Analysis	Spreadshee	et	
Type of Test		Chro			Facility Na		
Species Test	ed		phales				
Endpoint TIWC (decima	all)	Grow 0.58	<i>t</i> h	Pixelle	Speciality So	lutions LLC	
No. Per Repli		10			Permit No	n.	
TST b value		0.75			PA0008869		
TST alpha va	lue	0.25					
			etion Date	1		oletion Date	
Replicate		10/26/		Replicate		2/2010	
No.	Contr	_	TIWC	No.	Control	TIWC	
1	0.38	\rightarrow	0.419	1	0.82	0.81	
2	0.39	_	0.351	2	0.84	0.9	
3 4	0.40	-	0.397	4	0.75 0.83	0.71 0.8	
5	0.30	1	0.405	5	0.83	0.8	
_		\rightarrow					
6		-		8			
7 8		-		7 8			
9		-		9			
10		\rightarrow		10			
11		_		11			
12		-		12			
13		-		13			
14		\rightarrow		14			
15		_		15			
10				, ,			
Mean	0.37	0	0.393	Mean	0.810	0.805	
Std Dev.	0.02		0.029	Std Dev.	0.041	0.078	
# Replicates	4	_	4	# Replicates	4	4	
T-Test Result		6.22		T-Test Result	4.7	310	
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om	6.22 5 0.72 PA:	267		4.7 om ie 0.7		
Deg. of Freed Critical T Valu	om le	5 0.72 PA	267	T-Test Result Deg. of Freed Critical T Valu	4.7 om ie 0.7 P#	7310 4 7407	
Deg. of Freed Critical T Valu	om le	5 0.72 PA	267 SS etion Date	T-Test Result Deg. of Freed Critical T Valu	4.7 om le 0.7 P#	7310 4 7407 ASS	
Deg. of Freed Critical T Valu Pass or Fail	om le	5 0.72 PA: Compl 2/22/2	267 SS etion Date	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No.	4.7 om le 0.7 P#	7310 4 7407 ASS	
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	Test C	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14	7310 4 7407 ASS Detion Date /2011 TIWC	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	Test 0	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38	7310 4 7407 ASS Deletion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	Test 0	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38	7310 4 7407 ASS Deletion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test 0 Contr 0.58 0.7 0.8	5 0.72 PA: Compl 2/22/2 rol	etion Date 2011 TIWC 0.73 0.98 0.87	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	4.7 om ie 0.7 P# Test Comp 6/14 Control 1.14 1.38 1.32	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test (Contr 0.55 0.7 0.8 0.67	5 0.72 PA: Complete C	etion Date 2011 TIWC 0.73 0.98 0.87 0.83	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	4.7 Test Comp 6/14 Control 1.14 1.38 1.32 1.23	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5 1.4 1.57	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test C Contr 0.55 0.7 0.8 0.67	5 0.72 PA: Compl 2/22/2 rol 5 7 7 0 0 0	etion Date 2011 TIWC 0.73 0.98 0.87 0.83	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 Mean	4.7 om le 0.7 P/ Test Comp 6/14 Control 1.14 1.38 1.32 1.23	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5 1.4 1.57	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Contr 0.55 0.7 0.8 0.67	5 0.72 PA: Compl 2/22/2 rol 5 7 7 0 0 0	0.853 0.807 0.858 0.870 0.870 0.83	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 Mean Std Dev.	4.7 om le 0.7 P/ Test Comp 6/14 Control 1.14 1.38 1.32 1.23 1.23 1.23	7310 4 7407 ASS Detion Date /2011 TIWC 1.09 1.5 1.4 1.57	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	0.68 0.10 0.68	5 0.72 PA: Compl 2/22/2 rol 5 7 7 0 0 0	0.853 0.103 4	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 Mean	4.7 om le 0.7 P/ Test Comp 6/14 Control 1.14 1.36 1.32 1.23	7310 4 7407 ASS Dietion Date /2011 TIWC 1.09 1.5 1.4 1.57	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.68 0.10 0.68	5 0.72 PA: Compl 2/22/2 rol 5 7 7 0 0 3	0.853 0.800	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	1.263 0.098 4.70 0.70 1.14 1.36 1.32 1.23	1.390 0.212 4	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Ome Test C Contr 0.55 0.7 0.8 0.67	5 0.72 PA: Complete	0.853 0.800 0.800 0.87 0.83	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	1.263 0.098 4	1.390 0.212 4	

	_		icity (WET) Analysis				
Type of Test Species Test		nronic eriodaphnia		Facility Na	me		
Endpoint	_	enodapnnia	Pivalla	Speciality So	dutions LLC		
TIWC (decim		58	1 ixelle	e opeciality of	olutions EEC		
No. Per Repli				Permit N	0.		
TST b value		75		PA0008869			
TST alpha va	lue 0.:	2					
		npletion Date		Test Completion Date			
Replicate		26/2010	Replicate		2/2010		
No.	Control	TIWC	No.	Control	TIWC		
1	18	20	1	19	16		
2	14	24	2	19	20		
3	27	11	3	19	18		
4	22	22	4	1	15		
5	20	18	5	16	20		
6	20	38	6	16	16		
7	15	15	7	17	17		
8	32	40	8	17	18		
9	35	34	9	17	17		
10	23	40	10	16	21		
11		1	11				
12			12				
13			13				
14			14				
15		_	15				
10			10				
	00.000	00.000	.,	45 700	47.000		
Mean	22.600	26.200	Mean	15.700	17.800		
Std Dev.	6.899	10.881	Std Dev.	5.314	1.989		
# Replicates	10	10	# Replicates	10	10		
# Replicates			# Replicates				
# Replicates T-Test Result	2	.4277	# Replicates T-Test Result	4.2	2778		
# Replicates T-Test Result Deg. of Freed	om 2	.4277 14	# Replicates T-Test Result Deg. of Freed	4.2 lom	2778		
# Replicates T-Test Result Deg. of Freed Critical T Valu	2 om ie 0	.4277 14 .8681	# Replicates T-Test Result Deg. of Freed Critical T Valu	4.2 lom ue 0.8	2778 17 8633		
# Replicates T-Test Result Deg. of Freed	2 om ie 0	.4277 14	# Replicates T-Test Result Deg. of Freed	4.2 lom ue 0.8	2778		
# Replicates T-Test Result Deg. of Freed Critical T Valu	2 om ie 0	.4277 14 .8881 PASS	# Replicates T-Test Result Deg. of Freed Critical T Valu	4.2 lom ue 0.8	2778 17 8633 ASS		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om e 0 F Test Con	.4277 14 .8681 PASS	# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail	4.2 lom je 0.8 P#	2778 17 8633 ASS pletion Date		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om ie 0 F Test Con	.4277 14 .8881 PASS npletion Date :2/2011	# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate	4.2 lom le 0.8 P/ Test Comp	2778 17 3633 ASS pletion Date /2011		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No.	om ie 0 F Test Con 2/2 Control	.4277 14 .8881 PASS npletion Date :2/2011	# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No.	4.2 lom le 0.8 P/ Test Comp 6/14 Control	2778 17 3633 ASS pletion Date /2011		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	2 om le 0 F Test Con 2/2 Control 20	.4277 14 .8881 PASS npletion Date !2/2011 TIWC 22	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	4.2 iom 0.8 P/ Test Comp 6/14 Control 18	2778 17 3633 ASS pletion Date /2011 TIWC		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2	20 m le 0 F Test Con 2/2 Control 20 18	.4277 14 .8881 PASS npletion Date .2/2011 TIWC 22 23	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2	4.2 dom	2778 17 3633 ASS pletion Date /2011 TIWC 11		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	20 mile 0 F Test Con 2/2 Control 20 18	.4277 14 .8681 PASS npletion Date .2/2011 TIWC 22 23 17	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	4.2 dom	2778 17 3633 ASS pletion Date /2011 TIWC 11 15		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	2 om e 0 F Test Con 2/2 Control 20 18 10 25	.4277 14 .8881 PASS npletion Date .2/2011 TIWC 22 23 17 22	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	4.2 dom	2778 17 3633 ASS pletion Date /2011 TIWC 11 15 14		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	20 me 0 F Test Con 2/2 Control 20 18 10 25 23	.4277 14 .8681 PASS npletion Date .2/2011 TIWC 	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	4.2 dom	2778 17 3633 ASS pletion Date /2011 TIWC 11 15 14 13		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	20 me 0 F Test Con 2/2 Control 20 18 10 25 23 22	.4277 14 .8881 PASS	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8	4.2 dom	2778 17 8633 ASS Detion Date /2011 TIWC 11 15 14 13 15		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	20 me 0 F Test Con 2/2 Control 20 18 10 25 23	.4277 14 .8681 PASS npletion Date .2/2011 TIWC 	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	4.2 lom	2778 17 3633 ASS pletion Date /2011 TIWC 11 15 14 13		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	20 me 0 F Test Con 2/2 Control 20 18 10 25 23 22	.4277 14 .8881 PASS	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8	4.2 dom	2778 17 8633 ASS Detion Date /2011 TIWC 11 15 14 13 15		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	20 Test Con 2/2 Control 20 18 10 25 23 22 14	.4277 14 .8881 PASS	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	4.2 lom	2778 17 8633 ASS Pletion Date /2011 TIWC 11 15 14 13 15 15		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	2 om se 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23	.4277 .14 .8881 .8881	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	4.2 lom	2778 17 3633 ASS Detion Date /2011 TIWC 11 15 14 13 15 15 15		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	2 om se 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24	.4277 14 .8681 PASS Impletion Date .2/2011 TIWC 22 23 17 22 18 14 22 23 17	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	4.2 om 10	2778 17 3633 ASS pletion Date /2011 TIWC 11 15 14 13 15 15 15 12 10		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	2 om se 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24	.4277 14 .8681 PASS Impletion Date .2/2011 TIWC 22 23 17 22 18 14 22 23 17	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	4.2 om 10	2778 17 3633 ASS pletion Date /2011 TIWC 11 15 14 13 15 15 15 12 10		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	2 om se 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24	.4277 14 .8681 PASS Impletion Date .2/2011 TIWC 22 23 17 22 18 14 22 23 17	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	4.2 om 10	2778 17 28633 ASS Poletion Date /2011 TIWC 11 15 14 13 15 15 15 12 10		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	2 om se 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24	.4277 14 .8681 PASS Impletion Date .2/2011 TIWC 22 23 17 22 18 14 22 23 17	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	4.2 om 10	2778 17 3633 ASS pletion Date /2011 TIWC 11 15 14 13 15 15 15 12 10		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14	2 om se 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24	.4277 .14 .8681 .9ASS mpletion Date	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	4.2 om 10	2778 17 3633 ASS pletion Date /2011 TIWC 11 15 14 13 15 15 15 12 10		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	2 om se 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24	.4277 .14 .8681 .9ASS mpletion Date	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	4.2 om 10	2778 17 3633 ASS pletion Date /2011 TIWC 11 15 14 13 15 15 15 12 10		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	20 ms e 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24 19	.4277 .14 .8881 .8881 .24SS .22011 .22 .23 .17 .22 .18 .14 .22 .23 .13 .25	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4.2 om lee 0.8 P/ Test Comp 6/14 Control 18 15 16 11 17 15 16 14 12 16	2778 17 2833 ASS Deletion Date //2011 TIWC 11 15 14 13 15 15 12 10 15 12		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	20 me 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24 19 19 19 800	.4277 .14 .8881 .8881 .74 SS .75 Inpletion Date .2/2011 .77 IWC .77 SS .	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	4.2 om lee 0.8 py Test Comp 6/14 Control 18 15 16 11 17 15 16 14 12 16 18 15 16 11 17	2778 17 2833 ASS Detion Date /2011 TIWC 11 15 14 13 15 15 12 10 15 12		
#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	20 ms e 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24 19 19 19.800 4.756	.4277 .14 .8881 .8881 .74 SS .75 Inpletion Date .2/2011 .77 IWC .77	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	15.000 2.160	2778 17 2833 ASS Detion Date /2011 TIWC 11 15 14 13 15 15 12 10 15 12 10 15		
#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 Mean	20 me 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24 19 19 19 800	.4277 .14 .8881 .8881 .74 SS .75 Inpletion Date .2/2011 .77 IWC .77 SS .	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	15.000 2.160	2778 17 2833 ASS Detion Date /2011 TIWC 11 15 14 13 15 15 12 10 15 12		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	20 ms e 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24 19 19.800 4.756 10	.4277 .14 .8881 .8881 .7ASS Inpletion Date	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. #Replicates	15.000 2.180 10	2778 17 3833 ASS Detion Date /2011 TIWC 11 15 14 13 15 15 12 10 15 12 10 15 12		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	20 ms e 0 F Test Control 20 18 10 25 23 22 14 23 24 19 19.800 4.756 10 2	.4277 14 .8881 PASS ppletion Date 2/2011 TIWC 22 23 17 22 18 14 22 23 13 25 19.900 4.122 10	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 Mean Std Dev. #Replicates T-Test Result	15.000 2.480 10 2.4	2778 17 2833 ASS Deletion Date //2011 TIWC 11 15 14 13 15 15 12 10 15 12 10 15 12 10 15 12 10 15 12 10 15 10 15 10 11 10 15 10 10 11 11		
# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	2 om se 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24 19 19 19.800 4.758 10 20 om	14 .8681 PASS Impletion Date 12/2011 TIWC 22 23 17 22 23 13 25 19.900 4.122 10 .9296 17	# Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	4.2 om 6/14 Control 18 15 16 11 17 15 16 14 12 16 15 10 10 2.180 10	2778 17 28633 ASS Pletion Date //2011 TIWC 11 15 14 13 15 15 12 10 15 12 10 15 12 10 15 12 10 15 12 10 15 12 10 15 12 10 15 12 10 15 17 1894		
#Replicates T-Test Result Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. #Replicates T-Test Result	2 om le 0 F Test Con 2/2 Control 20 18 10 25 23 22 14 23 24 19 19 19.800 4.758 10 20 om le 0 0	.4277 14 .8881 PASS ppletion Date 2/2011 TIWC 22 23 17 22 18 14 22 23 13 25 19.900 4.122 10	#Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 Mean Std Dev. #Replicates T-Test Result	15.000 2.180 10 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.	2778 17 2833 ASS Detion Date //2011 TIWC 11 15 14 13 15 15 12 10 15 12 10 15 12 10 15 12 10 15 12 10 15 12 10 15 10 15 10 11 10 15 10 11 11		

WET Summary and Evaluation

Facility Name Permit No. Design Flow (MGD)

Pixelle Speciality Solutions LLC

Q₇₋₁₀ Flow (cfs) PMF_a PMF_c

PA0008869
13.7
21.6
1
1

			Test Results (Pass/Fail)							
		Test Date	Test Date	Test Date	Test Date					
Species	Endpoint	10/26/10	12/22/10	2/22/11	6/14/11					
Pimephales	Survival	PASS	PASS	PASS	PASS					

			Test Results	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	10/26/10	12/22/10	2/22/11	6/14/11
Pimephales	Growth	PASS	PASS	PASS	PASS

		Test Date	Test Date	Test Date	Test Date							
Species	Endpoint	10/26/10	12/22/10	2/22/11	6/14/11							
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS							

		111111111111111111111111111111111111111										
		Test Date	Test Date	Test Date	Test Date							
Species	Endpoint	10/26/10	12/22/10	2/22/11	6/14/11							
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS							

Reasonable Potential? NO

Chronic

Permit Recommendations
Test Type
TIWC 50 % Effluent

Dilution Series 13, 25, 50, 75, 100 % Effluent

Permit Limit None

Permit Limit Species

Appendix C – Data Analysis for Color

	Upstream	Downstream	Effluent	Influent		Upstream (Downstream	Effluent	Influent		Upstream	Downstream	Effluent I	nfluent
5/1/2012	19	71	140	375	1/1/2013	10	32	122	280	1/1/2014	11	34	133	335
5/2/2012	19	60		260	1/2/2013	35	36	120	260	1/2/2014	12	32	125	270
5/3/2012	16	59	117	240	1/3/2013	9	38	121	345	1/3/2014	17	43	132	320
5/4/2012	13	56	111	325	1/4/2013	17	39	139	495	1/4/2014	15	31	114	255
5/5/2012	9	52	113	215	1/5/2013	10	34	108	260	1/5/2014	17	37	101	305
5/6/2012	14	54	124	475	1/6/2013	15	30	80	340	1/6/2014	48	71	105	285
5/7/2012	- 11	63	144		1/7/2013		30	113	300	1/7/2014	20	47	113	155
5/8/2012	11	52	142		1/8/2013		34			1/8/2014	27	29	103	195
5/9/2012	8	59			1/9/2013		47			1/9/2014		2.0	103	315
10/2012	12	79			1/10/2013		55			1/10/2014	9	30	124	355
/11/2012	19	74			1/11/2013		35			1/11/2014	43	50		275
/12/2012	13	56			1/12/2013		32			1/12/2014	37	41	102	345
/13/2012	9	46			1/13/2013		88			1/13/2014	18	34	159	290
/14/2012	20	25			1/14/2013		45			1/14/2014	14	25	125	185
/15/2012	34	36		102	1/15/2013		30			1/15/2014	14	22	102	290
/16/2012	32	37	39	155	1/16/2013		58			1/16/2014	10	22	117	315
/17/2012	12	12	45	90	1/17/2013	24	31	98	420	1/17/2014	8	36	141	500
/18/2012	30	34	20	30	1/18/2013	12	15	119	250	1/18/2014	11	32	139	455
/19/2012	12	11	20	110	1/19/2013	15	25	117	380	1/19/2014	10	26	143	345
/20/2012	11	15	30	310	1/20/2013	15	32	119	245	1/20/2014	5	23	136	780
/21/2012	22	22	36	180	1/21/2013		33	107	325	1/21/2014	14	36	149	510
/22/2012	24	33			1/22/2013		38			1/22/2014	24	30		150
/23/2012	26	40			1/23/2013		42			1/23/2014	10	12		160
/24/2012	20	41	100				57				13	19	75	135
	14	37	120		1/24/2013		44		250	1/24/2014	8	15		230
/25/2012	7	49			1/25/2013		34			1/25/2014	11	15		206
/27/2012	15	50			1/27/2013		50			1/27/2014	11	21	79	160
/28/2012	16	47	163	240	1/28/2013		38			1/28/2014	9	22	87	140
/29/2012	34	40		230	1/29/2013		39			1/29/2014	11	24	91	310
/30/2012	74	74		315	1/30/2013		46			1/30/2014	10	22	68	435
/31/2012	40	56		325	1/31/2013		58			1/31/2014	12	34	115	345
6/1/2012	32	56	144	310	2/1/2013	30	31	94	325	2/1/2014	24	31	127	190
6/2/2012	60	67	130	940	2/2/2013	13	32	99	465	2/2/2014	25	37	123	445
6/3/2012	21	44	149		2/3/2013		19			2/3/2014	21	32	178	165
6/4/2012	6	31	140		2/4/2013		34			2/4/2014	22	34	119	170
6/5/2012	15	38			2/5/2013		16			2/5/2014	31	36	70	165
6/6/2012	10	33	113		2/6/2013		23			2/6/2014	30	30	74	205
6/7/2012	8	31	107		2/7/2013		26			2/7/2014	15			225
6/8/2012	7	29			2/8/2013		32			2/8/2014	7	21	131	325
5/9/2012	5	19			2/9/2013		8			2/9/2014	7	20		1125
/10/2012	6				2/10/2013		20			2/10/2014	11	17	87	330
11/2012	8	25		300	2/11/2013		22			2/11/2014	8	23	90	190
/12/2012	- 11	31	97	500	2/12/2013		28			2/12/2014	10	15		375
/13/2012	8	31	107	260	2/13/2013		9			2/13/2014	8	12	67	560
/14/2012	16	39		415	2/14/2013	11	27			2/14/2014	14	31	84	700
/15/2012	34	40	113	395	2/15/2013	8	42	128	335	2/15/2014	11	27	124	560
/16/2012	9	33	111	390	2/16/2013	10	33	135	330	2/16/2014	11	42	159	475
/17/2012	12	48	148	360	2/17/2013	9	34	132	565	2/17/2014	7	26	129	210
/18/2012	14	45	140	330	2/18/2013	15	34	117	495	2/18/2014	11	22	122	290
/19/2012	10	37	118	425	2/19/2013		27	116	430	2/19/2014	17	20	96	380
/20/2012	- 11	35			2/20/2013		27			2/20/2014	14	29		345
/21/2012	12	37	89		2/21/2013		28			2/21/2014	16	27	124	285
/22/2012	10	41	88		2/22/2013		33		360	2/22/2014	23	27	99	470
/23/2012	19	50			2/23/2013		30			2/23/2014	20	24	119	550
/24/2012	21	52			2/24/2013		37			2/24/2014	22	28	122	306
/25/2012	12	43			2/25/2013		28			2/25/2014	12	22	142	315
/26/2012	30	48			2/26/2013		28			2/26/2014	10	21	139	250
/27/2012	3	37	122		2/27/2013		34			2/27/2014	11	24	128	490
/28/2012	27	73			2/28/2013		32			2/28/2014	10	32	163	525
/29/2012	9	50		460	3/1/2013		42			3/1/2014	17	30		305
/30/2012	8	44	113	275	3/2/2013	12	29	106	260	3/2/2014	6	19	112	335
7/1/2012	10	45	125	340	3/3/2013		34	123	400	3/3/2014	10	27	92	325
7/2/2012	13	53			3/4/2013		37			3/4/2014	2	7		160
7/3/2012	5			370	3/5/2013		38			3/5/2014	15	25		225
7/4/2012	12	34	90	345	3/6/2013		30			3/6/2014	9	19	117	170
7/5/2012	16	45	101	350	3/7/2013		31		710	3/7/2014	6	20	116	285
7/6/2012	5	48			3/8/2013		42			3/8/2014	4	17		305
7/7/2012	23	59					39				20		138	340
					3/9/2013					3/9/2014 3/10/2014		31		
7/8/2012	- 8	34			3/10/2013		32				14		162	425
7/9/2012	8	34			3/11/2013		34			3/11/2014	17	26	130	300
10/2012	17	45			3/12/2013		64			3/12/2014	29		110	270
/11/2012	9	41			3/13/2013		24			3/13/2014	44	33		375
12/2012	17	61	131		3/14/2013		26			3/14/2014	13	16		275
13/2012	13	45			3/15/2013		43			3/15/2014	16		122	375
14/2012	16	53			3/16/2013		27			3/16/2014	24	28	123	395
15/2012	15	51	149	495	3/17/2013		16			3/17/2014	35			300
16/2012	18	56	161	460	3/18/2013	3	14	127	535	3/18/2014	11	25	121	250
17/2012	14	56	151	340	3/19/2013	9	14	104	195	3/19/2014	4	15	112	580
18/2012	18	44	126	390	3/20/2013		10	93	320	3/20/2014	18	37	136	180
19/2012	37	57			3/21/2013		21			3/21/2014	14	24		125
20/2012	47	59			3/22/2013		21			3/22/2014	11	21	83	250
21/2012	20	37			3/23/2013		25			3/23/2014	9			320
	34	81												275
22/2012			139		3/24/2013		26			3/24/2014	10		122	
23/2012	23	53			3/25/2013		22			3/25/2014	20		133	240
/24/2012	13	46			3/26/2013		21			3/26/2014	9		123	445
25/2012	30	38			3/27/2013		22			3/27/2014	7	31	132	280
26/2012	30	38			3/28/2013		22			3/28/2014	10			275
27/2012	16	35			3/29/2013		16			3/29/2014	20	46		335
28/2012	22	48	98	255	3/30/2013	11	24	128	325	3/30/2014	100	111	111	340
29/2012	12	61			3/31/2013		24			3/31/2014	56	59	105	300
30/2012	11	55			4/1/2013		44			4/1/2014	27	29		210
		36			4/2/2013			-00		-19 ap 2-02-7		20		

