

Southwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0021148

APS ID 1064579

Authorization ID 1398267

Applicant Name	Municipal Authority of Westmoreland County (MAWC)	Facility Name	Mt Pleasant Borough STP	
Applicant Address	124 Park & Pool Road	Facility Address	340 Clay Avenue	
	New Stanton, PA 15672		Mount Pleasant, PA 15666-1910	
Applicant Contact	Norman Stout Jr.	Facility Contact	Same as applicant	
Applicant Phone	(724) 755-5921	Facility Phone	Same as applicant	
Client ID	64197	Site ID	271476	
Ch 94 Load Status	Not Overloaded	Municipality	Mount Pleasant Borough	
Connection Status		County	Westmoreland	
Date Application Rece	eived <u>May 27, 2022</u>	EPA Waived?	No Major Facility	
Date Application Acce	pted June 1, 2022	If No, Reason		

Summary of Review

Introduction

The applicant has applied for the renewal of existing NPDES Permit No. PA0021148, which was previously issued on November 10, 2017 and expired on November 30, 2022. The Municipal Authority of Westmoreland County (MAWC) acquired Mt Pleasant Borough STP in 2020. NPDES Permit No. PA0021148 and the associated WQM Permit No. 463S81 A-3 T-1 were both transferred on February 18, 2022.

Facility Overview

Sewage from this plant is treated with a grit chamber/comminutor, primary clarifiers, aerobic digestors, and final clarifiers. The resulting effluent is disinfected via gas chlorine and discharges to Shupe Run (WWF), which is located in State Watershed 19-D. A comprehensive list of outfalls can be found below.

Outfall Number	Outfall Name	Outfall Type
001	_	Treated Sewage
003	Park Diversion Chamber Overflow	CSO
005	Old Bryce Factory Overflow	CSO
009	Cherry Avenue Overflow	CSO
022	_	Stormwater
023		Stormwater

Approve	Deny	Signatures	Date
Х		grace Polabosti	
		Grace Polakoski, E.I.T. / Environmental Engineering Specialist	November 10, 2022
х		MAHBUBA IASMIN	
		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineer Manager	February 24, 2023

Summary of Review

CSO Outfalls 003, 005, and 009 will again be permitted. These outfalls serve as combined sewer overflows necessitated by stormwater entering the sewer system and exceeding the hydraulic capacity of the sewers and/or the treatment plant and are permitted to discharge only for this reason. Under the previously-approved Long-Term Control Plan (LTCP), CSO Outfalls 003, 005, and 009 will be reconstructed.

The Department previously approved the NMC (Nine Minimum Controls) and LTCP Reports. Included in the NPDES Renewal Application was a request for an updated LTCP Schedule. The Department issued a letter approving the requested changes on November 9, 2022 (Attachment L). LTCP dates will be included in the permit.

Stormwater Outfalls 022 and 023 will again be permitted for the discharge of uncontaminated stormwater runoff from the areas in and around the treatment plant. Stormwater Outfall 021 has previously been permitted but has been removed from this permit since neither the drainage area nor the actual outfall itself lie on the property of Mt Pleasant Borough STP. An updated map of the facility and its stormwater outfalls was provided with the NPDES Renewal Application. Part C. X, Requirements Applicable to Stormwater Outfalls, has been added to the permit.

EPA-Administered Pretreatment Program Requirements

The EPA Administers a National Pretreatment Program as a part of the National Pollutant Discharge Elimination System (NPDES) administration. The goal of the National Pretreatment Program is to prevent the introduction of pollutants to Publicly Owned Treatment Works (POTWs) that will interfere with the operation of the POTW, pass through the POTW untreated, thereby improving opportunities to recycle and reclaim municipal and industrial wastewaters and sludges. The general pretreatment regulations that require certain POTWs to establish a local pretreatment program can be found at 40 CFR Part 403.8(a).

MAWC owns and operates a variety of facilities that total to an overall flow of greater than 5.0 MGD. As such, the facility is required to implement an EPA-approved Pretreatment Program. MAWC should incorporate Mt Pleasant Borough STP into their existing pretreatment program through intermunicipal agreements and Sewer Use Ordinances. The Part C condition "Pretreatment Program Implementation" has been added to this permit. MAWC reported one industrial contributor to Mt Pleasant Borough STP, which is Allegheny Restoration, a masonry business. Correspondence from Ryan Shuart of US EPA Region III regarding the pretreatment program can be found in Attachment M.

Summary of Whole Effluent Toxicity (WET) Tests

For the permit renewal, MAWC performed 3 chronic WET Tests at a TIWC of 95% and a dilution series of 24%, 48%, 95%, 98%, and 100%. According to email correspondence with Katelyn Warheit of MAWC (Attachment B), MAWC did not acquire the plant until 2020 and the previous permittee had not performed a WET Test for 2019. Based on the WET Test Evaluation (Attachment A), Reasonable Potential (RP) was not established therefore no WET limits will be included in this permit. For the next permit cycle, MAWC should perform the chronic WET Tests at a TIWC of 99% and a dilution series of 25%, 50%, 74%, 99%, and 100%.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of

Summary of Review

the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Below is a summary of changes that have been made to this permit:

- Stormwater Outfall 021 has been removed from the permit
- E. Coli monitoring has been imposed
- Weekly average concentration and mass loading limits for ammonia-nitrogen have been removed from the permit
- WQBELs have been imposed for: total copper, free cyanide, dissolved iron, total zinc, dichlorobromomethane, benzo(k)fluoranthene, bis(2-Ethylhexyl)Phthalate, and indeno(1,2,3-cd)pyrene
- For WET Testing, TIWC is now 99% and the dilution series will be 25%, 50%, 74%, 99%, and 100%
- Ammonia-nitrogen summer limits have become more stringent
- Total Residual Chlorine limits have become more stringent
- Mass loading limits for CBOD₅, TSS, and ammonia nitrogen have changed

The Act 14-PL 834 Municipal Notification was provided by the May 10, 2022 letters and no comments were received.

Sludge use and disposal description and location(s): Greenbridge Reclamation, 234 Landfill Road, Scottdale, PA 15683

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

ischarge, Receiving Waters an	d Water Supply Infor	mation			
Outfall No. 001		Design Flow (MGD)	1.5		
Latitude 40° 8' 22"	_	Longitude	-79° 32' 3"		
Quad Name Mount Pleasant		Quad Code	40079B5		
Wastewater Description: Sev	vage Effluent				
Receiving Waters Shupe Rur	n (WWF)	Stream Code	37958		
NHD Com ID 69914377	. ()	RMI	1.14		
Drainage Area 3.05 sq. m	i.	Yield (cfs/mi²)	0.0105		
Q ₇₋₁₀ Flow (cfs) 0.0319		Q ₇₋₁₀ Basis	USGS StreamStats		
Elevation (ft) 1052		Slope (ft/ft)			
Watershed No. 19-D		Chapter 93 Class.	WWF		
Existing Use		Existing Use Qualifier			
Exceptions to Use		Exceptions to Criteria			
Assessment Status Imp	paired				
Cause(s) of Impairment SIL	TATION				
Source(s) of Impairment HIC	SHWAY/ROAD/BRIDG	SE RUNOFF (NON-CONSTRUC	TION RELATED)		
TMDL Status N/A	1	Name None			
Background/Ambient Data	7.3 (MIN)/7.4	Data Source			
	(MAX)	NPDES Renewal Application			
Temperature (°F)	20/15	PA Code			
Hardness (mg/L) Other:	180	NPDES Renewal Application			
Nearest Downstream Public Wa	,	West County Municipal Autho	rity - McKeesport		
PWS Waters Youghioghen	y River	Flow at Intake (cfs)			
PWS RMI		Distance from Outfall (mi)	45.5		

Changes Since Last Permit Issuance:

Other Comments:

Treatment Facility Summary

Treatment Facility Name: Mt Pleasant Borough STP

WQM Permit No.	Issuance Date	Purpose
463S81	06/25/64	Permit approving the construction of a WWTP consisting of one mechanical bar screen, one grit chamber, two primary clarifier tanks, two bio-towers, three final clarifiers, one gas chlorine disinfection system, two chlorine contact tanks, one dechlorination system, two aerobic digesters, one belt filter press, and four sludge drying beds.
463S81 A-1	09/08/03	Modifications to CSO Outfalls 002 and 003. A plug was installed on CSO Outfall 002 to convert it from a CSO Outfall to a plant bypass outfall. Modifications were made to the CSO 003 Diversion Chamber.
463S81 A-2	03/15/16	Plant modifications including the construction of a mechanical bar screen, a bypass bar screen, a washer compactor, and a bagging system and chute extension.
463S81 A-3	03/24/20	Upgrades to the existing Quarry Street Pump Station to eliminate overflows at the pump station
463S81 A-3 T-1	02/18/22	Transfer of ownership from Mount Pleasant Borough to Municipal Authority of Westmoreland County

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)	
		Trickling Filter With			
Sewage	Secondary	Solids Removal	Gas Chlorine	1.5	

Hydraulic Capacity Organic Capacity (MGD) (lbs/day)		Load Status	Biosolids Treatment	Biosolids Use/Disposal
1.5	2,500	Not Overloaded		Landfill

Compliance History

Facility: Mt. Pleasant Boro STP NPDES Permit No.: PA0021148

Compliance Review Period: 11/2017 – 11/2022

Inspection Summary:

mapeonon	Summary.			INSPECTION
INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	RESULT DESC
3383076	06/22/2022	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted
3383075	06/22/2022	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted
3450748	06/22/2022	Combined Sewer Overflow-Non- Sampling	PA Dept of Environmental Protection	No Violations Noted
3012518	02/24/2020	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted
3012525	02/24/2020	Combined Sewer Overflow-Non- Sampling	PA Dept of Environmental Protection	No Violations Noted
2908246	07/16/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted
2908266	07/16/2019	Combined Sewer Overflow-Non- Sampling	PA Dept of Environmental Protection	No Violations Noted
2740598	06/05/2018	Combined Sewer Overflow-Non- Sampling	PA Dept of Environmental Protection	No Violations Noted
2740199	06/05/2018	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

VIOL ID	VIOLATION DATE	VIOLATION TYPE	VIOLATION TYPE DESC	RESOLVED DATE
959998	06/22/2022	92A.44	NPDES - Violation of effluent limits in Part A of permit	06/27/2022
959999	06/22/2022	92A.41(A)13B	NPDES - Unauthorized bypass occurred	06/27/2022
880556	02/24/2020	92A.44	NPDES - Violation of effluent limits in Part A of permit	03/18/2020
880557	02/24/2020	01	EXCEEDED THE CHEMICAL SINGLE SAMPLE MAXIMUM CONTAMINANT LEVEL	03/18/2020

Open Violations by Client ID: No open CW violations for ID #85886

Enforcement Summary:

NPDES Permit Fact Sheet Mt Pleasant Borough STP

		ENF				ENF
ENF ID	ENF TYPE	CREATION DATE	VIOLATIONS	PENALTY AMOUNT	ENF FINALSTATUS	CLOSED DATE
404924	NOV	06/27/2022	92A.41(A)13B; 92A.44		Administrative Close Out	11/07/2022
384778	NOV	03/18/2020	01; 92A.44		Administrative Close Out	07/05/2022

DMR Violation Summary:

	FND	DADAMETED	CAMPLE	DEDMIT	UNIT OF	STATISTICAL
START	END	PARAMETER	SAMPLE	PERMIT	MEASURE	BASE CODE
09/01/2022	09/30/2022	Fecal Coliform	1049	1000	No./100 ml	Instantaneous Maximum
08/01/2022	08/31/2022	Fecal Coliform	1306	1000	No./100 ml	Instantaneous Maximum
07/01/2022	07/31/2022	Fecal Coliform	1827	1000	No./100 ml	Instantaneous Maximum
05/01/2022	05/31/2022	Total Suspended Solids	40	38	mg/L	Weekly Average
05/01/2022	05/31/2022	Total Suspended Solids	657.9	475	lbs/day	Weekly Average
09/01/2020	09/30/2020	Fecal Coliform	> 2420	1000	No./100 ml	Instantaneous Maximum
08/01/2020	08/31/2020	Dissolved Oxygen	4.6	5.0	mg/L	Minimum
08/01/2020	08/31/2020	Fecal Coliform	425	200	No./100 ml	Geometric Mean
08/01/2020	08/31/2020	Fecal Coliform	> 2420	1000	No./100 ml	Instantaneous Maximum
07/01/2020	07/31/2020	Dissolved Oxygen	3.9	5.0	mg/L	Minimum
07/01/2020	07/31/2020	Fecal Coliform	> 505	200	No./100 ml	Geometric Mean
07/01/2020	07/31/2020	Fecal Coliform	> 2420	1000	No./100 ml	Instantaneous Maximum
06/01/2020	06/30/2020	Fecal Coliform	499	200	No./100 ml	Geometric Mean
06/01/2020	06/30/2020	Fecal Coliform	1968	1000	No./100 ml	Instantaneous Maximum
05/01/2020	05/31/2020	Fecal Coliform	354	200	No./100 ml	Geometric Mean
05/01/2020	05/31/2020	Fecal Coliform	1120	1000	No./100 ml	Instantaneous Maximum
07/01/2019	07/31/2019	Dissolved Oxygen	4.2	5.0	mg/L	Minimum
05/01/2019	05/31/2019	Dissolved Oxygen	4.7	5.0	mg/L	Minimum

Compliance Status: In compliance. DMR exceedances may require a CACP

<u>Completed by:</u> John Murphy <u>Completed date:</u> 11/8/2022

Compliance History

DMR Data for Outfall 001 (from May 1, 2021 to April 30, 2022)

Parameter	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21
Flow (MGD)												
Average Monthly	1.466	1.248	1.878	1.336	1.1456	0.854	0.951	1.0439	1.0621	0.8965	0.8896	1.3535
Flow (MGD)												
Daily Maximum	2.715	2.058	3.253	3.011	2.431	1.0821	1.749	3.1858	2.6188	1.8864	1.9872	2.8645
pH (S.U.)												
Daily Minimum	7.1	7.2										
pH (S.U.)												
Minimum			6.9	6.9	6.4	6.2	6.4	6.6	6.0	6.5	6.2	6.5
pH (S.U.)												
Daily Maximum	7.6	7.7										
pH (S.U.)												
Maximum			7.6	7.6	7.4	7.1	7.4	7.7	8.1	7.4	7.4	7.5
DO (mg/L)												
Daily Minimum	9.8	10.1										
DO (mg/L)												
Minimum			10.9	9.6	9.7	8.6	7.2	7.06	6.8	6.4	5.9	6.5
TRC (mg/L)												
Average Monthly	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.03	0.03	0.02
TRC (mg/L)												
Instantaneous												
Maximum	0.03	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
CBOD5 (lbs/day)												
Average Monthly	< 40.3	< 44.3	119.0	51	< 29	36	< 22	62	65	< 43	< 28	< 38
CBOD5 (lbs/day)												
Weekly Average	62.5	77.3	151.3	70	39	58	< 37	143	88	58	39	< 61
CBOD5 (mg/L)												
Average Monthly	< 3.1	< 4.0	6.9	5	< 3.0	5	< 3	5.0	6	< 6	< 4	< 3
CBOD5 (mg/L)												
Weekly Average	3.9	5.5	8.0	7	4.2	8.4	< 3.7	6.5	7.6	7.4	6.0	3.7
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	1305	1469	1883	1309	1111	1153	1280	1449	1999	1815	1168	921
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	1893	2448	3798	2469	1853	1459	1632	2737	3997	2759	2739	1223

NPDES Permit Fact Sheet Mt Pleasant Borough STP

BOD5 (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	104	144	109	131	134	167	186	155	194	246	166	88
TSS (lbs/day)												
Average Monthly	< 78.4	< 53.4	< 103.1	< 59	< 44	< 35	< 35	< 65	< 59	< 35	< 35	< 66
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	1724	1329	1561	1192	802	1995	896	974	2086	1147	1182	1297
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	2717	2830	3717	2210	1354	10899	1117	1208	6487	2327	2532	5734
TSS (lbs/day)												
Weekly Average	< 123.6	< 73.2	148.9	69	< 79	< 38	< 51	< 163	< 91	< 39	59	111
TSS (mg/L)	_	_			_	_	_	_	_	_	_	
Average Monthly	< 6	< 5	< 6	< 6	< 5	< 5	< 5	< 6	< 5	< 5	< 5	< 5.0
TSS (mg/L)												
Raw Sewage Influent												
 Average	400	400	0.7	404	400	050	405	445	202	450	474	00
Monthly TSS (mg/L)	138	130	87	121	100	256	135	115	203	156	171	92
Weekly Average	8	< 5	7	7	< 5	< 5	< 5	< 7	< 6	< 5	9	< 8
Fecal Coliform	0	< 5	,		< 5	< 5	< 5	< 1	< 0	< 5	9	< 0
(No./100 ml)												
Geometric Mean	< 10	< 5	< 5	< 10	< 7	< 6	< 19	< 24	74	30	< 2	< 2
Fecal Coliform	V 10	\ 0	\ 0	V 10		_ ` ` ` `	V 15	\ <u>Z</u> ¬	7 -	- 00	\	\
(No./100 ml)												
Instantaneous												
Maximum	60	5	32	43	54	20	114	218	301	269	46	132
Total Nitrogen (mg/L)												
Daily Maximum		8.89			17.3			22.5			1.69	
Ammonia (lbs/day)												
Average Monthly	< 11	< 9	< 14	< 8	< 7	< 6	< 6	< 8	< 9	< 5	5	2
Ammonia (lbs/day)												
Weekly Average	< 16	< 12	< 17	< 9	< 13	< 6	< 8	< 18	< 14	< 6	14	3
Ammonia (mg/L)												
Average Monthly	< 0.8	< 0.8	0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.80	< 0.8	< 0.7	0.7	0.2
Ammonia (mg/L)												
Weekly Average	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	0.8	< 0.8	2.1	0.2
Total Phosphorus												
(mg/L)											0.75	
Daily Maximum		0.84			2.6			2.7			3.59	

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

	Development of Effluent Limitations									
Outfall No.	001		Design Flow (MGD)	1.5						
Latitude	40° 8' 22.00"		Longitude	-79° 32' 3.00"						
Wastewater	Description:	Sewage Effluent								

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Pollutant Limit (mg/l) SBC		Federal Regulation	State Regulation
Flow (MGD)	Report	Average Monthly	-	92a.27, 92a.61
	Report	Average Weekly	-	92a.27, 92a.61
	Max Daily			
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended Solids	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
(TSS)	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
Total Residual Chlorine				
(TRC)	0.5	Average Monthly	-	92a.48(b)(2)
	25	Average Monthly	-	92a.61
Ammonia-Nitrogen (NH ₃ -N)	50	IMAX	-	92a.61
		Instantaneous		
Dissolved Oxygen (DO)	4.0	Minimum	-	93.6, 92a.61
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Total N	Report	Average Monthly	-	92a.61
Total P	Report	Average Monthly	-	92a.61
Fecal Coliform (No./100mL)				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (No./100mL)				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (No./100mL)				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (No./100mL)				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
E. Coli (No./100mL)	Report	IMAX	-	92a.61

Water Quality-Based Limitations

WQM7.0

WQM7.0 is a water quality modeling program for Windows that determines Waste Load Allocations ("WLAs") and effluent limitations for carbonaceous biochemical oxygen demand ("CBOD5"), ammonia-nitrogen, and dissolved oxygen for single and multiple point-source discharge scenarios. To accomplish this, the model simulates two basic processes. In the ammonia-nitrogen module, the model simulates the mixing and degradation of ammonia-nitrogen in the stream and compares calculated instream ammonia-nitrogen concentrations to ammonia-nitrogen water quality criteria. In the dissolved oxygen module, the model simulates the mixing and consumption of dissolved oxygen in the stream due to the degradation of CBOD5 and ammonia-nitrogen and compares calculated instream dissolved oxygen concentrations to dissolved oxygen water quality criteria. WQM 7.0 then determines the highest pollutant loadings that the stream can assimilate while still meeting water quality criteria under design conditions.

