

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor
Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0020621

APS ID 276446

Authorization ID 1433370

Applicant Name	-	esboro Borough Authority Iin County	Facility Name	Waynesboro STP		
Applicant Address	PO Bo	ox 310 57 E Main Street	Facility Address	99 Cemetery Avenue		
	Wayn	esboro, PA 17268-0310	_	Waynesboro, PA 17268		
Applicant Contact	Scott	Pryor	Facility Contact	Leitor Pryor		
Applicant Phone	(717)	762-2101	Facility Phone	(717) 762-2101		
Client ID	69281		Site ID	451504		
Ch 94 Load Status	Not O	verloaded	Municipality	Waynesboro Borough		
Connection Status	No Lir	nitations	County	Franklin		
Date Application Rece	eived	March 27, 2023	EPA Waived?	No		
Date Application Accepted		March 31, 2023	If No, Reason	Major Facility, Significant CB Discharge		

Approve	Deny	Signatures	Date
		Nicholas Hong, P.E. / Environmental Engineer	
Х		Nick Hong (via electronic signature)	February 23, 2024
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
х		Maria D. Bebenek for Daniel W. Martin	March 22, 2024
		Maria D. Bebenek, P.E. / Environmental Program Manager	
х		Maria D. Bebenek	March 22, 2024

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Waynesboro STP located at 99 Cemetery Avenue, Waynesboro, PA 17268 in Franklin County, municipality of Waynesboro Borough. The existing permit became effective on October 1, 2018 and expired on September 30, 2023. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on March 27, 2023.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 1.6 MGD annual average treatment facility. The hydraulic design capacity of the treatment units is 1.9 mgd. The applicant anticipates a proposed upgrade to the treatment facility in the next five years. The facility is planning on installing a trickling filter media replacement and headworks modification including grit removal and screening. The NPDES application has been processed as a Major Sewage Facility (< 5 MGD) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Franklin County and Waynesboro Borough Council and the notice was received by the parties on January 2023. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Trib 59292 To East Branch Antietam Creek. The sequence of receiving streams that the Trib 59292 To East Branch Antietam Creek discharges into are East Branch Antietam Creek, Antietam Creek, and the Potomac River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for cold water fishes (CWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Trib 59292 To East Branch Antietam Creek is a Category 2, 4c, and 5 stream listed in the 2024 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an attaining stream that supports fish consumption. The receiving waters is impaired (1) due to habitat modification from habitat alterations and (2) recreational uses due to pathogens from an unknown source. The receiving waters is not subject to a local total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- Due to the EPA triennial review, monitoring for E. Coli shall be required.
- Monitoring for PFAS related parameters shall be required.

Sludge use and disposal description and location(s):

- Barr Farm in Franklin County, Antrim under PAG083579 for agricultural utilization
- Gayman Farm in Franklin County, Antrim under PAG083579 for agricultural utilization
- West Branch Farm in Franklin County, Waynesboro under PAG083579 for agricultural utilization

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Summary of Review
Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name: Waynesboro WWTP

NPDES Permit # PA0020621

Physical Address: 99 Cemetery Avenue

Waynesboro, PA 17268

Mailing Address: PO Box 310

Waynesboro, PA 17268

Contact: Scott Pryor

Director of Utilities

leiter@waynesboropa.org

Consultant: Nicholaus Sahd

Principal Environmental Scientist

Gannett Fleming, Inc. 207 Senate Avenue Camp Hill, PA 17011 (717) 886-5395 nsahd@gfnet.com

1.2 Permit History

Permit submittal included the following information.

- NPDES Application
- Flow Diagrams
- Influent Sample Data
- Effluent Sample Data
- WET Testing Data

2.0 Treatment Facility Summary

2.1.1 Site location

The physical address for the facility is 99 Cemetery Avenue, Waynesboro, PA 17268. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

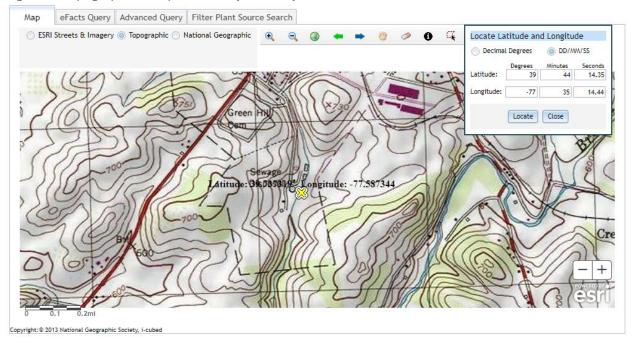
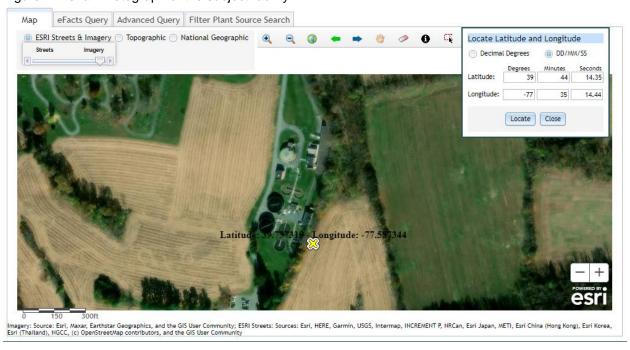



Figure 2: Aerial Photograph of the subject facility

2.1.2 Sources of Wastewater/Stormwater

The facility receives wastewater contribution from two different municipalities. See the summary table.

Sources of Wastewater									
Municipalities Served	Flow Contribution	Population							
Waynesboro Borough	95%	13,100							
Washington Township	5%	925							

The facility did not receive any hauled-in wastes in the last three years and does not anticipate receiving hauled-in wastes in the next five years.

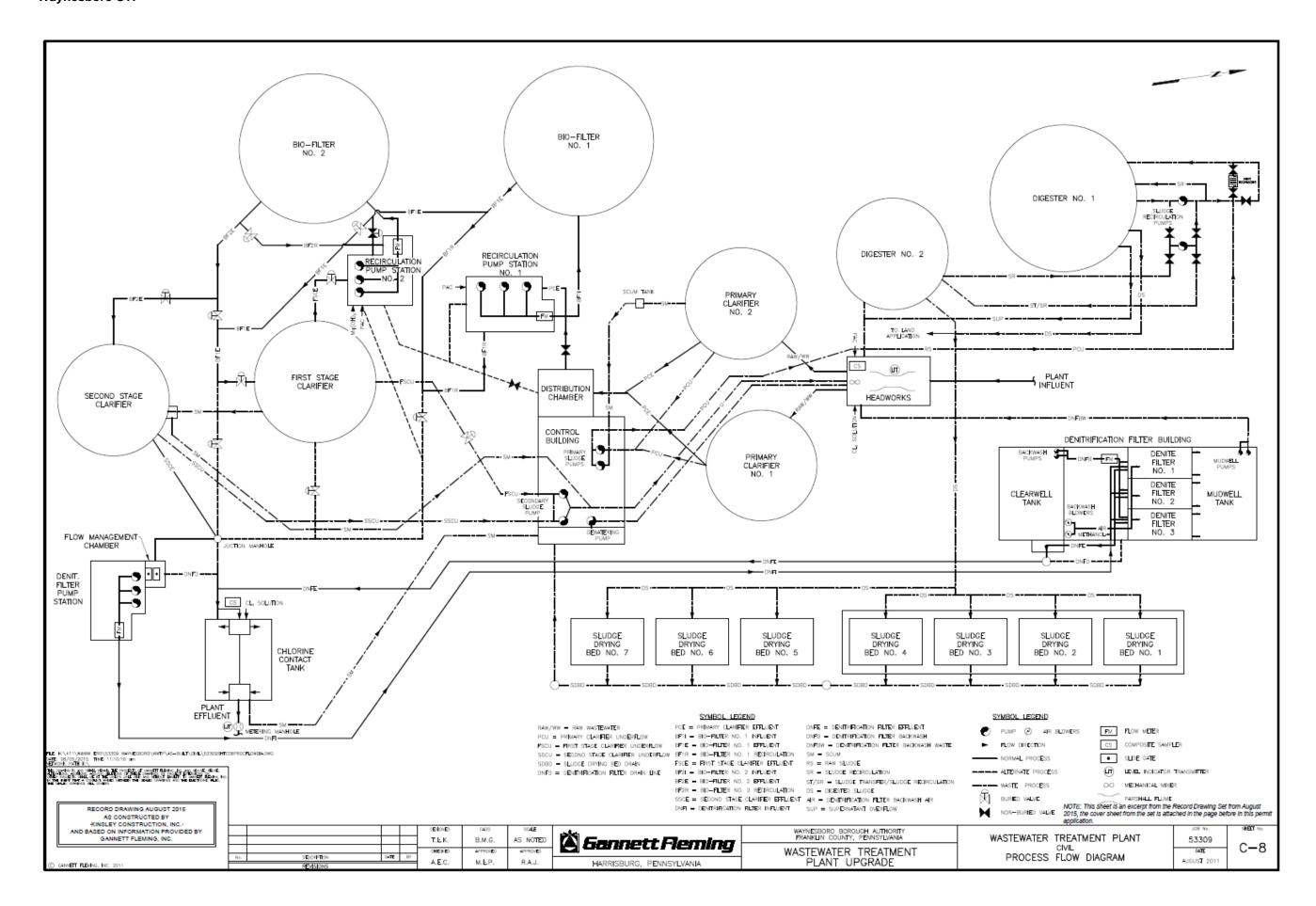
The facility has the following industrial/commercial users.

- Tyco Electronics located at 627 North Grant Street, Waynesboro, PA. The facility is a categorical industry with a total wastewater flow of 31,850 gpd. The sanitary wastewater contribution is 11,900 gpd (included in the total wastewater flow).
- York Refrigeration located at 100 Cumberland Valley Avenue, Waynesboro, PA. The facility is not
 a categorical industry. The total wastewater flow is 10,906 gpd. The sanitary wastewater
 contribution is 8,426 gpd (included in the total wastewater flow).

The facility has the following outfall information for stormwater.

Outfall No.	002	Design Flow (MGD) 0	
Latitude	39° 44' 20.35"	Longitude -77° 35' 13.80"	
Wastewater D	escription: Stormwater		
Outfall No.	003	Design Flow (MGD) 0	
Latitude	39° 44' 17.62"	Longitude -77° 35' 13.33"	
Wastewater D	escription: Stormwater		

2.2 Description of Wastewater Treatment Process


The subject facility is a 1.6 MGD design (annual average) flow facility. The subject facility treats wastewater using two primary clarifiers, stage one biofilter/clarifier, stage two biofilter/clarifier, denitrification filter, and chlorine disinfection prior to discharge through the outfall to UNT of the East Branch Antietam Creek.

The facility is being evaluated for flow, pH, dissolved oxygen, TRC, CBOD, TSS, fecal coliform, copper, nitrogen species, and phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

Treatment Facility Summary										
Treatment Facility Na	me: Waynesboro STP									
WQM Permit No.	Issuance Date									
2888401	06/01/2011									
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)						
Sewage	Secondary	Trickling Filter With Settling	Gas Chlorine	1.6						
-		•								
Hydraulic Capacity	Organic Capacity			Biosolids						
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal						
1.9	3245	Not Overloaded	Aerobic Digestion	Land Application						

A plan view schematic of the treatment process is shown.

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001		Design Flow (MGD)	1.6	
Latitude	39º 44' 14.61	"	Longitude	-77º 35' 14.78"	
Wastewater De	escription:	Sewage Effluent			

The subject facility outfall is within the vicinity of another sewage/wastewater outfall. The Washington Township MA WWTP (PA0080225, Latitude 39.72627 and Longitude 77.59202) is located on the East Branch Antietam Creek.

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

- Poly-aluminum chloride for phosphorus removal
- Methanol for denitrification aid
- Magnesium hydroxide for supplemental alkalinity control
- Chlorine gas for disinfection

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS I. A. For Outfall 001 , Latitude 39° 44' 14.35" , Longitude -77° 35' 14.44" , River Mile Index 1.003 , Stream Code 59291 Receiving Waters: Unnamed Tributary to East Branch Antietam Creek Type of Effluent: Sewage Effluent

^{2.} Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Re	quirements					
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
5. 4465)		Report	1004	1001	100/	1004		
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	7.0	XXX	9.0 Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.36	XXX	1.17	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	330	530	xxx	25.0	40.0	50	2/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	2/week	24-Hr Composite
Total Suspended Solids	400	600	XXX	30	45	60	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab

Outfall 001, Continued (from October 1, 2018 through September 30, 2023)

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)	Concentrations (mg/L)				Minimum (2)	Required
raiailietei	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	180	XXX	XXX	13.5	XXX	27	2/week	Composite
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	60	XXX	XXX	4.5	XXX	9	2/week	Composite
					0.132			24-Hr
Copper, Total	XXX	XXX	XXX	0.053	Daily Max	XXX	1/week	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Discharge from facility

^{1.} The permittee is authorized to discharge during the period from October 1, 2018 through September 30, 2023.

PART	PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS										
I.B.	For Outfall 001	_, Latitude <u>39° 44' 14.35"</u> , Longitude <u>-77° 35' 14.44"</u> , River Mile Index <u>1.003</u> , Stream Code <u>59291</u>									
	Receiving Waters:	Unnamed Tributary to East Branch Antietam Creek									
	Type of Effluent:	Sewage Effluent									

^{1.} The permittee is authorized to discharge during the period from October 1, 2018 through September 30, 2023.

^{2.} Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

	Effluent Limitations							quirements
Parameter	Mass Uni	ts (lbs) ⁽¹⁾		Concentrat	Minimum (2)	Required		
i arameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		_						24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
		·		·				24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	Report	29,223	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	3,896	XXX	XXX	XXX	XXX	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Discharge from facility

Footnotes:

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

12/13/2019:

There was nothing significant to report.

05/22/2020:

There was nothing significant to report.

07/22/2021:

Ensure that the facility's flow meters are calibrated on an annual basis.

05/02/2023:

- The NIST thermometers were observed to have not been replaced since February 2022. DEP recommends replacing or calibrating NIST thermometers on an annual basis.
- A review of DMR data for November 2022 was conducted and compared to the daily effluent supplemental report, influent supplemental report, lab results, and bench sheets. The average and max loadings were found to be incorrect on the influent and process control supplemental report. DEP requests revising average and max loadings on the influent supplemental report for November

⁽¹⁾ See Part C for Chesapeake Bay Requirements.
(2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

2022. DEP requests revising the November 21, 2022 NO2-N + NO3-N entry to match the lab results.

- The staff were shown the self-calculating excel influent supplemental report that can be used to report influent data. Sludge supplemental reports were not being maintained on site and submitted through eDMR for months when hauling didn't occur. DEP requested submitting the sludge supplemental report through eDMR each month and checking the box when sludge hauling does not occur.
- The facility switched to LABS, Inc from Franklin Analytical starting February 2023. A lab accreditation form was not submitted to eDMR.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.788 MGD in September 2023. The hydraulic design capacity of the treatment system is 1.9 MGD.

The off-site laboratory used for the analysis of the parameters was Fairway Laboratories located at 2019 Ninth Avenue, Altoona, PA 16602.

The off-site laboratory used for the WET analysis of the parameters was American Aquatic Testing, Inc. located at 890 North Graham Street, Allentown, PA 18109.

DMR Data for Outfall 001 (from December 1, 2022 to November 30, 2023)

Parameter	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22
Flow (MGD)												
Average Monthly	0.734	0.770	0.788	0.787	0.736	0.736	0.680	0.681	0.695	0.672	0.717	0.751
Flow (MGD)												
Daily Maximum	1.203	0.894	0.985	1.374	1.755	0.935	0.802	0.910	0.981	0.729	0.987	1.238
pH (S.U.)												
Minimum	7.0	7.0	7.1	7.4	7.5	7.6	7.5	7.5	7.5	7.6	7.5	7.4
pH (S.U.)												
Maximum	8.4	7.7	8.0	8.0	7.9	7.8	7.8	7.8	8.1	8.0	7.9	8.0
DO (mg/L)												
Minimum	8.1	7.3	7.1	7.0	6.4	6.8	7.2	7.0	8.0	8.0	8.1	8.5
TRC (mg/L)												
Average Monthly	0.23	0.24	0.27	0.26	0.19	0.19	0.17	0.22	0.19	0.24	0.22	0.24
TRC (mg/L)												
Instantaneous												
Maximum	0.47	0.38	0.58	0.41	0.35	0.32	0.33	0.34	0.35	0.35	0.33	0.35
CBOD5 (lbs/day)												
Average Monthly	< 41	34	< 2.5	< 17	< 19	29	28	30	35	40	< 56	51
CBOD5 (lbs/day)												
Weekly Average	64	39	< 2.7	< 20	29	34	34	32	46	44	75	63
CBOD5 (mg/L)												
Average Monthly	< 6.3	5.4	< 16.0	< 2.7	< 3.2	4.7	4.9	5.5	6.3	7.1	< 9.6	8.2
CBOD5 (mg/L)												
Weekly Average	7.8	6.1	< 18.0	< 3.8	4.7	5.2	6.0	6.0	8.4	7.6	13.7	12.1
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	1346	1442	1186	1123	1124	1416	1621	1816	1491	1517	1682	1808
BOD5 (lbs/day)												
Raw Sewage Influent												
 	2523	2131	1485	1496	1246	1666	2093	3332	2212	1740	1959	3516
BOD5 (mg/L)												
Raw Sewage Influent												
 Abrable	004	054	202	405	047	227	040	202	000	070	007	075
Monthly	231	251	203	195	217	237	242	283	268	270	287	275
TSS (lbs/day)	40	4.5	40	40	4.4	4.4	00	0.4	0.4	0.4	50	47
Average Monthly	10	15	13	18	11	14	22	31	31	24	50	17

NPDES Permit No. PA0020621

TSS (lbs/day)												
Raw Sewage Influent Average												
Monthly	675	701	649	782	628	646	896	869	760	762	675	< 933
TSS (lbs/day)	0.0	701	0.10	. 02	020	0.10	000	000		, 02	0.0	1000
Raw Sewage Influent												
 br/> Daily Maximum	1505	1144	960	1235	1002	1004	1592	1226	895	1010	1198	< 3365
TSS (lbs/day)												
Weekly Average	14	19	26	33	15	16	46	43	50	34	93	24
TSS (mg/L)												
Average Monthly	1	2	2	3	2	2	4	6	6	4	8	3
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	113	122	111	136	122	108	134	136	136	136	115	< 136
TSS (mg/L)	0	0	4	_	0	0			0	0	45	4
Weekly Average	2	3	4	5	3	3	8	8	9	6	15	4
Fecal Coliform (No./100 ml)												
Geometric Mean	< 14	39	21	> 82	27	17	46	35	< 11	7	< 2	< 1
Fecal Coliform	< 14	39	21	> 02	21	17	40	33	V 11	,	\ <u>\</u>	_ `
(No./100 ml)												
Instantaneous												
Maximum	980	770	1553	> 2420	187	147	248	276	167	104	35	5
Nitrate-Nitrite (mg/L)							_	_				_
Average Monthly	< 13.95	5.39	< 4.64	< 4.6	< 3.2	< 2.22	< 2.3	< 2.5	< 2.9	< 2.6	< 4.36	< 4.26
Nitrate-Nitrite (lbs)												
Total Monthly	< 2753	1060	< 919	< 960	< 564	< 410	< 404	< 405	< 498	< 414	< 792	< 852
Total Nitrogen (mg/L)												
Average Monthly	203	9.3	< 7.06	< 7.3	< 7.2	< 7.9	< 7.28	< 7.3	< 8	< 11	< 9.535	< 9.76
Total Nitrogen (lbs)												
Effluent Net 												
Total Monthly	< 1487	1823	< 1383	< 1478	< 1268	< 1428	< 1266	< 1184	< 1380	< 1730	< 1719	< 1932
Total Nitrogen (lbs)	440-	4000	4000	4	4000	4 400	4000	4404	4000	4=00	4=40	4600
Total Monthly	< 4187	1823	< 1383	< 1478	< 1268	< 1428	< 1266	< 1184	< 1380	< 1730	< 1719	< 1932
Total Nitrogen (lbs)												
Effluent Net Total Annual			< 17618									
Total Nitrogen (lbs)			< 1/018									
Total Nitrogen (ibs)			< 17618									
TOTAL ATTITUAL			< 1/010									

NPDES Permit No. PA0020621

Ammonia (lbs/day)												
Average Monthly	39	< 13	< 7	< 7	12	20	13	12	18	28	19	30
Ammonia (mg/L)												
Average Monthly	5.9	< 2.1	< 1.1	< 1.1	2.1	3.3	2.4	2.3	3.2	4.9	3.2	4.8
Ammonia (lbs)												
Total Monthly	1162	< 417	< 210	< 203	371	596	418	373	549	781	574	941
Ammonia (lbs)												
Total Annual			< 6123									
TKN (mg/L)												
Average Monthly	7.3	3.9	< 2.42	2.7	4	5.7	4.99	4.8	5.1	8.3	5.17	5.5
TKN (lbs)												
Total Monthly	1436	764	< 464	518	704	1019	862	779	882	1317	927	1080
Total Phosphorus												
(lbs/day)												
Average Monthly	10	8	7	6	7	7	6	6	5	8	6	< 5
Total Phosphorus												
(mg/L)												
Average Monthly	1.6	1.19	1.03	0.88	1.23	1.12	1.03	1.18	0.99	1.41	1.04	< 0.751
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	309	235	200	174	223	205	179	191	170	221	189	< 146
Total Phosphorus (lbs)												
Total Monthly	309	235	200	174	223	205	179	191	170	221	189	< 146
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual			< 2266									
Total Phosphorus (lbs)												
Total Annual			< 2266									
Total Copper (mg/L)												
Average Monthly	0.008	< 0.006	< 0.005	< 0.005	< 0.004	< 0.005	< 0.005	< 0.006	0.006	0.009	< 0.010	< 0.010
Total Copper (mg/L)												
Daily Maximum	0.011	0.007	< 0.005	< 0.005	< 0.005	< 0.005	0.006	0.006	0.007	0.010	0.0106	0.010

3.2.1 Chesapeake Bay Truing

The table summarizes the facility's compliance/noncompliance with Chesapeake Bay cap loads.

Chesa	Chesapeake Bay Annual Nutrient Summary								
	Waynesboro WWTP								
PA0020621									
Year for Truing Period (Oct 1 - Annual Net Mass Load Annual Net Limits (Yes/No)									
Sept 30)	IVIUSS LOUG	IVIA33 LOAG	Nitrogen	Phosphorus					
2018	23,865	2,735	Yes	Yes					
2019	21,414	2,422	Yes	Yes					
2020	21,600	3,031	Yes	Yes					
2021	27,013	2,137	Yes	Yes					
2022	20,051	3,262	Yes	Yes					
2023	17,618	2,266	Yes	Yes					
Notes:									
Nitrogen Annual	Net Mass CA	P Load =	29,223	lbs/yr					
Phosphorus Annu	ıal Net Mass	CAP Load =	3,896	lbs/yr					

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in October 1, 2018 to January 23, 2023, the following were observed effluent non-compliances.

