

orthcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0009318

APS ID 1054640

Authorization ID 1381419

Applicant Name	Prysmian Cables & System USA LLC	Facility Name	Gen Cable Ind Inc.
Applicant Address	409 Reighard Avenue	Facility Address	409 Reighard Avenue
	Williamsport, PA 17701-4171		Williamsport, PA 17701-4171
Applicant Contact	Sonja Leone	Facility Contact	Sonja Leone
Applicant Phone	(570) 666-2007	Facility Phone	(570) 666-2007
Client ID	346179	Site ID	244961
SIC Code	3357	Municipality	Williamsport City
SIC Description	Manufacturing - Nonferrous Wire Drawing And Insulating	County	Lycoming
Date Application Rec	eived January 12, 2022	EPA Waived?	Yes
Date Application Acc	epted January 26, 2022	If No, Reason	

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Additionally, this permit will serve as a transfer from General Cables Industries, Inc. to Prysmian Cables and Systems USA, LLC. The eDMR registration paperwork has been supplied with the transfer application.

Approve	Deny	Signatures	Date
X		Jonathan P. Peterman	
^		Jonathan P. Peterman / Project Manager	February 2, 2023
X		Nicholas W. Hartranft	
		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	February 7, 2023

Discharge, Receiving V	Discharge, Receiving Waters and Water Supply Information								
Outfall No. 002			Design Flow (MGD)	0.068					
Latitude 41° 13'	49.17	II .	Longitude	-77° 3' 34.49"					
Quad Name Willia	amspo	rt	Quad Code	0929					
Wastewater Description	ion:	Noncontact Cooling Water	(NCCW)						
	-	-							
Receiving Waters I	Fox H	ollow Run	Stream Code	20942					
NHD Com ID	66915	905	RMI	0.59					
Drainage Area	1.0		Yield (cfs/mi²)	0.22					
Q ₇₋₁₀ Flow (cfs)	0.22		Q ₇₋₁₀ Basis	Gage No. 01553130					
Elevation (ft)	530		Slope (ft/ft)	0.008					
Watershed No.	10-A		Chapter 93 Class.	WWF					
Existing Use	WWF		Existing Use Qualifier	N/A					
Exceptions to UseI	None.		Exceptions to Criteria	None.					
Assessment Status		Not Assessed							
Cause(s) of Impairme	ent	N/A							
Source(s) of Impairme	ent	N/A							
TMDL Status	TMDL Status N/A		Name N/A						
Nearest Downstream	Public	Water Supply Intake	PA American White Deer						
PWS Waters We	est Bra	anch Susquehanna River	_ Flow at Intake (cfs)	682					
PWS RMI 10.	PWS RMI 10.5			30					

Changes Since Last Permit Issuance: A stream analysis was conducted using a comparative stream gage (01553130) based on basin characteristics. The updated Q₇₋₁₀ data was obtained from the updated stream gage information obtained from *Stuckey, M.H., and Roland, M.A., 2011, Selected Streamflow Statistics for Streamgage Locations In and Near Pennsylvania*. The Q₇₋₁₀ calculations, which are attached in Appendix A, indicate that the Q₇₋₁₀ is 0.22 cfs

Discharge, Receiving Waters and Water Supply Information										
Outfall No. 001	Design Flow (MGD) N/A									
Latitude 41° 13' 51"	Longitude <u>77° 03' 34"</u>									
Quad Name Williamsport	Quad Code 0929									
Wastewater Description: Stormwater										
Outfall No. 003	Design Flow (MGD) N/A									
Latitude 41° 13' 15"	Longitude 77° 03' 19"									
Quad Name Williamsport	Quad Code 0929									
Wastewater Description: Stormwater										
Outfall No. 004	Design Flow (MGD) N/A									
Latitude 41° 13' 50"	Longitude 77° 03' 34									
Quad Name Williamsport	Quad Code 0929									
Wastewater Description: Stormwater										
Outfall No. 005	Design Flow (MGD) N/A									
Latitude 41° 13' 45"	Longitude77° 03' 20									

Quad Name Wil	lliamspo	ort	Quad Code	0929
Wastewater Descrip	tion:	Stormwater		
Receiving Waters	Fox H	ollow Run	Stream Code	20942
NHD Com ID	66915	905	RMI	0.59
Drainage Area	1.0		Yield (cfs/mi²)	0.22
Q ₇₋₁₀ Flow (cfs)	0.22		Q ₇₋₁₀ Basis	Gage No. 01553130
Elevation (ft)	530		Slope (ft/ft)	0.008
Watershed No.	10-A		Chapter 93 Class.	WWF
Existing Use	WWF		Existing Use Qualifier	N/A
Exceptions to Use	None.		Exceptions to Criteria	None.
Assessment Status		Not Assessed		
Cause(s) of Impairm	ent	N/A		
Source(s) of Impairn	nent	N/A		
TMDL Status		N/A	Name N/A	
Nearest Downstrear	n Public	: Water Supply Intake	PA American White Deer	
PWS WatersV	Nest Br	anch Susquehanna River	Flow at Intake (cfs)	682
PWS RMI 1	10.5		Distance from Outfall (mi)	30

Treatment Facility Summary

Treatment Facility Name: General Cable

-There are no treatment facilities/ processes associated with this facility. The discharges are comprised of direct discharges of Non-contact cooling water, contact cooling water, and stormwater.

Changes Since Last Permit Issuance: None.

Other Comments: None.

TMDL Impairment

The Departments Geographical Information System indicates that there is no associated TMDL for this segment of Fox Hollow Run. Therefore, no TMDL requirements will be required.

Chesapeake Bay Requirements

Outfall 002

This industrial outfall is classified as a "non-significant" IW given that the gross effluent discharges do not exceed 75 lbs/day of TN or 25 lbs/day of TP. The permittee will be not be required to monitor and report TN and TP at outfall 002 throughout the permit term in accordance with the Phase II WIP Chesapeake Bay Strategy for non-significant industrial waste facilities. Non-significant IW dischargers should receive monitoring requirements in permits if there is any possibility of a net increase in nutrients as a result of outfall 002, and monitoring frequencies should be established using the general guidance in the Phase II WIP Supplement. It was determined that there is no potential that the associated facility processes could create a net increase in TN or TP.

Outfalls 001, 003, 004 and 005

These stormwater discharges are not expected to introduce TN and TP due to industrial processes. However, monitoring will now be required for at least the next permit term. This coincides with the new PAG-03 processes.

Anti-Backsliding

In accordance with 40 CFR 122.44(I)(1) and (2), this permit does not contain effluent limitations, standards, or conditions that are less stringent than the previous permit.