DEP's modeling for sewage discharges is a two-step process. First, a discharge is modeled for the summer period (May through October) using warm temperatures for the discharge and the receiving stream. Modeling for the summer period is done first because allowable ammonia-nitrogen concentrations in a discharge are lower at higher temperatures (i.e., warm temperatures are more likely to result in critical loading conditions). Reduced dissolved oxygen levels also appear to increase ammonia toxicity and the maximum concentration of dissolved oxygen in water is lower at higher temperatures.

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

The second step is to evaluate WQBELs for the winter period, but only if modeling shows that WQBELs are needed for the summer period.

The model inputs used to model the discharge from Mt Pleasant Borough STP are shown below:

Stream Parameters									
Read	h 1	Rea	ich 2						
Stream Code	37958	Stream Code	37958						
RMI	1.14	RMI	0.54						
Elevation (ft)	1052	Elevation (ft)	1047						
Drainage Area (mi ²)	3.05	Drainage Area (mi ²)	3.48						
Q ₇₋₁₀ Flow (cfs)	0.03	Q ₇₋₁₀ Flow (cfs)	0.04						

Facility/Design Parameters									
Discharge Flow (MGD)	1.5								
LFY (cfs/mi²) [for use in summer modeling]	0.010								
2*LFY (cfs/mi²) [for use in winter modeling]	0.021								

Summer Modeling Inputs									
Tributary		Discharge							
Temperature (°C)	25	Temperature (°C)	20						
pH (S.U.)	7	pH (S.U.)	7						
DO (mg/L)	8.24	DO (mg/L)	4						
CBOD ₅ (mg/L)	2	CBOD ₅ (mg/L)	25						
NH ₃ -N (mg/L)	0	NH ₃ -N (mg/L)	25						
DO Goal (mg/L)	5	DO Goal (mg/L)	5						
<u>Wir</u>	nter Mod	eling Inputs							
Tributary		Discharge							
Temperature (°C)	5	Temperature (°C)	15						
pH (S.U.)	7	pH (S.U.)	7						
DO (mg/L)	12.51	DO (mg/L)	4						
CBOD ₅ (mg/L)	2	CBOD ₅ (mg/L)	25						
NH ₃ -N (mg/L)	0	NH ₃ -N (mg/L)	25						
DO Goal (mg/L)	5	DO Goal (mg/L)	5						

The modeling results (output files can be found in Attachments D and E) show that water-quality based effluent limitations for these parameters are appropriate.

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygen	5	Minimum	WQM7.0
CBOD ₅ (Nov 1 – Apr 30)	17.85	Average Monthly	WQM7.0
CBOD ₅ (May 1 – Oct 31)	10	Average Monthly	WQM7.0
Ammonia Nitrogen (Nov 1			
– Apr 30)	4.44	Average Monthly	WQM7.0
Ammonia Nitrogen (May 1			
- Oct 31)	1.91	Average Monthly	WQM7.0

Based on a review of eDMR data for the past permit cycle, Mt Pleasant Borough STP will be able to achieve the new ammonia-nitrogen summer limits immediately upon permit issuance. The ammonia-nitrogen winter limits from the last permit cycle shall remain in place.

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site-specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. TRC_CALC recommends an average monthly limit of 0.011 mg/L and an IMAX of 0.035 mg/L. Modeling results can be found in Attachment F. eDMR data show that the facility will need a compliance schedule to achieve the new Total Residual Chlorine (TRC) limits. During this compliance schedule, the facility will need to comply with the previous TRC limit until the compliance period ends, when the facility shall comply with the new, more stringent TRC limit.

Toxics Management Spreadsheet (TMS)

WQBELs are developed pursuant to Section 301(b)(1)(C) of the Clean Water Act and, per 40 CFR § 122.44(d)(1)(i), are imposed to "control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) that are or may be discharged at a level that will cause, have the reasonable potential to cause, or contribute to an excursion above any state water quality standard, including state narrative criteria for water quality." The Department of Environmental Protection developed the Toxics Management Spreadsheet (TMS) to facilitate calculations necessary to complete a reasonable potential (RP) analysis and determine WQBELs for discharges of toxic and some nonconventional pollutants.

The TMS is a single discharge, mass-balance water quality modeling program for Microsoft Excel® that considers mixing, first-order decay, and other factors to determine WQBELs for toxic and nonconventional pollutants. Required input data including stream code, river mile index, elevation, drainage area, discharge flow rate, low-flow yield, and the hardness and pH of both the discharge and the receiving stream are entered into the TMS to establish site-specific discharge conditions. Other data such as reach dimensions, partial mix factors, and the background concentrations of pollutants in the stream also may be entered to further characterize the discharge and receiving stream. The pollutants to be analyzed by the model are identified by inputting the maximum concentration reported in the permit application or Discharge Monitoring Reports, or by inputting an Average Monthly Effluent Concentration (AMEC) calculated using DEP's TOXCONC.xls spreadsheet for datasets of 10 or more effluent samples. Pollutants with no entered concentration data and pollutants for which numeric water quality criteria in 25 Pa. Code Chapter 93 have not been promulgated are excluded from the modeling.

The TMS evaluates each pollutant by computing a Wasteload Allocation for each applicable criterion, determining the most stringent governing WQBEL, and comparing that governing WQBEL to the input discharge concentration to determine whether permit requirements apply in accordance with the following RP thresholds:

- Establish limits in the permit where the maximum reported effluent concentration or calculated AMEC equals or exceeds 50% of the WQBEL. Use the average monthly, maximum daily, and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).
- For non-conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated AMEC is between 25% 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated AMEC is between 10% 50% of the WQBEL.

In most cases, pollutants with effluent concentrations that are not detectable at the level of DEP's Target Quantitation Limits are eliminated as candidates for WQBELs and water quality-based monitoring.

The NPDES renewal application for Mt Pleasant Borough STP was received by the Department on May 27, 2022. The Toxics Management Spreadsheet (TMS) was run using the sampling data provided on the application. Results from the first TMS run can be found in Attachment G. The Pre-Draft Letter and Pre-Draft Survey can be found in Attachments H and I. The samples reported on the application did meet the current DEP Quantitation Limits (QLs) but MAWC still elected to resample for the pollutants included in the Pre-Draft Letter. The resampling results were provided to the DEP on October 28, 2022. Because MAWC elected to perform 10 additional samples, any samples that were considered to be "outliers" were removed from consideration. Additionally, because there were 10 samples to work with, the resampling data was evaluated using the TOXCONC model to get an AMEC value. However, removing two outliers from the free cyanide resampling data dropped the total number of samples below 10 so TOXCONC could no longer be used to

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

evaluate the resampling data. Therefore, for free cyanide, the maximum value of the resampling data (13 µg/L) was entered into TMS. The TOXCONC inputs and results can be found in Attachment J. The TMS was run again using the updated sampling values (Attachment K). The following WQBELs were recommended for this facility as a result of the Reasonable Potential Analysis:

Pollutant	Average Monthly (µg/L)	Maximum Daily (µg/L)	IMAX (μg/L)
Total Copper	9.46	14.2	14.2
Free Cyanide	4.06	6.33	10.1
Dissolved Iron	Report	Report	Report
Total Zinc	Report	Report	Report
Chloroform	5.78	9.02	14.4
Dichlorobromomethane	1.1	1.72	2.75
Benzo(k)Fluoranthene	0.012	0.018	0.029
Bis(2-Ethylhexyl)Phthalate	0.37	0.58	0.93
Indeno(1,2,3-cd)Pyrene	0.001	0.002	0.003

Best Professional Judgment (BPJ) Limitations

Based on best professional judgment and the standard in 25 PA Code Chapter 93, a dissolved oxygen minimum limitation of 4.0 mg/L would normally be implemented. However, WQM7.0 modeling results indicate that a dissolved oxygen minimum limitation of 5.0 mg/L is appropriate. The more stringent of the two values will be imposed during this permit cycle.

Mass Loading Limitations

Per Department SOP "Establishing Effluent Limitations for Individual Sewage Permits" (BCW-PMT-033), mass loading limits will be established for POTWs for CBOD₅, TSS, ammonia nitrogen. Average monthly mass loading limits will be established for CBOD₅, TSS, and ammonia nitrogen. Average weekly mass loading limits will be established for CBOD₅ and TSS. Mass loading limits will be calculated according to the formula below:

average annual design flow (MGD) × concentration limit
$$\left(\frac{mg}{L}\right)$$
 × 8.34 (converstion factor) = mass loading limit $\left(\frac{lbs}{day}\right)$

The following mass loading limitations were calculated and rounded according to DEP rounding guidance:

Parameter	Average Monthly (lbs/day)	Average Weekly (lbs/day)
CBOD ₅ (Nov 1 – Apr 30)	220	335
CBOD ₅ (May 1 – Oct 31)	125	185
TSS	310	475
Ammonia Nitrogen (Nov 1 – Apr 30)	55.5	_
Ammonia Nitrogen (May 1 – Oct 31)	23.9	

In the previous permit, there were average weekly concentration and mass loading limits for ammonia nitrogen. According to DEP SOP "Establishing Effluent Limitations for Individual Sewage Permits" (BCW-PMT-033, Rev. March 24, 2021), ammonia nitrogen is only subject to average monthly concentration and mass loading limits. Therefore, the average weekly limits have been removed. Average monthly and average weekly mass loading limits for CBOD₅ have become more stringent. Due to DEP rounding guidance, the average monthly mass loading limits for TSS have become slightly more stringent. The average weekly mass loading limits from the last permit cycle will remain in place because they are slightly more stringent than what was calculated for this permit cycle. The average monthly mass loading limits for Ammonia-Nitrogen (Nov 1 − Apr 30) in the last permit cycle are more stringent than what is calculated above, therefore the limits from the last permit cycle will remain in place.

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Influent Monitoring

Per Department SOP "New and Reissuance Sewage Individual NPDES Permit Applications" (BCW-PMT-002), POTWs with design flows greater than 2,000 GPD, influent BOD₅ and TSS monitoring will be established in the permit. The influent monitoring will be established with the same frequency and sample type as the effluent sampling. The "Daily Maximum" basis for the weekly average mass loading has been removed and updated to "Weekly Average" to more closely match the effluent sampling type and frequency.

Additional Considerations

Sewage discharges will include monitoring, at a minimum, for E. coli, in new and reissued permits, with a monitoring frequency of 1/month for design flows >= 1 MGD.

The receiving stream is not impaired for nutrients, therefore, quarterly sampling for nitrogen and phosphorus will be reimposed per 25 PA Code §92.61b.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3 "Self-Monitoring Requirements for Sewage Dischargers" and Table 6-4 "Self-Monitoring Requirements for Industrial Dischargers", from the Departments Technical Guidance for the Development and Specification of Effluent Limitations.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of 1st Year from Permit Effective Date.

Parameter			Monitoring Requirements					
	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.03	XXX	0.10	1/day	Grab

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of 2nd Year from Permit Effective Date.

	Effluent Limitations							quirements
Parameter	Mass Units (lbs/day) ⁽¹⁾			Concentra	Minimum ⁽²⁾	Required		
i didiletei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
Copper, Total (ug/L)	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Cyanide, Free (ug/L)	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Benzo(k)Fluoranthene (ug/L)	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Dichlorobromomethane (ug/L)	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite
Bis(2-Ethylhexyl)Phthalate								24-Hr
(ug/L)	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Chloroform (ug/L)	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite
	•							24-Hr
Indeno(1,2,3-cd)Pyrene (ug/L)	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Beginning of 3rd Year from Permit Effective Date through Permit Expiration Date.

		Monitoring Re	quirements					
Parameter	Mass Units	(lbs/day) (1)		Concentra	Minimum ⁽²⁾	Required		
i arameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
Copper, Total (ug/L)	XXX	XXX	XXX	9.46	14.2	14.2	1/week	Composite
								24-Hr
Cyanide, Free (ug/L)	XXX	XXX	XXX	4.06	6.33	10.1	1/week	Composite
								24-Hr
Benzo(k)Fluoranthene (ug/L)	XXX	XXX	XXX	0.012	0.018	0.029	1/week	Composite
								24-Hr
Dichlorobromomethane (ug/L)	XXX	XXX	XXX	5.78	9.02	14.4	1/week	Composite
Bis(2-Ethylhexyl)Phthalate								24-Hr
(ug/L)	XXX	XXX	XXX	0.37	0.58	0.93	1/week	Composite
								24-Hr
Chloroform (ug/L)	XXX	XXX	XXX	5.78	9.02	14.4	1/week	Composite
, ,								24-Hr
Indeno(1,2,3-cd)Pyrene (ug/L)	XXX	XXX	XXX	0.001	0.002	0.003	1/week	Composite

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Beginning of 2nd Year from Permit Effective Date through Permit Expiration Date.

			Effluent L	Effluent Limitations				quirements
Parameter	Mass Units	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.011	XXX	0.035	1/day	Grab

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
r ai ainetei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
1 low (MOD)	Report	Daily Max	6.0	XXX	9.0	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab
Dissolved Overson	XXX	XXX	5.0	XXX	XXX	XXX	1/dov	Crob
Dissolved Oxygen Carbonaceous Biochemical	^^^	^^^	Daily Min	^^^	^^^	^^^	1/day	Grab
Oxygen Demand (CBOD5)								24-Hr
Nov 1 - Apr 30	220.0	335.0	XXX	17.0	27.0	36	2/week	Composite
Carbonaceous Biochemical								
Oxygen Demand (CBOD5)	125.0	185.0	XXX	10.0	15.0	20	Ohmade	24-Hr
May 1 - Oct 31 Biochemical Oxygen Demand	125.0	165.0	^^^	10.0	15.0	20	2/week	Composite
(BOD5)								24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Total Suspended Solids	310.0	475.0	XXX	25.0	38.0	50	2/week	Composite
Total Suspended Solids								24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Fecal Coliform (No./100 ml)	VVV	VVV	VVV	2000	VVV	40000	2/waals	Crob
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	XXX	1000	2/week	Grab
iviay 1 - 36p 30	^^^	^^^	^^^	Geo Mean	^^^	1000	Z/WGGN	Giab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Total Nitrogon	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	24-Hr
Total Nitrogen	۸۸۸	۸۸۸	۸۸۸	^^^	Daily Max	۸۸۸	1/quarter	Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Required
raiailletei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	40.0	XXX	XXX	3.2	4.8	6.4	2/week	Composite
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	23.9	XXX	XXX	1.91	3.82	XXX	2/week	Composite
					Report			24-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Iron, Dissolved (ug/L)	XXX	XXX	XXX	Report	Daily Max	XXX	1/week	Composite
					Report			24-Hr
Zinc, Total (ug/L)	XXX	XXX	XXX	Report	Daily Max	XXX	1/week	Composite

ATTACHMENT A: Whole Effluent Toxicity (WET) Evaluation and Summary

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

	Whole Effluent Toxicity (WET)	
For Out	tfall 001, Acute Chronic WET Testing was completed:	
	For the permit renewal application (4 tests). Quarterly throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other:	
	ution series used for the tests was: 100%, 98%, 95%, 48%, and 24%. to be used for analysis of the results is: 95%.	The Target Instream Waste Concentration
0	and of Face Mark Daniel Trad Daniel	