0114010	40	20		200	412.0242	40	50	447	200	1000011		40	190	696
8/1/2012 8/2/2012	16	39 48	98 118	380 300	4/3/2013 4/4/2013	18 19	53 47	117	290 310	4/3/2014 4/4/2014	9	16 21	138 158	585 300
8/3/2012	11	65	122	420	4/5/2013	13	48	111	460	4/5/2014	10	13	162	320
8/4/2012	8	42	112	420	4/6/2013	14	49	115	1000	4/6/2014	11	22	137	385
8/5/2012	13	39	123	290	4/7/2013	11	59	147	400	4/7/2014	10	19	128	320
8/6/2012	19	50	138	290	4/8/2013	10	56	137	360	4/8/2014	12	17	110	350
8/7/2012	18	51	131	250	4/9/2013	12	47	125	490	4/9/2014	11	17	98	400 345
8/8/2012	19	55 64	121	390	4/10/2013	13	56	124	510	4/10/2014	10	19 40	106 90	240
8/9/2012 8/10/2012	29 15	46	165	285 600	4/11/2013 4/12/2013	21	62 32	120	325 290	4/11/2014 4/12/2014	37 27	36	83	325
8/11/2012	26	45	118	330	4/13/2013	28	54	91	285	4/13/2014	7	18	104	580
8/12/2012	23	54	119	425	4/14/2013	17	39	91	400	4/14/2014	10	26	116	210
8/13/2012	16	54	134	360	4/15/2013	7	43	76	325	4/15/2014	28	30	100	160
8/14/2012	10	50	157	440	4/16/2013	19	52	91	295	4/16/2014	22	26	99	310
8/15/2012	26	46	147	425	4/17/2013	14	39	90	215	4/17/2014	8	17	131	210
8/16/2012	31	59	146	340	4/18/2013	17	55	91	405	4/18/2014	10	23	125	265
8/17/2012	33 16	56 41	135	205	4/19/2013	15 29	46 49	120	360 395	4/19/2014	17	26 24	115	320 335
8/18/2012 8/19/2012	12	37	66	325	4/20/2013 4/21/2013	27	73	164	395	4/20/2014 4/21/2014	13	25	123	345
8/20/2012	19	51	95	200	4/22/2013	15	69	156	265	4/22/2014	10	27	122	280
8/21/2012	11	41	101	255	4/23/2013	13	48	98	275	4/23/2014	12	22	114	375
8/22/2012	16	43	106	280	4/24/2013	12	36	74	200	4/24/2014	7	20	83	135
8/23/2012	16	47	124	330	4/25/2013	12	35	76	260	4/25/2014	11	30	68	180
8/24/2012	9	55	136	300	4/26/2013	18	45	84	290	4/26/2014	19	37	101	320
8/25/2012	41	64	127	300	4/27/2013	11	57	126	365	4/27/2014	13	30	113	290
8/25/2012	12	43	118	260	4/28/2013	16	56	141	515	4/28/2014	15	42	96 95	195 540
8/27/2012 8/28/2012	26 27	49 57	114	420 300	4/29/2013 4/30/2013	11	58 47	161	320 420	4/29/2014 4/30/2014	21 96	36 98	105	440
8/29/2012	14	63	144	325	5/1/2013	22	53	101	275	5/1/2014	36	60	118	260
8/30/2012	11	60	143	405	5/2/2013	17	63	114	335	5/2/2014	18	22	125	395
8/31/2012	14	63	140	275	5/3/2013	12	73	149	385	5/3/2014	16	19	96	215
9/1/2012	.8	50	116	290	5/4/2013	11	72	168	450	5/4/2014	11	16	113	230
9/2/2012	22	61	118	255	5/5/2013	13	66	151	415	5/5/2014	13	20	125	320
9/3/2012	16	49	139	600	5/6/2013	9	63	140	225	5/6/2014	10	21	138	330
9/4/2012	21	55	128	250	5/7/2013	17	56 60	148	500 805	5/7/2014	16	18 18	127	360 815
9/5/2012 9/6/2012	35 6	72 50	133	165 295	5/8/2013 5/9/2013	17	63	155	330	5/8/2014 5/9/2014	16	28	126	440
9/7/2012	10	43	108	340	5/10/2013	16	46	91	270	5/10/2014	23	24	117	920
9/8/2012	34	53	130	305	5/11/2013	21	28	98	665	5/11/2014	18	24	125	360
9/9/2012	64	70	119	225	5/12/2013	13	33	121	475	5/12/2014	15	17	50	470
9/10/2012	28	54	122	360	5/13/2013	18	22	84	495	5/13/2014			30	350
9/11/2012	21	55	133	430	5/14/2013	10	14	60	575	5/14/2014	21	36	30	
9/12/2012	15	56	137	415	5/15/2013	19	21	59	80	5/15/2014	19	19	30	25
9/13/2012	13	66 36	170	590 300	5/16/2013	28 17	52 25	57 78	235 470	5/16/2014	77 19	73 24	20 15	15
9/14/2012	16	38	125 94	220	5/17/2013 5/18/2013	12	24	101	55	5/17/2014 5/18/2014	15	13	14	200
9/16/2012	15	43	92	325	5/19/2013	12	14	31	95	5/19/2014	13	11	9	30
9/17/2012	28	65	121	275	5/20/2013	14	13	24	135	5/20/2014	11	11	11	105
9/18/2012	63	63	116	295	5/21/2013	14	15	29	365	5/21/2014	13	14	13	115
9/19/2012	38	62	103	355	5/22/2013	11	24	68	325	5/22/2014	47	48	54	380
9/20/2012	23	39	104	290	5/23/2013	15	27	61	285	5/23/2014	99	133	106	415
9/21/2012	10	42	116	160	5/24/2013	11	25	83	155	5/24/2014	27	54	91	295
9/22/2012	11	38 44	100	330	5/25/2013	14 16	39 46	109	215 280	5/25/2014	26 27	27 26	107	165 360
9/23/2012 9/24/2012	12	50	113	330 560	5/26/2013 5/27/2013	16	34	96	265	5/26/2014 5/27/2014	14	37	106	170
9/25/2012	8	62	150	450	5/28/2013	14	44	95	320	5/28/2014	16	36	109	210
9/26/2012	8	53	134	350	5/29/2013	21	50	144	845	5/29/2014	16	37	125	190
9/27/2012	17	48	133	340	5/30/2013	25	51	188	270	5/30/2014	12	33	125	220
9/28/2012	26	52	153	285	5/31/2013	17	55	133	190	5/31/2014	12	35	160	275
9/29/2012	18	55	131	380	6/1/2013	4	4	147	465	6/1/2014	11	36	135	275
9/30/2012	11	54	134	405	6/2/2013	22	22	188	500	6/2/2014	11	39	130	235
10/1/2012	33	72	166	525	6/3/2013	34 14	34 14	174	380	6/3/2014	9	38 36	130	330 510
10/2/2012	33 47	57 60	180	395 275	6/4/2013 6/5/2013	13	13	108	430 775	6/4/2014 6/5/2014	18	36	145	525
10/4/2012	20	45	123	310	6/6/2013	17	17	118	330	6/6/2014	23	44	145	435
10/5/2012	20	43	127	400	6/7/2013	14	14	114	460	6/7/2014	14	38	135	465
10/6/2012	15	48	154	650	6/8/2013	27	27	107	345	6/8/2014	7	28	90	225
10/7/2012	28	49	156	460	6/9/2013	29	29	106	340	6/9/2014	31	51	95	400
10/8/2012	30	51	147	345	6/10/2013	26	26	87	285	6/10/2014	53	54	100	220
10/9/2012	14	48	133	245	6/11/2013	15	15	79	280	6/11/2014	28	36	100	320
0/10/2012	14	29	92	235	6/12/2013	15 28	15 28	83 63	110 225	6/12/2014	21	45 38	107	230 220
0/11/2012	15	39 44	77 101	430 500	6/13/2013 6/14/2013	30	30	70	355	6/13/2014 6/14/2014	64	73	118	215
0/12/2012	13	37	104	325	6/15/2013	18	18	76	215	6/15/2014	15	36	119	280
0/14/2012	16	37	106	295	6/16/2013	17	17	82	380	6/16/2014	14	42	135	220
0/15/2012	31	41	103	475	6/17/2013	15	15	83	170	6/17/2014	13	37	120	445
0/16/2012	26	41	117	455	6/18/2013	43	43	107	210	6/18/2014	14	39	155	450
0/17/2012	27	67	126	395	6/19/2013	43	43	119	155	6/19/2014	12	38	143	295
0/18/2012	27	67	125	285	6/20/2013	17	17	115	255	6/20/2014	17	48	120	220
0/19/2012	61	65	96	275	6/21/2013	14	14	128	250 290	6/21/2014	29 10	35 27	106	345 555
0/20/2012	24	44	114	395	6/22/2013	10	10	107	450	6/22/2014	10	47	165	295
0/21/2012	16	42 41	114	280 270	6/23/2013 6/24/2013	12	12	117	275	6/23/2014 6/24/2014	37	85	150	200
0/22/2012	12	38	108	205	6/25/2013	13	13	116	245	6/25/2014	0	10	125	275
0/24/2012	15	38	106	230	6/26/2013	58	58	133	315	6/26/2014	42	44	130	200
0/25/2012	16	47	116	260	6/27/2013	17	17	146	320	6/27/2014	20	44	135	205
0/26/2012	15	51	141	540	6/28/2013	13	13	151	310	6/28/2014	9	38	135	320
0/27/2012	35	72	227	295	6/29/2013	39	39	151	270	6/29/2014	10	42	150	265
0/28/2012	16	59	176	380	6/30/2013	17	17	152	510	6/30/2014	8	41	128	205
0/29/2012	68	75	130	555	7/1/2013	14	60	173	255	7/1/2014	10	42	130	430
0/30/2012	46	50	79	230	7/2/2013	16	54	140	250	7/2/2014	9	49	151	345
0/31/2012	30 26	35	83	300	7/3/2013	9	47	123	360	7/3/2014	9	44	138	440
11/1/2012		38	96	235	7/4/2013	12	48	130	405	7/4/2014	6	33	126	430

11/2/2012	32	45	108	240	7/5/2013	13	57	129	660	7/5/2014	14	43	137	340 460	
11/3/2012	27 18	32 25	97 87	210 300	7/6/2013 7/7/2013	17 26	57 59	136	345 445	7/6/2014 7/7/2014	4 8	43	128	345	
11/5/2012	26	33	104	240	7/8/2013	27	71	156	555	7/8/2014	14	45	124	270	
11/6/2012	17	25	98	190	7/9/2013	14	52	145	240	7/9/2014	17	49	117	311	
11/7/2012	16	29	93	225	7/10/2013	20	44	114	255	7/10/2014	7	40	142	355	
11/8/2012	18	29	98	225	7/11/2013	8	29	87	510	7/11/2014	16	56	145	320	
11/9/2012	20	26	110	205	7/12/2013	27	40	89	830	7/12/2014	15	55	152	445	
11/10/2012	11	20	101	260	7/13/2013	21	37	104	1345	7/13/2014	13	54 41	159	245	
11/11/2012	14 19	27 19	85	130	7/14/2013	17	43 47	117	560 510	7/14/2014	14 25	46	150	345 275	
11/12/2012	59	74	73 54	110 260	7/15/2013 7/16/2013	10	52	130	305	7/15/2014 7/16/2014	19	38	106	470	
11/14/2012	62	66	78	540	7/17/2013	11	44	127	385	7/17/2014	17	36	100	205	
11/15/2012	10	33	104	140	7/18/2013	12	53	151	565	7/18/2014	11	40	95	230	
11/16/2012	19	24	55	290	7/19/2013	12	68	199	485	7/19/2014	10	46	108	430	
11/17/2012	14	26	65	220	7/20/2013	20	60	196	670	7/20/2014	14	55	134	680	
11/18/2012	11	30	71	220	7/21/2013	17	58	164	430	7/21/2014	17	60	156	375	
11/19/2012	22	35	113	235	7/22/2013	26 48	56 72	150	330 620	7/22/2014	16	65 32	154	390 240	
11/20/2012	13	39	117	180 285	7/23/2013 7/24/2013	33	57	137	340	7/23/2014 7/24/2014	29	101	128	320	
11/22/2012	12	44	122	520	7/25/2013	19	58	151	290	7/25/2014	14	56	154	260	
11/23/2012	15	75	140	565	7/26/2013	9	48	122	250	7/26/2014	8	54	145	350	
11/24/2012	6	38	128	008	7/27/2013	21	49	123	435	7/27/2014	7	50	143	295	
11/25/2012	2	33	131	500	7/28/2013	12	48	150	205	7/28/2014	21	47	131	250	
11/26/2012	11	51	111	340	7/29/2013	8	43	123	330	7/29/2014	16	49	129	340	
11/27/2012	10	31	105	225	7/30/2013	12	44 36	119	355	7/30/2014	14	56	151	300	
11/28/2012	31 15	60 45	106	360 385	7/31/2013 8/1/2013	11 9	38	96 106	390 390	7/31/2014 8/1/2014	15	58 47	143 128	305 420	
11/29/2012	4	31	113	270	8/2/2013	25	66	167	290	8/2/2014	6	48	123	380	
12/1/2012	11	38	94	440	8/3/2013	11	52	156	705	8/3/2014	16	41	123	380	
12/2/2012	10	35	90	285	8/4/2013	11	67	160	190	8/4/2014	10	42	124	280	
12/3/2012	12	42	102	305	8/5/2013	6	37	121	245	8/5/2014	22	56	121	245	
12/4/2012	12	47	104	285	8/6/2013	9	33	87	425	8/6/2014	13	68	137	220	
12/5/2012	15	48	104	340	8/7/2013	38	73	111	390	8/7/2014	7	55	154	270	
12/6/2012	17	39 48	77 106	235 255	8/8/2013	115	100 53	148	440 240	8/8/2014	12	55 53	134	245 360	
12/7/2012 12/8/2012	9	48	106	255 300	8/9/2013 8/10/2013	37 20	50	138	405	8/9/2014 8/10/2014	10	55	145	315	
12/9/2012	9	41	125	255	8/11/2013	23	55	149	465	8/11/2014	10	60	146	215	
12/10/2012	5	37	131	195	8/12/2013	19	54	175	425	8/12/2014	13	- 44	128	270	
12/11/2012	14	44	131	295	8/13/2013	82	84	131	285	8/13/2014	15	39	106	155	
12/12/2012	15	69	148	390	8/14/2013	35	53	126	295	8/14/2014	11	44	102	275	
12/13/2012	11	60	147	285	8/15/2013	19	40	134	335	8/15/2014	15	68	159	350	
12/14/2012	9	60	142	185	8/16/2013	17	56	134	280	8/16/2014	13	63	165	400	
12/15/2012	5	43	101	310	8/17/2013	16	53 61	133	410 340	8/17/2014	12	58 49	148	305 295	
12/16/2012	9	40 49	95 107	305 175	8/18/2013 8/19/2013	16 42	52	127	400	8/18/2014 8/19/2014	19	44	106	295	
12/18/2012	11	45	102	400	8/20/2013	23	38	126	520	8/20/2014	15	47	119	325	
12/19/2012	3	47	112	235	8/21/2013	24	38	130	230	8/21/2014	13	44	142	470	
12/20/2012	16	50	109	330	8/22/2013	23	39	133	265	8/22/2014	28	56	141	400	
12/21/2012	77	66	109	280	8/23/2013	19	35	112	320	8/23/2014	17	47	141	340	
12/22/2012	36	47	116	365	8/24/2013	11	33	118	570	8/24/2014	14	44	117	320	
12/23/2012	17	57	135	755	8/25/2013	15	39	129	145	8/25/2014	11	43	110	265	
12/24/2012	11	43 45	146	355 310	8/26/2013	32 10	61 49	108	335 300	8/26/2014	5	43	139	345 365	
12/25/2012	13	35	140	335	8/27/2013 8/28/2013	14	53	155	400	8/27/2014 8/28/2014	11	58	143	345	
12/27/2012	37	46	107	290	8/29/2013	14	60	143	590	8/29/2014	15	69	154	460	
12/28/2012	23	32	98	290	8/30/2013	14	64	168	385	8/30/2014	6	42	127	245	
12/29/2012	17	24	104	270	8/31/2013	14	44	151	310	8/31/2014	18	53	108	240	
12/30/2012	10	34	95	245	9/1/2013	12	81	162	695	9/1/2014	4	47	137	315	
12/31/2012	16	31	87	325	9/2/2013	12	61	160	435	9/2/2014	24	61	130	265	
					9/3/2013	16	61	145	300	9/3/2014	21	48	99	195	
		-	-		9/4/2013 9/5/2013	17 9	58 43	135 125	450 285	9/4/2014	41 33	62 57	97 102	260 320	
			-		9/6/2013	15	53	135	390	9/5/2014 9/6/2014	64	86	122	300	
					9/7/2013	16	50	133	280	9/7/2014	18	59	135	370	
					9/8/2013	13	49	114	490	9/8/2014	11	59	14B	250	
					9/9/2013	14	51	119	320	9/9/2014	12	56	146	385	
					9/10/2013	13	57	148	430	9/10/2014	12	63	155	210	
					9/11/2013	13	67	160	315	9/11/2014	10	55 60	106 118	200	
			-		9/12/2013	18 21	52 43	145	260 385	9/12/2014 9/13/2014	7	42	136	305	
			-		9/14/2013	25	54	108	395	9/14/2014	24	50	143	435	
					9/15/2013	8	36	114	405	9/15/2014	9	58	158	290	
					9/16/2013	21	51	134	335	9/16/2014	14	55	134	300	
					9/17/2013	16	50	123	415	9/17/2014	13	61	131	315	
					9/18/2013	12	48	116	235	9/18/2014	35	55	129	155	
					9/19/2013	10	31	89	270	9/19/2014	10	57	106	190	
			-		9/20/2013	35 11	65 36	114	195 240	9/20/2014	13	47 46	108	305 390	
			-		9/21/2013	25	36 50	115	335	9/21/2014 9/22/2014	25	68	157	515	
			-		9/23/2013	19	36	118	280	9/23/2014	14	60	168	590	
					9/24/2013	16	48	122	325	9/24/2014	19	70	227	380	
					9/25/2013	16	75	181	700	9/25/2014	19	58	144	650	
					9/26/2013	16	88	247	540	9/26/2014	12	50	141	355	
					9/27/2013	6	55	202	440	9/27/2014	12	52	123	500	
					9/28/2013	32	48	129	345	9/28/2014	14	60	142	820	
					9/29/2013	3	23	99	440	9/29/2014	11	60	158	555 220	
			-		9/30/2013	5 20	45 64	127	345 310	9/30/2014 10/1/2014	17	53 39	143 96	280	
			-		10/2/2013	26	68	135	235	10/1/2014	15	48	104	300	
			_		10/3/2013	10	61	141	525	10/3/2014	22	53	125	555	
					10/4/2013	12	75	176	350	10/4/2014	40	57	144	275	
					10/5/2013	12	59	159	410	10/5/2014	32	55	112	185	

					10/6/201	3 13	58	136	280	10/6/2014	16	49	97	190	
					10.19.10.0						18	54		130	
					10/7/201		48	109	395 315	10/7/2014	17	38	113	150	
					10/9/201		56	134	470	10/9/2014	15	41	90	440	
					10/10/201		68	140	325	10/10/2014	17	49	104	540	
					10/11/201		146	103	415	10/11/2014	16 14	69 59	193 140	260 320	
					10/12/201		64 41	89 103	225 305	10/12/2014 10/13/2014	13	49	127	590	
					10/14/201		44	126	280	10/14/2014	17	61	153	410	
					10/15/20:	3 25	38	144	335	10/15/2014	30	51	137	345	
					10/16/20:		33	137	455	10/16/2014	10	17 60	128	335 290	
					10/17/201		57 39	138 129	470 375	10/17/2014 10/18/2014	23	56	140 143	290 560	
					10/19/20		14	130	250	10/19/2014	15	75	184	470	
					10/20/20:		47	118	240	10/20/2014	19	75	183	270	
					10/21/201		40	124	475	10/21/2014	19	51	121	670	
					10/22/201		49 42	150 129	225 235	10/22/2014	18	47 57	146 166	690 380	
					10/24/201		42	126	600	10/24/2014	17	67	132	390	
					10/25/201		59	145	620	10/25/2014	16	56	132	285	
					10/26/201		35	116	200	10/26/2014	3	38	131	440	
					10/27/201		32 32	95 92	475 650	10/27/2014	26 26	52 47	133	370 335	
					10/29/201		42	122	210	10/29/2014	36	48	108	290	
					10/30/201		44	119	195	10/30/2014	26	48	108	315	
					10/31/20:		48	132	310	10/31/2014	36	45	112	315	
					11/1/201		54 52	162 158	380 235	11/1/2014	25 23	50 55	136 119	520 440	
					11/3/201		43	118	380	11/3/2014	14	53	119	300	
					11/4/20:		36	96	220	11/4/2014	5	39	117	550	
					11/5/20:	3 12	31	76	165	11/5/2014	7	47	120	345	
					11/6/201		37	97	280	11/6/2014	21 32	41 51	109 104	400 305	
					11/7/201		42 43	100	350 360	11/7/2014 11/8/2014	32 28	53	109	305 170	
					11/9/201		39	91	180	11/9/2014	17	42	99	245	
					11/10/20:	3 13	38	95	260	11/10/2014	6	40	100	180	
					11/11/201		36	95	226	11/11/2014	21	51	99	410	
					11/12/201		30 40	67 87	680 345	11/12/2014 11/13/2014	12	48	123	240 165	
					11/14/201		35	95	680	11/14/2014	5	42	100	200	
					11/15/201		40	99	550	11/15/2014	14	54	98	345	
					11/16/201		45	109	470	11/16/2014	8	57	116	445	
					11/17/201		59 64	137 160	360 425	11/17/2014	22	87 74	167 183	525 790	
					11/18/201		84	177	380	11/18/2014 11/19/2014	15	55	109	575	
					11/20/201		60	141	545	11/20/2014	20	51	86	140	
					11/21/20		69	155	370	11/21/2014	7	26	80	365	
					11/22/201		63	114	245	11/22/2014	15 13	56 67	100 138	430 600	
					11/23/201		40 69	102	545 590	11/23/2014 11/24/2014	11	68	171	350	
					11/25/201		67	143	350	11/25/2014	15	63	132	218	
					11/26/20:	3 18	54	137	795	11/26/2014	10	39	101	275	
					11/27/201		65	90	255	11/27/2014	31	44	99	355	
					11/28/201		47 40	52 91	395 790	11/28/2014 11/29/2014	48 62	50 61	101	295 445	
					11/30/20		51	138	360	11/30/2014	19	48	126	400	
					12/1/201		49	143	360	12/1/2014	24	55	140	330	
					12/2/201		58	137	235	12/2/2014	25	51	153	260	
					12/3/201		42	109	370	12/3/2014	19 23	38 38	151 101	310 265	
					12/4/201		45 41	107	300 320	12/4/2014 12/5/2014	35	30 48	85	255	
					12/6/201		68	109	345	12/6/2014	35	53	97	280	
					12/7/201	3 78	85	97	295	12/7/2014	52	56	113	295	
					12/8/201		41	121	550	12/8/2014	21	42 42	105	350 420	
					12/9/201		40	153 104	185 220	12/9/2014 12/10/2014	27	42	111	420 400	
					12/11/201		40	97	265	12/11/2014	13	47	129	320	
					12/12/20:		32	93	220	12/12/2014	36	51	117	310	
					12/13/201		32	107	410	12/13/2014	13	56	122	260	
					12/14/201		46 28	146	445	12/14/2014 12/15/2014	12	60 52	122 90	390 340	
					12/15/20:		29	101	210 255	12/15/2014	14	33	80	650	
					12/17/20:		26	96	290	12/17/2014	24	46	92	600	
					12/18/201	3 13	33	103	300	12/18/2014	18	62	120	260	
					12/19/201		37	122	300	12/19/2014	3	49 50	115	260 270	
					12/20/201		29 19	101 88	200 530	12/20/2014 12/21/2014	22	50 50	108 114	270 690	
					12/22/201		36	97	350	12/22/2014	15	70	132	495	
					12/23/201	3 47	46	110	300	12/23/2014	17	63	129	400	
					12/24/20:		42	105	175	12/24/2014	48	51	131	390	
					12/25/201		24 49	102 95	180 160	12/25/2014	50 23	84 63	144 156	320 515	
					12/26/201		49 34	91	215	12/26/2014 12/27/2014	16	57	155	525	
					12/28/201		31	108	245	12/28/2014	16	61	114	630	
					12/29/201	3 47	45	122	465	12/29/2014	23	58	129	390	
					12/30/201		50		285	12/30/2014	21	55 45	122 102	365 220	
					12/31/20:	3 15	37	140	275	12/31/2014	9	40	102	220	
Max	77	81	227	1060	Max	136	146	247	1345		100	133	227	1125	
Min	2	- 11	20	30	Min	2	4	24	55		0	0	9	10	
Median	15	45	118	310	Median	14	42	120	335		15	42	122	315	
Average 90th 56	18.98 33.6	46.24 63.6	117.47 150.6	333.52 489	Average 90th %	17.93 29	42.27 63	120.84 151.6	364.17 533		17.92 30.8	41.80 60.8	119.23	336.16 518.5	

	Upstream	Downstream	Effluent	Influent		U	pstream Downstr	eam Ef	fluent	Influent		Upstream	Downstream	Effluent	Influent
1/1/2015	8	54			1/1/2	016	20	49	127	145	1/1/2017		101	170	330
1/2/2015	17	60	120	325	1/2/2	016	12	35	101	200	1/2/2017	9	77	172	230
1/3/2015	13	40			1/3/2	016	11	40	154	290	1/3/2017	18	45	106	270
1/4/2015	24	35	139	730	1/4/2	016	23	41	128	340	1/4/2017	24	- 44	92	400
1/5/2015	23	36	83	465	1/5/2	016	11	42	120	215	1/5/2017	30	55	91	370
1/6/2015	22	23	43	385	1/6/2	016	9	43	107	260	1/6/2017	12	50	93	435
1/7/2015	18	40	75	280	1/7/2		23	56	100	320	1/7/2017	18	67	116	520
1/8/2015	8	40	85	245	1/8/2		11	39	97	460	1/8/2017	12	68	113	330
1/9/2015	11	43			1/9/2		13	42	118	220	1/9/2017	13	55	109	540
/10/2015	10	61			1/10/2		53	54	110	220	1/10/2017	11	59		280
	11	66					27	38	90	300			54	115	520
/11/2015					1/11/2						1/11/2017	_			
/12/2015	11	45			1/12/2		13	29	94	190	1/12/2017	11	51	130	315
/13/2015	25	46			1/13/2		11	32	83	285	1/13/2017		71	110	495
/14/2015	19	49			1/14/2		10	34	103	250	1/14/2017		67	129	335
/15/2015	9				1/15/2	016	10	41	125	175	1/15/2017	12	83	103	275
/16/2015	10				1/16/2	016	26	39	125	165	1/16/2017		72	117	390
/17/2015	6	74			1/17/2	016	12	37	101	245	1/17/2017	10	51	109	490
/18/2015	19	78	147	325	1/18/2	016	13	62	151	235	1/18/2017	6	42	93	310
/19/2015	15	70	132	300	1/19/2	016	11	52	138	340	1/19/2017	10	- 44	90	225
/20/2015	- 8	72	146	295	1/20/2	016	5	39	121	405	1/20/2017	12	38	64	365
/21/2015	10	68	129	305	1/21/2		14	44	117	395	1/21/2017	8	46	83	185
/22/2015	8	86	120	195	1/22/2		6	41	130	490	1/22/2017	10	43	79	240
/23/2015	6	43	89	225	1/23/2			64	142	190	1/23/2017	31	45	89	485
/24/2015	9				1/24/2		6	25	85	125	1/24/2017		62	98	175
	17						8	27	83	485		28	42	82	185
/25/2015 /26/2015	20	45		515	1/25/2		8	33	121	280	1/25/2017		48	106	485
	18	56					8	42	143	260			79	155	440
/27/2015					1/27/2			44			1/27/2017				
/28/2015	12	50			1/28/2		7		150	260	1/28/2017		75	139	335
/29/2015	8	61			1/29/2		11	35	120	275	1/29/2017		78	140	340
/30/2015	12	57			1/30/2		8	38	132	565	1/30/2017	13	75	122	480
1/31/2015	5				1/31/2		10	38	144	805	1/31/2017		62	109	500
2/1/2015	10	70			2/1/2	016	13	30	151	485	2/1/2017		76	131	610
2/2/2015	10	46			2/2/2	016	18	31	130	390	2/2/2017	8	82	129	350
2/3/2015	11	43	94	290	2/3/2		36	40	127	240	2/3/2017	9	61	98	365
2/4/2015	21	66	113	345	2/4/2		27	29	73	190	2/4/2017	12	57	98	285
2/5/2015	10	65	120	290	2/5/2		18	18	79	400	2/5/2017	9	60	111	210
2/6/2015	10	66	117	425	2/6/2		10	15	110	535	2/6/2017	7	59	105	185
2/7/2015	8				2/7/2		10	16	111	500	2/7/2017		40	84	175
	8	66					8	13	84	440		12	47	82	450
2/8/2015 2/9/2015	13	56			2/8/2		9	15	98	410	2/8/2017		43	100	200
				-			9			-	2/9/2017	-		99	
/10/2015	11	61			2/10/2			15	97	505	2/10/2017		58		530
/11/2015	12	57			2/11/2		11	18	138	370	2/11/2017	10	62	127	345
/12/2015	14	53			2/12/2		19	30	134	360	2/12/2017	19	55	130	425
/13/2015	14	56			2/13/2		6	15	118	215	2/13/2017	30	63	125	300
1/14/2015	11	56			2/14/2	016	14	29	104	185	2/14/2017	17	68	126	215
//15/2015	9	52			2/15/2	016	10	21	119	430	2/15/2017	11	62	116	275
1/16/2015	8	36	92	455	2/16/2	016	21	43	118	280	2/16/2017	14	75	113	465
2/17/2015	13	43	96	335	2/17/2	016	17	28	116	380	2/17/2017	14	76	130	460
2/18/2015	7	56	125	300	2/18/2	016	10	20	115	150	2/18/2017	15	86	150	385
2/19/2015	- 5	60	140	325	2/19/2		15	20	98	320	2/19/2017	13	87	150	285
2/20/2015	10	68	134	530	2/20/2		7	17	112	335	2/20/2017	8	66	114	415
/21/2015	5	50	101	120	2/21/2		7	18	118	380	2/21/2017	15	67	118	415
/22/2015	5				2/22/2		9	21	153	205	2/22/2017		62	114	435
/23/2015	8				2/23/2		11	22	132	510	2/23/2017	9	62	116	255
	6						49	47	152	360			50	91	440
1/24/2015	7				2/24/2						2/24/2017				
1/25/2015					2/25/2		36	40	119	480	2/25/2017		49		210
1/26/2015	7	56			2/26/2		17	25	139	520	2/26/2017	49	58	90	320
/27/2015	11	41			2/27/2		18	22	130	300	2/27/2017	36	72	107	420
/28/2015	6	45			2/28/2	016	15	18	116	225	2/28/2017	16	63	118	345
3/1/2015	6				2/29/2						3/1/2017	18	61	111	440
3/2/2015	7	45	141	355	3/1/2	016	7	17	103	370	3/2/2017	25	61	110	335
3/3/2015	14	60	142	310	3/2/2	016	10	21	107	500	3/3/2017	24	76	134	645
3/4/2015	31	63	130	430	3/3/2		12	22	130	325	3/4/2017	27	84	142	345
3/5/2015	101	74	109	205	3/4/2		8	18	106	405	3/5/2017		73	129	190
3/6/2015	55	54		290	3/5/2	016	8	17	114	455	3/6/2017	13	61	108	260
3/7/2015	32	50			3/6/2		9	20	117	370	3/7/2017	11	64	113	355
3/8/2015	19	43			3/7/2		8	20	115	370	3/8/2017		59	98	305
3/9/2015	52	60			3/8/2		9	19	105	145	3/9/2017		54	75	595
/10/2015	72	66		10.00	3/9/2		11	26	87	415	3/10/2017		44	67	315
	69	73					9	23	106	280			47	71	365
/11/2015 /12/2015	44	56			3/10/2		9	30	132	175	3/11/2017		70	115	480
					3/11/2			39			3/12/2017				
/13/2015	28	38			3/12/2		16		137	195	3/13/2017		69		625
/14/2015	55				3/13/2		11	39	134	175	3/14/2017		48		220
/15/2015	23	25			3/14/2		9	26	117	190	3/15/2017		50		245
/16/2015	19	26			3/15/2		12	29	99	295	3/16/2017		96		275
/17/2015	6				3/16/2	016	9	24	99	275	3/17/2017		57	108	285
/18/2015	8				3/17/2	016	8	40	116	535	3/18/2017		39		490
/19/2015	10	23	104	420	3/18/2		7	34	125	315	3/19/2017	27	39	119	325
/20/2015	8	23	104	1070	3/19/2		6	33	117	275	3/20/2017		40	129	300
/21/2015	9				3/20/2		7	35	135	630	3/21/2017		41		435
/22/2015	10				3/21/2		7	35	133	490	3/22/2017		38		315
	10						9	39	140	560			40		270
/23/2015	10				3/22/2		9	37	129	420	3/23/2017		46		235
/24/2015					3/23/2		7				3/24/2017				
/25/2015	9				3/24/2			35	142	530	3/25/2017		42		360
/26/2015	7				3/25/2		10	38	135	315	3/26/2017		48		665
/27/2015	24				3/26/2	016	11	47	150	215	3/27/2017		65		440
/28/2015	15	38	121	410	3/27/2		13	41	131	235	3/28/2017		54	106	205
/29/2015	11	46	135	390	3/28/2		19	35	125	460	3/29/2017		43	77	510
/30/2015	15				3/29/2		14	39	113	270	3/30/2017		42	102	280
/31/2015	26				3/30/2		19	34	124	480	3/31/2017		52	139	280
	13				3/31/2		12	30	80	260	4/1/2017		37	110	215
4/1/2015			100	700	aka The	or and		-00	444	200	45.17.5017		- 21		40.107