							•	n-Compliance with		
						Beginni	ing Octobe	r 1, 2018 and Ending	g January 23, 2023	
NON_COMPLI ANCE_DATE		NON_COMPL _CATEGORY_ DESC	PARAME TER	SAMPLE_ VALUE	VIOLATIO N_CONDI TION	PERMIT_ VALUE	UNIT_OF _MEASU _RE	STAT_BASE_CODE	DISCHARGE_COMMENTS	FACILITY_COMMENTS
9/2/2021		Unauthorize d Discharges							Due to 6" of rain in a 12-hour period the receiving stream level prevented the plant from fully discharging. The final clarifiers overflowed un-chlorinated effluent for approximately 4-hours. Some effluent did leave the plant via discharge point 001. It is difficult to estimate the volume of the overflow.	
9/22/2023	Violation of permit condition	Effluent	Fecal Coliform	> 2420	>	1000	No./100 ml	Instantaneous Maximum		Had one test event out of compliance for an unknown reason, we increased chlorine feed rate, and had our contract lab change the test procedure to give us an actual number instead of (greater than).
9/22/2023	Violation of permit condition	Effluent	Fecal Coliform	>82	>	200	No./100 ml	Geometric Mean		
10/19/2023	Violation of permit condition	Effluent	Fecal Coliform	1553	>	1000	No./100 ml	Instantaneous Maximum		

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in October 1, 2018 to January 23, 2023, there were no observed enforcement actions.

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

	20	23	
Se	wage Sludge / Biosolid	s Production Information	on
	Hauled	Off-Site	
Date (2023)	Gallons	% Solids	Dry Tons
January			
February			
March	78,000	1.41	4.59
April	510,000	2.218	48.344
May			
June	174,000	2.21	16.035
July			
August	180,000	2.085	14.191
September			
October	168,000	2.24	15.593
November	534,000	2.2075	49.361
Notes:			
BIOSOLIDS/SEWAGE SLU	INGE DISDOSAL LOCATIO) N	
- Barr Farm in Franklin C			l utilization
- Gayman Farm in Frankl	•		
- West Branch Farm in Fr			

- West Branch Farm in Franklin County, Waynesboro under PAG083579 for agricultural utilizatic

3.5 Open Violations

No open violations existed as of February 2024.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be Trib 59292 To East Branch Antietam Creek. The sequence of receiving streams that the Trib 59292 To East Branch Antietam Creek discharges into are East Branch Antietam Creek, Antietam Creek, and the Potomac River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

Per the NPDES application, the closest PWS to the subject facility is the Brunswick Mayor and Council in Brunswick, MD located approximately 30 miles downstream of the subject facility on the Potomac River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2024 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2024 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2, 4c, and 5 waterbody. This stream is an attaining stream that supports fish consumption. The receiving waters is impaired (1) due to habitat modification from habitat alterations and (2) recreational uses due to pathogens from an unknown source. The designated use has been classified as protected waters for cold water fishes (CWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest gauge station to the subject facility is the Antietam Creek station at Waynesboro, PA (USGS station number 01619000). This gauge station is located approximately 2.6 miles downstream of the subject facility's discharge point and 1.7 miles downstream from the POFU.

For WQM modeling, default values for pH and stream water temperature data were utilized. pH was estimated to be 7.0 and the stream water temperature was estimated to be 20 C.

The hardness of the stream was estimated by collecting a sample upstream of the facility. The sampling result was 109 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

	Gauge Station Data			
USGS Station Number	01619000			
Station Name	Antietam Creek near Wa	aynesboro, PA		
Q710	23.4	ft ³ /sec		
Drainage Area (DA)	93.5	mi ²		
Q1-10 / Q7-10 ratio	0.96			
Q30-10 / Q7-10 ratio	1.11			
Calculations				
The low flow yield of th	ne gauge station is:			
Low Flow Yield (LFY) = 0	Q710 / DA			
LFY =	(23.4 ft ³ /sec / 93.5 mi ²)			
LFY =	0.2503	ft ³ /sec/mi ²		
The low flow at the sub	ject site is based upon the DA of	51.3	mi ²	
Q710 = (LFY@gauge stat	tion)(DA@Subject Site)			
$Q710 = (0.2503 \text{ ft}^3/\text{sec/r})$	mi ²)(51.3 mi ²)			
Q710 =	12.839	ft ³ /sec		

Outfall No. 001		Design Flow (MGD)	1.6		
Latitude 39° 4	4' 14.35"	Longitude	-77º 35' 14.44"		
Quad Name		Quad Code			
Wastewater Descrip	ption: Sewage Effluent				
Receiving Waters	Unnamed Tributary to East Bra Antietam Creek (CWF)	nch Stream Code	59292 (Discharge Location) 59291 @ POFU		
NHD Com ID	49481294	RMI	0.88 (Discharge location) 0.98 @ POFU		
Drainage Area	51.3 @POFU	Yield (cfs/mi²)	0.2503 @POFU		
Q ₇₋₁₀ Flow (cfs)	12.839 @ POFU	Q ₇₋₁₀ Basis	StreamStats/StreamGauge		
Elevation (ft)	612	Slope (ft/ft)			
Watershed No.	13-C	Chapter 93 Class.	CWF, MF		
Existing Use	Same as Chapter 93 class	Existing Use Qualifier			
Exceptions to Use		Exceptions to Criteria			
Assessment Status	Attaining Use(s) for fish	consumption. Impaired for aquation	c life.		
Cause(s) of Impairr	ment Habitat modification and	d pathogens			
Source(s) of Impair	ment Habitat alterations				
TMDL Status	Not applicable	Name			
Background/Ambie	nt Data	Data Source			
pH (SU)	7.0	Default			
Temperature (°C)	20	Default			
Hardness (mg/L)	109	Data from NPDES app. Sampling on 9/29/2022			
Other:					
Nearest Downstrea	ım Public Water Supply Intake	Brunswick Mayor and Counci NPDES application)	l in Brunswick, MD (from		
PWS Waters	Potomac River	Flow at Intake (cfs)			
PWS RMI		Distance from Outfall (mi)	30		

Discharge, Receiving	Discharge, Receiving Waters and Water Supply Information								
Outfall No. 002		Design Flow (MGD)	0						
Latitude 39° 44	4' 17.15"	Longitude	-77º 35' 13.29"						
Quad Name		Quad Code							
Wastewater Descrip	otion: Stormwater								
	Unnamed Tributary to East Branch								
Receiving Waters	Antietam Creek (CWF, MF)	Stream Code	59292						
NHD Com ID	49481294	RMI	0.9200						
Drainage Area		Yield (cfs/mi ²)							
Q ₇₋₁₀ Flow (cfs)		Q ₇₋₁₀ Basis							
Elevation (ft)		Slope (ft/ft)							
Watershed No.	13-C	Chapter 93 Class.	CWF, MF						
Existing Use		Existing Use Qualifier							
Exceptions to Use		Exceptions to Criteria							
Assessment Status	Attaining Use(s) for fish consu	mption; Impaired for aquation	life/recreational uses						
Cause(s) of Impairm	nent Habitat modifications and path	ogens							
Source(s) of Impairr	ment Habitat alterations								
· · · · ·									

Outfall No. 003		Design Flow (MGD)	0
Latitude 39º 44'	16.36"	Longitude	-77º 35' 13.65"
Quad Name		Quad Code	
Wastewater Descripti	on: Stormwater		
	Unnamed Tributery to East Pressh		
	Unnamed Tributary to East Branch Antietam Creek (CWF, MF)	Stream Code	59292
NHD Com ID	49481294	RMI	0.9000
Drainage Area		Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs)		Q ₇₋₁₀ Basis	
Elevation (ft)		Slope (ft/ft)	
Watershed No.	13-C	Chapter 93 Class.	CWF, MF
Existing Use		Existing Use Qualifier	
Exceptions to Use _		Exceptions to Criteria	
Assessment Status	Attaining Use(s) for fish con	sumption; Impaired for aquation	c life/recreational uses
Cause(s) of Impairme	ent Habitat modifications and pa	athogens	
Source(s) of Impairme	ent Habitat alterations		

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

For Waynesboro WWTP, Outfall 001 discharges near the plant location at latitude 39.73738° and longitude -77.58738°. The wastewater generated by the treatment plant dominates the assimilative capacity of the receiving waters (Tributary 59292 to East Branch Antietam Creek). For modelling, the point of first use is located at the confluence of Tributary 59292 to East Branch Antietam Creek and East Branch Antietam Creek at RMI 0.98. An additional node for Washington Township MA (PA0080225, Latitude 39.72627 and Longitude 77.59202) was modelled at RMI 0.94. The RMI for the two facilities have been utilized in the 2005 and 2009 Fact Sheets.

The modeling point nodes utilized for this facility are summarized below.

General Data 1	(Modeling Point #1)	(Modeling Point #2)	(Modeling Point #3)	Units
Stream Code	59291	59291	59291	
River Mile Index	0.98	0.94	0	miles
Elevation	567	564	550	feet
Latitude	39.726458	39.726194	39.724378	
Longitude	-77.592427	-77.593542	-77.60543	
Drainage Area	51.3	51.4	93.2	sq miles
Low Flow Yield	0.2503	0.2503	0.2503	cfs/sq mile

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge:
- (c) a 30-day average concentration for the NH₃-N in the discharge;
- (d) 24-hour average concentration for NH₃-N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were the pollutants in Groups 1 through 5.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Applicable monitoring or permit limits for toxics are summarized in Section 6.

The Toxics Management Spreadsheet output has been included in Attachment B.

5.3.3 Whole Effluent Toxicity (WET)

Whole effluent toxicity is the aggregate toxic effect from a facility's wastewater discharge on aquatic organisms. WET measures the effect of wastewater effluent on an organisms' ability to survive, grow, and reproduce. WET testing is either acute or chronic. Acute testing measures lethality, the ability for an organism to survive after no more than 96 hours of exposure to an effluent. Chronic tests measures both lethality, immobility, and sublethal endpoints to exposures ranging longer than 96 hours and up to 8 days.

WET is required if the applicant satisfies any one of the following conditions.

- (a) Major sewage facilities with an average annual design flow greater than or equal to 1.0 MGD (25 Pa. Code § 92a.27(a)(1)(i)).
- (b) Sewage facilities with EPA-approved pretreatment programs or will be required in the permit to develop a program (25 Pa. Code § 92a.27(a)(1)(i)).
- (c) Other facilities that are considered candidates for WET testing by one or more of the factors contained in 25 Pa. Code § 92a.27(a)(2).

5.3.3.1 WET Tests Review

The four most recent WET tests were submitted and reviewed. The WET tests were conducted between 2017 and 2022. In August 2022, the Ceriodaphnia for reproduction failed the WET test. The WET tests were re-sampled with passing results in September 2022.

The in-stream waste concentration and dilution series was estimated using partial mixing factor factors from Toxics Management Spreadsheet, the design flow rate for the facility, and the Q710.

The proposed NPDES permit shall utilize a chronic instream waste concentration of 16%. The complete dilution series will be 4%, 8%, 16%, 58%, and 100%.

The derivation is shown in the calculations.

			Whole Effluent	t Toxicity (WET)			
			whole Elliueni	l TOXICILY (WET)			
For Outfall 001 (Chronic WET Testi	ng was completed:					
Tor Outlant Corr, V	Jinomo WET Testi	ng was completed.					
Х	For the permit rene	ewal application (4 to	ests).				
	· · · · · · · · · · · · · · · · · · ·	out the permit term.					
	-	out the permit term a	and a TIE/TRE was	conducted.			
	Other:	latine pomit term e					
The dilution series the results is: 16%		was: 100%, 58%, 16	6%, 8%, and 4%.	The Target Instrean	Waste Concentra	tion (TIWC) to be us	sed for analysis of
Summary of Fou	r Most Recent Tes	t Results					
ounmary or rou	WOSE RECEIL TES	<u>k resurts</u>					
(NOTE – Enter res	sults into one table	depending on which	h data analysis met	thod was used)			
(NOTE EMETICE	land into one tubic,	depending on winer	r data dilalyolo illot	inou wao accaj.			
TST Data Analys	is						
(NO	TE – In lieu of reco	ording information be	elow, the application	n manager may atta	ach the DEP WET	Analysis Spreadshe	eet).
Test Date	Ceriodaphnia R	esults (Pass/Fail)	Pimephales Re	sults (Pass/Fail)			
Test Date	Survival	Reproduction	Survival	Growth			
11/7/2017	Pass	Pass	Pass	Pass			
7/16/2019	Pass	Pass	Pass	Pass			
6/9/2020	Pass	Pass	Pass	Pass			
8/2/2022	Pass	Fail	Pass	Pass			
9/13/2022	Pass	Pass					
		replicate data for the ne critical t value. A "t					
		ccursion above water is at least one test				NOTE – In general	, reasonable
Comments:							
No. There wa	sa WET failure o	n August 2, 2022 fo		eproduction. The g result	WET was retested	d on September 1:	3, 2022 with a

IWCa =	PMFa = PMFc = Qd = Q710 = Qd = Q710 = Q710 = Qd = Q710 = Qd) / ((Q7-10 No		Qd x 1.547))] x 100				
IWCa =	PMFc = Qd = Q710 = Permine IWC - Qd = Q710 = Qd = Q	1.6 12.839 Acute (IWC)	cfs (a)	Qd x 1.547))] x 100				
IWCa =	Q710 = Sermine IWC - [(Qd x 1.547) 28.24 CA < 1% harge is to the	12.839 Acute (IWC) / ((Q7-10	cfs (a)	Qd x 1.547))] x 100				
IWCa =	[(Qd x 1.547) 28.24 CA < 1%	Acute (IWC	<u>'a)</u>	Qd x 1.547))] x 100				
IWCa =	28.24 CA < 1%) / ((Q7-10 No		Qd x 1.547))] x 100				
IWCa =	28.24 CA < 1%) / ((Q7-10 No		Qd x 1.547))] × 100				
IWCa =	28.24 CA < 1%) / ((Q7-10 No		Qd x 1.547))] × 100				
IWCa =	28.24 CA < 1% narge is to the	No	x PMFa) + (Qd x 1.547))] x 100				
IWCa =	28.24 CA < 1% narge is to the	No	x PMFa) + (Qd x 1.547))] x 100				
ls IW	CA < 1% narge is to the								
ls IW	CA < 1% narge is to the								
	narge is to the								
If the disch		tidal portio		(Yes- acute	e tests req	uired; No-	chronic tes	st required	l)
If the disch		tidal portio		,				•	ĺ
	st for Permit F		on of the De	laware Riv	er, indicate	how the	type of tes	t was dete	rmined.
	st for Permit F								
Type of Te		Renewal:							
,		'	No Chro	nic tests wi	ll he requi	red			
	1		140. СПТО	ine tests wi	ii be requi	icu.	1		
Sten 2a: Di	etermine Targ	et IWCa (If	acute tests	required)					
Step zu. De	ctermine range	et ivi eu (ij	acate tests	requiredy					
TIWCa =	IWCA / 0.3								
TIWCa =	94.12								
Step 2b: De	etermine Targ	et IWCc (If	chronic test	s required)					
ICCc =	[(Qd x 1.547)	/ / / O7-10 v	D\\/Ec\ + (D	esian Flow	MGD v 1 5	47)	n		
iccc –	[(Qu x 1.547)	/ ((Q/-10 X	r wrc) i (D	esigninow	IVIOD X 1.5	4////X 10			
ICCc =	16.16								
Step 3: Det	ermine Dilutio	on Series							
	Dilution Series = 1		100%	58%	16%	8%	4%		
							.,.		
WET Limits									
VVETEIIIII	•								
Has reasor	nable potentia	l been dete	ermined?	No					
Will WET li	imits be estab	lished in th	e permit ?	No					
If WET limi	its wil be esta	blished, ide	entify the sp	ecies and t	the limit va	alues for th	ne permit (TU).	
			Not	applicable					
1]
If WET limi	its will not be	established	d, but reaso	nable pote	ntial was d	letermine	d, indicate t	the	
	or not establis						,	-	
			Not	applicable					
			Not	applicable				<u> </u>	

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

A TMDL for a given pollutant and waterbody is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include an implicit or explicit margin of safety (MOS) to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. The TMDL components are illustrated using the following equation:

TMDL =
$$\Sigma WLAs + \Sigma LAs + MOS$$

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was September 13, 2021.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and

Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30. For facilities that have received Cap Loads in any other form, the Cap Loads will be modified accordingly when the permits are renewed.

Offsets have been incorporated into Cap Loads in several permits issued to date. From this point forward, permits will be issued with the WLAs as Cap Loads and will identify Offsets separately to facilitate nutrient trading activities and compliance with the TMDL.

Based upon the supplement the subject facility has been categorized as a Sector A discharger. The supplement defines Sector A as a sewage facility is considered significant if it has a design flow of at least 0.4 MGD.

Table 5 of the Phase 3 WIP (revised September 13, 2021) presents all NPDES permits for Significant Sewage dischargers with Cap Loads. The NPDES Permit No., phase, facility name, latest permit issuance date, expiration date, Cap Load compliance start date, TN and TP Cap Loads, and TN and TP Delivery Ratios are presented. In addition, if TN Offsets were incorporated into the TN Cap Loads when the permit was issued, the amount is shown; these Offsets will be removed from Cap Loads upon issuance of renewed permits to implement Section IV of this document (i.e., a facility may use Offsets for compliance but may not register them as credits).

The total nitrogen (TN) and total phosphorus (TP) cap loads itemized by Table 5 for the subject facility are as follows:

TN Cap Load (lbs/yr)	29,223
TN Delivery Ratio	0.864
TP Cap Load (lbs/yr)	3,896
TP Delivery Ratio	0.725

Expansions by any Significant Sewage discharger will not result in any increase in Cap Loads. Where non-significant facilities expand to a design flow of 0.4 MGD or greater, the lesser of baseline Cap Loads of 7,306 lbs/yr TN and 974 lbs/yr TP or existing performance will be used for permits, and the load will be moved from the Non-Significant sector load to the Significant Sewage sector load. If considered necessary for environmental protection, DEP may decide to move load from the Point Source Reserve to the Significant Sewage sector in the future.

The minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for Significant Sewage dischargers is 2x/week.

This facility is subject to Sector A monitoring requirements. Monitoring shall be required at least 2x/week.

Reporting

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30.

Facilities with NPDES permits must use DEP's eDMR system for reporting, except small flow treatment facilities. An Annual DMR must be submitted by the end of the Truing Period, November 28. As attachments to the Annual DMR a facility must submit a completed Annual Chesapeake Bay Spreadsheet, available through DEP's Supplemental Reports website, which contains an Annual Nutrient Monitoring worksheet and an Annual Nutrient Budget worksheet. This Spreadsheet will be submitted once per Compliance Year only, and reflect all nutrient sample results (for the period October 1 – September 30), Credit transactions (including the Truing Period) and Offsets applied during the Compliance Year.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected.* Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.l.1 and 40 CFR 122.l.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

Water Quality Modeling and Point of First Use

Water quality modeling was conducted consistent with the *Policy and Procedure for Evaluating Wastewater Dischargers to Intermittent and Ephermeral Streams, Drainage Channels and Swales, and Storm Sewers* (Document Number 391-2000-014). Surface water quality criteria and protected uses designed to protect aquatic life apply at the point of first surface water use and at all points downstream (Policy and Procedure for Evaluating Page 3).

For Waynesboro WWTP, Outfall 001 discharges near the plant location at latitude 39.73738° and longitude -77.58738°. The wastewater generated by the treatment plant dominates the assimilative capacity of the receiving waters (Tributary 59292 to East Branch Antietam Creek). For modelling, the point of first use is located at the confluence of Tributary 59292 to East Branch Antietam Creek and East Branch Antietam Creek at RMI 0.98. An additional node for Washington Township MA (PA0080225, Latitude 39.72627 and Longitude 77.59202) was modelled at RMI 0.94. The RMI for the two facilities have been utilized in the 2005 and 2009 Fact Sheets. The 2017 Fact Sheet utilized a slightly different RMI for Waynesboro. This fact sheet will utilize the RMI utilized in the 2005 and 2009 Fact Sheet for consistency. A RMI stem showing the RMI is enclosed in the Attachment.

For TRC, the sum of the flow rates from Washington Township and Waynesboro were added together to evaluate impacts of residual chlorine on the receiving stream.

The Toxics Management Spreadsheet (TMS) was conducted through two different runs. Run #1 resulted in numerous parameters to be recommended for limits or monitoring requirements. Run #2 identified several parameters that had laboratory results not exceeding DEP quantitation limits. These results were placed in the TMS with a less than (<) value in TMS. Many of the parameter were dropped from limits or monitoring requirements.

Other parameters resulted in no reasonable potential. Copper and toxaphene were flagged as reasonable potential. The DMR for Copper was summarized in the table in Attachment. The daily maximum from the DMR from October 1, 2018 to January 23, 2024 was 0.050 mg/l. This value did not exceed the permit limit of 0.053 mg/l. Copper will remain in the permit at the same permit limit of 0.053 mg/l.

For toxaphene, there was a total of three samples collected. Two of the samples were collected at <0.208 ug/l. One sample was collected at <1.04 ug/l. DEP contacted the laboratory and they were not able to lower the detection limits for the sample that was <1.04 ug/l. Since there were two samples at <0.208 ug/l, DEP did not include the sample analyzed at <1.04 ug/l. DEP modelled toxaphene at <0.208 ug/l. No reasonable potential was observed.

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, (c) Toxics, (d) Non-Conventional Pollutants, and (e) Parameters under review by Chapter 92a.61.

