

Southwest Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0009466

 APS ID
 563407

 Authorization ID
 1182825

Applicant and Facility Information

Applicant Name	Vale Wood Farms	Facility Name	Vale Wood Dairy
Applicant Address	517 Vale Wood Road	Facility Address	517 Vale Wood Road
	Loretto, PA 15940-6605		Loretto, PA 15940-6605
Applicant Contact	Carissa Westrick	Facility Contact	Carissa Westrick
Applicant Phone	(814) 886-7171	Facility Phone	(814) 886-7171
Client ID	25297	Site ID	244507
SIC Code	2026 & 2024	Municipality	Munster Township
SIC Description	Manufacturing - Fluid Milk & Ice Cream	County	Cambria
Date Application Receiv	ved <u>May 1, 2017</u>	EPA Waived?	Yes
Date Application Accep	oted May 02, 2019	If No, Reason	
Purpose of Application	Renewal of NPDES permit for disc	harge of treated Indust	rial Waste.

Summary of Review

Vale Wood Dairy had an Individual Permit for the treatment and discharge of process wastewater at its facility located in Munster Township, Cambria County. The previous cycle of permit coverage expired on October 31, 2017. The Department received the routine renewal application on May 1, 2017. The SIC codes of the facility are 2026 – Fluid Milk Manufacturing and 2024 – Ice Cream Manufacturing.

The existing permit identifies two (2) Outfalls (001 and 002). Outfall 001 is the primary outfall discharging the industrial process wastewater. Outfall 002 was the boiler blow-down, which has been routed to Outfall 001 per Department suggestion. The renewal application requested that Outfall 002 be maintained as an emergency discharge of the boiler blow-down.

The facility was issued a Water Quality Management Permit (No. 56314) on May 27, 1963 for waste stabilization ponds. There are three small earthen stabilization ponds followed by two larger earthen ponds, a chlorinator, a chlorine contact tank, and then discharge.

Facility Overview

Vale Wood Dairy Farms processes milk 3-4 days per week typically. The source of the milk is from their own farm and several other local farms. Many dairy products are made onsite and shipped to customers. The products can also be purchased at the on-site store.

Vale Wood Dairy produces fluid milk and ice cream, and in the process creates process wastes resulting from cleaning and water flushes. The process waste flows to 5 facultative lagoons, 3 small lagoons and two larger lagoons, before entering a

Approve	Deny	Signatures	Date
х		Curtis Holes, P.E. / Environmental Engineering	March 07, 2024
х		Michael E. Fifth, P.E. / Environmental Engineer Manager	March 19, 2024

Summary of Review

chlorine contact tank before discharge. The facility is not presently using chlorination and is able to meet the fecal coliform limits without it.

Review of the DMR's from March 2020 to 2022 revealed nineteen (19) effluent violations. The Department conducted a Wastewater Treatment System Site Assessment on September 18, 2023, Jeremy D. Miller, Wastewater Treatment Operations Advisor, Thomas Brown, Water Program Specialist (Annuitant), Kristen Gearhart, Water Quality Specialist and Curt Holes, Environmental Engineer, met with Carissa Westrik, Director of Business Development, at the site to discuss issues with effluent discharge exceedances the process wastewater treatment plant.

Vale Wood Dairy produces fluid milk and ice cream, and in the process creates process wastes resulting from cleaning and water flushes. The process waste flows to 5 facultative lagoons, 3 small lagoons and two larger lagoons, before entering a chlorine contact tank before discharge. The facility is not presently using chlorination and is able to meet the fecal coliform limits without it.

Milk and milk byproducts contain a high concentration of dissolved BOD. In the treatment lagoon, bacteria feed on the BOD and remove it from the waste stream producing treated effluent with reduced BOD values. Keeping the bacteria healthy and alive in the lagoon is critically important to the success of this treatment. Being a food processor, the dairy is utilizing strong disinfectants to clean the food processing equipment. This disinfectant is being washed into the drains and ultimately into the lagoons where it continues to kill and destroy bacteria.

Lagoons are designed to contain the wastewater and allow bacteria to digest and eat the BOD in the wastewater before discharge. Removing the food/waste also reduces the dissolved and suspended solids creating a clear effluent for discharge. Clear water in a lagoon is likely to start growing algae. Algae in water behaves like BOD₅ as it respirates naturally and can also add to TSS values in the discharge.

Recommendations from the September 18, 2023 Wastewater Treatment System Site Assessment are to determine if the cause of the BOD and TSS exceedances are from insufficient treatment, i.e. bacteria dying off in the lagoon from the disinfectant, or algae. It is recommended that a filtered BOD_5 test be conducted. Once the water is filtered for TSS, use the filtrate for a BOD_5 test. If the filtered BOD_5 test and non-filtered BOD_5 test are the same, the issue is with incomplete treatment in the lagoons, if the values differ substantially the issue are likely algae.

- It is recommended that a cBOD5 test be conducted after each lagoon so that the efficiency of each lagoon can be measured. For this test grab samples taken relatively close in time to each other would be sufficient.
- The NPDES permit only requires grab samples to determine compliance with effluent limits. 24-hour composite samples may help show a better average of what the plant is discharging and what the stream is receiving. Purchasing a compositor and installing it at the outfall is recommended.
- The chlorine contact tank is full of solids. Although the process is not being utilized, the solids could affect the discharge. It is recommended that the tank be pumped and cleaned. The three smaller, upfront lagoons are cleaned every spring. A sludge profile of each lagoon should be conducted to determine if cleaning should be scheduled more often than yearly.

The facility started running a standard BOD₅ test along with filtering the sample prior to the BOD₅ test and the data confirms that the elevated TSS and BOD₅ is from algae in the lagoons not from the industrial process wastewater. The Technical Assistance sample data yielded the following results. The Outfall 001 effluent BOD₅ was 26.6 ^{mg}/_L, of which 5.82 ^{mg}/_L was soluble BOD. This means that 80% of the total BOD in the sample result was caused by algae in the lagoon not poorly treated wastewater. The Outfall 001 effluent TSS was 57 mg/L, which approximately 80% or more of this concentration is likely from the algae in the lagoon as well.

Vale Wood Dairy produces fluid milk, ice cream, cottage cheese, butter, and sour cream/dip, and in the process creates process wastes resulting from cleaning and water flushes. The process flow diagram is presented in Appendix A. The historic average annual production is 858,267 gallons of milk processed. The anticipated average annual production for the next five years is 925,000 gallons of milk processed. The facility states that their milk sales and processing capacity should remain steady for the next five years.

Summary of Review

According to the application, the facility produces four products with federal ELGs contained in the Dairy Products Processing point source category. The ELGs include:

- Fluid Product Subcategory (Subpart B) found at 40 CFR 405.22(b) (BPT);
- Butter Subcategory (Subpart D) found at 40 CFR 405.42(b) (BPT);
- Cottage Cheese and Cultured Cream Cheese Subcategory (Subpart E) found at 40 CFR 405.52(b) (BPT); and
- Ice Cream, Frozen Desserts, Novelties and Other Dairy Desserts Subcategory (Subpart H) found at 40 CFR 405.82(b) (BPT).

The facility has a cooling water intake structure that uses groundwater as a source of cooling water with a flow below 2 MGD. Less than 25% of the water withdrawn is used for cooling purposes. Therefore, 316(b) federal requirements do not apply to the facility.

Non-contact cooling water from compressor systems, steam condensate overflows, and process wastes resulting from cleaning and water flushes are collected in a central discharge basin. The wastewater flows through a series of three smaller settling ponds, and then finally through two larger ponds. The effluent is then discharged through Outfall 001.

Vale Wood Dairy previously had two outfalls (Outfalls 001 and 002). Outfall 001 discharged process wastewater from cleaning and non-contact cooling water, and steam condensate overflows. Outfall 002 discharged boiler blow-down. Recently, because of the nature of the Outfall 002 discharge (batch-emergency only), the facility has started to route the water through Outfall 001 with the advice of the DEP Water Quality Specialist assigned for the site. During the current renewal, Outfall 002 will be maintained as an emergency only outfall. Outfall 001 will eventually discharge to Clearfield Creek which is classified as warm water fishery (WWF) per Chapter 93 Designated Use.

As documented in the previous Fact Sheet and historical inspection reports, it appears as though there was a "septic tank discharge" at one time, although this was not explained well in the historical documents. The area of the septic tank was identified during the site visit, but it was impossible to determine if there was a discharge due to excessive vegetation. The facility said that the septic tank drains into a leach field, but the area of septic tank appears to be in a marsh/wetland area and also near a stormwater discharge point, which does not appear to flow into the stream.

Chemical Additives

Vale Wood Dairy does not use any chemical additives for the settling treatment in the facility.

Department Inspection

The last inspection conducted by the Department was on March 20, 2023 by Kristin Gearhart and no violations noted.