Effluent Limit Guidelines (ELGs)

A process at this facility is classified under CFR Title 40 § 463 – Plastics Molding and Forming Point Source Category (Subpart C—Contact Cooling and Heating Water Subcategory). The Effluent Limitations Guidelines in subparts §463.12, §463.13, and §463.17 are concentration based limits provided in the exerted table below. Sections §463.13 and §463.17 refer back to section §463.12 for limitations. The pH limitations in these sections coincide with the standard limitations issued under 25 PA Code §95.2 (1) which provides the basis of effluent limitations for pH. The effluent limitations for all parameters typically are taken from the most stringent of the BPT, BCT, and BAT. However, in this case, the BPT, BCT, and BAT parameters are all identical in this case. Corresponding mass-based effluent limits have been derived from the given concentrations and applied in the permit.

§463.12 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available.

Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must achieve the effluent limitations guidelines (*i.e.*, mass of pollutant discharged) representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available, which are calculated by multiplying the average process water usage flow rate for the contact cooling and heating water processes at a point source times the following pollutant concentrations:

SUBPART A

[Contact cooling and heating water]

Concentration used to calculate BPT effluent limitations						
Pollutant or pollutant property	Maximum for any 1 day (mg/l)					
BOD₅	26					
Oil and grease	29					
TSS	19					
pН	(1)					

¹Within the range of 6.0 to 9.0 at all times.

The permit authority will obtain the average process water usage flow rate for the contact cooling and heating water processes from the permittee.

Existing Effluent Limitations and Monitoring Requirements

Outfall 002 - Existing Limits

			Monitoring Requirements					
Parameter	Mass Units (lbs/day)			Concentra	Minimum (2)	Required		
	Average Monthly	Daily Maximum	Minimum	Average Daily Maximum		Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	XXX	Report	XXX	XXX	XXX	XXX	1/month	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/week	Grab
Biochemical Oxygen Demand (BOD5)	xxx	15	xxx	26	xxx	33	1/month	8-Hr Composite
Total Suspended Solids	XXX	11	xxx	19	xxx	24	1/month	8-Hr Composite
Oil and Grease	XXX	16	xxx	15	29	30	1/month	Grab
Dichlorobromomethane (µg/L)	xxx	xxx	XXX	Report	Report	XXX	1/quarter	4 Grabs/24 Hours

The existing effluent limits for Outfall 002 were based on a design flow of 0.068 MGD.

Outfalls 001, 003, 004, and 005 - Existing Limits

			Monitoring Requirements					
Parameter	Mass Units (Ibs/day)			Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Copper, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab

The existing effluent limits for Outfalls 001, 003, 004, and 005 were not based on a design flow.

	Development of Effluent Limitations									
Outfall No.	001		Design Flow (MGD)	N/A						
Latitude	41° 13' 51"		Longitude	77° 03' 34"						
Wastewater D	escription:	Stormwater								
Outfall No.	002		Design Flow (MGD)	0.068						
Latitude	41° 13' 53"		Longitude	77° 03' 19"						
Wastewater D	escription:	NCCW and CCW								
Outfall No.	003		Design Flow (MGD)	N/A						
Latitude	41° 13' 15"		Longitude	77° 03' 19"						
Wastewater D	escription:	Stormwater								
Outfall No.	004		Design Flow (MGD)	N/A						
Latitude	41° 13' 50"		Longitude	77° 03′ 34″						
Wastewater D	escription:	Stormwater								
Outfall No.	005		Design Flow (MGD)	N/A						
Latitude	41° 13' 45"		Longitude	77° 03' 20"						
Wastewater D	escription:	Stormwater								

Technology-Based Limitations

The following effluent standards for industrial waste will apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l) (Average Monthly)	Limit (mg/l) (Daily Maximum)	Limit (mg/l) (Inst. Maximum)	Federal Regulation	State Regulation
Oil & Grease	15	-	30	-	§95.2(2)(ii)
рH	6-9 at all times	-		§133.102(c)	§95.2

There are applicable technology-based effluent limitations for contact cooling water. See ELG section above. Additionally, 25 Pa. Code § 95.2 does set forth effluent standards for pH and oil and grease for discharges of industrial wastewater. These limits were previously applied and will remain in the permit.

Water Quality-Based Limitations

Toxics Management Spreadsheet

This model is a single discharge wasteload allocation program for toxics that uses a mass-balance water quality analysis to determine recommended water quality-based effluent limits. The model incorporates consideration for mixing, first-order decay and other factors to computes a Wasteload Allocation (WLA) for each applicable criterion. Finally, the model determines a maximum water quality-based effluent limitation (WQBEL) for each parameter and outputs the more stringent of the WQBEL or the input concentration. The output of which is the recommends average monthly and maximum daily effluent limitations.

Sampling for pollutant Groups was submitted with the application. This sampling information and the receiving stream information was entered into the Toxics Management Spreadsheet. A "Reasonable Potential Analysis" (See Appendix B) determined that the following parameters were candidates for monitoring or limitations shown below:

	Mass Limits		Concentration Limits			1			
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Cadmium	0.0005	0.0007	0.84	1.32	2.11	μg/L	0.84	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Copper	Report	Report	Report	Report	Report	μg/L	28.0	AFC	Discharge Conc > 10% WQBEL (no RP)
Dissolved Iron	Report	Report	Report	Report	Report	μg/L	936	THH	Discharge Conc > 10% WQBEL (no RP)
Total Selenium	0.009	0.014	15.6	24.3	38.9	μg/L	15.6	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Silver	Report	Report	Report	Report	Report	μg/L	7.57	AFC	Discharge Conc > 10% WQBEL (no RP)
Acrolein	0.003	0.005	6.0	9.36	15.0	μg/L	6.0	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Acrylamide	8000.0	0.001	1.4	2.19	3.51	μg/L	1.4	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Vinyl Chloride	0.0002	0.0004	0.4	0.62	1.0	μg/L	0.4	CRL	Discharge Conc ≥ 50% WQBEL (RP)

The modeling results indicated these monitoring requirements are needed. Monitoring requirements for Copper and Dissolved Iron are proposed. In regard to Total Cadmium, Total Selenium, Total Silver, Acrolein, Acrylamide, and Vinyl Chloride the applicants and their laboratories did not achieve QLs that achieve or approach the lowest Detection Limits identified in 25 Pa. Code Chapter 16, Tables 2A and 2B, it can be assumed that the pollutant is present in the effluent at the QL concentration. This has resulted in a finding of "reasonable potential" to exceed water quality standards. It is anticipated that the permittee is not discharging these parameters in concentrations above the QL concentration. The permittee will be given the opportunity to resample at the specified QL's and the results will be re-analyzed before the limits are implemented. Refer to Appendix B for the Toxics Management Spreadsheet.