6.1.1 Conventional Pollutants and Disinfection

	Summary	of Proposed N	NPDES Parameter Details for Conventional Pollutants and Disinfection Waynesboro STP, PA0020621	
Parameter	Permit Limitation Required by ¹ :			
pH (S.U.)	TBEL	Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).	
		Effluent Limit:	Effluent limits may range from pH = 7.0 to 9.0	
		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1). The existing permit included a minimum pH of 7.0. This limit shall continue to the proposed permit	
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).	
Dissolved	BPJ	Effluent Limit:	Effluent limits shall be greater than 5.0 mg/l.	
Oxygen	BPJ	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.	
		Monitoring:	The monitoring frequency shall be 2x/week as a 24-hr composite sample (Table 6-3).	
		Effluent Limit:	Effluent limits shall not exceed 330 lbs/day and 25 mg/l as an average monthly.	
CBOD	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL.	
	TBEL	Monitoring:	The monitoring frequency shall be 2x/week as a 24-hr composite sample (Table 6-3).	
TSS		Effluent Limit:	Effluent limits shall not exceed 400 lbs/day and 30 mg/l as an average monthly.	
		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD.	
	TBEL	Monitoring:	The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3).	
		Effluent Limit:	The average monthly limit should not exceed 0.36 mg/l and/or 1.17 mg/l as an instantaneous maximum.	
TRC		forms of aqual imposed on a expressed in a (Implementation Based on the calculated by The monitorin WQBEL. Whe	orine in both combined (chloramine) and free form is extremely toxic to freshwater fish and other tic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations to be discharger shall be the more stringent of either the WQBEL or TBEL requirements and shall be the NPDES permit as an average monthly and instantaneous maximum effluent concentration on Guidance Total Residual Chlorine 4). stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject facility the TRC Evaluation worksheet, the WQBEL is more stringent than the TBEL. g frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by en conducting the TRC evaluation, both the Washington TWP (1.85 MGD) and Waynesboro MGD) were included as the flow rate.	
	TBEL	Monitoring:	The monitoring frequency shall be 2x/week as a grab sample (Table 6-3).	
Fecal Coliform		Effluent Limit:	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent limits shall not exceed 2000 No./100 mL as a geometric mean.	
		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).	
Notes:				

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

² Monitoring frequency based on flow rate of 1.6 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.2 Nitrogen Species and Phosphorus

Permit Limitation

Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus

Waynesboro STP, PA0020621

Parameter	Required by ¹ :	Recommendation			
	Anti-backsliding	Monitoring:	The monitoring frequency shall be 2x/week as a 24-hr composite sample		
Ammonia- Nitrogen		Effluent Limit:	During the months of May 1 to October 31, effluent limits shall not exceed 60 lbs/day and 4.5 mg/l as an average monthly. During the months of November 1 to April 30, effluent limits shall not exceed 180 lbs/day and 13.5 mg/l as an average monthly.		
		Rationale:	Due to anti-backsliding regulations, the existing permit shall continue to the proposed permit.		
	Chesapeake Bay TMDL	Monitoring:	The monitoring frequency shall be 2x/week as a 24-hr composite sample		
Nitrate-		Effluent Limit:	No effluent requirements.		
Nitrite as N		Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/week.		
		Monitoring:	The monitoring frequency shall be 1x/month as a calculation		
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.		
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/month.		
		Monitoring:	The monitoring frequency shall be 2x/week as a 24-hr composite sample		
TKN	Chesapeake Bay	Effluent Limit:	No effluent requirements.		
IKN	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/week.		
		Monitoring:	The monitoring frequency shall be 2x/week as a 24-hr composite sample		
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.		
Phosphorus	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/week.		
	Chesapeake Bay TMDL	Monitoring:	The monitoring frequency shall be 1x/yr as a calculation		
Net Total Nitrogen		Effluent Limit:	Effluent limits shall not exceed 29,223 lbs/yr		
		Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.		
	Chesapeake Bay TMDL	Monitoring:	The monitoring frequency shall be 1x/yr as a calculation		
Net Total Phosphorus		Effluent Limit:	Effluent limits shall not exceed 3,896 lbs/yr		
		Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.		
Notes:					

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

² Monitoring frequency based on flow rate of 1.6 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.3 Toxics

Summary of Proposed NPDES Parameter Details for Toxics

Waynesboro STP, PA0020621

11dy110db010 011					
Parameter	Permit Limitation Required by ¹ :	Recommendation			
Total Copper	WQBEL	Monitoring:	The monitoring frequency shall be 1x/week as a 24-hr composite sample		
		Effluent Limit:	Effluent limits shall not exceed 0.053 mg/l and 0.132 mg/l and 0.132 mg/l as a daily maximum		
		Rationale:	Water quality modeling using Toxics Management Spreadsheet (TMS) recommends effluent limits		
Notes:					

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 1.6 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.3.1 Implementation of Regulation- Chapter 92a.61

Chapter 92a.61 provides provisions to DEP to monitor for pollutants that may have an impact on the quality of waters of the Commonwealth.

Based upon DEP policy directives the following pollutants shall be monitored:

- Consistent with DEP Management directives issued on March 22, 2021 and in conjunction with EPA's 2017 Triennial Review, monitoring for E. Coli shall be required. The monitoring frequency is based upon flow rate.
- Consistent with DEP Management directives issued on February 5, 2024, monitoring for PFAS parameters shall be required. PFAS are widely used, long lasting chemicals, components of which break down very slowly over time. The recommended monitoring frequency is quarterly. The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detect results at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees must enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

Summary of Proposed NPDES Parameter Details for polluants monitored under Chapter 92a.61						
Waynesboro STP, PA0020621						
Parameter	Permit Limitation Required by ¹ :	Recommendation				
E. Coli	SOP; Chapter 92a.61		The monitoring frequency shall be 1x/month as a grab sample (SOP). No effluent requirements. Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits			
		Rationale:	(Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be required to monitor for E.Coli.			
PFOA	SOP; Chapter 92a.61	Monitoring: Effluent Limit:	The monitoring frequency shall be 1x/quarter as a grab sample (SOP). No effluent limit requirement			
		Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised Febraury 5, 2024) and under the authority of Chapter 92a.61, the facility will be required to monitor for PFAS related parameters.			
DE00	SOP; Chapter 92a.61	Monitoring: Effluent Limit:	The monitoring frequency shall be 1x/quarter as a grab sample (SOP). No effluent limit requirement			
PFOS		Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised Febraury 5, 2024) and under the authority of Chapter 92a.61, the facility will be required to monitor for PFAS related parameters.			
	SOP; Chapter 92a.61	Monitoring:	The monitoring frequency shall be 1x/quarter as a grab sample (SOP).			
HFPO-DA		Rationale:	No effluent limit requirement Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised Febraury 5, 2024) and under the authority of Chapter 92a.61, the facility will be required to monitor for PFAS related parameters.			
	SOP; Chapter 92a.61	Monitoring:	The monitoring frequency shall be 1x/quarter as a grab sample (SOP).			
PFBS		Effluent Limit: Rationale:	No effluent limit requirement Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised Febraury 5, 2024) and under the authority of Chapter 92a.61, the facility will be required to monitor for PFAS related parameters.			
Notes:			COA DEOS HEDO DA and DEDS if the results in 4 consecutive monitoring periods indicate			

The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detect results at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees must enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

	Changes in Permit Monitoring or Effluent Quality								
Parameter	Existing Permit	Draft Permit							
E. Coli	No monitoring or effluent limits	Due to the EPA Triennial review, monitoring at least							
L. Coll	No monitoring or emdent limits	1x/month shall be required for E.coli.							
PFOA	No monitoring or effluent limits	Consistent with the SOP- Establishing Effluent							
PFOS	No monitoring or effluent limits	Limitations for Individual Sewage Permits (Revised							
LIEDO DA	0.00	Febraury 5, 2024) and under the authority of Chapter							
HFPO-DA	No monitoring or effluent limits	92a.61, the facility will be required to monitor for PFAS							
PFBS	No monitoring or effluent limits	related parameters.							

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS								
I. A. For Outfall 001	0.88 _, Latitude <u>39° 44' 14.61"</u> , Longitude <u>77° 35' 14.78"</u> , River Mile Index <u>@DP</u> , Stream Code <u>59292</u>							
Receiving Waters:	Unnamed Tributary to East Branch Antietam Creek (CWF)							
Type of Effluent:	Sewage Effluent							
4 The manustree is south	hadrada disabaga dada dha aniad fara Damit Effactiva Deta thayyah Damit Funisativa Deta							

^{1.} The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Monitoring Re	quirements				
Parameter	Mass Units	(lbs/day) (1)	Concentrations (mg/L)				Minimum (2)	Required
raiametei	Average Monthly	Weekly Average	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	7.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.36	XXX	1.17	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	330	530	XXX	25.0	40.0 Wkly Avg	50	2/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Suspended Solids	400	600	XXX	30	45 Wkly Avq	60	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations							
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum (2)	Required	
i arameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
E. Coli (No./100 ml)	xxx	XXX	XXX	XXX	Report	XXX	1/month	Grab	
Ammonia-Nitrogen Nov 1 - Apr 30	180	XXX	XXX	13.5	XXX	27	2/week	24-Hr Composite	
Ammonia-Nitrogen May 1 - Oct 31	60	XXX	XXX	4.5	XXX	9	2/week	24-Hr Composite	
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite	
Copper, Total	XXX	XXX	XXX	0.053	0.132	XXX	1/week	24-Hr Composite	
PFOA (ng/L)	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab	
PFOS (ng/L)	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab	
PFBS (ng/L)	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab	
HFPO-DA (ng/L)	xxx	XXX	XXX	XXX	Report	XXX	1/quarter	Grab	

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

PART A -	FFFI UFNT	LIMITATIONS.	MONITORING.	RECORDKEEPING	AND REPO	RTING REQUIREMENTS

I. B.	For Outfall 001	_, Latitude <u>39° 44' 14.61"</u> , Longitude <u>77° 35' 14.78"</u> , River Mile Index <u>DP</u> , Stream Code <u>59292</u>	
	Receiving Waters:	Unnamed Tributary to East Branch Antietam Creek (CWF)	
	Type of Effluent:	Sewage Effluent	

- 1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.
- Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Effluent Limitations						
Parameter	Mass Units	(lbs/day) (1)		Concentrations (mg/L)				Required
Falailletei	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
	monany	7111111111	monany	rivorago	- maximum	- maxiii aii		24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	XXX	29223	XXX	XXX	XXX	XXX	1/year	Calculation
Net Total Phosphorus	XXX	3896	XXX	XXX	XXX	XXX	1/year	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Footnotes:

See Part C for Chesapeake Bay Requirements.

⁽²⁾ This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chlorine Minimization
- Hauled-in Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems
- Whole Effluent Toxicity No Permit Limits
- Stormwater Requirements

	Tools and References Used to Develop Permit
\square	WOM for Windows Madel for a Musel wood
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: New and Reissuance Sewage Individual NPDES Permit Applications, Revised, February 3, 2022
	Other:

Attachment A Stream Stats/Gauge Data

16 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi³, square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated
01614000	Back Creek near Jones Springs, W.Va.	39.512	-78.037	235	N
01614090	Conococheague Creek near Fayetteville, Pa.	39.930	-77.439	5.05	N
01614500	Conococheague Creek at Fairview, Md.	39.716	-77.825	494	N
01616500	Opequon Creek near Martinsburg, W.Va.	39.424	-77.939	273	N
01617000	Tuscarora Creek above Martinsburg, W.Va.	39.470	-77.971	11.3	N
01617800	Marsh Run at Grimes, Md.	39.515	-77.777	18.9	N
01618000	Potomac River at Shepherdstown, W.Va.	39,435	-77.801	5,939	N
01619000	Antietam Creek near Waynesboro, Pa.	39.716	-77.607	93.5	N
01619500	Antietam Creek near Sharpsburg, Md.	39.450	-77.730	281	LF
01637500	Catoctin Creek near Middletown, Md.	39.427	-77.556	66.9	N
01639000	Monocacy River at Bridgeport, Md.	39.679	-77.235	173	N
01639140	Piney Creek near Taneytown, Md.	39.661	-77.221	31.3	N
01639500	Big Pipe Creek at Bruceville, Md.	39.612	-77.237	102	N
01640500	Owens Creek at Lantz, Md.	39.677	-77.464	5.93	N
01640965	Hunting Creek near Foxville, Md.	39.620	-77.466	2.14	N
01640970	Hunting Creek Tributary near Foxville, Md.	39.628	-77.462	4.01	N
01641000	Hunting Creek at Jimtown, Md.	39.594	-77.397	18.4	LF
01641500	Fishing Creek near Lewistown, Md.	39.527	-77.467	7.29	N
01642500	Linganore Creek near Frederick, Md.	39.415	-77.333	82.3	LF
01643000	Monocacy River at Jug Bridge near Frederick, Md.	39.403	-77.366	817	N
01643500	Bennett Creek at Park Mills, Md.	39.294	-77.407	62.8	N
03007800	Allegheny River at Port Allegany, Pa.	41.819	-78.293	248	N
03008000	Newell Creek near Port Allegany, Pa.	41.895	-78.349	7.79	N
03009680	Potato Creek at Smethport, Pa.	41.810	-78.430	160	N
03010500	Allegheny River at Eldred, Pa.	41.963	-78.386	550	N
03010655	Oswayo Creek at Shinglehouse, Pa.	41.962	-78.198	98.7	N
03011020	Allegheny River at Salamanca, N.Y.	42.156	-78.715	1,608	N
03011800	Kinzua Creek near Guffey, Pa.	41.766	-78.719	38.8	N
03012550	Allegheny River at Kinzua Dam, Pa.	41.841	-79.012	2,180	Y
03013000	Conewango Creek at Waterboro, N.Y.	42.171	-79.069	290	N
03014500	Chadakoin River at Falconer, N.Y.	42.113	-79.204	194	Y
03015000	Conewango Creek at Russell, Pa.	41.938	-79.133	816	Ÿ
03015280	Jackson Run near North Warren, Pa.	41.903	-79.238	12.8	N
03015500	Brokenstraw Creek at Youngsville, Pa.	41.853	-79.317	321	N
03016000	Allegheny River at West Hickory, Pa.	41.571	-79.408	3,660	Y
03017500	Tionesta Creek at Lynch, Pa.	41.602	-79.050	233	N
03020000	Tionesta Creek at Tionesta Creek Dam, Pa.	41.478	-79.444	479	Y
03020500	Oil Creek at Rouseville. Pa.	41.482	-79.695	283	N
03020300	French Creek near Wattsburg, Pa.	42.015	-79.783	92.0	N
03021330	West Branch French Creek near Lowville, Pa.	42.082	-79.763	52.3	N
03021410	French Creek at Carters Corners, Pa.	41.956	-79.877	208	N
03021500	French Creek near Union City, Pa.	41.908	-79.897	221	Y
03021320	Woodcock Creek at Blooming Valley, Pa.	41.691	-80.048	31.1	N
03022540	Woodcock Creek at Biooming Variey, Pa. Woodcock Creek at Woodcock Creek Dam, Pa.	41.696	-80.108	45.6	Y
U3U443J4	WOOGLOCK CIEER AL WOOGLOCK CIEER DAIL Pd.	41.090	-00.108	43.0	1

Table 2 29

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued [ff*/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft²/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft∜s)	90-day, 10-year (ft³/s)
501611500	1924-2008	83	37.2	39.3	56.4	45.6	65.6	56.0
401613000	1934-2008	75	270	286	446	335	534	453
01613050	1967-2008	40	0	0	.1	<.1	.4	.2
901614000	1930-2008	41	3.2	3.8	8.2	5.4	11.4	8.1
01614090	1962-1981	19	.2	.3	.8	.4	1.0	.7
401614500	1930-2008	79	48.1	55.0	91.9	65.3	105	81.4
401616500	1949-2008	60	34.4	36.7	54.4	41.0	61.9	48.7
01617000	1950-2008	24	.8	1.1	2.3	1.3	2.7	1.5
401617800	1966-2008	43	.2	.5	3.0	9	3.4	1.4
01618000	1930-2004	68	333	424	708	516	869	680
01619000	1950-2008	19	22.5	23.4	37.5	25.9	41.8	32.9
401619500	1901-2008	82	57.9	05.2	93.1	72.4	103	82.5
401637500	1949-2008	60	.6	.9	3.2	1.7	5.4	4.2
401639000	1944-2008	65	.6	.8	4.7	2.9	8.2	6.6
401639140	1992-2001	10	0	.1	.9	3	1.5	.5
401639500	1949-2008	60	_	7.1	23.9	10.4	26.6	17.2
401640500	1933-1984	52	.1	.2	.6	3	.8	.6
401640965	1983-1994	12	<.1	<.1	.1	.1	.1	.1
401640970	1983-1991	9	0.1	0.1	0.3	0.2	0.5	0.4
401641000	31951-1968	18	9	1.1	1.9	1.5	2.5	1.9
401641000	21970-1991	22	2.1	2.4	3.6	3.2	4.6	4.2
401641500	1949-1984	36	.8	.9	1.5	1.1	1.8	1.4
401642500	31933-1970	35	6.0	6.8	15.3	9.0	18.5	13.4
401642500	21972-1982	11	7.2	8.6	18.1	12.2	23.9	19.9
401643000	1931-2008	78	45.1	49.2	105	63.9	128	93.1
401643500	1950-2008	50	3.2	3.8	11.0	5.9	13.0	10.2
03007800	1976-2008	33	13.2	15.4	35.2	20.9	47.8	35.5
03008000	1968-1979	12	0	0	.2	<.1	.6	<.1
03009680	1976-1995	20	11.2	13.5	26.9	17.2	38.8	29.5
03010500	1941-2008	68	27.6	31.0	65.0	42.8	91.5	63.0
03010655	1976-2008	33	4.9	5.7	11.8	7.4	15.6	10.6
03011020	1905-2008	104	117	127	218	159	291	217
03011800	1967-2008	42	4.2	4.9	8.8	6.2	12.1	9.0
03012550	21967-1991	25	_	414	681	542	944	828
03012550	31937-1965	29	168	176	260	212	319	267
03013000	1940-1993	54	28.2	31.0	48.3	35.1	58.7	41.5
03014500	1936-2008	73	7.4	10.8	28.6	15.3	41.0	24.1
03015000	21951-2008	58	76.4	81.7	143	95.1	180	115
03015000	31941-1949	9	69.6	71.6	122	86.5	141	131
03015280	1964-1978	15	.7	.9	1.9	1.3	2.7	2.0
03015500	1911-2008	98	32.2	34.4	54.8	40.7	70.1	51.4
03016000	21967-2008	44	527	579	1,230	708	1,630	906
03016000	31943-1965	23	292	312	466	368	560	486
03017500	1939-1979	41	14.6	16.3	30.0	22.1	42.2	35.4
03020000	1942-1991	50	7.5	14.8	72.6	40.7	86.2	67.9

StreamStats Report

Region ID:

Workspace ID: PA20240214124926742000

39.72628, -77.59285 Clicked Point (Latitude, Longitude):

2024-02-14 07:49:47 -0500

Waynesboro WWTP PA0020621 Modeling Point #1 (POFU for Waynesboro WWTP) February 2024

Collapse All

> Basin Characteristics Parameter Code Parameter Description Value Unit CARBON Percentage of area of carbonate rock 26.54 percent DRNAREA Area that drains to a point on a stream 51.3 square miles PRECIP Mean Annual Precipitation inches 43 ROCKDEP Depth to rock 5.2 feet STRDEN Stream Density -- total length of streams divided by drainage area 1.52 miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	51.3	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	43	inches	35	50.4
STRDEN	Stream Density	1.52	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5.2	feet	3.32	5.65
CARBON	Percent Carbonate	26.54	percent	0	99

Low-Flow Statistics Flow Report [Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Valu e	Unit	SE	ASEp
7 Day 2 Year Low Flow	15.7	ft*3/s	38	38
30 Day 2 Year Low Flow	18.2	ft^3/s	33	33
7 Day 10 Year Low Flow	10.5	ft^3/s	51	51
30 Day 10 Year Low Flow	11.8	ft^3/s	46	46
90 Day 10 Year Low Flow	14.3	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.19.4 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

StreamStats Report

Region ID: PA

Workspace ID: PA20240214125239946000

Clicked Point (Latitude, Longitude): 39.72633, -77.59300

Time: 2024-02-14 07:53:01 -0500

Waynesboro WWTP PA0020621 Modeling Point #2 (Node for Washington WWTP) February 2024

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	26.54	percent
DRNAREA	Area that drains to a point on a stream	51.3	square miles
PRECIP	Mean Annual Precipitation	43	inches
ROCKDEP	Depth to rock	5.2	feet
STRDEN	Stream Density total length of streams divided by drainage area	1,52	miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	51.3	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	43	inches	35	50.4
STRDEN	Stream Density	1,52	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5.2	feet	3.32	5.65
CARBON	Percent Carbonate	26.54	percent	0	99

Low-Flow Statistics Flow Report [Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other – see report)

Statistic	Valu e	Unit	SE	ASEp
7 Day 2 Year Low Flow	15.7	ft*3/s	38	38
30 Day 2 Year Low Flow	18.2	ft^3/s	33	33
7 Day 10 Year Low Flow	10.5	ft^3/s	51	51
30 Day 10 Year Low Flow	11.8	ft^3/s	46	46
90 Day 10 Year Low Flow	14.3	ft^3/s	36	36

Low-Flow Statistics Citations

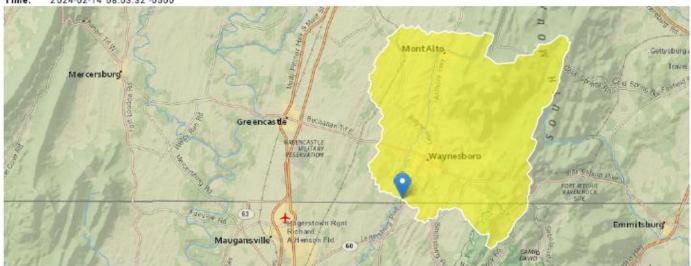
Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.19.4 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1


StreamStats Report

Region ID: PA

Workspace ID: PA20240214130311512000

Clicked Point (Latitude, Longitude): 39.72419, -77.60566

Time: 2024-02-14 08:03:32 -0500

Waynesboro WWTP PA0020621 Modeling Point #3 February 2023

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	51.86	percent
DRNAREA	Area that drains to a point on a stream	93.2	square miles
PRECIP	Mean Annual Precipitation	42	inches
ROCKDEP	Depth to rock	5.4	feet
STRDEN	Stream Density – total length of streams divided by drainage area	1.47	miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	93.2	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	42	inches	35	50.4
STRDEN	Stream Density	1,47	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5.4	feet	3.32	5,65
CARBON	Percent Carbonate	51.86	percent	0	99

Low-Flow Statistics Flow Report [Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other — see report)

Statistic	Valu e	Unit	SE	ASEp
7 Day 2 Year Low Flow	39.7	ft^3/s	38	38
30 Day 2 Year Low Flow	43.2	ft^3/s	33	33
7 Day 10 Year Low Flow	30.6	ft^3/s	51	51
30 Day 10 Year Low Flow	32.3	ft^3/s	46	46
90 Day 10 Year Low Flow	34.6	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.19.4 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

Attachment B

WQM 7.0 Modeling Output Values
Toxics Management Spreadsheet Output
Values

- Run #1
- Run #2

WQM 7.0 Effluent Limits

		m <u>Code</u> 9291	Stream Name EAST BRANCH ANTIETAM CREEK						
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)		
0.980	Waynesboro PA0020621		1.600	CBOD5	25				
				NH3-N	9.82	19.64			
				Dissolved Oxygen			5		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)		
0.940	Washington WWTP	PA0080225	1.850	CBOD5	25				
				NH3-N	3.39	6.78			
				Dissolved Oxygen			5		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
13C	59291	EAST BRANCH ANTIETAM CREEK

		Baseline	Baseline	Multiple	Multiple	Critical	Percent	
RMI			WLA (mg/L)	Criterion (mg/L)	WLA (mg/L)	Reach	Reduction	
0.980 Waynesboro		15.64	50	15.64	50	0	0	
0.940	Washington WW	15.5	8.4	14.79	8.4	0	0	

12.16

4.2

1.8

1.79

Dissolved Oxygen Allocations

0.980 Waynesboro

0.940 Washington WW

		CBO	OD5	NH	3-N	Dissolve	Oxygen	Californi	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple	Baseline (mg/L)	Multiple (mg/L)		Reduction
0.98	Waynesboro	25	25	9.82	9.82	5	5	0	0
0.94	Washington WWTP	25	25	3.39	3 39	5	5	0	0

1.8

1.73

9.82

3.39

2

2

19

19

Input Data WQM 7.0

	SWP Basin			Str	eam Name		RMI		ation	Drainage Area (sq mi)		With	WS drawal ngd)	Appl FC
	13C	592	291 EAST	BRANCH	ANTIETAN	M CREEK	0.9	80	567.00	51.	30 0.00	0000	0.00	•
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary	Н	Strea Temp	<u>am</u> pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(℃)		(°C)		
Q7-10 Q1-10 Q30-10	0.250	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00) 2	0.00	7.00	0.00	0.00	
					D	ischarge	Data						7	
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd	Disc Flov	Res V Fa	erve T	Disc emp (°C)	Disc pH		
		Wayr	nesboro	PA	0020621	1.600	0 1.600	00 1.60	000	0.000	25.00	7.00	-	
					Pa	arameter	Data							
			I	Paramete	r Name	C	onc (Conc	Conc	Fate Coef				
						(11)	ng/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			5.00	8.24	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70)			
	•			_									_	

