

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type	Renewal	NPDES PERMIT FACT SHEET	Application No.	PA0011371
Facility Type	Industrial	INDIVIDUAL INDUSTRIAL WASTE (IW)	APS ID	831635
Major / Minor	Minor	AND IW STORMWATER	Authorization ID	1446118

Applicant and Facility Information						
Applicant Name	Stanley Black & Decker	Facility Name	Stanley Black & Decker - Reading Facility, former Baldwin Hardware			
Applicant Address	1000 Stanley Drive	Facility Address	841 E Wyomissing Boulevard			
	New Britain, CT 06053-1675		Reading, PA 19611-1759			
Applicant Contact Applicant Phone	Amanda Gonzalez, Remediation Proj Mgr (919) 480-7198 / Amanda.gonzalez@sbdinc.com	Facility Contact Facility Phone	Amanda Gonzalez (919) 480-7198 / Amanda.gonzalez@sbdinc.com			
Client ID	309228	Site ID	443168 PF#467158			
SIC Code	3429	Municipality	Reading City			
SIC Description	Previously: Manufacturing- Hardware	County	Berks			
Date Application Rece	eived July 3, 2023	EPA Waived?	Yes			
Date Application Accepted July 18, 2023		If No, Reason				

Summary of Review

The previous permit was issued December 20, 2018 and expires on December 31, 2023. The application was received on July 3, 2023, by U.S. mail.

This is a remediation site where groundwater is pumped, run through an air stripper, and discharged to a municipal storm sewer. Whereas the existing NPDES permit authorizes a discharge of 0.482 MGD and the 2023 NPDES application form and water flow diagram represents the design flow as 0.482 MGD, the application's cover letter stated:

Aquifer testing performed by Keck Consulting Services, Inc. (Keck) on behalf of Baldwin in 1986, and by Loureiro on behalf of Stanley Black & Decker, Inc. in 2013, demonstrated sufficient capture of the plume at significantly lower pumping rates. Reduction in the combined pumping rates would reduce system maintenance and reduce demands on water resources within the Delaware River Basin. The proposed pumping rates are 115 gpm and 85 gpm for PW-5 and PW-6 respectively for a total combined pumping rate of 200 gpm. A request for pumping rate reduction has been sent to the EPA and PADEP on February 18, 2022, and is awaiting their approval.

A minimum pumping rate of 200 gpm equates to 0.288 MGD. The draft NPDES renewal permit, with a 5-year term, has again included 0.482 MGD as the design flow. EPA communicated to DEP's Waste Management Program staff via email, subsequent to the submission of this NPDES permit application, that they were willing to approve a reduction in the pumping rate on a trial basis. After the trail period, a decision would be rendered based on sampling data. Because there are no mass load limits or permit limits based on Water-Quality Based Effluent Limitations (WQBELs), a change in the design flow would not affect the limits in this draft renewal permit. Therefore the design

Approve	Deny	Signatures	Date
х		Bonnie Boylan Bonnie Boylan / Environmental Engineering Specialist	October 3, 2023
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	October 12, 2023
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Environmental Program Manager	October 12, 2023

Summary of Review

flow could be adjusted with the next NPDES permit renewal if appropriate, such as if EPA approves a reduction in the pump rate and the subsequent Discharge Monitoring Reports (DMRs) show a reduced flow.

The facility's DMRs from January 1, 2021 through July 31, 2023 indicate an average flow of 0.44 MGD, a maximum monthly average flow of 0.46 MGD, and a daily maximum flow of 0.563 MGD.

Delaware River Basin Commission (DRBC):

The discharge is within the Delaware River watershed and is thus subject to the Delaware River Basin Commission's (DRBC) requirements. A copy of the draft permit and Fact Sheet will therefore be sent to the DRBC for their review, in accordance with State regulations and an interagency agreement. Any comments from DRBC will be considered.

The most recent DRBC docket for this facility, D-1987-032-4, was approved on September 10, 2014 and expires on September 10, 2024. The docket covers both a groundwater treatment plant discharge as well as a groundwater withdrawal from this site. The docket requires quarterly monitoring for Total Dissolved Solids (TDS) at Outfall 101. However, there is no more outfall 101 or internal monitoring point (IMP) 101; it existed when industrial wastewater from manufacturing activities was generated and discharged at IMP 101. The only discharge from the site now is the treated groundwater through outfall 001. Therefore, the TDS monitoring requirement is not included in the draft NPDES renewal permit, nor was it included in the 2018 NPDES permit.

Unresolved Violations:

There are no outstanding violations against the facility according to DEP's eFacts database or DEP's WMS database. There are no outstanding violations against the client according to DEP's WMS database ("Violations by Client").

History:

The former owner of this site was Baldwin Hardware. They manufactured home hardware, lighting and accessories along with bathroom accessories. According to the Fact Sheet associated with their 2011 NPDES Permit: "Primarily, their products are manufactured from solid, forged, machined or stamped brass. The brass parts are then polished and protectively coated with or without a plated finish of nickel, nickel/chrome or brass. Wastewater is generated from plating and stripping lines along with cooling towers and boilers."

Baldwin Hardware entered into an Administrative Consent Order (ACO) with the U.S. EPA in 1987 to remediate chlorinated volatile organic compounds in the groundwater pursuant to the Resource Conservation Recovery Act (RCRA). A hydraulic containment system commenced in 1988 and must continue to operate until TCE in the groundwater is reduced to less than 5 ug/l (the federal drinking water Maximum Contaminant Level for TCE).

The NPDES permit previously issued to Baldwin Hardware included internal monitoring point 101 for industrial wastewater from manufacturing operations subject to an ELG and a second internal monitoring point 201 for the groundwater remediation water. Both IMPs discharged to outfall 001.

Baldwin ceased manufacturing operations at the facility and all related industrial equipment was decommissioned. Baldwin vacated the facility at the end of 2013. Stanley Black & Decker, as property owner, became responsible for the operation and maintenance (O&M) of the groundwater remediation system. The discharge from the groundwater remediation system was the only discharge after Baldwin vacated the facility. NPDES permit amendment A-1 was issued to Stanley Black and Decker on February 27, 2014.

Modifications to the pump and treat remediation system were made in 2016 with the installation of a low-profile air stripping unit, new piping, fully automated controls, and remote telemetry. Pumping wells PS-2 and PW-4 were deactivated and PW-6 was installed. Two production wells have been in in use since 2016, PW-5 and PW-6, pumping at a *minimum* combined rate of 300 gpm (432,000 gpd).

Summary of Review

Public Participation:

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

	Discharge, Receiving Waters and Water Supply Information							
Outfall No. 001		Design Flow (MGD)	0.482					
Latitude 40° 19' 35"		Longitude	-75° 56' 6"					
Quad Name		Quad Code						
Wastewater Description:	Groundwater Cleanup Disch	narge						
Receiving Waters Schu	ylkill River (WWF, MF)	Stream Code	0833					
NHD Com ID 1332	28758	RMI	75.2 (per eMapPA)					
Drainage Area 904 p	er PA StreamStats	Yield (cfs/mi²)	0.277					
Q ₇₋₁₀ Flow (cfs) <u>250</u>		Q ₇₋₁₀ Basis	Gage correlation*					
• • • • • • • • • • • • • • • • • • • •	(est'd from upstream gage)	Slope (ft/ft)						
Watershed No. 3-C		Chapter 93 Class.	WWF, MF					
Existing Use <u>none</u>		Existing Use Qualifier						
Exceptions to Use	.	Exceptions to Criteria						
Assessment Status	Impaired							
Cause(s) of Impairment	Polychlorinated Biphenyls (s (PCBs) – Assessment ID #16329						
Source(s) of Impairment	Source Unknown							
TMDL Status	Final, 4/7/2007	Name Schuylkill Ri	ver PCB TMDL					
Background/Ambient Data		Data Source – WQN113 on S (> 20 miles upposed background da	stream so not used for					
pH (SU)		9	·					
Temperature (°F)								
Hardness (mg/L)								
Other:								
			·					
Nearest Downstream Publ	ic Water Supply Intake	Pottstown Borough Authority						
	till River	Flow at Intake (cfs)						
PWS RMI Approx.	•	Distance from Outfall (mi)	Approx. 18					
<u>, , , , , , , , , , , , , , , , , , , </u>		c.ac (IIII)						

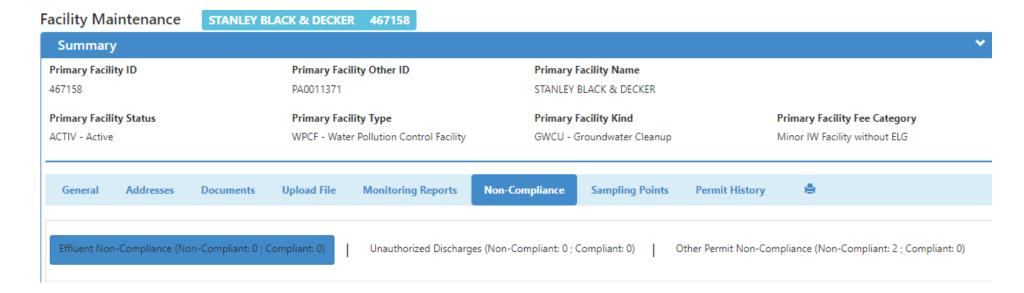
Changes Since Last Permit Issuance:

2018 Fact Sheet & models used Q7-10 of 264 cfs, D.A. of 907, and LFY of 0.29 based on PA StreamStats

LFY_{gage} calculated as 244 cfs /880 sq.mi.=0.277 cfs/sq.mi.

Q7-10 at outfall 001 thus estimated as LFY_{gage} x D.A._{site} = 0.277 cfs/sq.mi. x 904 sq.mi.= 250 cfs.

^{*}Gage Correlation with upstream gage 01471510 Schuylkill River at Reading PA, approx. 0.7 miles upstream from 001. Per NWIS (USGS: Natl Water Info System): Elev = 185.5 feet, D.A. = 880 sq. mi. Per USGS Stuckey and Roland 2011 report, "Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania, gage 01471510: 244 cfs = Q7-10 (period of record 1980-2008), D.A. = 880 sq.mi.;


EXISTING PERMIT LIMITS:

			Effluent L	imitations			Monitoring Requirements			
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required		
Farameter	Average	Daily		Average	Daily	Instant.	Measurement	Sample		
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Type		
		_								
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured		
			6.0							
pH (S.U.)	XXX	XXX	Daily Min	XXX	9.0	XXX	1/month	Grab		
Trichloroethylene	Report	Report	XXX	0.10	0.20	0.25	1/month	Grab		

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

NPDES Permit No. PA0011371

	Compliance History						
Summary of DMRs:	DMRs from 1/1/2021 through 7/31/2023 were summarized and reviewed. See the attached. They showed no exceedances of permit limits.						
Last Inspection:	9/23/2020 – no violations; calibration of flow meter needs to be documented and Groundwater Monitoring Data Report form (a Supplemental DMR) submitted						
	No effluent non-compliances since eDMR submissions began in October 2015						
	There are no staff most of the time; site visited infrequently except for lab staff collecting monthly samples Effluent samples collected at spigot at base of air stripper						
	One low-profile air stripper used (replaced an air stripping tower in 2016)						
	Magnetic flow meter, totalizer, and SCADA used						
	No standby power						
	Only offline for maintenance or repairs; last time offline was July 2020 for 12 hours for cleaning						
	Have alarms for low water level in pumping well, high water level in air stripping sump, Loss of pressure before air stripper						

	Development of Effluent Limitations					
	Development of Effluent Limitations					
Outfall No.	001		Design Flow (MGD)	0.482		
Latitude	40° 19' 35"		Longitude	-75° 56' 6"		
Wastewater	Description:	Groundwater Cleanup Discharge				

Technology Based Effluent Limitations and Water Quality Based Effluent Limitations are calculated separately and then compared to each other and to the existing permit limits.