Summary of Four Most Recent Test Results

Comments: all tests were passed, see summary results below

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

	Effluent Tozicity	(VET) Analysis Spreadsheet	DEP ¥hole E	ffluent Tozicit¶	(VET) Analy	sis Sprea	dsheet
Tupe of Test	Chronic	Facility Name	Type of Test	Chronic		Facility Na	
Species Tested	Ceriodaphnia			Deriodaphnia		. acmicy ma	
Endpoint	Survival	Mt Pleasant STP		Reproduction		Mt Pleasant	STP
TIVC (decimal)				0.95			
No. Per Replicat		Permit No.	No. Per Replicat			Permit No	0.
TST b value	0.75	PA0021148	TST b value	0.75		PA002114	
TST alpha value	0.2		TST alpha value				-
Γest C	ompletion Date	Fest Completion Date	Fest Co	npletion Date		Fest Comp	letion Da
Replicat	4/13/2020	Replicat 5/24/2021		13/2020	Replicat	5/24/	
e No. Cont	rol TI¥C	e No. Control TIVC	e No. Contro		e No.	Control	TIVC
1 1	1	1 1 1	1 27	24	1	36	32
2 1	1	2 1 1	2 25	25	2	36	31
3 1		3 1 1	3 25	20	3	38	32
4 1	i	4 1 1	4 25	26	4	35	30
5 1	1	5 1 1	5 22	24	5	32	31
6 1	1	6 1 1	6 20	24	_	32 26	29
7 1	1	7 1 1			6		
	_		7 19	25	7	35	30
8 1	1	8 1 1	8 18	25	8	33	29
9 1	1	9 1 1	9 21	23	9	34	32
10 1	1	10 1 1	10 17	19	10	29	34
11		11	11		11		
12		12	12		12		
13		13	13		13		
14		14	14		14		
15		15	15		15		
Mean 1.00		Mean 1.000 1.000	Mean 21.900		Mean	33.400	31.000
Std Dev. 0.00		Std Dev. 0.000 0.000	Std Dev. 3.446		Std Dev.	3.596	1.563
#Replicates 10	10	#Replicates 10 10	#Replicates 10	10	# Replicates	: 10	10
Critical T Value Pass or Fail	PASS	Critical T Value Pass or Fail PAS\$	5,55,55,55	0.8633 PASS	Critical T Va Pass or Fail	***********	533 \$\$
Γest C	ompletion Date	Fest Completion Date	Fest Co	npletion Date		Fest Comp	letion Da
Replicat	5/9/2022	Replicat	Replicat 5	9/2022	Replicat		
e No. Cont	rol TI¥C	e No. Control TIVC	e No. Contro	I TIVC	e No.	Control	TIVC
1 1	1	1	1 27	30	1		
2 1	1	2	2 31	36	2		
3 1	1	3	3 27	31	3		
4 1		4	4 26	33			
					4		
5 1	1	5	5 24	29	4 5		
6 1	1	6	5 24 6 24	29 32	4 5 6		
6 <u>1</u> 7 1	1	6 7	5 24 6 24 7 24	29 32 39	4 5 6 7		
6 1 7 1 8 1	1 1	6 7 8	5 24 6 24 7 24 8 25	29 32 39 30	4 5 6 7 8		
6 1 7 1 8 1 9 1	1 1 1 1	6 7 8 9 9	5 24 6 24 7 24 8 25 9 21	29 32 39 30 30	4 5 6 7 8 9		
6 1 7 1 8 1 9 1 10 1	1 1	6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	5 24 6 24 7 24 8 25	29 32 39 30	4 5 6 7 8		
6 1 7 1 8 1 9 1 10 1	1 1 1 1	6 7 8 9 100 11	5 24 6 24 7 24 8 25 9 21	29 32 39 30 30	4 5 6 7 8 9		
6 1 7 1 8 1 9 1 10 1 11 12	1 1 1 1	6 7 8 9 9 10 11 12	5 24 6 24 7 24 8 25 9 21 10 20	29 32 39 30 30	4 5 6 7 8 9 10		
6 1 7 1 8 1 9 1 10 1	1 1 1 1	6 7 8 9 9 10 11 12 13 13 1	5 24 6 24 7 24 8 25 9 21 10 20	29 32 39 30 30	4 5 6 7 8 9 10		
6 1 7 1 8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	6 7 8 9 9 10 11 12 13 14	5 24 6 24 7 24 8 25 9 21 10 20 11	29 32 39 30 30	4 5 6 7 8 9 10 11		
6 1 7 1 8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	6 7 8 9 9 10 11 12 13 13 1	5 24 6 24 7 24 8 25 9 21 10 20 11 12 13	29 32 39 30 30	4 5 6 7 8 9 10 11 12		
6 1 7 1 8 1 9 1 10 1 11 12 13 14 15	1 1 1 1 1 1 1 1 1	6 7 8 9 9 100 11 12 13 14 15 15	5 24 6 24 7 24 8 25 9 21 10 20 11 12 13 14 15	29 32 39 30 30 21	4 5 6 7 8 9 10 11 12 13 14 15		
6 1 7 1 8 1 9 1 10 11 11 12 13 14 15 Mean 1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 9 10 11 12 13 14 15 Mean	5 24 6 24 7 24 8 25 9 21 10 20 11 12 13 14 15	29 32 39 30 30 21	4 5 6 7 8 9 10 11 12 13 14 15		
6 1 7 1 8 1 9 1 10 11 11 12 13 14 15	1 1 1 1 1 1 1 1 00 1.000 00 0.000	6 7 8 9 9 10 11 12 13 14 15 Mean Std Dev.	5 24 6 24 7 24 8 25 9 21 10 20 11 12 13 14 15 Mean 24,300 Std Dev. 3.143	29 32 39 30 30 21 21	4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.		
6 1 7 1 8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 00 1.000 00 0.000	6 7 8 9 9 10 11 12 13 14 15 Mean	5 24 6 24 7 24 8 25 9 21 10 20 11 12 13 14 15	29 32 39 30 30 21	4 5 6 7 8 9 10 11 12 13 14 15		
6 1 7 1 8 1 9 1 10 1 11 12 13 14 15 Mean 1.00 \$td Dev. 0.00 \$t Replicates 10	1 1 1 1 1 1 1 1 00 1.000 00 0.000	6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 24 6 24 7 24 8 25 9 21 10 20 11 12 13 14 15 Mean 24.300 Std Dev. 3.143 # Replicates 10	29 32 39 30 30 21 21 31,100 4,725	4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.		
6 1 7 1 8 1 9 1 10 1 11 12 13 14 15 Mean 1.00 Std Dev. 0.00 ‡ Replicates 10 [-T-est Result	1 1 1 1 1 1 1 1 00 1.000 00 0.000	6 7 8 9 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	5 24 6 24 7 24 8 25 9 21 10 20 11 12 13 14 15 Mean 24.90(Std Dev. 3.143 # Replicates 10	29 32 39 30 30 21 21 31,100 4,725 10	4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	lt	
6 1 7 1 8 1 9 1 10 1 11 12 13 14 15 15 10 10 10 11 11 12 13 14 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	1 1 1 1 1 1 1 1 00 1.000 00 0.000	6	5 24 6 24 7 24 8 25 9 21 10 20 11 12 13 14 15 Mean 24,90(Std Dev. 3,143 # Replicates 10 T-Test Result Deg. of Freedom	29 32 39 30 30 21 21 31,100 4,725 10	4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Resu Deg. of Free	lt :dom	
6 1 7 1 8 1 9 1 10 1 11 12 13 14 15 Mean 1.00 Std Dev. 0.00 # Replicates 10	1 1 1 1 1 1 1 1 00 1.000 00 0.000	6 7 8 9 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	5 24 6 24 7 24 8 25 9 21 10 20 11 12 13 14 15 Mean 24,900 Std Dev. 3.143 # Replicates 10 T-Test Result Deg. of Freedom Critical T Value	29 32 39 30 30 21 21 31,100 4,725 10	4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	lt :dom	

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

DEL Audie	Effluent Tozicit¶	I ACT I WUSHASIS	opredusneet	JEP	rnoie El	maent TOXICI	te (VET) Anale	isis sprea	usneet
Type of Test	Chronic	Faci	ility Name	Type of T	est (Chronic	\neg	Facility N	3 m e
Species Tested	Pimephales			Species T	ested F	Pimephales			
Endpoint	Survival	Mt P	leasant STP	Endpoint	0	Growth		Mt Pleasant	STP
TIWC (decimal)				TIWC (dee		0.95			
No. Per Replicat	10	Pe	rmit No.	No. Per R	eplicate 1	0		Permit N	o.
TST b value	0.75	P/	A0021148	TST b vale		0.75		PA002114	18
TST alpha value	0.25			TST alpha	Talue (0.25			
Γest C	ompletion Date	Гest	Completion Date	H	Γest Cor	npletion Date		Fest Comp	letion Da
	4/14/2020	Replicat	5/25/2021	Replicat		14/2020	Replicat		/2021
e No. Cont			atrol TIVC	e No.	Contro		e No.	Control	TIVC
1 1	0.9	1	1 1	1	0.416	0.334	1	0.318	0,272
2 1	0.3	2	1 1	2	0.410	0.3811	2	0.331	0.262
3 1	0.5	3	1 1	3	0.351	0.312	3	0.331	0.263
			-				_		
4 1	0.9	4	1 1	4	0.366	0.355	4	0.3	0.261
5		5		5			5		
6		6		6			6		
7		7		7			7		
8		8		8			8		
9		9		9			9		
10		10		10			10		
11		11		11			11		
12		12		12			12		
13		13		13		_	13		
14		14		14		_	14		
15		15		15		 	15		
				1					
Mean 1.00	0.800	Mean 1.	.000 1.000	Mean	0.383	0.346	Mean	0.316	0.266
Std Dev. 0.00	0.200	Std Dev. 0.	.000 0.000	II - a			0.15		0.005
			.000	Std Dev.	0.030	0.030	Std Dev.	0.013	0.005
-Test Result eg. of Freedom	4 2.2018 3 0.7649	# Replicates T-Test Result Deg. of Freedom Critical T Value	4 4	# Replicates T-Test Resu Deg. of Free Critical T Va	; 4 .lt : .dom	0.030 4 3.1328 5 0.7267	# Replicates T-Test Resu Deg. of Free	; 4 ilt 5.2 edom	4 2701 5 267
FReplicates 4 F-Test Result Deg. of Freedom Critical T Value Pass or Fail	2.2018 3	T-Test Result Deg. of Freedom		# Replicates T-Test Resu Deg. of Free	; 4 ilt ; edom	4 3.1328 5	# Replicates T-Test Resu Deg. of Free	; 4 ilt 5.2 edom alue 0.7	4 2701 5
-Test Result Deg. of Freedom Critical T Value Pass or Fail	2.2018 3 0.7649 PASS	T-Test Result Deg. of Freedom Critical T Value Pass or Fail	4 4	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail	; 4 dt ; edom alue (4 3.1328 5 0.7267 PASS	# Replicates T-Test Resu Deg. of Free Critical T Vs	; 4 ult 5.2 edom alue 0.7	4 2701 5 267 188
-Test Result Deg. of Freedom Critical T Value Dass or Fail	2.2018 3 0.7649	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest	4 4	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail	: 4 It : Idom Ilue t Fest Cor	4 3.1328 5 0.7267	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail	4 4 5.2 edom 0.7 pr	4 2701 5 267 188
-Test Result Jeg. of Freedom critical T Value Jass or Fail Fest C Replicat	2.2018 3 0.7649 PASS ompletion Date 5/10/2022	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat	4 4	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail	: 4 ::dom :lue t Fest Cor	4 3.1328 5 0.7267 PASS spletion Date 10/2022	# Replicates T-Test Resu Deg. of Free Critical T Vs	4 4 5.2 edom 0.7 pr	4 2701 5 267 188
-Test Result leg, of Freedom critical T Value lass or Fail Fest C Replicat e No. Cont	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat	: 4 Idom Idue (Fest Con Contro	4 3.1328 5 0.7267 PASS spletion Date 10/2022	# Replicates T-Test Resu Deg. of Free Critical T Vs Pass or Fail	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
Test Result eg. of Freedom ritical T Value ass or Fail Fest C Replicat e No. Cont	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co	4 4 PASS Completion Date	# Replicates T-Test Resul Deg. of Free Critical T Va Pass or Fail Replicat e No. 1	### ##################################	4 3.1328 5 0.7267 PASS spletion Date 10/2022 d TIWC 0.284	# Replicates T-Test Resu Deg. of Free Critical T ve Pass or Fail Replicat e No. 1	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
Test Result eg. of Freedom ritical T Value ass or Fail Fest C Replicat e No. Cont 1 0.3 2 1	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.3	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2	Fest Con Contro 0.283 0.292	4 3.1328 5 0.7267 PASS spletion Date 10/2022 J TIWC 0.284 0.29	# Replicates T-Test Resu Deg. of Free Critical T Ve Pass or Fail Replicat e No. 1 2	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
Test Result eg. of Freedom ritical T Value ass or Fail Fest C Replicat e No. Cost 1 0.3 2 1.3 0.3	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co	4 4 PASS Completion Date	# Replicates T-Test Resul Deg. of Free Critical T Va Pass or Fail Replicat e No. 1	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	# Replicates T-Test Resu Deg. of Free Critical T ve Pass or Fail Replicat e No. 1	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
Test Result eg. of Freedom ritical T Value ass or Fail Fest C Replicat e No. Cost 1 0.3 2 11 3 0.3 4 11	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3	Fest Con Contro 0.283 0.292	4 3.1328 5 0.7267 PASS spletion Date 10/2022 J TIWC 0.284 0.29	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e Ho. 1 2 3	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Seletion D
Test Result eg. of Freedom ritical T Value ass or Fail Fest C Replicat 1 0.3 2 1 3 0.3 4 1 5	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Seletion D
Test Result eg. of Freedom ritical T Value ass or Fail Fest C Replicat 1 0.3 2 1 3 0.3 4 1 5 6	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6	4 4 PASS Completion Date	# Replicates T-Test Resul Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	#Replicates T-Test Resu Deg. of Free Critical T vs Pass or Fail Replicat e No. 1 2 3 4 5 6	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Seletion D
Test Result eg. of Freedom ritical T Value ass or Fail Fest C Replicat 1 0.3 2 1 3 0.3 4 1 5 6 7	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	# Replicates T-Test Resu Deg. of Free Critical T Vs Pass or Fail Replicat e No. 1 2 3 4 5 6 7	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Seletion D
Test Result	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	#Replicates T-Test Resu Deg. of Free Critical T V: Pass or Fail Replicat e No. 1 2 3 4 5 6 7	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
Test Result	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e Mo. 1 2 3 4 5 6 7 8 9	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Seletion D
Test Result eg. of Freedom ritical T Value ass or Fail Fest C Replicat e No. Cost 1 0.3 2 11 3 0.3 4 1 5 6 7 8 9 9 10	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9 10	4 4 PASS Completion Date	# Replicates T-Test Resul Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	#Replicates T-Test Resu Deg. of Free Critical T Vs Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Seletion D
Test Result	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9 10 11	4 4 PASS Completion Date	# Replicates T-Test Resul Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	#Replicates T-Test Resu Deg. of Free Critical T vs Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
Test Result	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9 10 11 12	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	#Replicates T-Test Resu Deg. of Free Critical T Vs Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
Test Result	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9 10 11 12 13	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	# Replicates T-Test Resu Deg. of Free Critical T V: Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
Test Result eg. of Freedom ritical T Value ass or Fail Fest C Replicat e No. Cost 1 0.3 2 13 3 0.3 4 11 5 6 7 7 8 9 10 11 12 13 13 14	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9 10 11 12 13 14	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	# Replicates T-Test Resu Deg. of Free Critical T V: Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
Test Result	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0.7 0.8 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9 10 11 12 13	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13	4 1 1 1 1 1 1 1 1 1	4 3.1328 5.0.7267 PASS apletion Date 10/2022 ITIWC 0.284 0.29 0.246	# Replicates T-Test Resu Deg. of Free Critical T V: Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
Test Result	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0 0.7 0.9 0.9 0.7 0.7	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15	4 4 PASS Completion Date	# Replicates T-Test Resul Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Fest Cou Sy Contro 0.283 0.292 0.269 0.32	4 3.1328 5 0.7267 PASS mpletion Date 10/2022 d TIWC 0.284 0.23 0.246 0.385	#Replicates T-Test Resu Deg. of Free Critical T Vs Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
Test Result	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0 0.7 0.3 0.3 0.7 0.7 0.7 0.7 0.7 0.9 0.7 0.7 0.9 0.9 0.7 0.7 0.9 0.9 0.7 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	4 4 PASS Completion Date	# Replicates T-Test Resul Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Fest Con O.283 0.292 0.269	4 3.1328 5 0.7267 PASS appletion Date 10/2022 0.284 0.29 0.246 0.385	#Replicates Deg. of Free Critical T vere Pass or Fail Replicat • No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	s 4 ult 5.2 edom alue 0.7 Fest Comp	4 2701 5 1267 138 Section D
-Test Result leg. of Freedom iritical T Value ass or Fail	2.2018 3 0.7643 DASS Ompletion Date 5/10/2022 rol TIVC 0 0.7 0.9 0.9 0.7 0.7 0.7 0.9 0.9 0.7 0.7 0.8 0.9 0.7 0.7 0.9 0.9 0.9 0.7 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Fest Con 5/ Control 0.283 0.292 0.263 0.32 0.291 0.022	4 3.1328 5 0.7267 Assistance 10/2022 01 TIVC 0.284 0.29 0.246 0.385	# Replicates T-Test Resu Deg. of Free Critical T Vs Pass or Fail Replicat • No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	s 4 lit 5.6 edom on 0.7 Fest Comp Control	4 2701 5 1267 138 Section D
Test Result	2.2018 3 0.7643 DASS Ompletion Date 5/10/2022 rol TIVC 0 0.7 0.9 0.9 0.7 0.7 0.7 0.9 0.9 0.7 0.7 0.8 0.9 0.7 0.7 0.9 0.9 0.9 0.7 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	4 4 PASS Completion Date	# Replicates T-Test Resul Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Fest Con 57 Costro 0.283 0.292 0.263 0.32	4 3.1328 5 0.7267 PASS appletion Date 10/2022 0.284 0.29 0.246 0.385	#Replicates Deg. of Free Critical T vere Pass or Fail Replicat • No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	s 4 lit 5.6 edom on 0.7 Fest Comp Control	4 2701 5 1267 138 Section D
Test Result	2.2018 3 0.7643 DASS Ompletion Date 5/10/2022 rol TIVC 0 0.7 0.9 0.9 0.7 0.7 0.7 0.9 0.9 0.7 0.7 0.8 0.9 0.7 0.7 0.9 0.9 0.9 0.7 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	4 4 PASS Completion Date	# Replicates T-Test Resu Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Fest Control	4 3.1328 5 0.7267 Assistance 10/2022 01 TIVC 0.284 0.29 0.246 0.385	# Replicates T-Test Resu Deg. of Free Critical T Vs Pass or Fail Replicat • No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	s 4 silt 5.2 sidom silve 0.7 Fest Comp Control	4 2701 5 1267 138 Section D
Test Result	2.2018 3 0.7649 PASS Ompletion Date 5/10/2022 rol TIWC 3 0.7 3 0.9 3 0.7 3 0.7 4	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	4 4 PASS Completion Date	# Replicates T-Test Resul Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Fest Con Sy Control 0.283 0.292 0.269 0.32 0.291 0.022; 4	4 3.1328 5 0.7267 PASS spletion Date 10/2022 1 TIWC 0.284 0.29 0.246 0.385	# Replicates T-Test Resu Deg. of Free Critical T Vs Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	### 4 Ill 5.2 Index of the second of the s	4 2701 5 1267 138 Section D
Test Result	2.2018 3 0.7649 PASS ompletion Date 5/10/2022 rol TIWC 0 0.7 0.9 0.9 0.7 0.7 0.7 0.8 0.9 0.7 0.7 0.9 0.9 0.7 0.7 0.9 0.9 0.9 0.7 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	T-Test Result Deg. of Freedom Critical T Value Pass or Fail Fest Replicat e No. Co 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	4 4 PASS Completion Date	# Replicates T-Test Resul Deg. of Free Critical T Va Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Resul	Fest Control 0.283 0.292 0.269 0.32 0.291 0.022; 4	4 3.1328 5 0.7267 PASS mpletion Date 10/2022 d TIWC 0.284 0.23 0.246 0.385 0.301 0.059 4 2.7080	#Replicates T-Test Resu Deg. of Free Critical T Vs Pass or Fail Replicat e No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	s 4 sedom 0.7 Fest Comp Control	4 2701 5 1267 138 Section D

WET Summary and Evaluation

Facility Name Mt Pleasant STP Permit No. PA0021148

Design Flow (MGD)

MGD)

Q₇₋₁₀ Flow (cfs)

0.0319

1.5

1

PMF_a

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	E ndpoint	4/13/20	5/24/21	5/9/22	
Ceriodaphnia	Survival	PASS	PASS	PASS	

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	E ndpoint	4/13/20	5/24/21	5/9/22	
Ceriodaphnia	Reproduction	PASS	PASS	PASS	

		Test Results (Pass/Fail)			
		Test Date Test Date Test Date Test Date			
Species	E ndpoint	4/14/20	5/25/21	5/10/22	
Pimephales	Survival	PASS	PASS	PASS	

		Test Results (Pass/Fail)			
		Test Date Test Date Test Date Test Date			
Species	E ndpoint	4/14/20	5/25/21	5/10/22	
Pimephales	Growth	PASS	PASS	PASS	

Reasonable Potential? NO

Permit Recommendations

Test Type Chronic

TIWC 99 % E ffluent

Dilution Series 25, 50, 74, 99, 100 % Effluent

Permit Limit None

Permit Limit Species

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Evaluation of	Toot Typo	IWC and Dilution	Sorios for	Donowod	Dormit
Evaluation of	rest rybe.	IVVC and Dilution	Series for	Renewed	Permit

Ac	ute Partial Mix Factor (PMFa): 1	Chronic Partial Mix Factor (PMFc): 1				
1.	Determine IWC - Acute (IWCa):					
	$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$					
	$[(1.5 \text{ MGD x } 1.547) / ((0.319 \text{ cfs x } 1) + (1.5 \text{ MGD x } 1.547))] \times 100 = 98.6\%$					
	Is IWCa < 1%? ☐ YES ⊠ NO					
	If the discharge is to the tidal portion of the I	Delaware River, indicate how the type of test was determined:				
	N/A					
	Type of Test for Permit Renewal: CHRON	IIC				
2.	Determine Target IWCc (If Chronic Tests	Required)				
	$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$					
	[(1.5 MGD x 1.547) / ((0.0319 cfs x 1) + (1.5	MGD x 1.547))] x 100 = 98.6% = 99%				
3.	Determine Dilution Series					
	(NOTE – check Attachment C of WET SOP	for dilution series based on TIWCa or TIWCc, whichever applies)				
	Dilution Series = 100%, 99%, 74%, 50%, an	nd 25%.				
<u>WE</u>	ET Limits					
На	s reasonable potential been determined?	YES ⊠ NO				
Wil	II WET limits be established in the permit?]YES ⊠ NO				

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT B: WET Testing Correspondence

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Polakoski, Grace

From: Katelyn Warheit <KWarheit@mawc.org>
Sent: Wednesday, November 2, 2022 12:04 PM
To: Polakoski, Grace; James Peperak

To: Polakoski, Grace; James Peg Cc: Dominic Garofola

Subject: [External] RE: Mt Pleasant STP 2019 WET Tests

ATTENTION: This email message is from an external sender. Do not open links or attachments from unknown senders. To report suspicious email, use the Report Phishing button in Outlook.