Input Data WQM 7.0

SWP Stream									
Basin Code Stream Nan	ne	RMI	Elevat		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	wal	Apply FC
13C 59291 EAST BRANCH ANTIET	AM CREEK	0.94	10 56	64.00	51.40	0.00000		0.00	✓
	Stream Dat	ta							
LFY Trib Stream Rch Rch Design Flow Flow Trav Velocity Cond. Time	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ten	Stream np	pН	
(cfsm) (cfs) (cfs) (days) (fps)		(ft)	(ft)	(°C))	(°C	:)		
Q7-10 0.250 0.00 0.00 0.000 0.00 Q1-10 0.00 0.00 0.00 0.00 Q30-10 0.00 0.00 0.00 0.00	0	0.00	0.00	20).00 7.0	00	0.00	0.00	
	Discharge	Data							
Name Permit Num	Disc	Permitte Disc Flow (mgd)		Rese Fac		np p	isc bH		
Washington WWTP PA0080225	1.850	0 1.850	0 1.850	0 0	0.000 2	25.00	7.00		
	Parameter	Data							
Parameter Name	C	onc C	Conc C	ream conc	Fate Coef (1/days)				
CBOD5		25.00	2.00	0.00	1.50				
Dissolved Oxygen		5.00	8.24	0.00	0.00				
NH3-N		4.20	0.00	0.00	0.70				

Input Data WQM 7.0

					inp	ut Dat	a w Q	VI 7.U						
	SWP Basir			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg		Appl FC
	13C	593	291 EAST	BRANCH	ANTIETA	M CREEK	0.0	00	550.00	93.20	0.00000)	0.00	•
					St	tream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Ter	<u>Strear</u> mp	n pH	
condi	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(℃)	(°0	C)		
Q7-10 Q1-10 Q30-10	0.250	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.	00	0.00	0.00	
					D	ischarge	Data						1	
			Name	Per	mit Numbe	Disc	Permitt Disc Flow (mgd	Disc Flo	c Res w Fa	Dis erve Ter ctor (°0	mp)isc pH		
						0.000	0.000	0.0	000	0.000	25.00	7.00		
					P	arameter	Data							
				Paramete	r Nomo	_		Trib S Conc	Stream Conc	Fate Coef				
			'	Paramete	rivame	(n	ng/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 D.O.Simulation

SWP Basin Str	59291		EAST BR	<u>Stream Name</u> Anch antietam Cre	EK
RMI 0.980 Reach Width (ft)	Total Discharge 1.60 Reach De	0 pth (ft)) Anai	ysis Temperature (°C) 20.808 Reach WDRatio	Analysis pH 7.000 Reach Velocity (fps)
42.796	0.80	_		53.111	0.444 Rooch Kn (1/dovn)
Reach CBOD5 (mg/L) 5.72 Reach DO (mg/L) 7.719	Reach Kc (1.05 Reach Kr (43.88	9 1/days)	K	each NH3-N (mg/L) 1.59 <u>Kr Equation</u> Tsivoglou	Reach Kn (1/days) 0.745 Reach DO Goal (mg/L) 5
Reach Travel Time (days) 0.006	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.001	5.71	1.59	7.74	
	0.001	5.71	1.59	7.76	
	0.002	5.71	1.58	7.79	
	0.002	5.70	1.58	7.81	
	0.003	5.70	1.58	7.83	
	0.003	5.70	1.58	7.85	
	0.004	5.69	1.58	7.87	
	0.004	5.69	1.58	7.89	
	0.005	5.69	1.58	7.91	
	0.000				
	0.006	5.68	1.58	7.93	
RMI	0.006 Total Discharge	Flow (mgd		ysis Temperature (°C)	Analysis pH
0.940	0.006 Total Discharge 3.45	Flow (mgd		lysis Temperature (°C) 21.466	7.000
0.940 Reach Width (ft)	0.006 Total Discharge 3.45 Reach De	Flow (mgd 0 pth (ft)		lysis Temperature (°C) 21.466 Reach WDRatio	7.000 Reach Velocity (fps)
0.940 Reach Width (ft) 53.956	0.006 Total Discharge 3.45 Reach De 0.78	Flow (mgd 0 pth (ft)) Anai	lysis Temperature (°C) 21.466 Reach WDRatio 68.390	7.000 Reach Velocity (fps) 0.428
0.940 Reach Width (ft)	0.006 Total Discharge 3.45 Reach De	Flow (mgd 0 pth (ft) 9 1/days)) Anai	lysis Temperature (°C) 21.466 Reach WDRatio	7.000 Reach Velocity (fps)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71	Total Discharge 3.45 Reach De 0.78 Reach Kc (Flow (mgd 0 pth (ft) 9 1/days)) Anai	ysis Temperature (°C) 21.466 Reach WDRatio 68.390 each NH3-N (mg/L)	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L)	Total Discharge 3.45 Reach De 0.78 Reach Kc (Flow (mgd 0 pth (ft) 9 1/days) 4 1/days)) Anai	ysis Temperature (°C) 21.466 Reach WDRatio 68.390 each NH3-N (mg/L) 1.86	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71 Reach DO (mg/L) 7.467 Reach Travel Time (days)	Total Discharge 3.45 Reach De 0.78 Reach Kc (1.23 Reach Kr (8.52	Flow (mqd 0 pth (ft) 9 1/days) 4 1/days) 2 Subreach	Ana Results	21.466 Reach WDRatio 68.390 each NH3-N (mq/L) 1.86 Kr Equation Tsivoglou	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784 Reach DO Goal (mq/L)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71 Reach DO (mg/L) 7.467	Total Discharge 3.45 Reach De 0.78 Reach Kc (1.23 Reach Kr (Flow (mqd 0 pth (ft) 9 1/days) 4 1/days) 2 Subreach) Ana	lysis Temperature (°C) 21.466 Reach WDRatio 68.390 each NH3-N (mg/L) 1.86 Kr Equation	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784 Reach DO Goal (mq/L)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71 Reach DO (mg/L) 7.467 Reach Travel Time (days)	Total Discharge 3.45 Reach De 0.78 Reach Kc (1.23 Reach Kr (8.52 TravTime (days)	Flow (mqd 0 pth (ft) 9 1/days) 4 1/days) 2 Subreach CBOD5 (mg/L)	Anal	ysis Temperature (°C) 21.466 Reach WDRatio 68.390 each NH3-N (mq/L) 1.86 Kr Equation Tsivoglou D.O. (mg/L)	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784 Reach DO Goal (mq/L)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71 Reach DO (mg/L) 7.467 Reach Travel Time (days)	0.006 Total Discharge 3.45 Reach De 0.78 Reach Kc (1.23 Reach Kr (8.52	Flow (mgd 0 pth (ft) 9 1/days) 4 1/days) 2 Subreact CBOD5 (mg/L)	Results NH3-N (mg/L)	ysis Temperature (°C) 21.466 Reach WDRatio 68.390 each NH3-N (mq/L) 1.86 Kr Equation Tsivoglou D.O.	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784 Reach DO Goal (mq/L)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71 Reach DO (mg/L) 7.467 Reach Travel Time (days)	0.006 Total Discharge 3.45 Reach De 0.78 Reach Kc (1.23 Reach Kr (8.52 TravTime (days) 0.013	Flow (mgd 0 pth (ft) 9 1/days) 4 1/days) 2 Subreact CBOD5 (mg/L)	Results NH3-N (mg/L)	lysis Temperature (°C) 21.466 Reach WDRatio 68.390 leach NH3-N (mg/L) 1.86 Kr Equation Tsivoglou D.O. (mg/L) 7.32	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784 Reach DO Goal (mg/L)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71 Reach DO (mg/L) 7.467 Reach Travel Time (days)	0.006 Total Discharge	Flow (mgd 0 pth (ft) 9 1/days) 4 1/days) 2 Subreach CBOD5 (mg/L) 8.56 8.41	Results NH3-N (mg/L) 1.84 1.82	lysis Temperature (°C) 21.466 Reach WDRatio 68.390 leach NH3-N (mg/L) 1.86 Kr Equation Tsivoglou D.O. (mg/L) 7.32 7.20	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784 Reach DO Goal (mg/L)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71 Reach DO (mg/L) 7.467 Reach Travel Time (days)	0.006 Total Discharge	Flow (mgd 0 pth (ft) 9 1/days) 4 1/days) 2 Subreach CBOD5 (mg/L) 8.56 8.41 8.26	Results NH3-N (mg/L) 1.84 1.82 1.80	ysis Temperature (°C) 21.466 Reach WDRatio 68.390 each NH3-N (mq/L) 1.86 Kr Equation Tsivoglou D.O. (mg/L) 7.32 7.20 7.09	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784 Reach DO Goal (mg/L)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71 Reach DO (mg/L) 7.467 Reach Travel Time (days)	0.006 Total Discharge	Flow (mgd 0 pth (ft) 9 1/days) 4 1/days) 2 Subreach CBOD5 (mg/L) 8.56 8.41 8.26 8.12	Results NH3-N (mg/L) 1.84 1.82 1.80 1.79	ysis Temperature (°C) 21.466 Reach WDRatio 68.390 each NH3-N (mq/L) 1.86 Kr Equation Tsivoglou D.O. (mg/L) 7.32 7.20 7.09 7.00	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784 Reach DO Goal (mg/L)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71 Reach DO (mg/L) 7.467 Reach Travel Time (days)	0.006 Total Discharge	Flow (mgd 0 pth (ft) 9 1/days) 4 1/days) 2 Subreach CBOD5 (mg/L) 8.56 8.41 8.26 8.12 7.98	Results NH3-N (mg/L) 1.84 1.82 1.80 1.79	ysis Temperature (°C) 21.466 Reach WDRatio 68.390 each NH3-N (mg/L) 1.86 Kr Equation Tsivoglou D.O. (mg/L) 7.32 7.20 7.09 7.00 6.93	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784 Reach DO Goal (mg/L)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71 Reach DO (mg/L) 7.467 Reach Travel Time (days)	0.006 Total Discharge 3.45 Reach De 0.78 Reach Kc (1.23 Reach Kr (8.52 TravTime (days) 0.013 0.027 0.040 0.054 0.067 0.081	Flow (mgd 0 pth (ft) 9 1/days) 4 1/days) 2 Subreact CBOD5 (mg/L) 8.56 8.41 8.26 8.12 7.98 7.84	Results NH3-N (mg/L) 1.84 1.82 1.80 1.79 1.77 1.75	21.466 Reach WDRatio 68.390 leach NH3-N (mg/L) 1.86 Kr Equation Tsivoglou D.O. (mg/L) 7.32 7.20 7.09 7.00 6.93 6.86	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784 Reach DO Goal (mg/L)
0.940 Reach Width (ft) 53.956 Reach CBOD5 (mg/L) 8.71 Reach DO (mg/L) 7.467 Reach Travel Time (days)	0.006 Total Discharge 3.45 Reach De 0.78 Reach Kc (1.23 Reach Kr (8.52 TravTime (days) 0.013 0.027 0.040 0.054 0.067 0.081 0.094	Flow (mgd 0 pth (ft) 9 1/days) 4 1/days) 2 Subreach CBOD5 (mg/L) 8.56 8.41 8.26 8.12 7.98 7.84 7.70	Results NH3-N (mg/L) 1.84 1.82 1.80 1.79 1.77 1.75 1.73	ysis Temperature (°C) 21.466 Reach WDRatio 68.390 each NH3-N (mg/L) 1.86 Kr Equation Tsivoglou D.O. (mg/L) 7.32 7.20 7.09 7.00 6.93 6.86 6.81	7.000 Reach Velocity (fps) 0.428 Reach Kn (1/days) 0.784 Reach DO Goal (mq/L)

57

Wednesday, February 14, 2024

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name			
		13C	5	9291		E	AST BRA	NCH AN	ITIETAM	CREEK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.980	12.84	0.00	12.84	2.4752	0.01420	.806	42.8	53.11	0.44	0.006	20.81	7.00
0.940	12.87	0.00	12.87	5.3371	0.00282	.789	53.96	68.39	0.43	0.134	21.47	7.00
Q1-1	0 Flow											
0.980	12.33	0.00	12.33	2.4752	0.01420	NA	NA	NA	0.44	0.006	20.84	7.00
0.940	12.35	0.00	12.35	5.3371	0.00282	NA	NA	NA	0.42	0.137	21.51	7.00
Q30-	10 Flow	1										
0.980	14.25	0.00	14.25	2.4752	0.01420	NA	NA	NA	0.47	0.005	20.74	7.00
0.940	14.28	0.00	14.28	5.3371	0.00282	NA	NA	NA	0.45	0.129	21.36	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.96	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.11	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

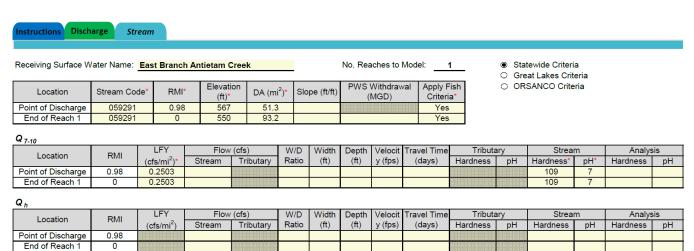
Discharge Information

Instruction	s Disch	arge Stream			
Facility:	Waynes	sboro WWTP		NPDES Permit No.: PA0020621	Outfall No.: 001
Evaluation ⁷	Type:	Major Sewage / Ind	ustrial Waste	Wastewater Description: Sewage effluent	

	Discharge Characteristics												
Design Flow	Hardness (mg/l)*	pH (US)*	Р	artial Mix Fa	actors (PMF	s)	Complete Mi	x Times (min)					
(MGD)*	Haruness (mg/l)	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q_h					
1.6	109	7.67											

				0 if lef	t blank	0.5 if left blank		0 if left blank			1 if left blank		
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		338									
0 1	Chloride (PWS)	mg/L		74									
l ä	Bromide	mg/L	<	0.07									
Group	Sulfate (PWS)	mg/L		45									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L		218									
	Total Antimony	μg/L		3.1									
	Total Arsenic	μg/L	٧	1									
	Total Barium	μg/L	٧	9.6									
	Total Beryllium	μg/L	٧	0.68									
1 1	Total Boron	μg/L		426									
1 1	Total Cadmium	μg/L	<	0.12									
	Total Chromium (III)	μg/L		2.2									
1 1	Hexavalent Chromium	μg/L	<	0.25									
	Total Cobalt	μg/L		0.34									
1 1	Total Copper	μg/L		50									
2	Free Cyanide	μg/L		8									
Ιğί	Total Cyanide	μg/L	<	6									
	Dissolved Iron	µg/L		110									
۱۲۱	Total Iron	μg/L		130									
1 1	Total Lead	μg/L		0.27									
1 1	Total Manganese	μg/L		23									
	Total Mercury	µg/L		0.19									
1 1	Total Nickel	μg/L		2.4									
1 1	Total Phenols (Phenolics) (PWS)	μg/L		4									
	Total Selenium	µg/L		10									
	Total Silver	μg/L	<	1.37									
1 1	Total Thallium	μg/L	<	0.07									
1 1	Total Zinc	μg/L		30									
	Total Molybdenum	μg/L		0.56									
\rightarrow	Acrolein	μg/L	<	2									
	Acrylamide	μg/L	<										
	Acrylonitrile	µg/L	<	0.51									
	Benzene	μg/L	<	0.43									
	Bromoform	μg/L	<	0.34									
	Carbon Tetrachloride	µg/L	<	0.51									
	Chlorobenzene	μg/L	<	0.21									
	Chlorodibromomethane	μg/L	<	0.39									
	Chloroethane	μg/L	<	0.42									
	2-Chloroethyl Vinyl Ether	μg/L	<	4									

	Chlanafarra	/!		0.54				1	
	Chloroform	μg/L	<	0.51					
	Dichlorobromomethane	μg/L	<	0.32					
	1,1-Dichloroethane	μg/L	<	0.42					
3	1,2-Dichloroethane	μg/L	<	0.39					
Group	1,1-Dichloroethylene	μg/L	<	0.33					
٥	1,2-Dichloropropane 1,3-Dichloropropylene	μg/L μg/L	<	0.42					
	1,4-Dioxane	μg/L	<	3					
	Ethylbenzene	μg/L	<	0.27		 <u> </u>			
	Methyl Bromide	μg/L μg/L	<	0.27					
	Methyl Chloride	μg/L	<	0.46					
	Methylene Chloride		<	0.36		 1			
	1.1.2.2-Tetrachloroethane	μg/L μg/L	<	0.43				\vdash	
	Tetrachloroethylene	μg/L	<	0.39					
	Toluene	μg/L	<	0.33					
	1,2-trans-Dichloroethylene	μg/L	<	0.39				\vdash	
	1,1,1-Trichloroethane	μg/L	<	0.38					
	1,1,2-Trichloroethane	μg/L	<	0.36					
	Trichloroethylene	μg/L	<	0.46				\vdash	
	Vinyl Chloride	μg/L	<	0.46					
\vdash	2-Chlorophenol	μg/L	<	0.40					
1	2,4-Dichlorophenol	μg/L	<	0.13					
1	2,4-Dimethylphenol	μg/L	<	0.26					
1	4.6-Dinitro-o-Cresol	μg/L	<	0.20					
4	2,4-Dinitrophenol	µg/L	<	0.86					
Group	2-Nitrophenol	µg/L	<	0.25					
1 2	4-Nitrophenol	μg/L		0.21					
10	p-Chloro-m-Cresol	µg/L		0.41					
	Pentachlorophenol	µg/L	<	0.97					
	Phenol	μg/L		1.97					
	2,4,6-Trichlorophenol	µg/L		0.27					
	Acenaphthene	μg/L	<	0.26					
	Acenaphthylene	μg/L	<	0.22					
	Anthracene	μg/L		0.6					
	Benzidine	μg/L	<	0.35					
	Benzo(a)Anthracene	μg/L		1.91					
	Benzo(a)Pyrene	μg/L		1.04					
	3,4-Benzofluoranthene	μg/L		1.23					
	Benzo(ghi)Perylene	μg/L		1					
	Benzo(k)Fluoranthene	μg/L		1.3					
	Bis(2-Chloroethoxy)Methane	μg/L	<	0.15					
	Bis(2-Chloroethyl)Ether	μg/L		1.92					
	Bis(2-Chloroisopropyl)Ether	μg/L	<	0.34					
	Bis(2-Ethylhexyl)Phthalate	μg/L		0.95					
	4-Bromophenyl Phenyl Ether	μg/L		0.61					
	Butyl Benzyl Phthalate	μg/L		1.04					
	2-Chloronaphthalene	μg/L	<	0.28					
1	4-Chlorophenyl Phenyl Ether	μg/L		0.4					
1	Chrysene	μg/L		2.01					
1	Dibenzo(a,h)Anthrancene	μg/L		0.75					
1	1,2-Dichlorobenzene	μg/L	<	0.32					
1	1,3-Dichlorobenzene	μg/L	<	0.17					
	14 A Dishlershopmer -		<	0.15					
5 0	1,4-Dichlorobenzene	μg/L		0.44					
onp 5	3,3-Dichlorobenzidine	μg/L		0.14					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate	μg/L μg/L		0.7					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate	µg/L µg/L µg/L		0.7 0.41					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate	µg/L µg/L µg/L µg/L		0.7 0.41 1.2					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene	μg/L μg/L μg/L μg/L μg/L	<	0.7 0.41 1.2 0.77					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene	μg/L μg/L μg/L μg/L μg/L μg/L	<	0.7 0.41 1.2 0.77 0.44					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	<	0.7 0.41 1.2 0.77 0.44 0.45					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	<	0.7 0.41 1.2 0.77 0.44 0.45 0.45					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine Fluoranthene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	<	0.7 0.41 1.2 0.77 0.44 0.45 0.45 2.5					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine Fluoranthene Fluorene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	<	0.7 0.41 1.2 0.77 0.44 0.45 0.45 2.5 0.39					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine Fluoranthene Fluorene Hexachlorobenzene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L		0.7 0.41 1.2 0.77 0.44 0.45 0.45 2.5 0.39 0.92					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	<	0.7 0.41 1.2 0.77 0.44 0.45 0.45 2.5 0.39 0.92 0.27					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	µg/L µg/L		0.7 0.41 1.2 0.77 0.44 0.45 0.45 2.5 0.39 0.92 0.27 0.22					
Group 5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< <	0.7 0.41 1.2 0.77 0.44 0.45 0.45 2.5 0.39 0.92 0.27					


	loophoropo	ua/l	<	0.23				1	
	Isophorone	μg/L							
	Naphthalene	μg/L	<	0.25					
	Nitrobenzene	μg/L	<	0.26					
	n-Nitrosodimethylamine	μg/L	<	0.4					
	n-Nitrosodi-n-Propylamine	μg/L	<	0.31					
	n-Nitrosodiphenylamine	μg/L		0.53					
	Phenanthrene	μg/L		1.27					
	Pyrene	μg/L		2.39					
	1,2,4-Trichlorobenzene	μg/L	<	0.17					
	Aldrin	μg/L	<	0.02					
	alpha-BHC	μg/L	<	0.03					
	beta-BHC	μg/L	<	0.06					
	gamma-BHC	μg/L	<	0.01					
	delta BHC	μg/L	<	0.03					
	Chlordane	μg/L	<	0.63					
	4,4-DDT	μg/L	<	0.02					
	4,4-DDE	μg/L	٧ ،	0.02					
	4,4-DDD	μg/L	<	0.02					
	Dieldrin	μg/L	<	0.02					
	alpha-Endosulfan	μg/L	<	0.08					
9	beta-Endosulfan	μg/L	<	0.01					
<u>a</u>	Endosulfan Sulfate	μg/L	<	0.02					
Group	Endrin	μg/L	<	0.03					
σ	Endrin Aldehyde	μg/L	<	0.07					
	Heptachlor	μg/L	<	0.03					
	Heptachlor Epoxide	μg/L	<	0.01					
	PCB-1016	μg/L	<						
	PCB-1221	μg/L	<						
	PCB-1232	μg/L	<						
	PCB-1242	μg/L	<						
	PCB-1248 PCB-1254	μg/L	<						
		μg/L							
	PCB-1260	μg/L	<						
	PCBs, Total	μg/L	<	4.04					
	Toxaphene 2,3,7,8-TCDD	μg/L	<	1.04					
\vdash		ng/L	`						
	Gross Alpha Total Beta	pCi/L	<						
2 0	Radium 226/228	pCi/L	<i>'</i>						
Group	Total Strontium	pCi/L μg/L	· ·						
5	Total Uranium	μg/L	· ·						
-									
Ь	Osmotic Pressure	mOs/kg						-	

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Waynesboro WWTP, NPDES Permit No. PA0020621, Outfall 001

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Waynesboro WWTP, NPDES Permit No. PA0020621, Outfall 001

