

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.PA0021245APS ID337434Authorization ID1422638

Applicant and Facility Information

Applicant Name	Duncannon Borough Municipal Authority Perry County	Facility Name	Duncannon STP
Applicant Address	428 North High Street	Facility Address	Water Street
	Duncannon, PA 17020		Duncannon, PA 17020
Applicant Contact	Michael Wolfersberger	Facility Contact	John Farrier
Applicant Phone	(717) 834-4311	Facility Phone	(610) 274-1755
Client ID	147448	Site ID	248320
Ch 94 Load Status	Not Overloaded	Municipality	Duncannon Borough
Connection Status	No Limitations	County	Perry
Date Application Receiv	ved January 1, 2023	EPA Waived?	No
Date Application Accep	ted January 12, 2023	If No, Reason	Significant CB Discharge
Purpose of Application		or NPDES renewal.	

Approve	Deny	Signatures	Date
х		Nicholas Hong, P.E. / Environmental Engineer Nick Hong (via electronic signature)	February 22, 2023
х		Daniel W. Martin, P.E. / Environmental Engineer Manager Maria D. Bebenek for Daniel W. Martin	April 4, 2023
x		Maria D. Bebenek, P.E. / Environmental Program Manager Maria D. Bebenek	April 4, 2023

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Duncannon Borough Municipal WWTP located at Water Street, Duncannon, PA 17020 in Perry County, municipality of Duncannon. The existing permit became effective on July 1, 2018 and expires(d) on June 30, 2023. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on January 12, 2023.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.74 MGD average annual design flow treatment facility. The hydraulic capacity is 1.57 MGD. The applicant anticipates proposed upgrades to the treatment facility in the next five years. The facility will upgrade the headworks and grit removal equipment. The NPDES application has been processed as a Minor Sewage Facility (Level 2) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Perry County Planning Commission, Duncannon Borough, and Penn Township Board of Supervisors and the notice was received by the parties on December 28, 2022. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be the Susquehanna River. The Susquehanna River drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for cold water fishes (CWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Susquehanna River is a Category 2 and 5 stream listed in the 2022 Integrated List of All Waters (formerly 303d Listed Streams). The surface waters is an attaining stream that supports recreational uses. The receiving stream is also impaired for aquatic life due to pH from an unknown source. The Susquehanna River is impaired for fish consumption due to PCBs from an unknown source. The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

• Due to the EPA triennial review, monitoring on a 1x/quarter basis shall be required for E. Coli.

Sludge use and disposal description and location(s): Dewatered sludge is disposed at Cumberland County Landfill in Hopewell/North Newton Township, Cumberland County

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name:	Duncannon Borough Municipal WWTP
NPDES Permit #	PA0021245
Physical Address:	Water Street Duncannon, PA 17020
Mailing Address:	428 North High Street Duncannon, PA 17020
Contact:	Robert Kroboth Finance Director <u>rkroboth@duncannonboro.org</u> (717) 834-4311
	John Farrier Operator Miller Environmental, Inc. <u>jfarrier@miller-env.com</u> (610) 274-1755
Consultant:	Gregory Rogalski Project Engineer Pennoni Associates, Inc. grogalski@pennoni.com (717) 620-5947

1.2 Permit History

Permit submittal included the following information.

- NPDES Application
- Influent Sample Data
- Effluent Sample Data

2.0 Treatment Facility Summary

2.1.1 Site location

The physical address for the facility is Water Street, Duncannon, PA 17020. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

NPDES Permit Fact Sheet PA0021245 Duncannon STP

Figure 1: Topographical map of the subject facility

Copyright: D 2013 National Geographic Society, I-cubed

Figure 2: Aerial Photograph of the subject facility

imagery: Source: Ein', Javan; Ein', Javan; Ein'stande Geographics, and the GB User Community; ESR Streets: Sources: Ein', HERE, Carmin, USCB, Internap, NCRUIDIT 5, MICan, Ein' Japan, NCTI, Ein' China (Hong Kong); Ein' Korea, Ein' (Thailand), NCCC, (c) OperstreetMop contributors, and the GB User Community;

2.1.2 Sources of Wastewater/Stormwater

Contributions of flow to wastewater treatment plant originate from the following municipalities:

- Duncannon Borough with 66% flow contribution
- Penn Township with 33% flow contribution

The facility receives wastewater from Maguires Ford (auto service/car wash) and PA Options for Wellness.

The facility did not receive hauled-in wastes the past three years and does not anticipate receiving hauled in wastes for the next five years.

2.2 Description of Wastewater Treatment Process

The subject facility is a 0.74 MGD average annual design flow facility. The subject facility treats wastewater using an Aqua Aerobic SBR. The facility is being evaluated for flow, pH, dissolved oxygen, TRC, CBOD5, TSS, fecal coliform, nitrogen species, and phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

Treatment Facility Summary

Treatment Facility Na	ne: Duncannon STP			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Sequencing Batch Reactor	Hypochlorite	0.74
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
1.57	780	Not Overloaded	Aerobic Digestion	Landfill

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001	Design Flow (MGD)	.74
Latitude	40° 23' 12.66"	Longitude	-77º 1' 45.33"
Wastewater De	escription: Sewage Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

• Catonic Polyacrylamide for flocculant (Sludge dewatering)

• Sodium Aluminate for coagulation/settling

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART	ART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS										
I. A.	For Outfall 00	1, Latitude, Longitude, River Mile Index, Stream Code									
	Receiving Waters	Susquehanna River									
	Type of Effluent:	Sewage Effluent									

1. The permittee is authorized to discharge during the period from July 1, 2018 through June 30, 2023.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Requirements						
Daramotor	Mass Units (Ibs/day) (1)			Concentrat		Minimum (2)	Required	
Parameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0		9.0			
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab
			5.0					
Dissolved Oxygen	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical								8-Hr
Oxygen Demand (CBOD5)	150	245	XXX	25.0	40.0	50	1/week	Composite
Biochemical Oxygen Demand								
(BOD5)		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
								8-Hr
Total Suspended Solids	185	275	XXX	30.0	45.0	60	1/week	Composite
Total Suspended Solids		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab

Outfall 001, Continued (from July 1, 2018 through June 30, 2023)

		Monitoring Requirements						
Daramotor	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Parameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
								8-Hr
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/week	Composite
								8-Hr
Total Phosphorus	12.0	XXX	XXX	2.0	XXX	4	2/week	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at discharge from facility

4

PART	ART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS										
I. B.	For Outfall 001	, Latitude <u>40° 23' 12.07"</u> , Longitude <u>-77° 1' 45.26"</u> , River Mile Index <u>69.32</u> , Stream Code <u>06685</u>									
	Receiving Waters:	Susquehanna River									
	Type of Effluent:	Sewage Effluent									

1. The permittee is authorized to discharge during the period from July 1, 2018 through June 30, 2023.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Requirements						
Daramotor	Mass Uni	ts (lbs) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Parameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								8-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								8-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								8-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	xxx	Report	XXX	xxx	1/month	Calculation
								8-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	Report	13516	xxx	XXX	XXX	xxx	1/month	Calculation
Net Total Phosphorus	Report	1802	xxx	XXX	XXX	xxx	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at discharge from facility

Footnotes

(1) See Part C for Chesapeake Bay Requirements.

(2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

09/12/2018:

 The inspection was conducted to assess the raw wastewater flowing underneath the screening room and the pavement. The area surrounding the plant and the plant's access road was flooded with 6"-8" of standing water.

10/03/2018:

• The inspection was conducted to assess the raw wastewater flowing underneath the screening room and the pavement.

10/26/2018:

- The inspection was conducted to assess the raw wastewater leakage under the headworks building.
- The bypass system was in place but was not running. It consisted of two trailer-mounted pumping units each with an effluent-line running up to separate SBRs.

11/01/2018:

• The inspection was conducted to assess the progress of repairs required for the raw wastewater leakage under the headworks building that occurred on 9/12/2018.

12/03/2018:

- The plant completed repairs on 11/02/2018 for a broken 12" gravity line conveying wastewater from the screening/grit removal chamber of the main building to the SBRs.
- The comminutor motor was replaced.

02/11/2020:

• The comminutor will require repairs.

12/18/2020:

• An administrative inspection of Duncannon Borough Municipal Authority's Chesapeake Bay nutrient monitoring was conducted for the compliance year 2019-2020.

11/09/2021:

The facility was advised to (a) ensure treatment units not taken offline due to routine generator exercise
 (b) inspect treatments units after generator exercising

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.809 MGD in February 2022. The hydraulic design capacity of the treatment system is 1.57 MGD.

The off-site laboratory used for the analysis of the parameters was Fairway Laboratories / Pace Altoona located at 2019 Ninth Avenue, Altoona, PA 16603.

DMR Data for Outfall 001 (from December 1, 2021 to November 30, 2022)

Parameter	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21
Flow (MGD)												
Average Monthly	0.354	0.259	0.245	0.208	0.233	0.503	0.800	0.696	0.629	0.809	0.401	0.325
Flow (MGD)												
Daily Maximum	0.635	0.334	0.402	0.240	0.278	0.836	2.385	1.330	0.923	1.769	0.522	0.522
pH (S.U.)												
Daily Minimum	7.2	7.8	8.0	7.9	7.4	7.2	7.0	6.8	7.0	6.9	7.0	7.1
pH (S.U.)												
Daily Maximum	8.0	8.1	8.2	8.3	8.2	7.9	7.7	7.5	7.5	8.7	7.5	7.7
DO (mg/L)												
Daily Minimum	7.6	7.9	7.3	7.1	7.3	8.3	5.3	6.5	7.3	6.5	6.7	8.0
TRC (mg/L)												
Average Monthly	0.4	0.4	0.4	0.3	0.3	0.3	0.2	0.1	0.2	0.2	0.2	0.7
TRC (mg/L)												
Instantaneous												
Maximum	0.7	0.6	0.5	0.4	0.5	0.8	0.7	0.3	1.1	0.4	0.4	1.1
CBOD5 (lbs/day)												
Average Monthly	< 14	< 12	< 6	14	< 6	< 16	< 21	< 44	< 16	< 17	< 17	< 9
CBOD5 (lbs/day)			_		_							
Weekly Average	15	21	< 7	29	< 6	21	< 32	97	18	27	27	< 13
CBOD5 (mg/L)												
Average Monthly	< 5.5	< 5.4	< 3.0	1.1	< 3.0	< 3.9	< 3.6	< 7.2	< 3.2	< 3.3	< 5.3	< 3.0
CBOD5 (mg/L)	7.0			17.4		4.0	5.0	10.0		4.0		
Vveekly Average	7.9	9.9	< 3.0	17.1	< 3.0	4.8	5.3	13.9	3.8	4.2	8.9	< 3.0
BOD5 (lbs/day)												
Raw Sewage Influent												
<pre> <</pre>	040	04.0	050	400	000	204	504	000	075	000	000	0.45
	316	312	256	403	290	391	564	268	275	292	282	345
BOD5 (IDS/day)												
Raw Sewage Inititient	270	FFO	259	EEE	400	551	1242	217	222	264	270	100
	312	550	300	555	400	551	1342	317	333	304	312	400
BODS (mg/L)												
kaw Sewage Innuent												
Monthly	120	1/3	120	227	154	08	116	47	56	62	85	110
TSS (lbe/day)	129	143	123	221	134	30	110	47	50	02	00	110
Average Monthly	10	< 6	< 6	< 7	< 4	< 9	< 107	20	< 16	< 9	< 20	31

NPDES Permit Fact Sheet Duncannon STP

TSS (lbs/day)												
Raw Sewage Influent												
 https://www.application.com/												
Monthly	173	177	257	291	240	328	235	122	121	215	166	142
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	212	228	358	396	396	443	471	225	171	395	208	180
TSS (lbs/day)												
Weekly Average	21	8	13	11	6	14	473	33	26	14	37	54
TSS (mg/L)												
Average Monthly	3.9	< 2.7	< 2.9	< 3.8	< 2.3	< 2.5	< 11.4	3.3	< 3.3	< 1.7	< 5.7	9.6
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	68	83	129	163	125	86	47	23	25	41	51	48
TSS (mg/L)												
Weekly Average	6.4	3.6	5.6	6.0	3.6	3.6	44.0	4.8	5.6	2.2	8.4	12.4
Fecal Coliform												
(No./100 ml)												
Geometric Mean	20	4	< 2	6	7	2	21	< 20	1827	270	302	10
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	488	14	17	12	23	6	1986	602	2420	2420	1986	34
Nitrate-Nitrite (mg/L)												
Average Monthly	5.053	3.071	3.268	3.296	2.63	3.164	3.381	1.877	1.62	2.97	2.763	2.559
Nitrate-Nitrite (lbs)												
Total Monthly	461	198	203	182	157	388	745	335	255	481	295	213
Total Nitrogen (mg/L)												
Average Monthly	5.637	3.427	3.361	3.955	2.98	3.2301	4.252	2.5394	1.752	3.65	3.0476	2.80
Total Nitrogen (lbs)												
Effluent Net 												
Total Monthly	521	195	209	218	178	397	982	478	275	607	323	233
Total Nitrogen (lbs)												
Total Monthly	521	195	209	218	178	397	982	478	275	607	323	233
Total Nitrogen (lbs)												
Effluent Net 												
Total Annual			< 5296									
Total Nitrogen (lbs)												
Total Annual			< 5296									

NPDES Permit Fact Sheet Duncannon STP

Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1779	< 176	0.102	< 0.1347	< 0.1
Ammonia (Ibs)												
Total Monthly	< 9	< 7	< 6	< 6	< 6	< 12	< 20	< 33	< 28	< 16	< 15	< 8.3
Ammonia (Ibs)												
Total Annual			< 178									
TKN (mg/L)												
Average Monthly	< 0.806	< 0.739	< 0.531	< 0.759	< 0.599	< 0.5038	< 0.971	< 0.9125	< 0.52	< 0.939	< 0.6178	< 0.553
TKN (lbs)												
Total Monthly	< 76	< 50	< 33	< 42	< 36	< 61	< 253	< 184	< 81	< 166	< 66	< 46
Total Phosphorus												
(lbs/day)												
Average Monthly	3.3	1.9	4.2	4.1	2.8	3.7	5.6	3.6	2.9	3.0	2.4	1.5
Total Phosphorus												
(mg/L)												
Average Monthly	1.1	0.9	2.0	2.3	1.4	1.0	1.0	0.6	0.6	0.6	0.7	0.6
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	99	58	126	127	86	112	174	107	90	85	74	47.8
Total Phosphorus (lbs)												
Total Monthly	99	58	126	127	86	112	174	107	90	85	74	47.8
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual			1151									
Total Phosphorus (lbs)												
Total Annual			1151									

3.2.1 Chesapeake Bay Truing

The table summarizes the facility's compliance/noncompliance with Chesapeake Bay cap loads.

	Chesapeake Bay Annual Nutrient Summary								
Duncannon Boro WWTP									
	PA0021245								
Year for Truing	Nitrogen (lbs)	Phosphorus (lbs)	Compliant with Permit Limits (Yes/No)						
Sent 30)	Annual Net Mass	Annual Net Mass	Nitrogon	Phoenhorus					
3ept 30j	Load	Load	Millogen	Filospiloius					
2018	9304	1418	Yes	Yes					
2019	10078	1193	Yes	Yes					
2020	5092	936	Yes	Yes					
2021	5394	760	Yes	Yes					
2022	5296	1151	Yes	Yes					
Notes:									
Nitrogen	Nitrogen Annual Net Mass CAP Load =								
Phosphoru	1802	lbs							

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in July 1, 2018 to January 12, 2023, the following were observed effluent non-compliances.

NON_COMPLIANCE _DATE	NON_COMPL_TYPE _DESC	NON_COMPL_CATE GORY_DESC	PARAMETER	SAMPLE_ VALUE	VIOLATION _CONDITIO N	PERMIT_ VALUE	UNIT_OF_ MEASURE	STAT_BASE_CO DE	FACILITY_COMMENTS
8/27/2018	Violation of permit condition	Effluent	Total Suspended Solids	458	>	275	lbs/day	Weekly Average	
6/17/2019	Violation of permit condition	Effluent	Fecal Coliform	1119.9	>	1000	No./100 ml	Instantaneous Maximum	
9/26/2019	Violation of permit condition	Effluent	Fecal Coliform	2419.8	>	1000	No./100 ml	Instantaneous Maximum	
10/25/2019	Violation of permit condition	Effluent	Total Phosphorus	2.139	>	2.0	mg/L	Average Monthly	
9/28/2021	Violation of permit condition	Effluent	Fecal Coliform	1986.3	>	1000	No./100 ml	Instantaneous Maximum	
11/28/2021	Sample collection less frequent than required	Other Violations							
1/23/2022	Violation of permit condition	Effluent	Total Residual Chlorine (TRC)	0.7	>	.5	mg/L	Average Monthly	The hypochlorite chemical pumps did not perform as required. One of two pumps has been removed from service to lower the feed rate to match the demand. The issue has been resolved and the TRC average will be compliant in January.
5/25/2022	Sample collection less frequent than required	Other Violations							
6/28/2022	Violation of permit condition	Effluent	Fecal Coliform	1986	>	1000	No./100 ml	Instantaneous Maximum	Warming seasonal changes increased chemical demand and the pump failed to meet that demand. Corrective action included replacing the pump, increasing the chemical feed, and establishing an SOP on the chemical feed so that adjustments will be made when needed.
6/28/2022	Violation of permit condition	Effluent	Total Suspended Solids	473	>	275	lbs/day	Weekly Average	A higher than normal TSS after a significant rain event resulting in a loading exceedance while flow was high. Three subsequent samples in May were well within compliance, all three being <=2 mg/L.
9/27/2022	Violation of permit condition	Effluent	Total Phosphorus	2.3	>	2.0	mg/L	Average Monthly	The high phosphorous results were due to failures in the chemical feed system. 1) The feed line was clogged and has been replaced by an outside contractor. 2) Three available feed pumps were installed and tested and none of them perform properly and/or consistently. We are recommending that the pumps be replaced and are providing the Borough with a quote for the purchase.
12/21/2022	Sample collection less frequent than required	Other Violations							

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in July 1, 2018 to January 12, 2023, there were no observed enforcement actions.

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

2022									
Sew	Sewage Sludge / Biosolids Production Information								
	Hauled Off-Site								
Date (2022)	Tons Dewatered	% Solids	Dry Tons						
January	14.75	14.2	2.09						
February	17.68	11.8	2.09						
March	26.25	15.15	3.98						
April	25.02	14.95	3.74						
May	12.99	15	1.95						
June	0	0	0						
July	0	0	0						
August	40.72	16.67	6.79						
September	25.84	15.25	3.94						
October	24.7	14.7	1.6						
November	26.11	13.85	3.61						
Notes:									
Cumberland Co	Cumberland County Landfill in Hopewell/North Newton Township,								
Cumberland Co	Cumberland County								

3.5 Open Violations

No open violations existed as of February 2023.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be the Susquehanna River. The Susquehanna River drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Suez Water (PWS ID #7220015) located approximately 8 miles downstream of the subject facility on the Susquehanna River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2022 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2022 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 and 5 waterbody. The surface waters is an attaining stream that supports recreational uses. The receiving stream is also impaired for aquatic life due to pH from an unknown source. The Susquehanna River is impaired for fish consumption due to PCBs from an unknown source. The designated use has been classified as protected waters for warm water fishes (WWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Susquehanna River at Harrisburg, PA (WQN202). This WQN station is located approximately 14 miles downstream of the subject facility.

The closest gauge station to the subject facility is the Susquehanna River at Harrisburg, PA (USGS station number 1570500). This gauge station is located approximately 14 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.25 and the stream water temperature was estimated to be 23.75 C.

The hardness of the stream was estimated from the water quality network to be 109 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

	Course Station Data						
	Gauge Station Data						
USGS Station Number 1570500							
Station Name	n Name Susquehanna River at Harrisburg, PA						
Q710	3,200	ft ³ /sec					
Drainage Area (DA)	mi ²						
Calculations							
The low flow yield of the	ne gauge station is:						
Low Flow Yield (LFY) = (Q710 / DA						
LFY =	(3,200 ft ³ /sec / 24,100 mi ²)						
LFY =	0.1328	ft ³ /sec/mi ²					
The low flow at the sub	ject site is based upon the DA of	23,200	mi ²				
Q710 = (LFY@gauge sta	tion)(DA@Subject Site)						
Q710 = (0.1328 ft ³ /sec/r	mi ²)(23,200 mi ²)						
Q710 =	3080	ft ³ /sec					

4.6 Summary of Discharge,	Receiving Waters and Wa	ater Supply Information			
0 // 11 11 000/					
		Design Flow (MGD)	./4		
Latitude <u>40° 23' 6.05"</u>		Longitude	-77º 1' 25.99"		
Quad Name		Quad Code			
Wastewater Description:	Sewage Effluent				
Receiving Waters Susa	Jehanna River (WWF MF)	Stream Code	6685		
NHD Com ID 56399)435	BMI	84		
Drainage Area 23.20	0	Yield (cfs/mi ²)	0 1328		
Q ₇₋₁₀ Flow (cfs) 3080	•	Q ₇₋₁₀ Basis	StreamStats/streamgauge		
Elevation (ft) 342		Slope (ft/ft)			
Watershed No. 7-C		Chapter 93 Class.	WWF. MF		
Existing Use Same	as Chapter 93 class	Existing Use Qualifier			
Exceptions to Use		Exceptions to Criteria			
Assessment Status	Impaired	·			
	POLYCHLORINATED BI	PHENYLS (PCBS), POLYCHLO	RINATED BIPHENYLS		
Cause(s) of Impairment	(PCBS)				
Source(s) of Impairment	SOURCE UNKNOWN, SO	CE UNKNOWN, SOURCE UNKNOWN			
TMDL Status	Not applicable	Name			
Pool/ground/Ambient Date		Data Sauraa			
Background/Ambient Data	0.05	MON 202: Medial July to Ser			
	0.20	WQN 202; Medial July to Sept			
		WQN 202; Medial July to Sept			
Hardness (mg/L)	109	WQN 202; Historical median			
Other:					
Nearest Downstream Publi	c Water Supply Intake	Suez Water			
PWS Waters Susquel	nanna River	Flow at Intake (cfs)			
PWS RMI 75		Distance from Outfall (mi)	8		

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

General Data 1	(Modeling Point #1)	(Modeling Point #2)	Units
Stream Code	6685	6685	
River Mile Index	84	82.82	miles
Elevation	342	329	feet
Latitude	40.386686	40.373	
Longitude	-77.029239	-77.01742	
Drainage Area	23,200	23,400	sq miles
Low Flow Yield	0.1328	0.1328	cfs/sq mile

The modeling point nodes utilized for this facility are summarized below.

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH₃-N in the discharge;
- (d) 24-hour average concentration for NH_3 -N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were the following pollutants: TDS, chloride, bromide, sulfate, copper, lead, and zinc.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Applicable monitoring or permit limits for toxics are summarized in Section 6.

The Toxics Management Spreadsheet output has been included in Attachment B.

5.3.3 Whole Effluent Toxicity (WET)

The facility is not subject to WET.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

A TMDL for a given pollutant and waterbody is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include an implicit or explicit margin of safety (MOS) to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. The TMDL components are illustrated using the following equation:

$\mathsf{TMDL} = \Sigma W \mathsf{LAs} + \Sigma \, \mathsf{LAs} + \mathsf{MOS}$

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was September 13, 2021.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30. For facilities that have received Cap Loads in any other form, the Cap Loads will be modified accordingly when the permits are renewed.

Offsets have been incorporated into Cap Loads in several permits issued to date. From this point forward, permits will be issued with the WLAs as Cap Loads and will identify Offsets separately to facilitate nutrient trading activities and compliance with the TMDL.

Based upon the supplement the subject facility has been categorized as a Sector A discharger. The supplement defines Sector A as a sewage facility is considered significant if it has a design flow of at least 0.4 MGD.

Table 5 of the Phase 3 WIP (revised September 13, 2021) presents all NPDES permits for Significant Sewage dischargers with Cap Loads. The NPDES Permit No., phase, facility name, latest permit issuance date, expiration date, Cap Load compliance start date, TN and TP Cap Loads, and TN and TP Delivery Ratios are presented. In addition, if TN Offsets were incorporated into the TN Cap Loads when the permit was issued, the amount is shown; these Offsets will be removed from Cap Loads upon issuance of renewed permits to implement Section IV of this document (i.e., a facility may use Offsets for compliance but may not register them as credits).

The total nitrogen (TN) and total phosphorus (TP) cap loads itemized by Table 5 for the subject facility are as follows:

TN Cap Load (lbs/yr)	13,516
TN Delivery Ratio	0.769
TP Cap Load (lbs/yr)	1,802
TP Delivery Ratio	0.400

Expansions by any Significant Sewage discharger will not result in any increase in Cap Loads. Where non-significant facilities expand to a design flow of 0.4 MGD or greater, the lesser of baseline Cap Loads of 7,306 lbs/yr TN and 974 lbs/yr TP or existing performance will be used for permits, and the load will be moved from the Non-Significant sector load to the Significant Sewage sector load. If considered necessary for environmental protection, DEP may decide to move load from the Point Source Reserve to the Significant Sewage sector in the future.

The minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for Significant Sewage dischargers is 2/week.

This facility is subject to Sector A monitoring requirements. Monitoring shall be required at least 2x/week.

Reporting

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30.

Facilities with NPDES permits must use DEP's eDMR system for reporting, except small flow treatment facilities. An Annual DMR must be submitted by the end of the Truing Period, November 28. As attachments to the Annual DMR a facility must submit a completed Annual Chesapeake Bay Spreadsheet, available through DEP's Supplemental Reports website, which contains an Annual Nutrient Monitoring worksheet and an Annual Nutrient Budget worksheet. This Spreadsheet will be submitted once per Compliance Year only, and reflect all nutrient sample results (for the period October 1 – September 30), Credit transactions (including the Truing Period) and Offsets applied during the Compliance Year.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected*. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

6.1.1 Conventional Pollutants and Disinfection

Summary of Proposed NPDES Parameter Details for Conventional Pollutants and Disinfection								
	Duncannon Borough WWTP; PA0021245							
Parameter	Required by ¹ :		Recommendation					
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).					
лЦ (S II)	TREI	Effluent Limit:	Effluent limits may range from pH = 6.0 to 9.0					
pri (3.0.)	IDEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).					
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).					
Dissolved	BPJ	Effluent Limit:	Effluent limits shall be greater than 5.0 mg/l.					
Oxygen	5	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.					
		Monitoring:	The monitoring frequency shall be 1x/wk as an 8-hr composite sample (Table 6-3).					
		Effluent Limit:	Effluent limits shall not exceed 150 lbs/day and 25 mg/l as an average monthly.					
CBOD	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL.					
		Monitoring:	The monitoring frequency shall be 1x/wk as an 8-hr composite sample (Table 6-3).					
		Effluent Limit:	Effluent limits shall not exceed 185 lbs/day and 30 mg/l as an average monthly.					
TSS	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD.					
		Monitoring:	The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3).					
		Effluent Limit:	The average monthly limit should not exceed 0.5 mg/l and/or 1.6 mg/l as an instantaneous maximum.					
TRC	TBEL	Rationale: Ch forms of aqua imposed on a expressed in (Implementati Based on the calculated by The monitorin Chapter 92a.	lorine in both combined (chloramine) and free form is extremely toxic to freshwater fish and other atic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations to be a discharger shall be the more stringent of either the WQBEL or TBEL requirements and shall be the NPDES permit as an average monthly and instantaneous maximum effluent concentration on Guidance Total Residual Chlorine 4). stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject facility the TRC Evaluation worksheet, the TBEL is more stringent than the WQBEL. If frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by 48(b)(2).					
		Monitoring:	The monitoring frequency shall be $1x/wk$ as a grab sample (Table 6-3)					
		worntornig.	Summer effluent limits shall not exceed 200 No /100 mL as a geometric mean. Winter effluent					
Fecal	TBEL	Effluent Limit:	limits shall not exceed 2000 No./100 mL as a geometric mean.					
Comorni		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter $92a.47(a)(4)$ and $92a.47(a)(5)$.					
		Monitoring:	The monitoring frequency shall be 1x/quarter as a grab sample (SOP).					
	SOP: Chapter	Effluent Limit:	No effluent requirements.					
E. Coli	92a.61	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be required to monitor for E.Coli.					
Notes:								

1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

2 Monitoring frequency based on flow rate of 0.74 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.2 Nitrogen Species and Phosphorus

	Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus						
			Duncannon Borough WWTP; PA0021245				
Parameter	Permit Limitation		Recommendation				
T di di lictor	Required by ¹ :						
		Monitoring:	The monitoring frequency shall be 2x/wk as an 8-hr composite sample				
Ammonia-	Chesapeake Bay	Effluent Limit:	No effluent requirements.				
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.				
		Monitoring:	The monitoring frequency shall be 2x/wk as an 8-hr composite sample				
Nitrate-	Chesapeake Bay	Effluent Limit:	No effluent requirements.				
Nitrite as N	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.				
		Monitoring:	The monitoring frequency shall be 1x/month as a calculation				
Total	Chesapeake Bay TMDL	Effluent Limit:	No effluent requirements.				
Nitrogen		Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/month.				
		Monitoring:	The monitoring frequency shall be 2x/wk as an 8-hr composite sample				
TKN	Chesapeake Bay TMDL	Effluent Limit:	No effluent requirements.				
		Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.				
		Monitoring:	The monitoring frequency shall be 2x/wk as an 8-hr composite sample				
Total	Anti-backsliding	Effluent Limit:	Effluent limits shall not exceed 12 lbs/day and 2.0 mg/l as an average monthly.				
Phosphorus	And backsliding	Rationale:	Due to anti-backsliding regulations, the current permit shall continue to the proposed permit				
		Monitoring:	The monitoring frequency shall be 1x/yr as a calculation				
Net Total	Chesapeake Bay	Effluent Limit:	Effluent limit shall not exceed 13,516 lbs/yr				
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.				
		Monitoring:	The monitoring frequency shall be 1x/yr as a calculation				
Net Total	Chesapeake Bay	Effluent Limit:	Effluent limit shall not exceed 1,802 lbs/yr				
Phosphorus	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.				
Notes:							

1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

2 Monitoring frequency based on flow rate of 0.74 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

<u>6.1.3 Toxics</u>

Absent from the NPDES application was sampling for toxics. Per the NPDES application, the facility was advised to collect samples. The sample results are summarized in the table below. One sample was collected on January 25, 2023.

Effluent Sample Results							
Dollutant		1/25/23 Sa	mple [Date			
Pollutant		mg/l		ug/l			
TDS		240					
Chloride		46.5					
Bromide	<	0.362					
Sulfate		24.8					
Oil and Grease	<	1.65					
Copper				4.67			
Lead			<	0.172			
Zinc				21.8			

TMS does not recommend monitoring or effluent limits fort toxics.

6.1.3.1 Implementation of Regulation- Chapter 92a.61

Chapter 92a.61 provides provisions to DEP to monitor for pollutants that may have an impact on the quality of waters of the Commonwealth. Based upon DEP policy directives issued on March 22, 2021 and in conjunction with EPA's 2017 Triennial Review, monitoring for E. Coli shall be required.

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

• Due to the EPA triennial review, monitoring on a 1x/quarter basis shall be required for E. Coli.

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART	PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS									
I. A.	For Outfall 001	_, Latitude _40° 23' 12.66" _, Longitude _77° 1' 45.33" _, River Mile Index _84, Stream Code _6685	_							
Receiving Waters:		Susquehanna River (WWF, MF)	_							
	Type of Effluent:	Sewage Effluent	-							

1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Requirement						
Barameter	Mass Units (Ibs/day) (1)		Concentrations (mg/L)				Minimum ⁽²⁾	
Farameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0		9.0			
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab
			5.0					
Dissolved Oxygen	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical								8-Hr
Oxygen Demand (CBOD5)	150	245	XXX	25.0	40.0	50	1/week	Composite
Biochemical Oxygen Demand								
(BOD5)		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
								8-Hr
Total Suspended Solids	185	275	XXX	30.0	45.0	60	1/week	Composite
Total Suspended Solids		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units (Ibs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
Falameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
					Report			
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Grab
								8-Hr
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/week	Composite
								8-Hr
Total Phosphorus	12.0	XXX	XXX	2.0	XXX	4	2/week	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS I. B. For Outfall 001 , Latitude 40° 23' 12.66" , Longitude 77° 1' 45.33" , River Mile Index 84 , Stream Code 6685 Receiving Waters: Susquehanna River (WWF, MF) Type of Effluent: Sewage Effluent

1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

 Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Requirements						
Parameter	Mass Units (Ibs/day) (1)			Concentra	Minimum (2)	Required		
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	8-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	8-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	8-Hr Composite
Total Nitrogen	Report	Report	xxx	Report	xxx	xxx	1/month	Calculation
Total Phosphorus	Report	Report	xxx	Report	xxx	xxx	2/week	8-Hr Composite
Net Total Nitrogen	XXX	13516	xxx	xxx	xxx	xxx	1/year	Calculation
Net Total Phosphorus	xxx	1802	xxx	xxx	xxx	xxx	1/year	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Footnotes:

(1) See Part C for Chesapeake Bay Requirements.

(2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chlorine Minimization
- SBR Batch Discharge Condition
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems
- Hauled-in Waste Restrictions

Tools and References Used to Develop Permit							
	WON for Windows Medel (ass Attachment						
	Toxics Management Spreadshoot (see Attachment						
	TPC Model Spreadshoet (see Attachment						
	Temperature Medel Spreadsheet (see Attachment						
	Water Quality Tayles Management Strategy 261 0100 002 4/06						
	Technicel Quality Toxics Management and Specification of Effluent Limitations, 202,0400,001, 40/07						
	Pelicy for Permitting Surface Water Diversions, 262,2000,002, 2/08						
	Policy for Conducting Technical Bayious of Miner NDDES Benewal Applications, 262,2000,008, 11/06						
	Policy for Conducting Technical Reviews of Million NPDES Renewal Applications, 362-2000-008, 11/96.						
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.						
	Pennsylvania CSO Policy, 385-2000-011, 9/08.						
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.						
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.						
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.						
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.						
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.						
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.						
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.						
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.						
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.						
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.						
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.						
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.						
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.						
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.						
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.						
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.						
	Design Stream Flows, 391-2000-023, 9/98.						
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.						
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.						
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.						
	SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised 2/3/2022						
	Other:						

Attachment A

Stream Stats/Gauge Data

14 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.-Continued

[Latitude and Longitude in decimal degrees; mi2, square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01561000	Brush Creek at Gapsville, Pa.	39.956	-78.254	36.8	Ν
01562000	Raystown Branch Juniata River at Saxton, Pa.	40.216	-78.265	756	Ν
01562500	Great Trough Creek near Marklesburg, Pa.	40.350	-78.130	84.6	Ν
01563200	Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa.	40.429	-77.991	960	Y
01563500	Juniata River at Mapleton Depot, Pa.	40.392	-77.935	2,030	Y
01564500	Aughwick Creek near Three Springs, Pa.	40.213	-77.925	205	Ν
01565000	Kishacoquillas Creek at Reedsville, Pa.	40.655	-77.583	164	Ν
01565700	Little Lost Creek at Oakland Mills, Pa.	40.605	-77.311	6.52	Ν
01566000	Tuscarora Creek near Port Royal, Pa.	40.515	-77.419	214	Ν
01566500	Cocolamus Creek near Millerstown, Pa.	40.566	-77.118	57.2	Ν
01567000	Juniata River at Newport, Pa.	40.478	-77.129	3,354	Y
01567500	Bixler Run near Loysville, Pa.	40.371	-77.402	15.0	Ν
01568000	Sherman Creek at Shermans Dale, Pa.	40.323	-77.169	207	Ν
01568500	Clark Creek near Carsonville, Pa.	40.460	-76.751	22.5	LF
01569000	Stony Creek nr Dauphin, Pa.	40.380	-76.907	33.2	Ν
01569800	Letort Spring Run near Carlisle, Pa.	40.235	-77.139	21.6	Ν
01570000	Conodoguinet Creek near Hogestown, Pa.	40.252	-77.021	470	LF
01570500	Susquehanna River at Harrisburg, Pa.	40.255	-76.886	24,100	Y
01571000	Paxton Creek near Penbrook, Pa.	40.308	-76.850	11.2	Ν
01571500	Yellow Breeches Creek near Camp Hill, Pa.	40.225	-76.898	213	Ν
01572000	Lower Little Swatara Creek at Pine Grove, Pa.	40.538	-76.377	34.3	Ν
01572025	Swatara Creek near Pine Grove, Pa.	40.533	-76.402	116	Ν
01572190	Swatara Creek near Inwood, Pa.	40.479	-76.531	167	Ν
01573000	Swatara Creek at Harper Tavern, Pa.	40.403	-76.577	337	Ν
01573086	Beck Creek near Cleona, Pa.	40.323	-76.483	7.87	Ν
01573160	Quittapahilla Creek near Bellegrove, Pa.	40.343	-76.562	74.2	Ν
01573500	Manada Creek at Manada Gap, Pa.	40.397	-76.709	13.5	Ν
01573560	Swatara Creek near Hershey, Pa.	40.298	-76.668	483	Ν
01574000	West Conewago Creek near Manchester, Pa.	40.082	-76.720	510	Ν
01574500	Codorus Creek at Spring Grove, Pa.	39.879	-76.853	75.5	Y
01575000	South Branch Codorus Creek near York, Pa.	39.921	-76.749	117	Y
01575500	Codorus Creek near York, Pa.	39.946	-76.755	222	Y
01576000	Susquehanna River at Marietta, Pa.	40.055	-76.531	25,990	Y
01576085	Little Conestoga Creek near Churchtown, Pa.	40.145	-75.989	5.82	Ν
01576500	Conestoga River at Lancaster, Pa.	40.050	-76.277	324	Ν
01576754	Conestoga River at Conestoga, Pa.	39.946	-76.368	470	Ν
01578310	Susquehanna River at Conowingo, Md.	39.658	-76.174	27,100	Y
01578400	Bowery Run near Quarryville, Pa.	39.895	-76.114	5.98	Ν
01580000	Deer Creek at Rocks, Md.	39.630	-76.403	94.4	Ν
01581500	Bynum Run at Bel Air, Md.	39.541	-76.330	8.52	Ν
01581700	Winters Run near Benson, Md.	39.520	-76.373	34.8	Ν
01582000	Little Falls at Blue Mount, Md.	39.604	-76.620	52.9	Ν
01582500	Gunpowder Falls at Glencoe, Md.	39.550	-76.636	160	Y
01583000	Slade Run near Glyndon, Md.	39.495	-76.795	2.09	Ν
01583100	Piney Run at Dover, Md.	39.521	-76.767	12.3	Ν

Table 2 27

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

 $[\mathrm{ft}^{3}/\mathrm{s};$ cubic feet per second; —, statistic not computed; < , less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01565000	1941-2008	37	17.6	18.6	28.6	20.3	32.4	24.4
01565700	1965-1981	17	.4	.4	.9	.5	1.1	.8
01566000	1913-2008	52	4.3	7.9	18.8	12.4	25.6	19.2
01566500	1932-1958	27	1.7	2.4	4.0	3.2	5.7	4.9
01567000	² 1974–2008	35	504	534	725	589	857	727
01567000	³ 1901–1972	72	311	367	571	439	704	547
01567500	1955-2008	54	2.0	2.2	3.3	2.6	3.8	3.1
01568000	1931-2008	78	12.7	15.5	25.5	19.2	32.0	26.0
01568500	² 1943–1997	55	1.8	2.3	4.3	2.7	5.0	3.1
01569000	1939–1974	14	2.6	4.0	7.4	5.1	9.4	7.8
01569800	1978-2008	31	15.9	17.0	24.4	18.4	26.1	20.3
01570000	³ 1913–1969	35	_	63.1	110	76.1	124	95.3
01570000	² 1971-2008	38	63.1	69.3	109	78.3	125	97.8
01570500	³ 1901–1972	72	2,310	2,440	4,000	2,830	4,950	3,850
01570500	² 1974–2008	35	3,020	3,200	5,180	3,690	6,490	4,960
01571000	1941-1995	16	.1	.2	.6	.3	1.2	.8
01571500	1911-2008	62	81.6	86.8	115	94.0	124	105
01572000	1921–1984	14	2.1	2.3	4.8	3.0	6.5	4.5
01572025	1990-2008	17	15.2	16.4	26.7	18.5	34.6	27.7
01572190	1990-2008	17	19.1	20.5	36.2	23.9	45.8	35.3
01573000	1920-2008	89	18.0	22.0	52.0	30.8	69.2	50.9
01573086	1965–1981	17	.5	.6	2.6	.8	3.3	1.1
01573160	1977–1994	18	26.9	29.6	46.4	33.6	51.9	39.5
01573500	1939–1958	20	1.3	1.4	2.5	1.8	3.2	2.6
01573560	1977-2008	30	50.3	62.0	104	76.9	131	108
01574000	1930-2008	/9	8.0	11.1	32.0	17.7	47.0	33.9
01574500	21968-2008	41	14.2	24.0	35.9	29.4	42.0	33.3
01574500	² 1930–1966	34	2.3	/.1	11.5	9.3	14.8	12.7
01575000	31020 1071	23	./	1.4	0./	3.2	12.0	9.3
01575500	21048 1006	45	.1	.0	10.5	2.5	15.0	0.1
01575500	31022 1072	49	12.1	2 420	41.5	23.9	5 120	33.8
01576000	² 1935–1972	40	2,100	2,420	4,100	2,900	7 190	4,100
01576085	1974-2008	12	2,990	5,270	5,080	3,980	1.2	1.2
01576500	1931-2008	78	т. 27.2	38.6	79.4	49.1	97.3	66.1
01576754	1986-2008	23	74.2	84.9	151	106	189	147
401578310	1969-2008	40	549	2 820	5 650	4 190	7 380	6 1 4 0
01578400	1964-1981	18	14	1.5	2.7	1.9	3.2	2.5
401580000	1928-2008	81	19.7	22.8	48.1	28.1	51.8	35.4
401581500	1946-2008	28	2	3	12	8	17	1.5
⁴ 01581700	1969-2008	40	4.7	5.5	17.5	8.1	18.3	12.0
401582000	1946-2008	63	11.3	12.5	25.0	15.5	28.0	20.3
401582500	1979-2008	27	41.2	43.9	78.8	53.8	90.6	74.1
401583000	1949-1981	33	.3	.3	.7	.3	1.0	.6
401583100	1984-2008	15	2.1	2.4	5.5	3.2	6.0	4.2

StreamStats Report

Duncannon WWTP PA0021245 Modeling Point #1 January 2023

Collapse All

> Basin Characteristics Parameter Code Value Parameter Description Unit CARBON Percentage of area of carbonate rock 5.04 percent DRNAREA Area that drains to a point on a stream 23200 square miles Mean Basin Elevation ELEV 1408 feet FOREST Percentage of area covered by forest 71.2434 percent GLACIATED Percentage of basin area that was historically covered by glaciers 50.9734 percent PRECIP Mean Annual Precipitation 30 inches ROCKDEP Depth to rock 4.5 feet STRDEN Stream Density -- total length of streams divided by drainage area 1.76 miles per square mile

Low-Flow Statistics

Low-Flow Statistics Parameters [39.8 Percent (9220 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	23200	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	39	inches	35	50.4
STRDEN	Stream Density	1.76	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	5.04	percent	0	99

Low-Flow Statistics Parameters [7.0 Percent (1610 square miles) Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	23200	square miles	2.33	1720
ELEV	Mean Basin Elevation	1408	feet	898	2700
PRECIP	Mean Annual Precipitation	39	inches	38.7	47.9

Low-Flow Statistics Parameters [53.0 Percent (12300 square miles) Low Flow Region 5]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	23200	square miles	4.84	982
PRECIP	Mean Annual Precipitation	39	inches	33.1	47.1
GLACIATED	Percent of Glaciation	50.9734	percent	0	100
FOREST	Percent Forest	71.2434	percent	41	100

Low-Flow Statistics Disclaimers [39.8 Percent (9220 square miles) Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [39.8 Percent (9220 square miles) Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	4680	ft^3/s
30 Day 2 Year Low Flow	5590	ft^3/s
7 Day 10 Year Low Flow	3440	ft^3/s
30 Day 10 Year Low Flow	4100	ft^3/s
90 Day 10 Year Low Flow	5220	ft^3/s

Low-Flow Statistics Disclaimers [7.0 Percent (1610 square miles) Low Flow Region 3]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [7.0 Percent (1610 square miles) Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	2110	ft^3/s
30 Day 2 Year Low Flow	2590	ft^3/s
7 Day 10 Year Low Flow	1230	ft^3/s
30 Day 10 Year Low Flow	1530	ft^3/s
90 Day 10 Year Low Flow	2110	ft^3/s

Low-Flow Statistics Disclaimers [53.0 Percent (12300 square miles) Low Flow Region 5]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [53.0 Percent (12300 square miles) Low Flow Region 5]

Statistic	Value	Unit
7 Day 2 Year Low Flow	3100	ft^3/s
30 Day 2 Year Low Flow	3890	ft^3/s
7 Day 10 Year Low Flow	1990	ft^3/s
30 Day 10 Year Low Flow	2550	ft^3/s
90 Day 10 Year Low Flow	3320	ft^3/s

Low-Flow Statistics Flow Report [Area-Averaged]

Statistic	Value	Unit
7 Day 2 Year Low Flow	3650	ft^3/s
30 Day 2 Year Low Flow	4470	ft^3/s
7 Day 10 Year Low Flow	2510	ft^3/s
30 Day 10 Year Low Flow	3090	ft^3/s
90 Day 10 Year Low Flow	3990	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.12.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

StreamStats Report

Duncannon WWTP PA0021245 Modeling Point #2 January 2023

Collapse All

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	5.09	percent
DRNAREA	Area that drains to a point on a stream	23400	square miles
ELEV	Mean Basin Elevation	1403	feet
FOREST	Percentage of area covered by forest	71.2109	percent
GLACIATED	Percentage of basin area that was historically covered by glaciers	50.4372	percent
PRECIP	Mean Annual Precipitation	39	inches
ROCKDEP	Depth to rock	4.5	feet
STRDEN	Stream Density total length of streams divided by drainage area	1.76	miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [40.4 Percent (9460 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	23400	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	39	inches	35	50.4
STRDEN	Stream Density	1.76	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	5.09	percent	0	99

Low-Flow Statistics Parameters [6.9 Percent (1610 square miles) Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	23400	square miles	2.33	1720
ELEV	Mean Basin Elevation	1403	feet	898	2700
PRECIP	Mean Annual Precipitation	39	inches	38.7	47.9

Low-Flow Statistics Parameters [52.5 Percent (12300 square miles) Low Flow Region 5]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	23400	square miles	4.84	982
PRECIP	Mean Annual Precipitation	39	inches	33.1	47.1
GLACIATED	Percent of Glaciation	50.4372	percent	0	100
FOREST	Percent Forest	71.2109	percent	41	100

Low-Flow Statistics Disclaimers [40.4 Percent (9460 square miles) Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [40.4 Percent (9460 square miles) Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	4730	ft^3/s
30 Day 2 Year Low Flow	5640	ft^3/s
7 Day 10 Year Low Flow	3480	ft^3/s
30 Day 10 Year Low Flow	4140	ft^3/s
90 Day 10 Year Low Flow	5270	ft^3/s

Low-Flow Statistics Disclaimers [6.9 Percent (1610 square miles) Low Flow Region 3]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [6.9 Percent (1610 square miles) Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	2120	ft^3/s
30 Day 2 Year Low Flow	2600	ft^3/s
7 Day 10 Year Low Flow	1230	ft^3/s
30 Day 10 Year Low Flow	1540	ft^3/s
90 Day 10 Year Low Flow	2120	ft^3/s

Low-Flow Statistics Disclaimers [52.5 Percent (12300 square miles) Low Flow Region 5]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [52.5 Percent (12300 square miles) Low Flow Region 5]

Statistic	Value	Unit
7 Day 2 Year Low Flow	3120	ft^3/s
30 Day 2 Year Low Flow	3910	ft^3/s
7 Day 10 Year Low Flow	2000	ft^3/s
30 Day 10 Year Low Flow	2560	ft^3/s
90 Day 10 Year Low Flow	3330	ft^3/s

Low-Flow Statistics Flow Report [Area-Averaged]

Statistic	Value	Unit
7 Day 2 Year Low Flow	3700	ft^3/s
30 Day 2 Year Low Flow	4510	ft^3/s
7 Day 10 Year Low Flow	2540	ft^3/s
30 Day 10 Year Low Flow	3120	ft^3/s
90 Day 10 Year Low Flow	4020	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.12.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

Attachment B

WQM 7.0 Modeling Output Values Toxics Management Spreadsheet Output Values

SWP Basin Stream	am Code		Stream Name	<u>e</u>		
07K	6685		SUSQUEHANNA F	RIVER		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Duncannon WWTP	PA0021245	0.740	CBOD5	25		
			NH3-N	25	50	
			Dissolved Oxygen			5
	SWP Basin Strea	SWP Basin Stream Code 07K 6685 Name Permit Number Duncannon WWTP PA0021245	SWP Basin Stream Code 07K 6685 Name Permit Number Disc Flow (mgd) Duncannon WWTP PA0021245 0.740	SWP Basin Stream Code Stream Name 07K 6685 SUSQUEHANNA F Name Permit Number Disc Flow (mgd) Parameter Duncannon WWTP PA0021245 0.740 CBOD5 NH3-N Dissolved Oxygen	SWP Basin Stream Code Stream Name 07K 6685 SUSQUEHANNA RIVER Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Duncannon WWTP PA0021245 0.740 CBOD5 25 NH3-N 25 Dissolved Oxygen	SWP Basin Stream Code Stream Name 07K 6685 SUSQUEHANNA RIVER Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Duncannon WWTP PA0021245 0.740 CBOD5 25 NH3-N 25 50 Dissolved Oxygen

WQM 7.0 Effluent Limits

	SWP Basin Str	eam Code		<u>Sti</u>	ream Name	ED		
	UIK	6665		30300		EK		
NH3-N	Acute Allocatio	ns						
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	n
84.00	0 Duncannon WW	1.78	50	1.78	50	0	0	-
NH3-N RMI	Chronic Alloca Discharge Name	tions Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	_
84.00	0 Duncannon WW	.42	25	.42	25	0	0	_
Dissolv	ed Oxygen Allo	cations						
RMI	Discharge Na	<u>(</u> ame Baseli (mg/l	CBOD5 ine Multiple L) (mg/L)	<u>NH3-N</u> Baseline Mu (mg/L) (m	<u>Dissoh</u> Itiple Baselir g/L) (mg/L	ved Oxygen ne Multiple) (mg/L)	Critical Reach	Perce Reduc

	SWF Basi	9 Strea n Cod	im le	Stre	am Name		RMI	Elevati (ft)	on Dr (ainage Area sq mi)	Slope (ft/ft)	PWS Withdra (mgd	wal)	Apply FC
	07K	66	85 SUSQ	UEHANN	A RIVER		84.00	0 33	6.00 1	9700.00	0.00000		0.00	✓
					St	ream Dat	a							
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tri</u> Temp	<u>butary</u> pH	Tem	<u>Stream</u> p	pН	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
Q7-10	0.157	0.00	0.00	0.000	0.000	0.0	0.00	0.00	23.7	5 8.2	5 (0.00	0.00	
Q1-10 Q30-10		0.00 0.00	0.00 0.00	0.000	0.000									
					Di	scharge [Data							
			Name	Per	mit Number	Existing Disc Flow	Permitte d Disc Flow	e Design Disc Flow	Reserv Facto	Diso ne Tem r	c Dis p p	sc H		
						(mgd)	(mgd)	(mgd)		(ºC))			
		Dunc	annon WW	TP PA	0021245 Pa	0.7400 arameter [) 0.740 Data	0 0.7400	0.0	00 20	0.00	7.00		

Disc

Conc

25.00

5.00

25.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Trib

Conc

Stream

Conc

0.00

0.00

0.00

(mg/L) (mg/L) (mg/L) (1/days)

2.00

8.24

0.00

Fate

Coef

1.50

0.00

0.70

Input Data WQM 7.0

	SWP Stream Basin Code		am de	Stream Name			RMI	Elev (ation ft)	Drainage Area (sq mi)	Slope PWS Withdrawal (ft/ft) (mgd)		Apply FC
	07K 6685 SUSQUEHANNA RIVER					82.82	20	329.00	23400.00	0.00000	0.00	✓	
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Tem	<u>Stream</u> p pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.133	0.00	0.00	0.000	0.000	0.0	0.00	0.00) 2	3.75 8.2	25 (0.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dia	abarga De						
Name	Dis Permit Number	Existing Disc Flow (mgd)	ermiti d Disc Flow (mgd)	te Des Dis Flo) (m	sign sc Res ow Fa gd)	i erve T ictor	Disc 'emp (°C)	Disc pH
		0.0000	0.000	0 0.0	0000	0.000	0.00	7.00
	Par	rameter Da	ata					
	Demonster News	Disc	nc C	Trib Conc	Stream Conc	Fate Coef		
	Parameter Name			ng/L)	(mg/L)	(1/days)		
CBOD5		25	5.00	2.00	0.00	1.50		
Dissolved	Oxygen	3	3.00	8.24	0.00	0.00		
NH3-N		25	5.00	0.00	0.00	0.70		

SWP Basin	Stream Code			Stream Na	me	
07K	6685		SUS	QUEHANN	A RIVER	
RMI 84.000	Total Discharge	e Flow (mgd) Ana	lysis Temper	rature (°C)	Analysis pH
Reach Width (ft)	Reach De	epth (ft)		Reach WD	Ratio	Reach Velocity (fps)
1801.017 <u>Reach CBOD5 (mg/L)</u>	0.76 Reach Kc	60 (1/days <u>)</u>	R	2368.78 each NH3-N	:5 (mg/L)	2.260 <u>Reach Kn (1/days)</u>
2.01 <u>Reach DO (mg/L)</u> 8.242	2.01 0.007 ach DO (mg/L) Reach Kr (1/days) 8.242 12.943 Travel Time (days) Subs			0.01 <u>Kr Equati</u> Tsivoglo	ion bu	0.934 <u>Reach DO Goal (mg/L)</u> 5
Reach Travel Time (day 0.032	<u>s)</u> TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)		
	0.003	2.01	0.01	7.70		
	0.006	2.01	0.01 0.01	7.70 7.70		
	0.013	2.01	0.01	7.70		
	0.019	2.01	0.01	7.70		
	0.022	2.01	0.01 0.01	7.70 7.70		
	0.029 0.032	2.01 2.01	0.01 0.01	7.70 7.70		

WQM 7.0 D.O.Simulation

	SW	<u>P Basin</u> 07K	<u>Strea</u>	<u>m Code</u> 685		SUSQUEHANNA RIVER							
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-1	0 Flow	0.00	3002.00	1 1448	0.00112	76	1801.02	2268 70	2.26	0.032	22.75	8.25	
Q1-1	0 Flow	0.00	3032.30	1.1440	0.00112	.70	1001.02	2300.73	2.20	0.032	25.15	0.25	
84.000	2907.33	0.00	2907.33	1.1448	0.00112	NA	NA	NA	2.18	0.033	23.75	8.25	
Q30-	10 Flow	1											
84.000	3556.84	0.00	3556.84	1.1448	0.00112	NA	NA	NA	2.44	0.030	23.75	8.25	

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.94	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Disch	arge	Stream				
Facility:	Duncar	non W	/WTP		NPDES Permit No.:	PA0021245	Outfall No.: 001
Evaluation T	ype:	Major	Sewage / Inc	lustrial Waste	Wastewater Descrip	otion: Sewage effluent	t

	Discharge Characteristics													
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	P	Partial Mix Factors (PMFs) Complete Mix Times (min)										
		ph (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h						
0.74	100	7.61												

				0 if lef	t blank	0.5 if le	eft blank	0) if left blan	k	1 if lef	t blank	
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	F0 S	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		240									
5	Chloride (PWS)	mg/L		46.5									
l no	Bromide	mg/L	<	0.362									
5	Sulfate (PWS)	mg/L		24.8									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	µg/L		4.67									
2	Free Cyanide	µg/L											
1 d	Total Cyanide	µg/L											
5	Dissolved Iron	µg/L											
-	Total Iron	µg/L											
	Total Lead	µg/L	<	0.172									
	Total Manganese	µg/L											
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	µg/L		21.8									
	Total Molybdenum	µg/L											
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Duncannon WWTP, NPDES Permit No. PA0021245, Outfall 001

Receiving Surface Water Name: Susquehanna River

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	006685	84	342	23,200			Yes
End of Reach 1	006685	82.82	329	23,400			Yes

Statewide Criteria
 Great Lakes Criteria

ORSANCO Criteria

Q 7-10

Location	DMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Timo	Tributa	iry	Strear	n	Analysis	
Location	NU	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	84	0.1328										109	8.25		
End of Reach 1	82.82	0.1328										109	8.25		

No. Reaches to Model:

1

Q_h

Location	DMI	LFY	Flow	ı (cfs)	W/D	Width	Depth	Velocit	Timo	Tributa	iry	Strear	n	Analys	sis
Location	1 NIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	84														
End of Reach 1	82.82														

Stream / Surface Water Information

2/21/2023

NPDES Permit No. PA0021245

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results Duncannon WWTP, NPDES Permit No. PA0021245, Outfall 001 Results **RETURN TO INPUTS** SAVE AS PDF PRINT 🖲 All ○ Inputs ○ Results ○ Limits nstructions Hydrodynamics Wasteload Allocations 0.012 108.73 AFC CCT (min): 15 PMF[.] 8.21 Analysis Hardness (mg/l): Analysis pH: Trib Conc WQC WQ Obj Stream Fate Pollutants WLA (µg/L) Conc Comments CV (µg/L) Coef (µg/L) (µg/L) 0 Total Dissolved Solids (PWS) N/A N/A 0 0 N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 N/A N/A N/A 0 0 14.542 Chem Translator of 0.96 applied Total Copper 0 0 0 15.1 502 Chem Translator of 0.779 applied Total Lead 0 70.733 0 0 90.8 3,009 Chem Translator of 0.978 applied Total Zinc 0 0 0 125,791 129 4,261 CFC CCT (min): 720 PMF: 0.083 Analysis Hardness (mg/l): 108.96 Analysis pH: 8.24 Stream WQ Obj Trib Conc Stream WOC Fate Pollutants Conc WLA (µg/L) Comments CV (µg/L) Coef (µg/L) (µg/L) Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Total Copper Chem Translator of 0.96 applied 0 0 0 9.637 10.0 2,244 Total Lead 0 0 0 2.763 3.55 793 Chem Translator of 0.778 applied Total Zinc 0 0 0 127.048 129 28,808 Chem Translator of 0.986 applied ✓ THH 0.083 Analysis Hardness (mg/l): N/A CCT (min): 720 PMF[.] N/A Analysis pH: rean Stream Trib Conc Fate WQC WQ Obj WLA (µg/L) Pollutants Conc Comments CV (µg/L) Coef (µg/L) (µg/L) ua/L) Total Dissolved Solids (PWS) 0 0 500.000 500.000 N/A 0 Chloride (PWS) 0 0 0 250,000 250,000 N/A

Model Results

Sulfate (PWS)

0

0

2/21/2023

250,000

N/A

250,000

0

Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
CRL CC	Г (min): 7	20	PMF:	0.115	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (Ibs/day)	MDL (Ibs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Copper	322	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	N/A	N/A	Discharge Conc < TQL
Total Zinc	2,731	µg/L	Discharge Conc ≤ 10% WQBEL

Model Results

2/21/2023

Attachment C TRC Evaluation

021245					PA0021
		D	E	F	G
Input appropr	iate values in	B4:B8 and E4:E7			
3080.49792	5 = Q stream (cfs)	0.5	= CV Daily	
0.7	4 = Q discharg	je (MGD)	0.5	= CV Hourly	
i <u>3</u>	0 = no. sample	\$	1	= AFC_Partial N	lix Factor
0.	3 = Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor
1	0 = Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)
0.	5 = BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)
	0 = % Factor o	of Safety (FOS)	0	=Decay Coeffic	ient (K)
Source	Reference	AFC Calculations	050.440	Reference	CFC Calculations
	1.3.2.11	WLA atc =	858.419	1.3.2.0	WLA ctc = 836.883
PENTOXSD TRO	5 5.1a	LTAMOLT arc =	0.373	5.1d	LTA cfc = 486 525
		ETA_aic-	010.007	0.14	ETA_010 - 400.020
Source		Effluent	Limit Calc	ulations	
PENTOXSD TRO	3 5.1f	AM	L MULT =	1.231	
PENTOXSD TRO	3 5.1g	AVG MON LIMI	T (mg/l) =	0.500	BAT/BPJ
		INST MAX LIMI	(mg/l) =	1.635	
WLA afc	(.019/e(-k*A + Xd + (AF	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F	s*.019/Qd* OS/100)	e(-k*AFC_tc))	
WLA afc LTAMULT afc	(.019/e(-k*A + Xd + (AF EXP((0.5*LN	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(c	s*.019/Qd* OS/100) cvh^2+1)^	re(-k*AFC_tc))	
WLA afc LTAMULT afc LTA_afc	(.019/e(-k*Al + Xd + (AF EXP((0.5*LN wla_afc*LTA	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(c MULT_afc	s*.019/Qd* OS/100) cvh^2+1)^	'e(-k*AFC_tc)) 0.5)	
WLA afc LTAMULT afc LTA_afc WLA_cfc	(.019/e(-k*Al + Xd + (AF EXP((0.5*LN wla_afc*LTA (.011/e(-k*Cl + Xd + (CF	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(c MULT_afc FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F	*.019/Qd* OS/100) cvh^2+1)^ *.011/Qd* OS/100)	e(-k*AFC_tc)) 0.5) e(-k*CFC_tc))	
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	(.019/e(-k*A/ + Xd + (AF/ EXP((0.5*LN wla_afc*LTA (.011/e(-k*C/ + Xd + (CF/ EXP((0.5*LN	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(d MULT_afc FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1)	*.019/Qd* OS/100) cvh^2+1)^ *.011/Qd* OS/100)))-2.326*Ll	e(-k*AFC_tc)) 0.5) e(-k*CFC_tc)) N(cvd^2/no_sam	nples+1)^0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	(.019/e(-k*Al + Xd + (AF EXP((0.5*LN wla_afc*LTA (.011/e(-k*Cl + Xd + (CF EXP((0.5*LN wla_cfc*LTA	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(c MULT_afc FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1) MULT_cfc	*.019/Qd* OS/100) cvh^2+1)^\ *.011/Qd*(OS/100)))-2.326*Ll	t e(-k*AFC_tc)) 0.5) e(-k*CFC_tc)) N(cvd^2/no_sam	nples+1)^0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT	(.019/e(-k*Al + Xd + (AF EXP((0.5*LN wla_afc*LTA (.011/e(-k*Cl + Xd + (CF EXP((0.5*LN wla_cfc*LTA EXP(2.326*L	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(d MULT_afc FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1) MULT_cfc N((cvd^2/no_samples	*.019/Qd* OS/100) ovh^2+1)^i *.011/Qd* OS/100)))-2.326*Ll +1)^0.5)-0	re(-k*AFC_tc)) 0.5) e(-k*CFC_tc)) N(cvd^2/no_sam .5*LN(cvd^2/no_	ples+1)^0.5) _samples+1))
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	(.019/e(-k*Al + Xd + (AF EXP((0.5*LN wla_afc*LTA (.011/e(-k*Cl + Xd + (CF EXP((0.5*LN wla_cfc*LTA EXP(2.326*L MIN(BAT_BF	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(d MULT_afc FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1) MULT_cfc N((cvd^2/no_samples 2,MIN(LTA_afc,LTA_c	*.019/Qd* OS/100) cvh^2+1)^\ *.011/Qd*o OS/100)))-2.326*Ll +1)^0.5)-0 :fc)*AML_N	re(-k*AFC_tc)) 0.5) e(-k*CFC_tc)) N(cvd^2/no_sam .5*LN(cvd^2/no_ MULT)	nples+1)^0.5) _samples+1))