Hi Grace,

MAWC acquired Mt. Pleasant Borough STP in August 2020. It is my understanding that the previous permittee, Mt. Pleasant Borough, did not complete a WET Test in 2019.

Thanks,

Katelyn Warheit | Environmental Compliance Superintendent

Municipal Authority of Westmoreland County

Cell: 724-454-0233 Email: kwarheit@mawc.org

From: Polakoski, Grace <grpolakosk@pa.gov> Sent: Wednesday, November 2, 2022 11:56 AM

To: Katelyn Warheit <KWarheit@mawc.org>; James Peperak <JPeperak@mawc.org>

Cc: Dominic Garofola <dominic.garofola@Gibson-thomas.com>

Subject: Mt Pleasant STP 2019 WET Tests

CAUTION: This email originated from outside the organization. DO NOT click links or open attachments unless you recognize the sender and know the content is safe.

Hi Katie,

Can you please respond to this email with a pdf of the 2019 WET Tests for Mt Pleasant? Generally, all 4 of the WETT should be reported on the renewal application on the summary form.

Thanks.

Grace Polakoski (she/her) | Environmental Engineering Specialist Department of Environmental Protection | Clean Water South West Regional Office Building 400 Waterfront Drive | Pittsburgh, PA 15222 Phone: 412.442.4068 www.dep.pa.gov

DEP is now accepting permit and authorization applications, as well as other documents and correspondence, electronically through the OnBase Electronic Forms Upload tool. Please use the link below to view the webpage, get instructions, and submit documents:

https://www.dep.pa.gov/DataandTools/Pages/Application-Form-Upload.aspx

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT C: USGS StreamStats

StreamStats Report

Region ID: PA

Workspace ID: PA20220627143451326000

Clicked Point (Latitude, Longitude): 40.13940, -79.53374

Time: 2022-06-27 10:35:19 -0400

Collapse All

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	3.05	square miles
ELEV	Mean Basin Elevation	1160	feet

Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	3.05	square miles	2.26	1400
ELEV	Mean Basin Elevation	1160	feet	1050	2580

Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.0972	ft^3/s	43	43
30 Day 2 Year Low Flow	0.178	ft^3/s	38	38
7 Day 10 Year Low Flow	0.0319	ft^3/s	66	66
30 Day 10 Year Low Flow	0.0626	ft^3/s	54	54
90 Day 10 Year Low Flow	0.12	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.10.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT D: WQM7.0 Modeling Results (Summer)

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Input Data WQM 7.0

	SWP Basii			Stre	eam Name		RMI	Ele	evation (ft)	Draina Area (sq m	8	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	19D	379	58 SHUP	E RUN			1.14	40	1052.00		3.05 0	0.00000		0.00	\checkmark
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributa</u> np	pH	Ten	Stream np	n pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()		(°C	()		
Q7-10 Q1-10 Q30-10	0.010	0.03 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	5.00	7.00		0.00	0.00	
					D	ischarge [Data]	
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd)	Dis Flo	sc Res	serve	Disc Temp (°C)		isc oH		
		Mt Pl	easant STI	PAI	0021148	0.0000	0.000	00 1.5	5000	0.000	20.	00	7.00		
					P	arameter [Data								
				Paramete	r Name	Co		Trib Conc	Stream Conc	Fate Coef					
						(m	g/L) (r	ng/L)	(mg/L)	(1/day	/s)				
			CBOD5				25.00	2.00	0.00	1.	50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.	00				
			NH3-N				25.00	0.00	0.00	0.	70				

Input Data WQM 7.0

	SWP Basir			Stre	am Name		RMI		ation t)	Drainage Area (sq mi)		ope V/ft)	PWS Vithdrawal (mgd)	Apply FC
	19D	379	958 SHUP	E RUN			0.54	0 10	047.00	3.4	48 0.0	0000	0.00	\checkmark
					St	ream Data	1							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p p	н	S Temp	tream pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.011	0.04 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	5.00	7.00	0.0	0.00)
					Di	scharge D	ata						\neg	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa	erve T ctor	Disc emp (°C)	Disc pH		
						0.0000	0.000	0.00	00 (0.000	25.00	7.	.00	
					Pa	rameter D	Data							
				Parameter Name		Dis Co			tream Conc	Fate Coef				
						(mg	g/L) (m	g/L) (mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N			2	25.00	0.00	0.00	0.70)			

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	v
D.O. Saturation	90.00%	Use Balanced Technology	v
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name			
		19D	3	7958				SHUPE	RUN			
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav	Analysis Temp	Analysis pH
	(cfs)	(cfs)	Flow (cfs)	Flow (cfs)	(ft/ft)	(ft)	(ft)		(fps)	Time (days)	(°C)	
Q7-1	0 Flow											
1.140	0.03	0.00	0.03	2.3205	0.00158	.588	16.6	28.25	0.24	0.152	20.07	7.00
Q1-1	0 Flow											
1.140	0.02	0.00	0.02	2.3205	0.00158	NA	NA	NA	0.24	0.152	20.04	7.00
Q30-	10 Flow	,										
1.140	0.04	0.00	0.04	2.3205	0.00158	NA	NA	NA	0.24	0.152	20.09	7.00

WQM 7.0 D.O.Simulation

	ream Code			Stream Name	
19D	37958			SHUPE RUN	
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperature (°C)	Analysis pH
1.140	1.50	0		20.068	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
16.599	0.58	8		28.249	0.241
Reach CBOD5 (mg/L)	Reach Kc	1/days)	R	leach NH3-N (mg/L)	Reach Kn (1/days)
9.89	0.59	_		1.89	0.704
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
5.044	3.62	3		Tsivoglou	5
Reach Travel Time (days)		Subreach	Results		
0.152	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.015	9.80	1.86	5.04	
	0.030	9.71	1.85	5.05	
	0.046	9.62	1.83	5.05	
	0.061	9.54	1.81	5.05	
	0.076	9.45	1.79	5.06	
	0.091	9.36	1.77	5.07	
	0.106	9.28	1.75	5.08	
	0.122	9.20	1.73	5.09	
	0.137	9.11	1.71	5.11	
	0.152	9.03	1.69	5.12	

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

WQM 7.0 Wasteload Allocations

\$	19D		n Code 958			Stream SHUP				
NH3-N A	Acute Alloc	ations	i							
RMI	Discharge I		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multipl Criterio (mg/L	on 1	ultiple WLA mg/L)	Critical Reach	Percent Reductio	
1.140	Mt Pleasant	STP	16.7	16.88	5 1	6.7	16.85	0	0	_
NH3-N C	Chronic Allo	ocatio	ns							
RMI	Discharge Na	ame C	aseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	W	tiple 'LA g/L)	Critical Reach	Percent Reduction	
1.140	Mt Pleasant	STP	1.88	1.91	1 1	.88.	1.91	0	0	_
Dissolve	d Oxygen	Alloca	tions							_
RMI	Discharg	e Name	_			3-N Multiple (mg/L)			Critical	Percent Reduction
1.14	Mt Pleasant	STP	1	0 10	1.91	1.91	5	5	0	0

WQM 7.0 Effluent Limits

Stream Name

SHUPE RUN

Stream Code

37958

SWP Basin 19D

RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.140	Mt Pleasant STP	PA0021148	0.000	CBOD5	10		
				NH3-N	1.91	3.82	
				Dissolved Oxygen			5

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT E: WQM7.0 Modeling Results (Winter)

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI		vation (ft)	Draina Area (sq m	a .	Slope (ft/ft)	PW Withda (mg	rawal	Apply FC
	19D	379	958 SHUP	E RUN			1.14	40	1052.00		3.05 0	.00000		0.00	\checkmark
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributa p	pH	Ten	Stream p	pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.021	0.03 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 :	5.00	7.00	(0.00	0.00	
	Discharge Data														
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res w Fa	erve	Disc Temp (°C)		sc H		
		Mt Pl	easant STI	PA	0021148	0.000	0.000	00 1.5	000	0.000	5.	00	7.00		
					P	arameter l	Data								
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef					
						(m	g/L) (r	mg/L)	(mg/L)	(1/day	s)				
			CBOD5			:	25.00	2.00	0.00	1.5	50				
			Dissolved	Oxygen			4.00	12.51	0.00	0.0	00				
			NH3-N				25.00	0.00	0.00	0.	70				

					Inp	ut Data	wQN	17.0						
	SWF Basi			Stre	eam Name		RMI	Elevati (ft)	A	nage rea q mi)	Slope (ft/ft)	PW Withdr (mg	awal	Apply FC
	19D	379	958 SHUP	E RUN			0.54	104	7.00	3.48	0.00000		0.00	\checkmark
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	utary pH	Ten	Stream p	pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.022	0.04	0.00	0.000	0.000	0.0	0.00	0.00	5.00	7.00	0	0.00	0.00	
Q1-10 Q30-10		0.00	0.00	0.000	0.000									
					Di	scharge [Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	p p	sc H		
						0.0000	0.000	0.0000	0.000) 25	5.00	7.00		
					Pa	rameter [Data							
		r Name	Di Co				ate oef							
	- 1											- 1		

25.00

3.00

25.00

CBOD5

Dissolved Oxygen

(mg/L) (mg/L) (mg/L) (1/days)

0.00

0.00

0.00

1.50

0.00

2.00

8.24

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		19D	3	7958				SHUPE	RUN			
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	Time (days)	(°C)	
Q7-1	Q7-10 Flow											
1.140	0.03	0.00	0.03	2.3205	0.00158	.588	16.6	28.25	0.24	0.152	5.00	7.00
Q1-1	0 Flow											
1.140	0.02	0.00	0.02	2.3205	0.00158	NA	NA	NA	0.24	0.152	5.00	7.00
Q30-	10 Flow	,										
1.140	0.04	0.00	0.04	2.3205	0.00158	NA	NA	NA	0.24	0.152	5.00	7.00

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

WQM 7.0 D.O.Simulation

SWP Basin 19D	Stream Code 37958			Stream Nar SHUPE RU		
RMI	Total Discharge	Flow (mgd) Ana	lysis Tempera	ature (°C)	Analysis pH
1.140	1.50	0		5.000		7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDR	tatio	Reach Velocity (fps)
16.599	0.58	8		28.249		0.241
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N	(mg/L)	Reach Kn (1/days)
17.64	1.06	_		4.38		0.221
Reach DO (mg/L)	Reach Kr (Kr Equation	_	Reach DO Goal (mg/L)
5.102	2.53	4		Tsivoglo	ı	5
Reach Travel Time (days	3)	Subreach	Results			
0.152	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.015	17.49	4.37	5.11		
	0.030	17.35	4.35	5.13		
	0.046	17.21	4.34	5.14		
	0.061	17.07	4.33	5.16		
	0.076	16.93	4.31	5.17		
	0.091	16.79	4.30	5.19		
	0.106	16.66	4.28	5.21		
	0.122	16.52	4.27	5.23		
	0.137	16.39	4.25	5.25		
	0.152	16.25	4.24	5.28		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
19D	37958	SHUPE RUN

	190	3/950			SHUPE	- NON			
NH3-N	Acute Allocation	าร							
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	. V	ltiple VLA ng/L)	Critical Reach	Percent Reductio	
1.14	0 Mt Pleasant STP	24.1	24.32	24.	.1	24.32	0	0	_
RMI	Chronic Allocati	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multi WL (mg	A	Critical Reach	Percent Reduction	_
1.14	0 Mt Pleasant STP	4.36	4.44	4.3	86	4.44	0	0	
issolve	ed Oxygen Alloc								_
RMI	Discharge Nar	_			- <u>N</u> Multiple (mg/L)	Dissolv Baseline (mg/L)		Critical	Percent Reductio
1.1	4 Mt Pleasant STP	17.8	85 17.85	4.44	4.44	5	5	0	0

WQM 7.0 Effluent Limits

	58		SHUPE RUN			
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Mt Pleasant STP	PA0021148	0.000	CBOD5	17.85		
			NH3-N	4.44	8.88	
			Dissolved Oxygen			5
		Number	Name Permit Flow Number (mgd)	Name Permit Flow (mgd) Parameter Mt Pleasant STP PA0021148 0.000 CBOD5 NH3-N	Name Permit Number Flow (mgd) Parameter 30-day Ave. (mg/L) Mt Pleasant STP PA0021148 0.000 CBOD5 17.85 NH3-N 4.44	Name Permit Number Flow (mgd) Parameter 30-day Ave. (mg/L) Maximum (mg/L) Mt Pleasant STP PA0021148 0.000 CBOD5 17.85 NH3-N 4.44 8.88

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT F: TRC_CALC Modeling Results

TRC EVALUA	ATION										
Input appropria	te values in /	A3: A9 and D3:D9									
0.0319	= Qstream (cfs)	0.5	=CV Daily							
1.5	= Qdischar	ge (MGD)	0.5	=CV Hourly							
	= no. sample		1	=AFC Partial	Mix Factor						
		emand of Stream		=CFC Partial							
0	= Chlorine D	emand of Discharge	15	= AFC Criteria	Compliance Time (min)						
	= BAT/BPJ V	•		_	Compliance Time (min)						
0	= % Factor o	of Safety (FOS)		=Decay Coeffic							
Source	Reference	AFC Calculations		Reference	CFC Calculations						
TRC	1.3.2.iii	WLA afc =	0.023	1.3.2.iii	WLA cfc = 0.015						
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581						
PENTOXSD TRG	5.1b	LTA_afc=	0.009	5.1d	LTA_cfc = 0.009						
Source	Source Effluent Limit Calculations										
PENTOXSD TRG	5.1f		AML MULT =	1.231							
PENTOXSD TRG	5.1g		LIMIT (mg/l) =		AFC						
		INST MAX	LIMIT (mg/l) =	0.035							
WLA afc		FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10	•	;_tc))							
LTAMULTafc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)								
LTA_afc	wla_afc*LTA	MULT_afc									
WLA_cfc	+Xd +(CF	FC_tc)+[(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)								
LTAMULT_cfc	**	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^(0.5)						
LTA_cfc	wla_cfc*LTA	MULT_cfc									
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	l^2/no_samples	+1))						
AVG MON LIMIT		PJ,MIN(LTA_afc,LTA_cfc)*AN	_								
INST MAX LIMIT	1.5*((av_mo	n_limi∜A ML_M ULT)/LTAMUL	_T_afc)								

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT G: TMS Modeling Results (original samples)

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Disc	harge Stream		
Facility: Mount	Pleasant STP	NPDES Permit No.: PA0021148	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: sewage	
	Dischar	ge Characteristics	

Discharge Characteristics										
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	5)	Complete Mix Times (min)				
(MGD)*	nardness (mg/l)	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh		
1.5	100	7.3								

					0 if lef	t blank	0.5 if le	eft blank		if left blan	k	1 if left blank	
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		517									
1	Chloride (PWS)	mg/L		165									
Group	Bromide	mg/L		0.273									
ē	Sulfate (PWS)	mg/L		1050									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L		75									
1	Total Antimony	μg/L		0.3									
1	Total Arsenic	μg/L	<	0.4									
1	Total Barium	µg/L		63									
1	Total Beryllium	μg/L	<	1									
1	Total Boron	μg/L		135									
1	Total Cadmium	μg/L	<	0.1									
1	Total Chromium (III)	μg/L	<	2									
	Hexavalent Chromium	μg/L		0.2									
1	Total Cobalt	µg/L	<	0.2									
	Total Copper	µg/L		11									
2	Free Cyanide	µg/L		5									
Group	Total Cyanide	µg/L		3									
5	Dissolved Iron	μg/L		64									
	Total Iron	μg/L		57.4									
	Total Lead	μg/L	<	0.3									
1	Total Manganese	µg/L		10									
	Total Mercury	μg/L	<	0.1									
1	Total Nickel	μg/L	<	2									
1	Total Phenols (Phenolics) (PWS)	μg/L		27									
1	Total Selenium	μg/L	<	0.5									
1	Total Silver	µg/L	<	0.2									
1	Total Thallium	μg/L	<	0.05									
1	Total Zinc	μg/L		28									
L_	Total Molybdenum	μg/L	<	4									
	Acrolein	μg/L	<	0.9									
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<	0.3									
	Benzene	µg/L	<	0.04									
	Bromoform	μg/L	<	0.1									
	Carbon Tetrachloride	μg/L	<	0.1									