Technology-Based Effluent Limitations (TBELs)

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal	State	DRBC
			Regulations	Regulations	Water Code
					18 CFR 410,
					Section 3.10.4.D.1,
Total Suspended	400*	A			unless waived by
Solids (TSS)	100*	Average Monthly		27.2(1)	DRBC
pH	6.0 – 9.0 S.U.*	Min – Max		95.2(1)	
Total Residual Chlorine (TRC)	0.5*	Average Monthly		92a.48(b)(2)	
Oil and Grease	15*	Average Monthly		95.2(1)	
Oil and Grease	30*	Daily Maximum		95.2(1)	
				00.2(.)	18 CFR 410,
					Section 3.10.4,
					for all dis-
	Secondary				charges unless
	treatment:				dilute industrial
BOD₅	85% reduction	Minimum			process wastewater
	2000 mg/l,				
	if new or				
Total Dissolved Solids	expanding				
(TDS)	mass loading	Average monthly		95.10	
					18 CFR 410,
					Section 3.10.3.B.1,
	Not to exceed				for all discharges
Total Dissolved Solids	133% of				except to
(TDS)	background				intermittent streams
	1000,				
	"or a concen-				
	tration esta-				
	blished by				
	DRBC which is				
	compatible				
	with desig-				
	nated water				
	uses and				
	stream quality				
	objectives and				
	recognizes the need for				
	reserve				
	capacity to				
Total Dissolved Solids	serve future				18 CFR 410,
(TDS)	dischargers"	Maximum			Section 3.10.4.D.2.
(103)	uischargers	IVIAXIIIIUIII			3ection 3.10.4.D.2.

^{*}These limits are applicable specifically for industrial wastewater in the regulations but could be imposed for other types of wastewater as Best Professional Judgement limitations.

Limits for TSS are not needed based on sampling data nor were TSS limits included in the existing permit. The maximum concentration of six TSS samples of untreated groundwater at PW-5 and PW-6 was 9 mg/l; the maximum concentration of four samples of treated groundwater was 4 mg/l.

Limits for pH were included in the existing permit and have been carried forward: 6.0 s.u. as an instantaneous minimum and 9.0 s.u. as an instantaneous maximum.

TBELs for TRC are not needed for groundwater. The permit includes a condition prohibiting the discharge of air stripper cleaning wastewater so no municipal chlorinated water used for air stripper cleaning is expected to be in the discharge.

Limits for Oil and Grease are not needed based on sampling data nor were Oil and Grease limits included in the existing permit. The maximum concentration of six Oil and Grease samples of untreated groundwater at PW-5 and PW-6 was 8.2 mg/l; the maximum concentration of three samples of treated groundwater was 7 mg/l.

BOD₅ would not be expected in groundwater. It was not identified as a pollutant of concern during the groundwater remediation investigations and was not included in the existing permit. Even though the discharge at this site is not industrial process wastewater, it is dilute wastewater; the DRBC Water Code recognizes that 85% reduction is not applicable to dilute wastewater.

The State TDS limit is not applicable since this is not a new discharge or an expanding mass loading. There are no TDS sampling data to evaluate reasonable potential to exceed 1000 mg/l or 133% over background, the DRBC effluent limits. The sampling data for PW-5 and PW-6 from January 1, 2019 through July 31, 2023, however, includes Chloride, Sulfate, Sodium, Total Iron, Total Manganese, and four Dissolved Metals; the maximum concentrations for these parameters combined are under 1000 mg/l. No limit or monitoring requirement for TDS was included in the existing permit and none were added in the draft renewal permit.

Trichloroethylene (TCE):

TCE was identified as the pollutant of concern driving the groundwater remediation. The existing permit limit of 0.10 mg/l is a TBEL established as an achievable concentration using available technology to comply with the Consent Order between EPA and Baldwin Hardware. EPA recognizes air stripping as a treatment technology appropriate for reducing volatile organics in water, with an anticipated removal rate of 98% on average for TCE in evaluated sites [EPA-450 / 3-87-017, August 1987]. Air stripping is still the treatment being used at this site. The existing TCE permit limits are being carried forward into the draft renewal permit: 0.10 mg/l as a monthly average and 0.20 mg/l as a daily maximum.

The existing permit also included an instantaneous maximum (IMAX) limit but correctly included the daily maximum limit of 0.20 mg/l on the DMRs. Because grab samples are being collected instead of composites, the daily maximum limit is sufficient; an IMAX limit is not typically imposed as well (consistent with the DEP WMS template for volatile organic TBELs imposed in NPDES permits due to federal Effluent Limitation Guidelines).

The extraction wells PW-5 and PW-6 show an average TCE concentration in the groundwater of 0.087 mg/l (86.6 ug/l) and a maximum TCE concentration of 0.185 mg/l (185 ug/l) for samples collected between June 1, 2020 and June 30, 2023. (See attached.)

The DMRs from January 1, 2021 and July 31, 2023 show an average TCE concentration in the discharge of 0.0099 mg/l (9.9 ug/l) and a maximum TCE concentration of 0.0222 mg/l (22.2 ug/l), after the air stripper treatment. (DMRs are attached.)

Water Quality-Based Effluent Limitations (WQBELs)

Total Maximum Daily Load (TMDL):

TMDLs can be developed for impaired waterways. A TMDL can allocate waste loads to dischargers for the pollutant(s) causing the impairment. There is a TMDL for the Schuylkill River to address Polychlorinated Biphenyls (PCBs). PCBs were not identified as a pollutant of concern for this groundwater remediation site.

Toxic Parameters:

DEP's Toxics Management Spreadsheet (TMS) calculates WQBELs from promulgated water quality criteria and performs a Reasonable Potential Analysis to determine when WQBELs should be imposed and when monitoring requirements alone should be required. The TMS is an Excel-based version of DEP's previous PENTOX model and is explained in DEP's Technical Guidance document 391-2000-011. The Reasonable Potential Analysis that the TMS performs is explained in DEP's Standard Operating Procedure (SOP) Establishing WQBELs and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers. If the discharge concentration exceeds 50% of the calculated WQBEL, the TMS will recommend that the WQBEL be imposed as a permit limit.

The following limitations and monitoring requirements were determined through water quality modeling (see the attached):

Parameter	Limit (mg/l)	SBC	Model
None	none	-	Toxics Management Spreadsheet (TMS)

For the first run of the model, the input values used were the largest concentrations between 1) the maximum concentrations in the application, 2) the Quantitation Level used in the event all results were non-detect, and 3) the maximum concentrations in the monitoring results forwarded from DEP's Waste Management Program (from January 1, 2019 through June 30, 2023). The model did not recommend imposing WQBELs as permit limits for any parameter but did recommend a monitoring requirement for one parameter: Trichloroethene (TCE).

When sufficient data exists, an average concentration can be used in the TMS model for the discharge concentration instead of a maximum concentration consistent with DEP's Water Quality Toxics Management Strategy [Document # 361-0100-003] and DEP's SOP Establishing WQBELs and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers.

For TCE, the average concentration of groundwater samples collected from June 1, 2020 through June 30, 2023 as reported to DEP's Waste Management program was calculated as **86.6** ug/l. This result was compared to the 2023 NPDES application: the average TCE concentration for PW-5 for untreated groundwater was **<1.3** ug/l based on 55 samples, while the average TCE concentration for PW-6 for untreated groundwater was **93.8** ug/l based on 54 samples. In order to ensure that the receiving water is protected even if the remediation equipment were to fail or become less effective, the average TCE concentration of 93.8 ug/l was used in the second simulation of the TMS model. The model pages for the second simulation are attached, showing the input values and the results. Because 93.8 ug/l is 14% of the WQBEL (687 ug/l), the second simulation of TMS did not recommend a monitoring requirement for TCE or the imposition of the TCE WQBEL as a permit limit.

Although the need for a WQBEL was not indicated for TCE, TBELs have been included in the draft permit as previously discussed.

(Because the other parameters did not trigger a WQBEL or a monitoring requirement in the first run of the model, there was no need to determine average concentrations with which to replace the maximum concentrations used in the first simulation.)

Chemical Additives

The facility uses a sodium bisulfate solution for annual clean-in-place calcium removal of the air stripper. Potable water is used in the solution. A DEP Chemical Additive Notification form was included in the application but the model simulation was incorrect. The Chemical Additive Notification form has not been accepted.

Sodium bisulfate is already on DEP's Approved Chemical Additive List. Using the TMS and the safe-effect levels from the approved list yields a calculated WQBEL of 44.8 mg/l as a monthly average and 180 lbs/day as a monthly allowable load. Page 7 of the application indicates that the proposed maximum usage rate is 8 gallons per year. PubChem online shows the specific gravity of Sodium bisulfate as 1.48. Calculating the maximum usage to compare to the TMS-recommended mass load yields:

8 gallons/year x 1.48 s.g. x 8.34 lbs/gallon = 99 lbs/year, less than 180 lbs/day.

Moreover, there is a standard condition in NPDES permits for groundwater cleanups that air stripping cleaning wastewater not be discharged to any receiving water. This condition was in the existing permit and is being included in the draft renewal permit.

Note: no Supplemental DMR for Chemical Additives Usage will be sent with the final permit.

Anti-Backsliding

No limits were made less stringent from the existing permit.

Sample Methods and Monitoring Frequency

Based on the permittee's compliance record and the fact that the site is unmanned, no changes were made to the sample methods and minimum monitoring frequencies.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) of Clean Water Act - Impaired Waters

The receiving water is included on the 303(d) list of impaired waterways submitted to EPA pursuant to the Clean Water Act. The pollutant(s) causing the impairment, Polychlorinated Biphenyls (PCBs), is not known to be present in the discharge.

Class A Trout Waters

Not applicable. The receiving water is not considered a Class A Trout water.

Part C Permit Conditions

Besides the standard conditions added to every NPDES industrial waste permit, special conditions applicable to groundwater cleanups are included in the draft renewal permit. The only change between the existing permit's Part C Conditions and the draft permit are discussed below.

- -Some language pertaining to system start-up has been removed because this is an existing operational system.
- -Quarterly sampling and analysis of Benzene, Toluene, Ethylbenzene, Xylenes, and MTBE has been removed; that requirement is applicable to cleanups involving petroleum products but those are not pollutants of concern at this site. The application summarized 55 samples for BTEX and MTBE: all samples resulted in non-detect.
- -The requirement to send the annual report to DEP's Environmental Cleanup and Brownfields (ECB) program was changed to DEP's Waste Management Program after consultation with staff and managers in ECB. The requirement to send the Supplemental DMR for Groundwater Monitoring to DEP's Clean Water Program was changed to DEP's Waste Management Program since the groundwater monitoring results ae being reviewed by DEP's Waste Management Program.
- -The existing permit included two paragraphs pertaining to DRBC whereas only the paragraph referencing DRBC dockets is necessary and has been included in the draft permit.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality as needed and BPJ. Instantaneous Maximum (IMAX) limits are generally determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations				Monitoring Requireme			
Parameter	Mass Units (lbs/day)			Concentrations (mg/L)				Required
Parameter	Average Monthly	Daily Maximum	Instant Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/month	Grab
Trichloroethylene	Report	Report	XXX	0.10	0.20	XXX	1/month	Grab

Compliance Sampling Location: at outfall 001

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
\boxtimes	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: New and Reissuance Industrial Waste and Industrial Stormwater Individual NPDES Permit Applications, October 11, 2013, Vsn. 1.5
	SOP: Establishing Effluent Limitations for Individual Industrial Permits, October 1, 2020, Vsn 1.6.
	SOP: Establishing WQBELs and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers, May 20, 2021, Vsn. 1.5.

Note: Some DEP document ID numbers for Technical Guidance are changing/have changed. See next page for revised document numbers.