This analysis has also determined that, based on the sampling, Dichlorobromomethane is no longer a parameter of concern and the monitoring requirement can be removed.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

Outfall 002 - Proposed Limits

			Monitoring Requirements					
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentra	Minimum (2)			
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Required Sample Type
Flow (MGD)	XXX	Report	XXX	XXX	XXX	XXX	1/month	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/week	Grab
Biochemical Oxygen Demand (BOD5)	XXX	15	XXX	26	XXX	33	1/month	8-Hr Composite
Total Suspended Solids	XXX	11	XXX	19	XXX	24	1/month	8-Hr Composite
Oil and Grease	XXX	16	XXX	15	29	30	1/month	Grab
Total Copper (µg/L)	XXX	XXX	XXX	Report	Report	XXX	1/quarter	24-Hr Composite
Dissolved Iron (µg/L)	XXX	XXX	XXX	Report	Report	XXX	1/quarter	24-Hr Composite
Total Cadmium (µg/L)	0.0005	0.0007	XXX	0.84	1.32	2.11	1/quarter	24-Hr Composite
Total Selenium (µg/L)	0.009	0.014	XXX	15.6	24.3	38.9	1/quarter	24-Hr Composite
Total Silver (µg/L)	XXX	XXX	XXX	Report	Report	XXX	1/quarter	24-Hr Composite
Acrolein (µg/L)	0.003	0.005	XXX	6.0	9.36	15.0	1/quarter	4 Grabs/24 Hours
Acrylamide (µg/L)	0.008	0.001	XXX	1.4	2.19	3.51	1/quarter	4 Grabs/24 Hours
Vinyl Chloride (µg/L)	0.0002	0.0004	XXX	0.4	0.62	1.0	1/quarter	4 Grabs/24 Hours

The proposed effluent limits for Outfall 002 were based on a design flow of 0.068 MGD for NCCW and CCW.

Outfalls 001, 003, 004, and 005 - Proposed Limits

			Effluent L	imitations			Monitor Requiren	
Parameter		Mass Units (lbs/day)		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
	Average Average Monthly Weekly I		Minimum	Average Daily Instant. Minimum Monthly Maximum Maximum				Sample Type
Total Suspended Solids	XXX	XXX	xxx	XXX	Report	xxx	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Copper, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Oil & Grease	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab

The proposed effluent limits for Outfalls 001, 003, 004, and 005 were not based on a design flow for stormwater.

Flow

Reporting of maximum daily flow is appropriate for this type of facility and consistent with similar facility types. This flow is measured from the potable water meter that is dedicated to this process.

pH, Oil and Grease, TSS, and BOD5

The existing permit limits for pH and oil and grease were implemented in accordance with 25 PA Code §95.2(1) and 25 PA Code §95.2(2)(ii) accordingly and shall remain. For the determination of these effluent parameters, refer to the ELG section above.

Toxics

Effluent limitations and monitoring requirements have been established for these pollutants based upon the above-mentioned modeling results. In order to obtain data regarding these pollutants for future decision-making, a quarterly 24-hr composite sample is proposed, with the exception of the Volatile Fraction. Given that some of these parameters are part of the Volatile Fraction, sampling must be completed by performing 4 grab samples over a 24 hour period. The monitoring frequency varies from the guidance and is based on BPJ given that it is anticipated that these pollutants are not present. The facility and laboratory merely did not conduct testing in the application to a level that achieve or approach the lowest Detection Limits identified in 25 Pa. Code Chapter 16, Tables 2A and 2B. The permittee will be given the opportunity during the comment period to conduct additional testing for these parameters to the Department's established QLs.

The associated mass-based limits (lbs/day) for all parameters were based on the formula: design flow (average annual) (MGD) x concentration limit (mg/L) at design flow x conversion factor (8.34). All effluent limits were then rounded down in accordance with the rounding rules established in the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001), Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing monitoring frequencies and sample types for these parameters correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) Table 6-4 and will remain.

Outfalls 001, 003, 004, and 005 Stormwater Requirements

Stormwater monitoring requirements shall be implemented as shown below.

Stormwater Requirements

The industrial activities associated with General Cable's facility are identified in 40 CFR 122.26(b)(14)(ix) and thus the facility required to obtain an NPDES permit to discharge stormwater into waters of the Commonwealth of Pennsylvania. The facility is classified under SIC Codes 3355- Establishments primarily engaged in rolling, drawing, and other operations resulting in the production of aluminum ingot, including extrusion ingot, and aluminum and aluminum-base alloy basic shapes, not elsewhere classified, such as rolled and continuous cast rod and bar. Therefore, Appendix B Monitoring Requirements and Best Management Practices (BMPs) will be implemented. The following stormwater requirements will be incorporated into this permit:

	Monitoring Requi	rements ^{(1),(2)}	
Pollutant	Minimum Measurement Frequency	Sample Type	Benchmark Values
Total Nitrogen (mg/L) (3)	1 / 6 months	Calculation	XXX
Total Phosphorus (mg/L)	1 / 6 months	Grab	XXX
Total Suspended Solids (TSS) (mg/L)	1 / 6 months	Grab	100
Oil & Grease (mg/L)	1 / 6 months	Grab	30
Total Aluminum (mg/L)	1 / 6 months	Grab	XXX
Total Zinc (mg/L)	1 / 6 months	Grab	XXX
Total Copper (mg/L)	1 / 6 months	Grab	XXX
Total Iron (mg/L)	1 / 6 months	Grab	XXX
Total Lead (mg/L)	1 / 6 months	Grab	XXX

Note: These limits have been updated to correspond with the new PAG-03 monitoring requirements. These other discharge parameters will be applied in part A of the permit for each outfall.

Chemical Additives

Prysmian Cables & System USA LLC has not listed any products in their chemical additive usage sheet. The cooling water system utilizes potable water from the municipal water supply sytem and does not require chemical addition to control organisms, corrosion, or scaling. Regardless, Part "C" condition C 118 will still be placed in the draft permit to address chemical additives.

Compliance History

<u>Summary of Inspections</u> -The last facility inspection was conducted by the Department on 2/17/22 which revealed that there were no issues and the facility was operating normally.

<u>WMS Query Summary</u> - A WMS Query was run at *Reports - Violations & Enforcements - Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This query revealed that there were no unresolved violations.