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

		_	_					 	_	
	Chlorobenzene	μg/L	<	0.07						
	Chlorodibromomethane	μg/L		0.07						
	Chloroethane	μg/L	<	0.06						
	2-Chloroethyl Vinyl Ether	μg/L	<	0.1						
	Chloroform	μg/L		20.7						
	Dichlorobromomethane	μg/L		2.5						
	1,1-Dichloroethane	μg/L	<	0.06						
m	1,2-Dichloroethane	μg/L	<	0.08						
9	1,1-Dichloroethylene	µg/L	<	0.07						
Group	1,2-Dichloropropane	µg/L	<	0.1						
g	1,3-Dichloropropylene	µg/L	<	0.06						
	1,4-Dioxane	µg/L	<	0.1						
	Ethylbenzene	µg/L	<	0.06						
	Methyl Bromide	µg/L	<	0.1						
	Methyl Chloride	µg/L	<	0.09						
	Methylene Chloride	µg/L	\vdash	0.02						
	1,1,2,2-Tetrachloroethane	µg/L	<	0.1						
	Tetrachloroethylene	µg/L	<	0.09						
	Toluene	µg/L	_	0.06						
	1,2-trans-Dichloroethylene	µg/L	<	0.00						
	1,1,1-Trichloroethane		<	0.06						
	1,1,1-Inchloroethane 1.1.2-Trichloroethane	µg/L	<							
	1,1,0	μg/L	-	0.08						
	Trichloroethylene	μg/L	<	0.1						
	Vinyl Chloride	μg/L	<	0.1						
	2-Chlorophenol	μg/L	<	80.0						
	2,4-Dichlorophenol	μg/L	<	0.07						
	2,4-Dimethylphenol	μg/L	<	0.4						
4	4,6-Dinitro-o-Cresol	μg/L	<	0.11						
ď	2,4-Dinitrophenol	μg/L	<	0.04						
Group	2-Nitrophenol	μg/L	<	2.9						
ō	4-Nitrophenol	μg/L	<	0.04						
	p-Chloro-m-Cresol	μg/L	<	0.09						
	Pentachlorophenol	μg/L	<	0.1						
	Phenol	μg/L	<	0.04						
	2,4,6-Trichlorophenol	μg/L	<	0.09						
	Acenaphthene	μg/L	<	0.1						
	Acenaphthylene	μg/L	<	0.09						
	Anthracene	μg/L	<	0.08						
	Benzidine	μg/L	<	4.9						
	Benzo(a)Anthracene	µg/L	<	0.06						
	Benzo(a)Pyrene	µg/L	<	0.07						
	3,4-Benzofluoranthene	µg/L	<	0.04						
	Benzo(ghi)Perylene	µg/L	<	0.08						
	Benzo(k)Fluoranthene	µg/L		0.135						
	Bis(2-Chloroethoxy)Methane	µg/L	<	0.08						
	Bis(2-Chloroethyl)Ether	µg/L	<	0.07						
	Bis(2-Chloroisopropyl)Ether	µg/L	<	0.08						
	Bis(2-Ethylhexyl)Phthalate	µg/L		2.7						
	4-Bromophenyl Phenyl Ether	µg/L	<	0.106						
	Butyl Benzyl Phthalate	µg/L	<	0.06						
	2-Chloronaphthalene	µg/L	<	0.08						
	4-Chlorophenyl Phenyl Ether		<	0.09						
	4-Chlorophenyl Phenyl Ether Chrysene	μg/L	<							
		µg/L	<	0.07						
	Dibenzo(a,h)Anthrancene	μg/L	<	0.05						
	1,2-Dichlorobenzene	μg/L	-	0.08						
	1,3-Dichlorobenzene	μg/L	<	0.07						
5	1,4-Dichlorobenzene	μg/L	<	0.08						
Group	3,3-Dichlorobenzidine	μg/L	<	0.1						
3	Diethyl Phthalate	μg/L		0.65						
	Dimethyl Phthalate	μg/L	<	0.23						
	Di-n-Butyl Phthalate	μg/L		0.495						
	2,4-Dinitrotoluene	μg/L	<	0.8						
	D. C. Diellestelleses	LLOW II	<	0.01						
	2,6-Dinitrotoluene Di-n-Octyl Phthalate	μg/L μg/L	<	0.07		_	_			

Discharge Information 6/28/2022 Page 2

	1,2-Diphenylhydrazine	µg/L	<	0.11						
	Fluoranthene	µg/L	<	0.08						
	Fluorene	µg/L	<	0.1						
	Hexachlorobenzene	µg/L	<	0.08						
	Hexachlorobutadiene		<	0.08			_	_	_	
		µg/L	<	0.04			_	_	_	
	Hexachlorocyclopentadiene	μg/L	_							
	Hexachloroethane	μg/L	<	0.06						
	Indeno(1,2,3-cd)Pyrene	μg/L	_	0.125						
	Isophorone	μg/L	<	0.09						
	Naphthalene	μg/L	<	0.06						
	Nitrobenzene	μg/L	<	0.06						
	n-Nitrosodimethylamine	μg/L	<	0.06						
	n-Nitrosodi-n-Propylamine	μg/L	<	0.09						
	n-Nitrosodiphenylamine	μg/L	<	0.2						
	Phenanthrene	μg/L	<	0.09						
	Pyrene	µg/L		0.252						
	1,2,4-Trichlorobenzene	µg/L	<	0.09						
	Aldrin	μg/L	<							
	alpha-BHC	μg/L	<							
	beta-BHC	µg/L	<							
	gamma-BHC	µg/L	<							
	delta BHC	µg/L	<							
	Chlordane	µg/L	<							
	4.4-DDT		<							
	-	μg/L	-						_	
	4,4-DDE	μg/L	<							
	4,4-DDD	μg/L	<							
	Dieldrin	μg/L	<							
	alpha-Endosulfan	μg/L	<							
_	beta-Endosulfan	μg/L	<							
ρę	Endosulfan Sulfate	μg/L	<							
2	Endrin	μg/L	<							
Group (Endrin Aldehyde	µg/L	<							
	Heptachlor	μg/L	<							
	Heptachlor Epoxide	µg/L	<							
	PCB-1016	µg/L	<							
	PCB-1221	µg/L	<							
	PCB-1232	µg/L	<							
	PCB-1242	μg/L	<							
	PCB-1248	µg/L	<							
	PCB-1254	µg/L	<							
	PCB-1260	µg/L	<							
	PCBs, Total		<							
		µg/L	-				_	_	_	
	Toxaphene	μg/L	<							
	2,3,7,8-TCDD	ng/L	<							
	Gross Alpha	pCi/L								
7	Total Beta	pCi/L	<							
Group	Radium 226/228	pCi/L	<							
Š	Total Strontium	μg/L	<							
_	Total Uranium	μg/L	<							
	Osmotic Pressure	mOs/kg								

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Toxics Management Spreadsheet Version 1.3. March 2021

Stream / Surface Water Information

Mount Pleasant STP, NPDES Permit No. PA0021148, Outfall 001

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Mount Pleasant STP, NPDES Permit No. PA0021148, Outfall 001

Instruction	ons Results		RETUR	N TO INPU	TS (SAVE AS PI	OF)	PRIN	т) () All) Inputs	() Results	O Limits	
	odynamics													
Q 7-10														
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream		rge Analysis	Slope (f	ft/ft) Depth	(ft) Wid	dth (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
1.14	0.03	(0.5)	,	0.03	4	2.321	0.002	2 0.58	38 4	16.6	28.25	0.241	(dave) 0.152	0.004
0.54	0.04			0.037		2.021	0.00	0.00	,,,	10.0	28.250	0.241	0.102	0.004
0.04	0.04			0.001							20.200	<u> </u>		
Q_h														
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream		rge Analysis	Slope (f	ft/ft) Depth	(ft) Wid	dth (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
1.14	0.37			0.37		2.321	0.002	2 0.62	23 1	16.6	26.642	0.26	0.141	0.361
0.54	0.413			0.41										
✓ Wast	teload Allocatio		T (min): 0	0.004	PMF:	1	Anal	ysis Hardne	ess (mg/l):	_1	100	Analysis pH:	7.29	
	Pollutants		Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg	g/L)		С	omments	
Total	Dissolved Solid		0	0		0	N/A	N/A	N/A		·	·		•
	Chloride (PWS		0	0		0	N/A	N/A	N/A					
	Sulfate (PWS	*	0	0		0	N/A	N/A	N/A					
	Total Aluminu		0	0		0	750	750	760					
	Total Antimon		0	0		0	1,100 340	1,100 340	1,115 345)		Cham Tran	slator of 1 a	naliad
	Total Barium		0	0		0	21.000	21,000	21,290	0		Chem Tran	islator or 1 a	pplied
	Total Boron		0	0		0	8.100	8,100	8,212					
	Total Cadmiur	m	0	0		0	2.014	2.13	2.16			Chem Transl	ator of 0 944	annlied
1	otal Chromium		0	0		1	569.763	1,803	1,828			Chem Transl		
	exavalent Chron		0	0		0	16	16.3	16.5			Chem Transl		
	Total Cobalt		0	0		0	95	95.0	96.3					
	Total Copper	r	0	0		0	13.439	14.0	14.2			Chem Trans	lator of 0.96	applied
	Free Cyanide	9	0	0		0	22	22.0	22.3					

Dissolved Iron	0	0	 0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	64.581	81.6	82.8	Chem Translator of 0.791 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	1.400	1.65	1.67	Chem Translator of 0.85 applied
Total Nickel	0	0	0	468.236	469	476	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0	0	3.217	3.78	3.84	Chem Translator of 0.85 applied
Total Thallium	0	0	0	65	65.0	65.9	
Total Zinc	0	0	0	117.180	120	121	Chem Translator of 0.978 applied
Acrolein	0	0	0	3	3.0	3.04	•
Acrylonitrile	0	0	0	650	650	659	
Benzene	0	0	0	640	640	649	
Bromoform	0	0	0	1,800	1,800	1,825	
Carbon Tetrachloride	0	0	0	2,800	2,800	2,839	
Chlorobenzene	0	0	0	1,200	1,200	1,217	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	18,248	
Chloroform	0	0	0	1,900	1,900	1,926	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	15,207	
1,1-Dichloroethylene	0	0	0	7.500	7,500	7.604	
1,2-Dichloropropane	0	0	0	11,000	11,000	11,152	
1,3-Dichloropropylene	0	0	0	310	310	314	
Ethylbenzene	0	0	0	2,900	2,900	2,940	
Methyl Bromide	0	0	0	550	550	558	
Methyl Chloride	0	0	0	28.000	28.000	28.386	
Methylene Chloride	0	0	0	12,000	12.000	12,166	
1.1.2.2-Tetrachloroethane	0	0	0	1,000	1,000	1,014	
Tetrachloroethylene	0	0	0	700	700	710	
Toluene	0	0	0	1,700	1,700	1,723	
1,2-trans-Dichloroethylene	0	0	0	6.800	6.800	6.894	
1.1.1-Trichloroethane	0	0	0	3,000	3,000	3,041	
1.1.2-Trichloroethane	0	0	0	3,400	3,400	3.447	
Trichloroethylene	0	0	0	2,300	2,300	2,332	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	568	
2,4-Dichlorophenol	0	0	0	1,700	1.700	1.723	
2,4-Dimethylphenol	0	0	0	660	660	669	
4.6-Dinitro-o-Cresol	0	0	0	80	80.0	81.1	
2.4-Dinitrophenol	0	0	0	660	660	669	
2-Nitrophenol	0	0	ō	8.000	8.000	8,110	
4-Nitrophenol	0	0	ő	2,300	2.300	2.332	
p-Chloro-m-Cresol	0	0	ō	160	160	162	
Pentachlorophenol	0	0	0	11.724	11.7	11.9	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	466	

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Acenaphthene	0	0	0	83	83.0	84.1	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	304	
Benzo(a)Anthracene	0	0	0	0.5	0.5	0.51	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30.000	30.414	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	4,562	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	274	
Butyl Benzyl Phthalate	0	0	0	140	140	142	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	831	
1,3-Dichlorobenzene	0	0	0	350	350	355	
1,4-Dichlorobenzene	0	0	0	730	730	740	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	4,055	
Dimethyl Phthalate	0	0	0	2,500	2,500	2,535	
Di-n-Butyl Phthalate	0	0	0	110	110	112	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	1,622	
2,6-Dinitrotoluene	0	0	0	990	990	1,004	
1,2-Diphenylhydrazine	0	0	0	15	15.0	15.2	
Fluoranthene	0	0	0	200	200	203	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	10.1	
Hexachlorocyclopentadiene	0	0	0	5	5.0	5.07	
Hexachloroethane	0	0	0	60	60.0	60.8	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	10,138	
Naphthalene	0	0	0	140	140	142	
Nitrobenzene	0	0	0	4,000	4,000	4,055	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	17,235	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	304	
Phenanthrene	0	0	0	5	5.0	5.07	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	132	

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	

Analysis Hardness (mg/l): 100 Analysis pH: 7.29

PMF: 1

CCT (min): 0.004

☑ CFC

Sulfate (PWS)	0	0	0	N/A	N/A	N/A	
Total Aluminum	0	0	0	N/A	N/A	N/A	
Total Antimony	0	0	0	220	220	223	
Total Arsenic	0	0	0	150	150	152	Chem Translator of 1 applied
Total Barium	0	0	0	4,100	4,100	4,157	
Total Boron	0	0	0	1,600	1,600	1,622	
Total Cadmium	0	0	0	0.246	0.27	0.27	Chem Translator of 0.909 applied
Total Chromium (III)	0	0	0	74.115	86.2	87.4	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0	0	10	10.4	10.5	Chem Translator of 0.962 applied
Total Cobalt	0	0	0	19	19.0	19.3	
Total Copper	0	0	0	8.956	9.33	9.46	Chem Translator of 0.96 applied
Free Cyanide	0	0	0	5.2	5.2	5.27	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	1,521	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.517	3.18	3.23	Chem Translator of 0.791 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	0.92	Chem Translator of 0.85 applied
Total Nickel	0	0	0	52.007	52.2	52.9	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	5.06	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	13.2	
Total Zinc	0	0	0	118.139	120	121	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	3.04	
Acrylonitrile	0	0	0	130	130	132	
Benzene	0	0	0	130	130	132	
Bromoform	0	0	0	370	370	375	
Carbon Tetrachloride	0	0	0	560	560	568	
Chlorobenzene	0	0	0	240	240	243	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	3,548	
Chloroform	0	0	0	390	390	395	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	3,143	
1,1-Dichloroethylene	0	0	0	1,500	1,500	1,521	
1,2-Dichloropropane	0	0	0	2,200	2,200	2,230	
1,3-Dichloropropylene	0	0	0	61	61.0	61.8	
Ethylbenzene	0	0	0	580	580	588	
Methyl Bromide	0	0	0	110	110	112	
Methyl Chloride	0	0	0	5,500	5,500	5,576	
Methylene Chloride	0	0	0	2,400	2,400	2,433	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	213	
Tetrachloroethylene	0	0	0	140	140	142	
Toluene	0	0	0	330	330	335	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	1,419	
1,1,1-Trichloroethane	0	0	0	610	610	618	

			 _				
1,1,2-Trichloroethane	0	0	0	680	680	689	
Trichloroethylene	0	0	0	450	450	456	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	112	
2,4-Dichlorophenol	0	0	0	340	340	345	
2,4-Dimethylphenol	0	0	0	130	130	132	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	16.2	
2,4-Dinitrophenol	0	0	0	130	130	132	
2-Nitrophenol	0	0	0	1,600	1,600	1,622	
4-Nitrophenol	0	0	0	470	470	476	
p-Chloro-m-Cresol	0	0	0	500	500	507	
Pentachlorophenol	0	0	0	8.995	8.99	9.12	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	92.3	
Acenaphthene	0	0	0	17	17.0	17.2	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	59.8	
Benzo(a)Anthracene	0	0	0	0.1	0.1	0.1	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	6,083	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	923	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	54.7	
Butyl Benzyl Phthalate	0	0	0	35	35.0	35.5	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	162	
1.3-Dichlorobenzene	0	0	0	69	69.0	70.0	
1.4-Dichlorobenzene	0	0	0	150	150	152	
3.3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	811	
Dimethyl Phthalate	0	0	0	500	500	507	
Di-n-Butyl Phthalate	0	0	0	21	21.0	21.3	
2.4-Dinitrotoluene	0	0	0	320	320	324	
2.6-Dinitrotoluene	0	0	0	200	200	203	
1,2-Diphenylhydrazine	0	0	0	3	3.0	3.04	
Fluoranthene	0	0	0	40	40.0	40.6	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	2.03	
Hexachlorocyclopentadiene	0	0	0	1	1.0	1.01	
Hexachloroethane	0	0	0	12	12.0	12.2	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
miderio(1,2,3-dd)Fyreffe	U	U	U	N/A	DV/A	IN/A	ļ

Isophorone	0	0	0	2,100	2,100	2,129	
Naphthalene	0	0	0	43	43.0	43.6	
Nitrobenzene	0	0	0	810	810	821	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	3,447	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	59.8	
Phenanthrene	0	0	0	1	1.0	1.01	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	26.4	

☑ THH CO	CT (min): 0.	004	PMF:	1	Ana	ılysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	5.68	
Total Arsenic	0	0		0	10	10.0	10.1	
Total Barium	0	0		0	2,400	2,400	2,433	
Total Boron	0	0		0	3,100	3,100	3,143	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	4.06	
Dissolved Iron	0	0		0	300	300	304	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	1,014	
Total Mercury	0	0		0	0.050	0.05	0.051	
Total Nickel	0	0		0	610	610	618	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	0.24	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	3.04	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	101	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	

2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	T
Chloroform	0	0	 0	5.7	5.7	5.78	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
	_	0	0				
1,2-Dichloroethane	0	-	_	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	33.5	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	68.9	
Methyl Bromide	0	0	0	100	100.0	101	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	57.8	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	101	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	10,138	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	30.4	
2,4-Dichlorophenol	0	0	0	10	10.0	10.1	
2,4-Dimethylphenol	0	0	0	100	100.0	101	
4.6-Dinitro-o-Cresol	0	0	0	2	2.0	2.03	
2,4-Dinitrophenol	0	0	0	10	10.0	10.1	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4.000	4.000	4.055	
2,4,6-Trichlorophenol	Ö	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	71.0	
Anthracene	0	0	0	300	300	304	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3.4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	203	
Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate	0	0	0	200 N/A	200 N/A	203 N/A	
		_	_	N/A N/A	N/A N/A		
4-Bromophenyl Phenyl Ether	0	0	0			N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	0.1	
2-Chloronaphthalene	0	0	0	800	800	811	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	1,014	

1,3-Dichlorobenzene	0	0	0	7	7.0	7.1	
1,4-Dichlorobenzene	0	0	0	300	300	304	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	608	
Dimethyl Phthalate	0	0	0	2,000	2,000	2,028	
Di-n-Butyl Phthalate	0	0	0	20	20.0	20.3	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	20.3	
Fluorene	0	0	0	50	50.0	50.7	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	4.06	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	34.5	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	10.1	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	20.3	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	0.071	