Current Doc ID New Doc ID No. No.		574 EE C 1		Name	Current Folder	New Folder
391-2000-017	386-2000- 001	4/11/09	G	Implementation Guidance For Temperature Criteria	Water Standards and Facility Regulation	Clean Water
385-2000-011	386-2000- 002	9/6/2008	G	Pennsylvania Combined Sewer Overflow (CSO) Policy	Point and Nonpoint Source Management	Clean Water
385-0810-001	386-0810- 001	8/21/10	P	Chapter 95 – Total Dissolved Solids, Statement of Policy Defining the Term "Authorization"	Water Standards and Facility Regulation	Clean Water
391-2000-023	386-2000- 003	9/14/98	G	Design Stream Flows	Water Supply and Wastewater Management	Clean Water
391-2000-003	386-2000- 004	12/9/1997	G	Determining Water Quality Based Effluent Limits	Water Supply and Wastewater Management	Clean Water
391-2000-021	386-2000- 005	3/22/99	G	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness	Water Supply and Wastewater Management	Clean Water
391-2000-024	386-2000- 006	10/13/98	G	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Coefficients of Variation (CV) and Other Discharge Characteristics	Water Supply and Wastewater Management	Clean Water
391-2000-006	386-2000- 007	9/15/97	G	Implementation Guidance Design Conditions	Water Supply and Wastewater Management	Clean Water
391-2000-002	386-2000- 008	4/7/97	G	Implementation Guidance Evaluation & Process Thermal Discharge (316 (a)) Federal Water Pollution Act	Water Supply and Wastewater Management	Clean Water
391-2000-010	386-2000- 009	3/30/99	G	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments	Water Supply and Wastewater Management	Clean Water

391-2000-022	386-2000- 010	3/22/99	G	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances	Water Supply and Wastewater Management	Clean Water
391-2000-015	386-2000- 011	11/15/94	G	Implementation Guidance Total Residual Chlorine (TRC) Regulation	Water Supply and Wastewater Management	Clean Water
362-0300-004	386-0300- 002	10/1/97	G	Industrial Wastewater Management	Water Supply and Wastewater Management	Clean Water
391-2000-008	386-2000- 012	10/24/97	G	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges	Water Supply and Wastewater Management	Clean Water
391-2000-014	386-2000- 013	4/12/08	G	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers	Water Standards and Facility Regulation	Clean Water
391-2000-020	386-2000- 014	9/7/95	G	Protocol for Estimating First Order Pollutant Fate Coefficients for Volatile Organic Substances	Water Supply and Wastewater Management	Clean Water
391-2000-011	386-2000- 015	5/22/04	G	Technical Reference Guide (TRG) PENTOXSD for Windows PA Single Discharge Wasteload Allocation Program for Toxics Version 2.0	Water Supply and Wastewater Management	Clean Water
391-2000-007	386-2000- 016	6/26/04	G	Technical Reference Guide (TRG) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.0	Water Supply and Wastewater Management	Clean Water
362-2000-001	386-2000- 017	?	G	Permitting Policy and Procedure Manual	Water Quality	Clean Water

362-0400-001	386-0400- 001	10/1/1997	G	Technical Guidance for the Development and Specification of Effluent Limitations	Water Quality	Clean
362-2183-003	386-2183- 001	10/1/1997	G	Technology Based Control Requirements for Water Treatment Plant Wastes	Water Quality	Clean
	386-2000-			Policy for Conducting Technical Reviews of Minor NPDES Permit		Clean
362-2000-008	018 386-2000-	11/1/1996	G	Applications	Water Quality	Water
362-2000-003	019	3/1/1998	G	Policy for Permitting Surface Water Diversions	Water Quality	Water
362-2183-004	386-2183- 002	12/1/1997	G	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry	Water Quality	Clean
391-2000-019	386-2000- 020	10/28/199	G	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids (TDS), Nitrite-Nitrate (NO2-NO3), Non-Priority Pollutant Phenolics and Fluorides	Watershed Conservation	Clean Water
391-2000-018	386-2000- 021	10/27/199	G	Implementation Guidance for Section 95.9 Phosphorus discharges to Free Flowing Streams	Watershed Conservation	Clean Water
391-2000-013	386-2000- 022	11/4/1997	G	Implementation Guidance of Section 93.7 Ammonia Criteria	Watershed Management	Clean Water
385-2100-002	386-2100- 002	11/12/201	G	Policy and Procedure for NPDES Permitting of Discharges of Total Dissolved Solids	Water Standards and Facility Regulation	Clean Water
391-3200-013	386-3200- 001	6/10/1997	G	Evaluations of Phosphorus Discharges to Lakes, Ponds, and Impoundments	Water Supply and Wastewater Management	Clean Water
392-0300-002	386-0300- 003	9/28/2002	P	Comprehensive Stormwater Management Policy	Watershed Management	Clean Water

392-0300-001	386-0300- 004	5/14/1985	G	Stormwater Management Guidelines and Model Ordinances	Watershed Management	Clean Water
372 0300 001	001	3/14/1/03	-	Standards and Guidelines for	watershed wanagement	,, atc.
				Identifying, Tracking, and Resolving		
	386-4000-			Violations of the Storm Water		Clean
363-4000-003	001	38871	G	Management Act	Watershed Management	Water

Where G = Guidance, P = Policy

DMRs:

PERMIT	MON_START_	MON_END_D	OUTFAL	PARAMETER	LOAD_UNIT	LOAD_1_VA	LOAD_1_L	LOAD_1_SBC	LOAD_2_VA	LOAD_2_L	LOAD_2_SBC
PA0011371	1/1/2021	1/31/2021	. 1	Flow	MGD	0.4531	Monitor	Average Mor	0.4555	Monitor	Daily Maximum
PA0011371	2/1/2021	2/28/2021	. 1	Flow	MGD	0.4607	Monitor	Average Mor	0.5003	Monitor	Daily Maximum
PA0011371	3/1/2021	3/31/2021	. 1	Flow	MGD	0.4637	Monitor	Average Mor	0.4716	Monitor	Daily Maximum
PA0011371	4/1/2021	4/30/2021	. 1	Flow	MGD	0.4471	Monitor	Average Mor	0.4527	Monitor	Daily Maximum
PA0011371	5/1/2021	5/31/2021	. 1	Flow	MGD	0.4497	Monitor	Average Mor	0.4534	Monitor	Daily Maximum
PA0011371	6/1/2021	6/30/2021	. 1	Flow	MGD	0.4449	Monitor	Average Mor	0.4511	Monitor	Daily Maximum
PA0011371	7/1/2021	7/31/2021	. 1	Flow	MGD	0.451	Monitor	Average Mor	0.4534	Monitor	Daily Maximum
PA0011371	8/1/2021	8/31/2021	1	Flow	MGD	0.4489	Monitor	Average Mor	0.4535	Monitor	Daily Maximum
PA0011371	9/1/2021	9/30/2021	. 1	Flow	MGD	0.4478	Monitor	Average Mor	0.4711	Monitor	Daily Maximum
PA0011371	10/1/2021	10/31/2021	. 1	Flow	MGD	0.4483	Monitor	Average Mor	0.4547	Monitor	Daily Maximum
PA0011371	11/1/2021	11/30/2021	. 1	Flow	MGD	0.4119	Monitor	Average Mor	0.4547	Monitor	Daily Maximum
PA0011371	12/1/2021	12/31/2021	. 1	Flow	MGD	0.449	Monitor	Average Mor	0.451	Monitor	Daily Maximum
PA0011371	1/1/2022	1/31/2022	1	Flow	MGD	0.4464	Monitor	Average Mor	0.4489	Monitor	Daily Maximum
PA0011371	2/1/2022	2/28/2022	1	Flow	MGD	0.4536	Monitor	Average Mor	0.4574	Monitor	Daily Maximum
PA0011371	3/1/2022	3/31/2022	1	Flow	MGD	0.4523	Monitor	Average Mor	0.4531	Monitor	Daily Maximum
PA0011371	4/1/2022	4/30/2022	1	Flow	MGD	0.4601	Monitor	Average Mor	0.4651	Monitor	Daily Maximum
A0011371	5/1/2022	5/31/2022	1	Flow	MGD	0.4531	Monitor	Average Mor	0.4567	Monitor	Daily Maximum
PA0011371	6/1/2022	6/30/2022	1	Flow	MGD	0.4499	Monitor	Average Mor	0.4532	Monitor	Daily Maximum
PA0011371	7/1/2022	7/31/2022	1	Flow	MGD	0.4494	Monitor	Average Mor	0.4514	Monitor	Daily Maximum
PA0011371	8/1/2022	8/31/2022	1	Flow	MGD			Average Mor			Daily Maximum

NPDES Permit No. PA0011371

PA0011371	9/1/2022	9/30/2022	1	Flow	MGD	0.44	Monitor	Average Mor	0.4456	Monitor	Daily Maximum
PA0011371	10/1/2022	10/31/2022	1	Flow	MGD	0.4502	Monitor	Average Mor	0.4537	Monitor	Daily Maximum
PA0011371	11/1/2022	11/30/2022	1	Flow	MGD	0.446	Monitor	Average Mor	0.4479	Monitor	Daily Maximum
PA0011371	12/1/2022	12/31/2022	1	Flow	MGD	0.4491	Monitor	Average Mor	0.4542	Monitor	Daily Maximum
PA0011371	1/1/2023	1/31/2023	1	Flow	MGD	0.4373	Monitor	Average Mor	0.4443	Monitor	Daily Maximum
PA0011371	2/1/2023	2/28/2023	1	Flow	MGD	0.4491	Monitor	Average Mor	0.4547	Monitor	Daily Maximum
PA0011371	3/1/2023	3/31/2023	1	Flow	MGD	0.4426	Monitor	Average Mor	0.4495	Monitor	Daily Maximum
PA0011371	4/1/2023	4/30/2023	1	Flow	MGD	0.3951	Monitor	Average Mor	0.4487	Monitor	Daily Maximum
PA0011371	5/1/2023	5/31/2023	1	Flow	MGD	0.4455	Monitor	Average Mor	0.4509	Monitor	Daily Maximum
PA0011371	6/1/2023	6/30/2023	1	Flow	MGD	0.391	Monitor	Average Mor	0.4534	Monitor	Daily Maximum
PA0011371	7/1/2023	7/31/2023	1	Flow	MGD	0.4558	Monitor	Average Mor	0.5626	Monitor	Daily Maximum
						0.4448	Avg.		0.5626	Max.	