Compliance History

DMR Data for Outfall 001 (from September 1, 2021 to August 31, 2022)

Parameter	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21
TSS (mg/L)												
Daily Maximum			10						14.0			
Total Aluminum												
(mg/L)												
Daily Maximum			0.164						0.161			
Total Copper (mg/L)			<						<			
Daily Maximum			0.00386						0.00386			
Total Iron (mg/L)												
Daily Maximum			0.26						0.248			
Total Lead (mg/L)			<						<			
Daily Maximum			0.00143						0.00143			
Total Zinc (mg/L)												
Daily Maximum			0.0578						0.0654			

DMR Data for Outfall 002 (from September 1, 2021 to August 31, 2022)

Parameter	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21
Flow (MGD)												
Daily Maximum	0.011	0.011	0.012	0.011	0.013	0.011	0.008	0.003	0.003	0.004	0.005	0.008
pH (S.U.)												
Minimum	6.15	6.18	6.20	6.15	6.15	6.26	6.25	6.34	6.36	6.32	6.58	6.16
pH (S.U.)												
Maximum	6.36	6.31	6.62	6.40	6.30	6.38	7.10	6.73	6.72	6.52	6.71	7.25
BOD5 (lbs/day)												
Daily Maximum	< 0.493	< 2.026	< 0.288	< 0.551	< 0.538	< 0.258	0.612	< 1.286	0.401	< 0.259	< 0.446	< 2.449
BOD5 (mg/L)												
Average Monthly	< 3.0	< 20.0	< 3.0	< 3.0	< 3.0	< 3.0	9.53	< 20.0	4.6	< 3.00	< 3.00	< 20
BOD5 (mg/L)												
Instantaneous												
Maximum	< 3.0	< 20.0	< 3.0	< 3.0	< 3.0	< 3.0	9.53	< 20.0	4.6	< 3.00	< 3.00	< 20
TSS (lbs/day)												
Daily Maximum	0.263	< 0.162	0.460	0.662	< 0.143	0.275	0.218	< 0.103	< 0.140	0.121	0.238	< 0.098
TSS (mg/L)												
Average Monthly	1.6	< 1.60	4.80	3.6	< 0.8	3.2	3.4	< 1.6	< 1.6	1.4	1.6	< 0.8

NPDES Permit Fact Sheet Prysmian Cables & System USA LLC

TSS (mg/L) Instantaneous Maximum	1.6	< 1.60	4.80	3.6	< 0.8	3.2	3.4	< 1.6	< 1.6	1.4	1.6	< 0.8
	1.0	< 1.60	4.00	3.0	< 0.6	3.2	3.4	< 1.0	< 1.0	1.4	1.6	< 0.0
Oil and Grease (lbs/day)												
Daily Maximum	< 0.765	< 0.507	< 0.460	< 0.873	< 0.852	< 0.430	< 0.315	< 0.322	< 0.427	< 0.423	< 0.729	< 0.624
Oil and Grease (mg/L)												
Average Monthly	< 4.65	< 5	< 4.80	< 4.75	< 4.75	< 5.0	< 4.9	< 5.00	< 4.90	< 4.90	< 4.90	< 5.10
Oil and Grease (mg/L)												
Daily Maximum	< 4.65	< 5	< 4.80	< 4.75	< 4.75	< 5.0	< 4.9	< 5.00	< 4.90	< 4.90	< 4.90	< 5.10
Dichlorobromo-												
methane (ug/L)												
Average Monthly			1.36			1.00			< 1.00			< 1.00
Dichlorobromo-												
methane (ug/L)												
Daily Maximum			1.36			1.00			< 1.00			< 1.00

DMR Data for Outfall 003 (from September 1, 2021 to August 31, 2022)

Parameter	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21
TSS (mg/L)												
Daily Maximum			221						184			
Total Aluminum												
(mg/L)												
Daily Maximum			4.18						3.61			
Total Copper (mg/L)												
Daily Maximum			0.0183						0.0156			
Total Iron (mg/L)												
Daily Maximum			6.42						5.66			
Total Lead (mg/L)												
Daily Maximum			0.00584						0.00904			
Total Zinc (mg/L)												
Daily Maximum			0.268						0.308			

DMR Data for Outfall 004 (from September 1, 2021 to August 31, 2022)

Parameter	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21
TSS (mg/L)												
Daily Maximum			172						1.80			
Total Aluminum												
(mg/L)												
Daily Maximum			3.67						< 0.100			

NPDES Permit Fact Sheet Prysmian Cables & System USA LLC

NPDES Permit No. PA0009318

Total Copper (mg/L) Daily Maximum	0.0259	< 0.00386	
Total Iron (mg/L)	0.0239	0.00300	
Daily Maximum	5.73	< 0.200	
Total Lead (mg/L)		<	
Daily Maximum	0.0243	0.00143	
Total Zinc (mg/L)			
Daily Maximum	0.368	0.0436	

DMR Data for Outfall 005 (from September 1, 2021 to August 31, 2022)

Parameter	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21
TSS (mg/L)												
Daily Maximum			94						19.6			
Total Aluminum												
(mg/L)												
Daily Maximum			2.06						0.459			
Total Copper (mg/L)									<			
Daily Maximum			0.0163						0.00386			
Total Iron (mg/L)												
Daily Maximum			3.22						0.471			
Total Lead (mg/L)									<			
Daily Maximum			0.00564						0.00143			
Total Zinc (mg/L)												
Daily Maximum			0.0879						0.0158			

	Tools and References Used to Develop Permit
	T
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment B)
<u> </u>	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
\boxtimes	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
\boxtimes	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

APPENDIX A Q₇₋₁₀ ANALYSIS AND STREAM DATA

Q₇₋₁₀ Analysis

Facility: General Cable
Outfall: 002

Reference Strea	ım Gage Information
Stream Name	Sand Spring Run
Reference Gage	1553130
Station Name	Sand Spring Run near White Deer, PA
Gage Drainage Area (sq. ml.)	4.93
Q ₇₋₁₀ at gage (cfs)	1.1
Yleid Ratio (cfs/mi²)	0.2231

Q ₇₋₁₀ (at Outfall
Drainage Area at site (sq. ml.)	1
Q ₇₋₁₀ at discharge site (cfs)	0.2231
	0.1442
Low Flow Yield Ratio of 0.1 cf	s/mi² (For Approx. Comparison Only)
Q ₇₋₁₀ at discharge site (cfs)	0.1000
	0.0646

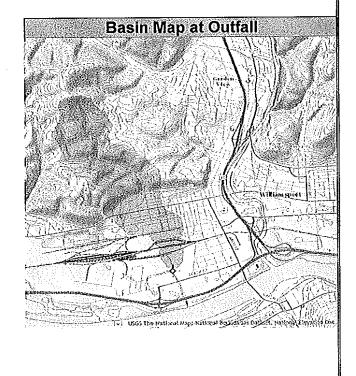
Q ₇₋₁₀ at Down	stream Reach #2
Drainage Area at Reach (sq. ml.)	[Drainage Area @ Reach #2]
	[RMI @ Reach #2]
(M)-10 T-12 T-12 (T-12)	#VALUE1
Q ₇₋₁₀ at reach (mgd)	#VALUE!