Conclusion

There are no current open violations by Client ID. Permit issuance is recommended.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Compliance History

DMR Data for Outfall 001 (from May 1, 2021 to April 30, 2022)

Parameter	Limit	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21
Flow (MGD)													
Average Monthly	Report	0.015	0.012	0.008	0.010	0.014	0.022	0.025	0.020	0.014	0.012	0.024	0.020
pH (S.U.)													
Minimum	6.0	7.2	7.0	6.9	6.9	7.0	7.3	7.9	7.8	8.1	7.7	7.8	7.5
pH (S.U.)													
Maximum	9.0	8.1	8.0	7.5	7.5	7.4	7.5	8.3	8.4	8.5	8.1	8.3	8.6
TRC (mg/L)													
Average Monthly	0.5	0.05	0.05	0.05	0.05	0.05	0.13	0.09	0.08	0.3	0.5	0.14	0.3
TRC (mg/L)													
Instantaneous													
Maximum	1.6	0.12	0.05	0.05	0.05	0.05	0.19	0.18	0.18	0.5	0.5	0.5	0.5
BOD5 (lbs/day)													
Average Monthly	4.8	4.3	3.0	9.8	10.6	4.6	4.7	4.6	3.4	4.6	2.1	4.6	4.7
BOD5 (lbs/day)													
Daily Maximum	9.6	6.7	6.0	11.0	12.3	7.4	5.4	5.7	3.8	5.2	2.5	7.4	6.1
BOD5 (mg/L)													
Average Monthly	40.3	34.6	30.0	148.0	128.0	40.0	25.8	22.4	20.8	39.9	21.6	23.4	27.9
BOD5 (mg/L)													
Daily Maximum	80.7	53.9	60.4	165.0	148.0	63.3	29.6	27.2	23.0	44.1	24.7	37.1	36.4
TSS (lbs/day)													
Average Monthly	7.2	6.2	4.0	3.0	4.3	5.8	6.0	4.8	6.0	5.2	2.2	4.7	5.6
TSS (lbs/day)													
Daily Maximum	14.4	7.1	4.8	4.5	5.3	6.5	7.7	5.4	8.8	7.0	3.9	6.4	9.2
TSS (mg/L)													
Average Monthly	60.5	50.0	40.0	45.0	52.0	50.0	32.8	23.2	36.0	44.3	22.4	23.8	33.5
TSS (mg/L)													
Daily Maximum	121.0	57.0	48.0	68.0	63.0	56.0	42.0	26.0	53.0	60.0	39.0	32.0	55.0
Fecal Coliform													
(No./100 ml)													
Geometric Mean	2,000	135	178	913	597	30	25	31	124	90	25	34	140
Fecal Coliform													
(No./100 ml)													
Instantaneous													
Maximum	10,000	331	231	1720	708	52	31	41	175	197	41	52	285

DMR Data for Outfall 001 (from May 1, 2021 to April 30, 2022), Continued

Parameter	Limit	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21
Ammonia (mg/L)													
Daily Maximum	Report					4.9						6.17	
Total Nitrogen													
(mg/L)													
Daily Maximum	Report					5.935						7.9	
Total Phosphorus													
(mg/L)													
Daily Maximum	Report					3.32						4.02	
Total Aluminum													
(mg/L)													
Daily Maximum	Report					< 0.10						0.24	
Total Iron (mg/L)													
Daily Maximum	Report					2.13						< 4.0	
Total Manganese													
(mg/L)													
Daily Maximum	Report					0.23						0.17	

Compliance History

Effluent Violations for Outfall 001, from: June 1, 2021 To: April 30, 2022

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
BOD5	02/28/22	Avg Mo	9.8	lbs/day	4.8	lbs/day
BOD5	01/31/22	Avg Mo	10.6	lbs/day	4.8	lbs/day
BOD5	01/31/22	Daily Max	12.3	lbs/day	9.6	lbs/day
BOD5	02/28/22	Daily Max	11.0	lbs/day	9.6	lbs/day
BOD5	01/31/22	Avg Mo	128.0	mg/L	40.3	mg/L
BOD5	02/28/22	Avg Mo	148.0	mg/L	40.3	mg/L
BOD5	02/28/22	Daily Max	165.0	mg/L	80.7	mg/L
BOD5	01/31/22	Daily Max	148.0	mg/L	80.7	mg/L

Other Comments: The BOD5 and TSS elevated were confirmed to be caused by the algae in the lagoons.

scharge, Recei	ving watei	rs and water Supply Inform	nation	
Outfall No 00	01		Design Flow (MGD)	0.012
Latitude 4	0° 28' 36"		Longitude	-78º 38' 07"
Quad Name	20 00		Quad Code	
Wastewater De	scription.	IW Process Effluent with F	I G Noncontact Cooling Water	(NCCW) Stormwater
	Soubreau			(110011), 01011110101
Receiving Wate	rs <u>Clear</u>	field Creek (WWF)	Stream Code	26107
NHD Com ID	61839	9257	RMI	71.40
Drainage Area	1.14 s	sq. miles	Yield (cfs/mi ²)	
Q7-10 Flow (cfs)	0.081	4	Q7-10 Basis	Streamstats
Elevation (ft)	1948.	6	Slope (ft/ft)	0.0001
Watershed No.	8-C		Chapter 93 Class.	WWF
Existing Use	WWF		Existing Use Qualifier	
Exceptions to U	se None		Exceptions to Criteria	None
Assessment Sta	atus	Impaired		
Cause(s) of Imp	airment	Metals		
Source(s) of Imp	pairment	ACID MINE DRAINAGE		
TMDL Status		Final	Name Clearfield C	reek
Nearest Downst	ream Publi	ic Water Supply Intake	Amsbry Water Authority (25,0	00 GPD)
PWS Waters	Clearfie	ld Creek	Flow at Intake (cfs)	2.12
	64 50		Distance from Outfall (mi)	69

Changes Since Last Permit Issuance: Outfall 002 will discharge through Outfall 001.

Other Comments: None.

Development of Effluent Limitations								
		Design Flow						
Outfall No.	001	(MGĎ)	0.012					
Latitude	40º 28' 36"	Longitude	-78º 38' 07"					
Wastewater Description:		IW Process Effluent with ELG, Noncontact Cooling Water (NCCW), Stormwater						

Process Water Overview

Outfall 001 discharges treated industrial process wastewater from cleaning and water flushes, non-contact cooling water from compressor systems, and steam condensate overflows from the dairy production facility. Boiler blowdown discharges from Outfall 002 have been directed to also discharge through Outfall 001. The discharge through Outfall 001 is continuous with intermittent (batch) discharges joining from Outfall 002. The average flow during production is 0.012 MGD and the maximum flow during production is 0.05 MGD.

Technology-Based Effluent Limits (TBELs)

Outfall 001 effluent is comprised of treated dairy waste, non-contact cooling water, and steam condensate. Therefore, the process wastewater effluent is subject to the requirements of 40 CFR Part 405 – Dairy Products Processing Point Source Category.

The Department has recently commenced a new monitoring program targeting per and polyfluoroalkyl substances (PFAS), which is a multipronged strategy to better characterize and control PFAS in permitted discharges to surface waters by implementing monitoring and other requirements in National Pollutant Discharge Elimination System (NPDES) permits.

The PFAS Policy incorporates monitoring for PFAS parameters, PFOA, PFOS, HFPO-DA and PFBS, as a part of the screening analysis for all NPDES Individual Permit Facilities. ATI's renewed permit will include the following footnote: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results of 4 consecutive monitoring periods indicate non-detect results at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees must enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

According to the application, the facility produces four products with federal ELGs contained in the Dairy Products Processing point source category. The ELGs include:

- Fluid Product Subcategory (Subpart B) found at 40 CFR 405.22(b) (BPT);
- Butter Subcategory (Subpart D) found at 40 CFR 405.42(b) (BPT);
- Cottage Cheese and Cultured Cream Cheese Subcategory (Subpart E) found at 40 CFR 405.52(b) (BPT); and
- Ice Cream, Frozen Desserts, Novelties and Other Dairy Desserts Subcategory (Subpart H) found at 40 CFR 405.82(b) (BPT).
- Sour Cream/Dip, Cultured Products Subcategory (Subpart C) fount at 40 CFR 405.32 (b) (BPT).

From the renewal application and the February 2, 2024 email, the lists the following production for each ELG Subcategory:

- Fluid Milk 925,000 gallons;
- Butter 30,000 gallons;
- Cottage Cheese 35,000 gallons;
- Ice Cream 28,000 gallons;
- Sour Cream/Dip 32,000 gallons;

Each product is not produced daily; however, the effluent is a continuous discharge. Therefore, the production rates will each be based on a 365 day/year production schedule. The daily production rates for the technology-based effluent limits analysis are:

- Fluid milk [(925,000 gallons) / (365 days)] * (8.6 pounds per gallon milk) = 21,795 lbs M.E./day;
- Butter [(30,000 gallons) / (365 days)] * (8.6 pounds per gallon milk) = 707 lbs M.E./day;
- Cottage Cheese [(35,000 gallons) / (365 days)] * (8.6 pounds per gallon milk) = 825 lbs M.E./day;
- Ice Cream [(28,000 gallons) / (365 days)] * (8.6 pounds per gallon milk) = 660 lbs M.E./day; and
- Sour Cream [(32,000 gallons) / (365 days)] * (8.6 pounds per gallon milk) = 754 lbs M.E./day;

The milk equivalent (ME) rates were first converted to BOD₅ input rates:

 $\begin{array}{l} \mbox{Mik} - 21,795 \mbox{ lbs M.E./day x } (25,900 \mbox{ lbs BOD}_5 \mbox{ input / } 250,000 \mbox{ lb M.E./day } = 2,267 \mbox{ lbs BOD}_5 \mbox{ input/day } \\ \mbox{Butter} - 707 \mbox{ lbs M.E./day x } (18,180 \mbox{ lbs BOD}_5 \mbox{ input / } 175,000 \mbox{ lbs M.E./day } = 8.5 \mbox{ lbs BOD}_5 \mbox{ input/day } \\ \mbox{Cottage Cheese} - 825 \mbox{ lbs M.E./day x } (2,600 \mbox{ lbs BOD}_5 \mbox{ input / } 25,000 \mbox{ lbs M.E./day } = 10.0 \mbox{ lb BOD}_5 \mbox{ input/day } \\ \mbox{Ice Cream} - 660 \mbox{ lbs M.E./day x } (8,830 \mbox{ lbs BOD}_5 \mbox{ input / } 85,000 \mbox{ lbs M.E./day } = 8.0 \mbox{ lbs BOD}_5 \mbox{ input/day } \\ \mbox{Sour Cream} - 754 \mbox{ lbs M.E./day x } (6,200 \mbox{ lbs BOD}_5 \mbox{ input / } 60,000 \mbox{ lbs M.E./day } = 9.1 \mbox{ lbs BOD}_5 \mbox{ input/day } \\ \mbox{Sour Cream} - 754 \mbox{ lbs M.E./day x } (6,200 \mbox{ lbs BOD}_5 \mbox{ input / } 60,000 \mbox{ lbs M.E./day } = 9.1 \mbox{ lbs BOD}_5 \mbox{ input/day } \\ \mbox{Sour Cream} - 754 \mbox{ lbs M.E./day x } (6,200 \mbox{ lbs BOD}_5 \mbox{ input / } 60,000 \mbox{ lbs M.E./day } = 9.1 \mbox{ lbs BOD}_5 \mbox{ input/day } \\ \mbox{Sour Cream} - 754 \mbox{ lbs M.E./day x } (6,200 \mbox{ lbs BOD}_5 \mbox{ input / } 60,000 \mbox{ lbs M.E./day } = 9.1 \mbox{ lbs BOD}_5 \mbox{ input/day } \\ \mbox{Sour Cream} - 754 \mbox{ lbs M.E./day x } (6,200 \mbox{ lbs BOD}_5 \mbox{ input / } 60,000 \mbox{ lbs M.E./day } = 9.1 \mbox{ lbs BOD}_5 \mbox{ input/day } \\ \mbox{Sour Cream} - 754 \mbox{ lbs M.E./day x } (6,200 \mbox{ lbs BOD}_5 \mbox{ input / } 60,000 \mbox{ lbs M.E./day } = 9.1 \mbox{ lbs BOD}_5 \mbox{ input/day } \\ \mbox{Sour Cream} - 754 \mbox{ lbs M.E./day x } (6,200 \mbox{ lbs BOD}_5 \mbox{ input / } 60,000 \mbox{ lbs M.E./day } = 9.1 \mbox{ lbs BOD}_5 \mbox{ input / } 60,000 \mbox{ lbs M.E./day } \\ \mbox{ lbs M.E./day } = 10.0 \mbox{ lbs M.E./day } \\ \mbox{ lbs M.E./day } = 10.0 \mbox{ lbs M.E./day } = 10.0 \mbox{ lbs M.E./day } \\ \mbox{ lbs M.E./day } = 10.0 \mbox{ lbs M.E./day } \\ \mbox{ lbs M.E./day$

The Daily Maximum and Average Monthly limits for BOD5 and TSS were calculated as follows:

Daily Maximum:

BOD5:

Milk - 0.450 lb /100 lbs BOD input x 2,267 lbs BOD input /day = 10.20 lbs/day Butter - 0.183 lb /100 lbs BOD input x 8.5 lbs BOD input/day = 0.02 lb/day Cottage Cheese - 0.893 lb /100 lbs BOD input x 10.0 lbs BOD input/day = 0.09 lb/day Ice Cream - 0.613 lb /100 lbs BOD input x 8.0 lbs BOD input/day = 0.05 lb/day Sour Cream - 0.450 lb /100 lbs BOD input x 9.1 lbs BOD input /day = 0.04 lb/day

Total – 10.20 lbs/day + 0.02 lb/day + 0.09 lb/day + 0.05 lb/day + 0.04 lb/day = 10.39 lbs/day

Daily Maximum mg/L = (10.39 lbs/day) / [(8.34) * (0.012 MGD)] = 103.8 mg/L

TSS:

Milk - 0.675 lb/100 lbs BOD input x 2,267 lbs BOD input/day = 15.30 lbs/day Butter - 0.274 lb/100 lbs BOD input x 8.5 lb BOD input/day = 0.02 lb/day Cottage Cheese - 1.339 lb/100 lbs BOD input x 10.0 lbs BOD input/day = 0.13 lbs/day Ice Cream - 0.919 lb/100 lbs BOD input x 8.0 lbs BOD input/day = 0.07 lb/day Sour Cream - 0.675 lb/100 lbs BOD input x 9.1 lbs BOD input/day = 0.06 lb/day

Total - 15.30 lbs/day + 0.02 lb/day + 0.13 lb/day + 0.07 lb/day + 0.06 lb/day = 15.59 lbs/day

Daily Maximum mg/L = (15.59 lbs/day) / [(8.34) * (0.012 MGD)] = 155.9 mg/L

Average Monthly:

BOD5:

Milk - 0.225 lb /100 lbs BOD input x 2,267 lbs BOD input /day = 5.10 lbs/day Butter - 0.091 lb /100 lbs BOD input x 8.5 lbs BOD input/day = 0.01 lb/day Cottage Cheese - 0.446 lb/100 lbs BOD input x 10.0 lbs BOD input/day = 0.04 lb/day Ice Cream - 0.306 lb/100 lbs BOD input x 8.0 lbs BOD input/day = 0.02 lb/day Sour Cream - 0.225 lb /100 lbs BOD input x 9.1 lbs BOD input /day = 0.02 lb/day

Total - 5.10 lbs/day + 0.01 lb/day + 0.04 lb/day + 0.02 lb/day + 0.02 lb/day = 5.20 lbs/day

Daily Maximum mg/L = (5.20 lbs/day) / [(8.34) * (0.012 MGD)] = 51.9 mg/L

TSS:

Milk - 0.338 lb /100 lbs BOD input x 2,267 lbs BOD input/day = 7.66 lbs/day Butter - 0.137 lb /100 lbs BOD input x 8.5 lbs BOD input/day = 0.01 lb/day Cottage Cheese - 0.669 lb /100 lbs BOD input x 10.0 lbs BOD input/day = 0.07 lb/day Ice Cream - 0.459 lb /100 lbs BOD input x 8.0 lbs BOD input/day = 0.04 lb/day Sour Cream - 0.338 lb /100 lbs BOD input x 9.1 lbs BOD input/day = 0.03 lb/day

Total – 7.66 lbs/day + 0.01 lb/day + 0.07 lb/day + 0.04 lb/day + 0.03 = 7.81 lbs/day

Daily Maximum mg/L = (7.81 lbs/day) / [(8.34) * (0.012 MGD)] = 78.0 mg/L

These limits have changed slightly from the existing limits in the permit, due to the increase in estimated production quantities.

Outfall 001 has had Fecal Coliform limits imposed from the old septic system malfunction. The facility expanded sewage needs by adding the office and additional bathrooms. At that time the septic system was replaced, and the old system decommissioned. The facility does not have sewage directed to the treatment lagoons. The plume caused by the malfunction of the old septic tank has passed from reviewing of the Fecal Coliform concentrations reported in the previous permit cycle. The previously imposed Fecal Coliform effluent limitations will be removed from monitoring requirements of the NPDES Permit.

The existing limits for pH will remain in the permit.

The facility has a chlorinator and chlorine contact tank following the stabilization ponds, but chlorine is not currently used. This is acceptable if the facility is able to meet its fecal coliform limits. Nonetheless, technology-based TRC limit will be included in the permit to comply with 92a.48(b)(2). A water quality analysis (see **Attachment C**) revealed that tech-based limits of 0.5 mg/l (AML) and 1.6 mg/l (IMAX) are adequate to protect water quality.

Water-Quality Based Effluent Limitations (WQBELs)

TMDL Considerations

Although the TMDL for Clearfield Creek does not anticipate non-mining point sources, and does not expect that reductions from such sources are needed to achieve the TMDL limits, it is recommended that monitoring twice per year for the TMDL parameters of Total Iron, Total Aluminum and Total Manganese be specified in the renewed permit. The elevated value for Total Manganese should be confirmed with more recent data before further controls are considered.

Toxics Management Analysis

The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken form the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.

• For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% - 50% of the WQBEL.

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and contained in the DMRs; data from those sources are used as inputs into the TMS. A summary of TMS Inputs is contained in Table 1 below.

Table 1. TMS Inputs	
Parameter	Value
Discharge Inputs	
Facility	Vale Wood Dairy
Evaluation Type	Industrial
NPDES Permit No.	PA0009466
Wastewater Description	Treated Industrial Wastewater
Outfall ID	001
Design Flow (MGD)	0.012
Hardness (^{mg} /L)	157
pH (S.U.)	7.85
Partial Mix Factors	Unknown – Calculated by TMS
Complete Mix Times	
Q ₇₋₁₀ (min)	
Q _h (min)	
Stream Inputs	
Receiving Surface Water	Clearfield Creek
Number of Reaches to Model	1
Stream Code	026107
RMI	71.4
Elevation (ft)	1948/1945*
Drainage Area (mi ²)	1.14
Slope (ft/ft)	
PWS Withdrawal (MGD)	0.00025
Apply Fish Criteria	Yes
Low Flow Yield (cfs/mi ²)	
Flows	0.0014
Stream (cfs)	0.0814
I FIDUTARY (CTS)	N/A
VVIQTN (Tt)	
Stream Hardness (^{mg} / _L)	
Stream pH (S.U.)	

* Denotes discharge location/downstream location values.

The TMS Model WQBEL recommendations at Outfall 001 are summarized below in Table 2. Analysis Report from the TMS run is included in Attachment B.

Table 2. TMS WQBEL Recommendations

Parameter	Average Monthly (^{µg} / _L)	Maximum Daily (⊮ ^g /∟)
Dissolved Iron	Report	Report

Dissolved Iron will be added to the semi-annual monitoring list of parameters to evaluate if an effluent limitation is required for the facility.