4/3/2015	11	26	71	315	4/2/2016	13	31	93	345	4/3/2017	13	32	114	330
4/4/2015	12	30	76	170	4/3/2016	11	42	120	360	4/4/2017	16	39	141	245
4/5/2015	14	37	91	550	4/4/2016	14	38	116	450	4/5/2017	15	39	105	315
4/6/2015	12	51 51	125	360 340	4/5/2016	9	36 44	119	360 300	4/6/2017	42 30	47 47	108 79	300 410
4/7/2015 4/8/2015	12	54	131	275	4/6/2016 4/7/2016	24	38	133	345	4/7/2017 4/8/2017	27	36	134	285
4/9/2015	10	52	121	220	4/8/2016	26	46	102	320	4/9/2017	17	49	142	220
1/10/2015	8	48	103	390	4/9/2016	14	38	108	375	4/10/2017	17	44	134	840
1/11/2015	12	55	111	200	4/10/2016	4	33	124	235	4/11/2017	16	42	130	375
1/12/2015	11	61	98	245	4/11/2016	9	38	108	455	4/12/2017	13	46	130	370
4/13/2015	В	62	129	495	4/12/2016	6	34	101	305	4/13/2017	8	40	117	420
1/14/2015	18	77	147	220	4/13/2016	13	45	91	300	4/14/2017	12	44	112	340
1/15/2015	12	61	123	285	4/14/2016	7	30	96	320	4/15/2017	12	48	129	275
/16/2015	11	68	126	530	4/15/2016	8	39	127	335	4/16/2017	10	45	112	265
4/17/2015	10	65	121	380	4/16/2016	8	43 46	121	380 300	4/17/2017	12	47	126	435
1/18/2015	10	67 78	140	425 320	4/17/2016 4/18/2016	8	45	126 146	325	4/18/2017	13	42 39	104	325 495
1/19/2015 1/20/2015	16	48	153	310	4/19/2016	12	55	147	380	4/19/2017 4/20/2017	11	39	96	430
1/21/2015	20	51	112	335	4/20/2016	8	59	146	460	4/21/2017	17	36	89	385
/22/2015	18	56	113	475	4/21/2016	10	54	136	300	4/22/2017	26	48	102	435
1/23/2015	12	72	151	310	4/22/2016	13	49	105	405	4/23/2017	20	41	94	340
4/24/2015	12	68	139	395	4/23/2016	14	50	125	460	4/24/2017	17	48	106	275
1/25/2015	16	78	123	260	4/24/2016	17	63	144	230	4/25/2017	14	40	99	350
1/26/2015	14	64	130	235	4/25/2016	16	61	105	265	4/26/2017	23	50	116	350
1/27/2015	14	59	120	395	4/26/2016	15	41	82	275	4/27/2017	19	66	140	470
/28/2015	13	61	128	335	4/27/2016	11	52	99	265	4/28/2017	14	60	146	450
1/29/2015	15	69	112	230	4/28/2016	14	52 55	115	430	4/29/2017	13	61	127	345
k/30/2015	17	53 57	106	380 400	4/29/2016	10	55	138	360 320	4/30/2017	12	62 56	127	275 445
5/1/2015 5/2/2015	12	67	123	285	4/30/2016 5/1/2016	12	45	131	420	5/1/2017 5/2/2017	19	57	121	390
5/3/2015	11	77	152	450	5/2/2016	24	53	139	390	5/3/2017	18	80	163	285
5/4/2015	12	81	162	255	5/3/2016	54	57	104	325	5/4/2017	14	86	150	330
5/5/2015	18	72	135	275	5/4/2016	25	40	113	220	5/5/2017	64	72	117	355
5/6/2015	15	62	119	260	5/5/2016	18	40	127	480	5/6/2017	37	58	94	230
5/7/2015	14	56	125	190	5/6/2016	44	39	133	630	5/7/2017	24	43	110	230
5/8/2015	12	34	84	125	5/7/2016	35	51	143	315	5/8/2017	15	49	112	275
5/9/2015	1.B	37	74	155	5/8/2016	18	35	154	265	5/9/2017	19	53	109	560
5/10/2015	30	35	49	220	5/9/2016	8	29	155	480	5/10/2017	15	71	146	320
5/11/2015	15	28	58	315	5/10/2016	5	28	139	420	5/11/2017	9	61	145	360
5/12/2015	22	44	75	290	5/11/2016	4	33	162	470	5/12/2017	9	50	135	175
5/13/2015	15	46	91	175	5/12/2016	9	42	168	305	5/13/2017	18	38	120	230
1/14/2015 1/15/2015	12	40 57	94 126	180 300	5/13/2016	10	34 26	131	320 550	5/14/2017	23	53 51	139	415 220
	14	57	150	250	5/14/2016	8	31	147	665	5/15/2017	11	50	116	370
5/16/2015 5/17/2015	28	66	175	335	5/15/2016 5/16/2016	8	32	163	445	5/16/2017 5/17/2017	12	69	144	550
5/18/2015	20	57	159	345	5/17/2016	14	35	152	370	5/18/2017	13	57	132	300
5/19/2015	58	71	123	240	5/18/2016	9	33	144	680	5/19/2017	14	47	129	340
5/20/2015	25	58	120	240	5/19/2016	10	40	154	540	5/20/2017	12	61	160	280
5/21/2015	17	54	114	260	5/20/2016	12	47	139	520	5/21/2017	5	61	162	240
5/22/2015	14	50	106	220	5/21/2016	14	33	114	380	5/22/2017	11	58	153	260
5/23/2015	15	61	125	245	5/22/2016	24	38	103	210	5/23/2017	21	67	137	670
5/24/2015	22	81	147	185	5/23/2016	20	33	101	225	5/24/2017	14	58	159	390
5/25/2015	10	72	158	205 170	5/24/2016	13	29	105	440 360	5/25/2017	16	46	127	145 230
5/26/2015	18	74 52	118	145	5/25/2016	13	32 44	147	510	5/26/2017	14	50 46	109	290
5/27/2015 5/28/2015	22	52	103	290	5/26/2016 5/27/2016	10	42	145	280	5/27/2017 5/28/2017	14	58	123	280
5/29/2015	17	59	137	330	5/28/2016	9	41	140	450	5/29/2017	15	66	137	240
5/30/2015	15	67	146	490	5/29/2016	11	47	140	385	5/30/2017	17	57	116	390
5/31/2015	23	75	185	245	5/30/2016	16	43	163	300	5/31/2017	18	62	118	280
6/1/2015	71	70	144	165	5/31/2016	31	38	73	315	6/1/2017	11	62	130	520
6/2/2015	60	65	106	415	6/1/2016	16	27	79	250	6/2/2017	16	70	143	325
6/3/2015	35	54	151	275	6/2/2016	11	37	134	354	6/3/2017	8	54	129	615
6/4/2015	24	36	140	375	6/3/2016	6	33	133	385	6/4/2017	11	45	107	135
6/5/2015	9	10	41	80	6/4/2016	11	16	105	135	6/5/2017	16	17	52	360
6/6/2015	15	14	16	75	6/5/2016	12	24	71	120	6/6/2017	21	19	37	510
6/7/2015	15	14	12	55	6/6/2016	18	24	41	60	6/7/2017	12	18	56	190
6/8/2015	24 46	20 36	26 23	25 100	6/7/2016 6/8/2016	10	16	35 21	20 15	6/8/2017	10	15	48 53	110
6/9/2015	39	36 16	19	20		21	17	21	10	6/9/2017 6/10/2017	10	17	41	110
V10/2015 V11/2015	31	0	19	20	6/9/2016	12	13	29	30	6/11/2017	13	17	32	110
11/2015	12	18	27	10	6/11/2016	8	11	23	95	6/12/2017	5	17	43	35
5/13/2015	19	25	18	25	6/12/2016	4	13	39	150	6/13/2017	15	21	38	130
5/14/2015	16	23	20	60	6/13/2016	10	20	47	190	6/14/2017	13	38	87	590
/15/2015	18	18	33	75	6/14/2016	12	23	49	200	6/15/2017	13	51	119	325
/16/2015	22	19	35	22	6/15/2016	11	38	96	245	6/16/2017	14	54	124	280
5/17/2015	19	14	21	25	6/16/2016	11	36	118	490	6/17/2017	13	54	113	200
/18/2015	57	40	20	32	6/17/2016	14	47	135	455	6/18/2017	12	49	116	535
5/19/2015	70	40	26	46	6/18/2016	16	45	122	470	6/19/2017	21	59	148	860
/20/2015	36 61	29 43	29 27	98 126	6/19/2016	14 18	48 58	137 151	495 590	6/20/2017	16 16	64 64	145 139	245 375
(21/2015 (22/2015	26	23	31	565	6/20/2016 6/21/2016	15	56	155	440	6/21/2017 6/22/2017	12	60	135	425
5/23/2015	24	30	46	290	6/22/2016	13	58	147	390	6/23/2017	13	59	151	310
5/24/2015	30	35	76	260	6/23/2016	13	59	181	350	6/24/2017	23	47	143	195
6/25/2015	22	36	116	315	6/24/2016	12	53	160	425	6/25/2017	23	64	146	275
6/26/2015	30	36	121	420	6/25/2016	12	52	164	300	6/26/2017	18	74	179	560
5/27/2015	74	37	106	275	6/26/2016	8	58	174	430	6/27/2017	11	62	151	375
6/28/2015	39	39	99	325	6/27/2016	11	58	178	430	6/28/2017	9	60	123	510
5/29/2015	21	29	103	335	6/28/2016	9	39	162	355	6/29/2017	12	61	147	225
6/30/2015	17	34	127	225	6/29/2016	43	60	156	305	6/30/2017	11	60	148	400
		43	140	320	6/30/2016	19	54	163	245	7/1/2017	13	58	168	570
7/1/2015	26													
	18 15	44 38	168 128	330 375	7/1/2016 7/2/2016	18 9	55 48	159 143	305 300	7/2/2017 7/3/2017	19	63 61	154	285 275

7/5/2015	22	52	119	195	7/4/2016	8	49	134	270	7/5/2017	18	55	114	330
7/6/2015	20	38	126	470	7/5/2016	11	42	127	320	7/6/2017	13	54	135	235
7/7/2015	13	31	93	335	7/6/2016	9	43	122	305	7/7/2017	13	52	123	245
7/8/2015	5	14	70	605	7/7/2016	9	39	105	335	7/8/2017	12	53	128	440
7/9/2015	33	48	84	485	7/8/2016	18	41	109	485	7/9/2017	11	52	132	310
7/10/2015	38	53	122	225	7/9/2016	26	52	137	405	7/10/2017	10	55	140	565
7/11/2015	14	40	128	195	7/10/2016	13	46	120	330	7/11/2017	11	65	133	510
7/12/2015	11	33	102	255	7/11/2016	8	40	119	285	7/12/2017	10	62	110	475
7/13/2015	10	37	131	350	7/12/2016	12	43	110	240	7/13/2017	16	57	121	675
7/14/2015	9	39	137	305	7/13/2016	8	42	133	265	7/14/2017	18	39	133	250
7/15/2015	15	38	151	235	7/14/2016	26	55	133	300	7/15/2017	49	64	110	250
7/16/2015	13	38	127	350	7/15/2016	18	47	130	480	7/16/2017	14	72	125	215
7/17/2015	12	44	156	320	7/16/2016	12	55	113	210	7/17/2017	20	48	120	240
7/18/2015	30	42	141	320	7/17/2016	5	43	132	230	7/18/2017	42	74	144	175
7/19/2015	24	47	138	480	7/18/2016	11	57	141	245	7/19/2017	20	48	100	315
7/20/2015	15	48	142	215	7/19/2016	39	64	133	245	7/20/2017	12	35	73	425
7/21/2015	15	46	142	270	7/20/2016	17	61	148	215	7/21/2017	11	49	107	570
7/22/2015	16	38	141	375	7/21/2016	21	52	133	450	7/22/2017	12	63	160	455
7/23/2015	27 9	47	138	275	7/22/2016	13	55	135	375	7/23/2017	12	58	165	560
7/24/2015	11	43 39	137	355 275	7/23/2016	6 10	52 53	124	365 380	7/24/2017	22	49 60	135	400 280
7/25/2015	14	40	126	235	7/24/2016	11	55	124	145	7/25/2017	15	55	124	560
7/26/2015	16	41	116	345	7/25/2016		36	96	175	7/26/2017		59	137	465
7/27/2015	1.0		- 1-0	- 10	7/26/2016	14			11.0	7/27/2017	12		1921	
7/28/2015	15	37	108	265	7/27/2016	13	40	104	330	7/28/2017	33	62	135	375
7/29/2015	7	34	131	540	7/28/2016	10	35	102	165	7/29/2017	70	74	130	325
7/30/2015	13	45 50	169	275	7/29/2016	12	59 40	77 91	275 160	7/30/2017	33	62 63	141	200
7/31/2015	12	50 48	143	420 310	7/30/2016	23	40	102	245	7/31/2017	28	63	132	475 410
8/1/2015	11	46	123	275	7/31/2016	18	54	124	295	8/1/2017	29	51	130	575
8/2/2015	7	39	128	345	8/1/2016	11	51	124	300	8/2/2017	30	54	130	360
8/3/2015 8/4/2015	3	39	126	260	8/2/2016	13	60	146	285	8/3/2017	30	59	130	415
	12	51	140	555	8/3/2016	11	64	159	200	8/4/2017	69	77	115	270
8/5/2015	13	58	149	250	8/4/2016	9	65	167	265	8/5/2017	33	59	130	185
8/6/2015	13	46	139	245	8/5/2016	8	53	122	320	8/6/2017	28	46	120	185
8/7/2015 8/8/2015	8	48	154	280	8/6/2016 8/7/2016	13	53	133	215	8/7/2017 8/8/2017	25	55	120	175
8/9/2015	8	49	144	205	8/8/2016	14	62	145	200	8/8/2017	21	63	135	275
8/10/2015	13	55	143	185		13	56	143	275		22	71	159	260
8/11/2015	12	40	112	330	8/9/2016	11	65	144	310	8/10/2017	16	63	162	375
8/12/2015	14	45	124	295	8/10/2016	11	56	139	320	8/11/2017	11	64	158	540
	11	52	147	455	8/11/2016	14	61	137	320	8/12/2017	15	63	158	475
1/13/2015	15	68	180	280	8/12/2016	15	50	116	370	8/13/2017 8/14/2017	16	66	150	580
3/14/2015	13	54	145	330	8/13/2016	16	59	146	255	8/15/2017	15	61	139	410
3/15/2015	12	51	141	480	8/14/2016	15	61	137	460		9	70	138	390
3/16/2015	11	55	112	355	8/15/2016	16	58	161	550	8/16/2017	14	62	137	270
3/17/2015	12	57	123	280	8/16/2016	15	53	117	340	8/17/2017	19	45	125	325
3/18/2015 3/19/2015	13	54	133	260	8/17/2016 8/18/2016	8	43	103	380	8/18/2017 8/19/2017	16	48	125	260
	26	36	111	235		10	46	109	240		14	61	115	220
8/20/2015	28	44	97	230	8/19/2016	9	41	100	325	8/20/2017	11	52	125	150
8/21/2015	12	38	103	375	8/20/2016	12	41	106	405	8/21/2017	15	40	85	140
8/22/2015	11	52	145	195	8/21/2016	13	59	124	205	8/22/2017	21	43	98	200
8/23/2015	11	55	129	230	8/22/2016	12	46	111	230	8/23/2017	18	61	147	240
8/24/2015	8	47	115	310	8/23/2016	12	55	134	245	8/24/2017	14	64	167	400
8/25/2015	8	52	127	445	8/24/2016	12	56	140	230	8/25/2017	19	64	154	280
8/26/2015	12	52	141	285	8/25/2016	10	58	151	230	8/26/2017	17	67	135	315
8/27/2015	16	49	140	290	8/26/2016	19	52	136	215	8/27/2017	16	57	125	460
8/28/2015	9	46	132	325	8/27/2016	11	57	136	370	8/28/2017	13	50	123	
3/29/2015		1.0			8/28/2016					8/29/2017				510
3/30/2015	12	54 89	131	310	8/29/2016	10	58	135	420	8/30/2017	27	66 60	137	510
3/31/2015	6	50	128	170 240	8/30/2016	11	55 41	135	245 285	8/31/2017	21 15	54	117	225
9/1/2015	8	33		70	8/31/2016					9/1/2017		57		
9/2/2015	10	44	100	265	9/1/2016	15 19	42 57	102	220 350	9/2/2017	18	57	135	215 210
9/3/2015	8	29	72	235	9/2/2016	15	66	131	290	9/3/2017	11	66	135	240
9/4/2015		29 41			9/3/2016		71			9/4/2017				
9/5/2015	20		99	150	9/4/2016	11		151	200	9/5/2017	14	57	146	265
9/6/2015	14	43 55	103	195 245	9/5/2016	11	62	134	220 295	9/6/2017	40 38	49 56	132	430 555
9/7/2015	10	58	153	330	9/6/2016	16	60	125	400	9/7/2017	33	62	139	375
9/8/2015	8	60	147	270	9/7/2016	25	67	141	270	9/8/2017	21	77	146	480
	32	60	134	245	9/8/2016 9/9/2016	18	68	144	335	9/9/2017	16	65	138	450
/10/2015	38	57	107	275		16	69	168	285	9/10/2017	11	59	133	300
/11/2015	30 48	64	134	295	9/10/2016	15	68	157	505	9/11/2017	10	50	109	200
9/12/2015 9/13/2015	52	85	148	345	9/11/2016	14	63	150	240	9/12/2017 9/13/2017	12	62	107	285
V13/2015 V14/2015	18	49	148	810	9/12/2016	13	46	122	200	9/13/2017	10	58	117	290
9/14/2015 9/15/2015	17	61	172	290	9/14/2016	20	35	73	770	9/15/2017	15	64	132	320
1/15/2015 1/16/2015	10	57	152	325	9/15/2016	13	49	105	400		12	65	143	250
V15/2015 V17/2015	19	53	130	190	9/15/2016	13	58	128	350	9/16/2017 9/17/2017	9	63	137	235
V18/2015	12	42	102	160	9/17/2016	11	61	136	400	9/18/2017	11	68	135	285
/18/2015 /19/2015	12	44	114	305	9/18/2016	6	60	138	250	9/19/2017	13	67	130	180
/20/2015	12	53	123	240	9/19/2016	38	56	148	260	9/20/2017	17	44	90	295
/20/2015 /21/2015	14	54	141	295		27	64	138	270	9/20/2017	12	49	115	230
	12	53	139	305	9/20/2016	20	74	158	285		14	48	102	850
/22/2015 /23/2015	10	47	125	295	9/21/2016	12	59	138	170	9/22/2017	10	52	108	475
	12	45	118010	305	9/22/2016	12	54	113	370	9/23/2017	12	57	127	505
/24/2015	18	45 54	117	500	9/23/2016	12	58	113	550	9/24/2017	9	62	149	345
9/25/2015					9/24/2016					9/25/2017				
/26/2015	13	69	140	335	9/25/2016	12	60	136	270	9/26/2017	11	70	147	270
/27/2015	15	60	151	195	9/26/2016	12	57	133	450	9/27/2017	14	73	159	540
3/28/2015	16	56	137	190	9/27/2016	7	59	146	365	9/28/2017	12	79	178	360
7/29/2015	21	52	136	220	9/28/2016	16	61	145	385	9/29/2017	12	77	174	640
9/30/2015	72	75	150	345	9/29/2016	15	45	155	460	9/30/2017	19	69	142	260
10/1/2015	25	63	155	270	9/30/2016	23	54	151	260	10/1/2017	16	72	150	265
10/2/2015	22	35	106	455	10/1/2016	24	51	130	435	10/2/2017	12	72	161	300
10/3/2015	33	44	99	355	10/2/2016	24	54	124	325	10/3/2017	16	77	165	230
10/4/2015	18	39	113	195	10/3/2016	19	63	137	360	10/4/2017	14	61	127	200
10/5/2015	12	34	106	320	10/4/2016	13	58	121	230	10/5/2017	14	97	110	190

10/6/2015	12	34	92	275	10/5/2016	17	61	125	405	10/6/2017	11	58	115	240
10/7/2015	12	37 40	117	315 500	10/6/2016	16	66 71	154 153	285 545	10/7/2017	17	51 56	115	295 680
	8	45	152	210	10/7/2016	14	68	135	265		24	52	147	505
10/9/2015	19	47	148	220	10/8/2016	17	60	118	250	10/9/2017	36	72	143	275
0/11/2015	8	51	140	175	10/10/2016	14	58	137	245	10/11/2017	21	46	104	745
0/12/2015	21	56	122	117	10/11/2016	13	50	131	230	10/12/2017	26	48	115	435
0/13/2015	17	45	107	280	10/12/2016	15	55	99	185	10/13/2017	20	52	122	550
0/14/2015	20	61	125	160	10/13/2016	7	50	106	255	10/14/2017	18	57	124	430
0/15/2015	24	55	122	185	10/14/2016	14	57	124	375	10/15/2017	15	57	141	210
0/16/2015	16	55	122	200	10/15/2016	12	64	138	330	10/16/2017	14	44	115	260
0/17/2015	19	58	122	350	10/16/2016	12	63	143	345	10/17/2017	13	56	117	255
0/18/2015	14	62	129	465	10/17/2016	13	68	153	405	10/18/2017	23	75	147	290
0/19/2015	19	69	152	250	10/18/2016	10	74	156	350	10/19/2017	14	74	153	350
0/20/2015	15	61	118	325	10/19/2016	11	70	159	410	10/20/2017	11	77	165	450
0/21/2015	14	70	152	395	10/20/2016	14	78	166	240	10/21/2017	11	72	175	495
0/22/2015	12	66	153	145	10/21/2016	14	67	160	690	10/22/2017	12	74	165	360
0/23/2015	27	45	94	110	10/22/2016	24	88	197	405	10/23/2017	13	69	156	615
0/24/2015	14	44	89	195	10/23/2016	17	75	153	250	10/24/2017	31	62	138	430
0/25/2015	23	52	107	215	10/24/2016	18	70	116	255	10/25/2017	16	67	129	770
0/26/2015	29	65	127	250	10/25/2016	12	66	115	230	10/26/2017	15	68	128	265
0/27/2015	17	60	131	270	10/26/2016	12	49	103	205	10/27/2017	13	71	129	310
0/28/2015	66	80	126	415	10/27/2016	10	48	109	290	10/28/2017	11	65	128	265
/29/2015	91	95	106	450	10/28/2016	13	48	109	360	10/29/2017	8	51	117	370
0/30/2015	32	48	102	250	10/29/2016	16	48	100	215	10/30/2017	48	62	115	395
0/31/2015	19	42	121	210	10/30/2016	14	51	95	265	10/31/2017	29	60	114	240
1/1/2015	19	51	133	290	10/31/2016	15	38	77	250	11/1/2017	23	56	101	225
1/2/2015	12	55	155	265	11/1/2016	14	51	107	315	11/2/2017	18	52	90	315
1/3/2015	23	46	104	190	11/2/2016	11	63	137	380	11/3/2017	10	52	109	445
1/4/2015	12	38	81	290	11/3/2016	13	62	89	565	11/4/2017	15	62	118	545
1/5/2015	14	62	125	695	11/4/2016	14	69	138	410	11/5/2017	14	60	136	335
1/6/2015	14	50	115	370	11/5/2016	18	73	154	660	11/6/2017	16	65	125	496
1/7/2015	16	51	116	230	11/6/2016	20	78	153	405	11/7/2017	18	49	102	240
1/8/2015	14	52	119	170	11/7/2016	19	68	137	310	11/8/2017	24	43	82	425
1/9/2015	23	44	99	220	11/8/2016	15	56	105	420	11/9/2017	20	53	105	320
1/10/2015	19	37	92	85	11/9/2016	17	56	91	405	11/10/2017	14	49	97	415
1/11/2015	17	28	73	245	11/10/2016	15	47	98	270	11/11/2017	17	51	86	250
1/12/2015	18	35	90	245	11/11/2016	10	48	115	425	11/12/2017	14	58	104	210
/13/2015	17	45	124	230	11/12/2016	9	51	109	315	11/13/2017	16	59	103	180
/14/2015	15	55	124	210	11/13/2016	12	58	117	240	11/14/2017	14	47	85	95
/15/2015	14	57	138	250	11/14/2016	14	66	117	200	11/15/2017	17	39	67	150
/16/2015	11	68	159	230	11/15/2016	14	51	98	160	11/16/2017	14	45	75	285
/17/2015	10	63	147	325	11/16/2016	14	49	88	360	11/17/2017	28	56	102	275
/18/2015	11	55	138	275	11/17/2016	12	61	110	380	11/18/2017	31	47	112	360
/19/2015	8	31	94	310	11/18/2016	12	53	98	480	11/19/2017	39	57	125	305
/20/2015	9	44	89	185	11/19/2016	18	56	97	720	11/20/2017	25	57	122	695
/21/2015	13	44	97	215	11/20/2016	15	47	91	295	11/21/2017	16	49	124	365
1/22/2015	5	38	116	190	11/21/2016	5	37	90	680	11/22/2017	9	45	110	270
1/23/2015	16	64	98	240	11/22/2016	9	65	113	255	11/23/2017	9	54	128	280
1/24/2015	3	35	88	240	11/23/2016	8	61	101	260	11/24/2017	10	55	121	225
1/25/2015	24	61	121	310	11/24/2016	7	55	110	190	11/25/2017	10	58	103	295
1/26/2015	13	58	122	190	11/25/2016	8	55	115	265	11/26/2017	9	61	120	180
1/27/2015	14	55	151	175	11/26/2016	7	64	130	290	11/27/2017	7	57	115	220
1/28/2015	6	52	133	205	11/27/2016	16	73	156	255	11/28/2017	6	57	113	180
/29/2015	9	56	140	170	11/28/2016	14	70	140	200	11/29/2017	10	56	114	185
/30/2015	11	50	117	195	11/29/2016	26	55	143	250	11/30/2017	9	61	119	220
2/1/2015	15	38	120	240	11/30/2016	26	56	127	290	12/1/2017	5	55	116	450
2/2/2015	27	50	117	635	12/1/2016	32	62	121	370	12/2/2017	5	67	140	330
2/3/2015	21	43	103	405	12/2/2016	46	85	123	330	12/3/2017	7	51	128	490
2/4/2015	15	44	153	320	12/3/2016	28	71	122	685	12/4/2017	6	59	120	250
2/5/2015	10	41	95	320	12/4/2016	16	62	112	420	12/5/2017	9	61	119	260
2/6/2015	11	42	96	200	12/5/2016	18	67	155	360	12/6/2017	5	52	112	380
2/7/2015	7	36	82	230	12/6/2016	24	60	114	280	12/7/2017	11	58	96	170
2/8/2015	12	41	84	390	12/7/2016	23	42	91	405	12/8/2017	10	60	99	200
2/9/2015	10	46	97	310	12/8/2016	27	58	85	230	12/9/2017	10	51	105	230
/10/2015	В	49	101	490	12/9/2016	18	57	93	465	12/10/2017	8	45	92	195
/11/2015	4	47	100	405	12/10/2016	12	63	108	485	12/11/2017	8	56	96	445
/12/2015	12	52	119	195	12/11/2016	10	66	122	465	12/12/2017	8	66	129	205
/13/2015	9	61	137	195	12/12/2016	11	39	97	215	12/13/2017	11	58	113	175
/14/2015	9	60	141	190	12/13/2016	12	39	62	195	12/14/2017	11	43	80	255
/15/2015	15	40	104	120	12/14/2016	16	44	85	560	12/15/2017	10	- 44	74	260
/16/2015	9	21	43	165	12/15/2016	12	51	105	285	12/16/2017	9	53	95	275
/17/2015	14	14	17	260	12/16/2016	9	77	113	315	12/17/2017	5	49	100	255
/18/2015	11	16	33	175	12/17/2016	5	58	129	450	12/18/2017	8	56	106	310
/19/2015	13	42	102	265	12/18/2016	14	55	144	365	12/19/2017	8	66	126	375
/20/2015	19	66	111	300	12/19/2016	17	58	131	140	12/20/2017	7	64	113	575
/21/2015	13	60	118	520	12/20/2016	19	58	110	365	12/21/2017	7	68	119	250
/22/2015	2	53	126	440	12/21/2016	11	61	124	270	12/22/2017	7	68	138	335
/23/2015	51	59	127	185	12/22/2016	12	75	114	590	12/23/2017	9	50	140	220
/24/2015	65	66	127	195	12/23/2016	7	49	109	235	12/24/2017	13	45	100	150
/25/2015	27	50	137	195	12/24/2016	8	40	135	205	12/25/2017	17	55	100	185
/26/2015	20	43	138	175	12/25/2016	10	51	118	185	12/26/2017	19	61	94	165
1/27/2015	18	39	125	155	12/25/2016	9	60	131	240	12/27/2017	13	56	90	160
	21	40	112	190	12/26/2016	10	71	159	210	12/28/2017	9	44	81	165
2/28/2015	53	49	116	190	12/28/2016	11	65	133	170	12/28/2017	7	38	93	165
2/29/2015	26	34	98	255	12/28/2016	10	60	105	180		8	36 42	93 98	170
2/30/2015	15	34	128	195		13	65	124	235	12/30/2017				
21/21/2015	10	24	120	120	12/30/2016	14	00	1.04	230	12/31/2017	5	47	104	196
	101	0.6	944	1005	NA:	8.4	-00	407	005	P.A.c.	The State of the S	404	430	959
	101	95 0	316 12	1935	Max	54	88	197	805	Max	70	101	179	860
	-		12	10	Min	0	0	21	0	Min	4	12	32	15
ax in	2				0.0-41				900	110000				
	2 14 17.94	49	121	275 291.51	Median Average	12 13.91	47 46.37	124 122.25	315 331.52	Median Average	14 16.54	57 56.16	120 119.46	315 341.26