Basin Characteristics Report at Site

Date: Mon Apr 6 2015 08:31:45 Mountain Daylight Time

NAD27 Latitude: 41.0603 (41 03 37) NAD27 Longitude: -76.8337 (-76 50 01) NAD83 Latitude: 41.0603 (41 03 37) NAD83 Longitude: -76.8334 (-76 50 00)

Parameter	Value
DRNAREA	1
STRATOT	2.69
STRDEN	2,69
BSLOPD	6.4
CENTROIDX	77993.5
CENTROIDY	249485.1
OUTLETX	78865
OUTLETY	247875
LONG_OUT	-77,05923
BSLOPDRAW	6,66
FOREST	31
PRECIP	41
URBAN	37
GLACIATED	. 0
ROCKDEP	4.1
CARBON	0
STORAGE	0
ELEV	686.5
MAXTEMP	59
DRN	3.3
IMPNLCD01	15
LC01DEV	51
LC11IMP	18.9
LC11DEV	54.5


NPDES Permit No.: PA0009318
RMI at Outfall: 0.59

Was BaSE Used?	Yes	▼.
Correlation From Ecoflows	0.954	

Check D	llution Ratio	
Discharge at Outfall (wf) (mgd)	0.0	168
	sf (cfs)	wf (cfs)
Dijution Ratio = sf/wf	0.2231	0.105211555
Ditution Ratio =	2.120715087	to 1

Q ₇₋₁₀ at Down	stream Reach #1
Drainage Area at Reach (sq. ml.)	5380
RMI	0
Q _{z-10} at reach (cfs)	1200.4057
Q ₇₋₁₀ at reach (mgd)	775.8424
	Class COCI

Q ₇₋₁₀ at Down	stream Reach #3
Drainage Area at Reach (sq. ml.)	[Drainage Area @ Reach #3]
	[RMI @ Reach #3]
Q ₇₋₁₀ at reach (cfs)	#VALUE!
	#VALUE!

APPENDIX B TOXICS MANAGEMENT SPREADSHEET

Discharge Information

Facility: Prysmian Cables & System USA LLC

Evaluation Type: Major Sewage / Industrial Waste

NPDES Permit No.: PA0009318

Outfall No.: 002

Wastewater Description: NCCW

Discharge Characteristics										
Design Flow	Hardness (mar/l)*	»U (CII)*	F	artial Mix Fa	Complete Mix Times (min)					
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h		
0.068	100	7								

						t blank	0.5 if le	0.5 if left blank) if left blan	k	1 if left blank	
	Discharge Pollutant	Units	Jnits Max Discharge Conc		Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transi
	Total Dissolved Solids (PWS)	mg/L											
0.1	Chloride (PWS)	mg/L											
Group	Bromide	mg/L											
ō	Sulfate (PWS)	mg/L											
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L		16.9									
	Total Antimony	μg/L		0.345									
	Total Arsenic	μg/L	<	1									
	Total Barium	μg/L		22.4									
	Total Beryllium	μg/L	<	2.5									
	Total Boron	μg/L	<	0.1									
	Total Cadmium	μg/L	<	2.5									
	Total Chromium (III)	μg/L	<	0.005									
	Hexavalent Chromium	μg/L	<	0.0003									
	Total Cobalt	μg/L		0.137									
	Total Copper	μg/L		2.95									
2	Free Cyanide	μg/L											
Ιğ	Total Cyanide	μg/L		0.006									
Group	Dissolved Iron	μg/L		108									
	Total Iron	μg/L		393									
	Total Lead	μg/L		0.092									
	Total Manganese	μg/L		23.9									
	Total Mercury	μg/L	<	0.0002									
	Total Nickel	µg/L	<	2.5									
	Total Phenols (Phenolics) (PWS)	µg/L	<	1									
	Total Selenium	µg/L	<	12.5									
	Total Silver	µg/L	<	2.5									
	Total Thallium	μg/L	<	0.5									
	Total Zinc	µg/L		23									
	Total Molybdenum	μg/L		0.769									
	Acrolein	μg/L	<	10									
	Acrylamide	μg/L	<	1									
	Acrylonitrile	μg/L	<	1									
	Benzene	μg/L	<	1									
1	Bromoform	μg/L	<	1									
	Carbon Tetrachloride	μg/L	<	1									
1	Carbon renaciionae	µg/L											

									000000000000000000000000000000000000000
	Chlorobenzene	μg/L	<	1					
	Chlorodibromomethane	μg/L	<	1					
	Chloroethane	μg/L	<	1					
	2-Chloroethyl Vinyl Ether	μg/L	<	10					
	Chloroform	μg/L	<	1					
	Dichlorobromomethane	μg/L	<	1.36					
	1,1-Dichloroethane	μg/L	<	1					
	1,2-Dichloroethane	μg/L	<	1					
p 3	1,1-Dichloroethylene	μg/L	<	1					
5			_						
Group	1,2-Dichloropropane	μg/L	<	1					
	1,3-Dichloropropylene	μg/L	<	1					
	1,4-Dioxane	μg/L	<	3.1					
	Ethylbenzene	μg/L	<	1					
	Methyl Bromide	μg/L	<	1					
	Methyl Chloride	μg/L	<	5					
	Methylene Chloride	μg/L	<	5					
	1,1,2,2-Tetrachloroethane	μg/L	<	1					
	Tetrachloroethylene	μg/L	<	1					
	Toluene	μg/L	<	1					
	1,2-trans-Dichloroethylene	μg/L	<	1					
	1,1,1-Trichloroethane	μg/L	<	1					
	1.1.2-Trichloroethane	μg/L	<	1					
	Trichloroethylene	μg/L	<	1					
			<						
	Vinyl Chloride	μg/L	<	1					
	2-Chlorophenol	μg/L	_						
	2,4-Dichlorophenol	μg/L	<	1					
	2,4-Dimethylphenol	μg/L	<	1					
4	4,6-Dinitro-o-Cresol	μg/L	<	5					
ď	2,4-Dinitrophenol	μg/L	<	5					
	2-Nitrophenol	μg/L	<	1					
ō	4-Nitrophenol	μg/L	<	1					
	p-Chloro-m-Cresol	μg/L	<	1					
	Pentachlorophenol	μg/L	<	5					
	Phenol	μg/L	<	1					
	2,4,6-Trichlorophenol	μg/L	<	1					
	Acenaphthene	μg/L							
	Acenaphthylene	μg/L							
	Anthracene	μg/L							
	Benzidine	μg/L							
	Benzo(a)Anthracene	μg/L							
	Benzo(a)Pyrene	μg/L							
	3,4-Benzofluoranthene	μg/L							
	Benzo(ghi)Perylene	μg/L							
	Benzo(k)Fluoranthene	μg/L							
	Bis(2-Chloroethoxy)Methane	μg/L							
	Bis(2-Chloroethyl)Ether	μg/L							
	Bis(2-Chloroisopropyl)Ether	µg/L							
	Bis(2-Ethylhexyl)Phthalate	μg/L							
	4-Bromophenyl Phenyl Ether	μg/L							
	Butyl Benzyl Phthalate								
	2-Chloronaphthalene	μg/L							
		μg/L							
	4-Chlorophenyl Phenyl Ether	μg/L							
	Chrysene	μg/L							
	Dibenzo(a,h)Anthrancene	μg/L							
	1,2-Dichlorobenzene	μg/L							
	1,3-Dichlorobenzene	μg/L							
2	1,4-Dichlorobenzene	μg/L							
d n	3,3-Dichlorobenzidine	μg/L							
CD	Diethyl Phthalate	μg/L							
0	Dimethyl Phthalate	μg/L							
	Di-n-Butyl Phthalate	μg/L							
	2,4-Dinitrotoluene	μg/L							
	2,6-Dinitrotoluene	μg/L							
			_		 	 	 	 	