Instructions Results	RETURN	TO INPU	TS	SAVE AS	PDF	PRINT	● A	II
☐ Hydrodynamics								
Wasteload Allocations								
☑ AFC cc	T (min):	15	PMF:	0.490	Ana	alysis Hardne	ss (mg/l):	109 Analysis pH: 7.11
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	2,655	
Total Antimony	0	0		0	1,100	1,100	3,893	
Total Arsenic	0	0		0	340	340	1,203	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	74,330	
Total Boron	0	0		0	8,100	8,100	28,670	
Total Cadmium	0	0		0	2.190	2.33	8.24	Chem Translator of 0.94 applied
Total Chromium (III)	0	0		0	611.430	1,935	6,849	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	57.7	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	336	
Total Copper	0	0		0	14.576	15.2	53.7	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	77.9	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	70.925	91.1	322	Chem Translator of 0.778 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	5.83	Chem Translator of 0.85 applied
Total Nickel	0	0		0	503.648	505	1,786	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.731	4.39	15.5	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	230	•
Total Zinc	0	0		0	126.057	129	456	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	10.6	
Acrylonitrile	0	0		0	650	650	2,301	
Benzene	0	0		0	640	640	2,265	

Bromoform	0	0	0	1,800	1,800	6,371	
Carbon Tetrachloride	0	0	0	2,800	2,800	9,911	
Chlorobenzene	0	0	0	1,200	1,200	4,247	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18.000	18.000	63,712	
Chloroform	0	0	0	1,900	1,900	6,725	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1.2-Dichloroethane	0	0	0	15,000	15.000	53,093	
1,1-Dichloroethylene	0	0	0	7,500	7.500	26,546	
1,2-Dichloropropane	0	0	0	11.000	11.000	38,935	
1,3-Dichloropropylene	0	0	0	310	310	1,097	
Ethylbenzene	0	0	0	2.900	2.900	10.265	
Methyl Bromide	0	0	0	550	550	1.947	
Methyl Chloride	0	0	0	28.000	28.000	99,107	
Methylene Chloride	0	0	0	12.000	12.000	42,474	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	3,540	
Tetrachloroethylene	0	0	0	700	700	2,478	
Toluene	0	0	0	1,700	1,700	6,017	
1.2-trans-Dichloroethylene	0	0	0	6.800	6.800	24.069	
1,1,1-Trichloroethane	0	0	0	3.000	3.000	10.619	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	12,034	
.,.,=	0	0	0	2,300	2,300	8,141	
Trichloroethylene		0	0			8,141 N/A	
Vinyl Chloride	0	0		N/A 560	N/A 560		
2-Chlorophenol	0		0			1,982	
2,4-Dichlorophenol	0	0	0	1,700	1,700	6,017	
2,4-Dimethylphenol	0	0	0	660	660	2,336	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	283	
2,4-Dinitrophenol	0	0	0	660	660	2,336	
2-Nitrophenol	0	0	 0	8,000	8,000	28,316	
4-Nitrophenol	0	0	0	2,300	2,300	8,141	
p-Chloro-m-Cresol	0	0	0	160	160	566	
Pentachlorophenol	0	0	0	9.734	9.73	34.5	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	1,628	
Acenaphthene	0	0	0	83	83.0	294	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	1,062	
Benzo(a)Anthracene	0	0	0	0.5	0.5	1.77	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	106,186	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	15,928	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	956	
Butyl Benzyl Phthalate	0	0	0	140	140	496	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	

Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	2,902	
1,3-Dichlorobenzene	0	0	0	350	350	1,239	
1,4-Dichlorobenzene	0	0	0	730	730	2,584	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	14,158	
Dimethyl Phthalate	0	0	0	2,500	2,500	8,849	
Di-n-Butyl Phthalate	0	0	0	110	110	389	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	5,663	
2,6-Dinitrotoluene	0	0	0	990	990	3,504	
1,2-Diphenylhydrazine	0	0	0	15	15.0	53.1	
Fluoranthene	0	0	0	200	200	708	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	35.4	
Hexachlorocyclopentadiene	0	0	0	5	5.0	17.7	
Hexachloroethane	0	0	0	60	60.0	212	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	35,395	
Naphthalene	0	0	0	140	140	496	
Nitrobenzene	0	0	0	4,000	4,000	14,158	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	60,172	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	1,062	
Phenanthrene	0	0	0	5	5.0	17.7	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	460	
Aldrin	0	0	0	3	3.0	10.6	
alpha-BHC	0	0	0	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	0.95	0.95	3.36	
Chlordane	0	0	0	2.4	2.4	8.49	
4,4-DDT	0	0	0	1.1	1.1	3.89	
4,4-DDE	0	0	0	1.1	1.1	3.89	
4,4-DDD	0	0	0	1.1	1.1	3.89	
Dieldrin	0	0	0	0.24	0.24	0.85	
alpha-Endosulfan	0	0	0	0.22	0.22	0.78	
beta-Endosulfan	0	0	0	0.22	0.22	0.78	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	0.086	0.086	0.3	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.52	0.52	1.84	
Heptachlor Epoxide	0	0	0	0.5	0.5	1.77	
Toxaphene	0	0	0	0.73	0.73	2.58	

 ✓ CFC
 CCT (min):
 62.592
 PMF:
 1
 Analysis Hardness (mg/l):
 109
 Analysis pH:
 7.06

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ua/L)	0	(µg/L)	0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	1.361	
Total Artimony Total Arsenic	0	0		0	150	150	928	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	25,369	Chem Hansiator of Lapphed
Total Boron	0	0		0	1.600	1,600	9,900	
Total Cadmium	0	0		0	0.261	0.29	1.78	Chem Translator of 0.905 applied
Total Chromium (III)	0	0		0	79.535	92.5	572	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	64.3	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	118	Official Translator of 0.302 applied
Total Copper	0	0		0	9.640	10.0	62.1	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	32.2	Offerir Haristator of 0.30 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1.500	1.500	9,281	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.764	3.55	22.0	Chem Translator of 0.778 applied
Total Manganese	0	0		0	N/A	N/A	N/A	Chem Hansiator of 0.770 applied
Total Mercury	0	0		0	0.770	0.91	5.61	Chem Translator of 0.85 applied
Total Nickel	0	0		0	55.940	56.1	347	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	Chem translator of 0.997 applied
Total Selenium	0	0		0	4.600	4.99	30.9	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	80.4	Chem Hansiator of Lapplied
Total Zinc	0	0		0	127.088	129	798	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	18.6	Chem Hansiator of 0.300 applied
Acrylonitrile	0	0		0	130	130	804	
Benzene	0	0		0	130	130	804	
Bromoform	0	0		0	370	370	2,289	
Carbon Tetrachloride	0	0		0	560	560	3,465	
Chlorobenzene	0	0		0	240	240	1.485	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	21,657	
Chloroform	0	0		0	390	390	2.413	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	19,182	
1,1-Dichloroethylene	0	0		0	1,500	1.500	9.281	
1,2-Dichloropropane	0	0		0	2,200	2,200	13,613	
1,3-Dichloropropylene	0	0		0	61	61.0	377	
Ethylbenzene	0	0		0	580	580	3.589	
Methyl Bromide	0	0		0	110	110	681	
Methyl Chloride	0	0		0	5,500	5.500	34,032	
Methylene Chloride	0	0		0	2,400	2,400	14,850	
1.1.2.2-Tetrachloroethane	0	0		0	210	210	1,299	
Tetrachloroethylene	0	0		0	140	140	866	

Toluene	0	0	0	330	330	2.042	
1.2-trans-Dichloroethylene	0	0	0	1.400	1.400	8.663	
1,1,1-Trichloroethane	0	0	0	610	610	3,774	
1,1,2-Trichloroethane	0	0	0	680	680	4,208	
Trichloroethylene	0	0	0	450	450	2,784	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	681	
2,4-Dichlorophenol	0	0	0	340	340	2,104	
2,4-Dimethylphenol	0	0	0	130	130	804	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	99.0	
2,4-Dinitrophenol	0	0	0	130	130	804	
2-Nitrophenol	0	0	0	1.600	1.600	9.900	
4-Nitrophenol	0	0	0	470	470	2,908	
p-Chloro-m-Cresol	0	0	0	500	500	3.094	
Pentachlorophenol	0	0	0	7.468	7.47	46.2	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	563	
Acenaphthene	0	0	0	17	17.0	105	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	 0	59	59.0	365	
Benzo(a)Anthracene	0	0	0	0.1	0.1	0.62	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	37,126	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	5.631	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	334	
Butyl Benzyl Phthalate	0	0	0	35	35.0	217	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	990	
1,3-Dichlorobenzene	0	0	0	69	69.0	427	
1,4-Dichlorobenzene	0	0	0	150	150	928	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	4,950	
Dimethyl Phthalate	0	0	0	500	500	3,094	
Di-n-Butyl Phthalate	0	0	0	21	21.0	130	
2,4-Dinitrotoluene	0	0	0	320	320	1,980	
2,6-Dinitrotoluene	0	0	0	200	200	1,238	
1,2-Diphenylhydrazine	0	0	0	3	3.0	18.6	
Fluoranthene	0	0	0	40	40.0	248	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	12.4	
Hexachlorocyclopentadiene	0	0	0	1	1.0	6.19	
Hexachloroethane	0	0	0	12	12.0	74.3	

Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	12,994	
Naphthalene	0	0	0	43	43.0	266	
Nitrobenzene	0	0	0	810	810	5,012	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	21,038	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	365	
Phenanthrene	0	0	0	1	1.0	6.19	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	161	
Aldrin	0	0	0	0.1	0.1	0.62	
alpha-BHC	0	0	0	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0043	0.004	0.027	
4,4-DDT	0	0	0	0.001	0.001	0.006	
4,4-DDE	0	0	0	0.001	0.001	0.006	
4,4-DDD	0	0	0	0.001	0.001	0.006	
Dieldrin	0	0	0	0.056	0.056	0.35	
alpha-Endosulfan	0	0	0	0.056	0.056	0.35	
beta-Endosulfan	0	0	0	0.056	0.056	0.35	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	0.036	0.036	0.22	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.0038	0.004	0.024	
Heptachlor Epoxide	0	0	0	0.0038	0.004	0.024	
Toxaphene	0	0	0	0.0002	0.0002	0.001	

☑ THH (CCT (min): 62	.592	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	34.7	
Total Arsenic	0	0		0	10	10.0	61.9	
Total Barium	0	0		0	2,400	2,400	14,850	
Total Boron	0	0		0	3,100	3,100	19,182	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	24.8	
Dissolved Iron	0	0		0	300	300	1,856	
Total Iron	0	0		0	N/A	N/A	N/A	

Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	 0	1.000	1.000	6.188	
Total Mercury	0	0	0	0.050	0.05	0,100	
Total Nickel	0	0	0	610	610	3,774	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	1.49	
		0		0.2 4 N/A	0.2 4 N/A	1.49 N/A	
Total Zinc	0	0	0	N/A 3	3.0		
Acrolein	0			-		18.6	
Acrylonitrile	0	0	0	N/A	N/A	N/A	
Benzene	0	0	0	N/A	N/A	N/A	
Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A	
Chlorobenzene	0	0	0	100	100.0	619	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	35.3	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	204	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	421	
Methyl Bromide	0	0	0	100	100.0	619	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	353	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	619	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	61,876	
1.1.2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	186	
2,4-Dichlorophenol	0	0	0	10	10.0	61.9	
2,4-Dichlorophenol	0	0	0	100	100.0	619	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	12.4	
2,4-Dinitro-o-Cresol	0	0	0	10	10.0	61.9	
	0	0	0	N/A	10.0 N/A	61.9 N/A	
2-Nitrophenol				N/A N/A		N/A N/A	
4-Nitrophenol	0	0	0		N/A		
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	24,750	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	433	
Anthracene	0	0	0	300	300	1,856	

Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	1.238	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	0.62	
2-Chloronaphthalene	0	0	0	800	800	4,950	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1.000	1.000	6,188	
1.3-Dichlorobenzene	0	0	0	7	7.0	43.3	
1.4-Dichlorobenzene	0	0	0	300	300	1.856	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	3.713	
Dimethyl Phthalate	0	0	0	2.000	2,000	12,375	
Di-n-Butyl Phthalate	0	0	0	20	20.0	124	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	124	
Fluorene	0	0	0	50	50.0	309	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	24.8	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	210	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	61.9	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	124	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	0.43	
Aldrin	0	0	0	N/A	N/A	N/A	
alpha-BHC	0	0	0	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	4.2	4.2	26.0	
Chlordane	0	0	0	N/A	N/A	N/A	
4,4-DDT	0	0	0	N/A	N/A	N/A	
4,4-DDE	0	0	0	N/A	N/A	N/A	
4,4-DDD	0	0	0	N/A	N/A	N/A	
Dieldrin	0	0	0	N/A	N/A	N/A	

alpha-Endosulfan	0	0	0	20	20.0	124	
beta-Endosulfan	0	0	0	20	20.0	124	
Endosulfan Sulfate	0	0	0	20	20.0	124	
Endrin	0	0	0	0.03	0.03	0.19	
Endrin Aldehyde	0	0	0	1	1.0	6.19	
Heptachlor	0	0	0	N/A	N/A	N/A	
Heptachlor Epoxide	0	0	0	N/A	N/A	N/A	
Toxaphene	0	0	0	N/A	N/A	N/A	

☑ CRL CC	T (min): 29	.983	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	1.74	
Benzene	0	0		0	0.58	0.58	16.8	
Bromoform	0	0		0	7	7.0	203	
Carbon Tetrachloride	0	0		0	0.4	0.4	11.6	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.8	0.8	23.2	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	0.95	0.95	27.5	

1,2-Dichloroethane	0	0	0	9.9	9.9	287	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1-Dichloropropane	0	0	0	0.9	0.9	26.0	
1,3-Dichloropropalie	0	0	0	0.9	0.9	7.81	
	0	0	0	N/A	0.27 N/A	7.61 N/A	
Ethylbenzene				N/A	N/A	N/A	
Methyl Bromide	0	0	0			N/A N/A	
Methyl Chloride	0	0	0	N/A	N/A		
Methylene Chloride	0	0	0	20	20.0	579	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	5.79	
Tetrachloroethylene	0	0	0	10	10.0	289	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	15.9	
Trichloroethylene	0	0	0	0.6	0.6	17.4	
Vinyl Chloride	0	0	0	0.02	0.02	0.58	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.87	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	43.4	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.003	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.029	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.003	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.029	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.29	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	0.87	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	9.26	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	3.47	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.003	
1.2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	1.45	
Diethyl Phthalate	0	0	0	0.03 N/A	0.03 N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimetriyi Fritrialate	U	U	U	IN/A	IV/A	IN/A	

Di-n-Butyl Phthalate	0	0		0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0		0	0.05	0.05	1.45	
2,6-Dinitrotoluene	0	0		0	0.05	0.05	1.45	
1,2-Diphenylhydrazine	0	0		0	0.03	0.03	0.87	
Fluoranthene	0	0		0	N/A	N/A	N/A	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	0.00008	0.00008	0.002	
Hexachlorobutadiene	0	0		0	0.01	0.01	0.29	
Hexachlorocyclopentadiene	0	0		0	N/A	N/A	N/A	
Hexachloroethane	0	0		0	0.1	0.1	2.89	
Indeno(1,2,3-cd)Pyrene	0	0		0	0.001	0.001	0.029	
Isophorone	0	0		0	N/A	N/A	N/A	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0		0	0.0007	0.0007	0.02	
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	0.14	
n-Nitrosodiphenylamine	0	0		0	3.3	3.3	95.5	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	N/A	N/A	N/A	
Aldrin	0	0		0	0.0000008	8.00E-07	0.00002	
alpha-BHC	0	0		0	0.0004	0.0004	0.012	
beta-BHC	0	0		0	0.008	0.008	0.23	
gamma-BHC	0	0		0	N/A	N/A	N/A	
Chlordane	0	0		0	0.0003	0.0003	0.009	
4,4-DDT	0	0		0	0.00003	0.00003	0.0009	
4,4-DDE	0	0		0	0.00002	0.00002	0.0006	
4,4-DDD	0	0		0	0.0001	0.0001	0.003	
Dieldrin	0	0		0	0.000001	0.000001	0.00003	
alpha-Endosulfan	0	0		0	N/A	N/A	N/A	
beta-Endosulfan	0	0		0	N/A	N/A	N/A	
Endosulfan Sulfate	0	0		0	N/A	N/A	N/A	
Endrin	0	0		0	N/A	N/A	N/A	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0	<u> </u>	0	0.000006	0.000006	0.0002	
Heptachlor Epoxide	0	0		0	0.00003	0.00003	0.0009	
Toxaphene	0	0		0	0.0007	0.0007	0.02	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML MDL		IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	1,702	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	0.46	0.72	34.4	53.7	86.1	μg/L	34.4	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Free Cyanide	Report	Report	Report	Report	Report	μg/L	24.8	THH	Discharge Conc > 25% WQBEL (no RP)

Total Mercury	0.004	0.006	0.31	0.48	0.77	μg/L	0.31	THH	Discharge Conc ≥ 50% WQBEL (RP)
Total Selenium	Report	Report	Report	Report	Report	μg/L	30.9	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Silver	Report	Report	Report	Report	Report	μg/L	9.96	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	292	AFC	Discharge Conc > 10% WQBEL (no RP)
Benzo(a)Anthracene	0.0004	0.0006	0.029	0.045	0.072	μg/L	0.029	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Benzo(a)Pyrene	0.00004	0.00006	0.003	0.005	0.007	μg/L	0.003	CRL	Discharge Conc ≥ 50% WQBEL (RP)
3,4-Benzofluoranthene	0.0004	0.0006	0.029	0.045	0.072	μg/L	0.029	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Benzo(k)Fluoranthene	0.004	0.006	0.29	0.45	0.72	μg/L	0.29	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Bis(2-Chloroethyl)Ether	0.012	0.018	0.87	1.35	2.17	μg/L	0.87	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Butyl Benzyl Phthalate	0.008	0.013	0.62	0.97	1.55	μg/L	0.62	THH	Discharge Conc ≥ 50% WQBEL (RP)
Chrysene	0.046	0.072	3.47	5.42	8.68	μg/L	3.47	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Dibenzo(a,h)Anthrancene	0.00004	0.00006	0.003	0.005	0.007	μg/L	0.003	CRL	Discharge Conc ≥ 50% WQBEL (RP)
2,6-Dinitrotoluene	Report	Report	Report	Report	Report	μg/L	1.45	CRL	Discharge Conc > 25% WQBEL (no RP)
1,2-Diphenylhydrazine	0.012	0.018	0.87	1.35	2.17	μg/L	0.87	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Hexachlorobenzene	0.00003	0.00005	0.002	0.004	0.006	μg/L	0.002	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Indeno(1,2,3-cd)Pyrene	0.0004	0.0006	0.029	0.045	0.072	μg/L	0.029	CRL	Discharge Conc ≥ 50% WQBEL (RP)
beta-BHC	Report	Report	Report	Report	Report	μg/L	0.23	CRL	Discharge Conc > 25% WQBEL (no RP)
Toxaphene	0.00002	0.00003	0.001	0.002	0.003	μg/L	0.001	CFC	Discharge Conc ≥ 50% WQBEL (RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Antimony	34.7	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	14,850	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	9,900	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	1.78	μg/L	Discharge Conc < TQL
Total Chromium (III)	572	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	37.0	μg/L	Discharge Conc < TQL
Total Cobalt	118	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	1,856	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	9,281	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	22.0	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	6,188	μg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	347	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Thallium	1.49	μg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	6.81	μg/L	Discharge Conc < TQL

A 1 7 7	1 4 74		D: 1 0 1T01
Acrylonitrile	1.74	μg/L	Discharge Conc < TQL
Benzene	16.8	μg/L	Discharge Conc < TQL
Bromoform	203	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	11.6	μg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	619	μg/L	Discharge Conc < TQL
Chlorodibromomethane	23.2	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	21,657	μg/L	Discharge Conc < TQL
Chloroform	35.3	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	27.5	μg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	287	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	204	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	26.0	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	7.81	μg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	421	μg/L	Discharge Conc < TQL
Methyl Bromide	619	μg/L	Discharge Conc < TQL
Methyl Chloride	34.032	μg/L	Discharge Conc < TQL
Methylene Chloride	579	μg/L	Discharge Conc < TQL
1.1.2.2-Tetrachloroethane	5.79	μg/L	Discharge Conc < TQL
Tetrachloroethylene	289	μg/L	Discharge Conc < TQL
Toluene	353	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	619	μg/L μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	3,774	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	15.9	μg/L μg/L	Discharge Cond < TQL
Trichloroethylene	17.4	μg/L μg/L	Discharge Conc < TQL
Vinyl Chloride	0.58		Discharge Cond < TQL Discharge Conc < TQL
2-Chlorophenol	186	μg/L	Discharge Cond < TQL
2,4-Dichlorophenol	61.9	μg/L	Discharge Cond < TQL Discharge Conc < TQL
		μg/L	
2,4-Dimethylphenol	619	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	12.4	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	61.9	μg/L	Discharge Conc < TQL
2-Nitrophenol	9,900	μg/L	Discharge Conc < TQL
4-Nitrophenol	2,908	μg/L	Discharge Conc ≤ 25% WQBEL
p-Chloro-m-Cresol	363	μg/L	Discharge Conc ≤ 25% WQBEL
Pentachlorophenol	0.87	μg/L	Discharge Conc < TQL
Phenol	24,750	μg/L	Discharge Conc ≤ 25% WQBEL
2,4,6-Trichlorophenol	43.4	μg/L	Discharge Conc ≤ 25% WQBEL
Acenaphthene	105	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	1,856	μg/L	Discharge Conc ≤ 25% WQBEL
Benzidine	0.003	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroisopropyl)Ether	1,238	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	9.26	μg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	334	μg/L	Discharge Conc ≤ 25% WQBEL
. Diditiophicity i ficity Eulei	007	P9″⊏	Distriarge Conto 2 20 /0 VVQDEE

2-Chloronaphthalene	4,950	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
1,2-Dichlorobenzene	990	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	43.3	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	928	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	1.45	μg/L	Discharge Conc ≤ 25% WQBEL
Diethyl Phthalate	3,713	μg/L	Discharge Conc ≤ 25% WQBEL
Dimethyl Phthalate	3,094	μg/L	Discharge Conc ≤ 25% WQBEL
Di-n-Butyl Phthalate	124	μg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrotoluene	1.45	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
Fluoranthene	124	μg/L	Discharge Conc ≤ 25% WQBEL
Fluorene	309	μg/L	Discharge Conc ≤ 25% WQBEL
Hexachlorobutadiene	0.29	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	6.19	μg/L	Discharge Conc < TQL
Hexachloroethane	2.89	μg/L	Discharge Conc < TQL
Isophorone	210	μg/L	Discharge Conc < TQL
Naphthalene	266	μg/L	Discharge Conc < TQL
Nitrobenzene	61.9	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.02	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.14	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	95.5	μg/L	Discharge Conc ≤ 25% WQBEL
Phenanthrene	6.19	μg/L	Discharge Conc ≤ 25% WQBEL
Pyrene	124	μg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzene	0.43	μg/L	Discharge Conc < TQL
Aldrin	0.00002	μg/L	Discharge Conc < TQL
alpha-BHC	0.012	μg/L	Discharge Conc < TQL
gamma-BHC	2.16	μg/L	Discharge Conc < TQL
delta BHC	N/A	N/A	No WQS
Chlordane	0.009	μg/L	Discharge Conc < TQL
4,4-DDT	0.0009	μg/L	Discharge Conc < TQL
4,4-DDE	0.0006	μg/L	Discharge Conc < TQL
4,4-DDD	0.003	μg/L	Discharge Conc < TQL
Dieldrin	0.00003	μg/L	Discharge Conc < TQL
alpha-Endosulfan	0.35	μg/L	Discharge Conc ≤ 25% WQBEL
beta-Endosulfan	0.35	μg/L	Discharge Conc < TQL
Endosulfan Sulfate	124	μg/L	Discharge Conc < TQL
Endrin	0.19	μg/L	Discharge Conc < TQL
Endrin Aldehyde	6.19	μg/L	Discharge Conc ≤ 25% WQBEL
Heptachlor	0.0002	μg/L	Discharge Conc < TQL
Heptachlor Epoxide	0.0009	μg/L	Discharge Conc < TQL
· '			1