	CCT (min): 0.3	361	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	

Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	0.06	0.06	0.069	
Benzene	0	0	0	0.58	0.58	0.67	
Bromoform	0	0	0	7	7.0	8.11	
Carbon Tetrachloride	0	0	0	0.4	0.4	0.46	
Chlorobenzene	0	0	0	N/A	N/A	0.46 N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	0.93	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A N/A	N/A N/A	N/A N/A	
Dichlorobromomethane	0	0	0	0.95	0.95	1.1	
1.2-Dichloroethane	0	0	0	9.9	9.9	11.5	
1,1-Dichloroethylene	0	0	0	9.9 N/A	N/A	11.5 N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	1.04	
1,3-Dichloropropylene	0	0	0	0.9	0.9	0.31	
1,3-Dichioropropylene Ethylbenzene	0	0	0	0.27 N/A	0.27 N/A	0.31 N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
	_	-	_	N/A N/A	N/A N/A	N/A N/A	
Methyl Chloride	0	0	0	14,11	N/A 20.0	N/A 23.2	
Methylene Chloride	0	0	0	0.2	0.2		
1,1,2,2-Tetrachloroethane	0	0	0			0.23	
Tetrachloroethylene	0	0	0	10	10.0	11.6	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	0.64	
Trichloroethylene	0	0	0	0.6	0.6	0.69	
Vinyl Chloride	0	0	0	0.02	0.02	0.023	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.035	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	1.74	

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.0001	
	0	0	0	0.0001	0.0001	0.0001	
Benzo(a)Anthracene		0		0.001	0.0001	0.0001	
Benzo(a)Pyrene 3,4-Benzofluoranthene	0	0	0	0.0001	0.0001	0.0001	
		-					
Benzo(k)Fluoranthene	0	0	 0	0.01	0.01	0.012	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	0.035	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	0.37	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	0.14	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.0001	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	0.058	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	0.058	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	0.058	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	0.035	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.00009	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.012	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	0.12	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.001	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.0008	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.006	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	3.82	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

	Mass	Limits	Concentration Limits						
Pollutants	AML	MDL	AML	L MDL	IMAX	AX Units	Governing	WQBEL	Comments
	(lbs/day)	(lbs/day)					WQBEL	Basis	
Total Copper	0.12	0.18	9.46	14.2	14.2	μg/L	9.46	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Free Cyanide	0.051	0.079	4.06	6.33	10.1	μg/L	4.06	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dissolved Iron	Report	Report	Report	Report	Report	μg/L	304	THH	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	120	AFC	Discharge Conc > 10% WQBEL (no RP)
Chloroform	0.072	0.11	5.78	9.02	14.4	μg/L	5.78	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dichlorobromomethane	0.014	0.021	1.1	1.72	2.75	μg/L	1.1	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Benzo(k)Fluoranthene	0.0001	0.0002	0.012	0.018	0.029	μg/L	0.012	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Bis(2-Ethylhexyl)Phthalate	0.005	0.007	0.37	0.58	0.93	μg/L	0.37	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Indeno(1,2,3-cd)Pyrene	0.00001	0.00002	0.001	0.002	0.003	μg/L	0.001	CRL	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	750	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	5.68	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	2,433	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	1,622	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	0.27	μg/L	Discharge Conc < TQL
Total Chromium (III)	87.4	μg/L	Discharge Conc < TQL
Hexavalent Chromium	10.5	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	19.3	μg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Total Iron	1,521	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	3.23	μg/L	Discharge Conc < TQL
Total Manganese	1,014	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.051	μg/L	Discharge Conc < TQL
Total Nickel	52.9	μg/L	Discharge Conc < TQL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Selenium	5.06	μg/L	Discharge Conc < TQL
Total Silver	3.78	μg/L	Discharge Conc < TQL
Total Thallium	0.24	μg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	3.0	μg/L	Discharge Conc < TQL
Acrylonitrile	0.069	μg/L	Discharge Conc < TQL

Benzene Bromoform Carbon Tetrachloride	0.67 8.11	μg/L	Discharge Conc < TQL
	0.46	μg/L μg/L	Discharge Conc < TQL Discharge Conc < TQL
Chlorobenzene	101		Discharge Conc < TQL
	0.93	μg/L	3
Chlorodibromomethane Chloroethane	0.93 N/A	μg/L N/A	Discharge Conc ≤ 25% WQBEL No WQS
2-Chloroethyl Vinyl Ether	3,548	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	11.5 33.5	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene		μg/L	Discharge Conc < TQL
1,2-Dichloropropane	1.04	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	0.31	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	68.9	μg/L	Discharge Conc < TQL
Methyl Bromide	101	μg/L	Discharge Conc < TQL
Methyl Chloride	5,576	μg/L	Discharge Conc < TQL
Methylene Chloride	23.2	μg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	0.23	μg/L	Discharge Conc < TQL
Tetrachloroethylene	11.6	μg/L	Discharge Conc < TQL
Toluene	57.8	μg/L	Discharge Conc ≤ 25% WQBEL
1,2-trans-Dichloroethylene	101	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	618	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	0.64	μg/L	Discharge Conc < TQL
Trichloroethylene	0.69	μg/L	Discharge Conc < TQL
Vinyl Chloride	0.023	μg/L	Discharge Conc < TQL
2-Chlorophenol	30.4	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	10.1	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	101	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	2.03	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	10.1	μg/L	Discharge Conc < TQL
2-Nitrophenol	1,622	μg/L	Discharge Conc < TQL
4-Nitrophenol	476	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	160	μg/L	Discharge Conc < TQL
Pentachlorophenol	0.035	μg/L	Discharge Conc < TQL
Phenol	4,055	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	1.74	μg/L	Discharge Conc < TQL
Acenaphthene	17.2	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	304	μg/L	Discharge Conc < TQL
Benzidine	0.0001	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.001		Discharge Conc < TQL
	0.0001		
3,4-Benzofluoranthene	0.001	μg/L	
Benzo(ghi)Perylene	N/A	N/A	No WQS
13 / /	N/A	N/A	No WQS
	0.035	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol p-Chloro-m-Cresol Pentachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofiuoranthene	2.03 10.1 1,622 476 160 0.035 4,055 1.74 17.2 N/A 304 0.0001 0.0001 0.0001 N/A N/A	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	Discharge Conc < TQL No WQS Discharge Conc < TQL No WQS No WQS

Bis(2-Chloroisopropyl)Ether	203	μg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	54.7	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.1	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	811	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	0.14	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.0001	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	162	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	7.1	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	152	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	0.058	μg/L	Discharge Conc < TQL
Diethyl Phthalate	608	μg/L	Discharge Conc ≤ 25% WQBEL
Dimethyl Phthalate	507	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	20.3	μg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrotoluene	0.058	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	0.058	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.035	μg/L	Discharge Conc < TQL
Fluoranthene	20.3	μg/L	Discharge Conc < TQL
Fluorene	50.7	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.00009	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.012	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	1.01	μg/L	Discharge Conc < TQL
Hexachloroethane	0.12	μg/L	Discharge Conc < TQL
Isophorone	34.5	μg/L	Discharge Conc < TQL
Naphthalene	43.6	μg/L	Discharge Conc < TQL
Nitrobenzene	10.1	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.0008	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.006	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	3.82	μg/L	Discharge Conc < TQL
Phenanthrene	1.01	μg/L	Discharge Conc < TQL
Pyrene	20.3	μg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzene	0.071	μg/L	Discharge Conc < TQL

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT H: Pre-Draft Letter

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

June 28, 2022

VIA ELECTRONIC MAIL:

Norman Stout Jr. Municipal Authority of Westmoreland County 124 Park and Pool Rd New Stanton, PA 15672

Dear Norman Stout:

The Department of Environmental Protection (DEP) has reviewed your NPDES permit application and has reached a preliminary finding that new or more stringent water quality-based effluent limitations (WQBELs) for toxic pollutant(s) should be established in the permit. This finding is based on DEP's assessment that reasonable potential exists to exceed water quality criteria under Chapter 93 in the receiving waters during design flow conditions. The following WQBELs are anticipated based on the information available to DEP during its review:

Outfall No.	Pollutant	Average Monthly (µg/L)	Maximum Daily (µg/L)	IMAX (μg/L)
001	Total Copper	9.46	14.2	14.2
001	Free Cyanide	4.06	6.33	10.1
001	Dissolved Iron	Report	Report	Report
001	Chloroform	Report	Report	Report
001	Dichlorobromomethane	1.1	1.72	2.75
001	Benzo(k)Fluoranthene	0.012	0.018	0.029
001	Bis(2-Ethylhexyl)Phthalate	0.37	0.58	0.93
001	Indeno(1,2,3-cd)Pyrene	0.001	0.002	0.003

Attached is a survey that DEP requests that you complete and return to DEP in 30 days. Completion of this survey will help DEP understand your current capabilities or plans to treat or control these pollutant(s). Your response to this notice does not constitute an official comment for DEP response but will be taken under consideration. When the draft NPDES permit is formally noticed in the *Pennsylvania Bulletin*, you may make official comments for DEP's further consideration and response.

Please contact me if you have any questions about this information or the attached survey.

Sincerely, Grace Polahosti

Grace Polakoski, E.I.T.

Environmental Engineering Specialist

Clean Water Program

Enclosures

c: Michele Cannone – Gibson-Thomas Engineering

US EPA Region III Southwest Regional Office

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT I: Pre-Draft Survey

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PRE-DRAFT PERMIT SURVEY FOR TOXIC POLLUTANTS

Pem	nittee Name: Municipal Authority of Westmoreland	County Permit No.: PA0021148
Pollu	stant(s) identified by DEP that may require WQBELs:	8 pollutants
Is th	e permittee aware of the source(s) of the pollutant(s)?	☐ Yes ☑ No ☐ Suspected
If Ye	s or Suspected, describe the known or suspected sou	rce(s) of pollutant(s) in the effluent.
	T.	
Has	the permittee completed any studies in the past to cor	trol or treat the pollutant(s)?
If Ye	s, describe prior studies and results:	
Doe	s the permittee believe it can achieve the proposed W	QBELs now? Yes No Uncertain
If No	, describe the activities, upgrades or process changes	that would be necessary to achieve the WQBELs, if known.
Estir	nated date by which the permittee could achieve the p	roposed WQBELs: Uncertain
Will	the permittee conduct additional sampling for the pollu	tant(s) to supplement the application? Yes No
	ck the appropriate box(es) below to indicate site-speci y of these data have <u>not</u> been submitted to DEP, pleas	fic data that have been collected by the permittee in the past, se attach to this survey.
	Discharge pollutant concentration coefficient(s) of var	iability Year(s) Studied:
	Discharge and background Total Hardness concentra	tions (metals) Year(s) Studied:
	Background / ambient pollutant concentrations	Year(s) Studied:
	Chemical translator(s) (metals)	Year(s) Studied:
	Slope and width of receiving waters	Year(s) Studied:
	Velocity of receiving waters at design conditions	Year(s) Studied:
	Acute and/or chronic partial mix factors (mixing at de-	sign conditions) Year(s) Studied:
	Volatilization rates (highly volatile organics)	Year(s) Studied:
	Site-specific criteria (e.g., Water Effect Ratio or relate	d study) Year(s) Studied:

Please submit this survey to the DEP regional office that is reviewing the permit application within 30 days of receipt.

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT J: TOX_CONC Results

Total Copper

Facility:	Mt Pleasant STP
NPDES#:	PA0021148
0 (11 11	004

Outfall No: 001 n (Samples/Month): 4 Reviewer/Permit Engineer: GRP

Parameter Name	Total Copper					
Units	μg/L					
Detection Limit	1					
Sample Date	When entering v	alues below th	ne detection limit,	enter "ND" or us e	the < notation (eg.	<0.02)
05/27/22	11					
07/26/22	10					
08/02/22	10					
08/09/22	9					
08/16/22	10					
08/23/22	9					
08/30/22	12					
09/06/22	9					
09/13/22	8					
09/20/22	10					
09/27/22	12					

Reviewer/Permit Engineer: GRP

Facility: Mt Pleas ant STP
NPDES #: PA0021148
Outfall No: 001
n (Samples/Month): 4

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Total Copper (µg/L)	Lognormal	0.1282327	11.5647064

Dissolved Iron

Facility:	Mt Pleasant STP
NPDES#:	PA0021148
Outfall No:	001
n (Samples/Month):	4

Reviewer/Permit Engineer: **GRP**

Parameter Name	Dissolved Iron					
Units	μg/L					
Detection Limit	15					
Sample Date	When entering va	alues below the	detection limit, en	ter "ND" or use th	e < notation (eg.	<0.02)
07/26/22	31					
08/02/22	37					
08/09/22	21					
08/16/22	46					
08/23/22	23					
08/30/22	39					
09/06/22	36					
09/13/22	<20					
09/20/22	30					
09/27/22	48					

Reviewer/Permit Engineer: GRP

Facility: NPDES#: Mt Pleasant STP PA0021148 Outfall No: 001 n (Samples/Month): 4

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Dissolved Iron (µg/L)	Delta-Lognormal	0.3431337	47.6390662

Chloroform

Facility:	Mt Pleasant STP
NPDES#:	PA0021148
Outfall No:	001
n (Samples/Month):	4
Reviewer/Permit Engineer:	GRP

Parameter Name	Chloroform				
Units	μg/L				
Detection Limit	0.09				
Sample Date	When entering values	below the detection	n limit, enter "ND"	or use the < notat	tion (eg. <0.02)
08/02/22	16.3				
08/09/22	11.5				
08/16/22	10				
08/23/22	13				
08/30/22	4.16				
09/06/22	6.58				
09/13/22	14.6				
09/20/22	12.4				
09/27/22	8.83				
10/11/22	9.59				

Reviewer/Permit Engineer: GRP

 Facility:
 Mt Pleas ant STP

 NPDES #:
 PA0021148

 Outfall No:
 001

 n (Samples/Month):
 4

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Month
Chloroform (µg/L)	Lognormal	0.4224935	17.307125

Dichlorobromomethane

Facility:	Mt Pleasant STP
NPDES#:	PA0021148
Outfall No:	001
n (Samples/Month):	4

Reviewer/Permit Engineer: GRP

Parameter Name	ch loro bromo meth a	ine				
Units	μg/L					
Detection Limit	0.08					
Sample Date	When entering v	alues below the d	letection limit, en	ter "ND" or use th	re < notation (eg.	<0.02)
05/27/22	2.5					
08/02/22	3.41					
08/09/22	2.98					
08/16/22	3.3					
08/23/22	3.83					
09/06/22	1.22					
09/13/22	4					
09/20/22	2.48					
09/27/22	1.67					
10/11/22	1.86					

Reviewer/Permit Engineer: GRP

Facility: NPDES#: Mt Pleas ant STP PA0021148 Outfall No: 001 n (Samples/Month):

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
hlorobromomethane (μg/	Lognormal	0.4049470	4.3142237
ilorobromometriane (pg/	Logitorinal	0.4045470	4.0142207

Benzo(k)Fluoranthene

Facility:	Mt Pleasant STP
NPDES#:	PA0021148
Outfall No:	001
n (Samples/Month):	4

n (Samples/Month): 4
Reviewer/Permit Engineer: GRP

Parameter Name	enzo(k)fluoranthene			
Units	μg/L			
Detection Limit	0.08			
Sample Date	When entering values belo	w the detection limit, enter "N	D" oruse the < notation (e	eg. <0.02)
05/27/22	0.135			
07/27/22	0.312			
08/03/22	0.309			
08/10/22	0.312			
08/17/22	0.312			
08/24/22	0.312			
08/31/22	0.315			
09/07/22	0.306			
09/14/22	0.309			
09/21/22	0.312			
09/28/22	0.306			

Reviewer/Permit Engineer: GRP

Facility: Mt Pleas ant STP NPDES #: PA0021148
Outfall No: 001
n (Samples/Month): 4

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
41.70		0.0550070	
ienzo(k)fluoranthene (μg/l	Lognormal	0.2552972	0.3960852
·			
·			

Bis(2-Ethylhexyl)Phthalate

Facility:	Mt Pleasant STP
NPDES#:	PA0021148
Outfall No:	001
n (Samples/Month):	4

n (Samples/Month): 4
Reviewer/Permit Engineer: GRP

Parameter Name	2-Ethylhexyl) phthalate			
Units	μg/Ĺ			
Detection Limit	0.181			
Sample Date	When entering values below	the detection limit, enter "N	D" or us e the < notation ((eg. <0.02)
05/27/22	2.7			
07/27/22	1.48			
08/03/22	1.46			
08/10/22	1.48			
08/17/22	1.48			
08/24/22	1.48			
08/31/22	1.49			
09/07/22	1.45			
09/14/22	1.46			
09/21/22	1.48			
09/28/22	1.45			

Reviewer/Permit Engineer: GRP

Facility: Mt Pleas ant STP NPDE S #: PA0021148
Outfall No: 001
n (Samples/Month): 4

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
2-Ethylhexyl) phthalate (µ	Lognormal	0.1849152	1.9508526

Indeno(1,2,3-cd)pyrene

Facility:	Mt Pleasant STP
NPDES#:	PA0021148
Outfall No:	001
n (Samples/Month):	4

Reviewer/Permit Engineer: **GRP**

Parameter Name	eno (1,2,30cd)pyrene			
Units	μg/L			
Detection Limit	0.05			
Sample Date	When entering values below	the detection limit, enter "N	D" or use the < notation	ı (eg. <0.02)
05/27/22	0.125			
07/27/22	0.365			
08/03/22	0.362			
08/10/22	0.365			
08/17/22	0.365			
08/24/22	0.365			
08/31/22	0.369			
09/07/22	0.358			
09/14/22	0.362			
09/21/22	0.365			
09/28/22	0.358			

Reviewer/Permit Engineer: GRP

Facility: NPDES#: Mt Pleas ant STP PA0021148 Outfall No: 001 n (Samples/Month):

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
leno (1,2,30cd)pyrene (µg	Lognormal	0.3304037	0.5019334
elo (1,2,5000) pyrelie (pg	Logitorinal	0.3304037	0.5015554

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT K: TMS Modeling Results (resampling)

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Discharge Stream		
Facility: Mount Pleasant STP	NPDES Permit No.: PA0021148	Outfall No.: 001
Evaluation Type: Major Sewage / Indust	rial Waste Wastewater Description: sewage	

			Discharge	Characterist	tics				
Design Flow	Hardness (mg/l)*	pH (SU)*	(SU)* Partial Mix Factors (PMFs) Complete Mix Times (min)						
(MGD)*	nardness (mg/l)	pn (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h	
1.5	100	7.3							