Stream / Surface Water Information

Prysmian Cables & System USA LLC, NPDES Permit No. PA0009318, Outfall 002

Instructions Disch	arge Str	ream													
Receiving Surface Water Name: Fox Hollow Run							No. Rea	aches to N	Model:	1	Statewide Criteria Great Lakes Criteria				
Location	Stream Co	de* RI	MI* Eleva	I DΔ /m	i²)* S	Slope (ft/ft)		Withdrawa MGD)	al Apply Crite		ORSANCO Criteria				
Point of Discharge	020942	0.	59 53	0 1					Ye	es					
End of Reach 1	020942		50	5 538	0				Ye	es					
Q ₇₋₁₀ LEY Flow (cfs) W/D Width Depth Velocit Tributary Stream Analysis										sis					
Location	RMI	(cfs/mi ²)		Tributary	Rati		(ft)	y (fps)	Time (days)	Hardnes		Hardness*	pH*	Hardness	pH
Point of Discharge	0.59	0.1	0.223			.,	. ,	, , ,	(days)			100	7		•
End of Reach 1	0	0.1	1200												
Q _h							•								
Location	RMI	LFY	Flov	v (cfs)	W/E) Width	Depth	Velocit	Time	Trik	outary	Strea	m	Analys	sis
LUCATION	KIVII	(cfs/mi ²)	Stream	Tributary	Rati	o (ft)	(ft)	y (fps)	Time (days)	Hardnes	s pH	Hardness	pН	Hardness	pН
Point of Discharge	0.59														
End of Reach 1	0														

Model Results

Prysmian Cables & System USA LLC, NPDES Permit No. PA0009318, Outfall 002

Instructions Results	RETURN	TO INPU	TS (SAVE AS	PDF	PRINT	г 🦳 🖲 А	II () Inputs () Results () Limits					
Hydrodynamics													
,,													
✓ Wasteload Allocations	Wasteload Allocations												
COT (with Add) DNC Applied by App													
☑ AFC CCT (min): 1.119 PMF: 1 Analysis Hardness (mg/l): 100 Analysis pH: 7.00													
	Sucam	04	Trib Oran		WOO	WO OF:							
Pollutants	Conc	Stream	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments					
Total Aluminum	(ug/L)	0	(µg/L)	0	(μg/L) 750	750	2,340						
Total Antimony	0	0		0	1,100	1,100	3,432						
Total Arsenic	0	0		0	340	340	1,061	Chem Translator of 1 applied					
Total Barium	0	0		0	21.000	21,000	65,517	orient fransactor of Fappilea					
Total Boron	0	0		0	8,100	8,100	25,271						
Total Cadmium	0	0		0	2.014	2.13	6.66	Chem Translator of 0.944 applied					
Total Chromium (III)	0	0		0	569.763	1,803	5,625	Chem Translator of 0.316 applied					
Hexavalent Chromium	0	0		0	16	16.3	50.8	Chem Translator of 0.982 applied					
Total Cobalt	0	0		0	95	95.0	296						
Total Copper	0	0		0	13.439	14.0	43.7	Chem Translator of 0.96 applied					
Dissolved Iron	0	0		0	N/A	N/A	N/A						
Total Iron	0	0		0	N/A	N/A	N/A						
Total Lead	0	0		0	64.581	81.6	255	Chem Translator of 0.791 applied					
Total Manganese	0	0		0	N/A	N/A	N/A						
Total Mercury	0	0		0	1.400	1.65	5.14	Chem Translator of 0.85 applied					
Total Nickel	0	0		0	468.236	469	1,464	Chem Translator of 0.998 applied					
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A						
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied					
Total Silver	0	0		0	3.217	3.78	11.8	Chem Translator of 0.85 applied					
Total Thallium	0	0		0	65	65.0	203						
Total Zinc	0	0		0	117.180	120	374	Chem Translator of 0.978 applied					
Acrolein	0	0		0	3	3.0	9.36						
Acrylamide	0	0		0	N/A	N/A	N/A						
Acrylonitrile	0	0		0	650	650	2,028						
Benzene	0	0		0	640	640	1,997						
Bromoform	0	0		0	1,800	1,800	5,616						

 vlodel Results
 2/2/2023

 Page 5

Model Results

Prysmian Cables & System USA LLC, NPDES Permit No. PA0009318, Outfall 002

Instructions Results	RETURN	TO INPU	rs) [SAVE AS	PDF)	PRINT	г) ⊚ А	II					
☐ Hydrodynamics ☑ Wasteload Allocations													
✓ AFC CCT (min): 1.119 PMF: 1 Analysis Hardness (mg/l): 100 Analysis pH: 7.00													
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (μg/L)	Comments					
Total Aluminum	0	0		0	750	750	2,340						
Total Antimony	0	0		0	1,100	1,100	3,432						
Total Arsenic	0	0		0	340	340	1,061	Chem Translator of 1 applied					
Total Barium	0	0		0	21,000	21,000	65,517						
Total Boron	0	0		0	8,100	8,100	25,271						
Total Cadmium	0	0		0	2.014	2.13	6.66	Chem Translator of 0.944 applied					
Total Chromium (III)	0	0		0	569.763	1,803	5,625	Chem Translator of 0.316 applied					
Hexavalent Chromium	0	0		0	16	16.3	50.8	Chem Translator of 0.982 applied					
Total Cobalt	0	0		0	95	95.0	296						
Total Copper	0	0		0	13.439	14.0	43.7	Chem Translator of 0.96 applied					
Dissolved Iron	0	0		0	N/A	N/A	N/A						
Total Iron	0	0		0	N/A	N/A	N/A						
Total Lead	0	0		0	64.581	81.6	255	Chem Translator of 0.791 applied					
Total Manganese	0	0		0	N/A	N/A	N/A						
Total Mercury	0	0		0	1.400	1.65	5.14	Chem Translator of 0.85 applied					
Total Nickel	0	0		0	468.236	469	1,464	Chem Translator of 0.998 applied					
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A						
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied					
Total Silver	0	0		0	3.217	3.78	11.8	Chem Translator of 0.85 applied					
Total Thallium	0	0		0	65	65.0	203						
Total Zinc	0	0		0	117.180	120	374	Chem Translator of 0.978 applied					
Acrolein	0	0		0	3	3.0	9.36						
Acrylamide	0	0		0	N/A	N/A	N/A						
Acrylonitrile	0	0		0	650	650	2,028						
Benzene	0	0		0	640	640	1,997						
Bromoform	0	0		0	1,800	1,800	5,616						