		-					-				1	-		
	Upstream	Downstream	Effluent	Influent		Upstream	Downstream		Influent		Upstream			Influent
1/1/2018	6	57		195	1/1/2019	14		112	230	1/2/2020				170
1/2/2018				240	1/2/2019	7			355	-1-1				
1/3/2018	6			430	1/3/2019	6			355					210
1/4/2018	10	63	147	320	1/4/2019	7	17	143	350	1/5/2020	8	45	111	210
1/5/2018	8	75	135	350	1/5/2019	8	16	131	340	1/6/2020	8	55	116	280
1/6/2018	2	63	142	475	1/6/2019	7	15	106	390	1/7/2020	7	59	142	215
1/7/2018	13	62	133	200	1/7/2019	6	17	86	280	1/8/2020	30	60	135	220
1/8/2018	8	46	97	375	1/8/2019	7	13	94	340			46	112	250
1/9/2018	9	42	87	445	1/9/2019	8	15	105	180			65	141	420
1/10/2018	8	49	92	320	1/10/2019	8	14	103	190			57	129	505
1/11/2018		52	106	240	1/11/2019	10	18	117	140			43	102	200
1/12/2018				225	1/12/2019	7			230					
1/13/2018				240	1/13/2019	5			240					185
				170		8			160					
1/14/2018	40			180	1/14/2019	5		105	405	4-4				
1/15/2018					1/15/2019					24 220 2323	-			320
1/16/2018				90	1/16/2019	10			270					
1/17/2018				135	1/17/2019	13		90	225					500
1/18/2018				140	1/18/2019	5			285	4, 10, 2021				450
1/19/2018				240	1/19/2019	11			305	4-1				
1/20/2018	7			310	1/20/2019	27			165	4-4				
1/21/2018		60		385	1/21/2019	11			115			47		210
1/22/2018				370	1/22/2019	13			295	1/23/2020	9 4	1.0		
1/23/2018	45	35	93	205	1/23/2019	17	25	92	165	1/24/2020	9	45	126	295
1/24/2018	38	51	100	340	1/24/2019	29	30	99	295	1/25/2020	16	48	117	505
1/25/2018	28			270	1/25/2019	12	22	120	425		48		121	210
1/26/2018		62	120	205	1/26/2019	6			365			28		230
1/27/2018				385	1/27/2019	4			240			23		385
1/28/2018		62		255	1/28/2019	7			225					
1/29/2018				205	1/29/2019	14		136	410		_			
1/30/2018				215	1/30/2019	11		129	370		_			300
1/30/2018		61		175	1/31/2019	4			370		-			
	_			245		5			365	-1-1				275
2/1/2018	8			245 485	2/1/2019	5			280	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				180
2/2/2018		68			2/2/2019					-9-17-2-2-1	,			
2/3/2018	-			215	2/3/2019	17			305	23 -0 2020				
2/4/2018				240	2/4/2019	8			340	-1-1				
2/5/2018	21	34		240	2/5/2019	7			190	-,-,				
2/6/2018	20			495	2/6/2019	7			220	29.72.000				
2/7/2018				195	2/7/2019	9			340					
2/8/2018				205	2/8/2019	6			520					255
2/9/2018	20	40	84	210	2/9/2019	12	27	122	210	2/10/2020	21	27	105	175
2/10/2018	12	28	99	210	2/10/2019	9	27	124	190	2/11/2020) 6	22	96	205
2/11/2018	45	51	101	190	2/11/2019	16	32	133	210	2/12/2020) 2	. 17	98	290
2/12/2018		51	103	200	2/12/2019	13	25	128	120			21	85	260
2/13/2018	20	37	115	165	2/13/2019	10	15	78	180			14	93	270
2/14/2018				205	2/14/2019	6			230					140
2/15/2018				255	2/15/2019	8			245					210
2/16/2018				195	2/16/2019	10			330		_			370
				240		10			270					
2/17/2018				195	2/17/2019	8			355					
2/18/2018					2/18/2019					4				
2/19/2018		31		380	2/19/2019	14			400					
2/20/2018				430	2/20/2019	5		129	360	Equal acces				
2/21/2018	11	35		220	2/21/2019	9			180	44 - 24 - 24 - 24				
2/22/2018		33		345	2/22/2019	9			325	2/23/2020				535
2/23/2018				315	2/23/2019	5			380	2/24/2020	10			
2/24/2018	17	31	99	200	2/24/2019	17	21	117	195	2/25/2020) 4	30	116	360
2/25/2018	30	35	88	170	2/25/2019	5	15	116	210	2/26/2020) 6	- 51	122	300
2/26/2018	19	28	108	195	2/26/2019	5	18	115	170	2/27/2020	7	42	120	265
2/27/2018	11	27	117	205	2/27/2019	16	25	115	175			36	101	300
2/28/2018	10	45	119	365	2/28/2019	14	24	116	230			31	107	285
3/1/2018				250	3/1/2019	6			395					
3/2/2018				330	3/2/2019	9			350					325
3/3/2018	13			215	3/3/2019	9			240	-9.07.000				
3/4/2018				180	3/4/2019	7			490	2) 2/ 2/ 2/ 2/				
3/5/2018				310	3/5/2019	9			300	3/5/2020		47		
3/5/2018	10			500	3/5/2019	7			385					
	7	29		255		5		103	555	-,-,				
3/7/2018 3/8/2018				210	3/7/2019 3/8/2019	14			315	3/7/2020 3/8/2020				
		34		220		8			290	-,-,-				
3/9/2018	-			250	3/9/2019	37			290	-1-1			1.0-80	
3/10/2018					3/10/2019					4	,			
3/11/2018				155	3/11/2019	21			230					260
3/12/2018				120	3/12/2019	12			135					
3/13/2018				80	3/13/2019	15			240	7 - 7				
3/14/2018				215	3/14/2019	11			295					
3/15/2018				370	3/15/2019	13			505					
3/16/2018				255	3/16/2019	13			350					
3/17/2018				430	3/17/2019	14			565	7-7				
3/18/2018				220	3/18/2019	15			245					
3/19/2018				430	3/19/2019	14			365			38		
3/20/2018				395	3/20/2019	20			995					
3/21/2018				295	3/21/2019	36			215					200
3/22/2018	5	40	96	180	3/22/2019	34	43	96	255	3/22/2020	16	42	105	325
3/23/2018		40	106	220	3/23/2019	12	15	88	400			34	172	370
3/24/2018				285	3/24/2019	15			235		_			
3/25/2018				220	3/25/2019	14			230					
				200	3/26/2019	10			200		,	200		
				210	3/27/2019	11			305					
3/26/2018				290		23			285	4-7-				
3/26/2018 3/27/2018			122	200	3/28/2019									
3/26/2018 3/27/2018 3/28/2018	19		199	960	2/20/20/20									
3/25/2018 3/27/2018 3/28/2018 3/29/2018	19 15	35		350 240	3/29/2019	10			205					
3/26/2018 3/27/2018 3/28/2018 3/29/2018 3/30/2018	19 15 11	35 32	109	240	3/30/2019	6	14	96	355	3/30/2020	14	33	138	225
3/26/2018 3/27/2018 3/28/2018 3/29/2018 3/30/2018 3/31/2018	19 15 11 13	35 32	109		3/30/2019 3/31/2019	6	14	96	355 225	3/30/2020 3/31/2020	14	33 45	138	225 240
3/26/2018 3/27/2018 3/28/2018 3/29/2018 3/30/2018	19 15 11 13	35 32	109	240	3/30/2019	6 5 7	14 15 17	96 111 108	355	3/30/2020 3/31/2020 4/1/2020) 14) 9	33 45 30	138 117 107	225 240 290

4/3/2018					4/3/2019	9	14	78	205	4/3/2020	13	26	138	- 2
4/4/2018					4/4/2019	6	15	88	375	4/4/2020	13	28	106	- 2
4/5/2018					4/5/2019	7	17	107	285	4/5/2020	10	34	107	3
4/6/2018					4/6/2019	6	26	107	285	4/6/2020	9	37	122	- 4
4/7/2018					4/7/2019	10	28	117	220	4/7/2020	22	39	138	2
4/8/2018					4/8/2019	4	23	113	265	4/8/2020	5	33	131	- 1
4/9/2018					4/9/2019	15	36	129	205	4/9/2020	6	37	124	- 2
/10/2018						13	39	132	400		8	35	104	- 2
					4/10/2019	19	49	144	695	4/10/2020	5	24	87	1
/11/2018					4/11/2019					4/11/2020				
/12/2018					4/12/2019	28	52	168	220	4/12/2020	3	33	154	- 6
/13/2018					4/13/2019	29	41	118	210	4/13/2020	38	44	168	2
/14/2018					4/14/2019	25	30	98	150	4/14/2020	21	33	134	- 2
/15/2018					4/15/2019	43	44	82	280	4/15/2020	9	23	87	- 2
/16/2018					4/16/2019	19	27	99	195	4/16/2020	17	22	96	- 4
/17/2018					4/17/2019	15	23	102	280	4/17/2020	14	25	95	-
						10	21	127	405		22	29	120	- 1
/18/2018					4/18/2019					4/18/2020				
/19/2018					4/19/2019	10	23	123	160	4/19/2020	9	23	100	
/20/2018					4/20/2019	11	19	97	135	4/20/2020	5	21	93	
/21/2018					4/21/2019	11	21	94	180	4/21/2020	5	18	82	
/22/2018					4/22/2019	7	20	119	200	4/22/2020	13	26	71	
/23/2018					4/23/2019	16	35	118	260	4/23/2020	12	22	91	
/24/2018					4/24/2019	17	39	134	485	4/24/2020	12	24	97	
						8	32	119	310		15	27	98	
/25/2018					4/25/2019	-				4/25/2020				
26/2018					4/26/2019	11	28	113	235	4/26/2020	13	28	137	
27/2018					4/27/2019	15	36	129	245	4/27/2020	15	25	115	
/28/2018					4/28/2019	11	34	148	295	4/28/2020	12	34	87	
29/2018					4/29/2019	11	42	175	310	4/29/2020	10	29	82	
30/2018					4/30/2019	8	34	149	375	4/30/2020	34	47	89	
/1/2018	10	37	115	205	5/1/2019	12	37	150	560	5/1/2020	26	36	189	
	11	44	104	135		14	42	172	495		16	33	122	
/2/2018					5/2/2019					5/2/2020				
/3/2018	5	34	92	215	5/3/2019	20	39	158	365	5/3/2020	9	25	133	
/4/2018	13	47	116	310	5/4/2019	33	42	140	465	5/4/2020	8	30	120	
/5/2018	13	53	130	205	5/5/2019	68	81	126	185	5/5/2020	16	37	128	
/6/2018	12	39	118	225	5/6/2019	27	30	100	205	5/6/2020	12	28	127	
/7/2018	10	55	131	230	5/7/2019	11	17	107	410	5/7/2020	9	29	111	
i/8/2018	11	61	108	280	5/8/2019	18	30	116	185	5/8/2020	13	21	94	
	12	57	117	360		6	16	124	455		19	24	87	
/9/2018					5/9/2019					5/9/2020				
10/2018	11	54	115	365	5/10/2019	15	25	125	425	5/10/2020	8	25	104	
11/2018	10	69	147	275	5/11/2019	7	21	127	275	5/11/2020	11	27	124	
2/2018	12	56	150	245	5/12/2019	21	20	108	260	5/12/2020	13	31	130	
13/2018	22	48	132	400	5/13/2019	26	30	118	455	5/13/2020	9	23	93	
14/2018	32	56	141	255		12	22	148	310		9	20	106	_
					5/14/2019					5/14/2020				_
15/2018	49	67	142	195	5/15/2019	8	18	122	270	5/15/2020	12	26	101	
16/2018	58	61	117	240	5/16/2019	8	17	119	290	5/16/2020	14	30	102	
17/2018	42	67	110	290	5/17/2019	8	19	109	310	5/17/2020	8	29	104	
18/2018	25	33	102	280	5/18/2019	4	15	107	665	5/18/2020	11	34	106	
19/2018	47	47	118	240	5/19/2019	5	20	153	275	5/19/2020	8	29	136	
	23	35	138	225		7	20	122	375		18	44	135	-
20/2018					5/20/2019	9				5/20/2020				
21/2018	16	32	139	215	5/21/2019		31	120	285	5/21/2020	10	45	160	
22/2018	13	29	107	251	5/22/2019	14	34	115	220	5/22/2020	17	38	135	
23/2018	3	33	123	325	5/23/2019	4	24	110	195	5/23/2020	24	48	116	
24/2018	11	36	134	340	5/24/2019	12	24	97	250	5/24/2020	41	59	106	
25/2018	13	42	138	320	5/25/2019	10	28	114	445	5/25/2020	9	48	156	
26/2018	14	41	164	420	5/26/2019	10	30	128	355	5/26/2020	15	42	132	
	34	54	165	350		11	36	149	710		15	46	122	_
27/2018					5/27/2019					5/27/2020				
28/2018	35	57	167	325	5/28/2019	6	41	160	230	5/28/2020	19	35	96	
29/2018	16	43	151	280	5/29/2019	12	37	156	170	5/29/2020	10	19	61	
30/2018	13	42	145	345	5/30/2019	19	31	125	395	5/30/2020	29	32	53	
31/2018	11	41	144	475	5/31/2019	7	30	135	735	5/31/2020	17	21	50	
/1/2018	20	42	147	285	6/1/2019	7	30	116	235	6/1/2020	19	24	37	
	35	46	130	180		5	15	74	98		5	10	38	
/2/2018					6/2/2019					6/2/2020				
/3/2018	22	31	110	25	6/3/2019	13	15	39	70	6/3/2020	3	5	24	
/4/2018	30	34	44	125	6/4/2019	15	19	24	55	6/4/2020	23	33	29	
/5/2018	19	21	37	40	6/5/2019	7	9	22	190	6/5/2020	39	38	20	
6/2018	14	17	53	25	6/6/2019	8	9	29	190	6/6/2020	23	12	16	
/7/2018	11	15	50	15	6/7/2019	8	13	28	210	6/7/2020	14	13	1B	_
8/2018	7	11	46	30	6/8/2019	11	10	21	70	6/8/2020	16	13	16	_
	7	8	18	25		9	16	29	100		9	12	15	_
/9/2018		_			6/9/2019	-				6/9/2020	-			
10/2018	32	32	16	40	6/10/2019	8	16	43	120	6/10/2020	13	13	17	
11/2018	26	25	19		6/11/2019	9	16	57	170	6/11/2020	12	18	31	
12/2018	10	10	22.	125	6/12/2019	12	28	73	255	6/12/2020	33	32	32	
13/2018	13	14	51	440	6/13/2019	21	31	95	185	6/13/2020	22	20	40	
14/2018	11	25	126	300	6/14/2019	32	45	82	675	6/14/2020	16	26	50	
15/2018	13	25	135	210	6/15/2019	11	26	106	275	6/15/2020	21	37	44	
	11	35	121	325		11	39	112	385		15	31	75	
6/2018					6/16/2019					6/16/2020				
7/2018	32	42	118	445	6/17/2019	12	39	119	200	6/17/2020	15	48	112	
8/2018	38	30	143	360	6/18/2019	9	38	112	380	6/18/2020	7	45	114	
9/2018	11	35	117	240	6/19/2019	15	36	119	370	6/19/2020	14	32	72	
20/2018	10	33	105		6/20/2019	20	44	114	305	6/20/2020	9	46	127	
1/2018	6	32	107	310	6/21/2019	13	42	104	340	6/21/2020	9	51	123	_
	11	36	111	270	6/22/2019	11	53	141	285		14	44	100	
22/2018										6/22/2020				
23/2018	16	36	114	300	6/23/2019	10	56	138	345	6/23/2020	15	46	108	
24/2018	12	34	116	395	6/24/2019	13	62	155	320	6/24/2020	13	36	100	
25/2018	20	49	113	625	6/25/2019	13	44	143	395	6/25/2020	8	38	104	
26/2018	14	37	130	375	6/26/2019	15	49	114	235	6/26/2020	8	41	119	
	10	35	108	175		14	50	151	380	6/27/2020	16	52	129	
27/2018					6/27/2019									
28/2018	9	30	87	150	6/28/2019	13	50	153	270	6/28/2020	21	47	127	
29/2018	12	34	83	150	6/29/2019	13	63	163	395	6/29/2020	4	44	120	
53/5019	9	32	87	135	6/30/2019	7	69	179	290	6/30/2020	10-	47	121	
30/2018		37	108	240	7/1/2019	11	61	156	440		20	61	142	_
30/2018	10	311								7/1/2020		10.11		
30/2018 /1/2018										7/1/2020				
30/2018	10 10 9	57 57	166	255 190	7/2/2019 7/3/2019	11	50	125	325 265	7/1/2020 7/2/2020 7/3/2020	14	56	125	

7/5/2018	9	55	148	220	7/5/2019	9	44	129	225	7/5/2020	10	56	127	
7/6/2018	10	42	106	310	7/6/2019	28	50	124	180	7/6/2020	11	40	107	
7/7/2018	10	48	112	215	7/7/2019	20	45	113	220	7/7/2020	26	49	117	- 1
7/8/2018	4	36	87	280	7/8/2019	16	45	134	305	7/8/2020	16	48	150	- 1
7/9/2018	11	51	112	290	7/9/2019	12	48	135	915	7/9/2020	8	56	158	
/10/2018	4	53	126	310	7/10/2019	6	45	141	795	7/10/2020	14	51	125	
/11/2018	13	52	132	230	7/11/2019	12	59	166	390	7/11/2020	9	53	138	- 1
/12/2018	11	56	137	240	7/12/2019	10	34	133	280	7/12/2020	6	61	138	-
	13	55	127	230		6	42	113	300		8	47	121	
13/2018	11	54	111	160	7/13/2019 7/14/2019	11	49	118	380	7/13/2020	17	68	161	
14/2018	8	44	99	160	.,,	6	56	141	280	7/14/2020	19	81		
15/2018					7/15/2019					7/15/2020			187	
16/2018	10	48	113	300	7/16/2019	13	56	176	200	7/16/2020	15	57	156	
17/2018	9	47	131	185	7/17/2019	16	46	132	355	7/17/2020	11	58	131	
18/2018	9	45	108	205	7/18/2019	19	50	138	380	7/18/2020	16	62	136	
19/2018	4	39	113	225	7/19/2019	9	53	135	325	7/19/2020	9	49	117	
20/2018	18	47	121	195	7/20/2019	10	61	135	175	7/20/2020	12.	65	121	
21/2018	17	37	115	250	7/21/2019	16	47	127	245	7/21/2020	22.	49	122	
22/2018	45	47	86	115	7/22/2019	31	53	139	185	7/22/2020	86	67	118	
23/2018	86	72	90	160	7/23/2019	37	49	127	205	7/23/2020	49	70	108	
24/2018	63	65	104	160	7/24/2019	20	44	111	200	7/24/2020	62	37	64	
25/2018	45	47	97	135	7/25/2019	12	56	133	320	7/25/2020	14	79	205	
	20	24	86	195		10	44	125	250		4	36	118	
26/2018					7/26/2019					7/26/2020				
27/2018	16	17	71	190	7/27/2019	10	45	125	260	7/27/2020	30	31	106	
28/2018	14	15	87	200	7/28/2019	6	46	123	170	7/28/2020	9	50	151	
29/2018	13	18	81	205	7/29/2019	6	46	117	270	7/29/2020	12.	62	169	
30/2018	11	16	88	320	7/30/2019	6	39	106	245	7/30/2020	12	49	146	
31/2018	15	18	96	325	7/31/2019	9	46	116	295	7/31/2020	10	40	144	
/1/2018	14	53	138	230	8/1/2019	9	43	147	255	8/1/2020	14	53	138	
/2/2018	9	47	162	250	8/2/2019	5	41	124	370	8/2/2020	9	47	162	_
/3/2018	11	45	153	200	8/3/2019	5	40	102	315	8/3/2020	11	45	153	_
	48	51	111	220		5	52	123	275		48	51	111	
/4/2018					8/4/2019					8/4/2020				
/5/2018	32	44	100	235	8/5/2019	6	68	164	220	8/5/2020	32	44	100	
/6/2018	13	36	122	355	8/6/2019	8	60	139	185	8/6/2020	13	36	122	
/7/2018	44	32	124	320	8/7/2019	8	50	116	205	8/7/2020	44	32	124	
/8/2018	37	57	124	425	8/8/2019	11	57	143	465	8/8/2020	37	57	124	
/9/2018	14	49	147	430	8/9/2019	10	58	150	175	8/9/2020	14	49	147	
10/2018	14	46	141	230	8/10/2019	16	58	120	280	8/10/2020	14	46	141	
11/2018	6	41	132	300	8/11/2019	6	58	131	290	8/11/2020	6	41	132	
12/2018	29	57	142	235	8/12/2019	12	54	116	275	8/12/2020	29	57	142	
	19	50	117	230	8/13/2019	11	46	96	180		19	50	117	_
13/2018	11	50	139	400		7	47	106	220	8/13/2020	11	50	139	_
14/2018					8/14/2019					8/14/2020				_
15/2018	14	52	134	370	8/15/2019	7	58	136	200	8/15/2020	14	52	134	
16/2018	16	63	189	270	8/16/2019	8	66	177	335	8/16/2020	16	63	189	
17/2018	15	57	162	370	8/17/2019	14	59	134	315	8/17/2020	15	57	162	
18/2018	16	55	157	675	8/18/2019	13	66	130	205	8/18/2020	16	55	157	
19/2018	13	51	132	545	8/19/2019	12	64	136	205	8/19/2020	13	51	132	
20/2018	15	56	136	320	8/20/2019	13	58	131	175	8/20/2020	15	56	136	
21/2018	6	34	108	510	8/21/2019	12	71	117	395	8/21/2020	6	34	108	
22/2018	15	39	102	380	8/22/2019	16	52	138	560	8/22/2020	15	39	102	
23/2018	11	41	93	350		13	46	129	290		11	41	93	
					8/23/2019					8/23/2020	2			
24/2018	2	35	102	205	8/24/2019	17	56	118	130	8/24/2020		35	102	
25/2018	15	43	114	310	8/25/2019	13	53	104	150	8/25/2020	15	43	114	
26/2018	13	53	133	175	8/26/2019	12	57	107	290	8/26/2020	13	53	133	
27/2018	12	48	114	225	8/27/2019	8	53	183	255	8/27/2020	12.	48	114	
28/2018	17	48	135	270	8/28/2019	13	47	126	435	8/28/2020	17	48	135	
29/2018	9	48	129	280	8/29/2019	17	67	139	360	8/29/2020	9	48	129	
30/2018	11	60	149	270	8/30/2019	16	72	179	435	8/30/2020	11	60	149	
31/2018	4	51	153	340	8/31/2019	7	66	146	200	8/31/2020	4	51	153	
	15	37	130	340		5	68	149	215		15	53	152	
/1/2018		37			9/1/2019	4	58			9/1/2020	10	56		
/2/2018	13		124	200	9/2/2019	-		141	220	9/2/2020			159	
/3/2018	15	40	132	195	9/3/2019	12	58	140	220	9/3/2020	26	66	158	
/4/2018	14	39	129	165	9/4/2019	17	69	126	510	9/4/2020	14	51	120	
/5/2018	14	41	127	240	9/5/2019	16	71	132	340	9/5/2020	16	49	120	
/6/2018	14	47	150	200	9/6/2019	10	69	156	315	9/6/2020	14	52	108	
/7/2018	19	41	122	205	9/7/2019	4	48	126	475	9/7/2020	18	51	107	
/8/2018	41	45	115	270	9/8/2019	12	70	138	520	9/8/2020	21	40	88	
9/2018	47	43	100	275	9/9/2019	10	73	142	290	9/9/2020	10	40	98	_
10/2018	30	26	102	235	9/10/2019	10	60	124	295	9/10/2020	11	37	97	_
1/2018	18	44	112	220	9/11/2019	13	60	115	230	9/11/2020	23	48	103	
	12	30	93	215		13	54	120	375		16	56	123	
12/2018				420	9/12/2019	14	47			9/12/2020		49	118	
13/2018	11	13	77		9/13/2019			88	285	9/13/2020	12			
14/2018	6	12	96	255	9/14/2019	12	58	105	250	9/14/2020	9	42	104	
15/2018	10	19	111	270	9/15/2019	9	68	130	235	9/15/2020	10	59	146	
6/2018	13	22	110	235	9/16/2019	8	81	158	220	9/16/2020	9	44	101	
17/2018	11	23	127	215	9/17/2019	9	65	129	145	9/17/2020	8	43	118	
8/2018	10	23	130	230	9/18/2019	13	51	103	265	9/18/2020	6	54	122	
19/2018	13	25	125	350	9/19/2019	13	54	105	185	9/19/2020	12	56	118	
0/2018	12	27	146	215	9/20/2019	16	66	122	225	9/20/2020	12	54	134	
1/2018	13	33	128	190	9/21/2019	10	72	141	295	9/21/2020	12	58	131	
2/2018	10	21	106	175	9/22/2019	12	70	132	285	9/22/2020	8	58	138	_
	9	23	111	145		16	79	142	465		11	58	139	
3/2018					9/23/2019					9/23/2020				
4/2018	13	26	98	195	9/24/2019	16	84	162	245	9/24/2020	12	44	107	
25/2018	24	32	115	190	9/25/2019	19	60	118	240	9/25/2020	14	44	115	
26/2018	17	27	117	215	9/26/2019	11	60	121	282	9/26/2020	14	61	141	
27/2018	24	32	134	320	9/27/2019	16	62.	124	240	9/27/2020	14	65	157	
28/2018	38	42	123	220	9/28/2019	18	53	113	315	9/28/2020	13	68	173	
29/2018	16	25	103	240	9/29/2019	16	56	119	210	9/29/2020	12	64	128	
			111	400					270					
30/2018	14	27			9/30/2019	11	76	150		9/30/2020	15	52	113	
1/2018	9	24	158	295	10/1/2019	13	75	131	245	10/1/2020	20	65	133	
	8	19	138	235	10/2/2019	11	76	175	425	10/2/2020	16	53	108	
/2/2018			131	205									45.4	_
/2/2018	9	24	131	205	10/3/2019	15	80	169	215	10/3/2020	18	77	154	
	9 8	24	134	210	10/3/2019	14	80 71	169	215 350	10/3/2020	18	77 88	174	_