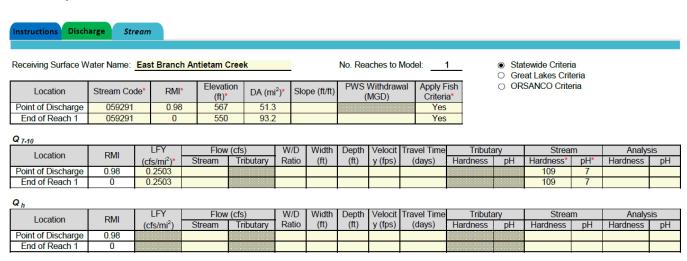
Discharge Information

Instructions Di	scharge Stream		
Facility: Way	mesboro WWTP	NPDES Permit No.: PA0020621	Outfall No.: 001
		<u> </u>	
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Sewage effluent	
	Disabar	na Characteriatics	

Discharge Characteristics											
Design Flow	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs) Complete Mix Times (mi								
(MGD)*	naruness (mg/i)	pn (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h			
1.6	109	7.67									

					0 if lef	t blank	0.5 if le	eft blank	0) if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FO\$	Criteri a Mod	Chem Transl
Г	Total Dissolved Solids (PWS)	mg/L		338									
12	Chloride (PWS)	mg/L		74									
8	Bromide	mg/L	<	0.07									
Group	Sulfate (PWS)	mg/L		45									
Ľ	Fluoride (PWS)	mg/L											
Г	Total Aluminum	μg/L		218									
ı	Total Antimony	μg/L		3.1									
ı	Total Arsenic	μg/L	<	1									
ı	Total Barium	μg/L	٧	9.6									
ı	Total Beryllium	μg/L	<	0.68									
ı	Total Boron	μg/L		426									
ı	Total Cadmium	μg/L	<	0.12									
ı	Total Chromium (III)	μg/L		2.2									
ı	Hexavalent Chromium	µg/L	<	0.25									
ı	Total Cobalt	µg/L		0.34									
ı	Total Copper	µg/L		50									
2	Free Cyanide	μg/L		8									
Group	Total Cyanide	μg/L	<	6									
ΙÄ	Dissolved Iron	μg/L		110									
١٠	Total Iron	µg/L		130									
ı	Total Lead	µg/L		0.27									
ı	Total Manganese	μg/L		23									
ı	Total Mercury	µg/L	<	0.19	*********								
ı	Total Nickel	µg/L		2.4									
ı	Total Phenols (Phenolics) (PWS)	μg/L		4									
ı	Total Selenium	µg/L		10									
ı	Total Silver	µg/L	<	1.37									
ı	Total Thallium	µg/L	<	0.07									
ı	Total Zinc	µg/L		30									
ı	Total Molybdenum	µg/L		0.56									
	Acrolein	µg/L	<	2									
ı	Acrylamide	µg/L	<										
ı	Acrylonitrile	µg/L	<	0.51									
ı	Benzene	µg/L	<	0.43									
ı	Bromoform	µg/L	<	0.34									
ı	Carbon Tetrachloride	μg/L	<	0.51									
1	Chlorobenzene	ug/L	<	0.21									
ı	Chlorodibromomethane	μg/L	<	0.39									
ı	Chloroethane	µg/L	<	0.42									
1	2-Chloroethyl Vinyl Ether	µg/L	<	4									
ı	z-Chioroethyi Vinyi Ether	µg/L	<	4									

	0.1			0.54	 	_			P
l	Chloroform	μg/L	<	0.51			-	-	
l	Dichlorobromomethane	μg/L	<	0.32			-	-	
l	1,1-Dichloroethane	μg/L	<	0.42			-	-	
3	1,2-Dichloroethane	μg/L	<	0.39					
Group	1,1-Dichloroethylene	μg/L	<	0.33					
l &	1,2-Dichloropropane	μg/L	<	0.42					
١	1,3-Dichloropropylene	μg/L	<	0.59				—	
l	1,4-Dioxane	μg/L	<	3					
l	Ethylbenzene	μg/L	<	0.27					
l	Methyl Bromide	μg/L	<	0.46					
l	Methyl Chloride	μg/L	<	0.36					
l	Methylene Chloride	μg/L	<	0.45					
l	1,1,2,2-Tetrachloroethane	μg/L	<	0.36					
l	Tetrachloroethylene	μg/L	<	0.39					
l	Toluene	μg/L	<	0.33					
l	1,2-trans-Dichloroethylene	μg/L	<	0.39					
l	1,1,1-Trichloroethane	μg/L	<	0.38					
l	1,1,2-Trichloroethane	μg/L	<	0.24					
l	Trichloroethylene	μg/L	<	0.46					
<u> </u>	Vinyl Chloride	μg/L	<	0.46					
l	2-Chlorophenol	μg/L	<	0.13					
1	2,4-Dichlorophenol	μg/L	<	0.25					
l	2,4-Dimethylphenol	μg/L	<	0.26					
4	4,6-Dinitro-o-Cresol	μg/L	<	0.9					
	2,4-Dinitrophenol	μg/L	<	0.86					
Group	2-Nitrophenol	μg/L	<	0.25					
ঠ	4-Nitrophenol	μg/L		0.21					
l	p-Chloro-m-Cresol	μg/L		0.41					
l	Pentachlorophenol	μg/L	<	0.97					
l	Phenol	μg/L		1.97					
	2,4,6-Trichlorophenol	μg/L		0.27					
l	Acenaphthene	μg/L	<	0.26					
l	Acenaphthylene	μg/L	<	0.22					
l	Anthracene	μg/L		0.6					
l	Benzidine	μg/L	<	0.35					
l	Benzo(a)Anthracene	μg/L	<	1.91					
l	Benzo(a)Pyrene	μg/L	<	1.04					
l	3,4-Benzofluoranthene	μg/L	<	1.23					
l	Benzo(ghi)Perylene	μg/L		1					
l	Benzo(k)Fluoranthene	μg/L	<	1.3					
l	Bis(2-Chloroethoxy)Methane	μg/L	<	0.15					
l	Bis(2-Chloroethyl)Ether	μg/L	<	1.92					
l	Bis(2-Chloroisopropyl)Ether	μg/L	<	0.34					
l	Bis(2-Ethylhexyl)Phthalate	μg/L		0.95					
l	4-Bromophenyl Phenyl Ether	μg/L		0.61					
l	Butyl Benzyl Phthalate	μg/L	<	1.04					
l	2-Chloronaphthalene	μg/L	<	0.28					
l	4-Chlorophenyl Phenyl Ether	μg/L		0.4					
l	Chrysene	μg/L	<	2.01					
l	Dibenzo(a,h)Anthrancene	μg/L	<	0.75					
1	1,2-Dichlorobenzene	μg/L	<	0.32					
1	1,3-Dichlorobenzene	μg/L	V	0.17					
40	1,4-Dichlorobenzene	μg/L	٧	0.15					
Group	3,3-Dichlorobenzidine	μg/L		0.14					
l S	Diethyl Phthalate	μg/L		0.7					
۳	Dimethyl Phthalate	μg/L		0.41					
l	Di-n-Butyl Phthalate	μg/L		1.2					
l	2,4-Dinitrotoluene	μg/L	<	0.77				\vdash	
l	2,6-Dinitrotoluene	μg/L	<	0.44					
l	Di-n-Octyl Phthalate	μg/L		0.45					
l	1,2-Diphenylhydrazine	μg/L	<	0.45					
l	Fluoranthene	μg/L		2.5					
l	Fluorene	μg/L		0.39					
ı	Hexachlorobenzene	μg/L	٧	0.92					
ı	Hexachlorobutadiene	µg/L	<	0.27					
l									
	Hexachlorocyclopentadiene	μg/L	<	0.22					
			v v v	0.22 0.26 0.88					


	Isophorone	μg/L	<	0.23		
	Naphthalene	μg/L	<	0.25		
	Nitrobenzene	μg/L	<	0.26		
	n-Nitrosodimethylamine	μg/L	٧	0.4		
	n-Nitrosodi-n-Propylamine	μg/L	<	0.31		
	n-Nitrosodiphenylamine	μg/L		0.53		
	Phenanthrene	μg/L		1.27		
	Pyrene	μg/L		2.39		
	1,2,4-Trichlorobenzene	μg/L	<	0.17		
	Aldrin	µg/L	<	0.02		
	alpha-BHC	µg/L	<	0.03		
	beta-BHC	μg/L	<	0.06		
	gamma-BHC	μg/L	<	0.01		
	delta BHC	µg/L	<	0.03		
	Chlordane	µg/L	<	0.63	 	
	4,4-DDT	µg/L	<	0.02	 	
	4.4-DDE	μg/L	<	0.02		
	4,4-DDD 4.4-DDD		<	0.02		
	4,4-DDD Dieldrin	µg/L	<	0.02		
		µg/L	_	0.02		
	alpha-Endosulfan	μg/L	<			
9	beta-Endosulfan	μg/L	<	0.01		
₫.	Endosulfan Sulfate	μg/L	<	0.02		
Group	Endrin	μg/L	<	0.03		
ত	Endrin Aldehyde	μg/L	<	0.07		
	Heptachlor	μg/L	<	0.03		
	Heptachlor Epoxide	μg/L	<	0.01		
	PCB-1016	μg/L	٧			
	PCB-1221	μg/L	<			
	PCB-1232	μg/L	<			
	PCB-1242	μg/L	<			
	PCB-1248	μg/L	<			
	PCB-1254	μg/L	<			
	PCB-1260	μg/L	<			
	PCBs, Total	µg/L	<			
	Toxaphene	μg/L	<	1.04		
	2,3,7,8-TCDD	ng/L	<			
	Gross Alpha	pCi/L	Ė		 	
	Total Beta	pCi/L	<			
p 7	Radium 226/228	pCi/L	<			
Group	Total Strontium	µg/L	<			
Ğ	Total Uranium	µg/L	<			
	Osmotic Pressure	mOs/kg	<			
	Osmotic Fressure	mos/kg				
		-	_		 	$\overline{}$

Toxics Management Spreadsheet Version 1.4 May 2023

Stream / Surface Water Information

Waynesboro WWTP, NPDES Permit No. PA0020621, Outfall 001

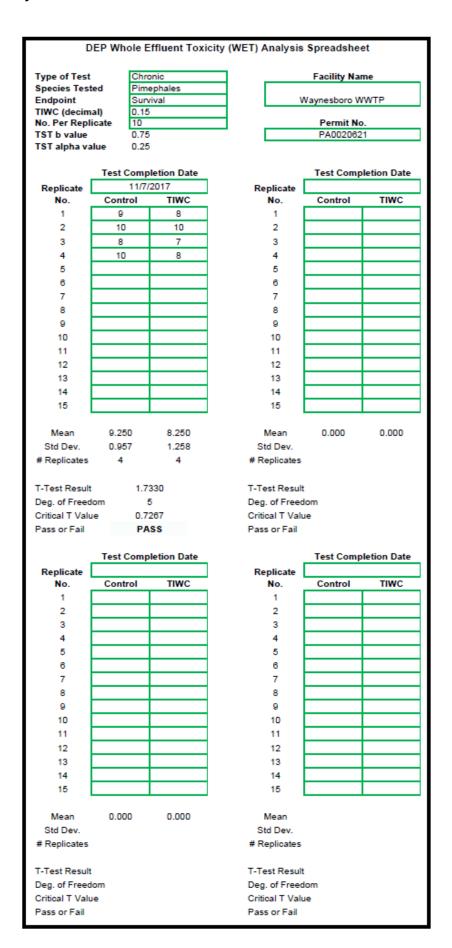
☑ Recommended WQBELs & Monitoring Requirements

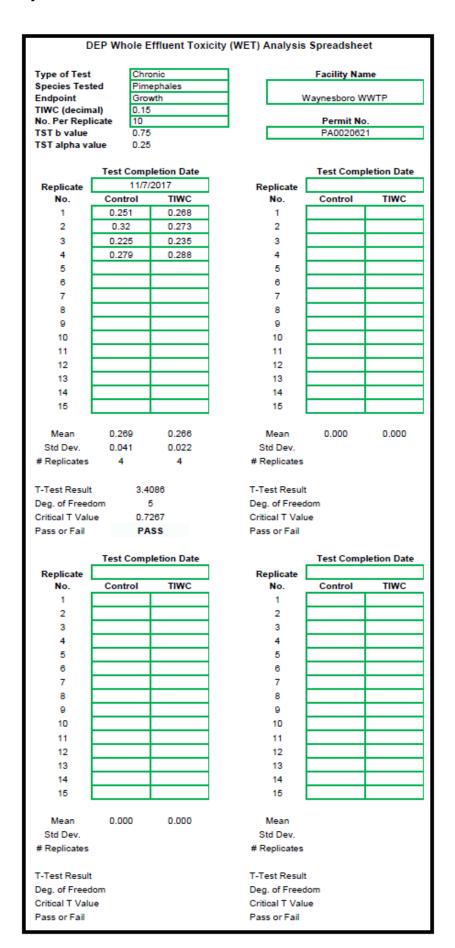
No. Samples/Month:

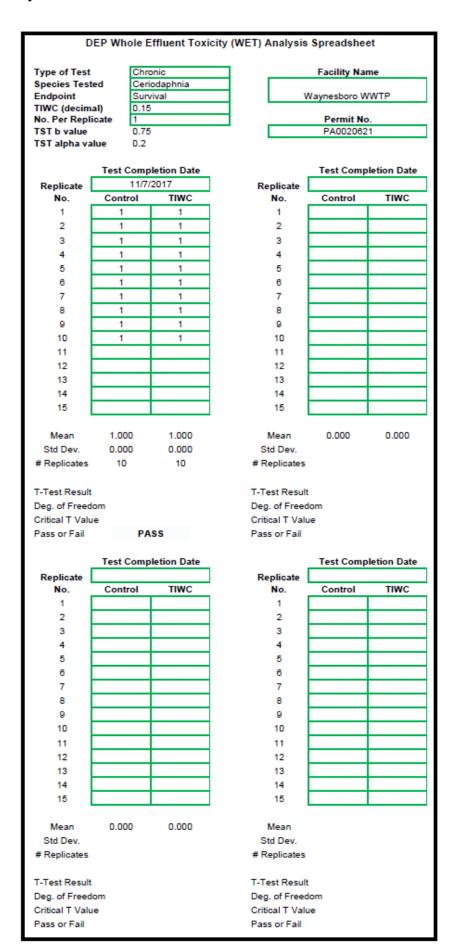
		Mass	Limits		Concentra	tion Limits				
Г	Pollutants	AML	MDL	AML	MDL	IMAX	Units	Governing	WQBEL	Comments
	Foliularits	(lbs/day) (lbs/day)	(lbs/day)	AIVIL	MDL	IIVIAA	Units	WQBEL	Basis	Comments
Γ	Total Aluminum	Report	Report	Report	Report	Report	μg/L	1,702	AFC	Discharge Conc > 10% WQBEL (no RP)
Γ	Total Copper	0.46	0.72	34.4	53.7	86.1	μg/L	34.4	AFC	Discharge Conc ≥ 50% WQBEL (RP)
	Free Cyanide	Report	Report	Report	Report	Report	μg/L	24.8	THH	Discharge Conc > 25% WQBEL (no RP)

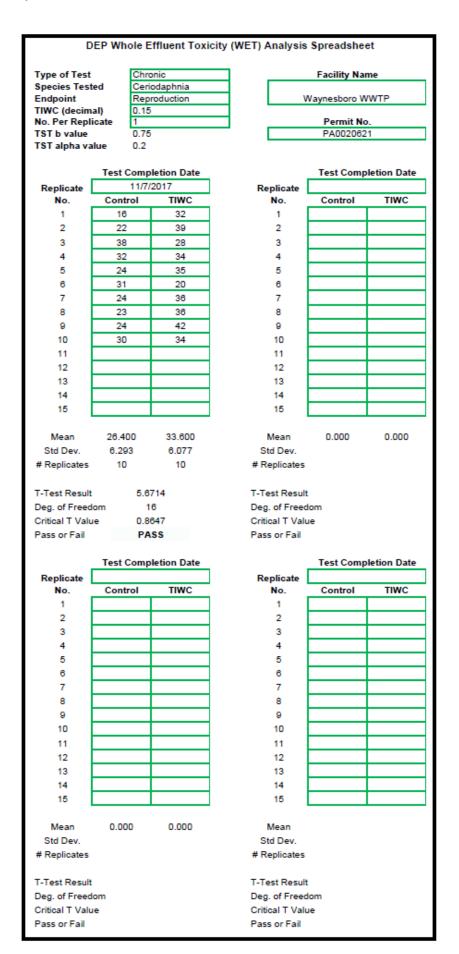
Total Selenium	Report	Report	Report	Report	Report	μg/L	30.9	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Silver	Report	Report	Report	Report	Report	μg/L	9.96	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	292	AFC	Discharge Conc > 10% WQBEL (no RP)
beta-BHC	Report	Report	Report	Report	Report	μg/L	0.23	CRL	Discharge Conc > 25% WQBEL (no RP)
Toxaphene	0.00002	0.00003	0.001	0.002	0.003	μg/L	0.001	CFC	Discharge Conc ≥ 50% WQBEL (RP)
					·				

Attachment C


TRC Evaluation


PA0020621: Waynesboro


February 2024


	IATION				
		B4:B8 and E4:E7			
12.83	9 = Q stream (cfs)	0.5	= CV Daily	
3.4	5 = Q discharg	je (MGD)	0.5	= CV Hourly	
3	0 = no. sample	s	1	= AFC_Partial N	lix Factor
0.	3 = Chlorine D	emand of Stream	1 = CFC_Partial Mix Factor 15 = AFC_Criteria Compliance Time (min)		
(0 = Chlorine D	emand of Discharge			
	= BAT/BPJ V		720	= CFC_Criteria	Compliance Time (min)
		of Safety (FOS)	0	=Decay Coeffic	1 1
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.759
PENTOXSD TRO		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRO	5.1b	LTA_afc=	0.293	5.1d	LTA_cfc = 0.441
Source		Effluent	Limit Calc	culations	
	5.1f		L MULT =	1.231	
PENTOXSD TRO		AM	L MULT = T (mg/l) =		AFC
PENTOXSD TRO			T (mg/l) =	0.361	AFC
PENTOXSD TRO	5 5.1g	AM AVG MON LIMI INST MAX LIMI	T (mg/l) = T (mg/l) =	0.361 1.180	
PENTOXSD TRO	5.1g (.019/e(-k*Al	AM AVG MON LIMI INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs	T (mg/l) = T (mg/l) = s*.019/Qd*	0.361 1.180	
PENTOXSD TRO PENTOXSD TRO WLA afc	5.1g (.019/e(-k*Al + Xd + (AFG	AM AVG MON LIMI INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-Fc	T (mg/l) = T (mg/l) = s*.019/Qd* OS/100)	0.361 1.180 'e(-k*AFC_tc))	
PENTOXSD TRO PENTOXSD TRO WLA afc	(.019/e(-k*Al + Xd + (AF(EXP((0.5*LN	AM AVG MON LIMI INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-Fc (cvh^2+1))-2.326*LN(c	T (mg/l) = T (mg/l) = s*.019/Qd* OS/100)	0.361 1.180 'e(-k*AFC_tc))	
PENTOXSD TRO PENTOXSD TRO WLA afc	5.1g (.019/e(-k*Al + Xd + (AFG	AM AVG MON LIMI INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-Fc (cvh^2+1))-2.326*LN(c	T (mg/l) = T (mg/l) = s*.019/Qd* OS/100)	0.361 1.180 'e(-k*AFC_tc))	
PENTOXSD TRO PENTOXSD TRO WLA afc	(.019/e(-k*Al + Xd + (AFC EXP((0.5*LN wla_afc*LTA	AM AVG MON LIMI INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-Fc (cvh^2+1))-2.326*LN(c	T (mg/l) = T (mg/l) = *.019/Qd* OS/100) cvh^2+1)^	0.361 1.180 'e(-k*AFC_tc))	
PENTOXSD TRO PENTOXSD TRO WLA afc LTAMULT afc LTA_afc	(.019/e(-k*Al + Xd + (AFC EXP((0.5*LN) wla_afc*LTA (.011/e(-k*Cl	AM AVG MON LIMI INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F(cvh^2+1))-2.326*LN(c	T (mg/l) = T (mg/l) = s*.019/Qd* OS/100) cvh^2+1)^	0.361 1.180 'e(-k*AFC_tc))	
PENTOXSD TRO PENTOXSD TRO WLA afc LTAMULT afc LTA_afc	(.019/e(-k*AI + Xd + (AF(EXP((0.5*LN) wla_afc*LTA (.011/e(-k*CI + Xd + (CF(AM AVG MON LIMI INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-Fc (cvh^2+1))-2.326*LN(c MULT_afc FC_tc) + [(CFC_Yc*Qs*	T (mg/l) = T (mg/l) = s*.019/Qd* OS/100) cvh^2+1)^ *.011/Qd* OS/100)	0.361 1.180 'e(-k*AFC_tc)) 0.5)	
PENTOXSD TRO PENTOXSD TRO WLA afc LTAMULT afc LTA_afc WLA_cfc	(.019/e(-k*AI + Xd + (AF(EXP((0.5*LN) wla_afc*LTA (.011/e(-k*CI + Xd + (CF(AM AVG MON LIMI INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-Fc (cvh^2+1))-2.326*LN(c MULT_afc FC_tc) + [(CFC_Yc*Qs* C_Yc*Qs*Xs/Qd)]*(1-Fc (cvd^2/no_samples+1)	T (mg/l) = T (mg/l) = s*.019/Qd* OS/100) cvh^2+1)^ *.011/Qd* OS/100)	0.361 1.180 'e(-k*AFC_tc)) 0.5)	
PENTOXSD TRO PENTOXSD TRO WLA afc LTAMULT afc LTA_afc WLA_cfc	(.019/e(-k*Al + Xd + (AFC EXP((0.5*LN wla_afc*LTA (.011/e(-k*Cl + Xd + (CFC EXP((0.5*LN wla_cfc*LTA	AM AVG MON LIMI INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-Fc (cvh^2+1))-2.326*LN(c MULT_afc FC_tc) + [(CFC_Yc*Qs* C_Yc*Qs*Xs/Qd)]*(1-Fc (cvd^2/no_samples+1) MULT_cfc	T (mg/l) = T (mg/l) = *.019/Qd* OS/100) cvh^2+1)^ *.011/Qd* OS/100) D-2.326*L	0.361 1.180 'e(-k*AFC_tc)) 0.5) e(-k*CFC_tc))	nples+1)^0.5)
PENTOXSD TRO PENTOXSD TRO WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_ofc	(.019/e(-k*AI + Xd + (AFC EXP((0.5*LN: wla_afc*LTA (.011/e(-k*CI + Xd + (CFC EXP((0.5*LN: wla_cfc*LTA EXP(2.326*L	AM AVG MON LIMI INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-Fc (cvh^2+1))-2.326*LN(c MULT_afc FC_tc) + [(CFC_Yc*Qs* C_Yc*Qs*Xs/Qd)]*(1-Fc (cvd^2/no_samples+1)	T (mg/l) = T (mg/l) = T (mg/l) = s*.019/Qd* OS/100) cvh^2+1)^ *.011/Qd*(OS/100) b)-2.326*Ll +1)^0.5)-0	0.361 1.180 'e(-k*AFC_tc)) 0.5) e(-k*CFC_tc)) N(cvd^2/no_sam	nples+1)^0.5)