NPDES Permit No. PA0011371

PERMIT	MON_START_	MON_END_D	OUTFAL	PARAMETER	CONC_UNIT	CONC_1_VA	CONC_1_LIN	CONC_1_SB	CONC_3_VA	CONC_3_LIN	CONC_3_SB	SAMPLE_FR	SAMPLE_TYPE
PA0011371	1/1/2021	1/31/2021	1	рН	S.U.	7.56	6	Daily Mini	7.56	9	Daily Maxir	1/month	Grab
PA0011371	2/1/2021	2/28/2021	1	рН	S.U.	7.53	6	Daily Mini	7.53	9	Daily Maxir	1/month	Grab
PA0011371	3/1/2021	3/31/2021	1	рН	S.U.	7.78	6	Daily Minir	7.78	9	Daily Maxir	1/month	Grab
PA0011371	4/1/2021	4/30/2021	1	рН	S.U.	7.36	6	Daily Minir	7.36	9	Daily Maxir	1/month	Grab
PA0011371	5/1/2021	5/31/2021	1	рН	S.U.	7.61	6	Daily Minir	7.61	9	Daily Maxir	1/month	Grab
PA0011371	6/1/2021	6/30/2021	1	рН	S.U.	7.74	6	Daily Minis	7.74	9	Daily Maxir	1/month	Grab
PA0011371	7/1/2021	7/31/2021	1	рН	S.U.	7.24	6	Daily Minis	7.24	9	Daily Maxir	1/month	Grab
PA0011371	8/1/2021	8/31/2021	1	рН	S.U.	6.9	6	Daily Minis	6.9	9	Daily Maxir	1/month	Grab
PA0011371	9/1/2021	9/30/2021	1	рН	S.U.	7.5	6	Daily Minis	7.5	9	Daily Maxir	1/month	Grab
PA0011371	10/1/2021	10/31/2021	1	рН	S.U.	7.95	6	Daily Minis	7.95	9	Daily Maxir	1/month	Grab
PA0011371	11/1/2021	11/30/2021	1	рН	S.U.	6.93	6	Daily Minis	6.93	9	Daily Maxir	1/month	Grab
PA0011371	12/1/2021	12/31/2021	1	рН	S.U.	7.55	6	Daily Minis	7.55	9	Daily Maxir	1/month	Grab
PA0011371	1/1/2022	1/31/2022	1	рН	S.U.	7.34	6	Daily Minis	7.34	9	Daily Maxir	1/month	Grab
PA0011371	2/1/2022	2/28/2022	1	рН	S.U.	7.97	6	Daily Minis	7.97	9	Daily Maxir	1/month	Grab
PA0011371	3/1/2022	3/31/2022	1	рН	S.U.	7.16	6	Daily Mini	7.16	9	Daily Maxir	1/month	Grab
PA0011371	4/1/2022	4/30/2022	1	рН	S.U.	7.59	6	Daily Minis	7.59	9	Daily Maxir	1/month	Grab
PA0011371	5/1/2022	5/31/2022	1	рН	S.U.	7.73	6	Daily Mini	7.73	9	Daily Maxir	1/month	Grab
PA0011371	6/1/2022	6/30/2022	1	рН	S.U.	7.15	6	Daily Mini	7.15	9	Daily Maxir	1/month	Grab
PA0011371	7/1/2022	7/31/2022	1	рН	S.U.	7.6	6	Daily Mini	7.6	9	Daily Maxir	1/month	Grab
PA0011371	8/1/2022	8/31/2022	1	рН	S.U.	7.25	6	Daily Minis	7.25	9	Daily Maxir	1/month	Grab
PA0011371	9/1/2022	9/30/2022	1	рН	S.U.	7.23	6	Daily Minis	7.23	9	Daily Maxir	1/month	Grab
												_	

NPDES Permit No. PA0011371

						6.9	Min		7.97	Max			
PA0011371	7/1/2023	7/31/2023	1	рН	S.U.	7.54		6 Daily Minin	7.54	9	Daily Maxir	1/month	Grab
PA0011371	6/1/2023	6/30/2023	1	рН	S.U.	7.89		6 Daily Minin	7.89	9	Daily Maxir	1/month	Grab
PA0011371	5/1/2023	5/31/2023	1	рН	S.U.	7.8		6 Daily Minin	7.8	9	Daily Maxir	1/month	Grab
PA0011371	4/1/2023	4/30/2023	1	рН	S.U.	7.53		6 Daily Minin	7.53	9	Daily Maxir	1/month	Grab
PA0011371	3/1/2023	3/31/2023	1	рН	S.U.	7.78		6 Daily Minin	7.78	9	Daily Maxir	1/month	Grab
PA0011371	2/1/2023	2/28/2023	1	рН	S.U.	7.6		6 Daily Minin	7.6	9	Daily Maxir	1/month	Grab
PA0011371	1/1/2023	1/31/2023	1	рН	S.U.	7.9		6 Daily Minin	7.9	9	Daily Maxir	1/month	Grab
PA0011371	12/1/2022	12/31/2022	1	рН	S.U.	7.86		6 Daily Minin	7.86	9	Daily Maxir	1/month	Grab
PA0011371	11/1/2022	11/30/2022	1	рН	S.U.	7.62		6 Daily Minin	7.62	9	Daily Maxir	1/month	Grab
PA0011371	10/1/2022	10/31/2022	1	pH	S.U.	7.92		6 Daily Minin	7.92	9	Daily Maxir	1/month	Grab

NPDES Permit No. PA0011371

PERMIT	MON_START_I	MON_END_D/ 0	OUTF PARAME	T LOAD_UNIT	LOAD_1_VALU	LLIMIT	LOAD_1_SBC	2_VALUE	2_LIMIT	2_SBC	CONC_UNIT	2_VALUE	2_LIMIT CONC_2_SBC	CONC_3_VALUE	3_LIMIT CONC_3_SB	SAMPLE_FR	SAMPLE_
PA0011371	1/1/2021	1/31/2021	1 TCE	lbs/day	0.03	Monitor	Average Mo	0.03	Monitor	Daily Max	mg/L	0.0091	0.1 Average Mo	0.0091	0.2 Daily Max	1/month	Grab
PA0011371	2/1/2021	2/28/2021	1 TCE	lbs/day	0.04	Monitor	Average Mo	0.04	Monitor	Daily Max	mg/L	0.01	0.1 Average Mo	0.01	0.2 Daily Max	1/month	Grab
PA0011371	3/1/2021	3/31/2021	1 TCE	lbs/day	0.04	Monitor	Average Mo	0.04	Monitor	Daily Max	mg/L	0.0114	0.1 Average Mo	0.0114	0.2 Daily Max	1/month	Grab
PA0011371	4/1/2021	4/30/2021	1 TCE	lbs/day	0.04	Monitor	Average Mo	0.04	Monitor	Daily Max	mg/L	0.0118	0.1 Average Mo	0.0118	0.2 Daily Max	1/month	Grab
PA0011371	5/1/2021	5/31/2021	1 TCE	lbs/day	0.07	Monitor	Average Mo	0.07	Monitor	Daily Max	mg/L	0.0198	0.1 Average Mo	0.0198	0.2 Daily Max	1/month	Grab
PA0011371	6/1/2021	6/30/2021	1 TCE	lbs/day	0.05	Monitor	Average Mo	0.05	Monitor	Daily Max	mg/L	0.0123	0.1 Average Mo	0.0123	0.2 Daily Max	1/month	Grab
PA0011371	7/1/2021	7/31/2021	1 TCE	lbs/day	0.05	Monitor	Average Mo	0.05	Monitor	Daily Max	mg/L	0.0129	0.1 Average Mo	0.0129	0.2 Daily Max	1/month	Grab
PA0011371	8/1/2021	8/31/2021	1 TCE	lbs/day	0.04	Monitor	Average Mo	0.04	Monitor	Daily Max	mg/L	0.0097	0.1 Average Mo	0.0097	0.2 Daily Max	1/month	Grab
PA0011371	9/1/2021	9/30/2021	1 TCE	lbs/day	0.04	Monitor	Average Mo	0.04	Monitor	Daily Max	mg/L	0.011	0.1 Average Mo	0.011	0.2 Daily Max	1/month	Grab
PA0011371	10/1/2021	10/31/2021	1 TCE	lbs/day	0.03	Monitor	Average Mo	0.03	Monitor	Daily Max	mg/L	0.0089	0.1 Average Mo	0.0089	0.2 Daily Max	1/month	Grab
PA0011371	11/1/2021	11/30/2021	1 TCE	lbs/day	0.03	Monitor	Average Mo	0.03	Monitor	Daily Max	mg/L	0.0069	0.1 Average Mo	0.0069	0.2 Daily Max	1/month	Grab
PA0011371	12/1/2021	12/31/2021	1 TCE	lbs/day	0.03	Monitor	Average Mo	0.03	Monitor	Daily Max	mg/L	0.009	0.1 Average Mo	0.0091	0.2 Daily Max	1/month	Grab
PA0011371	1/1/2022	1/31/2022	1 TCE	lbs/day	0.03	Monitor	Average Mo	0.03	Monitor	Daily Max	mg/L	0.0086	0.1 Average Mo	0.0086	0.2 Daily Max	1/month	Grab
PA0011371	2/1/2022	2/28/2022	1 TCE	lbs/day	0.02	Monitor	Average Mo	0.02	Monitor	Daily Max	mg/L	0.006	0.1 Average Mo	0.006	0.2 Daily Max	1/month	Grab
PA0011371	3/1/2022	3/31/2022	1 TCE	lbs/day	0.02	Monitor	Average Mo	0.02	Monitor	Daily Max	mg/L	0.0049	0.1 Average Mo	0.0049	0.2 Daily Max	1/month	Grab
PA0011371	4/1/2022	4/30/2022	1 TCE	lbs/day	0.04	Monitor	Average Mo	0.04	Monitor	Daily Max	mg/L	0.0104	0.1 Average Mo	0.0104	0.2 Daily Max	1/month	Grab
PA0011371	5/1/2022	5/31/2022	1 TCE	lbs/day	0.08	Monitor	Average Mo	0.08	Monitor	Daily Max	mg/L	0.0222	0.1 Average Mo	0.0222	0.2 Daily Max	1/month	Grab
PA0011371	6/1/2022	6/30/2022	1 TCE	lbs/day	0.05	Monitor	Average Mor	0.05	Monitor	Daily Max	mg/L	0.0129	0.1 Average Mo	0.0129	0.2 Daily Max	1/month	Grab
PA0011371	7/1/2022	7/31/2022	1 TCE	lbs/day	0.05	Monitor	Average Mor	0.05	Monitor	Daily Max	mg/L	0.0141	0.1 Average Mo	0.0141	0.2 Daily Max	1/month	Grab
PA0011371	8/1/2022	8/31/2022	1 TCE	lbs/day	0.06	Monitor	Average Mor	0.06	Monitor	Daily Max	mg/L	0.0157	0.1 Average Mo	0.0157	0.2 Daily Max	1/month	Grab
PA0011371	9/1/2022	9/30/2022	1 TCE	lbs/day	0.06	Monitor	Average Mo	0.06	Monitor	Daily Max	mg/L	0.0169	0.1 Average Mo	0.0169	0.2 Daily Max	1/month	Grab

NPDES Permit No. PA0011371

PA0011371	10/1/2022	10/31/2022	1	TCE	lbs/day	0.03	Monitor	Average Mor	0.03	Monitor	Daily Ma	x mg/L	0.0074	.1 Average Mo	0.0074	0.2 Daily Ma	1/month	Grab
PA0011371	11/1/2022	11/30/2022	1	TCE	lbs/day	0.04	Monitor	Average Mor	0.04	Monitor	Daily Max	x mg/L	0.0103	.1 Average Mo	0.0103	0.2 Daily Ma	x 1/month	Grab
PA0011371	12/1/2022	12/31/2022	1	TCE	lbs/day	0.03	Monitor	Average Mor	0.03	Monitor	Daily Max	x mg/L	0.0088	.1 Average Mo	0.0088	0.2 Daily Ma	x 1/month	Grab
PA0011371	1/1/2023	1/31/2023	1	TCE	lbs/day	0.01	Monitor	Average Mor	0.01	Monitor	Daily Max	x mg/L	0.0039	.1 Average Mo	0.0039	0.2 Daily Ma	x 1/month	Grab
PA0011371	2/1/2023	2/28/2023	1	TCE	lbs/day	0.02	Monitor	Average Mor	0.02	Monitor	Daily Max	x mg/L	0.0049	.1 Average Mo	0.0049	0.2 Daily Ma	x 1/month	Grab
PA0011371	3/1/2023	3/31/2023	1	TCE	lbs/day	0.01	Monitor	Average Mor	0.01	Monitor	Daily Max	x mg/L	0.0036	.1 Average Mo	0.0036	0.2 Daily Ma	x 1/month	Grab
PA0011371	4/1/2023	4/30/2023	1	TCE	lbs/day	0.02	Monitor	Average Mor	0.02	Monitor	Daily Max	x mg/L	0.0052	.1 Average Mo	0.0052	0.2 Daily Ma	x 1/month	Grab
PA0011371	5/1/2023	5/31/2023	1	TCE	lbs/day	0.02	Monitor	Average Mor	0.02	Monitor	Daily Ma	x mg/L	0.0047 0	.1 Average Mo	0.0047	0.2 Daily Ma	x 1/month	Grab
PA0011371	6/1/2023	6/30/2023	1	TCE	lbs/day	0.03	Monitor	Average Mor	0.03	Monitor	Daily Ma	x mg/L	0.0088	.1 Average Mo	0.0088	0.2 Daily Ma	x 1/month	Grab
PA0011371	7/1/2023	7/31/2023	1	TCE	lbs/day	0.02	Monitor	Average Mor	0.02	Monitor	Daily Ma	x mg/L	0.0057 0	.1 Average Mo	0.0057	0.2 Daily Ma	x 1/month	Grab
						0.036	Avg		0.08	Max			0.0099 Avg		0.0222	Max		