10/6/2018	11	26	149	275	10/6/2019	16	53	110	285	10/6/2020	20	73	134	2
10/7/2018	8	20	116	215	10/7/2019	14	52	128	190	10/7/2020	21	70	133	1
10/8/2018	6	26	123	190	10/8/2019	28	57	118	135	10/8/2020	14	57	112	1
10/9/2018	10	26	118	165	10/9/2019	26	50	96	165	10/9/2020	16	57	106	2
0/10/2018	10	28	105	305	10/10/2019	18	49	97	245	10/10/2020	19	55	100	3
0/11/2018	11	30	98	240	10/11/2019	14	57	112	410	10/11/2020	18	58	117	2
0/12/2018	12	33	110	210	10/12/2019	12	56	113	245	10/12/2020	34	55	110	2
1/13/2018	10	31	111	300	10/13/2019	22	61	116	150	10/13/2020	29	64	102	3
V14/2018	10	31	104	160	10/14/2019	10	43	96	180	10/14/2020	12	65	123	- 3
0/15/2018	10	30	99	160	10/15/2019	18	41	133	145	10/15/2020	25	74	151	3
0/16/2018	11	29	84	145	10/16/2019	17	31	93	360	10/16/2020	19	72	144	3
V17/2018	12	25	78	210	10/17/2019	30	50	113	255	10/17/2020	14	79	145	3
0/18/2018	10	33	116	330	10/18/2019	18	56	105	400	10/18/2020	13	82	136	3
0/19/2018	8	43	149	345 320	10/19/2019	22 13	60 50	97 112	295 780	10/19/2020	13	65 49	116 94	,
0/20/2018	9	35		205	10/20/2019		43	142	270	10/20/2020	17	40		- 2
0/21/2018	9	38	116	200	10/21/2019	18	46	98	255	10/21/2020	17	62	85 133	- 4
0/22/2018	4	37	114	235	10/22/2019	16	53	113	215	10/22/2020	16	51	124	- 7
0/24/2018	11	40	121	345	10/23/2019	20	64	117	240	10/23/2020	24	52	105	
0/25/2018	10	43	132	230	10/25/2019	15	56	123	560	10/25/2020	19	44	103	- 1
/26/2018	9	40	123	240	10/26/2019	17	69	141	355	10/26/2020	17	42	92	
/27/2018	17	33	117	360	10/27/2019	58	66	118	220	10/27/2020	22	55	111	
0/28/2018	18	42	108	265	10/28/2019	63	77	125	200	10/28/2020	17	61	107	-
729/2018	4	28	110	160	10/29/2019	40	71	127	150	10/29/2020	16	46	113	- 1
/30/2018	8	28	104	290	10/30/2019	25	53	110	170	10/30/2020	35	74	116	
V31/2018	11	43	116	410	10/31/2019	46	50	117	200	10/31/2020	31	88	139	
1/1/2018	13	40	115	250	11/1/2019	87	88	125	265	11/1/2020	20	58	116	
1/2/2018	33	50	118	250	11/2/2019	37	72	165	195	11/2/2020	25	59	115	
1/3/2018	57	56	97	300	11/3/2019	31	63	128	220	11/3/2020	24	55	136	
1/4/2018	19	32	117	215	11/4/2019	19	58	125	300	11/4/2020	14	53	106	
1/5/2018	23	45	132	200	11/5/2019	18	51	101	220	11/5/2020	18	52	107	
1/6/2018	46	52	108	260	11/6/2019	24	48	75	380	11/6/2020	30	58	100	
1/7/2018	20	31	84	265	11/7/2019	5	58	109	425	11/7/2020	15	57	113	
1/8/2018	12	19	93	190	11/8/2019	19	60	125	460	11/8/2020	19	57	106	
1/9/2018	21	27	102	310	11/9/2019	7	50	104	280	11/9/2020	26	55	93	
/10/2018	21	26	97	285	11/10/2019	15	61	108	160	11/10/2020	25	49	93	
/11/2018	16	22	100	510	11/11/2019	17	62	100	215	11/11/2020	16	35	77	
/12/2018	12	21	125	355	11/12/2019	7	47	98	195	11/12/2020	40	48	90	
/13/2018	31	36	138	495	11/13/2019	15	50	90	210	11/13/2020	35	70	107	
/14/2018	13	19	110	725	11/14/2019	17	50	84	225	11/14/2020	32	71	111	
/15/2018	10	20	108	660	11/15/2019	9	50	72	200	11/15/2020	16	63	113	
/16/2018	23	26	122	175	11/16/2019	11	47	72	235	11/16/2020	19	58	113	
/17/2018	24	31	112	305	11/17/2019	16	54	91	230	11/17/2020	13	54	101	
/18/2018	17	22	119	360	11/18/2019	16	59	98	735	11/18/2020	0	52	90	
/19/2018	16	23	102	205	11/19/2019	17	70	117	365	11/19/2020	16	64	115	
/20/2018	24	29	114	250	11/20/2019	16	60	102	235	11/20/2020	13	73	130	
/21/2018	17	25	16	220	11/21/2019	18	66	115	255	11/21/2020	12	63	120	
/22/2018	23	28	113	335	11/22/2019	11	51	110	365	11/22/2020	11	58	144	
/23/2018	9	16	103	320	11/23/2019	15	51	105	350	11/23/2020	6	53	117	
/24/2018	39	36	103	435	11/24/2019	27	50	125	380	11/24/2020	8	60	131	
/25/2018	26	29	97	180	11/25/2019	29	57	125	330	11/25/2020	9	71	129	
/26/2018	10	15	101	195	11/26/2019	18	52	116	390	11/26/2020	12	59	122	
/27/2018	11	18	110	175	11/27/2019	21	55	112	340	11/27/2020	26	63	102	
/28/2018	13	16	107	240	11/28/2019	10	64	136	490	11/28/2020	15	59	114	
/29/2018	8	15	129	260	11/29/2019	13	61	131	225	11/29/2020	35	78	137	
/30/2018	5	12	126	345	11/30/2019	8	54	119	225	11/30/2020	24	53	170	
2/1/2018	8	14	92	360	12/1/2019	20	52	120	185	12/1/2020	34	74	122	
2/2/2018	12	23	90	465	12/2/2019	24	48	110	185	12/2/2020	29	80	134	
2/3/2018	8	17	112	300	12/3/2019	33	52	102	445	12/3/2020	23	74	121	
2/4/2018	7	14	96	150	12/4/2019	19	55	121	590	12/4/2020	13	55	114	
2/5/2018	7	13	78	250	12/5/2019	19	53	125	650	12/5/2020	18	52	128	
2/6/2018	5	12	89	225	12/6/2019	8	50	121	305	12/6/2020	13	46	112	
2/7/2018	8	14	82	315	12/7/2019	16	62	116	615	12/7/2020	8	46	102	
2/8/2018	7	18	85 89	175 185	12/8/2019	20 9	58 39	104 98	315 135	12/8/2020	21 16	74 55	143	
2/9/2018	6	18	109	320	12/9/2019	14	30	90		12/9/2020	43	55		
11/2018	5	20	124	450	12/10/2019	15	35	90	530 440	12/10/2020		43	79 91	
12/2018	7	25	115	225	12/11/2019	15	45	90	205	12/11/2020	13	52	104	
13/2018	9	25	118	415		15	42	107	205	12/12/2020	18	68	104	
14/2018	7	23	84	220	12/13/2019	21	37	88	165	12/13/2020	14	55	140	
15/2018	25	27	90	225	12/15/2019	26	42	79	285	12/15/2020	15	59	147	
16/2018	46	50	103	305	12/16/2019	19	48	132	680	12/16/2020	16	50	114	
17/2018	18	21	104	220	12/17/2019	40	50	138	330	12/17/2020	15	57	94	
18/2018	2	10	106	300	12/18/2019	20	30	106	605	12/18/2020	5	48	100	
19/2018	9	26	117	306	12/19/2019	13	32	106	155	12/19/2020	17	64	116	
20/2018	14	17	113	245	12/20/2019	11	29	85	135	12/20/2020	6	49	109	
21/2018	36	32	126	170	12/21/2019	14	28	71	245	12/21/2020	14	53	105	
22/2018	22	26	107	195	12/22/2019	11	39	93	215	12/22/2020	14	42	102	
23/2018	9	20	114	260	12/23/2019	9	41	101	205	12/23/2020	21	40	86	
24/2018	7	18	123	225	12/24/2019	8	45	108	155	12/24/2020	24	46	116	
25/2018	8	16	116	250	12/25/2019	8	45	101	165	12/25/2020	98	72	106	
26/2018	10	22	151	250	12/26/2019	7	46	98	190	12/26/2020	42	52	106	
27/2018	6	20	152	245	12/27/2019	15	49	103	210	12/27/2020	24	37	108	
28/2018	34	30	139	205	12/28/2019	11	53	119	140	12/28/2020	17	36	109	
29/2018	17	22	119	210	12/29/2019	17	45	100	180	12/29/2020	18	44	101	
30/2018	4	16	129	180	12/30/2019	21	42	112	140	12/30/2020	27	55	99	
31/2018	16	23	107	190	12/31/2019	15	36	93	160	12/31/2020	17	42	94	
244010	10	20	700	130	14/31/2013	10	36	93	100	1431,2020	- 17	72	94	
κ.	86	76	189	725	Max	87	88	208	995	Max	98	88	205	,
1	2	8	16	15	Min	4	9	21	55	Min	0	5	15	_
dian	12	36	113	240	Median	12	42	118	270	Median	14	46	115	
	15.94	37.51	112.12	263.62	Average	13.95	40.74	117.54	296.08	Average	15.80	45.03	113.96	29
rage														

				r.m.					E.111	
<u> </u>	1.45 (2021.4	Upstream	Downstream 48	Effluent	Influent	4 (1 /2022	Upstream	Downstream 35	Effluent 84	Influent
_	1/1/2021	17	1.0	115	200	1/1/2022	17			230
_	1/2/2021	52	59	132	150	1/2/2022		28	72	
<u> </u>	1/3/2021	32	41	113	205	1/3/2022	30	58	68	
	1/4/2021	21	48	112	400	1/4/2022	18	54	92	100
	1/5/2021	13	35	128	235	1/5/2022	20	69	92	
	1/6/2021	16	39	129	425	1/6/2022	14	89	88	260
	1/7/2021	13	41	122	855	1/7/2022	9	88	155	220
	1/8/2021	10	46	138	150	1/8/2022	10	68	121	400
	1/9/2021	11	43	119	358	1/9/2022	10	53	140	285
	1/10/2021	11	48	115	564	1/10/2022	11	56	150	265
	1/11/2021	10	60	146	385	1/11/2022	10	51	107	395
	1/12/2021	8	54	131	200	1/12/2022	7	39	85	
		3	33	103	260		7		77	
\vdash	1/13/2021	5			470	1/13/2022	8		112	
_	1/14/2021	7	40			1/14/2022	8	50	112	
_	1/15/2021					1/15/2022				
⊢	1/16/2021	9	39		240	1/16/2022	9		87	
	1/17/2021	10	58	135	360	1/17/2022	12		100	
	1/18/2021	10	63	145	250	1/18/2022	16		85	
	1/19/2021	10	52	97	335	1/19/2022	9	30	73	175
	1/20/2021	13	57	95	280	1/20/2022	18	31	95	180
	1/21/2021	9	56	99	225	1/21/2022	20	37	90	450
	1/22/2021	4	53	104	255	1/22/2022	9	34	99	335
	1/23/2021	8	52	99	220	1/23/2022	8	42	118	315
		11	58	96	335		9		140	
_	1/24/2021					1/24/2022				
	1/25/2021	10	61	108	205	1/25/2022	9		102	
	1/26/2021	8	53	98	240	1/26/2022	8		63	
	1/27/2021	8	70		310	1/27/2022	6		99	
	1/28/2021	5	66	111	190	1/28/2022	7		150	
	1/29/2021	9	66	125	330	1/29/2022	4	63	147	380
	1/30/2021	15	65	138	305	1/30/2022	2	50	146	240
	1/31/2021	9	57	120		1/31/2022	7	53	118	
	2/1/2021	13	55	120		2/1/2022	12		103	
_		8	43	98	225		5		120	
_	2/2/2021	-				2/2/2022				
	2/3/2021	10	47	92	200	2/3/2022	30		107	185
	2/4/2021	13	61	104	215	2/4/2022	45		117	
	2/5/2021	10	56	119	300	2/5/2022	30	60	151	350
	2/6/2021	7	54	127	230	2/6/2022	22	68	173	320
	2/7/2021	10	50	98	280	2/7/2022	9	55	170	235
	2/8/2021	10	61	118	320	2/8/2022	14	48	128	350
	2/9/2021	12	65	118	130	2/9/2022	7	47	110	140
	2/10/2021	8	46	79	210	2/10/2022	3		90	
_		10	60	97	275				80	
_	2/11/2021					2/11/2022	23			
	2/12/2021	9	57	106	485	2/12/2022		38	93	
	2/13/2021	9	75		290	2/13/2022	10	42	101	245
	2/14/2021	14	74	145	400	2/14/2022	11	51	117	
	2/15/2021	11	59	133	310	2/15/2022	8	55	140	190
	2/16/2021	19	29	99	270	2/16/2022	6	45	120	230
	2/17/2021	40	44	89	280	2/17/2022	10	45	132	640
	2/18/2021	22	42	110	340	2/18/2022	20		120	300
	2/19/2021	10	40	101	430	2/19/2022	15	44	108	
_		8					11	48	117	280
	2/20/2021				-	2/20/2022				
	2/21/2021	11	60		280	2/21/2022	10	46	109	
	2/22/2021	9	63	148	300	2/22/2022	10		113	
	2/23/2021	12	59	127	595	2/23/2022	12	47	115	405
	2/24/2021	18	37	123	295	2/24/2022	13	46	90	250
	2/25/2021	25	35	107	280	2/25/2022	19	32	97	380
	2/26/2021	35	57	112	370	2/26/2022	22	41	119	
	2/27/2021	27	38	117	295	2/27/2022	9		148	
		53	44	133	220		10		133	
_	2/28/2021					2/28/2022	10 8			
	3/1/2021	37	44	140	230	3/1/2022			134	
	3/2/2021	25	36	106	150	3/2/2022	33		109	
	3/3/2021	19	37	97	340	3/3/2022	8		125	
	3/4/2021	15	36	115	300	3/4/2022	8		112	
	3/5/2021	13	28	109	330	3/5/2022	13	61	122	330
	3/6/2021	- 11	31	108	285	3/6/2022	14	53	129	285
	3/7/2021	8	38	129	380	3/7/2022	17	56	134	295
	3/8/2021	10	40	153	345	3/8/2022	9	51	121	450
	3/9/2021	10	38		410	3/9/2022	13		82	
	3/10/2021	10	44				19		87	
		9				3/10/2022	11	42		
_	3/11/2021					3/11/2022			92	
	3/12/2021	6				3/12/2022	15	49	116	
	3/13/2021	9		122	510	3/13/2022	11	40		
	3/14/2021	13				3/14/2022	11	43	124	
	3/15/2021	13	57	155	340	3/15/2022	13	37	108	
	3/16/2021	11	45	122	290	3/16/2022	8	33	102	270
	3/17/2021	7	46			3/17/2022	12		125	
	3/18/2021	12	34	104		3/18/2022	11	38	119	
	3/19/2021	18	44	104		3/19/2022	11	43	145	
_		15	49	109			13		169	
_	3/20/2021					3/20/2022				
	3/21/2021	13	46	-	215	3/21/2022	12		164	991
	3/22/2021	11	44	109		3/22/2022	9		129	
	3/23/2021	8	48	125		3/23/2022	8		91	
	3/24/2021	17	39		405	3/24/2022	10	32	95	300
	3/25/2021	20	38			3/25/2022	12		120	
	3/26/2021	28				3/25/2022	12		120	
		11	43				18		117	
	3/27/2021					3/27/2022				
_	3/28/2021	19	41	114		3/28/2022	- 6		137	
	3/29/2021	12				3/29/2022	13		142	
	3/30/2021	16	51	114	250	3/30/2022	7	54	126	290
	3/31/2021	14	57	117	275	3/31/2022	17	51	143	200
	4/1/2021	14				4/1/2022	48		117	
				- 20	200	49.27.602.2	-10		- 11	2.60
	4/2/2021	12	36	87	675	4/2/2022	25	46	127	290

	4/3/2021	13	45	111	645	4/3/2022	14	46	134	230
	4/4/2021	12	50	121	410	4/4/2022	12	44	131	315
	4/5/2021	13	50	125	460	4/5/2022	12	41	121	280
	4/6/2021	12	50	130	270	4/6/2022	16	37	105	240
	4/7/2021	13	45	121	340	4/7/2022	48	51	100	290
	4/8/2021	16	50	107	460	4/8/2022	39	59	108	280
	4/9/2021	14	40	97	310	4/9/2022	23	56	112	430
		18	50	118	450		16	41	106	325
	4/10/2021	19	37		770	4/10/2022	15	60		300
	4/11/2021	1.0		125		4/11/2022			112	
	4/12/2021	39	54	130	370	4/12/2022	17	61	134	330
	4/13/2021	20	50	127	430	4/13/2022	26	33	131	390
	4/14/2021	16	50	140	370	4/14/2022	10	29	138	310
	4/15/2021	16	53	136	285	4/15/2022	10	35	123	430
	4/16/2021	13	49	100	235	4/16/2022	9	30	115	280
	4/17/2021	12	45	101	270	4/17/2022	11	40	132	270
_		12	51	118	320	4/18/2022	12	39	143	300
_	4/18/2021						21	41		
_	4/19/2021	9	58	130	350	4/19/2022			135	215
	4/20/2021	15	69	138	290	4/20/2022	15	38	96	215
	4/21/2021	13	43	115	280	4/21/2022	12	29	83	230
	4/22/2021	13	56	103	210	4/22/2022	9	39	95	310
	4/23/2021	1312	53	102	310	4/23/2022	19	41	99	0
	4/24/2021	24	67	127	250	4/24/2022	9	39	115	270
	4/25/2021	23	66	139	325	4/25/2022	19	52	137	450
		15	65	129	250		10	67	157	240
	4/26/2021					4/26/2022				
	4/27/2021	6	75	127	390	4/27/2022	10	32	84	435
	4/28/2021	10	80	155	280	4/28/2022	7	45	116	300
	4/29/2021	22	68	125	305	4/29/2022	10	40	102	200
	4/30/2021	11	53	107	275	4/30/2022	12	43	111	345
	5/1/2021	23	64	107	300	5/1/2022	43	49	141	320
	5/2/2021	10	54	129	390	5/2/2022	13	53	152	430
	5/3/2021	14	60	151	410	5/3/2022	12	47	120	320
		6	40	151	645		12	38	111	370
	5/4/2021					5/4/2022				
	5/5/2021	20	52	1556	370	5/5/2022	11	46	121	320
	5/6/2021	21	67	142	300	5/6/2022	64	103	136	415
	5/7/2021	20	53	134	590	5/7/2022	68	74	113	280
	5/8/2021	17	51	153	600	5/8/2022	39	60	105	295
	5/9/2021	10	42	124	420	5/9/2022	39	47	122	250
	5/10/2021	20	50	112	400	5/10/2022	36	28	103	160
	5/11/2021	11	47	98	280	5/11/2022	10	22	96	290
_										240
	5/12/2021	16	47	90	315	5/12/2022	32	27	120	
	5/13/2021	14	44	81	190	5/13/2022	B	35	134	220
	5/14/2021	43	90	87	305	5/14/2022	10	31	143	300
	5/15/2021	27	50	96	380	5/15/2022	9	34	136	390
	5/16/2021	13	46	87	400	5/16/2022	11	35	134	210
	5/17/2021	10	55	131	350	5/17/2022	11	35	126	355
	5/18/2021	11	76	137	260	5/18/2022	- 11	34	125	355
_				114	180		19	48	170	
_	5/19/2021	12	63			5/19/2022				430
	5/20/2021	11	60	112	205	5/20/2022	14	45	161	300
	5/21/2021	15	66	119	465	5/21/2022	13	52	158	220
	5/22/2021	13	67	125	320	5/22/2022	14	37	139	500
	5/23/2021	16	79	124	335	5/23/2022	49	69	114	220
	5/24/2021	11	54	112	430	5/24/2022	14	29	95	340
	5/25/2021	18	71	129	315	5/25/2022	7	29	117	320
_		14	64	134	250		8	40	132	215
_	5/26/2021					5/26/2022				
	5/27/2021	17	72	129	310	5/27/2022	14	41	133	475
	5/28/2021	15	63	125	370	5/28/2022	15	50	153	330
	5/29/2021	18	43	112	335	5/29/2022	13	46	150	450
	5/30/2021	24	68	133	370	5/30/2022	13	52	154	390
	5/31/2021	17	70	131	340	5/31/2022	12	56	178	360
	6/1/2021	10	72	161	610	6/1/2022	13	56	167	460
_		15	76	155	195		13	55	159	300
—	6/2/2021					6/2/2022				
—	6/3/2021	16	65	134	340	6/3/2022	50	56	136	325
	6/4/2021	16	63	150	270	6/4/2022	28	47	127	260
	6/5/2021	24	71	171	220	6/5/2022	37	42	132	285
	6/6/2021	15	47	153	315	6/6/2022	25	25	59	225
	6/7/2021	40	39	120	120	6/7/2022	14	15	35	58
	6/8/2021	18	25	49	65	6/8/2022	22	17	19	15
	6/9/2021	14	13	35	30	6/9/2022	16	17	10	22
	6/10/2021	14	20	33	70	6/10/2022	15	20	10	260
		19	25	33	70		88	29	13	110
	6/11/2021					6/11/2022				
_	6/12/2021	24	24	24	65	6/12/2022	14	15	16	70
	6/13/2021	10	12	339	180	6/13/2022	10	13	15	30
	6/14/2021	16	23	43	595	6/14/2022	27	26	35	350
	6/15/2021	15	50	96	360	6/15/2022	25	60	119	170
	6/16/2021	14	71	122	485	6/16/2022	16	47	103	230
	6/17/2021	13	68	125	135	6/17/2022	39	63	92	420
	6/18/2021	14	66	118	295	6/18/2022	11	69	120	400
	6/19/2021	23	72	133	425		11	62	125	260
						6/19/2022				
	6/20/2021	12	52	108	635	6/20/2022	9	57	122	280
	6/21/2021	14	69	150	335	6/21/2022	22	66	144	230
	6/22/2021	19	56	131	255	6/22/2022	36	72	117	355
	6/23/2021	23	83	125	215	6/23/2022	1B	60	155	330
	6/24/2021	20	82	190	680	6/24/2022	77	68	153	295
		11	75	160	430		14	64	139	360
	6/25/2021					6/25/2022				290
	6/26/2021	12	69	143	230	6/26/2022	11	52	142	
	6/27/2021	14	69	136	315	6/27/2022	12	60	138	325
	6/28/2021	13	69	126	295	6/28/2022	10	70	155	270
	6/29/2021	15	64	131	350	6/29/2022	12	62	130	300
	6/30/2021	15	62	125	440	6/30/2022	9	70	110	260
		12	62	138	380		46	72	124	305
		1.65	0.2			7/1/2022	-10			
	7/1/2021	4.4		4.475			9.4	27.4	4000	
	7/2/2021	14	55	148	375	7/2/2022	31	51	103	
		14 15 16	55 62 69	148 19 151	375 290 260	7/2/2022 7/3/2022 7/4/2022	31 28 35	51 63 75	103 132 145	270 270 320

	7/5/2021	10	68	146	310	7/5/2022	42	81	146	230
_	7/6/2021	10	61	125	200	7/5/2022	43	57	114	265
_	7/7/2021	11	65	116	270	7/7/2022	54	46	114	340
	7/8/2021	13	57	109	325	7/8/2022	25	60	136	320
	7/9/2021	12	61	144	260	7/9/2022	16	62	164	360
	7/10/2021	12	62	141	306	7/10/2022	18	69	149	510
	7/11/2021	10	54	138	370	7/11/2022	14	68	154	300
	7/12/2021	14	65	135	350	7/12/2022	15	58	126	510
	7/13/2021	13	57	129	265	7/13/2022	13	72	160	350
	7/14/2021	22	57	105	295	7/14/2022	18	70	131	410
	7/15/2021	17	5B	116	435	7/15/2022	19	72	143	630
	7/16/2021	16	60	121	205	7/16/2022	17	52	118	170
	7/17/2021	13	58	127	375	7/17/2022	16	49	109	230
	7/18/2021	22	60	141	230	7/18/2022	16	62	127	500
	7/19/2021	14	66	138	305	7/19/2022	21	81	140	280
	7/20/2021	40	64	122	235	7/20/2022	9	77	130	410
	7/21/2021	15	63	132	365	7/21/2022	16	67	143	210
	7/22/2021	17	70	134	210	7/22/2022	18	72	157	420
	7/23/2021	17	74	135	200	7/23/2022	23	71	151	480
<u> </u>	7/24/2021	18	69	119	350	7/24/2022	13	68	149	420
<u> </u>	7/25/2021	24	62	111	520	7/25/2022	7	48	122	310
_	7/26/2021	24 19	56	144	225	7/26/2022	12	48 56	113	220 250
<u> </u>	7/27/2021	21	61 73	132	250	7/27/2022	7	59	119	290
—	7/28/2021	18	67	154	280	7/28/2022	13	58	120	670
—	7/29/2021	16	72	116	270	7/29/2022	15	61	116	230
	7/30/2021 7/31/2021	12	63	120	360	7/30/2022	27	53	116	230
\vdash	8/1/2021	9	54	106	220	7/31/2022 8/1/2022	67	33	-10	230
	8/1/2021	13	62	124	320	8/1/2022				
	8/2/2021	10	71	137	360	8/2/2022				
	8/4/2021	8	60	123	315	8/4/2022				
	8/5/2021	15	76	155	375	8/5/2022				
	8/6/2021	12	80	155	350	8/6/2022				
	8/7/2021	14	64	125	290	8/7/2022				
	8/8/2021	15	66	132	400	8/8/2022				
	8/9/2021	11	62	127	315	8/9/2022				
	8/10/2021	17	51	105	355	8/10/2022				
	8/11/2021	21	51	115	215	8/11/2022				
	8/12/2021	15	58	120	480	8/12/2022				
	8/13/2021	12	67	127	670	8/13/2022				
	8/14/2021	11	61	123	250	8/14/2022				
	8/15/2021	11	68	127	295	8/15/2022				
	8/16/2021	21	64	125	220	8/16/2022				
	8/17/2021	35	66	135	185	8/17/2022				
	8/18/2021	55	61	120	255	8/18/2022				
	8/19/2021	32	45	126	205	8/19/2022				
	8/20/2021	43	86	140	400	8/20/2022				
	8/21/2021	22	76	165	260	8/21/2022				
_	8/22/2021	38	57	146	170	8/22/2022				
_	8/23/2021	22	55	113	305	8/23/2022				
_	8/24/2021	20	58 63	109	260 310	8/24/2022				
_	8/25/2021	10	64	151	360	8/25/2022				
_	8/26/2021	39	72	130	390	8/26/2022 8/27/2022				
_	8/27/2021 8/28/2021	44	72	149	360					
_	8/29/2021	28	77	133	270	8/28/2022 8/29/2022				
—	8/30/2021	28	82	143	300	8/30/2022				
_	8/31/2021	16	60	131	270	8/31/2022				
	9/1/2021	80	83	114	185	9/1/2022				
	9/2/2021	50	54	93	180	9/2/2022				
	9/3/2021	27	55	109	440	9/3/2022				
	9/4/2021	24	51	162	250	9/4/2022				
	9/5/2021	24	59	168	265	9/5/2022				
	9/6/2021	21	57	171	360	9/6/2022				
	9/7/2021	19	50	133	185	9/7/2022				
	9/8/2021	27	4	114	230	9/8/2022				
	9/9/2021	45	55	115	215	9/9/2022				
	9/10/2021	32	28	110	155	9/10/2022				
	9/11/2021	26	53	119	220	9/11/2022				
	9/12/2021	20	49	117	185	9/12/2022				
	9/13/2021	12	52	125	355	9/13/2022				
	9/14/2021	18	60	135	245	9/14/2022				
	9/15/2021	17	49	123	315	9/15/2022				
<u> </u>	9/16/2021	51	72	117	265	9/16/2022				
<u> </u>	9/17/2021	23	51	135	220	9/17/2022				
_	9/18/2021	21	66	138	225	9/18/2022				
<u> </u>	9/19/2021	19	64 71	127	210 330	9/19/2022				
<u> </u>	9/20/2021			134		9/20/2022				
<u> </u>	9/21/2021	16 16	61	144	175 315	9/21/2022			-	
	9/22/2021	69	72	130	315 280	9/22/2022				
	9/23/2021	41	59	150	275	9/23/2022 9/24/2022			-	
	9/24/2021	25	58	162	375	9/24/2022				
	9/25/2021	19	63	160	415	9/25/2022				
	9/27/2021	20	73	188	305	9/27/2022				
	9/28/2021	16	66	165	245	9/28/2022				
	9/29/2021	16	59	134	260	9/29/2022				
	9/30/2021	17	58	103	380	9/30/2022				
	10/1/2021	12	52	111	325	10/1/2022				
	10/2/2021	37	76	116	210	10/2/2022				
	10/3/2021	13	84	135	350	10/3/2022				
	10/4/2021	13	60	143	300	10/4/2022				
		12	53	131	565	10/5/2022				
ı										