WQM 7.0 Model

WQM 7.0 for Windows determines wasteload allocations and effluent limitations for dissolved oxygen (DO), carbonaceous BOD (CBOD₅), and ammonia nitrogen (NH₃-N) for single and multiple point source discharge scenarios. To accomplish this, the model simulates two basic processes (NH₃-N and DO modules). In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the DO module, the model simulates the mixing and consumption of DO in the stream due to the degradation of DBOD₅ and NH₃-N, and compares calculated instream DO concentrations to DO water quality criteria. WQM 7.0 then determines the highest pollutant loadings that the stream can assimilate while still meeting water quality criteria under design conditions.

NPDES Permit Fact Sheet Vale Wood Dairy

In addition to flow and load mixing, WQM 7.0 models deoxygenation, reaeration, and nitrification in calculating instream NH₃-N, CBOD₅, and DO concentrations. Temperature effects in these processes are considered and two (2) models (Summary and Winter) are run. These models are setup to reflect the varying stream and discharge temperatures.

Discharges from Outfall 001 are evaluated based on the initial default values (Discharge Temperature, CBOD₅, DO, NH₃-N, and Stream Temperature). The WQM 7.0 model is run with the discharge and receiving stream characteristics shown in Table 3.

Table 3: WQM 7.0 Inputs

		Basin/Stream Characteristics		
Parameter	Value	Parameter	Value	
River Mile Index	71.4	Area (mi ²)	1.14	
Discharge Flow (MGD)	0.012	Q ₇₋₁₀ (cfs)	0.0814	
Discharge Temp.		Low-flow yield (cfs/mi ²)	0.0714	
Summer (°C)	20.0	Elevation (ft)	1948	
Winter (°C)	15.0	Slope		
CBOD ₅ (^{mg} / _L)	41.54	Stream Temp. (WWF)		
DO (^{mg} / _L)	4.0	Summer Temp. (°C)	25.0	
NH ₃ -N (^{mg} / _L)	25.0	Winter Temp. (°C)	5.0	

• CBOD₅ Daily Maximum Concentration for the ELG was used for the WQM 7.0 Model to confirm that the ELG concentration meet water quality criteria of the receiving stream.

WQM 7.0 modeling recommends effluent limits as summarized below in Table 4. Analysis Report from the WQM 7.0 model runs are included in Attachment C.

Table 4: WQM 7.0 Effluent Limitations

Parameter	Average Monthly
CBOD5 (^{mg} / _L)	51.9
DO (^{mg} / _L)	4.0 (minimum)
NH ₃ -N (^{mg} / _L)	25.0

The WQM Model was run, resulting in an average monthly limit of 25.0 mg/L for Ammonia. The eDMR concentrations show levels well below this value, therefore a limit will not be included in the permit but monitoring twice per year is recommended.

While limits for nutrient parameters are not required, the Chesapeake Bay Phase 2 WIP Supplement for Wastewater, submitted to EPA as an addendum to the Phase 2 WIP, indicates that non-significant industrial waste dischargers should generally include monitoring requirements in their permits for nutrients. The document recommends a monitoring frequency of 1/month for food processing discharges, but considering the low volume of the discharge, the permit writer will recommend monitoring twice per year for TN and TP.

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and discharge chlorine demands for the receiving stream, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is then proposed. The results of the modeling, included in Attachment D, indicate that BAT/BPJ are required for TRC.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

NPDES Permit Fact Sheet Vale Wood Dairy

Effluent Limitations and Monitoring Requirements for Outfall 001

Effluent limits applicable at Outfall 001 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in Table 5. The applicable limits and monitoring requirements provided below are based on discussions above.

Table 5. Endent Limits and Monitoring Requirements for Outfall 001								
	Mass (II	os/day)	Concentra	tion (mg/L)				
Parameter	Average Monthly	Daily	Average Monthly	Daily Maximum	Basis			
Flow (MGD)	Report	-	-	-	25 Pa. Code § 92a.61(b)			
рН	-	-	Within the range of 6.0 to 9.0		25 Pa. Code § 92a.48(a)(2) & 25 Pa. Code § 95.2			
TSS	7.8	15.6	78.0	155.8	40 CFR 405			
BOD ₅	5.2	10.4	51.9	103.8	40 CFR 405			
Total Residual Chlorine (TRC)	-	-	0.5	1.6 (IMAX)	40 CFR 122.44(I)			
Iron (Total)	-	-	-	Report	40 CFR 122.44(I)			
Aluminum (Total)	-	-	-	Report	40 CFR 122.44(I)			
Manganese (Total)	-	-	-	Report	40 CFR 122.44(I)			
Dissolved Iron	-	-	-	Report	WQBEL			
Ammonia-Nitrogen	-	-	-	Report	WQBEL			
Total Nitrogen	-	-	-	Report	WQBEL			
Total Phosphorus	-	-	-	Report	WQBEL			
PFOA	-	-	-	Report	25 Pa. Code § 92.a.61(b)			
PFOS	-	-	-	Report	25 Pa. Code § 92.a.61(b)			
HFPO-DA	-	-	-	Report	25 Pa. Code § 92.a.61(b)			
PFBS	-	-	-	Report	25 Pa. Code § 92.a.61(b)			

Table 5 Effluent Limits and Monitoring Poquiroments for Outfall 001

Monitoring Frequency for Outfall 001

Monitoring requirements are based on the previous permits monitoring requirements for Vale Wood Dairy along with recommendations from the Performance-Based Reduction Analysis and displayed in Table 6 below.

Parameter	Sample Type	Minimum Sample Frequency											
Flow	Estimate	1/week											
рН	Grab	1/week											
TSS	Grab	2/month											
BOD ₅	Grab	2/month											
Total Residual Chlorine (TRC)	Grab	2/month											
Iron (Total)	Grab	1/semi-annual											
Aluminum (Total)	Grab	1/semi-annual											
Manganese (Total)	Grab	1/semi-annual											
Dissolved Iron	Grab	1/semi-annual											
Ammonia-Nitrogen	Grab	1/semi-annual											
Total Nitrogen	Grab	1/semi-annual											
Total Phosphorus	Grab	1/semi-annual											
PFOA	Grab	1/year											
PFOS	Grab	1/year											
HFPO-DA	Grab	1/year											
PFBS	Grab	1/year											

Table 6: Monitoring Requirements for Outfall 001

Discharge, Receiving Waters and Water Supply Inform	mation	
Outfall No.Outfall 002Latitude40° 28' 43.85"Quad NameWastewater Description:Emergency Discharge, Bo	Design Flow (MGD) Longitude Quad Code viler Blowdown	0 -78º 38' 25.87"
Receiving Waters Clearfield Creek (WWF)	Stream Code	26107
NHD Com ID 61839257	RMI	71.40
Drainage Area 1.14 sq. miles	Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs) 0.0754	Q7-10 Basis	Streamstats
Elevation (ft) 1948.6	Slope (ft/ft)	0.0001
Watershed No. 8-C	Chapter 93 Class.	WWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Impaired		
Cause(s) of ImpairmentMetals		
Source(s) of Impairment ACID MINE DRAINAGE		
TMDL Status Final	Name Clearfield C	reek
Nearest Downstream Public Water Supply Intake	Amsbry Water Authority	
PWS Waters Clearfield Creek	Flow at Intake (cfs)	0.0387
PWS RMI <u>64.50</u>	Distance from Outfall (mi)	6.9

Changes Since Last Permit Issuance: Outfall 002 has been directed to the treatment system and ultimate discharge via Outfall 001.

Other Comments: None.

Development of Effluent Limitations

Outfall No.	002		Design Flow (MGD)	0.0
Latitude	40° 28' 45"		Longitude	-78° 38' 24"
Wastewater De	escription:	Boiler blowdown		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation		
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)		

The discharge of Outfall 002 has been routed to Outfall 001 per Department suggestion during the last permit cycle. The renewal application request that Outfall 002 be maintained as an emergency discharge of the boiler blow-down. Since Outfall 002 will only discharge on an emergency bases, the above limit from the previous permit will be maintained and monitored 1/discharge.

Tools and References Used to Develop Permit
WOM for Windows Model (and Attachment C)
TMS for Windows Model (see Attachment B)
TRC Model Spreadshoet (see Attachment D)
Temperature Medal Spreadsheet (see Attachment)
Water Quality Taylor Management Strategy 201 0100 002 1/00
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Lechnical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
Other: 40 CFR 405 ELGs
Other: Phase 2 WIP Wastewater Supplement for Chesapeake Bay

Attachment A – Process Flow Diagram Attachment B – TMS Model Summary Attachment C – WQM 7.0 Summary Attachment D – TRC Model Attachment E - StreamStats Attachment A Process Flow Diagram

Attachment B TMS Model Summary 0.012

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

157

7.85

Instructions)ischarge Stream											
Facility: Val	e Wood Dairy			NPDES Per	mit No.: P/	A0009466	Outfall	No.: 001				
Evaluation Type	Major Sewage /	Industrial Waste	2	Wastewater	Description	: Treated Indu	ıstrial Wastewa	ter				
	Discharge Characteristics											
Design Flow		F	Partial Mix Factors (PMFs) Complete Mix Times (mir									
(MGD)*	naruness (mg/l)*	pri (30)-	AFC	CFC	THH	CRL	Q7.10	Q.				