					0 if left	t blank	0.5 if le	eft blank	0	if left blani	k	1 if left	blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		517									
7	Chloride (PWS)	mg/L		165									
Group	Bromide	mg/L		0.273									
ခြ	Sulfate (PWS)	mg/L		1050									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L		75									
1	Total Antimony	µg/L		0.3									
1	Total Arsenic	µg/L	<	0.4									
1	Total Barium	μg/L		63									
1	Total Beryllium	µg/L	<	1									
1	Total Boron	µg/L		135									
1	Total Cadmium	µg/L	<	0.1									
1	Total Chromium (III)	µg/L	<	2									
1	Hexavalent Chromium	µg/L		0.2									
1	Total Cobalt	µg/L	<	0.2									
1	Total Copper	µg/L		11.56									
2	Free Cyanide	µg/L		13									
Group	Total Cyanide	µg/L		3									
5	Dissolved Iron	µg/L		47.64									
	Total Iron	µg/L		57.4									
1	Total Lead	µg/L	<	0.3									
1	Total Manganese	µg/L		10									
1	Total Mercury	µg/L	<	0.1									
1	Total Nickel	μg/L	<	2									
1	Total Phenols (Phenolics) (PWS)	µg/L		27									
1	Total Selenium	µg/L	<	0.5									
1	Total Silver	µg/L	<	0.2									
1	Total Thallium	µg/L	<	0.05									
1	Total Zinc	µg/L		28									
	Total Molybdenum	μg/L	<	4									
	Acrolein	µg/L	<	0.9									
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<	0.3									
	Benzene	μg/L	<	0.04									
	Bromoform	µg/L	<	0.1									

Conb 6 Conb 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	arbon Tetrachloride hlorodibromomethane hlorodibromomethane hloroethane -Chloroethyl Vinyl Ether hloroform ichlorothomomethane 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Bromide lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene 2-trans-Dichloroethylene	μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L	< < < < < < < < < < < < < < < < < < <	0.1 0.07 0.07 0.06 0.1 17.31 4.31 0.06 0.08 0.07 0.1 0.06 0.1						
Con 24 Con	hlorodibromomethane hloroethane -Chloroethyl Viryl Ether hloroform ichlorobromomethane ,1-Dichloroethane ,2-Dichloroethylene ,2-Dichloropropane ,3-Dichloropropylene ,4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride ,1,2,2-Tetrachloroethylene etrachloroethylene oluene ,2-trans-Dichloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	0.07 0.06 0.1 17.31 4.31 0.06 0.08 0.07 0.1 0.06 0.1						
Cond	hloroethane -Chloroethyl Viryl Ether hloroform ichlorobromomethane ,1-Dichloroethane ,2-Dichloroethylene ,2-Dichloroethylene ,2-Dichloropropane ,3-Dichloropropylene ,4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride ,1,2,2-Tetrachloroethylene etrachloroethylene oluene ,2-trans-Dichloroethylene	19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L		0.06 0.1 17.31 4.31 0.06 0.08 0.07 0.1 0.06 0.1						
2-d Con Did 1: 13: 13: 13: 13: 13: 13: 13: 13: 13:	-Chloroethyl Vinyl Ether hloroform ichlorobromomethane ,1-Dichloroethane ,2-Dichloroethane ,1-Dichloroethylene ,2-Dichloropropane ,3-Dichloropropylene ,4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene oluene ,2-trans-Dichloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L		0.1 17.31 4.31 0.06 0.08 0.07 0.1 0.06 0.1						
Cond	hloroform ichloroform ichlorobromomethane ,1-Dichloroethane ,2-Dichloroethylene ,2-Dichloropropane ,3-Dichloropropylene ,4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride ,1,2,2-Tetrachloroethylene etrachloroethylene oluene ,2-trans-Dichloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	17.31 4.31 0.06 0.08 0.07 0.1 0.06 0.1						
8 dnov9 1.3 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	ichlorobromomethane ,1-Dichloroethane ,2-Dichloroethane ,1-Dichloroethylene ,2-Dichloropropane ,3-Dichloropropylene ,4-Dioxane thylbenzene lethyl Bromide lethyl Bromide lethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene oluene ,2-trans-Dichloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	4.31 0.06 0.08 0.07 0.1 0.06 0.1						
8 dnov5 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene oluene 2-trans-Dichloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	0.06 0.08 0.07 0.1 0.06 0.1						
8 dnov5 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene oluene 2-trans-Dichloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	0.08 0.07 0.1 0.06 0.1						
Ednous 1.3 1.4 Ett Mid Mid Mid 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene oluene 2-trans-Dichloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	0.07 0.1 0.06 0.1						
1 1 1 1 1 1 1 1 1 1	,1-Dichloroethylene ,2-Dichloropropane ,3-Dichloropropylene ,4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene oluene ,2-trans-Dichloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	0.07 0.1 0.06 0.1						
1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	,2-Dichloropropane ,3-Dichloropropylene ,4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene oluene ,2-trans-Dichloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	0.1 0.06 0.1		$\overline{}$				
1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	,3-Dichloropropylene ,4-Dioxane thylbenzene tethyl Bromide tethyl Chloride tethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene oluene ,2-trans-Dichloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L	< < <	0.06 0.1	1					
1,4 Eti MM MM 1,1 Te To 1,3 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1	.4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene oluene ,2-trans-Dichloroethylene	µg/L µg/L µg/L µg/L µg/L	< <	0.1		\vdash	-			
Ett MM M	thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene oluene ,2-trans-Dichloroethylene	μg/L μg/L μg/L μg/L	<				-			
Min	lethyl Bromide lethyl Chloride lethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene oluene ,2-trans-Dichloroethylene	μg/L μg/L μg/L	<			\vdash				
Min	lethyl Chloride lethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene oluene ,2-trans-Dichloroethylene	μg/L μg/L	\longrightarrow	0.06		\vdash				
Monous Market Ma	lethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene oluene ,2-trans-Dichloroethylene	μg/L	< 1	0.1		\vdash				
1, Te To 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	,1,2,2-Tetrachloroethane etrachloroethylene oluene ,2-trans-Dichloroethylene			0.09		\vdash				
Te To 1,3 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1	etrachloroethylene oluene ,2-trans-Dichloroethylene	μg/L	Ш	0.02						
To 1.3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	oluene ,2-trans-Dichloroethylene		<	0.1						
1,3 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1	,2-trans-Dichloroethylene	μg/L	<	0.09						
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		μg/L		0.06						
1, Tri Vii 2-4, 2, 4, 6 4, 0 4-1 2-1 4-1 9-1		μg/L	<	0.1						
2-4 2-4 2-4 4-8 2-1 4-1 2-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4	,1,1-Trichloroethane	µg/L	<	0.06						
7i 2-4 2.4 4.0 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1	1,2-Trichloroethane	μg/L	<	0.08						
7i 2-4 2.4 4.0 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1	richloroethylene	μg/L	<	0.1						
2-1 2-4 4-1 2-1 4-1 2-1 4-1	inyl Chloride	μg/L	<	0.1						
2,4 4,6 2,4 2,4 4,6 4,6 4,6 4,6 4,6 4,6 4,6 4,6 4,6 4	-Chlorophenol	µg/L	<	0.08						
9 dnoug 2.4 2.4 2.4 4.1 2.4 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4	4-Dichlorophenol	µg/L	<	0.07						
4.0 2.4 2.4 4.1	,4-Dimethylphenol	µg/L	<	0.4						
2.4 2.4 4.1 9.1	6-Dinitro-o-Cresol	µg/L	<	0.11						
2- 4- 9-	4-Dinitrophenol	µg/L	<	0.04						
р-			<	2.9						
р-	-Nitrophenol	µg/L	-							
	-Nitrophenol	μg/L	<	0.04						
100	-Chloro-m-Cresol	μg/L	<	0.09						
_	entachlorophenol	μg/L	<	0.1		\vdash				
ı ⊢	henol	μg/L	<	0.04		\vdash				
-	,4,6-Trichlorophenol	μg/L	<	0.09		\longrightarrow				
Ac	cenaphthene	μg/L	<	0.1						
Ac	cenaphthylene	μg/L	<	0.09						
Ar	nthracene	μg/L	<	0.08						
Be	enzidine	μg/L	<	4.9						
Be	enzo(a)Anthracene	μg/L	<	0.06						
Be	enzo(a)Pyrene	μg/L	<	0.07						
3.	4-Benzofluoranthene	µg/L	<	0.04						
	enzo(ghi)Perylene	µg/L	<	0.08						
' ⊢	enzo(k)Fluoranthene	µg/L		0.396						
_	is(2-Chloroethoxy)Methane	µg/L	<	0.08						
_	is(2-Chloroethyl)Ether	µg/L	<	0.07						
			<	0.07						
	is(2-Chloroisopropyl)Ether	µg/L		1.95						
	is(2-Ethylhexyl)Phthalate	µg/L								
	-Bromophenyl Phenyl Ether	µg/L	<	0.106						
	utyl Benzyl Phthalate	μg/L	<	0.06						
	-Chloronaphthalene	μg/L	<	0.08						
	-Chlorophenyl Phenyl Ether	μg/L	<	0.09						
	hrysene	μg/L	<	0.07						
	libenzo(a,h)Anthrancene	μg/L	<	0.05						
1,3	,2-Dichlorobenzene	μg/L	<	0.08						
1,7	3-Dichlorobenzene	μg/L	<	0.07						
		μg/L	<	0.08						
	,4-Dichlorobenzene	μg/L	<	0.1						
Group G	,4-Dichlorobenzene ,3-Dichlorobenzidine	μg/L		0.65						
OD		µg/L	<							
' ⊢	3-Dichlorobenzidine			0.23						
2,4	3-Dichlorobenzidine lethyl Phthalate	µg/L		0.23						

	2,6-Dinitrotoluene	lion.	<	0.01							
	Di-n-Octyl Phthalate	μg/L μg/L	~	0.01							
	- /		· ·	0.07						_	
	1,2-Diphenylhydrazine Fluoranthene	μg/L	~	0.08						_	
		μg/L								_	
	Fluorene	μg/L	<	0.1						_	
	Hexachlorobenzene	μg/L	<	80.0							
	Hexachlorobutadiene	μg/L	<	0.08							
	Hexachlorocyclopentadiene	μg/L	٧	0.04							
	Hexachloroethane	μg/L	٧.	0.06							
	Indeno(1,2,3-cd)Pyrene	μg/L		0.5							
	Isophorone	μg/L	<	0.09							
	Naphthalene	μg/L	<	0.06							
	Nitrobenzene	μg/L	٧	0.06							
	n-Nitrosodimethylamine	μg/L	٧	0.06							
	n-Nitrosodi-n-Propylamine	μg/L	٧	0.09							
	n-Nitrosodiphenylamine	μg/L	٧	0.2							
	Phenanthrene	μg/L	٧	0.09							
	Pyrene	μg/L		0.252							
	1,2,4-Trichlorobenzene	μg/L	<	0.09							
	Aldrin	μg/L	<								
	alpha-BHC	µg/L	<								
	beta-BHC	µg/L	<								
	gamma-BHC	µg/L	<								
	delta BHC	µg/L	<								
	Chlordane	µg/L	<								
	4.4-DDT		· ·						_	_	
	4,4-DDE	μg/L	~			_	_		_		
	*	μg/L	_								
	4,4-DDD	μg/L	<								
	Dieldrin	μg/L	<								
	alpha-Endosulfan	μg/L	<								
9	beta-Endosulfan	μg/L	<								
	Endosulfan Sulfate	μg/L	<								
Group	Endrin	μg/L	*								
ō	Endrin Aldehyde	μg/L	<								
	Heptachlor	μg/L	<								
	Heptachlor Epoxide	μg/L	<								
	PCB-1016	μg/L	٧								
	PCB-1221	μg/L	٧.								
	PCB-1232	μg/L	٧								
	PCB-1242	μg/L	*								
	PCB-1248	μg/L	٧								
	PCB-1254	μg/L	<								
	PCB-1260	μg/L	<								
	PCBs, Total	μg/L	<								
	Toxaphene	µg/L	<								
	2.3.7.8-TCDD	ng/L	<								
	Gross Alpha	pCi/L									
	Total Beta	pCi/L	<								
	Radium 226/228	pCi/L	<								
_	Total Strontium	µg/L	٧								
Ğ	Total Uranium	µg/L µg/L	٧								
			•								
	Osmotic Pressure	mOs/kg									
-											

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Mount Pleasant STP, NPDES Permit No. PA0021148, Outfall 001

Instructions Disch	arge Str	ream														
Receiving Surface V	/ater Name:	Shupe Rur	(WWF)				No. Rea	aches to	Mode	l: 1		Star	tewide Criteri	ia		
												O Gre	eria			
Location	Stream Coo	de* RM	Elevati	DA (mi	²)• S	lope (ft/ft)		Withdraw MGD)	val	Apply F Criteria		OR	SANCO Crite	eria		
Point of Discharge	037958	1.14	4 1052	3.05						Yes						
End of Reach 1	037958	0.5	4 1047	7 3.48						Yes						
Q ₇₋₁₀																
Location	RMI	LFY		(cfs)	W/D		Depth	Velocit		avei ime	Tributa	•	Strea		Analys	
		(cfs/mi ²)*	Stream	Tributary	Ratio	` '	(ft)	y (fps)		ave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	1.14	0.0105			28.25	5							100	7		
End of Reach 1	0.54	0.0107			28.25	5										
Q _h																
Location	RMI	LFY	Flow	(cfs)	W/D		Depth	Velocit		ime	Tributa	iry	Strea	m	Analys	is
		(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)		ave)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	1.14															
End of Reach 1	0.54															

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Mount Pleasant STP, NPDES Permit No. PA0021148, Outfall 001

Instructions	Results		RETUR	N TO INPUT	rs [SAVE AS PE	OF .	F	PRINT	● All	○ Inputs	O Results) Limits	
✓ Hydrod	lynamics													
Q 7-10														
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs)		rge Analysis ow (cfs)	Slope (f	t/ft) D	epth (ft)	Width (f	t) W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
1.14	0.03			0.03		2.321	0.002	2	0.588	16.6	28.25	0.241	0.152	0.004
0.54	0.04			0.037							28.250			
Q _h														
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs)		rge Analysis ow (cfs)	Slope (f	t/ft) D	epth (ft)	Width (f	t) W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
1.14	0.37			0.37		2.321	0.002	2	0.623	16.6	26.642	0.26	0.141	0.361
0.54	0.413			0.41										
✓ Wastel ✓ AF	oad Allocatio		Γ (min): 0	0.004	PMF:	1			ardness (mg/l):	100	Analysis pH:	7.29	
	Pollutants		Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ ((µg/	L) W	LA (µg/L)		C	omments	
	ssolved Solid		0	0		0	N/A	N/A		N/A				
	hloride (PW	,	0	0		0	N/A	N/A		N/A				
	Sulfate (PWS otal Aluminu		0	0		0	N/A 750	N// 75		N/A 760				
	Total Antimon		0	0		0	1,100	1,10		1,115				
	Total Arsenic	,	0	0		0	340	34		345		Chem Tran	slator of 1 ap	nlied
	Total Barium		0	0			21,000	21.0		21,290		Onem man	bidioi oi i di	plica
	Total Boron		0	0		0	8,100	8,10	-	8,212				
1	Total Cadmiu	n	0	0		0	2.014	2.1	3	2.16		Chem Transla	ator of 0.944	applied
	al Chromium		0	0		4	569.763	1,80		1,828		Chem Transla		
Hex	avalent Chror		0	0		0	16	16.		16.5		Chem Transla	ator of 0.982	applied
	Total Cobalt		0	0		0	95	95.		96.3				
	Total Copper		0	0		0	13.439	14.		14.2		Chem Transl	ator of 0.96	applied

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	64.581	81.6	82.8	Chem Translator of 0.791 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	1.400	1.65	1.67	Chem Translator of 0.85 applied
Total Nickel	0	0	0	468.236	469	476	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0	0	3.217	3.78	3.84	Chem Translator of 0.85 applied
Total Thallium	0	0	0	65	65.0	65.9	
Total Zinc	0	0	0	117.180	120	121	Chem Translator of 0.978 applied
Acrolein	0	0	0	3	3.0	3.04	
Acrylonitrile	0	0	0	650	650	659	
Benzene	0	0	0	640	640	649	
Bromoform	0	0	0	1,800	1,800	1,825	
Carbon Tetrachloride	0	0	0	2,800	2,800	2,839	
Chlorobenzene	0	0	0	1,200	1,200	1,217	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	18,248	
Chloroform	0	0	0	1,900	1,900	1,926	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	15,207	
1,1-Dichloroethylene	0	0	0	7,500	7,500	7,604	
1,2-Dichloropropane	0	0	0	11,000	11,000	11,152	
1,3-Dichloropropylene	0	0	0	310	310	314	
Ethylbenzene	0	0	0	2,900	2,900	2,940	
Methyl Bromide	0	0	0	550	550	558	
Methyl Chloride	0	0	0	28,000	28,000	28,386	
Methylene Chloride	0	0	0	12,000	12,000	12,166	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	1,014	
Tetrachloroethylene	0	0	0	700	700	710	
Toluene	0	0	0	1,700	1,700	1,723	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	6,894	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	3,041	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	3,447	
Trichloroethylene	0	0	0	2,300	2,300	2,332	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	568	
2,4-Dichlorophenol	0	0	0	1,700	1,700	1,723	
2,4-Dimethylphenol	0	0	0	660	660	669	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	81.1	
2,4-Dinitrophenol	0	0	0	660	660	669	
2-Nitrophenol	0	0	0	8,000	8,000	8,110	
4-Nitrophenol	0	0	0	2,300	2,300	2,332	
p-Chloro-m-Cresol	0	0	0	160	160	162	
Pentachlorophenol	0	0	0	11.724	11.7	11.9	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	466	

	0	0	0	83	83.0	84.1	
Acenaphthene Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	304	
	0	0	0	0.5	0.5	0.51	
Benzo(a)Anthracene		_	_				
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	30,414	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	4,562	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	274	
Butyl Benzyl Phthalate	0	0	0	140	140	142	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	831	
1,3-Dichlorobenzene	0	0	0	350	350	355	
1,4-Dichlorobenzene	0	0	0	730	730	740	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	4,055	
Dimethyl Phthalate	0	0	0	2,500	2,500	2,535	
Di-n-Butyl Phthalate	0	0	0	110	110	112	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	1,622	
2,6-Dinitrotoluene	0	0	0	990	990	1,004	
1,2-Diphenylhydrazine	0	0	0	15	15.0	15.2	
Fluoranthene	0	0	0	200	200	203	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	10.1	
Hexachlorocyclopentadiene	0	0	0	5	5.0	5.07	
Hexachloroethane	0	0	0	60	60.0	60.8	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10.000	10,000	10,138	
Naphthalene	0	0	0	140	140	142	
Nitrobenzene	0	0	0	4,000	4.000	4.055	
n-Nitrosodimethylamine	0	0	0	17.000	17.000	17,235	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	ő	300	300	304	
Phenanthrene	0	0	0	5	5.0	5.07	
	0	0	0	N/A	N/A	N/A	
Pyrene	U		0	130	130	132	