Attachment D WETT Testing Results

	DEP Wh	ole I	-ffluent Tox	icity (WET) Analysis	Spreadsho	of	
Type of Test Species Tes			onic ephales	_	Facility Na	me	
Endpoint	ileu	_	vival		Vaynesboro V	AAAATD	
TIWC (decin	nal)	0.16			vayriesouro v	VVVII	
No. Per Rep		10			Permit No.		
TST b value		0.75	5		PA002062		
TST alpha v	alue	0.25	5				
	Test (letion Date	1	Test Comp	oletion Date	
Replicate			2019	Replicate			
No.	Cont	rol	TIWC	No.	Control	TIWC	
1	7		8	1			
2	10		10	2			
3	8		10	3			
4	10		9	4			
5				5	ļ		
6	-			6			
7				7			
8				8			
9 10				9			
11				10			
12				11			
13	<u> </u>			12			
14				13			
15				14		-	
15	L:			15	L		
Mean	8.75	0	9.250	Mean	0.000	0.000	
Std Dev.	1.50	0	0.957	Std Dev.		0.000	
# Replicates	4		4	# Replicates		•	
T-Test Resul			132	T-Test Result			
Deg. of Freed Critical T Val Pass or Fail	dom ue		5 267	T-Test Result Deg. of Freed Critical T Valu Pass or Fall	iom		
Deg. of Free Critical T Val	dom ue	0.7 PA	5 267	Deg. of Freed Critical T Valu	dom ue	oletion Date	
Deg. of Free Critical T Val	dom ue	0.7 PA	5 267 SS	Deg. of Freed Critical T Valu	dom ue	oletion Date	
Deg. of Freed Critical T Val Pass or Fail	dom ue	0.7 PA	5 267 SS	Deg. of Freed Critical T Valu Pass or Fail	dom ue	oletion Date	
Deg. of Freed Critical T Val Pass or Fail Replicate No.	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate	dom ue Test Comp		
Deg. of Freed Critical T Vall Pass or Fail Replicate No. 1	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No.	dom ue Test Comp		
Deg. of Freed Critical T Vall Pass or Fail Replicate No. 1 2 3	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3	dom ue Test Comp		
Deg. of Freed Critical T Vall Pass or Fail Replicate No. 1 2 3 4	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4	dom ue Test Comp		
Deg. of Freed Critical T Vall Pass or Fail Replicate No. 1 2 3 4 5	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	dom ue Test Comp		
Deg. of Freed Critical T Vall Pass or Fail Replicate No. 1 2 3 4 5	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test (0.7 PA	5 267 SS letion Date	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test (0.7 PA	SS SINCE	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	dom ue Test Comp		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test C Conti	0.7 PA	SS SINCE	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	dom ue Test Comp		
Deg. of Freed Critical T Validate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test C Conti	0.7 PA	SS SINCE	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Comp Control		
Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test C Conti	0.7 PA	SS SINCE	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control		

'	DEP W	1016	Effluent Tox	icity (WET) Analysis	Spreadshe	et	
Type of Test			onic		Facility Na	me	
Species Tes	ted		ephales		Manuachers MANTE		
Endpoint TIWC (decin	/ler	O.16	wth		Wanyesboro WWTP		
No. Per Rep		10	,		Permit No.		
TST b value		0.7	5		PA0020621		
TST alpha va	alue	0.2	5				
1	_	_					
	Test		oletion Date	1	Test Comp	oletion Date	
Replicate No.	Cont		/2019 TIWC	Replicate No.	Control	TIMO	
1	0.27		0.38	1 1	Control	TIWC	
2	0.3		0.444	2			
3	0.35		0.376	3			
4	0.38	52	0.34	4			
5				5			
6				6			
7				7			
8				8			
9 10				9			
10				10 11			
12				11 12			
13				13			
14				14			
15				15			
	-						
Mean	0.33		0.385	Mean	0.000	0.000	
Std Dev.	0.03		0.043	Std Dev.			
# Replicates	4		4	# Replicates			
T-Test Result	t	5.0	905	T-Test Result	+		
Deg. of Freed	iom .		5	Deg. of Freed			
Critical T Value	ue		267	Critical T Valu	ie		
Pass or Fail	- 100	PA	SS	Pass or Fail			
	Tont	Came	lotion Data		T4 C	letter Dete	
Replicate	Test	Comp	letion Date	Replicate	rest Comp	letion Date	
No.	Cont	rol	TIWC	No.	Control	TIWC	
1				1			
2				2			
3				3			
4				4			
5				5		ļ	
6 7				6 7		ļ l	
8				8			
9				9			
10				10			
11				11			
12				12			
13				13			
14				14			
15				15			
Mean	0.00	20	0.000	Maan			
Std Dev.	0.00		0.000	Mean Std Dev.			
# Replicates				# Replicates			
				# Nopileates			
T-Test Result				T-Test Result			
Deg. of Freed	iom			Deg. of Freed			
Critical T Valu	Je			Critical ⊤ Valu	ie		
Pass or Fail				Pass or Fail			

	DEP Whole	Effluent Toxic	city (WET) Analysis	Spreadshe	et
Type of Test Species Tes		hronic eriodaphnia		Facility Na	me
Endpoint	_	urvival	\dashv \mid \downarrow	Vaynesboro V	MWTP
TIWC (decin	nal) 0.	16		raynoodolo v	****
No. Per Rep		7.5		Permit N	
TST b value TST alpha v		75		PA002062	21
101 dipila V		_			
	Test Cor	npletion Date		Test Comp	oletion Date
Replicate		5/2019	Replicate		
No.	Control	TIWC	No.	Control	TIWC
1 2	1	1 1	1 2		
3	1	1	3	-	-
4	1	1	4		-
5	1	1	5		
6	1	1	6		
7	1	1	7		
8	1	1 1	8		
10	1	1	9 10		
11		 	11		
12			12		
13			13		
14			14		
15			15		
Mean	1.000	1.000	Mean	0.000	0.000
Std Dev.	0.000	0.000	Std Dev.	0.000	0.000
# Replicates	10	10	# Replicates		
T-Test Result			T-Test Result		
Deg. of Freed	lom		Deg. of Freed	lom	
Deg. of Freed Critical T Valu	lom	ACC	Deg. of Freed Critical T Valu	lom	
Deg. of Freed	lom	ASS	Deg. of Freed	lom	
Deg. of Freed Critical T Valu Pass or Fail	lom Je F	ASS	Deg. of Freed Critical T Valu	lom ue	letion Date
Deg. of Freed Critical T Valu Pass or Fail Replicate	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate	om ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	lom Je F		Deg. of Freed Critical T Valu Pass or Fall Replicate No.	lom ue	eletion Date
Deg. of Freed Critical T Valu Pass or Fail Replicate	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No.	om ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No.	om ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2	om ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5	om ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5	om ue Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7	om ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5	om ue Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7	om ue Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8	om ue Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11	om ue Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om ue Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om ue Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om ue Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	lom ue F Test Con	pletion Date	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om ue Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Con Control	TIWC	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om ue Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Con Control	TIWC	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	om ue Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Com Control	TIWC	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp Control	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Com Control 0.000	TIWC	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Com Control 0.000	TIWC	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp Control	

		_					
'	DEP WI	ole	Effluent Tox	ticity (WET) Analysis	Spreadshe	et	
Type of Test			ronic		Facility Na	ame	
Species Tes Endpoint	red		riodaphnia production	 ,	Waynesboro \	MANTE	
TIWC (decin		0.1		-	rvayriesboro 1	VVVVIP	
No. Per Rep		1			Permit No.		
TST b value TST alpha v		0.7			PA0020621		
131 alpha v	arue	0.2					
l	Test	Comp	pletion Date		Test Com	pletion Date	
Replicate		7/15	/2019	Replicate			
No.	Cont		TIWC	No.	Control	TIWC	
1 2	36		33	1			
3	30		37 16	2			
4	34		39	3 4		-	
5	33		35	5			
6	30		29	6		 	
7	35		25	7			
8	37		39	8			
9	37		34	9			
10	33		37	. 10			
11 12				11			
13				12			
14			·	13			
15			-	15			
				, , ,			
Mean	34.60	00	32.400	Mean	0.000	0.000	
Std Dev.	3.37		7.260	Std Dev.			
# Replicates	10		10	# Replicates			
T-Test Result		2.6	529	T-Test Result			
Deg. of Freed			3	Deg. of Freed			
Critical T Valu		0.8	702	Critical T Valu			
Pass or Fail		PA	ss	Pass or Fail			
	Test C	omp	letion Date	11	Test Comp	letion Date	
Replicate No.	Contr	ol.	TIWC	Replicate No.	Control	TIMO	
1 1	COILL	01	TIWO	1 1	Control	TIWC	
2				2			
3				3			
4				4			
5				5			
6				6			
7 8				7			
9		_		8		I	
10				10		I	
11				11			
12				12			
13				13			
14				14			
15				15			
Moon	0.00	2	0.000			I	
Mean Std Dev.	0.000	J	0.000	Mean Std Dev		I	
# Replicates				Std Dev. # Replicates			
# 1 robilogies				# replicates			
T-Test Result				T-Test Result			
Deg. of Freed				Deg. of Freed	om	I	
Critical T Valu	0			Critical T Valu	е	- 1	
Pass or Fail				Pass or Fail			

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet Type of Test Chronic **Facility Name** Species Tested Pimephales Endpoint Survival Waynesboro WWTP TIWC (decimal) 0.16 No. Per Replicate 10 Permit No. PA0020621 TST b value 0.75 TST alpha value 0.25 **Test Completion Date Test Completion Date** 6/9/2020 Replicate Replicate TIWC TIWC Control Control No. No. 10 10 1 2 2 10 10 3 3 10 9 4 9 9 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 9.750 9.500 0.000 0.000 Mean Mean 0.500 0.577 Std Dev. Std Dev. # Replicates 4 # Replicates T-Test Result 5.3848 T-Test Result Deg. of Freedom Deg. of Freedom 5 Critical T Value 0.7267 Critical T Value Pass or Fail PASS Pass or Fail **Test Completion Date Test Completion Date** Replicate Replicate TIWC Control TIWC Control No. No. 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 Mean 0.000 0.000 Mean Std Dev. Std Dev. # Replicates # Replicates T-Test Result T-Test Result Deg. of Freedom Deg. of Freedom Critical T Value Critical T Value Pass or Fail Pass or Fail

1	DEP WI	hole E	Effluent Toxi	city (WET) Analysis	Spreadshee	t		
Type of Test		Chro			Facility Na			
Species Test	ed		ephales					
Endpoint		Grov		V	Vanyesboro V	WTP		
TIWC (decim No. Per Repli		0.16		Dannié Na				
TST b value	cate	0.75			Permit No. PA0020621			
TST alpha va	lue	0.25		L	171002002			
	T	C	lation Data		Tool Comm	lation Data		
	rest	-	letion Date 2020	m	Test Comp	letion Date		
Replicate No.	Cont		TIWC	Replicate No.	Control	TIWC		
1	0.39		0.473	1 1	Control	11410		
2	0.34		0.473	2				
3	0.44		0.469	3				
4	0.35		0.412	4				
5	0.3	10	0.412	5				
6				6				
7				7				
8				8				
9				9				
10				10				
11				11				
12				12				
13				13				
14				14				
15				15				
15				15				
Mean	0.38	36	0.464	Mean	0.000	0.000		
Std Dev.	0.04	45	0.037	Std Dev.				
# Replicates	4		4	# Replicates				
T-Test Result		6.9	519	T-Test Result				
Deg. of Freed			5	Deg. of Freed	om			
Critical T Valu			267	Critical T Valu				
Pass or Fail	-		SS	Pass or Fail				
		_			T	1-4i D-4-		
B U 1 -	Test	Comp	letion Date	Danllanta	Test Comp	oletion Date		
Replicate No.	Cont	trol	TIWC	Replicate No.	Control	TIWC		
NO. 1	Com	troi	TIVE	1	Control	11110		
2				2				
3				. 3				
4				4				
5				5				
6				6				
7	-			7				
8				8				
9	-			9				
10				10				
11	-			11				
12	-			12				
13	-			13				
14				14				
15				15				
		00	0.000					
Mean Std Dov	0.00	UU	0.000	Mean Std Dov				
Std Dev.				Std Dev.				
# Replicates				# Replicates				
T-Test Result				T-Test Result				
Deg. of Freed	lom			Deg. of Freed	om			
Critical T Valu				Critical T Valu	е			
				B				
Pass or Fail				Pass or Fail				

	DEP Whole	Effluent Toxic	ity (WET) Analysis	Spreadshee	t
Type of Test		ronic		Facility Na	me
Species Tes		riodaphnia			
Endpoint TIWC (decim		rvival	LV	Vaynesboro V	WIP
No. Per Repl	,	0		Permit No	D.
TST b value	0.7	5		PA002062	
TST alpha va	alue 0.2				
	Test Com	pletion Date		Test Comp	oletion Date
Replicate	6/8	/2020	Replicate		
No.	Control	TIWC	No.	Control	TIWC
1	1	1	1		
2	1	1	2		
3	1	1	3		
4	1	0	4		
5	1	1	5		
6	1	1	6		
7	1	1	7		
8	1	1	8		
9	1	1	9		
10	1	1	10		
11			11		
12			12		
13			13		
14			14		
15			15		
	L				
Mean	1.000	0.900	Mean	0.000	0.000
Std Dev.	0.000	0.316	Std Dev.	0.000	0.000
# Replicates		10	# Replicates		
T-Test Result	,		T-Test Result		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	iom ue	ASS	T-Test Result Deg. of Freed Critical T Valu Pass or Fail		
Deg. of Freed Critical T Valu	iom ue Pa		Deg. of Freed Critical T Valu	е	oletion Date
Deg. of Freed Critical T Valu Pass or Fail	iom ue Pa	ASS	Deg. of Freed Critical T Valu Pass or Fail	е	oletion Date
Deg. of Freed Critical T Valu	iom ue Pa		Deg. of Freed Critical T Valu	е	oletion Date
Deg. of Freed Critical T Valu Pass or Fail Replicate	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail	e Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No.	e Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No.	e Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	e Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	e Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	e Test Comp	
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	e Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	e Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	e Test Comp	
Page of Freed Critical T Value Page or Fail Replicate No. 1 2 3 4 5 6 7 8	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	e Test Comp	
Page of Free Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	e Test Comp	
Page of Free Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	e Test Comp	
Page of Free Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	e Test Comp	
Page of Free Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	e Test Comp	
Page of Free Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	e Test Comp	
Page of Free Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14	iom ue P. Test Com	pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	e Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Com Control 0.000	TIWC	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp	
Deg. of Free Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Com Control 0.000	TIWC	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp	
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Com Control 0.000	TIWC	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	

	DED Whole	Effluent Toyloit	hr (MET) Amelyolo	Caraadaha		
	DEP Whole	Emuent Foxicit	ty (WET) Analysis	opreadshee	ŧτ	
Type of Test		onic		Facility Na	me	
Species Test		iodaphnia				
Endpoint TIWC (decim		roduction		Naynesboro V	WTP	
No. Per Repl		,	-	Permit No.		
TST b value	0.75	5		PA002062	and the second s	
TST alpha va	alue 0.2					
	The second secon	oletion Date		Test Comp	letion Date	
Replicate		2020	Replicate			
No.	Control	TIWC	No.	Control	TIWC	
1	34	42	1			
2	33	34	2			
4	41	6	3 4			
5	35	33	5			
6	35	41	6			
7	43	32	7			
8	34	37	8			
9	24	24	9			
10	40	36	10			
11			11		<u> </u>	
12			12			
13			13			
14			14			
15			15			
		house			lacence and the same of the sa	
Mean	35.900	31.800	Mean	0.000	0.000	
Std Dev.	5.466	10.369	Std Dev.			
# Replicates	10	10	# Replicates			
T-Test Result		826	T-Test Result			
Deg. of Freed		3	Deg. of Freed	om		
Critical T Valu		702	Critical T Valu	е		
Pass or Fail	PA	SS	Pass or Fail			
I	Toot Como	lotion Data		Tost Comp	letion Date	
Paulianta	Test Comp	letion Date	Particute	Test Comp	letion Date	
Replicate No.			Replicate			
No.	Test Comp	oletion Date	Replicate No.	Test Comp	oletion Date	
No. 1			No. 1			
No.			No.			
No. 1 2			No. 1 2			
No. 1 2 3			No. 1 2 3			
No. 1 2 3 4			No. 1 2 3 4			
No. 1 2 3 4 5			No. 1 2 3 4 5			
No. 1 2 3 4 5			No. 1 2 3 4 5			
No. 1 2 3 4 5 6			No. 1 2 3 4 5 6 7			
No. 1 2 3 4 5 6 7			No. 1 2 3 4 5 6 7 8			
No. 1 2 3 4 5 6 7 8 9 10			No. 1 2 3 4 5 6 7 8 9 10			
No. 1 2 3 4 5 6 7 8 9 10 11 12			No. 1 2 3 4 5 6 7 8 9 10 11			
No. 1 2 3 4 5 6 7 8 9 10 11 12 13			No. 1 2 3 4 5 6 7 8 9 10 11 12 13			
No. 1 2 3 4 5 6 7 8 9 10 11 12 13			No. 1 2 3 4 5 6 7 8 9 10 11 12 13			
No. 1 2 3 4 5 6 7 8 9 10 11 12 13			No. 1 2 3 4 5 6 7 8 9 10 11 12 13			
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14			
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15			No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15			
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.			
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15			
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates			
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control 0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Control 0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	Control		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control 0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control		

	DED Whole I	ffluent Tavi	eity (MET) Applysis	Sprandehaa	
Type of Test	Chro		city (WET) Analysis	Spreadsnee	
Species Test	Participant of the Contract of	ephales		racility Na	ille
Endpoint	Surv		V	Vaynesboro V	WTP
TIWC (decim No. Per Repli				Permit No	
TST b value	0.75			PA002062	
TST alpha va				171002002	
	Test Comp	letion Date		Test Comp	letion Date
Replicate		2022	Replicate	Test comp	netion bate
No.	Control	TIWC	No.	Control	TIWC
1	9	10	1		
2	10	10	2		
3	9	10	3		
4	10	9	4		
5			5		
6			6		
7			7		
8			8		
9			9	-	
10			10		
11 12			11 12		
13			13		
14			13		
15			15		
15			15 [
Mean	9.500	9.750	Mean	0.000	0.000
Std Dev.	0.577	0.500	Std Dev.	0.000	0.000
# Replicates	4	4	# Replicates		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om 5	5	T-Test Result Deg. of Freed Critical T Valu Pass or Fail		
	Test Comp	letion Date		Test Comp	letion Date
Replicate			Replicate		
No.	Control	TIWC	No.	Control	TIWC
1			1		
2			2		
3			3		
4			. 4		
5 6			5		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
Mean Std Dev. # Replicates	0.000	0.000	Mean Std Dev. # Replicates		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om		T-Test Result Deg. of Freed Critical T Valu Pass or Fail		

	DEP Whole	Effluent Toxici	ty (WET) Analysis	Spreadshee	rt .
Type of Test		onic	-, (, /	Facility Na	
Species Test		ephales		racility Na	me
Endpoint	Gro			Wanyesboro V	WTP
TIWC (decim		3			
No. Per Repli				Permit No	
TST b value TST alpha va	0.75 lue 0.25			PA002062	.1
131 aipiia va	0.20	,			
	Test Comp	oletion Date		Test Comp	oletion Date
Replicate		2022	Replicate		
No.	Control	TIWC	No.	Control	TIWC
1	0.396	0.366	1		
2	0.418	0.398	2		
3	0.43	0.494	3		
4	0.374	0.353	4		
5			5		
6			6		
7			7		
8			8		
9			9		
10			10		
11			11 -		
12			12		
13			13		
14			14		
15			15		
Mean	0.405	0.403	Mean	0.000	0.000
Std Dev.	0.025	0.064	Std Dev.		
# Replicates	4	4	# Replicates		
T. T. 44 H B					
T-Test Result		955	T-Test Result		
Deg. of Freedo			B		
California T. Mallor		4	Deg. of Freed		
Critical T Value	e 0.7	407	Critical T Valu		
Critical T Value Pass or Fail		407			
	e 0.7	407 .SS	Critical T Valu	е	letion Date
Pass or Fail	e 0.7	407	Critical T Valu Pass or Fail	е	letion Date
	e 0.7	407 .SS	Critical T Valu	е	letion Date
Pass or Fail Replicate	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Valu Pass or Fail	e Test Comp	
Pass or Fail Replicate [No.	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Valu Pass or Fail Replicate No.	e Test Comp	
Pass or Fail Replicate [No. 1 [e 0.7 PA Test Comp	407 SS eletion Date	Critical T Valu Pass or Fail Replicate No.	e Test Comp	
Replicate No.	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Valu Pass or Fail Replicate No. 1 2	e Test Comp	
Replicate No.	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Valu Pass or Fail Replicate No. 1 2 3	e Test Comp	
Replicate No.	e 0.7 PA Test Comp	407 SS eletion Date	Replicate No. 1 2 3 4	e Test Comp	
Replicate No. 1 2 3 4 5 6 7	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8	e 0.7 PA Test Comp	407 SS eletion Date	Replicate No. 1 2 3 4 5	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	e 0.7 PA Test Comp Control	A07 SS Netion Date TIWC	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	e 0.7 PA Test Comp	407 SS eletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	e 0.7 PA Test Comp Control	A07 SS Netion Date TIWC	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	e 0.7 PA Test Comp Control	A07 SS Netion Date TIWC	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	e 0.7 PA Test Comp Control	A07 SS Netion Date TIWC	Replicate No. Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	e Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	e 0.7 PA Test Comp Control 0.000	A07 SS Netion Date TIWC	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	e Test Comp Control	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	e 0.7 PA Test Comp Control 0.000	A07 SS Netion Date TIWC	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	e Test Comp Control	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	e 0.7 PA Test Comp Control 0.000	A07 SS Netion Date TIWC	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	e Test Comp Control	