 vlodel Results
 2/2/2023

 Page 5

Total Copper	0	0	0	8.956	9.33	29.1	Chem Translator of 0.96 applied
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	4,680	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.517	3.18	9.93	Chem Translator of 0.791 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	2.83	Chem Translator of 0.85 applied
Total Nickel	0	0	0	52.007	52.2	163	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	15.6	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	40.6	
Total Zinc	0	0	0	118.139	120	374	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	9.36	
Acrylamide	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	130	130	406	
Benzene	0	0	0	130	130	406	
Bromoform	0	0	0	370	370	1,154	
Carbon Tetrachloride	0	0	0	560	560	1,747	
Chlorobenzene	0	0	0	240	240	749	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	10,919	
Chloroform	0	0	0	390	390	1,217	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	9,672	
1,1-Dichloroethylene	0	0	0	1,500	1,500	4,680	
1,2-Dichloropropane	0	0	0	2,200	2,200	6,864	
1,3-Dichloropropylene	0	0	0	61	61.0	190	
Ethylbenzene	0	0	0	580	580	1,810	
Methyl Bromide	0	0	0	110	110	343	
Methyl Chloride	0	0	0	5,500	5,500	17,159	
Methylene Chloride	0	0	0	2,400	2,400	7,488	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	655	
Tetrachloroethylene	0	0	0	140	140	437	
Toluene	0	0	0	330	330	1,030	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	4,368	
1,1,1-Trichloroethane	0	0	0	610	610	1,903	
1,1,2-Trichloroethane	0	0	0	680	680	2,121	
Trichloroethylene	0	0	0	450	450	1,404	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	343	
2,4-Dichlorophenol	0	0	0	340	340	1,061	
2,4-Dimethylphenol	0	0	0	130	130	406	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	49.9	
2,4-Dinitrophenol	0	0	0	130	130	406	
2-Nitrophenol	0	0	0	1,600	1,600	4,992	

4-Nitrophenol	0		0	470	470	1,466	
p-Chloro-m-Cresol	0	0	0	500	500	1,560	
Pentachlorophenol	0	0	0	6.693	6.69	20.9	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0		0	91	91.0	284	

☑ THH CC	CT (min): 1.	119	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
Polititarits	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	17.5	
Total Arsenic	0	0		0	10	10.0	31.2	
Total Barium	0	0		0	2,400	2,400	7,488	
Total Boron	0	0		0	3,100	3,100	9,672	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	936	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	3,120	
Total Mercury	0	0		0	0.050	0.05	0.16	
Total Nickel	0	0		0	610	610	1,903	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	0.75	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	9.36	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	312	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	17.8	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	103	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	

1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	212	
Methyl Bromide	0	0	0	100	100.0	312	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	178	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	312	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	31,199	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	93.6	
2,4-Dichlorophenol	0	0	0	10	10.0	31.2	
2,4-Dimethylphenol	0	0	0	100	100.0	312	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	6.24	
2,4-Dinitrophenol	0	0	0	10	10.0	31.2	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	12,479	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	

☑ CRL	CCT (min): 0.6	641	PMF:	1	Ana	ılysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (μg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	

Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylamide	0	0	0	0.07	0.07	1.4	
Acrylonitrile	0	0	0	0.06	0.06	1.2	
Benzene	0	0	0	0.58	0.58	11.6	
Bromoform	0	0	0	7	7.0	140	
Carbon Tetrachloride	0	0	0	0.4	0.4	8.01	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	16.0	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	0.95	0.95	19.0	
1,2-Dichloroethane	0	0	0	9.9	9.9	198	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	18.0	
1,3-Dichloropropylene	0	0	0	0.27	0.27	5.41	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	401	
1.1.2.2-Tetrachloroethane	0	0	0	0.2	0.2	4.01	
Tetrachloroethylene	0	0	0	10	10.0	200	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	11.0	
Trichloroethylene	0	0	0	0.55	0.55	12.0	
		0	0	0.02	0.02	0.4	
Vinyl Chloride 2-Chlorophenol	0	0	0	0.02 N/A	0.02 N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A N/A	N/A N/A	N/A N/A	
	0	0	0	N/A N/A	N/A N/A	N/A N/A	
2,4-Dimethylphenol	0	0			N/A N/A	N/A N/A	
4,6-Dinitro-o-Cresol	_	_	0	N/A			
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.6	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	30.0	

[☑] Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML	MDL	AML	MDL	IMAX	Units	Governing	WQBEL	Comments
Politiants	(lbs/day)	(lbs/day)	AIVIL	MDL		Onits	WQBEL	Basis	Confinents
Total Cadmium	0.0005	0.0007	0.84	1.32	2.11	μg/L	0.84	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Copper	Report	Report	Report	Report	Report	μg/L	28.0	AFC	Discharge Conc > 10% WQBEL (no RP)
Dissolved Iron	Report	Report	Report	Report	Report	μg/L	936	THH	Discharge Conc > 10% WQBEL (no RP)
Total Selenium	0.009	0.014	15.6	24.3	38.9	μg/L	15.6	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Silver	Report	Report	Report	Report	Report	μg/L	7.57	AFC	Discharge Conc > 10% WQBEL (no RP)
Acrolein	0.003	0.005	6.0	9.36	15.0	μg/L	6.0	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Acrylamide	0.0008	0.001	1.4	2.19	3.51	μg/L	1.4	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Vinyl Chloride	0.0002	0.0004	0.4	0.62	1.0	μg/L	0.4	CRL	Discharge Conc ≥ 50% WQBEL (RP)

✓ Other Pollutants without Limits or Monitoring

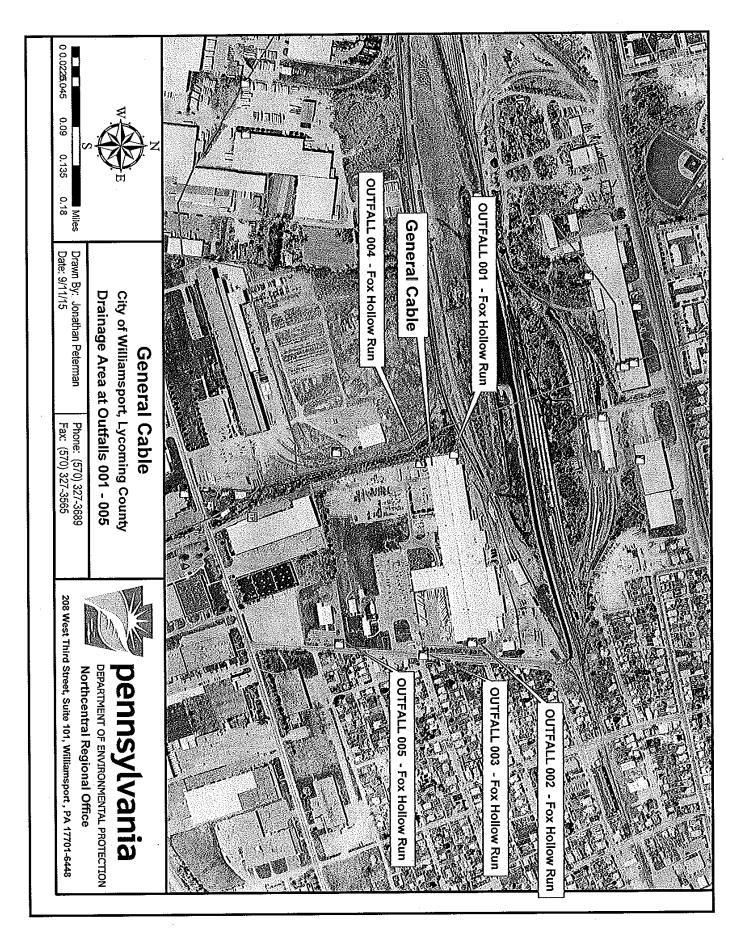
The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