10/6/2021	14	53 53	109	250 245	10/6/2022				
10/8/2021	19	66	128	330	10/8/2022				
10/9/2021	15	67	145	180	10/9/2022				
10/10/2021	15	70	128	575	10/10/2022				
10/11/2021	19	58	121	255	10/11/2022				
10/12/2021	20	83	119	155	10/12/2022				
10/13/2021	16	54	96	220 205	10/13/2022				
10/14/2021	23	65 43	108	210	10/14/2022				
10/15/2021	14	55	118	195	10/15/2022				
10/17/2021	15	54	111	200	10/17/2022				
10/18/2021	12	72	134	295	10/18/2022				
10/19/2021	12	65	136	250	10/19/2022				
10/20/2021	13	58	109	250	10/20/2022				
10/21/2021	9	59	135	240	10/21/2022				
10/22/2021	13	64	114	220	10/22/2022				
10/23/2021	12	57	122	260	10/23/2022				
10/24/2021	11	60	133	230	10/24/2022				
10/25/2021	19	52	140	280	10/25/2022				
10/26/2021	33	58 73	132	305 200	10/26/2022				
10/27/2021	21	64	116	205	10/27/2022				
10/28/2021	52	69	135	205	10/28/2022				
10/30/2021	60	68	127	320	10/30/2022				
10/31/2021	27	49	134	390	10/31/2022				
11/1/2021	17	47	129	330	11/1/2022				
11/2/2021	15	44	118	205	11/2/2022				
11/3/2021	13	42	96	200	11/3/2022				
11/4/2021	10	38	94	345	11/4/2022				
11/5/2021	32	55	106	390	11/5/2022				
11/6/2021	11	79	170	335	11/6/2022				
11/7/2021	7	65	155	300	11/7/2022				
11/8/2021	8	60	133	545	11/8/2022				
11/9/2021	10	54 50	112	195 665	11/9/2022				
11/10/2021	10	61	118	420	11/10/2022				
11/12/2021	27	57	113	350	11/12/2022				
11/13/2021	32	64	119	200	11/13/2022				
11/14/2021	21	60	111	170	11/14/2022				
11/15/2021	18	58	109	220	11/15/2022				
11/16/2021	15	65	123	225	11/16/2022				
11/17/2021	14	64	133	150	11/17/2022				
11/18/2021	15	61	100	230	11/18/2022				
11/19/2021	14	58	105	200	11/19/2022				
11/20/2021	15	61	106	315	11/20/2022				
11/21/2021	13	65	112	240	11/21/2022				
11/22/2021	11	5B	116	210	11/22/2022				
11/23/2021	15	55 64	96 107	180 160	11/23/2022				
11/24/2021	12	65	111	280	11/24/2022				
11/26/2021	11	71	132	225	11/26/2022				
11/27/2021	9	82	143	185	11/27/2022				
11/28/2021	9	57	114	290	11/28/2022				
11/29/2021	9	48	93	225	11/29/2022				
11/30/2021	16	53	101	300	11/30/2022				
12/1/2021	10	60	115	275	12/1/2022				
12/2/2021	10	52	107	260	12/2/2022				
12/3/2021	15	48	94	150	12/3/2022				
12/4/2021	22	41	96	230	12/4/2022				
12/5/2021	22	60	89	280	12/5/2022				
12/6/2021	17	54	103	225	12/6/2022				
12/7/2021	18	72	119	420	12/7/2022				
12/8/2021	13	51 62	86 90	141 440	12/8/2022				
12/9/2021	11	62	108	250	12/10/2022				
12/11/2021	10	65	122	190	12/11/2022				
12/12/2021	11	67	120	240	12/12/2022				
12/13/2021	8	82	140	290	12/13/2022				
12/14/2021	14	68	113	355	12/14/2022				
12/15/2021	14	66	105	210	12/15/2022				
12/16/2021	10	63	96	230	12/16/2022				
12/17/2021	15	55	93	250	12/17/2022				
12/18/2021	13	50	90	200	12/18/2022				
12/19/2021	8	49	107	290	12/19/2022				
12/20/2021	11	59 63	107	265 255	12/20/2022				
12/21/2021	7	59	114	304	12/21/2022				
12/23/2021	11	60	109	290	12/23/2022				
12/24/2021	8	65	111	306	12/24/2022				
12/25/2021	8	61	104	310	12/25/2022				
12/26/2021	5	62	128	270	12/26/2022				
12/27/2021	11	56	101	250	12/27/2022				
12/28/2021	9	51	106	300	12/28/2022				
12/29/2021	8	61	113	280	12/29/2022				
12/30/2021	12	51	101	200	12/30/2022				
12/31/2021	14	56	92	230	12/31/2022				
Max	1312	90	1556	855	Max	88	103	178	136
Min	1	4	19	30	Min	2	13	10	
Median Average	20.34	58	121	290	Median	13	48	120	304.8
		56.47	124.81	304.76	Average	17.24	49.00	118.06	904.9

Appendix D – Data Analysis for Temperature

Mar-21	57	Average Monthly	67	Daily Maximum	38	Average Monthly	42	Daily Maximum
Jan-21 Feb-21	52 52	Average Monthly Average Monthly	56 58	Daily Maximum Daily Maximum	41 39	Average Monthly Average Monthly	48	Daily Maximum Daily Maximum
Nov-20 Dec-20	61 54	Average Monthly Average Monthly	69 59	Daily Maximum Daily Maximum	56 51	Average Monthly Average Monthly	60 59	Daily Maximum Daily Maximum
Oct-20	68	Monthly Average Monthly	72	Maximum Daily Maximum	59	Monthly Average Monthly	65	Maximum Daily Maximum
Aug-20 Sep-20	77	Monthly Average Monthly Average	80 76	Maximum Daily Maximum Daily	66 64	Monthly Average Monthly Average	68	Maximum Daily Maximum Daily
Jun-20 Jul-20	77 78	Average Monthly Average	90 81	Daily Maximum Daily	57 64	Average Monthly Average	65 70	Daily Maximum Daily
May-20	72	Monthly Average Monthly	82	Maximum Daily Maximum	51	Monthly Average Monthly	56	Maximum Daily Maximum
Mar-20 Apr-20	62 62	Monthly Average Monthly Average	68	Maximum Dolly Maximum Dully	42 48	Monthly Average Monthly Average	46 54	Maximum Daily Maximum Daily
Jan-20 Feb-20	55 56	Average Monthly Average	65 59	Daily Maximum Daily	41	Average Monthly Average	46 53	Daily Maximum Daily
Dec-19	56	Monthly Average Monthly	60	Maximum Daily Maximum	46	Monthly Average Monthly	56	Maximum Daily Maximum
Oct-19 Nov-19	71 61	Monthly Average Monthly Average	80 71	Maximum Dolly Maximum Dully	61 56	Monthly Average Monthly Average	66 62	Maximum Daily Maximum Daily
Aug-19 Sep-19	78 76	Average Monthly Average	82 83	Daily Maximum Daily	66 64	Average Monthly Average	70 69	Daily Maximum Daily
Jul-19	81	Monthly Average Monthly	85	Maximum Daily Maximum	63	Monthly Average Monthly	67	Maximum Daily Maximum
May-19 Jun-19	72 79	Monthly Average Monthly Average	80 82	Maximum Dolly Maximum Dully	53 58	Monthly Average Monthly Average	59 62	Maximum Daily Maximum Daily
Mar-19 Apr-19	65	Average	72	Duly	40	Average Monthly Average	44 52	Daily Maximum Daily
Feb-19		Monthly		Masimum	40	Monthly Average Monthly	45	Maximum Daily Maximum
Dec-18 Jan-19	54 48	Monthly Average Monthly Average	58 52	Maximum Daily Maximum Daily	49 43	Monthly Average Monthly Average	58 49	Maximum Daily Maximum Daily
Sep-18 Nov-18	74 60	Average Monthly Average	77 60	Maximum Duly	63 56	Average Monthly Average	66	Maximum Daily
Aug-18	72	Monthly Average Monthly	76	Maximum Daily Maximum	63	Monthly Average Monthly	72	Maximum Daily Maximum
Jun-18 Jul-18	78	Average Monthly Average	83	Daily Maximum Daily	63 65	Average Monthly Average	66 71	Daily Maximum Daily
May-18	78	Average Monthly	87	Duly Maximum	62	Monthly Average Monthly	67	Maximum Duly Maximum
Mar-18 Apr-18					43 51	Average Monthly Average	52 62	Daily Maximum Daily
Feb-18	56	Average Monthly	65	Duly Maximum	42	Monthly Average Monthly	53	Maximum Duly Maximum
Dac-17 Jan-18	62	Average Monthly	71	Maximum Duly Maximum	39 35	Average Monthly Average	47 44	Daily Maximum Daily
Oct-17 Nov-17	73	Average Monthly Average Monthly	80 73	Daily Maximum Daily Maximum	47	Average Monthly Average Monthly	65 56	Daily Maximum Daily Maximum
Sep-17	69	Average Monthly	72	Duly Maximum	60	Monthly Average Monthly	64	Maximum Duly Maximum
Jul-17 Aug-17					65 64	Average Monthly Average	76 68	Daily Maximum Daily
						Average Monthly	67	Daily Maximum

Appendix E - Previous Records w/ DMR Summary

Calciner Waste - Effluent Chemical Concentration Analysis

	TCLP ug/L	Wastewater ug/L	Basin Concentration ug/L	Final Effluent ug/L		
Antimony	300	0.5	34.64	0.84	5.6	2
Arsenic	90	0.57	10.77	0.67	10	3
Cadmium	22	0.26	2.74	0.28	0.27	0.2
Cobalt	56	0.55	6.87	0.61	19	
Copper	110	4.3	16.35	4.42	9.3	
Lead	58	0.57	7.12	0.64	3.2	
Mercury	2	0.00382	0.2314	0.0061	0.05	
Nickel	220	8.2	32.35	8.44	52	
Selenium	220	0.5	25.52	0.75	5	
Silver	44	0.5	5.46	0.55	3.8	
Thallium	220	0.1	25.17	0.35	0.24	

Notes All cells highlighted in yellow are non-detect and should be treated as < values. Cell highlighted in amber is value flagged J (below RDL but quantified).

All TCLP values that were non-detect are the more conservative RDL values based on an analytical dilution factor of 3.

Basin concentration was calculated based on calculated basin dilution / TCLP dilution ratio of 8.79.

Effluent concentration based on 558,000 gallons of basin content fed into 53,087,500 gallons of effluent over 3.875 days.

NPDES Permit Fact Sheet Spring Grove Mill

Total Nitrogen	Total Annual (lbs)	Annual Average (lbs/day)
2012	69020	189.10
2013	73600	201.64
2014	58390	159.97
2015	84960	232.77
2016	< 71360	< 195.51

Total Phosphorus	Total Annual (lbs)	Annual Average (lbs/day)
2012	4220	11.56
2013	5290	14.49
2014	4690	12.85
2015	6090	16.68
2016	< 5200	< 14.25

		Upstream	Upstream	Upstream		Effluent	Effluent	Effluent	Effluent		Upstream		Effluent	met sink?	gross	If no, gross Effluent
100 1																
1962 1															mg/L	lbs/day
1968 1																
100 100															0.049	5 599642
13	4/12															
170	1/12								274.2192							
100	7/12		1													
100	4/12															
100 100															0.045	5.14161
100 100																
1962 1962																
170	0/12															
1962 1	7/12		1	3.9					217.0902		0.1	03/26/12	0.1	Same		
17.20	8/12														0.004	0.457032
1.70																
12 13 1 1 2 2 2 2 2 3 3 4 3 0 0 2 2 3 1 3 3 4 5 0 0 2 2 3 3 5 5 5 5 5 5 5 5																
100 12 1																
17	8/12														0.005	0.57129
17.20	5/12			3.4	05/16/12	0.71			241.0844	05/15/12			0.1			
1,12	2/12				05/23/12	0.1	1.2	1.3		05/22/12		05/22/12				
17.20	9/12													-		
17.20 2.4	5/12													-		
12 1 2 3 3 2 2 6 7 3 2 2 7 3 2 2 7 3 2 2 7 3 3 2 2 7 3 3 3 3 3 3 3 3 3																
10.00 1.00															0.003	0.342774
17. 1	8/12														3,003	W-18114
179 1.5	0/12													Same		
1.75	7/12				07/18/12	0.1		1.1		07/17/12		07/17/12				
1	4/12														0.007	0.799806
10.00 1.7 1 2.7	1/12				08/01/12	0.1									0.00	3 00000
17.2 2																
1.00															0.005	0.57129
1	8/12															
17	4/12													-	0.005	0.57129
17.2 2.3 1 3.3 09/26/12 0.1 1.3 1.4 19/96/12 0.1 09/25/12 0.1 00/25/12 0.1 0.0	1/12	1.7		2.7	09/12/12	0.1	1.8		217.0902	09/11/12	0.1	09/11/12	0.193	N	0.093	
17.2 2 1 3 1002/12 0.1 48 49 595.8642 1002/12 0.1 1002/12 0.15 8 0.054 6.16962 17.2 2.2 1 3.4 1007/12 0.1 1.5 1.	8/12															
1/2	5/12				09/26/12	0.1									0.05	£ 450000
1															0.054	6.169932
1/12																
13																
\$\frac{1}{12}\$ 33 \$ 1 \$ 4.3 \$ 1107/12 \$ 0.1 \$ 2 \$ 2.1 \$239.9448 \$ 1105/12 \$ 0.03\$ \$ 1105/12 \$ 0.1 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9/12															
1/12 3.4	6/12				11/07/12	0.1			239.9418	11/06/12	0.103					
1/2	3/12				11/14/12	0.1				11/13/12		11/13/12				
1,12	0/12														0.076	8.683608
1/12																
															0.002	1.656756
1/2	7/12															
1	1/12	4.2	1		01/01/13	0.1	1.6	1.7	194.2386	12/31/12	0.1	01/01/13	0.202			
1/13	8/13															
1	5/13		-													
1.0																
1/13																
1/3	2/13														0.000	
\$\frac{1}{13}\$ 3.1 1 4.1 02/26/13 0.1 1.6 1.7 194.2396 02/26/13 0.1 02/26/13 0.1 5ame \$\frac{1}{13}\$ 3.5 1 4.5 03/05/13 0.1 1.4 1.5 171.387 02/25/13 0.1 03/05/13 0.126 N 0.08 12.3394 \$\frac{1}{13}\$ 3.4 1 4.4 03/17/13 0.1 4.2 4.3 491.3094 05/17/13 0.1 03/12/13 0.126 N 0.026 297070 \$\frac{1}{13}\$ 3.4 1 4.4 03/17/13 0.1 4.2 4.3 491.3094 05/17/13 0.1 03/12/13 0.126 N 0.026 297070 \$\frac{1}{13}\$ 3.7 1 4.7 05/05/13 0.1 2.4 2.5 265.485 03/26/13 0.1 03/26/13 0.17 N 0.007 7.9960 \$\frac{1}{13}\$ 3.7 1 4.7 05/05/13 0.1 2.1 2.2 23.365.7894 05/12/13 0.1 04/26/13 0.1 04/26/13 0.17 N 0.07 7.9960 \$\frac{1}{13}\$ 3.7 1 4.9 05/05/13 0.1 2.1 2.2 23.365.7895 05/05/13 0.1 04/26/13 0.1 04/26/13 0.1 04/26/13 0.1 04/26/13 0.1 0.1 04/26/13 0.1 0.1 04/26/13 0.1 0.1 04/26/13 0.1 04/26/13 0.1 04/26/13 0.1 04/26/13 0.1 04/26/13 0.1 04/26/13	9/13														0.000	2010221
1/13 3.4 1 4.4 03/12/13 0.1 4.2 4.3 491.3094 03/12/13 0.1 03/12/13 0.126 N 0.026 2.57070 1/13 1 1 4.1 03/13/13 0.1 2.2 2.3 362.7981 03/19/13 0.1 03/19/13 0.13 N 0.039 N 0.039 N 1/13 3.7 1 4.7 04/02/13 0.1 2.4 2.5 286.645 03/26/13 0.1 03/26/13 0.17 N 0.07 7.9980 1/13 3.7 1 4.7 04/02/13 0.1 2.1 2.2 25.18676 04/02/13 0.1 04/02/13 0.126 N 0.026 4.79883 1/13 3.3 1 4.9 04/03/13 0.1 1.2 1 2.2 25.18676 04/02/13 0.1 04/02/13 0.1 04/02/13 0.162 N 0.026 N 0.026 4.79883 1/13 3.3 1 4.3 04/15/13 0.1 1.3 1.4 159.9812 04/15/13 0.1 04/15/13 0.1 04/02/13 0.1 04/15/13 0.1 04/02/13 0.1 04/15/13 0.1 04/02/13 0.1 04/0	6/13	3.1	1	4.1	02/26/13	0.1		1.7		02/26/13	0.1			Same		
	5/13															
\$\frac{1}{1}\$ 2.9	2/13															
1																4.456062
			1													
\$\frac{1}{3}\$ 3.3 \ 1 \ 4.3 \ 04\frac{1}{6}\frac{1}{3}\$ 3.5 \ 1 \ 4.3 \ 04\frac{1}{6}\frac{1}{3}\$ 3.1 \ 4.3 \ 04\frac{1}{6}\frac{1}{3}\$ 3.1 \ 4.3 \ 04\frac{1}{6}\frac{1}{3}\$ 3.1 \ 4.3 \ 04\frac{1}{3}\frac{1}{3}\$ 3.1 \ 1.4 \ 15\text{9}\text{9}\frac{1}{2}\$ 04\frac{1}{3}\frac{1}{3}\$ 0.1 \ 05\frac{1}{3}\frac{1}{3}\frac{1}{3}\$ 0.1 \ 05\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\$ 0.1 \ 05\frac{1}{3}\frac{1}{3}\frac{1}{3}\$ 0.1 \ 05\frac{1}{3}\frac{1}{3}\frac{1}{3}\$ 0.1 \ 05\frac{1}{3}\frac{1}{3}\frac{1}{3}\$ 0.1 \ 05\frac{1}{3}\frac{1}\frac{1}{3}\frac{1}{3}\frac{1}\frac{1}{3}\frac{1}{3}\frac{1}{3}			1	411												
\$\frac{1}{13}\$ 3.3 \ 1 \ 4.3 \ 04/23/13 \ 0.1 \ 1.3 \ 1.4 \ 159.9812 \ 04/23/13 \ 0.1 \ 04/23/13 \ 0.1 \ 04/23/13 \ 0.1 \ 0.1 \ 5mmc \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6/13		-													
\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\	3/13															
7/13 0.1 1 1.1 05/07/13 0.1 1 1.1 1.2 15.6838 05/07/13 0.1 05/07/13 0.1 5/07/1	0/13	3.2	1	4.2	04/30/13	0.1	1.6	1.7	194.2386	04/30/13	0.1	04/30/13	0.135		0.035	3.99903
1/13 2.5 1 3.5 05/21/13 1.2 1 2.2 23.13676 06/21/13 0.1 05/21/13 0.115 N 0.015 1.7138 1/13 2.2 1 3.2 05/28/13 0.1 1 1.1 1.2.56338 05/28/13 0.1 05/28/13 0.1 05/28/13 0.1 5 mme	7/13				05/07/13	0.1				05/07/13		05/07/13				
\(\frac{1}{1}\) 2.2 1 3.2 \text{Colored}{\chick{0}}\) 3.1 \text{Colored}{\chick{0}}\) 3.3 \text{Colored}{\chick{0}}\) 3.1 \text{Colored}{\chick{0}}\) 3.3 \text{Colored}{\chick{0}}\) 3.1 \qq \qq \qq \qq \qq \qq\qq\qq\qq\qq\qq\qq\qq\qq\q																
1/13 2.1 1 3.1 06/04/13 0.1 1.6 1.7 194.2196 06/04/13 0.1 06/04/13 0.1 06/04/13 0.1 Same 1/13 2.5 1 3.5 06/11/13 0.1 1.3 1.4 159.912 06/11/13 0.13 06/11/13 0.1 Y Y Y Y Y Y Y Y Y															0.015	1.71387
\(\frac{1}{13}\) 2.5 1 3.5 \text{O}(\frac{1}{1}\)\(\frac{1}{3}\) 3.5 \text{O}(\frac{1}{1}\)\(\frac{1}{3}\) 3.1 \text{I} \text{S}(\frac{1}{3}\) 3.9 \text{O}(\frac{1}{1}\)\(\frac{1}{3}\) 3.1 \text{I} \text{S}(\frac{1}{3}\) 3.0 \text{O}(\frac{1}{1}\)\(\frac{1}{3}\) 3.6 \text{O}(\frac{1}{2}\)\(\frac{1}{3}\) 3.1 \text{I} \text{I} \text{I}																
\$\frac{1}{3} \ 2.9 \ \ 1 \ \ 3.9 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1/13		_													
\$\frac{1}{1}\frac{1}{2}\frac{2}{1}\frac{1}{3}\frac{3}{6}\frac{6}{6}\frac{5}{6}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{6}\frac{1}{6}\frac{5}{6}\frac{5}{6}\frac{1}{3}\frac{1}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac	8/13														0.59	67.41222
\(\frac{1}{1}\) \(\frac{1}{2}\) \(\frac{1}{3}\) \(\frac{1}\) \(\frac{1}{3}\) \(\frac{1}3\) \(\frac{1}3\) \(\frac{1}3\) \(\frac{1}3\) \(\frac{1}3\) \(\frac{1}3\) \(\frac{1}3\)	5/13				06/25/13	0.1				06/25/13		06/25/13				
\(\begin{array}{cccccccccccccccccccccccccccccccccccc	2/13	2.3	1	3.3	07/02/13	0.1	1.3		159.9612	07/02/13	0.103	07/02/13		Υ		
\$\frac{1}{1}\$ 1.6 \ 1 \ 2.6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9/13									07/09/13		07/09/13		-		
\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\	6/13														0.019	2.170902
\(\frac{1}{3}\) 1.6 \\ 1 \\ 2.6 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																
\$\frac{1}{1}\text{3} \text{ 0.94 } 1 1.94 \text{ 08/13/13 } 0.1 1 1.1 1.1 1.2			-												0.00*	0.914054
7/13 2.3 1 3.3 $68/20/13$ 0.1 1.1 1.2 137.1096 $68/20/13$ 0.1 $68/20/13$ 0.132 N 0.032 3.65625 $7/13$ 1.9 1 2.9 $68/27/13$ 0.1 1 1.1 1.2 125.6838 $68/27/13$ 0.101 $68/27/13$ 0.16 N 0.059 6.74122 $7/13$ 1.6 1 2.6 $69/32/13$ 0.1 1.4 1.5 171.387 $69/32/13$ 0.101 $69/32/13$ 0.106 N 0.005 0.5712 $7/13$ 1.6 1 2.6 $69/32/13$ 0.1 1 2 2.1 299.9418 $69/120/13$ 0.1 $69/120/13$ 0.1 Same $7/13$ 1.7 1 2.7 $69/12/13$ 0.1 1.8 1.9 277.0902 $69/12/13$ 0.1 $69/12/13$ 0.17 N 0.017 1.94238 $7/13$ 1.5 1 2.5 $69/24/13$ 0.1 1.8 1.9 277.0902 $69/24/13$ 0.1 $69/24/13$ 0.12 $69/24/13$ 0.13 $69/24/13$ 0.12 $69/2$			_												3.008	0.524004
7/13 1.9 1 2.9 08/27/13 0.1 1 1.1 12/5838 08/27/13 0.101 08/27/13 0.16 N 0.059 6.74122 (13 1.6 1 2.6 08/03/13 0.1 1.4 1.5 17.1837 08/03/13 0.10 09/03/13 0.10 N 0.059 6.74122 (13 1.6 1 2.6 08/03/13 0.1 1.4 1.5 17.1837 08/03/13 0.1 09/03/13 0.10 N 0.00 0.5 0.5 0.712 (13 1.6 1 2.6 08/10/13 0.1 2 2.1 239.9418 09/10/13 0.1 09/10/13 0.1 Same 0.017 1.94238 (13 1.7 1 2.7 09/17/13 0.1 1.8 1.9 217.0902 09/24/13 0.1 09/17/13 0.1 09/17/13 0.17 N 0.017 1.94238 (13 1.7 1 2.5 09/24/13 0.1 1.8 1.9 217.0902 09/24/13 0.1 09/24/13 0.1 09/14/13 0.122 N 0.022 2.8308 (13 1.7 1 2.	0/13													-	0.032	3.656256
\$\frac{13}{15}\$ 1.6 1 2.6 09\frac{09}{3}\frac{13}{3}\$ 0.1 1.4 1.5 171.387 09\frac{09}{3}\frac{13}{3}\$ 0.101 09\frac{09}{3}\frac{13}{3}\$ 0.106 N 0.005 0.5712 \\ \frac{15}{1713}\$ 1.6 1 2.6 09\frac{10}{3}\frac{13}{3}\$ 0.1 2 2.1 29\frac{19}{3}\frac{19}{3}\$ 0.1 0.1 09\frac{10}{3}\frac{13}{3}\$ 0.1 0.1 Serme \\ \frac{17}{1713}\$ 1.7 1 2.7 09\frac{17}{3}\frac{1}{3}\$ 1.8 1.9 217.0902 09\frac{17}{3}\frac{13}{3}\$ 0.1 09\frac{17}{3}\$ 0.17 N 0.017 19\frac{19}{3}\frac{13}{3}\$ 0.1 1.8 1.9 217.0902 09\frac{17}{3}\frac{13}{3}\$ 0.1 09\frac{17}{3}\$ 0.12 N 0.022 25\frac{13}{3}\frac{17}{3}\$ 0.1 0.1 09\frac{17}{3}\frac{1}{3}\$ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	7/13		_													
/13 1.7 1 2.7 09/17/13 0.1 1.8 1.9 217.0902 09/17/13 0.1 09/17/13 0.117 N 0.017 1.94238 1/13 1.5 1 2.5 09/24/13 0.1 1.8 1.9 217.0902 09/24/13 0.1 09/24/13 0.122 N 0.022 2.51367	3/13	1.6	1	2.6	09/03/13	0.1			171.387	09/03/13	0.101	09/03/13	0.106	N		
1/13 1.5 1 2.5 09/24/13 0.1 1.8 1.9 217.0902 09/24/13 0.1 09/24/13 0.122 N 0.022 2.51367	0/13		1		09/10/13	0.1				09/10/13		09/10/13				
	7/13															
1/15 1.7 1 2.7 10/01/13 0.1 1.2 1.3 146.5354 10/01/13 0.1 10/01/13 0.109 N 0.009 1.02832	6/13															
	1/13 8/13							1.3							0.009	1.028322