		0.51	the set	0.5 10					1 Kief Nank				
					0 if lef	t biank	0.5 // /6	ent blank	0	n ien bian	×	r in reit brenk	
	Discharge Pollutant	Units Max Discharge Conc		x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		468									
5	Chloride (PWS)	mg/L		115									
Ì	Bromide	mg/L	<	0.072									
5	Sulfate (PWS)	mg/L		9.2									
	Fluoride (PWS)	mg/L		0.541									
	Total Aluminum	µg/L		59.1									
	Total Antimony	µg/L		0.076									
	Total Arsenic	µg/L											
	Total Barium	µg/L		77.6									
	Total Beryllium	µg/L	<	0.135									
	Total Boron	µg/L	<	0.0565									
	Total Cadmium	µg/L	<	0.025									
	Total Chromium (III)	µg/L	<	1									
	Hexavalent Chromium	µg/L	<	0.25									
	Total Cobalt	µg/L		0.496									
	Total Copper	mg/L		0.00119									
5	Free Cyanide	µg/L											
l a	Total Cyanide	µg/L	<	0.006									
5	Dissolved Iron	µg/L		250									
	Total Iron	µg/L		630									
	Total Lead	µg/L		0.265									
	Total Manganese	µg/L		114									
	Total Mercury	µg/L	<	0.104									
	Total Nickel	µg/L		1.64									
	Total Phenols (Phenolics) (PWS)	µg/L		8									
	Total Selenium	µg/L	<	0.335									
	Total Silver	µg/L	<	0.274									
	Total Thallium	µg/L	<	0.014									
	Total Zinc	mg/L		0.0025									
	Total Molybdenum	µg/L		0.378									
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L											

	Carbon Tetrachloride	µg/L	<							
	Chlorobenzene	µg/L	<							
	Chlorodibromomethane	µg/L	<							
	Chloroethane	µa/L	<							
	2-Chloroethyl Vinyl Ether	uo/	<							
	Chloroform	ug/	-							
	Disblershrememethane	ug/L	-		<u> </u>				<u> </u>	
	d d Dichlessethers	Pg/L			<u> </u>					
	1,1-Dichloroethane	µg/L	<		<u> </u>			<u> </u>		
3	1,2-Dichloroethane	µg/L	<							
1	1,1-Dichloroethylene	µg/L	<							
2	1,2-Dichloropropane	µg/L	<							
0	1,3-Dichloropropylene	µg/L	<							
	1,4-Dioxane	µg/L	<							
	Ethylbenzene	µg/L	<							
	Methyl Bromide	ua/L	<							
	Methyl Chloride	ug/l	<							
	Mathulana Chlorida	ug/								
	Methylene Chlonde	µg/L			<u> </u>					
	1,1,2,2-Tetrachioroethane	µg/L	< <							
	Tetrachioroethylene	µg/L	<				 			
	Toluene	µg/L	<							
	1,2-trans-Dichloroethylene	µg/L	<							
	1,1,1-Trichloroethane	µg/L	<							
	1,1,2-Trichloroethane	µg/L	<							
	Trichloroethylene	µg/L	<							
	Vinvl Chloride	ua/L								
\vdash	2-Chlorophenol	10/	~							
	2.4 Dishlorophonol	ug/								
	2,4-Dichlorophenol	Pg/L		 						
	2,4-Dimensiphenoi	pg/L						<u> </u>		
-	4,6-Dinitro-o-Cresol	µg/L	<							
d	2,4-Dinitrophenol	µg/L	<							
10	2-Nitrophenol	µg/L	<							
ō	4-Nitrophenol	µg/L	<							
	p-Chloro-m-Cresol	µg/L	<							
	Pentachlorophenol	µg/L	<							
	Phenol	ua/L	<							
	2.4.6-Trichlorophenol	uo/	<							
\vdash	Acenanbthene	- ug/	<							
	Acceptettulene	1991			<u> </u>					
	Adenaphinylene	pg/L						<u> </u>		
	Anthracene	µg/L	<							
	Benzidine	µg/L	<							<u> </u>
	Benzo(a)Anthracene	µg/L	<							
	Benzo(a)Pyrene	µg/L	<							
	3,4-Benzofluoranthene	µg/L	<							
	Benzo(ghi)Perylene	µg/L								
	Benzo(k)Fluoranthene	µg/L	<							
	Bis(2-Chloroethoxy)Methane	µa/L	<							
	Bis(2-Chloroethyl)Ether	uo/l	<							
	Bis(2-Chloroisonrond)Ether	ug/	<							
	Ric/2-Ethylhovu/Phthalata	ug/	-							
	A Demonshared Dhared Ether	pg/L			<u> </u>					
	4-Bromophenyi Phenyi Ether	µg/L	S							
	Butyi Benzyi Phthalate	µg/L	<							
	2-Chioronaphthalene	µg/L	<							
	4-Chlorophenyl Phenyl Ether	µg/L	<							
	Chrysene	µg/L								
	Dibenzo(a,h)Anthrancene	µg/L	<							
	1,2-Dichlorobenzene	µg/L	<							
	1,3-Dichlorobenzene	µg/L	<							
100	1.4-Dichlorobenzene	µa/L	<							
d	3.3-Dichlorobenzidine	µa/l	<							
0	Diethyl Phthalate	uo/	e							
5	Dimethyl Phthalate	Hol	-							
	Dia Rudd Datasta	pg/L	~							
	D-n-Butyr Primate	µg/L	< .							
	2,4-Dinitrotoiuene	hð/r	<							

Discharge Information

	2,6-Dinitrotoluene	µg/L	<					
	Di-n-Octyl Phthalate	µg/L	<					
	1.2-Diphenylhydrazine	ua/L	<					
	Fluoranthene	ua/L	<					
	Fluorene	ugl						
	Hexachlorobenzene	ug/L	<					
	Hexachlorobutadiene	 	<					
	Hexachloroputatione	ug/L	-					
	Hexachlorocyclopentadiene	pg/L	-					
	Indepe (1.2.2. od)Pursee	pg/L	-		 		 	
	Indeno(1,2,3-dd)Fyrene	pg/L	-		 			
	Isophorone	µg/L	<		 			
	Naphthalene	µg/L	<					
	Nitrobenzene	µg/L	<		 		 	
	n-Nitrosodimethylamine	µg/L	<		 		 	
	n-Nitrosodi-n-Propylamine	µg/L	<					
	n-Nitrosodiphenylamine	µg/L	<					
	Phenanthrene	µg/L	<					
	Pyrene	µg/L	<					
	1,2,4-Trichlorobenzene	µg/L	<					
	Aldrin	µg/L	<					
	alpha-BHC	µg/L	<					
	beta-BHC	µg/L	<					
	gamma-BHC	µg/L	۷					
	delta BHC	µg/L	<					
	Chlordane	µg/L	<					
	4.4-DDT	ug/L	<					
	4.4-DDE	ua/L	<					
	4.4-DDD	µg/L	<					
	Dieldrin	uo/L	<					
	alpha-Endosulfan	uo/l	<		 			
	beta-Endosulfan	uo/	<					
9	Endosulfan Sulfate	10/	-					
₽.	Endrin	ug/L	2					
2	Endrin Aldebude	ug/L						
G	Hestschler	ug/L						
	Heptachior	µg/L	~					
	Heptachior Epoxide	µg/L	~					
	PCB-1010	pg/L	-		 			
	P08-1221	µg/L	< <					
	PCB-1232	µg/L	<				 	
	PCB-1242	µg/L	<		 			
	PCB-1248	µg/L	<					
	PCB-1254	µg/L	<					
	PCB-1260	µg/L	<					
	PCBs, Total	µg/L	<					
	Toxaphene	µg/L	<					
	2,3,7,8-TCDD	ng/L	<					
	Gross Alpha	pCi/L						
5	Total Beta	pCi/L	<					
đ	Radium 226/228	pCi/L	<					
2	Total Strontium	µg/L	<					
G	Total Uranium	µg/L	<					
	Osmotic Pressure	mOs/kg						

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Vale Wood Dairy, NPDES Permit No. PA0009466, Outfall 001

Instructions bisen	ange Streum							
Receiving Surface W	/ater Name:				l	No. Reaches to Mod	el: <u>1</u>	Statewide Criteria
Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*	ORSANCO Criteria
Point of Discharge	026107	71.4	1948	1.14			Yes	
End of Reach 1	026107	71	1945	1.5		0.000025	Yes	
			•				•	•

Q 7-10

Location	RMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Travel Time	Tributa	ary	Stream	m	Analys	sis
Location		(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness pH		Hardness*	pH*	Hardness	pН
Point of Discharge	71.4	0.1	0.0814									100	7		
End of Reach 1	71	0.1	2.12												

Q,

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Travel Time	Tributa	ary	Strea	m	Analys	sis
Location	RIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	71.4														
End of Reach 1	71														

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Vale Wood Dairy, NPDES Permit No. PA0009466, Outfall 001

Instructions Results	RETURN	to inpu	тя	SAVE AS	PDF	PRINT	r) () A	NI 🔿 Inputs 🔿 Results 🔿 Limits					
Hydrodynamics													
Wasteload Allocations													
AFC CCT (min): 3.135 PMF: 1 Analysis Hardness (mg/l): 110.59 Analysis pH: 7.08													
Pollutants	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments					
	Conc (µg/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)							
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A						
Chloride (PWS)	0	0		0	N/A	N/A	N/A						
Sulfate (PWS)	0	0		0	N/A	N/A	N/A						
Fluonde (PWS)	0	0		<u> </u>	N/A	N/A	N/A						
Total Aluminum	0	0		0	750	001	4,039						
I otal Antimony	0	0		0	1,100	1,100	5,923						
Total Banum	0	0		0	21,000	21,000	113,081						
Total Boron	0	0		0	8,100	8,100	43,617	Chara Translates of 0.04 and fad					
Total Cadmium	0	0		<u> </u>	2.221	2.30	12.7	Chem Translator of 0.94 applied					
Total Chromium (III)	0	0		<u> </u>	018.704	1,958	10,043	Chem Translator of 0.310 applied					
Hexavalent Chromium	0	0		<u> </u>	10	10.3	8/./	Chem Translator of 0.982 applied					
Total Cobalt	0	0		0	85	95.0	512						
l otal Copper	0	0		0	14.776	15.4	82.9	Chem Translator of 0.96 applied					
Dissolved Iron	0	0		0	N/A	N/A	N/A						
Total Iron	0	0		0	N/A	N/A	N/A						
Total Lead	0	0		0	72.046	92.8	500	Chem Translator of 0.776 applied					
Total Manganese	0	0		0	N/A	N/A	N/A						
Total Mercury	0	0		0	1.400	1.65	8.87	Chem Translator of 0.85 applied					
Total Nickel	0	0		0	509.838	511	2,751	Chem Translator of 0.998 applied					
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A						
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied					
Total Silver	0	0		0	3.825	4.5	24.2	Chem Translator of 0.85 applied					
Total Thallium	0	0		0	65	65.0	350						
Total Zinc	0	0		0	127.609	130	703	Chem Translator of 0.978 applied					
CFC CC	T (min): 3.1	135	PMF:	1	Ana	alysis Hardne	ss (mg/l):	110.59 Analysis pH: 7.08					

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	1,185	
Total Barium	0	0		0	4,100	4,100	22,078	
Total Boron	0	0		0	1,600	1,600	8,616	
Total Cadmium	0	0		0	0.264	0.29	1.57	Chem Translator of 0.905 applied
Total Chromium (III)	0	0		0	80.481	93.6	504	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	56.0	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	102	
Total Copper	0	0		0	9.760	10.2	54.7	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	8,077	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.808	3.62	19.5	Chem Translator of 0.776 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	4.88	Chem Translator of 0.85 applied
Total Nickel	0	0		0	56.627	56.8	306	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	26.9	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	70.0	
Total Zinc	0	0		0	128.652	130	703	Chem Translator of 0.986 applied
	T (min): 3.1	135 T	THH PMF:	1	Ana	ilysis Hardne	ss (mg/l):	N/A Analysis pH: N/A PWS PMF: 1
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	57,599,763	WQC applied at RMI 71 with a design stream flow of 2.12 cfs
Chloride (PWS)	0	0		0	250,000	250,000	28,799,881	WQC applied at RMI 71 with a design stream flow of 2.12 cfs
Sulfate (PWS)	0	0		0	250,000	250,000	28,799,881	WQC applied at RMI 71 with a design stream flow of 2.12 cfs
Fluoride (PWS)	0	0		0	2,000	2,000	230,399	WQC applied at RMI 71 with a design stream flow of 2.12 cfs
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	30.2	
Total Barium	0	0		0	2,400	2,400	12,924	
Total Boron	0	0		0	3,100	3,100	16,693	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	

Dissolved Iron 0 0 300 300 1.15 Total Iron 0 0 N/A N/A N/A N/A Total Maganese 0 0 N/A N/A N/A N/A Total Maganese 0 0 0 1.000 5.355									
Total Iron 0 0 N/A N/A N/A Total Lead 0 0 N/A N/A N/A N/A Total Mercury 0 0 0 1,000 1,000 5,385 . Total Nickel 0 0 0 0,050 0,056 0,27 . Total Nickel 0 0 0 0 5,0 5,0 GYB WQC applied at RMI 71 with a design stream flow of 2.12 c Total Silver 0 0 0 N/A N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A N/A Total Zinc 0 0 0 N/A N/A N/A N/A Pollutants Stream Trito Cone Ceft (µgL) (µgL) Conments N/A Total Dissolved Solds (PWS) 0 0 N/A N/A N/A N/A Total Antinony 0 0 N/A	Dissolved Iron	0	0		0	300	300	1,615	
Total Lead 0 NA N/A N/A N/A Total Manganese 0 0 1,000 1,000 5,386 Total Mickel 0 0 0 0,005 0,27 Total Mickel 0 0 0 0,050 0,27 Total Phenols (Phenolics) (PWS) 0 0 0 5 5,0 576 WQC applied at RM 71 with a design stream flow of 2.12 c Total Selenium 0 0 0 N/A N/A N/A Total Thalium 0 0 0 N/A N/A N/A Total Thalium 0 0 0 N/A N/A N/A Total Zine 0 0 0 N/A N/A N/A Pollutants Stream Conc (ug/L) C/V (ug/L) Conments (ug/L) Conments Sulfate (PWS) 0 0 0 N/A N/A N/A Follutants Stream Conthicke (PWS) 0 0	Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese 0 0 1,000 1,000 6,385 Total Nickel 0 0 0,050 0.065 0.27 Total Nickel 0 0 0 610 610 3,285 Total Phenols (Phenolics) (PWS) 0 0 0 5 5,0 576 WQC applied at RMI 71 with a design stream flow of 2.12 c Total Silver 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Zine 0 0 0 0.24 1.24 1.29 Total Zine 0 0 0 N/A N/A N/A N/A Manganese 0 0 0 N/A N/A N/A N/A Manganese 0 0 0 N/A N/A N/A N/A Manganese 0 0 N/A N/A N/A N/A N/A Total Zine	Total Lead	0	0		0	N/A	N/A	N/A	
Total Menouy 0 0 0.050 0.05 0.27 Total Nickel 0 0 0 010 3.265 Total Phenois (Phenoics) (PWS) 0 0 0 5 5.0 576 WQC applied at RMI 71 with a design stream flow of 2.12 c Total Silver 0 0 0 N/A N/A N/A Total Thallum 0 0 0 N/A N/A N/A Total Thallum 0 0 0 N/A N/A N/A Total Thallum 0 0 0 N/A N/A N/A Ital Thallum 0 0 0 N/A N/A N/A Ital CRL CCT (min): 1.103 PMF: 1 Analysis Hardness (mgI): N/A Analysis pH: N/A Pollutants Stream Conc (up(L)	Total Manganese	0	0		0	1,000	1,000	5,385	
Total Nickel 0 0 010 100 3.285 Total Phenolis (PHenolics) (PWS) 0 0 0 5 5.0 5.0 WQC applied at RMI 71 with a design stream flow of 2.12 of Total Selenium Total Silver 0 0 0 N/A N/A N/A Total Silver 0 0 0 0.24 1.20 Total Silver 0 0 0 0.24 1.20 Total Silver 0 0 0 N/A N/A Ital CRL CCT (min): 1.103 PMF: 1 Analysis Hardness (mgI): N/A Analysis pH: N/A Pollutants Stream Trib Conc Fate WQC WQC WQA (µgL) Comments Chioride (PWS) 0 0 0 N/A N/A N/A Glabal Auminum 0 0 0 N/A N/A N/A Total Discolved Solids (PWS) 0 0 0 N/A N/A N/A	Total Mercury	0	0		0	0.050	0.05	0.27	
Total Phenolics (Phenolics) (PWS) 0 0 5 5.0 778 WQC applied at RMI 71 with a design stream flow of 2.12 c Total Silver 0 0 N/A N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallum 0 0 0 0.24 0.24 1.29 Total Zine 0 0 0 N/A N/A N/A Val CCT (min): 1.103 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Choide (PWS) 0 0 0 N/A N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A N/A Choide (PWS) 0 0 0 N/A N/A N/A N/A Total Aluminum 0 0 0 N/A <td>Total Nickel</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>610</td> <td>610</td> <td>3,285</td> <td></td>	Total Nickel	0	0		0	610	610	3,285	
Total Selenium 0 0 NA NA NA NA Total Silver 0 0 0 0 N/A N/A N/A Total Silver 0 0 0 0.224 0.24 1.29 Total Zino 0 0 0 N/A N/A N/A CRL CCT (min): 1.103 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Total Disolved Solids (PWS) 0 0 N/A N/A N/A N/A Stream Trib Conc (ug/L) CV (ug/L) Comments Comments Total Disolved Solids (PWS) 0 0 N/A N/A N/A N/A Stiftate (PWS) 0 0 0 N/A N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A	Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	576	WQC applied at RMI 71 with a design stream flow of 2.12 cfs
Total Shiver 0 0 NA NA NA Total Thallium 0 0 0 0.24 0.24 1.28 Total Zino 0 0 0 NA NA NA // CRL CCT (min): 1.103 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Stream Core (µg/L) CV (µg/L) CV (µg/L) (µg/L) Comments Total Dissolved Solids (PWS) 0 0 N/A N/A N/A N/A Suffate (PWS) 0 0 0 N/A N/A N/A Suffate (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Total Cadmium	Total Selenium	0	0		0	N/A	N/A	N/A	
Total Thalium 0 0 0.24 0.24 1.29 Total Zinc 0 0 0 N/A N/A N/A CRL CCT (min): 1.103 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Stream Conc (µg/L) CV (µg/L) CC Comments Comments Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Choride (PWS) 0 0 0 N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A Total Chromium (III) 0 0	Total Silver	0	0		0	N/A	N/A	N/A	
Total Zinc 0 0 N/A N/A N/A N/A CRL CCT (min): 1.103 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Stream Trib Conc (µg/L) CV (µg/L) Comments Comments Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Chinde (PWS) 0 0 0 N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Brim 0 0 0 N/A N/A N/A Total Auminum 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium (III) 0 0 0 N/A N/A N/A Total Copat <td>Total Thallium</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0.24</td> <td>0.24</td> <td>1.29</td> <td></td>	Total Thallium	0	0		0	0.24	0.24	1.29	
CRL CCT (min): 1.103 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Stream Conc (µgL) Trib Conc CV Fate (µgL) WQC (µgL) WQA (µg/L) Comments Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A Total Auminum 0 0 0 N/A N/A N/A Total Auminum 0 0 0 N/A N/A N/A Total Auminum 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Chronium (III) 0 0 0 N/A N/A Total Chobalt 0 0 N/A N/A N/A Total Choonium (III) 0 <td>Total Zinc</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	Total Zinc	0	0		0	N/A	N/A	N/A	
Pollutants Stream Cone (µg/L) CV Gene (µg/L) (µg/L) WCA (µg/L) (µg/L) WLA (µg/L) (µg/L) Comments Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A N/A Suifate (PWS) 0 0 0 N/A N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Chromium (II) 0 0 0 N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Total Copper 0 0 N/A N/A N/A <t< td=""><td>CRL CC</td><td>T (min): 1.</td><td>103</td><td>PMF:</td><td>1</td><td>Ana</td><td>alysis Hardne</td><td>ss (mg/l):</td><td>N/A Analysis pH: N/A</td></t<>	CRL CC	T (min): 1.	103	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Conc (ug/L) CV (ug/L) Coef (ug/L) (ug/L) </td <td>Pollutants</td> <td>Stream</td> <td>Stream</td> <td>Trib Conc</td> <td>Fate</td> <td>WQC</td> <td>WQ Obj</td> <td>WLA (ug/L)</td> <td>Comments</td>	Pollutants	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (ug/L)	Comments
Total Dissolved Solids (PWS) 0 0 N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Chromium 0 0 0 N/A N/A N/A Total Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A <t< td=""><td></td><td>Conc (µg/L)</td><td>CV</td><td>(µg/L)</td><td>Coef</td><td>(µg/L)</td><td>(µg/L)</td><td>112 (pg.2)</td><td></td></t<>		Conc (µg/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	112 (pg.2)	
Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A	Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS) 0 0 0 N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Total Chronium (III) 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A	Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Total Chomium (III) 0 0 0 N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A	Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum 0 0 N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Total Chomium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Maganese 0 0 0 N/A N/A N/A	Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Antimony 0 0 0 N/A N/A N/A Total Barium 0 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Comium 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Lead 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A	Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Barium 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Icad 0 0 0 N/A N/A N/A Total Icad 0 0 0 N/A N/A N/A Total Icad 0 0 0 N/A N/A N/A Tot	Total Antimony	0	0		0	N/A	N/A	N/A	
Total Boron 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Lead 0 0 0 N/A N/A N/A Total Lead 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A <td>Total Barium</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	Total Barium	0	0		0	N/A	N/A	N/A	
Total Cadmium 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A	Total Boron	0	0		0	N/A	N/A	N/A	
Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Coper 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Lead 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A <td>Total Cadmium</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	Total Cadmium	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Lead 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A Total Thallium	Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Cobait 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Lead 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A	Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Copper 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Lead 0 0 0 N/A N/A N/A Total Lead 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 0 N/A N/A N/A	Total Cobalt	0	0		0	N/A	N/A	N/A	
Dissolved Iron 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Lead 0 0 0 N/A N/A N/A Total Lead 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 0 N/A N/A N/A	Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron 0 0 N/A N/A N/A Total Lead 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 N/A N/A N/A	Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Lead 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 N/A N/A N/A	Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 0 N/A N/A N/A	Total Lead	0	0		0	N/A	N/A	N/A	
Total Mercury 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A Total Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 0 N/A N/A N/A	Total Manganese	0	0		0	N/A	N/A	N/A	
Total Nickel 0 0 N/A N/A N/A Total Phenolics (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 0 N/A N/A N/A	Total Mercury	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 0 N/A N/A N/A	Total Nickel	0	0		0	N/A	N/A	N/A	
Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 0 N/A N/A N/A	Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 0 N/A N/A N/A	Total Selenium	0	0		0	N/A	N/A	N/A	
Total Thallium 0 0 0 N/A N/A N/A	Total Silver	0	0		0	N/A	N/A	N/A	
	Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc 0 0 N/A N/A N/A	Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	ation Limits		I		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Dissolved Iron	Report	Report	Report	Report	Report	µg/L	1,615	THH	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments				
Total Dissolved Solids (PWS)	57,600	mg/L	Discharge Conc ≤ 10% WQBEL				
Chloride (PWS)	28,800	mg/L	Discharge Conc ≤ 10% WQBEL				
Bromide	N/A	N/A	No WQS				
Sulfate (PWS)	28,800	mg/L	Discharge Conc ≤ 10% WQBEL				
Fluoride (PWS)	230	mg/L	Discharge Conc ≤ 10% WQBEL				
Total Aluminum	2,589	µg/L	Discharge Conc ≤ 10% WQBEL				
Total Antimony	30.2	µg/L	Discharge Conc ≤ 10% WQBEL				
Total Barium	12,924	µg/L	Discharge Conc ≤ 10% WQBEL				
Total Beryllium	N/A	N/A	No WQS				
Total Boron	8,616	µg/L	Discharge Conc < TQL				
Total Cadmium	1.57	µg/L	Discharge Conc < TQL				
Total Chromium (III)	504	µg/L	Discharge Conc < TQL				
Hexavalent Chromium	56.0	µg/L	Discharge Conc < TQL				
Total Cobalt	102	µg/L	Discharge Conc ≤ 10% WQBEL				
Total Copper	0.053	mg/L	Discharge Conc ≤ 10% WQBEL				
Total Cyanide	N/A	N/A	No WQS				
Total Iron	8,077	µg/L	Discharge Conc ≤ 10% WQBEL				
Total Lead	19.5	µg/L	Discharge Conc ≤ 10% WQBEL				
Total Manganese	5,385	µg/L	Discharge Conc ≤ 10% WQBEL				
Total Mercury	0.27	µg/L	Discharge Conc < TQL				
Total Nickel	306	µg/L	Discharge Conc ≤ 10% WQBEL				
Total Phenols (Phenolics) (PWS)	576	µg/L	Discharge Conc ≤ 10% WQBEL				
Total Selenium	26.9	µg/L	Discharge Conc < TQL				
Total Silver	15.5	µg/L	Discharge Conc < TQL				
Total Thallium	1.29	µg/L	Discharge Conc < TQL				
Total Zinc	0.45	mg/L	Discharge Conc ≤ 10% WQBEL				
Total Molybdenum	N/A	N/A	No WQS				

2/29/2024

Attachment C WQM 7.0 Summary

Summer Model

Winter Model

Summer Model

(°C)

20.00

7.00

0.000

Fate Coef

1.50

0.00

0.70

	SWF Basi	o Strea n Cod	m	Stre	am Name		RMI	Eleva (ft)	tion	Drainage Area (sq mi)	Slope (ft/ft)	e v)	PWS Vithdrawal (mgd)	Apply FC
	08C	261	07 CLEA	RFIELD C	REEK		71.400 1948.00		1.14	1.14 0.00000		0.00	\checkmark	
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	1	<u>S</u> Temp	tream pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)			(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.08 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00	20).00 7	.00	25.(0.00	
					Di	scharge l	Data							
			Name	Per	mit Number	Existing Disc Flow	Permitte Disc Flow	ed Design Disc Flow	Rese Fac	Di erve Te stor	sc mp	Disc pH		

(mgd)

Parameter Data

Disc

51.90

4.00

25.00

PA0009466

Parameter Name

Vaile Wood Dair

CBOD5

NH3-N

Dissolved Oxygen

(mgd)

0.0000 0.0120 0.0000

Conc Conc

Trib

(mgd)

(mg/L) (mg/L) (mg/L) (1/days)

2.00

8.24

0.00

Stream

Conc

0.00

0.00

0.00

Input Data WQM 7.0

	SWF Basi	o Strea n Coo	am Je	Stre	am Name		RMI	Elev (f	ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	; wal I)	Apply FC
	08C	26	107 CLEAR	RFIELD C	REEK		71.00	00 1	945.00	1.5	0.0000	0	0.00	\checkmark
					S	tream Da	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> Ip pł	H Te	<u>Stream</u> emp	pН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(*	°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.09 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00	2	0.00	7.00	25.00	0.00	

Input Data WQM 7.0

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Res Fa	erve ictor	Disc Temp (°C)	Disc pH
		0.0000	0.0000	0.000	0	0.000	0.00	7.00
	Pa	rameter D	ata					
		Dis Co	ic Tri inc Co	b Str nc C	eam onc	Fate Coef		
Fe	rameter Name	(mg	y/L) (mg	/L) (m	ng/L)	(1/days)	
CBOD5		2	5.00	2.00	0.00	1.5	0	
Dissolved O	xygen		3.00	8.24	0.00	0.0	0	
NH3-N		2	5.00	0.00	0.00	0.7	0	

Version 1.1

					117 941	• • •	will v	044				
	SW	P Basin	Strea	m Code				Stream	Name			
		08C	2	6107			CLE	ARFIEL	D CREEK	C		
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
71.400	0.08	0.00	0.08	.0186	0.00142	.367	5.37	14.64	0.05	0.484	24.07	7.00
Q1-1	0 Flow											
71.400	0.05	0.00	0.05	.0186	0.00142	NA	NA	NA	0.04	0.587	23.68	7.00
Q30-	10 Flow	r										
71.400	0.11	0.00	0.11	.0186	0.00142	NA	NA	NA	0.06	0.419	24.28	7.00

WQM 7.0 Hydrodynamic Outputs

Wednesday, March 6, 2024

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

Wednesday, March 6, 2024

Version 1.1

	SWP Basin 08C	<u>Stream</u> 261	<u>n Code</u> 107						
NH3-N	Acute Alloc	ations							
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	n
71.4	00 Vaile Wood	Dair	12.35	46.85	12.35	46.85	0	0	-
NH3-N RMI	Chronic All Discharge N	ocation B lame C	ns aseline criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	_
71.4	00 Vaile Wood	Dair	1.43	9.93	1.43	9.93	0	0	_
Dissolv	ed Oxygen	Allocat	tions						
RMI	Dischar	ge Name	Baselir (mo/L	BOD5 ne Multiple) (mg/L)	<u>NH3-N</u> Baseline Mo (mg/L) (n	Disso ultiple Baseli	lved Oxygen ne Multiple	Critical Reach	Percen Reductio