		TRICHLO	1,1,2,2- TETRACH LOROET		1,1- DICHLOR	1,2- DICHLOR OBENZE	DICHLOR	NYL		BARIUM;		BROMOF		CARBON TETRACH			CHLOROET	T CHLORO				cis 1,3- DICHLOR (
Location ID 🔻	SampleNo 🔻	NE (ug/I) ▼	HANE (ug/I) ▼	OETHAN E (ug/ ▼	OETHEN E (ug/ ▼	NE (ug/I) ▼	OETHAN E (ug/ ▼	eTHER (ug/I)	ED (ug/I)	TOTAL (ug/I) ▼	BENZENE (ug/I)	ORM (ug/I) ▼	BROMID E (ug/ ▼	LORIDE (ug/I)	CHLORIDE (mg/I) ▼	CHLOROBEN ZENE (ug, ▼	HANE (ug/I)	FORM (ug/I)	ED (ug/I) ▼	TOTAL (ug/I) ▼	ETHENE (ug/I) ▼	NE E (ug/I) (
PW-5	PW-5 (2Q20) Jun																					
PW-5	PW-5 (3Q20)								130	130					88.8				2.1			
PW-5 PW-5	PW-5 (3Q20) Jul PW-5 (3Q20) Aug																					
PW-5	PW-5 (3Q20) Sep																					
PW-5	PW-5 (4Q20)								130	130					95.3				2.7			
PW-5	PW-5 (4Q20) Oct																					
PW-5	PW-5 (4Q20) Nov																					
PW-5	PW-5 (4Q20) Dec																					
PW-5 PW-5	PW-5 (1Q21)								130	120					99.9							
PW-5	PW-5 (1Q21) Jan PW-5 (1Q21) Feb																	1.2				
PW-5	PW-5 (1Q21) Mar																	1.3			1.8	
PW-5	PW-5 (2Q21)								130	110					125			1.7			1.9	
PW-5	PW-5 (2Q21) Apr																	1.4			2.3	
PW-5	PW-5 (2Q21) May																					
PW-5 PW-5	PW-5 (2Q21) Jun PW-5 (3Q21)								120	130					85.7							
PW-5	PW-5 (3Q21) PW-5 (3Q21) Jul								130	150					85.7							-
PW-5	PW-5 (3Q21) Aug																					
PW-5	PW-5 (3Q21) Aug																					
PW-5	PW-5 (3Q21) Sep																				1.2	
PW-5	PW-5 (4Q21)								130	130					106				5.4			
PW-5	PW-5 (4Q21) Oct																					
PW-5	PW-5 (4Q21) Nov																					
PW-5	PW-5 (4Q21) Dec																					
PW-5	PW-5 (1Q22) Jan																					
PW-5	PW-5 (1Q22) Feb																					
PW-5	PW-5 (1Q22)								130	140					103							
PW-5	PW-5 (1Q22) Mar																					
PW-5	PW-5 (2Q22)								130	130					104				2.6	25		
PW-5	PW-5 (2Q22) Dup								130	140					103				2.9	15		
PW-5	PW-5 (2Q22) May																					
PW-5	PW-5 (2Q22) Jun																					
PW-5	PW-5 (3Q22)								140	76					108				2.8	2.6		
PW-5	PW-5 (3Q22) July																					
PW-5	PW-5 (3Q22) Aug																					
PW-5	PW-5 (3Q22) Sep																					
PW-5	PW-5 (4Q22)								130	130					102				6.7			
PW-5	PW-5 (4Q22) Nov																	1.1				
PW-5	PW-5 (4Q22) Dec																					

		ų <u>-</u>	_		J			-		_			-		٠,		J		J			
			1122			1,2-		2- CHLORO					BROMO METHAN						CHROMI			cis 1,3-
		1,1,1- TRICHLO	1,1,2,2- TETRACH	1.1-		DICHLOR	1.2-		BARIUM;				E,METHY							CHROMI	CIS 1,2-	
					DICHLOR					BARIUM;		BROMOF		TETRACH			CHLOROET	CHLORO	DISSOLV		DICHLOR	
Location		NE	HANE		OETHEN		OETHAN		ED	TOTAL	BENZENE					CHLOROBEN		FORM	ED		ETHENE	
ID 🔻	SampleNo	(ug/I) [*	_ (ug/I) _*	E (ug/ *	E (ug/ *	(ug/I) -	E (ug/ *	(ug/I) *	(ug/I) *	(ug/I) _*	(ug/I) ×	(ug/I)	E (ug/	(ug/I) _*	(mg/I) _*	ZENE (ug/▼	(ug/I) 💌	(ug/I) *	(ug/I) _*	(ug/I) _*	(ug/I) *	(ug/I)
W-5	PW-5 (1Q23)								120	130					98							
W-5	PW-5 (1Q23) Feb																	0.67			0.26 J	
W-5	PW-5 (1Q23) Mar																					
W-5	PW-5 (2Q23) Apr												0.81 J					0.73			0.29 J	
W-5	PW-5 (2Q23)								130	130					116				2.4			
W-5	PW-5 (2Q23) May	0.3 J																0.91			0.34 J	
W-5	PW-5 (2Q23) Jun																					
W.C	DIM 6 (2020) I	0.4		1.0	4.5																20.5	
	PW-6 (2Q20) Jun	8.4 8.4		1.8	1.5 1.2				96	88					62.3				5.9	3.5	39.5 38.8	
	PW-6 (3Q20) PW-6 (3Q20) Jul	7.8		1.8	1.2				90	00					02.5				5.9	3.5	37.1	
		6.7		1.0	1.2																26.1	
	PW-6 (3Q20) Aug																					
	PW-6 (3Q20) Sep	8		1.8	4				100	00					00.4				4.0	2.1	29.9	
	PW-6 (4Q20)	8.6		1.9	1				100	98					80.4				4.8	3.1		
	PW-6 (4Q20) Oct	8.2		1.6																	31.5	
	PW-6 (4Q20) Nov	7.1		1.7																	26.3	
	PW-6 (4Q20) Dec	5.3		1.3					00	0.5					co.c			1.1	-	4.0	18.5	
	PW-6 (1Q21)	6.4		1.4	1.1				98	96					69.6			1.1	5	4.9		
	PW-6 (1Q21) Jan	6.7		1.4	1.1 1.2													1.1			29.8	
	PW-6 (1Q21) Feb	6.7		1.4	1.2													2			32.1	
	PW-6 (1Q21) Mar	4.9		1.1						70								1.6			26.6	
	PW-6 (2Q21)	6.4		1.4	1.1				86	79					68			2.4	5.7	5.3		
	PW-6 (2Q21) Apr	5.3		1.2	1													2.2			27.4	
	PW-6 (2Q21) May	8		1.6	1.4													1.9			37.9	
	PW-6 (2Q21) Jun	7.6		1.7														1.5			34.6	
W-6	PW-6 (3Q21)	4.7		1.3					100	100					175				4.7	3.4	22.2	

			_				-	-		-			_			- "	-		-	-		
								2-					BROMO									
			1,1,2,2-			1,2-		CHLORO					METHAN						CHROMI			cis 1,3-
		TRICHLO	TETRACH	1,1-	1,1-	DICHLOR	1,2-	ETHYLVI	BARIUM;				E,METHY	CARBON					UM;	CHROMI	CIS 1,2-	DICHLO
		ROETHA	LOROET	DICHLOR	DICHLOR	OBENZE	DICHLOR	NYL	DISSOLV	BARIUM;		BROMOF	L	TETRACH			CHLOROET	CHLORO	DISSOLV	UM;	DICHLOR	OPROP
ocation		NE			OETHEN		OETHAN		ED		BENZENE					CHLOROBEN		FORM	ED	TOTAL	ETHENE	
D 💌	SampleNo 💌	(ug/I) *	(ug/I) *	E (ug/ *	E (ug/ *	(ug/I) *	E (ug) *	(ug/I) *	E (ug/ *	(ug/I) *	(mg/I) *	ZENE (ug)	(ug/I) *	(ug/I)								
_	111										111			11	111		1111				11	
	PW-6 (3Q21) Jul	6.6		1.8														1.2			28.3	
	PW-6 (3Q21) Aug	6.9		1.3														1			20.7	
PW-6	PW-6 (3Q21) Sep	5.6		1.2																	28.2	
PW-6	PW-6 (4Q21)	6.3		1.4					100	98					85.9				9.1	4.1	32.9	
PW-6	PW-6 (4Q21) Oct	6.1		1.4																	30.5	
PW-6	PW-6 (4Q21) Nov	7		1.4																	22.6	
PW-6	PW-6 (4Q21) Dec	6.4		1.5																	27.6	
PW-6	PW-6 (1Q22) Jan	6.8		1.6																	26.3	
PW-6	PW-6 (1Q22) Feb	4.5		1.1																	17.5	
PW-6	PW-6 (1Q22)	5.1		1.1					99	98					78.3				5	3.3	14.8	
PW-6	PW-6 (1Q22) Mar	5.1		1.1																	14.9	
PW-6	PW-6 (2Q22)	4.1		1					94	99					68				5.8	8.3	16.5	
W-6	PW-6 (2Q22) May	5.8		1.4	1.1																31.5	
	PW-6 (2Q22) Jun	5.8		1.2																	24	
	PW-6 (3Q22)	6.5		1.6					110	120					84.3				5.7		25.1	
	PW-6 (3Q22) July	6.5		1.6																	25.1	
	PW-6 (3Q22) Aug	6.3		1.4																	25.2	
	PW-6 (3Q22) Sep	6.4		1.5																	25.6	
	PW-6 (4Q22)	5.6		1.3					110	100					86.7				8.7	2.6	21.7	
	PW-6 (4Q22) Nov	5.9		1.4						200					55.7				0.,	2.0	29.5	
	PW-6 (4Q22) Dec	5.6		1.2																	22	
	PW-6 (1Q23)	3.7							100	110					82.6				3.6	2.9	11.5	
	PW-6 (1Q23) Feb	4.4		0.87	0.33 J				100	-110					02.0			0.55	0.0	2.3	12.3	
	PW-6 (1Q23) Mar	4.1		0.07	0.553													0.55			7.4	
	PW-6 (2Q23) Apr	5.2		11	0.34 J							0	57 J					0.6			15	
	PW-6 (2Q23) Apr	5.3		1.1	0.54 J				110	110		U.	3/ 1		92.9			0.0	4.5	3.4	15.8	
	PW-6 (2Q23) May	5.5			0.35 J				110	110					92.9			0.72	4.5	5.4	12.8	
- VV - O	PW-6 (2Q25) May	3		0.99	0.55 J													0.72			12.0	
uc r	DW 5 (2022) I			1.2																	17.0	
V-6 F	PW-6 (2Q23) Jun	5.8		1.2																	17.9	
1	Max conc's PW5&6	8.6	0	2	1.5	0	0	0	140	140	0	0	0	0	175	0	0	2.4	9.1	25	39.5	0