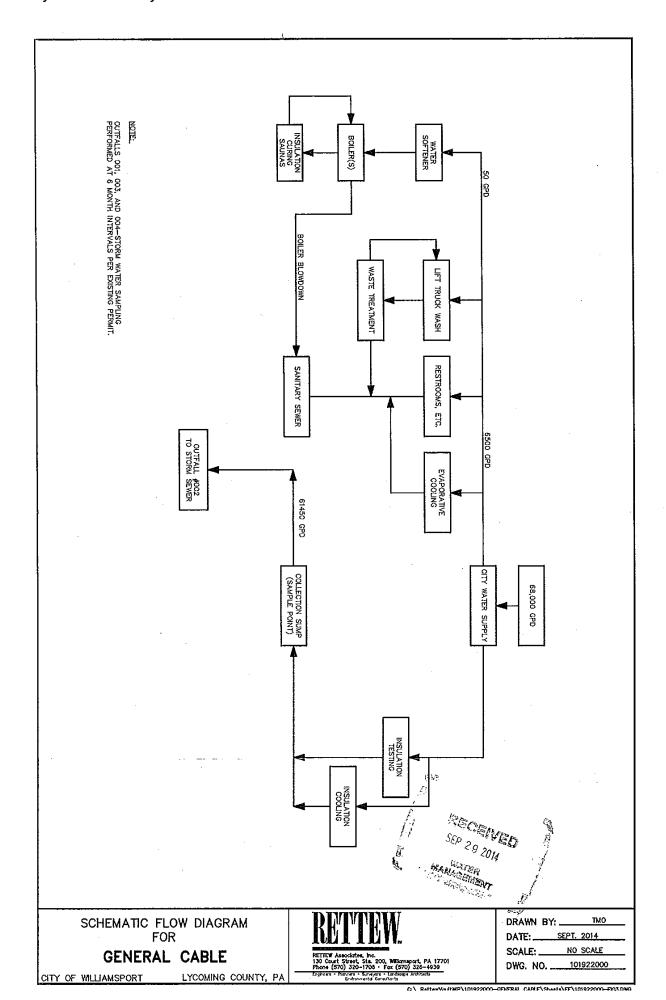
Pollutants	Governing WQBEL	Units	Comments
Total Aluminum	1,500	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	17.5	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	7,488	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	N/A	N/A	Discharge Conc < TQL
Total Chromium (III)	N/A	N/A	Discharge Conc < TQL
Hexavalent Chromium	N/A	N/A	Discharge Conc < TQL
Total Cobalt	59.3	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Total Iron	4,680	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	9.93	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	3,120	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.16	μg/L	Discharge Conc < TQL
Total Nickel	163	μg/L	Discharge Conc < TQL
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Thallium	0.75	μg/L	Discharge Conc < TQL
Total Zinc	240	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrylonitrile	1.2	μg/L	Discharge Conc < TQL
Benzene	11.6	μg/L	Discharge Conc ≤ 25% WQBEL
Bromoform	140	μg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	8.01	μg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	312	μg/L	Discharge Conc ≤ 25% WQBEL

2/2/2023 **Model Results** Page 11

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML	MDL	AML	MDL	IMAX	Units	Governing	WQBEL	Comments
Politiants	(lbs/day)	(lbs/day)	AIVIL	MDL		Onits	WQBEL	Basis	Confinents
Total Cadmium	0.0005	0.0007	0.84	1.32	2.11	μg/L	0.84	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Copper	Report	Report	Report	Report	Report	μg/L	28.0	AFC	Discharge Conc > 10% WQBEL (no RP)
Dissolved Iron	Report	Report	Report	Report	Report	μg/L	936	THH	Discharge Conc > 10% WQBEL (no RP)
Total Selenium	0.009	0.014	15.6	24.3	38.9	μg/L	15.6	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Silver	Report	Report	Report	Report	Report	μg/L	7.57	AFC	Discharge Conc > 10% WQBEL (no RP)
Acrolein	0.003	0.005	6.0	9.36	15.0	μg/L	6.0	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Acrylamide	0.0008	0.001	1.4	2.19	3.51	μg/L	1.4	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Vinyl Chloride	0.0002	0.0004	0.4	0.62	1.0	μg/L	0.4	CRL	Discharge Conc ≥ 50% WQBEL (RP)


✓ Other Pollutants without Limits or Monitoring


The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments		
Total Aluminum	1,500	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Antimony	17.5	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Arsenic	N/A	N/A	Discharge Conc < TQL		
Total Barium	7,488	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Beryllium	N/A	N/A	No WQS		
Total Boron	N/A	N/A	Discharge Conc < TQL		
Total Chromium (III)	N/A	N/A	Discharge Conc < TQL		
Hexavalent Chromium	N/A	N/A	Discharge Conc < TQL		
Total Cobalt	59.3	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Cyanide	N/A	N/A	No WQS		
Total Iron	4,680	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Lead	9.93	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Manganese	3,120	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Mercury	0.16	μg/L	Discharge Conc < TQL		
Total Nickel	163	μg/L	Discharge Conc < TQL		
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL		
Total Thallium	0.75	μg/L	Discharge Conc < TQL		
Total Zinc	240	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Molybdenum	N/A	N/A	No WQS		
Acrylonitrile	1.2	μg/L	Discharge Conc < TQL		
Benzene	11.6	μg/L	Discharge Conc ≤ 25% WQBEL		
Bromoform	140	μg/L	Discharge Conc ≤ 25% WQBEL		
Carbon Tetrachloride	8.01	μg/L	Discharge Conc ≤ 25% WQBEL		
Chlorobenzene	312	μg/L	Discharge Conc ≤ 25% WQBEL		

2/2/2023 Model Results Page 11

APPENDIX C FACILITY MAP AND SCHEMATIC