	DED Whole I	Effluent Toxicity	(WET) Analysis	Sproadehoo	+
			(WET) Analysis		
Type of Test		onic		Facility Na	me
Species Test Endpoint		odaphnia vival	1 1 ,	Vaynesboro V	MTP
TIWC (decim			-	vaynesboro v	
No. Per Repli				Permit No	
TST b value	0.75	5		PA002062	1
TST alpha va	lue 0.2				
	Test Comr	eletion Date		Test Comp	letion Date
Replicate		2022	Replicate	Tool comp	action Dute
No.	Control	TIWC	No.	Control	TIWC
1	1	1	1		
2	1	1	2		
3	1	0	3		
4	1	1	4		
5	1	11	5		
6	1	1	6		
7	11	1	7		
8	1	1	8		
9	1	1	9		
10	11	1	10		
11 12			11 12		
13			13		
14			14		
15			15		
Mean	1.000	0.900	Mean	0.000	0.000
Std Dev.	0.000	0.316	Std Dev.		
# Replicates	10	10	# Replicates		
T-Test Result Deg. of Freed Critical T Valu			T-Test Result Deg. of Freed Critical T Valu	om	
Pass or Fail	PA	SS	Pass or Fail		
	Test Comp	letion Date		Test Comp	letion Date
Replicate			Replicate		
No.	Test Comp	TIWC	No.	Test Comp	letion Date
No.			No. 1		
No. 1 2			No. 1 2		
No.			No. 1		
No. 1 2 3			No. 1 2 3		
No. 1 2 3 4			No. 1 2 3 4		
No. 1 2 3 4 5			No. 1 2 3 4 5		
No. 1 2 3 4 5 6 7 8			No. 1 2 3 4 5 6 7		
No. 1 2 3 4 5 6 7 8			No. 1 2 3 4 5 6 7 8		
No. 1 2 3 4 5 6 7 8 9			No. 1 2 3 4 5 6 7 8 9		
No. 1 2 3 4 5 6 7 8 9 10			No. 1 2 3 4 5 6 7 8 9 10		
No. 1 2 3 4 5 6 7 8 9 10 11			No. 1 2 3 4 5 6 7 8 9 10 11		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13			No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14			No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13			No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14			No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Control	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control 0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Control	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control 0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control	

	DED W/b	la Efficient Terr	inite date to a section in	S			
			icity (WET) Analysis				
Type of Test Species Test		Chronic Ceriodaphnia		Facility Na	ime		
Endpoint		Reproduction		Waynesboro \	MWTP		
TIWC (decim	al)	0.16					
No. Per Repl TST b value		1		Permit No.			
TST alpha va		0.75 0.2	L	PA00206	21		
. or alpita va		O.E.					
	Test Co	ompletion Date		Test Com	pletion Date		
Replicate		8/1/2022	Replicate				
No.	Contro	I TIWC	No.	Control	TIWC		
1	35	35	1				
2	34	24	2				
3	38	U	3		-		
5	38 43	22	4		-		
6	34	26	5				
7	32	17	7		-		
8	43	29	8		 		
9	35	24	9				
10	32	28	10				
11			11				
12			12				
13			13				
14			14				
15			15				
Mean	36.400		Mean	0.000	0.000		
Std Dev.	4.033 10		Std Dev.				
#Replicates	10	, 10	# Replicates				
T-Test Result		-0.8691	T-Test Result				
Deg. of Freed	om	12	Deg. of Freed				
Critical T Valu	е	0.8726	Critical T Valu	e			
Pass or Fail		FAIL	Pass or Fail				
D	Test Co	empletion Date		Test Completion Date			
Replicate No.	Contro	TIWC	Replicate No.	Control	TIWC		
1 [0011110		1	Control			
2			2				
3			3				
4			4				
5			5				
6			6				
7			7				
8 9			8				
10			9 10				
11		-	11				
12			12				
13			13				
14			14				
15			15				
Mean	0.000	0.000	Mean				
			Std Dev.				
Std Dev.			# Replicates				
Std Dev. # Replicates			# Nephicates				
#Replicates							
	om		T-Test Result	om			
# Replicates T-Test Result			T-Test Result				
# Replicates T-Test Result Deg. of Freedo			T-Test Result Deg. of Freedo				

	DEP Whole I	Effluent Toxicit	y (WET) Analysis	Spreadshee	t		
Type of Test Species Test	Chr	onic iodaphnia	7	Facility Na			
Endpoint TIWC (decim	Sun	vival	v	Vaynesboro V	WTP		
No. Per Repl	icate 1		Permit No.				
TST b value TST alpha va	0.75 ilue 0.2	5		PA002062	1		
	Test Comp	eletion Date		Test Completion Date			
Replicate		/2022	Replicate	Control	THAC		
No.	Control 1	TIWC	No. 1 [Control	TIWC		
2	1	1	2				
3	1	1	3				
4	1	1	4				
5	1	1	5				
6	1	1	6				
7	11	1	7				
8	1	1	8				
9	1	1	9				
10	1	1	10				
11			11				
12			12				
13			13				
14 15			14 15				
15	-		15 [
Mean	1.000	1.000	Mean	0.000	0.000		
Std Dev.	0.000	0.000	Std Dev.				
# Replicates	10	10	# Replicates				
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om ie	SS	T-Test Result Deg. of Freedo Critical T Value Pass or Fail				
	Test Comp	letion Date					
Replicate	rest completion bate			Test Comp	letion Date		
			Replicate [
No.	Control	TIWC	No.	Test Comp	letion Date		
No. 1			No. 1				
No. 1 2			No. 1 2				
No. 1 2 3			No. 1				
No. 1 2			No. 1 2 3				
No. 1 2 3 4			No. 1 2 3 4				
No. 1 2 3 4 5			No. 1 2 3 4 5				
No. 1 2 3 4 5 6 7			No. 1 2 3 4 5 6 7 8				
No. 1 2 3 4 5 6 7 8			No. 1 2 3 4 5 6 7 8				
No. 1 2 3 4 5 6 7 8 9			No. 1 2 3 4 5 6 7 8 9				
No. 1 2 3 4 5 6 7 8 9 10 11			No. 1 2 3 4 5 6 7 8 9 10				
No. 1 2 3 4 5 6 7 8 9 10 11 12			No. 1 2 3 4 5 6 7 8 9 10 11				
No. 1 2 3 4 5 6 7 8 9 10 11 12 13			No. 1 2 3 4 5 6 7 8 9 10 11 12 13				
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14			No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14				
No. 1 2 3 4 5 6 7 8 9 10 11 12 13			No. 1 2 3 4 5 6 7 8 9 10 11 12 13				
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15				
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.				
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. #Replicates	0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Control			
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control			

	DED WA	nole F	ffluent Tox	cicity (WET) Analy	eic	Spreadakee	**	
					515			
Type of Test Species Test		Chro			-	Facility Na	me	
Endpoint	teu		Ceriodaphnia Reproduction		V	Waynesboro WWTP		
TIWC (decim	al)	0.16			·	vayilosboio v		
No. Per Repl	icate	1				Permit No		
TST b value		0.75				PA002062	21	
TST alpha va	llue	0.2						
	Toet (amn	letion Date			Tool Comm	ulation Data	
Replicate		9/13/		nontine	. [Test Completion Date		
No.	Contr		TIWC	Replication No.	te [Control	TIWC	
1	17	7	33	1	Γ	Control	1100	
2	26		35	2	1			
3	24		36	3	1			
4	34		33	1 4	Ì			
5	26		40	5	1			
6	34		34	6	Ì			
7	31		41	7				
8	32		37	8				
9	27		42	9				
10	33		42	10				
11] 11				
12				12				
13				13				
14				14				
15				15	L			
Mean	28.40		37.300	Mean		0.000	0.000	
Std Dev.	5.44	1	3.653	Std Dev				
# Replicates	10		10	# Replicat	tes			
T-Tact Recult		0.22	385	T.Teet Per	erdi			
T-Test Result		9.23		T-Test Re		am.		
Deg. of Freed	om	17	7	Deg. of Fr	eedo			
	om	0.86	7 333	Deg. of Fre	eedo Value			
Deg. of Freed Critical T Valu	om	0.86	7	Deg. of Fr	eedo Value			
Deg. of Freed Critical T Valu	om ie	0.86 PA:	7 333	Deg. of Fre	eedo Value	е	eletion Date	
Deg. of Freed Critical T Valu	om ie	0.86 PA:	7 333 SS	Deg. of Fre	eedo Value ail	е	eletion Date	
Deg. of Freed Critical T Valu Pass or Fail	om ie	0.86 PAS	7 333 SS	Deg. of Fro Critical T \ Pass or Fa	eedo Value ail	е	eletion Date	
Deg. of Freed Critical T Valu Pass or Fail	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Fro	eedo Value ail	Test Comp		
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Front Critical T \ Pass or Fa Replicat No.	eedo Value ail	Test Comp		
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Front Critical T \ Pass or Fa	eedo Value ail	Test Comp		
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Front Critical T \ Pass or Fa	eedo Value ail	Test Comp		
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Front Critical T \ Pass or Fa	eedo Value ail	Test Comp		
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Front Critical TN Pass or Fa	eedo Value ail	Test Comp		
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Front Critical TV Pass or Fall Replicate No. 1 2 3 4 5 6 7	eedo Value ail	Test Comp		
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of From Critical TN Pass or Fall Replicate No. 1 2 3 4 5 6 7 8	eedo Value ail	Test Comp		
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of From Critical TN Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9	eedo Value ail	Test Comp		
Peg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of From Critical TN Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10	eedo Value ail	Test Comp		
Peg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Fri Critical T V Pass or Fa Replicat No. 1 2 3 4 5 6 7 8 9	eedo Value ail	Test Comp		
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Fri Critical T V Pass or Fa No. 1 2 3 4 5 6 7 8 9 10 11	eedo Value ail	Test Comp		
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Fri Critical T V Pass or Fa No. 1 2 3 4 5 6 7 8 9 10 11 12 13	eedo Value ail	Test Comp		
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Fri Critical T V Pass or Fa Replicat No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	eedo Value ail	Test Comp		
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om ie Test C	0.86 PAS	7 333 SS letion Date	Deg. of Fri Critical T V Pass or Fa No. 1 2 3 4 5 6 7 8 9 10 11 12 13	eedo Value ail	Test Comp		
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om ie Test C	13 0.866 PA: PA:	7 333 SS letion Date	Deg. of Fri Critical T V Pass or Fa Replicat No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	eedo Value ail	Test Comp		
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test C	13 0.866 PA: PA:	7 333 SS letion Date TIWC	Deg. of Fri Critical T V Pass or Fa Replicat No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	eedd Valud aail	Test Comp		
Peg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test C	13 0.866 PA: PA:	7 333 SS letion Date TIWC	Deg. of Fri Critical TV Pass or Fa No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	eedd value ail	Test Comp		
Peg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test C	13 0.866 PA: PA:	7 333 SS letion Date TIWC	Deg. of Fri Critical T V Pass or Fa No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev	eedd value ail	Test Comp		
Peg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test C	13 0.866 PA: PA:	7 333 SS letion Date TIWC	Deg. of Fri Critical T V Pass or Fa No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev # Replicat	eedddvaludail te [Test Comp Control		
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test C	13 0.866 PA: PA:	7 333 SS letion Date TIWC	Deg. of Free Critical T \ Pass or Fa \ No. \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ Mean \ Std Dev \# Replicat T-Test Res Deg. of Free Critical T \ Deg. of Free Critical T \ Deg. of Free Critical T \ Pass Or Free Critical T \	eedd Valud ail te [Test Comp Control		
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test C	13 0.866 PA: PA:	7 333 SS letion Date TIWC	Deg. of Fri Critical T V Pass or Fa No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev # Replicat	eedd valuu ail tee [Test Comp Control		

Attachment E - Copper DMR results

Summary of Copper DMR Results Beginning October 1, 2018 and Ending January 23, 2024


Monitoring Period	Monitoring Period End Date		DMR Value	Permit Limit	Units	Statistical Base Code
10/01/2018	10/31/2018	<	0.005	0.053	mg/L	Average Monthly
11/01/2018	11/30/2018	<	0.005	0.053	mg/L	Average Monthly
12/01/2018	12/31/2018	<	0.005	0.053	mg/L	Average Monthly
01/01/2019	01/31/2019	<	0.005	0.053	mg/L	Average Monthly
02/01/2019	02/28/2019	<	0.005	0.053	mg/L	Average Monthly
03/01/2019 04/01/2019	03/31/2019 04/30/2019	<	0.005 0.007	0.053 0.053	mg/L mg/L	Average Monthly Average Monthly
05/01/2019	05/31/2019	< <	0.007	0.053	mg/L	Average Monthly Average Monthly
06/01/2019	06/30/2019	<	0.005	0.053	mg/L	Average Monthly Average Monthly
07/01/2019	07/31/2019	<	0.005	0.053	mg/L	Average Monthly
08/01/2019	08/31/2019	<	0.006	0.053	mg/L	Average Monthly
09/01/2019	09/30/2019		0.007	0.053	mg/L	Average Monthly
10/01/2019	10/31/2019		0.007	0.053	mg/L	Average Monthly
11/01/2019	11/30/2019		0.010	0.053	mg/L	Average Monthly
12/01/2019	12/31/2019		0.011 0.008	0.053	mg/L	Average Monthly
01/01/2020 02/01/2020	01/31/2020 02/29/2020	< <	0.008	0.053 0.053	mg/L mg/L	Average Monthly Average Monthly
03/01/2020	03/31/2020		0.009	0.053	mg/L	Average Monthly
04/01/2020	04/30/2020	<	0.007	0.053	mg/L	Average Monthly
05/01/2020	05/31/2020	<	0.005	0.053	mg/L	Average Monthly
06/01/2020	06/30/2020	<	0.007	0.053	mg/L	Average Monthly
07/01/2020	07/31/2020	<	0.005	0.053	mg/L	Average Monthly
08/01/2020	08/31/2020	<	0.005	0.053	mg/L	Average Monthly
09/01/2020	09/30/2020 10/31/2020	<	0.005	0.053	mg/L	Average Monthly
10/01/2020 11/01/2020	11/30/2020	<	0.008 0.008	0.053 0.053	mg/L mg/L	Average Monthly Average Monthly
12/01/2020	12/31/2020	<	0.006	0.053	mg/L	Average Monthly Average Monthly
01/01/2021	01/31/2021	<	0.005	0.053	mg/L	Average Monthly
02/01/2021	02/28/2021		0.008	0.053	mg/L	Average Monthly
03/01/2021	03/31/2021	<	0.007	0.053	mg/L	Average Monthly
04/01/2021	04/30/2021	<	0.010	0.053	mg/L	Average Monthly
05/01/2021	05/31/2021	<	0.011	0.053	mg/L	Average Monthly
06/01/2021	06/30/2021	<	0.010	0.053	mg/L	Average Monthly
07/01/2021 08/01/2021	07/31/2021 08/31/2021	< <	0.010 0.010	0.053 0.053	mg/L mg/L	Average Monthly Average Monthly
09/01/2021	09/30/2021	<	0.010	0.053	mg/L	Average Monthly Average Monthly
10/01/2021	10/31/2021	<	0.010	0.053	mg/L	Average Monthly
11/01/2021	11/30/2021	<	0.020	0.053	mg/L	Average Monthly
12/01/2021	12/31/2021	<	0.010	0.053	mg/L	Average Monthly
01/01/2022	01/31/2022	<	0.020	0.053	mg/L	Average Monthly
02/01/2022	02/28/2022	<	0.010	0.053	mg/L	Average Monthly
03/01/2022 04/01/2022	03/31/2022	<	0.010	0.053	mg/L	Average Monthly
05/01/2022	04/30/2022 05/31/2022	< <	0.010 0.010	0.053 0.053	mg/L mg/L	Average Monthly Average Monthly
06/01/2022	06/30/2022	<	0.010	0.053	mg/L	Average Monthly
07/01/2022	07/31/2022	<	0.010	0.053	mg/L	Average Monthly Average Monthly
08/01/2022	08/31/2022	<	0.010	0.053	mg/L	Average Monthly
09/01/2022	09/30/2022	<	0.010	0.053	mg/L	Average Monthly
10/01/2022	10/31/2022	<	0.010	0.053	mg/L	Average Monthly
11/01/2022	11/30/2022	<	0.010	0.053	mg/L	Average Monthly
12/01/2022	12/31/2022	<	0.010	0.053	mg/L	Average Monthly
01/01/2023 02/01/2023	01/31/2023 02/28/2023	<	0.010 0.009	0.053 0.053	mg/L mg/L	Average Monthly Average Monthly
03/01/2023	03/31/2023	-	0.009	0.053	mg/L	Average Monthly
04/01/2023	04/30/2023	<	0.006	0.053	mg/L	Average Monthly Average Monthly
05/01/2023	05/31/2023	<	0.005	0.053	mg/L	Average Monthly
06/01/2023	06/30/2023	<	0.005	0.053	mg/L	Average Monthly
07/01/2023	07/31/2023	<	0.004	0.053	mg/L	Average Monthly
08/01/2023	08/31/2023	<	0.005	0.053	mg/L	Average Monthly
09/01/2023	09/30/2023	<	0.005	0.053	mg/L	Average Monthly
10/01/2023 11/01/2023	10/31/2023 11/30/2023	<	0.006 0.008	0.053 0.053	mg/L mg/L	Average Monthly Average Monthly
12/01/2023	12/31/2023	<	0.008	0.053	mg/L	Average Monthly Average Monthly
12/01/2020	12/01/2020		0.001	0.000		, wordgo monuny
	Min	<	0.004	mg/L		
	Max		0.020	mg/L		
	Average		0.008	mg/L		

Summary of Copper DMR Results Beginning October 1, 2018 and Ending January 23, 2024

Monitoring Period	Monitoring Period End Date		DMR Value	Permit Limit	Units	Statistical Base Code
10/01/2018	10/31/2018		0.007	0.132	mg/L	Daily Maximum
11/01/2018	11/30/2018	<	0.005	0.132	mg/L	Daily Maximum
12/01/2018	12/31/2018	<	0.005	0.132	mg/L	Daily Maximum
01/01/2019	01/31/2019		0.005	0.132	mg/L	Daily Maximum
02/01/2019	02/28/2019		0.005	0.132	mg/L	Daily Maximum
03/01/2019	03/31/2019		0.006	0.132	mg/L	Daily Maximum
04/01/2019	04/30/2019		0.01	0.132	mg/L	Daily Maximum
05/01/2019	05/31/2019	<	0.005	0.132	mg/L	Daily Maximum
06/01/2019	06/30/2019		0.006	0.132	mg/L	Daily Maximum
07/01/2019	07/31/2019		0.005	0.132	mg/L	Daily Maximum
08/01/2019	08/31/2019		0.008	0.132	mg/L	Daily Maximum
09/01/2019	09/30/2019		0.009	0.132	mg/L	Daily Maximum
10/01/2019	10/31/2019		0.007	0.132	mg/L	Daily Maximum
11/01/2019	11/30/2019		0.013	0.132	mg/L	Daily Maximum
12/01/2019	12/31/2019		0.014	0.132	mg/L	Daily Maximum
01/01/2020	01/31/2020		0.01	0.132	mg/L	Daily Maximum
02/01/2020	02/29/2020		0.007	0.132	mg/L	Daily Maximum
03/01/2020	03/31/2020		0.011	0.132	mg/L	Daily Maximum
04/01/2020	04/30/2020	<	0.009	0.132	mg/L	Daily Maximum
05/01/2020	05/31/2020		0.006	0.132	mg/L	Daily Maximum
06/01/2020	06/30/2020		0.008	0.132	mg/L	Daily Maximum
07/01/2020	07/31/2020		0.006	0.132	mg/L	Daily Maximum
08/01/2020	08/31/2020	<	0.005	0.132	mg/L	Daily Maximum
09/01/2020	09/30/2020	<	0.005	0.132	mg/L	Daily Maximum
10/01/2020	10/31/2020		0.012	0.132	mg/L	Daily Maximum
11/01/2020	11/30/2020		0.01	0.132	mg/L	Daily Maximum
12/01/2020	12/31/2020		0.008	0.132	mg/L	Daily Maximum
01/01/2021	01/31/2021		0.005	0.132	mg/L	Daily Maximum
02/01/2021	02/28/2021		0.01	0.132	mg/L	Daily Maximum
03/01/2021	03/31/2021		0.011	0.132	mg/L	Daily Maximum
04/01/2021	04/30/2021	<	0.01	0.132	mg/L	Daily Maximum
05/01/2021	05/31/2021		0.014	0.132	mg/L	Daily Maximum
06/01/2021	06/30/2021		0.01	0.132	mg/L	Daily Maximum
07/01/2021	07/31/2021	<	0.01	0.132	mg/L	Daily Maximum
08/01/2021	08/31/2021	<	0.01	0.132	mg/L	Daily Maximum
09/01/2021	09/30/2021	<	0.01	0.132	mg/L	Daily Maximum
10/01/2021	10/31/2021	<	0.01	0.132	mg/L	Daily Maximum
11/01/2021	11/30/2021		0.0105	0.132	mg/L	Daily Maximum
12/01/2021	12/31/2021		0.01	0.132	mg/L	Daily Maximum
01/01/2022	01/31/2022	<	0.05	0.132	mg/L	Daily Maximum
02/01/2022	02/28/2022	<u> </u>	0.011	0.132	mg/L	Daily Maximum
03/01/2022	03/31/2022		0.016	0.132	mg/L	Daily Maximum
04/01/2022	04/30/2022		0.0175	0.132	mg/L	Daily Maximum
05/01/2022	05/31/2022	<	0.01	0.132	mg/L	Daily Maximum
06/01/2022	06/30/2022	<	0.01	0.132	mg/L	Daily Maximum
07/01/2022	07/31/2022	<	0.01	0.132	mg/L	Daily Maximum
08/01/2022	08/31/2022	<	0.01	0.132	mg/L	Daily Maximum
09/01/2022	09/30/2022	<	0.01	0.132	mg/L	Daily Maximum
10/01/2022	10/31/2022	<	0.01	0.132	mg/L	Daily Maximum
11/01/2022	11/30/2022	<	0.01	0.132	mg/L	Daily Maximum
12/01/2022	12/31/2022	1	0.01	0.132	mg/L	Daily Maximum
01/01/2023	01/31/2023	1	0.0106	0.132	mg/L	Daily Maximum
02/01/2023	02/28/2023	1	0.01	0.132	mg/L	Daily Maximum
03/01/2023	03/31/2023	1	0.007	0.132	mg/L	Daily Maximum
04/01/2023	04/30/2023	1	0.006	0.132	mg/L	Daily Maximum
05/01/2023	05/31/2023	1	0.006	0.132	mg/L	Daily Maximum
06/01/2023	06/30/2023	<	0.005	0.132	mg/L	Daily Maximum
07/01/2023	07/31/2023	<	0.005	0.132	mg/L	Daily Maximum
08/01/2023	08/31/2023	<	0.005	0.132	mg/L	Daily Maximum
09/01/2023	09/30/2023	<	0.005	0.132	mg/L	Daily Maximum
10/01/2023	10/31/2023	+ `	0.003	0.132	mg/L	Daily Maximum
11/01/2023	11/30/2023	+	0.007	0.132	mg/L	Daily Maximum
12/01/2023	12/31/2023	+	0.009	0.132	mg/L	Daily Maximum
12/01/2023	12/3/1/2023	1	0.003	U. 13Z	my/L	Daily Maximum

Min	<	0.005	mg/L
Max		0.050	mg/L
Average		0.009	mg/L

Attachment F- RMI Stem