Location ID ▼	SampleNo	D	D _	TOTAL	TOTAL_	LEAD; TOTAL (ug/I)	NESE;	METHYLE NE CHLORID E (ug/ *	NICKEL		PH-FIELD	SODIUM; TOTAL (mg/I)	SULFATE		TOLUE <u>NE</u>	CARBON, TOC	DICHLOR OPROPE NE	TRICHLO ROETHE NE	DISSOLV ED	TOTAL		
PW-5	PW-5 (2Q20) Ju	un												2.3							TCE 6/20	020-6/2023
PW-5	PW-5 (3Q20)											47.3	41.1	2.5		0.81						
PW-5	PW-5 (3Q20) Ju	ul												2.3								
PW-5	PW-5 (3Q20) A	ug												2.8								
PW-5	PW-5 (3Q20) S	ер												2.4								
PW-5	PW-5 (4Q20)											43.3	40.3	2.5		1			5.9)		
PW-5	PW-5 (4Q20) O)ct												2.8								
PW-5	PW-5 (4Q20) N	lov									7.37			2.4								
PW-5	PW-5 (4Q20) D	ec												2.2								
PW-5	PW-5 (1Q21)											45	41.5	2.1		1						
PW-5	PW-5 (1Q21) Ja	an												2								
PW-5	PW-5 (1Q21) F	eb												2.3								
PW-5	PW-5 (1Q21) N	/lar												2.1				5.5			5.	5
PW-5	PW-5 (2Q21)											50.5	36.7	2.2		0.95		4.3			4.	3
PW-5	PW-5 (2Q21) A	pr												2				6.8			6.	8
PW-5	PW-5 (2Q21) N	/lay												2.2								
PW-5	PW-5 (2Q21) Ju	un												2.5								
PW-5	PW-5 (3Q21)											49.5	46.6	1.5								
PW-5	PW-5 (3Q21) Ju	ul												2.4								
PW-5	PW-5 (3Q21) A	ug												2.7								
PW-5	PW-5 (3Q21) S	Sep												2.3				3.7			3.7	7
PW-5	PW-5 (4Q21)											43.4	41.1	2.3								
PW-5	PW-5 (4Q21) C	Oct												2.2								
PW-5	PW-5 (4Q21) N	VoV												2.4								
PW-5	PW-5 (4Q21) D	Dec												1.9								
PW-5	PW-5 (1Q22) J													2.1								
PW-5	PW-5 (1Q22) F													2								
PW-5	PW-5 (1Q22)											44.2	40.9	2.4								
PW-5	PW-5 (1Q22) N	Mar												2.4								
PW-5	PW-5 (2Q22)				8	4	4	1	3	}		40.5	39.8	1.7		1						
PW-5	PW-5 (2Q22) D	Dup			8	4						39.6	39.3	1.8		0.8				2.8		
PW-5	PW-5 (2Q22) N													2								
PW-5	PW-5 (2Q22) J													2.2								
PW-5	PW-5 (3Q22)						7.9	9				46.3	43	1.8		0.75				6.2		

NPDES Permit No. PA0011371

ocation	SampleNo 💌	ED	TOTAL	TOTAL	LEAD; TOTAL (ug/I)	NESE; TOTAL	METHYLE NE CHLORID E (ug/ 🕶	NICKEL	PHENOLI CS (ug/I)	PH-FIELD	SODIUM; TOTAL (mg/I)	SULFATE	TETRACH LOROET HENE	TOLUENE	C CARBON, TOC	NE	TRICHLO ROETHE NE	DISSOLV ED	TOTAL	
W-5	PW-5 (3Q22) July												1.8							
W-5	PW-5 (3Q22) Aug												1.9							
W-5	PW-5 (3Q22) Sep												1.7							
PW-5	PW-5 (4Q22)										46.2	43.6	1.8		0.59					
PW-5	PW-5 (4Q22) Nov												2.1							
PW-5	PW-5 (4Q22) Dec												1.7							
PW-5	PW-5 (1Q23)										47.4	38.6	2.1		0.58					
W-5	PW-5 (1Q23) Feb												2.1							
W-5	PW-5 (1Q23) Mar												2.3				2.5			2.5
W-5	PW-5 (2Q23) Apr									7.55			2							
PW-5	PW-5 (2Q23)										46.2	46.7	2.1							
PW-5	PW-5 (2Q23) May												2.8							
PW-5	PW-5 (2Q23) Jun												2.1							
PW-6	PW-6 (2Q20) Jun																170			170
PW-6	PW-6 (3Q20)										39.3	42.1	1.1		1		139			139
PW-6	PW-6 (3Q20) Jul												1				125			125
PW-6	PW-6 (3Q20) Aug												1.1				111			111
PW-6	PW-6 (3Q20) Sep												1.3				90.6			90.6
PW-6	PW-6 (4Q20)										40.2	45.7			1.2		107			107
PW-6	PW-6 (4Q20) Oct												1.6				107			107
W-6	PW-6 (4Q20) Nov									7.36			1.2				71.6			71.6
PW-6	PW-6 (4Q20) Dec																64.6			64.6
PW-6	PW-6 (1Q21)										35.3	44.4			1.1		116			116
PW-6	PW-6 (1Q21) Jan																122			122

		COPPER;		M-10WPO-9110		PARTITION	MANGA							TETRACH			DICHLOR	TRICHLO	The state of the state of				
		DISSOLV	COPPER;	CYANIDE	IRON;	LEAD;	The state of the s	NE		PHENOLI		SODIUM;		LOROET		CARBON,	OPROPE	ROETHE	DISSOLV	ZINC;			
cation		ED	TOTAL	, Total	TOTAL	TOTAL	TOTAL	CHLORID	NICKEL	CS _	PH-FIELD	TOTAL	SULFATE	HENE	TOLUENE	TOC	NE	NE	ED _	TOTAL			
· ·	SampleNo 💌	(ug/I) *	(ug/I) *	(ug/I) *	(ug/I) *	(ug/I) *	(ug/I) 🔻	E (ug/ "	(ug/I) *	(ug/I) *	(SU)	(mg/I) *	(mg/I) *	(ug/I) *	(ug/I) w	(mg/I) *	(ug/I) *	(ug/I) *	(ug/I) *	(ug/I)	¥		
W-6	PW-6 (1Q21) Feb								,			,						139				139	
W-6	PW-6 (1Q21) Mar																	109				109	
W-6 W-6	PW-6 (2Q21) PW-6 (2Q21) Apr											32.6	41.4			1		137 104				137 104	
W-6	PW-6 (2Q21) May																	185				185	
N-6	PW-6 (2Q21) Jun													1.2				98.4				98.4	
N-6	PW-6 (3Q21)											39.8	38.9					71.2				71.2	
N-6	PW-6 (3Q21) Jul													1.3				97.8				97.8	
N-6	PW-6 (3Q21) Aug													1.4				64.2				64.2	
N-6	PW-6 (3Q21) Sep											25.0	47.0	1.1				122			_	122	
N-6 N-6	PW-6 (4Q21) PW-6 (4Q21) Oct											35.9	47.9	1.1 1.4				91.7 94.8		10	0	91.7 94.8	
N-6	PW-6 (4Q21) Nov													1.4				68.2				68.2	
N-6	PW-6 (4Q21) Dec													1.2				86.4				86.4	
V-6	PW-6 (1Q22) Jan													1.3				84.2				84.2	
V-6	PW-6 (1Q22) Feb																	52.3				52.3	
V-6	PW-6 (1Q22)											40.3	42.3	1.2		0.53		42.6				42.6	
V-6	PW-6 (1Q22) Mar													1.2				42				42	
V-6 V-6	PW-6 (2Q22) PW-6 (2Q22) May				67	′	6.2		3.8	\$		31.2	42.7			0.82		65 131	11	. 1	2	65 131	
V-6	PW-6 (2Q22) May PW-6 (2Q22) Jun													1				82.5				82.5	
V-6	PW-6 (3Q22)						9.8					39.6	52.4			0.67		78.7		2.9	9	78.7	
V-6	PW-6 (3Q22) July																	78.7				78.7	
V-6	PW-6 (3Q22) Aug													1.2				81.4				81.4	
N-6	PW-6 (3Q22) Sep													1.1				81.3				81.3	
N-6	PW-6 (4Q22)									21		40.1	47.1	1.1		0.65		72.3				72.3	
N-6 _{,,}	PW-6 (4Q22) Nov		_	7.95	no.	710		/ 15	7.0	no.	700	731		1.1	/ 15	7.5141	7.11	,,,91.2	7.00	7.15Mg	7311	, 91.2	
W-6	PW-6 (4Q22) Dec													1.1				71.5				71.5	
N-6	PW-6 (1Q23)											41.4	43.6	1		0.95		27.8				27.8	
W-6	PW-6 (1Q23) Feb											74.7	10.0	1.1		0.55		30.2				30.2	
W-6	PW-6 (1Q23) Mar													1.1				21.2				21.2	
W-6	PW-6 (2Q23) Apr										7.82			1.3				38.3				38.3	
W-6	PW-6 (2Q23)											40.8	49.1	1.3				41.3				41.3	
W-6	PW-6 (2Q23) May													1.2				27.7				27.7	
W-6	PW-6 (2Q23) Jun													1.2				50.5				50.5	
VV-0	PW-0 (2Q23) Juli													1.2				20.2				50.5	
																	_						
	Max conc's PW5&	t () (0 0) 84	. 0	9.8	0	3.8	21	7.82	50.5	52.4	2.8	0	1.2	0	185	11	16			
																						86.613	Ava

per PA StreamStats

StreamStats Output Repo	ort- Schuylkill River at 001						
State/Region ID	PA						
Workspace ID	PA20230906154254130000						
Latitude	40.32638						
Longitude	-75.93441						
Time		11:43:20	AM				
Basin Characteristics							
	Downwater Description	Value	l lait				
Parameter Code	Parameter Description	Value	Unit				
CARBON	Percentage of area of carbon		percent .	•			
DRNAREA	Area that drains to a point or		square mi	les			
PRECIP	Mean Annual Precipitation		inches				
ROCKDEP	Depth to rock		feet				
STRDEN	Stream Density total lengt	1.3	miles per	square mil	e		
Low-Flow Statistics Parar	99.9 Percent Low Flow Regio	n 2					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		
DRNAREA	Drainage Area		square mi				
PRECIP	Mean Annual Precipitation		inches	35			
STRDEN	Stream Density		miles per	0.51	3.1		
ROCKDEP	Depth to Rock		feet	3.32			
CARBON	Percent Carbonate		percent	0.52	99		
CARBON	referrit Carbonate	15.5	percent	0	33		
Low-Flow Statistics Flow	99.9 Percent Low Flow Regio	n 2					
Statistic	Value	Unit	SE	ASEp			
7 Day 2 Year Low Flow	386	ft^3/s	38	38			
30 Day 2 Year Low Flow	456	ft^3/s	33	33			
7 Day 10 Year Low Flow	242	ft^3/s	51	51			
30 Day 10 Year Low Flow	290	ft^3/s	46	46			
90 Day 10 Year Low Flow	358	ft^3/s	36	36			
USGS Data Disclaimer: Ur	\parallel nless otherwise stated, all dat	a, metada	ta and rela	ted materi	als are con	sidered to	satisfy the
USGS Software Disclaime	r: This software has been app	proved for	release by	the U.S. G	eological Si	urvey (US	GS). Althou
USGS Product Names Dis	claimer: Any use of trade, firr	n, or produ	uct names i	s for descr	iptive purp	oses only	and does r
Application Version: 4.17	<u>'</u> .0						
StreamStats Services Ver							
NSS Services Version: 2.2							

Downstream from 001.....approx. RMI 74.74 west of 7th street and canal St. on East shore of River where PA Strm Stats shows a trib to Schuylkill River (but eMapPA shows next downstrm trib as UNT064927 at 74.63, entering Sch R from east side, further south, at Lat/long of 40.32235/-75.9230---not enough to make a difference in limits)

Assume elev of 180 ft, based on gage datum, no other data available such as site-specific slope