15/13	3.2	1	4.2	10/15/	13	0.1	1.6	1.7	194.2386	10/15/13	0.122	10/15/13	0.107	Υ		
22/13 29/13	2.7	1	4 3.7	10/22/ 10/29/		0.1	2	2.1 1.1	239.9418 125.6838	10/22/13 10/29/13	0.1	10/22/13 10/29/13	0.1	Same	0.017	1.942386
/05/13	2.3	1	3.3	11/05/		0.1	1	1.1	125.6838	11/05/13	0.135	11/05/13	0.1	Ÿ	0.017	1.541.310
/12/13	2.6	1	3.6	11/12/ 11/19/		0.1	1.4	1.1	125.6838	11/12/13 11/19/13	0.1	11/12/13 11/19/13	0.1	Same Same		
L/19/13 L/26/13	2.2	1	3.2	11/26/		0.1	2	2.1	171.387 239.9418	11/26/13	0.1	11/26/13	0.228	N N	0.128	14.62502
2/03/13	3.4	1	4.4	12/03/		0.1	1.3	1.4	159.9612	12/03/13	0.1	12/03/13	0.1	Same Y		
/10/13 /17/13	4.4	1	4.8 5.4	12/10/		0.1	1.6	1.7	194.2386 137.1096	12/10/13 12/17/13	0.119	12/10/13 12/17/13	0.117	Same		
/23/13	3.8	1	4.8	12/24/	13	0.1	1.2	1.3	148.5354	12/23/13	0.1	12/24/13	0.107	N		0.799806
/31/13 /07/14	4.7 3.6	1	5.7 4.6	12/31/ 01/07/		0.1	4.7	1.1 4.8	125.6838 548.4384	12/31/13 01/07/14	0.1	12/31/13 01/07/14	0.122	N N		2.513676 8.797866
/14/14	3.8	1	4.8	01/14/	14	0.1	1.2	1.3	148.5354	01/14/14	0.11	01/14/14	0.131	N	0.021	2.399418
/21/14 /28/14	3.6	1	4.6 4.3	01/21/ 01/28/		0.1	2.9	1.2	137.1096 342.774	01/21/14 01/28/14	0.1	01/21/14 01/28/14	0.128	N N		3.199224 11.4258
/04/14	3.1	1	4.1	02/04/		0.1	1	1.1	125.6838	02/04/14	0.116	02/04/14	0.114	Ÿ	0.2	11.4230
/11/14 /18/14	3.2	1	4.2 3.8	02/11/ 02/18/		0.1	1.3	1.4	159.9612 148.5354	02/11/14 02/18/14	0.1	02/11/14 02/18/14	0.112	N N		1.371096 1.828128
/25/14	3.5	1	4.5	02/25/		0.1	1.5	1.6	182.8128	02/25/14	0.1	02/25/14	0.168	N		7.769544
/04/14	3.5	1	4.5	03/04/		0.1	1.2	1.3	148.5354	03/04/14	0.1	03/04/14	0.126	N		2.970706
/11/14 /18/14	3.3 3.9	1	4.3	08/11/ 03/18/		0.1	1.6	1.1	125.6838 194.2386	03/11/14 03/18/14	0.107	03/11/14 03/18/14	0.165	N N		6.626964 19.65238
/25/14	3.4	1	4.4	03/25/	14	0.1	1.2	1.3	148.5354	03/25/14	0.1	03/25/14	0.176	N	0.076	8.683608
/01/14 /08/14	3.2 2.9	1	4.2 3.9	04/01/ 04/08/		0.1	1.9	1.3	228.516 148.5354	04/01/14 04/08/14	0.187	04/01/14 04/08/14	0.145	Y N	0.039	4.456062
/15/14	2.9	1	3.9	04/15/	14	0.1	1.5	1.6	182.8128	04/15/14	0.1	04/15/14	0.161	N	0.061	6.969738
/22/14 /29/14	3.1	1	4.1	04/22/		0.1	1.3	1.4	159.9612	04/22/14	0.1	04/22/14 04/29/14	0.131	N Y	0.031	3.541998
/06/14	3.1	1	4.1	04/29/ 05/06/		0.1	1	1.1	125.6838 125.6838	04/29/14 05/06/14	0.1	05/06/14	0.111	Same		
5/13/14	3.1	1	4.1	05/13/	14	2	1	3	342,774	05/13/14	0.1	05/13/14	0.12	N	0.02	2.28516
i/20/14 i/03/14	3.2	1	4.2	05/20/ 05/27/		0.1	1	1.1	239.9418 125.6838	05/20/14 05/27/14	0.1	05/20/14 05/27/14	0.1	Same Same		
/10/14	3.3	1	4.3	06/03/	14	0.1	1	1.1	125.6838	06/03/14	0.1	06/03/14	0.1	Same		
5/17/14 5/24/14	3.1 2.9	1	4.1 3.9	06/10/ 06/17/		0.1	1.1	1.1	125.6838 137.1096	06/10/14 06/17/14	0.445	06/10/14 06/17/14	0.1	Y		
/01/14	2.9	1	3.9	06/24/	14	0.1	1.2	1.3	148.5354	06/24/14	0.119	06/24/14	0.1	Ÿ		
7/08/14	2.4	1	3.4	07/01/		0.1	1	1.1	125.6838	07/01/14	0.102	07/01/14	0.1	Y 5		
7/15/14 7/22/14	2.6	1	3.6	07/08/ 07/15/		0.1	1	1.1	125.6838 125.6838	07/08/14 07/15/14	0.1	07/08/14 07/15/14	0.1	Same Y		
7/29/14	1.8	1	2.8	07/22/	14	0.1	2.5	2.6	297.0708	07/22/14	0.202	07/22/14	0.188	Υ		
8/05/14 8/12/14	1.6 1.8	1	2.6	07/29/ 08/05/		0.1	1.7 2.9	1.8	205.6644 342.774	07/29/14 08/05/14	0.136	07/29/14 08/05/14	0.109	Y N	0.058	6.626964
8/19/14	2	1	3	08/12/	14	0.1	1.5	1.6	182.8128	08/12/14	0.101	08/12/14	0.138	N		4.227546
8/26/14 9/02/14	1.8	1	2.8	08/19/ 08/26/		0.1	1.1	1.1	125.6838 137.1096	08/19/14 08/26/14	0.137	08/19/14 08/26/14	0.1	Same		
9/09/14	1.8	1	2.8	09/02/		0.1	2.3	2.4	274.2192	09/02/14	0.127	09/02/14	0.1	Ŷ		
9/16/14	1.8	1	2.8	09/09/		0.1	1	1.1	125.6838	09/09/14	0.131	09/09/14	0.1	Y		
9/23/14 9/30/14	1.9 1.6	1	2.9	09/16/ 09/23/		0.1	1.2	1.3	148.5354 217.0902	09/16/14 09/23/14	0.111	09/16/14 09/23/14	0.105	Y		
0/07/14	1.8	1	2.8	09/30/	14	0.1	1.6	1.7	194.2386	09/30/14	0.102	09/30/14	0.157	N	0.055	6.28419
0/14/14 0/21/14	2.2 1.5	1	3.2 2.5	10/07/		0.1	1.3	1.4	159.9612 171.387	10/07/14 10/14/14	0.247	10/07/14 10/14/14	0.1	Y Same		
0/28/14	1.4	1	2.4	10/21/	14	0.1	1	1.1	125.6838	10/21/14	0.1	10/21/14	0.104	N		0.457032
L/04/14 L/11/14	1.7	1	2.7	10/28/ 11/04/		0.17	1.7	1.6	182.8128 213.6625	10/28/14 11/04/14	0.1	10/28/14 11/04/14	0.135	N N		3.99903 0.799806
1/18/14	2.5	1	3.5	11/11/	14	0.17	1.9	2.12	242.227	11/11/14	0.1	11/11/14	0.114	N N		1.599612
1/25/14	2.5	1	3.5	11/18/	14	0.14	2.3	2.44	278.7895	11/18/14	0.137	11/18/14	0.15	N	0.013	1.485354
2/02/14 2/09/14	3.7	1.4	4 5.1	11/25/ 12/02/		0.39	1.8	2.19	250.225 234.2289	11/25/14 12/02/14	0.1	11/25/14 12/02/14	0.176	N N		8.683608 0.114258
/16/14	4.4		-	12/09/	14	0.22	2.4	2.62	299.356	12/09/14	0.1	12/09/14	0.18	N		9.14064
2/23/14 2/30/14	4.7			12/16/ 12/21/		0.1			WALUE!	12/16/14 12/23/14	0.1	12/16/14 12/23/14	0.1	Same Same		
1/06/15	3.9	1	4.9	12/30/	14	0.16	1.3	1.46	166.8167	12/30/14	0.475	12/30/14	0.104	Υ		
/13/15	3.1 4.8	1	4.1 5.8	01/06/	15	1.4 0.13	1.1	2.5 1.43	285.645 163.3889	01/06/15	0.1	01/06/15	0.1	Same	0.400	12.33986
L/20/15 L/27/15	3.7	1.6	5.8	01/13/ 01/20/		0.13	1.5	1.43	163.3889 182.8128	01/13/15 01/20/15	0.155	01/13/15 01/20/15	0.263	N N		7.42677
/03/15	4.3	1	5.3	01/27/	15	0.1	1.8	1.9	217.0902	01/27/15		01/27/15	0.255	N	0.14	15.99612
1/10/15 1/17/15	4.7 3.4	1	5.7 4.4	02/03/		0.14	1.4	1.54	175.9573 166.8167	02/03/15 02/10/15		02/03/15 02/10/15			0.039	4.456062
/24/15	3.5	1	4.5	02/17/	15	0.14	1.7	1.84	210.2347	02/17/15	0.1	02/17/15	0.112	N	0.012	1.371096
/08/15 /10/15	3.2 1.6	1 2.8	4.2	02/24/		0.1	2.2	2,3	228.516 262.7934	02/24/15 03/03/15		02/24/15 03/03/15				4.798836 3.313482
/17/15	3.8	1	4.8	03/10/	15	0.1	2.7	2.8	319.9224	03/10/15	0.584	03/10/15	0.213	Υ		
/24/15	4 3.7	1	5 4.7	03/17/	15	0.1	2.5 1.5	2.6 1.6	297.0708	03/17/15		03/17/15	0.24			15.65335 4.113288
/31/15 /07/15	3.7	1	4.7	03/24/ 03/31/		0.1	1.6	1.7	182.8128 194.2386	03/24/15 03/31/15		03/24/15 03/31/15				4.113288 7.312512
/14/15	3.1	2.4	5.5	04/07/	15	0.1	2.8	2.9	331.3482	04/07/15	0.1	04/07/15	0.127	N	0.027	3.084966
1/21/15 1/28/15	2.6	1.1	3.7	04/14/ 04/21/		0.1	1.3	1.4	159.9612 182.8128	04/14/15 04/21/15		04/14/15 04/21/15	0.126			0.342774 2.627934
/05/15	2.2	1.5	3.7	04/28/	15	0.1	2	2.1	239.9418	04/28/15	0.1	04/28/15	0.114	N	0.014	1.599612
/12/15 /19/15	1.8 3.5	2.2 4.8	4 8.3	05/05/ 05/12/		0.1	1.4 2.8	1.5 2.94	171.387 335.9185	05/05/15 05/12/15		05/05/15 05/12/15	0.189		0.089	10.16896
/26/15	2.3	1.2	3.5	05/12/		0.14	4.5	4.6	525.5868	05/12/15		05/12/15				
/02/15	4.5	1.5	6	05/26/	15	0.1	1.5	1.6	182.8128	05/26/15	0.214	05/26/15	0.246	N	0.032	3.656256
/09/15 /16/15	2.6	1.6 1.5	4.2	06/02/		0.35 4.7	3.1 1.8	3.45 6.5	394.1901 742,677	06/02/15 06/09/15		06/02/15 06/09/15	0.199			
/23/15	3.8	1	4.8	06/16/	15	0.15	1.5	1.65	188.5257	06/16/15	0.141	06/16/15	0.306	N	0.165	18.85257
5/30/15 7/07/15	3.6	1.8	5.4 4.8	06/23/ 06/30/		0.1	1.7	1.1	125.6838 205.6644	06/23/15 06/30/15		06/23/15 06/30/15	0.1		0.125	15.42483
/07/15 /14/15	2.8	1.3	4.8	06/30/		0.1	1.7	1.8	205.6644	06/30/15		06/30/15	0.246		0.135	13/45403
/21/15	2.6	2	4.6	07/14/	15	0.1	1.8	1.9	217.0902	07/14/15	0.102	07/14/15	0.119	N		1.942386
1/28/15 1/04/15	2 2	1.1	4.2 3.1	07/21/ 07/28/		0.1	1.6	1.7	194.2386 159.9612	07/21/15 07/28/15		07/21/15 07/28/15			0.052	5.941416
3/11/15	2	1.5	3.5	08/04/	15	0.1	2.9	3	342.774	08/04/15	0.157	08/04/15	0.127	Y		
1/18/15	1.8	1.9	3.7	08/11/		0.1	1.4	1.5	171.387	08/11/15	0.112	08/11/15	0.12		0.008	0.914064
8/25/15 9/01/15	1.9	1.4	3.1	08/18/ 08/25/		0.1	7.1 1.2	7.2 1.42	822.6576 162.2464	08/18/15 08/25/15		08/18/15 08/25/15		Same Same		
9/08/15	1.4	1.7	3.1	09/01/		0.1	2.1	2.2	251.3676	09/01/15		09/01/15			0.012	1.371096

09/15/15 09/22/15	1.8 1.8	4.2	2.8 6	09/08/15 09/15/15	0.1	2.4 1.9	2.5	285.645 228.516	09/08/15 09/15/15	0.1	09/08/15 09/15/15	0.106	N N		0.685548 16.22464
09/29/15	1.7	2.9	4.6	09/22/15	0.1	1	1.1	125.6838	09/22/15	0.124	09/22/15	0.179	N	0.055	6.28419
10/06/15 10/13/15	2.5	1 5.4	3.5 7.8	09/29/15 10/06/15	0.1	1.6	1.7	148.5354 194.2386	09/29/15 10/06/15	0.183	09/29/15 10/06/15	0.218	N Same	0.035	3.99903
10/27/15	1.8	1	2.8	10/13/15	0.1	3	3.1	354.1998	10/13/15	0.1	10/13/15	0.1	Same		
11/03/15 11/10/15	3.1 2.4	1	4.1 3.4	10/20/15 10/27/15	0.1	1.3	1.4	159.9612 148.5354	10/20/15 10/27/15	0.1	10/20/15 10/27/15	0.1	Same Same		
11/17/15	2.5	1	3.5	11/03/15	0.1	1.2	1.3	148.5354	11/03/15	0.1	11/03/15	0.108	N		0.914064
11/24/15 12/01/15	2.4	1	3.4	11/10/15 11/17/15	0.49	1.5 2.3	1.99 2.4	227.3734 274.2192	11/10/15 11/17/15	0.1	11/10/15 11/17/15	0.107	N N		0.799806 5.598642
12/08/15	3.3	1	4.3	11/24/15	0.1	1.8	1.9	217.0902	11/24/15	0.1	11/24/15	0.127	N	0.027	3.084966
12/15/15 12/22/15	2.7	1	3.7	12/01/15 12/08/15	0.1	1.4	1.5	171.387 182.8128	12/01/15 12/08/15	0.1	12/01/15 12/08/15	0.1	Same Same		
12/29/15	2.7	1.9	4.6	12/15/15	0.31	3.4	3.71	423.8972	12/15/15	0.1	12/15/15	0.13	N		3.42774
01/05/16 01/12/16	4.5	1.7	6.2 5	12/22/15 12/29/15	0.1	1.5 3.4	1.6 3.5	182.8128 399.903	12/22/15 12/29/15	0.1 0.333	12/22/15 12/29/15	0.106	N Y	0.006	0.685548
01/19/16 01/26/16	4.4 3.6	1	5.4 4.6	01/05/16 01/12/16	0.1	1 1.6	1.1	125.6838 194.2386	01/05/16	0.1	01/05/16 01/12/16	0.123	N N		2.627934 4.913094
02/02/16	2.9	1	3.9	01/19/16	0.1	1.1	1.2	137.1096	01/19/16	0.1	01/19/16	0.166	N		7.54102B
02/09/16 02/16/16	3.1 3.1	1	4.1	01/26/16 02/02/16	0.1	2.6 1.4	2.7 1.5	308.4966 171.387	01/26/16 02/02/16	0.1	01/26/16 02/02/16	0.109	N N	0.009	1.028322 2.28516
02/23/16	2.9	1	3.9	02/09/16	0.1	2.1	2.2	251.3676	02/09/16	0.1	02/09/16	0.178	N	0.078	8.912124
03/01/16	3.2	1	4.2 3.7	02/16/16 02/23/16	0.1	1.6	1.7	194.2386 125.6838	02/16/16 02/23/16	0.1 0.1	02/16/16 02/23/16	0.179	N N	0.079	9.026382 1.14258
03/15/16	2.5	1	3.5	03/01/16	0.1	1.1	1.2	137.1096	03/01/16	0.1	02/23/16	0.41		5.01	4.4420
03/22/16 03/29/16	3 2.2	1.2	4.2 3.2	03/08/16 03/15/16	0.1	1 2.5	1.1 2.6	125.6838 297.0708	03/08/16 03/15/16	0.1					
04/05/16	3.1	1	4.1	03/22/16	0.1	1.5	1.6	182.8128	03/22/16	0.1					
04/12/16 04/19/16	3 2.6	1	4 3.6	03/29/16 04/05/16	0.1	2.1	2.2	125.6838 251.3676	08/29/16 04/05/16	0.1	04/05/16	0.145	N	p.nas	5.14161
04/26/16	2.7	1	3.7	04/12/16	0.11	1	1.11	126.8264	04/12/16	0.1	04/12/16	0.128	N		3.199224
05/03/16 05/10/16	2.8	1.4	4.2 3.9	04/19/16 04/26/16	0.1	2.3	2.4 1.1	274.2192 125.6838	04/19/16 04/26/16	0.1	04/19/16 04/26/16	0.1	Same Same		
05/17/16	2.3	1.6	3.9	05/03/16	0.1	1	1.1	125.6838	05/03/16	0.469	05/03/16	0.122	Y		
05/24/16 05/31/16	3.4	1.7	3.9 5.1	05/10/16 05/17/16	0.1	1.9	2.1	239.9418 228.516	05/10/16 05/17/16	0.1	05/10/16 05/17/16	0.104	Same N	0.004	0.457032
06/07/16	2.3	1.1	3.4	05/24/16	0.1	1.3	1.4	159.9612	05/24/16	0.1	05/24/16	0.111	N		1.256838
06/14/16 06/21/16	2.1 0.41	1	3.1 1.41	05/31/16 06/07/16	0.1 5.1	1.5 1.4	1.6 6.5	182.8128 742.677	05/31/16 06/07/16	0.24	05/31/16 06/07/16	0.104	Y N	0.049	5.598642
06/28/16	2.1	1	3.1	06/14/16	0.1	1.4	1.5	171.387	06/14/16	0.101	06/14/16	0.119	N	0.018	2.056644
07/05/16 07/12/16	1.9	1	3.2 2.9	06/21/16 06/28/16	0.1	1.1	1.2	137.1096 125.6838	06/21/16 06/28/16	0.1	06/21/16 06/28/16	0.135	N N	0.035	3.99903 3.199224
07/19/16	2.3	1	3.3	07/05/16	0.1	1.2	1.3	148.5354	07/05/16	0.128	07/05/16	0.144	N	0.016	1.828128
07/26/16 08/02/16	1.5 10.6	1.2	2.5 11.8	07/12/16 07/19/16	0.1	4	4.1	137.1096 468.4578	07/12/16 07/19/16	0.1	07/12/16 07/19/16	0.141	Same Y		
08/09/16	1.5	1	2.5	07/26/16	0.1	1	1.1	125.6838	07/26/16	0.109	07/26/16	0.148	N		4.456062
08/16/16 08/23/16	1.3	1	2.3	08/02/16 08/09/16	0.1	1.4	2.5 1.5	285,645 171,387	08/02/16 08/09/16	0.124	08/02/16 08/09/16	0.163	N N		4.456062 6.169932
08/30/16	1.4	1	2.4	08/16/16	0.1	1.1	1.2	137.1096	08/16/16	0.1	08/16/16	0.222	N	0.122	13.93948
09/06/16 09/13/16	0.97	1	2.2 1.97	08/23/16 08/30/16	0.1	1.4	1.5	171.387 194.2386	08/23/16 08/30/16	0.1	08/23/16 08/30/16	0.146	N N		5.255868 8.340834
09/20/16	1.3	1.1	2.4	09/06/16	0.1	1.1	1.2	137.1096	09/06/16	0.102	09/06/16	0.158	N	0.056	6.398448
09/27/16 10/04/16	1.6	1	2.6	09/13/16 09/20/16	0.1	1.4	1.6	171.387 182.8128			09/13/16 09/20/16	0.13	N N		
10/11/16 10/18/16	1.3	1	2.3	09/27/16 10/04/16	0.1	1.4	1.5	171.387 125.6838	10/04/16	0.114	09/27/16 10/04/16	0.1	N N	0.015	1.71387
10/25/16	1.3	1	2.3	10/11/16	0.1	1	1.1	125.6838	10/11/16	0.1	10/11/16	0.107	N N		0.799806
11/01/16 11/08/16	1.1 18.5	2.2	3.3 19.5	10/18/16 10/25/16	0.1	1.7	1.8	205.6644 194.2386	10/18/16 10/25/16	0.1	10/18/16 10/25/16	0.135	N Same	0.035	3.99903
11/15/16	1.3	3.4	4.7	11/01/16	0.1	1.2	1.3	148.5354	11/01/16	0.1	11/01/16	0.104	N	0.004	0.457032
11/22/16 11/29/16	1.3	1	2.3	11/08/16 11/15/16	7.3 0.1	NA 1.3	7.3 1.4	834.0834 159.9612	11/08/16 11/15/16	0.1	11/08/16 11/15/16	0.1	Same N	0.05	5.7129
12/06/16	2.4	1	3.4	11/22/16	0.1	2.6	2.7	308.4966	11/22/16	0.1	11/22/16	0.477	N	0.377	43,07527
12/13/16 12/20/16	2.4	1	3.4	11/29/16 12/06/16	0.1	1.7	1.8	205.6644 159.9612	11/29/16 12/06/16	0.1	11/29/16 12/06/16	0.133	N N		3.770514 7.083996
12/27/16	11.3	1	12.3	12/13/16	0.1	1.7	1.8	205.6644	12/13/16	0.1	12/13/16	0.177	N	0.077	8.797866
01/03/17 01/10/17	3.2	1	4.2	12/20/16 12/27/16	0.1	1.4 2.7	1.5 2.8	171.387 319.9224	12/20/16 12/27/16	0.1	12/20/16 12/27/16		N N		6.626964 14.9678
01/17/17	3.3	1	4.3	01/08/17	0.1	1.4	1.5	171.387	01/03/17	0.1	01/03/17	0.106	N	0.006	0.685548
01/24/17 01/31/17	3.5 4.5	1.3	4.7 5.8	01/10/17 01/17/17	0.1	2.1 1.8	1.9	251.3676 217.0902	01/10/17 01/17/17	0.1	01/10/17 01/17/17	0.116	N N		1.828128 5.484384
02/07/17	3.9	1	4.9	01/24/17	0.1	1.4	1.5	171.387	01/24/17	0.294	01/24/17	0.103	Υ		
02/14/17 02/21/17	3.2	1	5 4.2	01/31/17 02/07/17	0.1	1 3.3	3.4	125.6838 388.4772	01/31/17 02/07/17	0.1	01/31/17 02/07/17	0.17	N N		7.99806 6.28419
02/28/17	3.4	1	4.4	02/14/17 02/21/17	0.1	1.6 1.9	1.7	194.2386	02/14/17	0.1	02/14/17	0.114	N N	0.014	1.599612 0.342774
03/07/17 03/13/17	3.5	1	4.5	02/21/17	0.1	2.7	2.8	228.516 319.9224	02/21/17 02/28/17	0.1	02/21/17 02/28/17	0.103	N Same	0.003	W.294//9
03/21/17	4.5	1.2	5.7	03/07/17 03/14/17	0.1	1.6	1.7	194.2386 239.9418	03/07/17	0.1	03/07/17	0.175	N N		8.56935
03/28/17 04/04/17	4.3	1	5.3	03/14/17	0.1	2	2.1	239.9418 239.9418	08/18/17 03/21/17	0.1	03/14/17 03/21/17	0.235	N N		15.42483 3.770514
04/11/17	4.4	1	5.4	03/28/17	0.1	1.8	1.9	217.0902	03/28/17	0.1	03/28/17	0.127	N N	0.027	3.084966
04/18/17 04/25/17	3.7	1	4.7 4.5	04/04/17 04/11/17	0.1	1.2	1.3	319.9224 148.5354	04/04/17 04/11/17	0.1	04/04/17 04/11/17	0.201	N Same	0.101	11.54006
05/02/17 05/09/17	3 4.3	1	4 5.3	04/18/17 04/25/17	0.1	2.5 1.5	2.6 1.6	297.0708 182.8128	04/18/17	0.1	04/18/17 04/25/17	0.1	Same Same		
05/16/17	4.3	1	5.3	05/02/17	0.1	2.2	2.3	262.7934	04/25/17 05/02/17	0.1	05/02/17	0.133	N	0.033	3.770514
05/23/17	3.4	1.4	4.8	05/10/17	0.1	2.3	2.4	274.2192 125.6838	05/09/17	0.1	05/10/17	0.1	Same	0.045	1.878170
05/30/17 06/06/17	2.4	1.1	3.5	05/17/17 05/24/17	0.1	2.3	2.4	125.6838 274.2192	05/16/17 05/23/17	0.1	05/17/17 05/24/17	0.116	Υ	0.016	1.828128
06/13/17	1.8	1	2.8	05/31/17	0.1	1.8	1.9	217.0902	06/06/17	0.1	06/06/17	0.1	Same N	0.02	3.42774
06/20/17 06/27/17	1.8	1	2.8	06/07/17 06/14/17	0.1	3.6 1	4.57 1.1	522.1591 125.6838	06/13/17 06/20/17	0.12	06/13/17 06/21/17	0.15	N Y		
07/08/17	1.3	3.5	4.8	06/21/17	0.1	1.3	1.4	159.9612	06/27/17	0.1	06/27/17	0.16	N Same	0.06	6.85548
07/10/17 07/18/17	1.5 2	1.2	3.2	06/28/17 07/05/17	0.1	1.7	1.5	171.387 205.6644	07/03/17 07/10/17	0.1	07/04/17 07/11/17	0.125	Same N	0.025	2.85645
07/25/17	1.2	1	2.2	07/12/17	0.1	1.8	1.9	217.0902	07/18/17	0.28	07/18/17	0.178	Y N	neer	7.541028
08/01/17 08/08/17	3.4 2.5	1.3	3.8	07/19/17 07/26/17	0.1	1.2	1.7	148.5354 194.2386	07/25/17 08/01/17	0.109	07/25/17 08/01/17		N Same	3.066	7.341026