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0			0	N/A	N/A	N/A	

Chloride (PWS)	0	0	 0	N/A	N/A	N/A	I
Sulfate (PWS)	0	0	0	N/A	N/A	N/A	
, ,	0	0	0	N/A N/A	N/A N/A	N/A N/A	
Total Aluminum		0	_	220	220	N/A 223	
Total Antimony	0		0				O. T. I. (4 F.)
Total Arsenic	0	0	0	150	150	152	Chem Translator of 1 applied
Total Barium	0	0	 0	4,100	4,100	4,157	
Total Boron	0	0	 0	1,600	1,600	1,622	
Total Cadmium	0	0	0	0.246	0.27	0.27	Chem Translator of 0.909 applied
Total Chromium (III)	0	0	0	74.115	86.2	87.4	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0	0	10	10.4	10.5	Chem Translator of 0.962 applied
Total Cobalt	0	0	0	19	19.0	19.3	
Total Copper	0	0	0	8.956	9.33	9.46	Chem Translator of 0.96 applied
Free Cyanide	0	0	0	5.2	5.2	5.27	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	1,521	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.517	3.18	3.23	Chem Translator of 0.791 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	0.92	Chem Translator of 0.85 applied
Total Nickel	0	0	0	52.007	52.2	52.9	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	5.06	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	13.2	
Total Zinc	0	0	0	118.139	120	121	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	3.04	
Acrylonitrile	0	0	0	130	130	132	
Benzene	0	0	0	130	130	132	
Bromoform	0	0	0	370	370	375	
Carbon Tetrachloride	0	0	0	560	560	568	
Chlorobenzene	0	0	0	240	240	243	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	3.548	
Chloroform	0	0	0	390	390	395	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	3,143	
1,1-Dichloroethylene	0	0	0	1,500	1,500	1,521	
1,2-Dichloropropane	0	0	0	2,200	2,200	2,230	
1,3-Dichloropropylene	0	0	0	61	61.0	61.8	
Ethylbenzene	0	0	0	580	580	588	
Methyl Bromide	0	0	0	110	110	112	
Methyl Chloride	0	0	0	5.500	5.500	5.576	
Methylene Chloride	0	0	0	2,400	2,400	2,433	
1.1.2.2-Tetrachloroethane	0	0	0	210	210	213	
Tetrachloroethylene	0	0	0	140	140	142	
Toluene	0	0	0	330	330	335	
roluerie	U	U	v	330	330	333	

1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	1,419	
1,1,1-Trichloroethane	0	0	0	610	610	618	
1,1,2-Trichloroethane	0	0	0	680	680	689	
Trichloroethylene	0	0	0	450	450	456	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	112	
2,4-Dichlorophenol	0	0	0	340	340	345	
2,4-Dimethylphenol	0	0	0	130	130	132	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	16.2	
2,4-Dinitrophenol	0	0	0	130	130	132	
2-Nitrophenol	0	0	0	1,600	1,600	1,622	
4-Nitrophenol	0	0	0	470	470	476	
p-Chloro-m-Cresol	0	0	0	500	500	507	
Pentachlorophenol	0	0	0	8.995	8.99	9.12	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	92.3	
Acenaphthene	0	0	0	17	17.0	17.2	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	59.8	
Benzo(a)Anthracene	0	0	0	0.1	0.1	0.1	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3.4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	6,083	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	923	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	54.7	
Butyl Benzyl Phthalate	0	0	0	35	35.0	35.5	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	162	
1,3-Dichlorobenzene	0	0	0	69	69.0	70.0	
1.4-Dichlorobenzene	0	0	0	150	150	152	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	811	
Dimethyl Phthalate	0	0	0	500	500	507	
Di-n-Butyl Phthalate	0	0	0	21	21.0	21.3	
2,4-Dinitrotoluene	0	0	0	320	320	324	
2,6-Dinitrotoluene	0	0	0	200	200	203	
1,2-Diphenylhydrazine	0	0	0	3	3.0	3.04	
Fluoranthene	0	0	0	40	40.0	40.6	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
	_						I .

Hexachlorocyclopentadiene	0	0	0	1	1.0	1.01	
Hexachloroethane	0	0	0	12	12.0	12.2	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	2,129	
Naphthalene	0	0	0	43	43.0	43.6	
Nitrobenzene	0	0	0	810	810	821	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	3,447	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	59.8	
Phenanthrene	0	0	0	1	1.0	1.01	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	26.4	

☑ THH CC	T (min): 0.0	004	PMF:	1	Ana	llysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	5.68	
Total Arsenic	0	0		0	10	10.0	10.1	
Total Barium	0	0		0	2,400	2,400	2,433	
Total Boron	0	0		0	3,100	3,100	3,143	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	4.06	
Dissolved Iron	0	0		0	300	300	304	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	1,014	
Total Mercury	0	0		0	0.050	0.05	0.051	
Total Nickel	0	0		0	610	610	618	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	0.24	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	3.04	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	

Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A	
Chlorobenzene	0	0	0	100	100.0	101	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	5.78	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	33.5	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	68.9	
Methyl Bromide	0	0	0	100	100.0	101	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	57.8	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	101	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	10,138	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	30.4	
2,4-Dichlorophenol	0	0	0	10	10.0	10.1	
2,4-Dimethylphenol	0	0	0	100	100.0	101	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	2.03	
2,4-Dinitrophenol	0	0	0	10	10.0	10.1	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	4,055	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	71.0	
Anthracene	0	0	0	300	300	304	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	203	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	

Butyl Benzyl Phthalate	0	0	0	0.1	0.1	0.1	
2-Chloronaphthalene	0	0	0	800	800	811	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	1,014	
1,3-Dichlorobenzene	0	0	0	7	7.0	7.1	
1,4-Dichlorobenzene	0	0	0	300	300	304	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	608	
Dimethyl Phthalate	0	0	0	2,000	2,000	2,028	
Di-n-Butyl Phthalate	0	0	0	20	20.0	20.3	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	20.3	
Fluorene	0	0	0	50	50.0	50.7	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	4.06	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	34.5	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	10.1	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	20.3	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	0.071	

√ CRL CCT (min): 0.361 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A	/sis pH: N/A
--	--------------

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
4 11		_		-				
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0	ļ	0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	0.069	
Benzene	0	0		0	0.58	0.58	0.67	
Bromoform	0	0		0	7	7.0	8.11	
Carbon Tetrachloride	0	0		0	0.4	0.4	0.46	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.8	0.8	0.93	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	0.95	0.95	1.1	
1,2-Dichloroethane	0	0		0	9.9	9.9	11.5	
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0		0	0.9	0.9	1.04	
1,3-Dichloropropylene	0	0		0	0.27	0.27	0.31	
Ethylbenzene	0	0		0	N/A	N/A	N/A	
Methyl Bromide	0	0		0	N/A	N/A	N/A	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	20	20.0	23.2	
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	0.23	
Tetrachloroethylene	0	0		0	10	10.0	11.6	
Toluene	0	0		0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0		0	0.55	0.55	0.64	
Trichloroethylene	0	0		0	0.6	0.6	0.69	
Vinyl Chloride	0	0		0	0.02	0.02	0.023	
2-Chlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0		0	N/A	N/A	N/A	
4.6-Dinitro-o-Cresol								

2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.035	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	1.74	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.0001	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.001	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.0001	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.001	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.012	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	0.035	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	0.37	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	0.14	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.0001	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	0.058	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	0.058	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	0.058	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	0.035	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.00009	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.012	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	0.12	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.001	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.0008	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.006	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	3.82	

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.12	0.18	9.46	14.2	14.2	μg/L	9.46	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Free Cyanide	0.051	0.079	4.06	6.33	10.1	μg/L	4.06	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dissolved Iron	Report	Report	Report	Report	Report	μg/L	304	THH	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	120	AFC	Discharge Conc > 10% WQBEL (no RP)
Chloroform	0.072	0.11	5.78	9.02	14.4	μg/L	5.78	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dichlorobromomethane	0.014	0.021	1.1	1.72	2.75	μg/L	1.1	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Benzo(k)Fluoranthene	0.0001	0.0002	0.012	0.018	0.029	μg/L	0.012	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Bis(2-Ethylhexyl)Phthalate	0.005	0.007	0.37	0.58	0.93	μg/L	0.37	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Indeno(1,2,3-cd)Pyrene	0.00001	0.00002	0.001	0.002	0.003	μg/L	0.001	CRL	Discharge Conc ≥ 50% WQBEL (RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	750	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	5.68	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	2,433	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	1,622	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	0.27	μg/L	Discharge Conc < TQL
Total Chromium (III)	87.4	μg/L	Discharge Conc < TQL
Hexavalent Chromium	10.5	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	19.3	μg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Total Iron	1,521	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	3.23	μg/L	Discharge Conc < TQL
Total Manganese	1.014	ug/L	Discharge Conc ≤ 10% WQBEL

Total Mercury	0.051	μg/L	Discharge Conc < TQL
Total Nickel	52.9	µg/L	Discharge Conc < TQL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	5.06	μg/L	Discharge Conc < TQL
Total Silver	3.78	μg/L	Discharge Conc < TQL
Total Thallium	0.24	μg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	3.0	μg/L	Discharge Conc < TQL
Acrylonitrile	0.069	μg/L	Discharge Conc < TQL
Benzene	0.67	μg/L	Discharge Conc < TQL
Bromoform	8.11	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	0.46	μg/L	Discharge Conc < TQL
Chlorobenzene	101	μg/L	Discharge Conc < TQL
Chlorodibromomethane	0.93	μg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	3.548	μg/L	Discharge Conc < TQL
1.1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	11.5	μg/L	Discharge Conc < TQL
1.1-Dichloroethylene	33.5	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	1.04	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	0.31	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	68.9	μg/L	Discharge Conc < TQL
Methyl Bromide	101	μg/L	Discharge Conc < TQL
Methyl Chloride	5,576	μg/L	Discharge Conc < TQL
Methylene Chloride	23.2	μg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	0.23	μg/L	Discharge Conc < TQL
Tetrachloroethylene	11.6	μg/L	Discharge Conc < TQL
Toluene	57.8	μg/L	Discharge Conc ≤ 25% WQBEL
1,2-trans-Dichloroethylene	101	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	618	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	0.64	μg/L	Discharge Conc < TQL
Trichloroethylene	0.69	μg/L	Discharge Conc < TQL
Vinyl Chloride	0.023	μg/L	Discharge Conc < TQL
2-Chlorophenol	30.4	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	10.1	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	101	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	2.03	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	10.1	μg/L	Discharge Conc < TQL
2-Nitrophenol	1,622	μg/L	Discharge Conc < TQL
4-Nitrophenol	476	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	160	μg/L	Discharge Conc < TQL
Pentachlorophenol	0.035	μg/L	Discharge Conc < TQL
Phenol	4,055	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	1.74	μg/L	Discharge Conc < TQL

Acenaphthene	17.2	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	304	μg/L	Discharge Conc < TQL
Benzidine	0.0001	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.001	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.0001	μg/L	Discharge Conc < TQL
3.4-Benzofluoranthene	0.001	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	0.035	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	203	μg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	54.7	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.1	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	811		Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether		μg/L	No WOS
. , ,	N/A	N/A	
Chrysene	0.14	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.0001	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	162	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	7.1	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	152	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	0.058	μg/L	Discharge Conc < TQL
Diethyl Phthalate	608	μg/L	Discharge Conc ≤ 25% WQBEL
Dimethyl Phthalate	507	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	20.3	μg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrotoluene	0.058	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	0.058	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.035	μg/L	Discharge Conc < TQL
Fluoranthene	20.3	μg/L	Discharge Conc < TQL
Fluorene	50.7	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.00009	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.012	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	1.01	μg/L	Discharge Conc < TQL
Hexachloroethane	0.12	μg/L	Discharge Conc < TQL
Isophorone	34.5	μg/L	Discharge Conc < TQL
Naphthalene	43.6	μg/L	Discharge Conc < TQL
Nitrobenzene	10.1	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.0008	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.006	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	3.82	μg/L	Discharge Conc < TQL
Phenanthrene	1.01	μg/L	Discharge Conc < TQL
Pyrene	20.3	μg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzene	0.071	μg/L	Discharge Conc < TQL

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT L: LTCP Update Approval Letter

November 9, 2022

VIA ELECTRONIC MAIL:

Norman Stout Jr. Municipal Authority of Westmoreland County PO Box 730 Greensburg, PA 15601-0730

Re: LTCP Update - Sewage

Mount Pleasant Borough STP

Permit No. PA0021148

Authorization ID No. 1398267

Mount Pleasant Borough, Westmoreland County

Dear Norman Stout,

Included in the NPDES Permit Renewal Application received by the Department on May 27, 2022 was a "Proposed CSO Compliance Schedule" which serves as an extension request for the previously-approved Long-Term Control Plan (LTCP). The LTCP Update still proposes to comply with the Presumption Approach of the EPA's CSO Policy by capture for treatment 94.25% by volume of combined sewage collected in the combined sewer system during precipitation events on a system-wide annual average basis.

The system improvement projects were defined as follows in the "Long Term Control Plan Revision Based on Post Construction Monitoring" prepared by Gibson-Thomas Engineering Co., Inc. in October 2016:

Milestone	Date
Part II permit application for Improvements to	June 1, 2017
CSO 003, 005, and 009	
Construction Begin	June 1, 2018
Construction End	June 1, 2019
Post-Construction Monitoring Begin	March 1, 2020
Post-Construction Monitoring End	December 1, 2020
Summary Report of Monitoring	March 1, 2021

The following LTCP Plan Implementation Schedule is approved:

Milestone	Date
Part II permit application for Improvements to	Completed as of June 2017
CSO 003, 005, and 009	
Begin Outfall 003, 005, and 009	June 1, 2024
reconstruction	
Complete Outfall 003, 005, and 009	June 1, 2025
reconstruction	
Submit PCCMP for DEP review and approval	December 1, 2025
Begin PCCMP implementation	Within 90 days of PCCMP approval

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Complete PCCMP implementation	365 days from PCCMP implementation begin			
	date			
Submit PCCMP Report with CSO Program	180 days from PCCMP implementation			
Recommendations	completion date			

This LTCP Update Approval is not an authorization to construct facilities. Appropriate permit applications and approvals are required before MAWC may construct the above proposed facilities.

The NPDES Permit establishes specific reporting requirements regarding progress toward compliance with CSO Policy Obligations including submission of an Annual CSO Status Report as an addendum to the annual "Municipal Wasteload Management Report" required by 25 Pa. Code § 94. 12. Each Annual CSO Status Report must detail efforts undertaken to implement the Nine Minimum Controls, efforts taken to prioritize and afford protection to environmentally Sensitive Areas, actions taken to implement the LTCP, and MAWC's adherence to the LTCP Implementation Schedule. Please ensure the annual report is submitted in a timely fashion and includes sufficient detail and documentation to measure LTCP compliance progress.

Any person aggrieved by this action may appeal the action to the Environmental Hearing Board (Board), pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. § 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A. The Board's address is:

Environmental Hearing Board Rachel Carson State Office Building, Second Floor 400 Market Street P.O. Box 8457 Harrisburg, PA 17105-8457

TDD users may contact the Environmental Hearing Board through the Pennsylvania Relay Service, 800-654-5984.

Appeals must be filed with the Board within 30 days of receipt of notice of this action unless the appropriate statute provides a different time. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

A Notice of Appeal form and the Board's rules of practice and procedure may be obtained online at http://ehb.courtapps.com or by contacting the Secretary to the Board at 717-787-3483. The Notice of Appeal form and the Board's rules are also available in braille and on audiotape from the Secretary to the Board.

IMPORTANT LEGAL RIGHTS ARE AT STAKE. YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD AT 717-787-3483 FOR MORE INFORMATION. YOU DO NOT NEED A LAWYER TO FILE A NOTICE OF APPEAL WITH THE BOARD.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST BE FILED WITH AND RECEIVED BY THE BOARD WITHIN 30 DAYS OF RECEIPT OF NOTICE OF THIS ACTION.

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

If you have any questions, please contact me at 412-442-4068 or grpolakosk@pa.gov.

Sincerely,

Grace Polakoski, E.I.T.

Environmental Engineering Specialist

Clean Water Program

cc: Katelyn Warheit - MAWC

Dom Garofola – Gibson-Thomas Engineering

Southwest Regional Office

Central Office

Department of Operations

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

ATTACHMENT M: Pretreatment Correspondence

NPDES Permit No. PA0021148 Mt Pleasant Borough STP

Polakoski, Grace

From: Shuart, Ryan <shuart.ryan@epa.gov>
Sent: Thursday, November 3, 2022 7:31 AM

To: Polakoski, Grace

Subject: [External] RE: Mt Pleasant Borough STP (PA0021148) Pretreatment Program

ATTENTION: This email message is from an external sender. Do not open links or attachments from unknown senders. To report suspicious email, use the Report Phishing button in Outlook.

Grace:

Do you know if there are any significant industrial users contributing to this facility? If so they may need to do a local limits evaluation for this POTW. Either way, the pretreatment language needs to be in the permit since it is covered by a muni with a pretreatment program. Thanks for reaching out to me.

Best.

Ryan Shuart

Permits Section Water Division

From: Polakoski, Grace <grpolakosk@pa.gov> Sent: Wednesday, November 02, 2022 2:29 PM To: Shuart, Ryan <shuart.ryan@epa.gov>

Subject: Mt Pleasant Borough STP (PA0021148) Pretreatment Program

Hi Ryan,

I am getting ready to issue a draft NPDES permit for Mt Pleasant Borough STP (PA0021148), which is located in Mt Pleasant Borough in Westmoreland County. Maria Schumack advised me to contact you first before I include anything in the permit about the pretreatment program. Pretreatment would be added to this facility because it is a POTW that is owned by an authority that owns a combination of POTWs that result in a combined flow of > 5MGD. It also has commercial/industrial contributors.

This is the first permit cycle that Mt Pleasant Borough STP would be required to do anything for the pretreatment program. Do you need anything from me before I add the language into the permit?

Thank you,

Grace Polakoski (she/her) | Environmental Engineering Specialist Department of Environmental Protection | Clean Water South West Regional Office Building 400 Waterfront Drive | Pittsburgh, PA 15222 Phone: 412.442.4068 www.dep.pa.gov

DEP is now accepting permit and authorization applications, as well as other documents and correspondence, electronically through the OnBase Electronic Forms Upload tool. Please use the link below to view the webpage, get instructions, and submit documents:

https://www.dep.pa.gov/DataandTools/Pages/Application-Form-Upload.aspx

1