StreamStats Output Re	port downstrm of outfall 00	1				
State/Region ID	PA					
Workspace ID	PA20230906155410095000					
Latitude	40.32356					
	-75.92574					
Longitude			\			
Time	9/6/2023	11:54:35	AIVI			
Basin Characteristics						
Parameter Code	Parameter Description	Value	Unit			
CARBON	Percentage of area of carbo	19.67	percent			
DRNAREA	Area that drains to a point of		square mi	les		
PRECIP	Mean Annual Precipitation		inches			
ROCKDEP	Depth to rock		feet			
STRDEN	Stream Density total leng		miles per	square mil	e	
	·					
Low-Flow Statistics Par	99.7 Percent Low Flow Regi	on 2				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	908	square mi	4.93	1280	
PRECIP	Mean Annual Precipitation	47	inches	35	50.4	
STRDEN	Stream Density	1.29	miles per	0.51	3.1	
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65	
CARBON	Percent Carbonate	19.67	percent	0	99	
Low Flow Statistics Flo	99.7 Percent Low Flow Regi	on 2				
	Value		SE	۸۵۲۰		
Statistic		Unit		ASEp		
7 Day 2 Year Low Flow		ft^3/s	38	38		
30 Day 2 Year Low Flow		ft^3/s	33	33		
7 Day 10 Year Low Flow		ft^3/s	51	51		
30 Day 10 Year Low Flow		ft^3/s	46	46		
90 Day 10 Year Low Flow	304	ft^3/s	36	36		
USGS Data Disclaimer: U	Unless otherwise stated, all	data, met	adata and ı	elated ma	terials are	considere
USGS Software Disclain	ner: This software has been	approved	for release	by the U.	S. Geologic	al Survey
	isclaimer: Any use of trade,			•		
Application Version: 4.						
StreamStats Services V	ersion: 1.2.22					
NSS Services Version: 2	2.2.1					

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Facility: Stanley Black & Decker gwcu NPDES Permit No.: PA0011371 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: gw remediation

			Discharge	Characteris	tics			
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	5)	Complete Mix	x Times (min)
(MGD)*	nardiless (ilig/i)	pn (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh
0.482	100	7						

					0 if left	t blank	0.5 if le	eft blank	() if left blan	k	1 if left	blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L											
7	Chloride (PWS)	mg/L		175									
Group	Bromide	mg/L											
ত	Sulfate (PWS)	mg/L		56.2									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L											
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L		140									
	Total Beryllium	μg/L											
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L		25									
	Hexavalent Chromium	μg/L											
	Total Cobalt	μg/L											
	Total Copper	mg/L											
2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L		3.4									
5	Dissolved Iron	μg/L		36.1									

Total Iron	µg/L		160					
Total Lead	µg/L		1					
Total Manganese	µg/L		9.8					
Total Mercury	μg/L							
Total Nickel	µg/L		3.8					
Total Phenols (Phenolics) (PWS)	µg/L		21					
Total Selenium	µg/L							
Total Silver	µg/L							
Total Thallium	μg/L							
Total Zinc	mg/L		0.016					
Total Molybdenum	μg/L							
Acrolein	µg/L	<						
Acrylamide	µg/L	<						
Acrylonitrile	μg/L	<						
Benzene	μg/L		0.5					
Bromoform	µg/L		0.5					

Discharge Information 9/7/2023 Page 1

	Carbon Tetrachloride	μg/L		1.8					
	Chlorobenzene	μg/L		0.5					
	Chlorodibromomethane	μg/L	<						
	Chloroethane	μg/L	<						
	2-Chloroethyl Vinyl Ether	μg/L		1					
	Chloroform	μg/L		2.9					
	Dichlorobromomethane	μg/L	<						
	1,1-Dichloroethane	μg/L		2.6					
6	1,2-Dichloroethane	μg/L		0.5					
9	1,1-Dichloroethylene	μg/L		2.3					
Group	1,2-Dichloropropane	μg/L	<						
O	1,3-Dichloropropylene	μg/L		0.5					
	1,4-Dioxane	μg/L		4.5					
	Ethylbenzene	μg/L	<	1					
	Methyl Bromide	μg/L		1					
	Methyl Chloride	μg/L	<						
	Methylene Chloride	μg/L		1.4					
	1,1,2,2-Tetrachloroethane	μg/L		0.5					
	Tetrachloroethylene	μg/L		2.8					
	Toluene	μg/L		1.5					
	1,2-trans-Dichloroethylene	μg/L	<						
	1,1,1-Trichloroethane	μg/L	<	14.5					
	1,1,2-Trichloroethane	μg/L	<						
	Trichloroethylene	μg/L		93.8					

ı	munoroenyiene	μy/∟		53.0					
	Vinyl Chloride	μg/L	<	1					
	2-Chlorophenol	μg/L	<						
l	2,4-Dichlorophenol	μg/L	<						
l	2,4-Dimethylphenol	μg/L	<						
l	4,6-Dinitro-o-Cresol	μg/L	<						
4	2,4-Dinitrophenol	μg/L	<						
Group	2-Nitrophenol	μg/L	<						
5	4-Nitrophenol	μg/L	<						
	p-Chloro-m-Cresol	μg/L	<						
l	Pentachlorophenol	μg/L	<						
l	Phenol	μg/L	<						
	2,4,6-Trichlorophenol	μg/L	٧						
	Acenaphthene	μg/L	<						
	Acenaphthylene	μg/L	<						
l	Anthracene	μg/L	<						
l	Benzidine	μg/L	<						
l	Benzo(a)Anthracene	μg/L	<						
	Benzo(a)Pyrene	μg/L	<						
	3,4-Benzofluoranthene	μg/L	<						
	Benzo(ghi)Perylene	μg/L	<						
	Benzo(k)Fluoranthene	μg/L	<						
	Bis(2-Chloroethoxy)Methane	μg/L	<						
	Bis(2-Chloroethyl)Ether	μg/L	٧						
l	Bis(2-Chloroisopropyl)Ether	μg/L	*						
	Bis(2-Ethylhexyl)Phthalate	μg/L	<						
	4-Bromophenyl Phenyl Ether	μg/L	<						
	Butyl Benzyl Phthalate	μg/L	<						
	2-Chloronaphthalene	μg/L	<						
l	4-Chlorophenyl Phenyl Ether	μg/L	<						
l	Chrysene	μg/L	<						
l	Dibenzo(a,h)Anthrancene	μg/L	<						
	1,2-Dichlorobenzene	μg/L		2.3					
	1,3-Dichlorobenzene	μg/L	<						
LO.	1,4-Dichlorobenzene	μg/L	<						
Group	3,3-Dichlorobenzidine	μg/L	<						
5	Diethyl Phthalate	μg/L	<						
O	Dimethyl Phthalate	μg/L	<						
	Di-n-Butyl Phthalate	μg/L	<						
	2,4-Dinitrotoluene	μg/L	<						

Discharge Information 9/7/2023 Page 2

2,6-Dinitrotoluene	µg/L	<					
			***********************				***************************************

			-		 	 	 	 	
ı	Di-n-Octyl Phthalate	µg/L	<						
	1,2-Diphenylhydrazine	µg/L	٧						
[Fluoranthene	µg/L	<						
[Fluorene	µg/L	<						
[Hexachlorobenzene	µg/L	<						
ı	Hexachlorobutadiene	µg/L	<						
ı	Hexachlorocyclopentadiene	µg/L	<						
Ì	Hexachloroethane	µg/L	<						
ı	Indeno(1,2,3-cd)Pyrene	µg/L	<						
	Isophorone	µg/L	<						
ı	Naphthalene	µg/L	<	0.39					
	Nitrobenzene	µg/L	<						
ı	n-Nitrosodimethylamine	µg/L	<						
	n-Nitrosodi-n-Propylamine	µg/L	<						
	n-Nitrosodiphenylamine	µg/L	<						
- 1	Phenanthrene	µg/L	<						
- 1	Pyrene	µg/L	<						
ł	1,2,4-Trichlorobenzene	µg/L	<						
+	Aldrin	µg/L	<						
L	alpha-BHC	µg/L	<						
	beta-BHC	µg/L	<						
L	gamma-BHC	µg/L	<						
	delta BHC	µg/L	<						
- 1	Chlordane	µg/L	<						
- 1	4,4-DDT	µg/L	<						
	4.4-DDE	µg/L	<						
L	4.4-DDD	µg/L	<						
- 1	Dieldrin	µg/L	<						
- 1	alpha-Endosulfan	µg/L	<						
ŀ	beta-Endosulfan	µg/L	<						
١	Endosulfan Sulfate	µg/L	<						
	Endrin	µg/L	<						
H	Endrin Aldehyde	µg/L	<						
' I	Heptachlor	µg/L	<						
	Heptachlor Epoxide	µg/L	<						
	PCB-1016	µg/L	<						
- 1	PCB-1221	µg/L	· ·						
- 1	PCB-1221 PCB-1232	μg/L μg/L	٧.						
L	PCB-1232 PCB-1242	µg/L	~						
	PCB-1242 PCB-1248	µg/L	· ·						
L	PCB-1246 PCB-1254	µg/L	~						
	PCB-1254 PCB-1260		٧						
	PCBs, Total	µg/L	٧.						
		µg/L	<						
	Toxaphene	µg/L	٧						
_	2,3,7,8-TCDD	ng/L							
ŀ	Gross Alpha	pCi/L							
· I	Total Beta Redium 226/228	pCi/L	<						

Group	Radium 226/228	pCi/L	٧						
	Total Strontium	μg/L	٧						
	Total Uranium	µg/L	<						
	Osmotic Pressure	mOs/kg							
	Total Xylenes	μg/L	<	3					
	MTBE	μg/L	٧	1					
	1,2-cis-Dichloroethylene	μg/L		58.1					

Stream / Surface Water Information

Stanley Black & Decker gwcu, NPDES Permit No. PA0011371, Outfall 001

Instructions Disch	arge Str	eam														
Receiving Surface W	/ater Name:	Schuylkill	river				No. Rea	iches to l	Model: _	1		_	tewide Criteri at Lakes Crit			
Location	Stream Co	de* RM	Elevati	DA (mi	²)• Slo	ope (ft/ft)		Withdraw MGD)		y Fish eria*		OR	SANCO Crite	eria		
Point of Discharge	000833	75	182	904					Y	es						
End of Reach 1	000833	74.	7 180	908				•••••	Y	es						
Q ₇₋₁₀		LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	ITaver		Tributa	arv	Strea	m	Analys	sis
Location	RMI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	Time (days)	Har	dness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	75	0.277							madel				69	7		
End of Reach 1	74.7	0.277														
Q,																
Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time		Tributa	iry	Strea	m	Analys	sis
Location		(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Har	rdness	pН	Hardness	pН	Hardness	pН
Point of Discharge	75															
End of Reach 1	74.7	***************************************								000000000	***********					

Model Results

Stanley Black & Decker gwcu, NPDES Permit No. PA0011371, Outfall 001

Instructions	Results		RETUR	N TO INPUT	rs	SAVE AS PE	OF .	PRINT	•	All Inputs	○ Results	○ Limits	
	ynamics												
Q 7-10													
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs)		rge Analysis ow (cfs)	Slope (ft	ft) Depth	(ft) Width	(ft) W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
75	250.41			250.41		0.746	0.001	1.13	1 251.0	41 222.009	0.885	0.021	2009.725
74.7	251.52			251.516									
Q _h												i i avei	
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs)	Fle	rge Analysis ow (cfs)	Slope (ft		* *	* *	(fps)	Time (days)	Complete Mix Time (min)
75	927.70			927.70		0.746	0.001	2.01	251.0	124.891	1.84	0.01	851.652
74.7	931.286			931.29									
✓ Wastelo	ad Allocatio		T (min):	15	PMF:	0.086		sis Hardne	ss (mg/l):	70.033	Analysis pH:	7.00	
	Pollutants		Conc (ug/L)	Stream	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		С	omments	
	hloride (PWS		0	0		0	N/A	N/A	N/A				
	Sulfate (PWS		0	0		0	N/A	N/A	N/A				
	Total Barium al Chromium		0	0			21,000 425.595	21,000 1,347	630,267 40,422		Chem Transl	ator of 0.216	applied
	Dissolved Iron		0	0		0	N/A	N/A	N/A		Chem mansi	ator or 0.516	аррпец
	Total Iron		0	0		0	N/A	N/A	N/A				
	Total Lead		0	0			43.730	51.9	1.557		Chem Transl	ator of 0.843	applied
To	tal Mangane	se	0	0		0	N/A	N/A	N/A				
	Total Nickel		0	0		0	346.410	347	10,418		Chem Transl	ator of 0.998	applied
Total Phen	nols (Phenoli	cs) (PWS)	0	0		0	N/A	N/A	N/A				
	Total Zinc		0	0		0	86.652	88.6	2,659		Chem Transl	ator of 0.978	applied
	Benzene		0	0		0	640	640	19,208				·
	Bromoform		0	0		0	1,800	1,800	54,023				
	Ŧ					1	0.000	0.000	0.000				