51.9 51.9 9.93 9.93 4 4

WQM 7.0 Wasteload Allocations

71.40 Vaile Wood Dair

Version 1.1

Page 1 of 1

0

0

SWP Basin	Stream Code			Stream Nam		
08C	26107		CL	EARFIELD CR	EEK	
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperat	ure (°C)	Analysis pH
71.400	0.01	2		24.068		7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRa	tio	Reach Velocity (fps)
5.371	0.36	7		14.640		0.051
Reach CBOD5 (mg/L)	Reach Kc ((1/days)	R	each NH3-N (r	ng/L)	Reach Kn (1/days)
11.30	1.18	6		1.85		0.957
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	<u>l</u>	Reach DO Goal (mg/L)
7.452	20.66	37		Owens		6
Reach Travel Time (days)	Subreach	Reculte			
0.484	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)		
	0.048	10.55	1.77	7.17		
	0.097	9.84	1.69	7.12		
	0.145	9.19	1.61	7.16		
	0.194	8.57	1.54	7.23		
	0.242	8.00	1.47	7.30		
	0.290	7.47	1.40	7.37		
	0.339	6.97	1.34	7.44		
	0.387	6.50	1.28	7.50		
	0.435	6.07	1.22	7.56		
	0.484	5.66	1.17	7.62		

WQM 7.0 D.O.Simulation

Wednesday, March 6, 2024

Version 1.1

Winter Model

	SWF Basi	9 Strea n Coo	im le	Stre	am Name		RMI	Elevati (ft)	on Drair Ar (sq	nage ea mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	08C	26	107 CLEAR	RFIELD C	REEK		71.40	0 194	B. OO	1.14 (0.00000	0.00	\checkmark
					St	ream Data	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	tary pH	<u>s</u> Temp	itream pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.100	0.00	0.08	0.000	0.000	10.0	0.00	0.00	20.00	7.00) 5.	00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
	Discharge Data												
			Name		mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH		
		Vaile	Wood Dair	PAG	0009466	0.0000	0.012	0 0.0000	0.000	15	.00 7	.00	
	Parameter Data												
						Dis Co	se T onc C	rib Stre onc Co	am Fat	te ef			

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

51.90

4.00

25.00

0.00

0.00

0.00

1.50

0.00

0.70

(mg/L) (mg/L) (mg/L) (1/days)

2.00

8.24

0.00

Input Data WQM 7.0

7.00

0.00

Fate Coef

1.50

0.00

0.70

	SWF Basi	o Strea n Cod	im ie	Stre	am Name		RMI	Elevat (ft)	ion Drai A (so	nage rea I mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	08C	261	107 CLEA	RFIELD C	REEK		71.00	00 194	15.00	1.50	0.00000	0.00	\checkmark
					St	ream Dat	a						
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribi</u> Temp	<u>itary</u> pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10	0.100	0.00	0.09	0.000	0.000	10.0	0.00	0.00	20.00	7.0	0 5	i.00 0.00)
Q30-10		0.00	0.00	0.000	0.000 D	ischarge l	Data						
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow) (mgd)	Reserve Factor	Disc Tem (°C)	p pł	ic H	

Parameter Data

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Disc

Conc

25.00

3.00

25.00

0.0000 0.0000 0.0000 0.000

Trib

Conc

Stream

Conc

0.00

0.00

0.00

(mg/L) (mg/L) (mg/L) (1/days)

2.00

8.24

0.00

Input Data WQM 7.0

				11.0	i i y ui	rouynamic outputs						
	SW	P Basin	Strea	m Code				Stream	Name			
	08C			26107			CLEARFIELD CREEK					
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
71.400	0.08	0.00	0.08	.0186	0.00142	.367	5.37	14.64	0.05	0.484	6.86	7.00
Q1-10	0 Flow											
71.400	0.05	0.00	0.05	.0186	0.00142	NA	NA	NA	0.04	0.587	7.64	7.00
Q30-1	10 Flow											
71.400	0.11	0.00	0.11	.0186	0.00142	NA	NA	NA	0.06	0.419	6.44	7.00

WQM 7.0 Hydrodynamic Outputs

Wednesday, March 6, 2024

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

Wednesday, March 6, 2024

Version 1.1

	08C	2	6107		CLEAR	RFIELD CREE	к	
NH3-N	Acute Alloca	tion	s					
RMI	Discharge N	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
71.4	00 Vaile Wood D	air	24.1	50	24.1	50	0	0
NH3-N	Chronic Allo	cati	ons					
RMI	Discharge Na	me	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
71.4	00 Vaile Wood D	air	4.36	25	4.36	25	0	0

	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
71.40 Vaile Wood Dair	51.9	51.9	25	25	4	4	0	0

Wednesday, March 6, 2024

Version 1.1

SWP Basin	Stream Code			Stream Nar	ne	
08C	26107		CL	EARFIELD C	REEK	
RMI	Total Discharge	Flow (mad) Ana	vsis Tempera	ature (°C)	Analysis pH
71.400	0.01	2		6.865		7.000
Reach Width (ft)	Reach De	eth (ft)		Reach WDRatio		Reach Velocity (fps)
5.371	0.36	7		14.640		0.051
Reach CBOD5 (mg/L)	Reach Kc ((1/days)	R	each NH3-N	(mg/L)	Reach Kn (1/days)
11.30	1.24	1.244		4.66		0.255
Reach DO (mg/L)	Reach Kr ((r (1/days) Kr Equation		Reach DO Goal (mg/L)		
7.452	13.74	13		Owens		6
Reach Travel Time (days	5)	Subreach	Results			
0.484	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.048	10.94	4.60	8.24		
	0.097	10.58	4.55	8.24		
	0.145	10.24	4.49	8.24		
	0.194	9.91	4.44	8.24		
	0.242	9.59	4.38	8.24		
	0.290	9.28	4.33	8.24		
	0.339	8.98	4.28	8.24		
	0.387	8.69	4.22	8.24		
	0.435	8.41	4.17	8.24		
	0.484	8.13	4.12	8.24		

WQM 7.0 D.O.Simulation

Wednesday, March 6, 2024

Version 1.1

Attachment D TRC Model

TRC_CALC Vale Wood Dairy

TRC EVALUATION

0.0814	= Q stream (o	;fs)	0.5	0.5 = CV Daily					
0.012	= Q discharg	e (MGD)	0.5	= CV Hourly					
4	= no. sample	5	0.705	= AFC_Partial N	Aix Factor				
0.3	= Chlorine De	emand of Stream	1	= CFC_Partial N	Aix Factor				
0	= Chlorine De	emand of Discharge	15	15 = AFC_Criteria Compliance Time (min)					
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)				
	= % Factor o	f Safety (FOS)		=Decay Coeffici	ient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =	1.005	1.3.2.iii	WLA cfc = 1.375				
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG	5.1b	LTA_afc=	0.375	5.1d	LTA_cfc = 0.799				
Source	Source Effluent Limit Calculations								
PENTOXSD TRG	5.1f	5.1f AML MULT = 1.720							
PENTOXSD TRG	NTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ								
	INST MAX LIMIT (mg/l) = 1.170								
WLA afc	(.019/e(-k*AF	C to)) + [(AFC Yo*Qs*	*.019/Qd*e(-k	AFC to))					
	+ Xd + (AF(C Yc*Qs*Xs/Qd)]*(1-F(OS/100)	/					
LTAMULT afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cv	h^2+1)^0.5)						
LTA afc	wla afc*LTAN	IULT afc							
-	-	-							
WLA_cfc	(.011/e(-k*CF	C_tc) + [(CFC_Yc*Qs*	.011/Qd*e(-k*	CFC_tc))					
	+ Xd + (CFC	_Yc*Qs*Xs/Qd)]*(1-F(OS/100)						
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-	2.326*LN(cvd	^2/no_samples+1	1)^0.5)				
LTA_cfc	wla_cfc*LTAN	IULT_cfc							
AML MULT	EXP(2.326*LM	V((cvd^2/no_samples+1	1)^0.5)-0.5*LN	(cvd^2/no_sample	es+1))				
AVG MON LIMIT	MIN(BAT_BP.	J,MIN(LTA_afc,LTA_cfo)*AML_MULT)					
INST MAX LIMIT	1.5*((av_mon	_limit/AML_MULT)/LT							

Attachment E StreamStats

StreamStats Report

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): Time: PA PA20190516151125470000 40.47831, -78.63870 2019-05-16 11:11:44 -0400

Basin Characteristics									
Parameter Code	Parameter Description	Value	Unit						
DRNAREA	Area that drains to a point on a stream	1.14	square miles						
ELEV	Mean Basin Elevation	1948.6	feet						
PRECIP	Mean Annual Precipitation	47	inches						

Low-Flow Statistics Parameters [Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.14	square miles	2.33	1720
ELEV	Mean Basin Elevation	1948.6	feet	898	2700
PRECIP	Mean Annual Precipitation	47	inches	38.7	47.9

Low-Flow Statistics Disclaimers [Low Flow Region 3]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.168	ft^3/s
30 Day 2 Year Low Flow	0.25	ft^3/s
7 Day 10 Year Low Flow	0.0754	ft^3/s
30 Day 10 Year Low Flow	0.103	ft^3/s
90 Day 10 Year Low Flow	0.152	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.