08/15/17 2.5 1 3.5 08/01/17 0.1 1.7 1.8 205.6644 08/08/17 0.114 08/08/17 0.1 Y 08/22/17 1.8 1 2.8 08/08/17 0.1 1.4 1.5 17.1387 08/15/17 0.1 08/15/17 0.1 Same 08/15/17 2.4 1 3.4 08/05/17 0.1 1.5 1.8 138.132.8 08/05/17 0.1 0.1 08/05/17 0.1 Same 08/15/17 2.4 1 3.4 08/05/17 0.1 1.5 1.6 138.132.8 08/05/17 0.1 09/05/17 0.1 Same 08/15/17 2.4 1 3.4 08/05/17 0.1 1.5 1.6 138.132.8 08/05/17 0.1 09/05/17 0.3 Same 08/15/17 1.6 1 2.6 09/15/17 0.1 1.1 1.3 125.6838 08/05/17 0.1 09/05/17 0.30 Same 08/15/17 1.6 1 2.4 08/05/17 0.1 1.8 1.9 125.6838 08/15/17 0.1 09/15/17 0.10 Same 10/05/17 1.4 1 2.4 08/05/17 0.1 1.8 1.9 127.0902 09/05/17 0.1 09/15/17 0.1 Same 10/15/17 1.4 1 2.4 09/07/17 0.1 1.8 1.9 127.0902 09/05/17 0.1 10/05/17 0.1 Same 10/15/17 1.4 1 2.4 09/07/17 0.1 1.4 1.5 17.1397 0.1 10/05/17 0.1 Same 10/15/17 1.4 1 2.4 10/05/17 0.1 1.1 1.2 127.0902 09/05/17 0.1 10/05/17 0.1 Same 10/15/17 1.4 1 2.4 10/05/17 0.1 1.4 1.5 17.1397 0.1 10/05/17 0.1 Same 10/15/17 1.4 1 2.4 10/05/17 0.1 1.4 1.5 17.1397 0.1 10/05/17 0.1 10/05/17 0.1 Same 10/15/17 1.4 1 2.4 10/05/17 0.1 1.4 1.5 17.1397 0.1 10/05/17 0.1 10/05/17 0.1 Same 10/15/17 1.4 1 2.4 10/05/17 0.1 1.4 1.5 1.7 13.10/05/17 0.1 10/05/17 0.1 Same 10/15/17 1.4 1 2.4 10/05/17 0.1 1.4 1.5 1.5 1.8 18.8 12/17 0.1 10/05/17 0.1 10/05/17 0.1 Same 10/15/17 1.4 1 2.4 10/05/17 0.1 1.4 1.5 1.5 1.8 18.8 12/18 10/05/17 0.1 10/05/17 0.1 Same 10/15/17 1.4 1 2.4 10/05/17 0.1 1.4 1.5 1.5 1.8 18.8 12/18 10/05/17 0.1 10/05/17 0.1 10/05/17 0.1 Same 10/15/17 2.5 1 3.5 10/05/17 0.1 1.4 1.5 1.5 1.8 18.8 12/18 10/05/17 0.1 10	08/22/17 1.8 1 2.8 08/08/17 0.1 1.4 1.5 171.387 08/15/17 0.108 08/15/17 0.1 Y	08/22/17 1.8 1 2.8 08/08/17 0.1 1.4 1.5 171.887 08/15/17 0.1 08/15/17 0.1 Y 08/29/17 1.8 1 2.8 08/15/17 0.1 1 1.1 125.6838 08/22/17 0.1 08/22/17 0.1 5ame 09/05/17 1.4 1 2.4 08/27/17 0.1 1.5 1.5 171.887 08/29/17 0.1 08/30/17 0.1 5ame 09/15/17 2.1 3.8 3.8 09/05/17 0.1 1.1 125.6838 09/12/17 0.108 09/05/17 0.1 5ame 09/25/17 1.6 1 2.6 09/13/17 0.1 1 1.1 125.6838 09/12/17 0.108 09/12/17 0.108 5ame 09/25/17 1.6 1 2.6 09/13/17 0.1 1 1.1 125.6838 09/12/17 0.108 09/12/17 0.108 5ame 09/25/17 1.6 1 2.6 09/13/17 0.1 1 1.1 125.6838 09/12/17 0.1 0.108 09/12/17 0.1 5ame 10/03/17 1.4 1 2.4 09/20/17 0.1 1.8 1.9 217.0902 09/25/17 0.1 09/15/17 0.1 5ame 10/03/17 1.4 1 2.4 09/20/17 0.1 1.8 1.9 217.0902 09/25/17 0.1 09/25/17 0.1 5ame 10/03/17 1.4 1 2.4 10/03/17 0.1 1.4 1.5 171.387 10/10/17 0.1 10/03/17 0.1 5ame 10/13/17 2.5 1 3.5 10/17/17 0.1 1.4 1.5 171.387 10/10/17 0.1 10/10/17 0.1 5ame 10/13/17 2.5 1 3.5 10/17/17 0.1 1.3 1.4 159.9812 10/17/17 0.1 10/17/17 0.1 5ame 11/03/17 2.1 1 3.1 10/24/17 0.1 1.5 1.6 182.8128 10/31/17 0.1 10/24/17 0.1 5ame 11/03/17 2.5 1 3.6 10/13/17 0.1 1.5 1.6 182.8128 10/31/17 0.1 10/13/17 0.1 5ame 11/13/17 2.5 1 3.6 10/31/17 0.1 1.5 1.7 138286 11/07/17 0.1 11/07/17 0.1 5ame 11/13/17 2.5 1 3.6 10/31/17 0.1 1.5 1.6 182.8128 10/31/17 0.1 11/14/17 0.1 5ame 11/14/17 2.9 1 3.9 10/31/17 0.1 1.5 1.6 182.8128 10/31/17 0.1 11/14/17 0.1 11/14/17 0.1 5ame 11/13/17 2.6 1 3.6 11/07/17 0.1 1.1 1.2 137.1096 11/14/17 0.1 11/14/17 0.1 11/14/17 0.1 5ame	ing Grove ii								
			68/22/17 68/29/17 69/05/17 69/15/17 69/15/17 69/15/17 10/03/17 10/03/17 10/25/17 10/25/17 11/07/17 11/14/17 11/14/17	1.8 1 1.8 1 1.4 1 2.4 1 2 1.8 1.6 1 1.4 1 1.4 1 1.4 1 1.4 1 2.5 1 2.1 1 2.9 1	2.8 2.4 3.4 3.8 2.6 2.4 2.4 2.4 2.4 3.5 3.1 3.9 3.6	08/08/17 0.1 08/15/17 0.1 08/22/17 0.1 08/30/17 0.1 09/30/17 0.1 09/30/17 0.1 09/20/17 0.1 09/20/17 0.1 10/30/17 0.1 10/40/17 0.1 10/31/17 0.1 10/34/17 0.1 11/07/17 0.1 11/07/17 0.1 11/07/17 0.1 11/16/17 0.1	14 15 1 1.1 1.4 15 1.5 1.6 1 1.1 1 1.1 1 1.1 1 1.1 1.8 1.9 1.1 1.2 1.4 1.5 1.3 1.4 2.4 2.5 1.5 1.6 1.7 1.1 1.2 1.2 1.3 1.7 1.8	171.387 08/15/17 125.6838 08/22/17 171.387 08/29/17 182.8128 09/05/17 182.8128 09/05/17 125.6838 09/15/17 125.6838 09/15/17 127.0902 09/26/17 171.387 10/10/17 171.387 10/10/17 171.387 10/10/17 182.8128 10/31/17 182.8128 10/31/17 182.8128 11/07/17 137.1096 11/14/17 148.5354 11/21/17	0.108 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	08/15/17 0.1 Y 08/25/17 0.1 Same 08/30/17 0.15 Same 08/30/17 0.1 Same 09/95/17 0.1 Same 09/19/17 0.1 Same 10/03/17 0.1 Same 10/03/17 0.1 Same 10/10/17 0.1 Same 10/10/17 0.1 Same 10/17/17 0.1 Same 10/17/17 0.1 Same 11/17/17 0.1 Same	
			11/28/17		3.7	11/14/17 0.1 11/20/17 0.1	1.2 1.3 1.7 1.8	148.5354 11/21/17 205.6644 11/28/17	0.1	11/21/17 0.1 Same	

NPDES Permit Fact Sheet Spring Grove Mill

tormwates	r Outfalls DMR Data	Outfall 0 Annaul Average	Daily Max	Outfall Annaul Average		Outfall (Annoul Average		Outfall 0 Annaul Average	Daly Max	Outfall (Annaul Average		Outfall (Annoul Average	090 Delly Max
Jul-11	Biochemical Oxygen Demand (BOD5)	17	17	15.4	15.4	6.8	6.8	4.5	4.5	8.2	8.2	90.7	90.7
Jul-12	Biochemical Oxygen Demand (BOD6)	25.4	25.4	24.3	24.3	3.4	3.4	37.1	37.1	21.8	21.8	14.7	14.7
Jul-13	Biochemical Oxygen Demand (BOD5)	12.9	12.9	6.9	6.9	4.2	4.2	3.3	3.3	5.1	5.1	< 2	< 2
Jul-14	Biochemical Oxygen Demand (BOD5)	3.8	3.8	4.8	4.B	5.8	5.6	7.1	7.1	4.1	4.1	9.7	9.7
Jan-15	Biochemical Oxygen Demand (BOD5)	3.8	3.8	4.8	4.8	5.6	5.6	7.1	7.1	4.1	4.1	9.7	9.7
Jan-16	Biochemical Oxygen Demand (BOD5)	6.3	6.3	3.9	3.9	4.3	4.3	4.5	4.5	9.6	9.6	5.3	5.3
Jan-17	Biochemical Oxygen Demand (BOD6)	2.8	2.8	2.6	2.6	< 2.0	< 2.0	8.1	8.1	5.7	5.7	< 2.0	< 2.0
Jan-18	Biochemical Oxygen Demand (BOD5)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	3	3	2	2	2.4	2.4
Jan-19	Biochemical Oxygen Demand (BOD5)	3.7	3.7	7.7	7.7	5	5	9.3	9.3	10.1	10.1	6.9	6.9
Jan-20	Biochemical Oxygen Demand (BOD6)	6.7	5.7	< 2.0	< 2.0	< 2.0	< 2.0	2.5	2.5	< 2.0	< 2.0	< 2.0	< 2.0
Jul-11	Chemical Oxygen Demand (COD)	83	83	54	54	41	41	21	21	41	41	426	426
Jul-12	Chemical Oxygen Demand (COD)	202	202	79	79	15	15	108	108	109	109	64	64
Jul-13	Chemical Oxygen Demand (COD)	144	144	48	48	26	26	20	20	22	22	21	21
Jul-14	Chemical Oxygen Demand (COD)	18	18	31	31	26	26	42	42	34	34	61	61
Jan-15	Chemical Oxygen Demand (COD)	18	18	31	31	26	26	42	42	34	34	61	61
Jan-16	Chemical Oxygen Demand (COD)	86	86	141	141	33	33	33	33	48	48	41	41
Jan-17	Chemical Oxygen Demand (COD)	74	74	21	21	26	26	29	29	26	26	17	17
Jan-18	Chemical Oxygen Demand (COD)	< 15	< 15	155	155	29	29	27	27	215	215	27	27
Jan-19	Chemical Oxygen Demand (COD)	47	47	118	118	46	46	233	233	116	116	27	27
Jan-20	Chemical Oxygen Demand (COD)	150	150	< 15	< 15	< 15	< 15	25	25	< 15	< 15	23	23
Jul-11	Iron, Total	0.28	0.28	5.8	5.8	0.16	0.16	1.5	1.5	0.66	0.66	6	6
Jul-12	Iron, Total	0.16	0.16	4.9	4.9	0.1	0.1	0.97	0.97	4	4	5.5	5.5
Jul-13	Iron, Total	0.53	0.53	14.4	14.4	0.26	0.26	0.99	0.99	3.2	3.2	3.5	3.5
Jul-14	Iron, Total	0.059	0.059	28.5	28.5	0.15	0.15	1.3	1.3	22.2	22.2	28.1	28.1
Jan-15	Iron, Total	0.059	0.059	28.5	28.5	0.15	0.15	1.3	1.3	22.2	22.2	28.1	28.1
Jan-15 Jan-16	Iron, Total	0.059	0.86	7.4	7.4	0.15	0.15	1.3	1.3	0.24	0.24	3.9	3.9
Jan-17	Iron, Total	0.078	0.078	3	3	0.097	0.097	0.57	0.57	2.2	2.2	0.15	0.15
Jan-18	Iron, Total	< 0.000	< 0.030	11.9	11.9	0.1	0.1	0.74	0.74	14.2	14.2	0.98	0.98
Jan-19	Iron, Total	0.034	0.034	8.5	6.5	0.071	0.071	17.2	17.2	5.8	5.8	0.61	0.61
Jan-20	Iron, Total	0.094	0.094	0.42	0.42	< 0.030	< 0.030	0.38	0.38	0.29	0.29	0.17	0.17
Jul-11	Manganese, Total	0.035	0.035	0.34	0.34	0.014	0.014	0.18	0.18	0.096	0.096	1.5	1.5
Jul-12	Manganese, Total	0.041	0.041	0.2	0.2	0.0065	0.0065	0.11	0.11	0.25	0.25	0.47	0.47
Jul-13	Manganese, Total	0.053	0.053	0.84	0.84	0.017	0.017	0.28	0.28	0.16	0.16	0.41	0.41
Jul-14	Manganese, Total	0.0051	0.0051	1.6	1.8	0.014	0.014	0.23	0.23	1.3	1.3	0.98	0.96
Jan-15	Manganese, Total	0.0061	0.0061	1.6	1.6	0.014	0.014	0.23	0.23	1.3	1.3	0.96	0.98
Jan-16	Manganese, Total	0.046	0.046	1.1	1.1	0.016	0.016	0.13	0.13	0.022	0.022	0.36	0.36
Jan-17	Manganese, Total	0.0054	0.0054	0.23	0.23	0.0076	0.0076	0.087	0.087	0.14	0.14	0.016	0.016
Jan-18	Manganese, Total	< 0.0025	< 0.0025	0.6	0.6	0.0068	0.0068	0.096	0.096	0.66	0.66	0.14	0.14
Jan-19	Manganese, Total	0.0062	0.0062	0.47	0.47	0.0067	0.0067	0.67	0.67	0.38	0.38	0.092	0.092
Jan-20	Manganese, Total	0.026	0.026	0.035	0.035	< 0.0025	< 0.0025	0.044	0.044	0.027	0.027	0.023	0.023
Jul-11	Oil and Grease		< 2.1		< 2.1		< 2.1		< 2		< 2.1		< 2.1
Jul-12	Oil and Grease		< 2.1		< 2.1		< 2.1		< 2.1		< 2.1		< 2.1
Jul-13	Oil and Grease		28		5		< 2		22.1		< 2.1		< 2.1
Jul-14	Oil and Grease		< 2.1		< 2.1		< 2		< 2.1		< 2.1		< 2.1
Jan-15	Oil and Grease		< 2.1		< 2.1		< 2.0		< 2.1		< 2.1		< 2.1
Jan-16	Oil and Grease		2.5		< 2.0		< 2.0		< 2.0		< 2.1		< 2.1
Jan-17	Oil and Grease		< 2.0		< 1.9		< 2.0		< 1.9		< 1.9		< 1.9
Jan-18	Oil and Grease		< 2.0		< 2.0		< 1.9		< 2.0		< 1.9		< 2.0
Jan-19	Oil and Grease		< 4.0		< 3.7		< 3.7		< 3.8		< 4.1		< 3.8
Jan-20	Oil and Grease		< 3.8		< 3.9		< 3.7		< 3.7		< 3.9		< 3.5
Jul-11	pH		6.96		7.77		5.88		8.05		7.52		7.84
Jul-12	pH		7.09		7.65		7.2		7.27		7.19		8.12
Jul-13	pH pH		6.78		8.2		7.05		7.9		7.94		8.24
Jul-14	pH		6.84		8.47		7.01		7.62		8.64		7.85
Jan-15	pH		6.84		8.47		7.01		7.62		8.64		7.85
Jan-16	pH pH		7.12		8.64		7.56		7,83		7.38		7.72
			7.12		8.08		7.08		7.74		7.87		7.72
Jan-17 Jan-19	pH nu				8.08						8		7.89
Jan-18 Jan-19	pH pH		7.42 6.48		7.96		6.76		7.58		7.9		7.89 7.88
Jan-20	pH Total Control No.		7.36	2.5	8.04		7.4		7.64		8.12	40.4	7.98
Jul-11	Total Kjeldahi Nitrogen	3.5	3.5	3.5	3.5	2	2	1.4	1.4	2.2	2.2	10.4	10.4
Jul-12	Total Kjeldahi Nitrogen	4.4	4.4	3.9	3.9	< 1	<1	3.2	3.2	5.4	5.4	3.4	3.4
Jul-13	Total Kjeldahi Nitrogen	4.3	4.3	< 4	< 4	1.4	1.4	< 1	< 1	1.5	1.5	1.3	1.3
Jul-14	Total Kjeldahi Nitrogen	< 1	< 1	2	2	< 1	<1	1.2	1.2	< 1	< 1	1.8	1.6
Jan-15	Total Kjeldehi Nitrogen	< 1.0	< 1.0	2	2	< 1.0	< 1.0	1.2	1.2	< 1.0	< 1.0	1.8	1.8
Jan-16	Total Kjeldahi Nitrogen	1.8	1.8	2.4	2.4	1.2	1.2	< 1.0	< 1.0	1.3	1.3	1.7	1.7
Jan-17	Total Kjeldahi Nitrogen	1.3	1.3	1.5	1.5	< 1.0	< 1.0	1.5	1.5	1.2	1.2	< 1.0	< 1.0
Jan-18	Total Kjeldahi Nitrogen	1.1	1.1	1.1	1.1	1.2	1.2	1.6	1.6	1.3	1.3	1.8	1.8
Jan-19	Total Kjeldahi Nitrogen	2.3	2.3	2.5	2.5	1.9	1.9	5.7	5.7	2.5	2.5	1.8	1.8
Jan-20	Total Kjeldahi Nitrogen	2.3	2.3	< 1.0	< 1.0	< 1.0	< 1.0	1.2	1.2	< 1.0	< 1.0	1.7	1.7
Jul-11	Total Phosphorus	0.15	0.15	0.36	0.36	< 0.1	< 0.1	0.17	0.17	0.24	0.24	2.3	2.3
Jul-12	Total Phosphorus	0.13	0.13	0.35	0.35	< 0.1	< 0.1	0.39	0.39	0.58	0.58	0.64	0.64
	Total Phosphorus	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.19	0.19	< 0.1	< 0.1
Jul-13													
Jul-13 Jul-14	Total Phosphorus	< 0.1	< 0.1	0.99	0.99	< 0.1	< 0.1	0.44	0.44	0.91	0.91	0.78	0.78

		Outfall (120
		Annaul Average	Daily Max
Jul-11	Biochemical Oxygen Demand (BOD5)	7.9	7.9
Jul-12	Biochemical Oxygen Demand (BOD5)	21.8	21.8
Jul-14	Biochemical Oxygen Demand (BOD5)	- 4	- 4
Jan-15	Biochemical Oxygen Demand (BOD5)	4	4
Jul-11	Chemical Oxygen Demand (COD)	63	63
Jul-12	Chemical Oxygen Demand (COD)	195	196
Jul-14	Chemical Oxygen Demand (COD)	15	15
Jan-15	Chemical Oxygen Demand (COD)	15	15
Jul-11	Iron, Total	0.13	0.13
Jul-12	Iron, Total	6	- 5
Jul-14	Iron, Total	0.1	0.1
Jan-15	Iron, Total	0.1	0.1
Jul-11	Manganese, Total	0.013	0.013
Jul-12	Manganese, Total	0.29	0.29
Jul-14	Manganese, Total	0.0082	0.0082
Jan-15	Manganese, Total	0.0082	0.0082
Jul-11	Oil and Grease		< 2.2
Jul-12	Oil and Gresse		< 2
Jul-14	Oil and Grease		< 2.1
Jan-15	Oil and Grease		< 2.1
Jul-11	pH		6.66
Jul-12	pH		7.72
Jul-14	pH		7.11
Jan-15	pH		7.11
Jul-11	Total Kjeldahl Nitrogen	3.4	3.4
Jul-12	Total Kjeldahl Nitrogen	5.9	5.9
Jul-14	Total Kjeldahi Nitrogen	< 1	< 1
Jan-15	Total Kjeldahl Nitrogen	< 1.0	< 1.0
Jul-11	Total Phosphorus	0.14	0.14
Jul-12	Total Phosphorus	0.37	0.37
Jul-14	Total Phosphorus	< 0.1	< 0.1
Jan-15	Total Phosphorus	< 0.10	< 0.10
Jul-11	Total Suspended Solids	17	17
Jul-12	Total Suspended Solids	395	395
Jul-14	Total Suspended Solids	< 5	< 5
Jan-15	Total Suspended Solids	< 5	< 5

	Aluminum		Boron
	Daily Max		Daily Max
5/1/2012	0.26	5/1/2012	0.05
6/1/2012	0.387	6/1/2012	
7/1/2012	0.344	7/1/2012	0.064
8/1/2012	0.286	8/1/2012	0.068
9/1/2012	0.385	9/1/2012	0.062
10/1/2012	0.385	10/1/2012	0.063
11/1/2012	0.494	11/1/2012	
12/1/2012	0.434	12/1/2012	0.051
1/1/2013	0.5	1/1/2013	0.054
2/1/2013	0.35	2/1/2013	0.051
3/1/2013	0.387	3/1/2013	0.065
4/1/2013	0.48	4/1/2013	0.075
5/1/2013	0.327	5/1/2013	0.057
6/1/2013	0.318	6/1/2013	0.051
7/1/2013	0.346	7/1/2013	0.051
8/1/2013	0.346	8/1/2013	0.051
9/1/2013	0.328	9/1/2013	
10/1/2013	0.59	10/1/2013	0.082
11/1/2013	0.464	11/1/2013	0.24
12/1/2013	0.546	12/1/2013	0.077
1/1/2014	0.501	1/1/2014	
2/1/2014	0.398	2/1/2014	
3/1/2014	0.498	3/1/2014	0.053
4/1/2014	0.484	4/1/2014	
5/1/2014	0.703	5/1/2014	
5/1/2014	0.703	5/1/2014	
6/1/2014	0.703	6/1/2014	
7/1/2014	0.432	7/1/2014	< 0.05
8/1/2014	0.414	8/1/2014	< 0.05
9/1/2014	0.27	9/1/2014	< 0.05
10/1/2014	0.45	10/1/2014	< 0.05
11/1/2014	0.56	11/1/2014	< 0.05
12/1/2014	0.507	12/1/2014	< 0.05
1/1/2015	1.8	1/1/2015	< 0.05
2/1/2015	0.757	2/1/2015	< 0.05
3/1/2015	0.598	3/1/2015	0.056
4/1/2015	0.48	4/1/2015	0.059
5/1/2015	0.48	5/1/2015	0.059
6/1/2015	1.84	6/1/2015	0.391
7/1/2015	0.431	7/1/2015	0.071
8/1/2015	0.428	8/1/2015	0.088
9/1/2015	0.444	9/1/2015	0.122
10/1/2015	0.539	10/1/2015	0.054
11/1/2015	0.502	11/1/2015	0.056
12/1/2015	0.46	12/1/2015	< 0.05

1/1/2016	0.55	1/1/2016	< 0.05
2/1/2016	0.529	2/1/2016	0.054
3/1/2016	0.404	3/1/2016	< 0.050
4/1/2016	0.518	4/1/2016	< 0.05
5/1/2016	0.564	5/1/2016	< 0.050
6/1/2016	0.551	6/1/2016	< 0.050
7/1/2016	0.874	7/1/2016	< 0.050
8/1/2016	0.467	8/1/2016	< 0.050
9/1/2016	0.617	9/1/2016	< 0.050
10/1/2016	0.518	10/1/2016	< 0.050
11/1/2016	0.445	11/1/2016	< 0.050
12/1/2016	0.677	12/1/2016	< 0.050
1/1/2017	0.488	1/1/2017	< 0.050
2/1/2017	0.415	2/1/2017	< 0.050
3/1/2017	0.482	3/1/2017	< 0.050
4/1/2017	0.564	4/1/2017	< 0.050
5/1/2017	0.564	5/1/2017	< 0.050
6/1/2017	0.564	6/1/2017	< 0.050
7/1/2017	0.564	7/1/2017	< 0.050
8/1/2017	0.329	8/1/2017	< 0.050
9/1/2017	0.603	9/1/2017	0.0511
10/01/2017	0.603	10/01/2017	0.051
11/01/2017	0.603	11/01/2017	0.0511
12/01/2017	0.603	12/01/2017	0.0511
01/01/2018	0.542	01/01/2018	< 0.050
02/01/2018	0.324	02/01/2018	< 0.050
03/01/2018	0.264	03/01/2018	< 0.050
04/01/2018	0.435	04/01/2018	< 0.050
05/01/2018	0.346	05/01/2018	< 0.050
06/01/2018	0.346	06/01/2018	< 0.050
07/01/2018	0.346	07/01/2018	< 0.050
08/01/2018	0.334	08/01/2018	< 0.050
09/01/2018	0.303	09/01/2018	< 0.0500
10/01/2018	0.303	10/01/2018	< 0.050
11/01/2018	0.38	11/01/2018	< 0.050
12/01/2018	0.351	12/01/2018	< 0.050
01/01/2019	0.496	01/01/2019	< 0.050
02/01/2019	0.414	02/01/2019	< 0.050
03/01/2019	0.414	03/01/2019	< 0.050
04/01/2019	0.414	04/01/2019	< 0.050
05/01/2019	0.414	05/01/2019	< 0.050
06/01/2019	1.32	06/01/2019	0.19
07/01/2019	0.35	07/01/2019	0.057
08/01/2019	0.415	08/01/2019	0.057
09/01/2019	0.305	09/01/2019	0.066
10/01/2019	0.439	10/01/2019	0.058
11/01/2019	0.697	11/01/2019	0.053

12/01/2019	0.478	12/01/2019	0.054
01/01/2020	0.62	01/01/2020	< 0.050
02/01/2020	0.709	02/01/2020	< 0.050
03/01/2020	0.522	03/01/2020	< 0.050
04/01/2020	0.522	04/01/2020	< 0.0500
05/01/2020	0.745	05/01/2020	< 0.050
06/01/2020	0.345	06/01/2020	< 0.050
07/01/2020	0.352	07/01/2020	< 0.050
08/01/2020	0.7	08/01/2020	< 0.050
09/01/2020	0.51	09/01/2020	< 0.050
10/01/2020	0.575	10/01/2020	< 0.050
11/01/2020	0.468	11/01/2020	< 0.050
12/01/2020	1.18	12/01/2020	< 0.050
01/01/2021	0.596	01/01/2021	< 0.050
02/01/2021	0.708	02/01/2021	< 0.050
03/01/2021	0.597	03/01/2021	< 0.050
04/01/2021	0.33	04/01/2021	< 0.050
05/01/2021	0.482	05/01/2021	< 0.050
06/01/2021	0.613	06/01/2021	< 0.050
07/01/2021	0.523	07/01/2021	< 0.050
08/01/2021	0.503	08/01/2021	< 0.050
09/01/2021	0.474	09/01/2021	< 0.050
10/01/2021	0.646	10/01/2021	< 0.050
11/01/2021	0.108	11/01/2021	< 0.050
12/01/2021	0.749	12/01/2021	< 0.050
01/01/2022	1.28	01/01/2022	< 0.050
02/01/2022	1.07	02/01/2022	< 0.050
03/01/2022	1.27	03/01/2022	0.054
04/01/2022	1.18	04/01/2022	0.0622
05/01/2022	0.672	05/01/2022	0.0853
06/01/2022	0.672	06/01/2022	0.0853
07/01/2022	3.61	07/01/2022	0.215