NPDES Permit No. PA0011371

- 1	Carbon Tetrachionide	U	U	U	2,000	2,000	04,030	
	4-101				0.17	lanaa		-

Model Results 9/7/2023 Page 5

Chlorobenzene	0	0	0	1,200	1,200	36,015	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	540,229	
Chloroform	0	0	0	1,900	1,900	57,024	
1,2-Dichloroethane	0	0	0	15,000	15,000	450,190	
1,1-Dichloroethylene	0	0	0	7,500	7,500	225,095	
1,3-Dichloropropylene	0	0	0	310	310	9,304	
Ethylbenzene	0	0	0	2,900	2,900	87,037	
Methyl Bromide	0	0	0	550	550	16,507	
Methylene Chloride	0	0	0	12,000	12,000	360,152	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	30,013	
Tetrachloroethylene	0	0	0	700	700	21,009	
Toluene	0	0	0	1,700	1,700	51,022	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	90,038	
Trichloroethylene	0	0	0	2,300	2,300	69,029	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	24,610	
Naphthalene	0	0	0	140	140	4,202	
Total Xylenes	0	0	0	1,100	1,100	33,014	
1,2-cis-Dichloroethylene	0	0	0	N/A	N/A	N/A	

✓ CFC CCT (min): 720 PMF: 0.599 Analysis Hardness (mg/l): 69.153 Analysis pH: 7.00

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	4,100	4,100	828,224	
Total Chromium (III)	0	0		0	54.791	63.7	12,870	Chem Translator of 0.86 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	505,235	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	1.681	1.99	402	Chem Translator of 0.845 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	38.066	38.2	7,713	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	86.431	87.7	17,707	Chem Translator of 0.986 applied
Benzene	0	0		0	130	130	26,261	
Bromoform	0	0		0	370	370	74,742	
Carbon Tetrachloride	0	0		0	560	560	113,123	
Chlorobenzene	0	0		0	240	240	48,481	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	707,021	
Chloroform	0	0		0	390	390	78,782	

NPDES Permit No. PA0011371

L	1,2-Dichloroethane	0	0	0	3,100	3,100	626,218	
	1,1-Dichloroethylene	0	0	0	1,500	1,500	303,009	
	1,3-Dichloropropylene	0	0	0	61	61.0	12,322	
	Ethylbenzene	0	0	0	580	580	117,163	
Г	Methyl Bromide	0	0	0	110	110	22,221	

Model Results 9/7/2023 Page 6

	-	-	***************************************	_				
Methylene Chloride	0	0		0	2,400	2,400	484,814	
1,1,2,2-Tetrachloroethane	0	0		0	210	210	42,421	
Tetrachloroethylene	0	0		0	140	140	28,281	
Toluene	0	0		0	330	330	66,662	
1,1,1-Trichloroethane	0	0		0	610	610	123,224	
Trichloroethylene	0	0		0	450	450	90,903	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	32,321	
Naphthalene	0	0		0	43	43.0	8,686	
Total Xylenes	0	0		0	210	210	42,421	
1,2-cis-Dichloroethylene	0	0		0	N/A	N/A	N/A	

✓ TI	HH CCT (min):	720	PMF:	0.599	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	
------	---------------	-----	------	-------	---------------------------	-----	--------------	-----	--

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Barium	0	0		0	2,400	2,400	484,814	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	60,602	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	202,006	
Total Nickel	0	0		0	610	610	123,224	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	20,201	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	1,151	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	

			 				· · · · · · · · · · · · · · · · · · ·
1,2-Dichloroethane	0	0	 0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	6,666	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	13,736	
Methyl Bromide	0	0	0	100	100.0	20,201	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	11,514	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	2,020,059	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	

Model Results 9/7/2023 Page 7

1,2-Dichlorobenzene	0		0	1,000	1,000	202,006	
Naphthalene	0	0	0	N/A	N/A	N/A	
Total Xylenes	0	0	0	70,000	70,000	14,140,411	
1,2-cis-Dichloroethylene	0	0	0	12	12.0	2,424	

CRL CCT (min): 720 PMF: 0.919 Analysis Hardness (mg/l): N/A Analysis pH: 1	√ CRL	Analysis pH:	N/A	(g/I):	nalysis Hardness (mg/l):	0.919	PMF:	720	CCT (min):	☑ CRL
--	--------	--------------	-----	--------	--------------------------	-------	------	-----	------------	-------

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Chloride (PWS)	(ug/L)	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	0.58	0.58	664	
Bromoform	0	0		0	7	7.0	8,015	
Carbon Tetrachloride	0	0		0	0.4	0.4	458	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
	-	_		-				

NPDES Permit No. PA0011371

1,2-Dichloroethane	0	0	I I	0	9.9	9.9	11,335	I I
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	0.27	0.27	309	
Ethylbenzene	0	0		0	N/A	N/A	N/A	
Methyl Bromide	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	20	20.0	22,899	
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	229	
Tetrachloroethylene	0	0		0	10	10.0	11,449	
Toluene	0	0		0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0		0	0.6	0.6	687	
Vinyl Chloride	0	0		0	0.02	0.02	22.9	
1,2-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
Naphthalene	0	0		0	N/A	N/A	N/A	
Total Xylenes	0	0		0	N/A	N/A	N/A	
1,2-cis-Dichloroethylene	0	0		0	N/A	N/A	N/A	

✓ Recommended WQBELs & Monitoring Requirements

10del Results 9/7/2023 Page 8

No. Samples/Month:

4

	Mass	Limits		Concentra	tion Limits		1		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Barium	403,975	μg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	12,870	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	60,602	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	505,235	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	402	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	202,006	μg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	6,677	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Zinc	1.7	mg/L	Discharge Conc ≤ 10% WQBEL
Benzene	664	μg/L	Discharge Conc ≤ 25% WQBEL
Bromoform	8,015	μg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	458	μg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	20,201	μg/L	Discharge Conc ≤ 25% WQBEL
2-Chloroethyl Vinyl Ether	346,265	μg/L	Discharge Conc ≤ 25% WQBEL
Chloroform	1,151	μg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	11,335	μg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethylene	6,666	μg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichloropropylene	309	μg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	13,736	μg/L	Discharge Conc ≤ 25% WQBEL
Methyl Bromide	10,580	μg/L	Discharge Conc ≤ 25% WQBEL
Methylene Chloride	22,899	μg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	229	μg/L	Discharge Conc ≤ 25% WQBEL
Tetrachloroethylene	11,449	μg/L	Discharge Conc ≤ 25% WQBEL
Toluene	11,514	μg/L	Discharge Conc ≤ 25% WQBEL
1,1,1-Trichloroethane	57,711	μg/L	Discharge Conc ≤ 25% WQBEL
Trichloroethylene	687	μg/L	Discharge Conc ≤ 25% WQBEL
Vinyl Chloride	22.9	μg/L	Discharge Conc ≤ 25% WQBEL

1,2-Dichlorobenzene	15,774	μg/L	Discharge Conc ≤ 25% WQBEL
Naphthalene	2,693	μg/L	Discharge Conc < TQL
Total Xylenes	21,161	μg/L	Discharge Conc ≤ 25% WQBEL
MTBE	N/A	N/A	No WQS
1,2-cis-Dichloroethylene	2,424	μg/L	Discharge Conc ≤ 25% WQBEL

Discharge Information

Instructions	Disch	Stream		
Facility:	Stanley	Blk Decker	NPDES Permit No.: PA0011371	Outfall No.: 001
Evaluation Ty	уре:	Custom / Additives	Wastewater Description: gw remediation	_
		Discha	rge Characteristics	

	Discharge Characteristics										
Design Flow Hardness (mg/l)* pH (SU)* Partial Mix Factors (PMFs) Complete Mix Times (min)											
(MGD)*	naruness (mg/i)	pii (30)	AFC CFC THH CRL Q ₇₋₁₀ Q _h								
0.482	0.482 100 7										

						0.5 if left blank		0 if left blank			t blank
Discharge Pollutant	Units	Max Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
Sodium Bisulfate	μg/L	99999999									

Stream / Surface Water Information

Stanley Blk Decker, NPDES Permit No. PA0011371, Outfall 001

Instructions Disch	arge Str	eam													
Receiving Surface W	/ater Name:	Schuylkill I	River				No. Rea	aches to	Model:	1	_	tewide Criteri			
Location	Stream Coo	le* RMI	* Elevati	DA (mi²))* Slo	ope (ft/ft)		Withdraw MGD)	/al Apply F		_	SANCO Crite			
Point of Discharge	000833	75	182	904					Yes						
End of Reach 1	000833	74.7	7 180	908					Yes						
Q ₇₋₁₀									maver						
Location	RMI	LFY		(cfs)	W/D	Width	Depth	Velocit	Time	Tributa		Strea		Analys	
		(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(daye)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	75	0.277										69	7		
End of Reach 1	74.7	0.277													
Q_h															
Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location		(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(daye)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	75														
End of Reach 1	74.7														

Model Results

Stanley Blk Decker, NPDES Permit No. PA0011371, Outfall 001

Instructions Results	RETURN	TO INPUTS	SAVE AS PE	OF PRIN	T	II () Inputs	O Results	O Limits
☐ Hydrodynamics								
✓ Wasteload Allocation	s							
 AFC	, ,	15 PMF:	0.086	Analysis Hardne	ess (mg/l):	70.033	Analysis pH:	7.00
Pollutants	Conc	Stream Trib Cond	Fate Coef	WQC WQ Obj (μg/L) (μg/L)	WLA (µg/L)		Cor	mments
Sodium Bisulfate	0	0	0	2328.8 2,329	69,894			
☑ CFC	` ' _	720 PMF:	0.599	Analysis Hardn	ess (mg/l):	69.153	Analysis pH:	7.00
Pollutants	Conc	Stream Trib Cond	Coef	WQC WQ Obj (μg/L) (μg/L)	WLA (µg/L)		Cor	mments
Sodium Bisulfate	0	0	0	258.8 259	52,279			
☑ THH	CCT (min): 7	720 PMF:	0.599	Analysis Hardn	ess (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc	Stream Trib Cond	Coef	WQC WQ Obj (μg/L) (μg/L)	WLA (µg/L)		Cor	mments
Sodium Bisulfate	0	0	0	N/A N/A	N/A			
☑ CRL		720 PMF:	0.919	Analysis Hardn	ess (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc	Stream Trib Cond	Coef	WQC WQ Obj (μg/L) (μg/L)	WLA (µg/L)		Cor	mments
Sodium Bisulfate	0	0	0	N/A N/A	N/A			

✓ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

Mass Limits Concentration Limits

lodel Results 9/18/2023 Page 3

Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Sodium Bisulfate	180	281	44,799	69,894	111,997	μg/L	44,799	AFC	Discharge Conc ≥ 50% WQBEL (RP)

TRC EVALI		1 A3:A9 and D3:D9								
250 0.482 30 0.3 0 0.5	= Q stream = Q discha = no. samp = Chlorine = Chlorine = BAT/BPJ	n (cfs) orge (MGD) oles Demand of Stream Demand of Discharge Value	0.5 0.1 0.6 15	= CFC_Crite	al Mix Factor ria Compliance Time (min) ria Compliance Time (min)					
		r of Safety (FOS)		=Decay Coef						
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 62.574					
PENTOXSD TRG		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	3.992	5.1d	LTA_cfc = 36.377					
Source		Effluer	nt Limit Calcu	lations						
PENTOXSD TRG	5.1f		AML MULT =	1.231						
PENTOXSD TRG	5.1g	AVG MON L	IMIT (mg/l) =	0.500	BAT/BPJ					
	Ü		IMIT (mg/l) =							
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc										