

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0021768
APS ID	602736
Authorization ID	1373120

Applicant Address 347 W Union Street F Somerset, PA 15501-1543	Facility Name	Somerset Borough STP 1043 S Center Avenue
Somerset, PA 15501-1543	Facility Address	1043 S Center Avenue
Applicant Contact Ma Michala Ence		Somerset, PA 15501
Applicant Contact Ms. Michele Enos F	Facility Contact	Mr.William Moon
Applicant Phone (814) 443-2661 F	Facility Phone	(814) 443-2661
Client ID <u>64334</u> S	Site ID	244435
Ch 94 Load Status Not Overloaded M	Municipality	Somerset Borough
Connection Status No Limitations C	County	Somerset
Date Application Received October 8, 2021 E	EPA Waived?	No
Date Application Accepted If	f No, Reason	Major Facility

Summary of Review

The Authority has applied for a renewal of NPDES Permit No. PA0021768, which was previously issued by the Department on May 24, 2017. That permit expired on May 31, 2022.

WQM Permit No. 5684404 authorized construction of a STP with an annual average design flow of 2.0 MGD. Preliminary treatment is provided by grit removal, a mechanically cleaned bar screen, and an influent pump station. Treatment is provided by primary settling tanks, trickling filters, secondary settling tanks, and biotowers for nitrification. Disinfection is provided by liquid chlorination followed by dechlorination.

Application data indicates that there is one industrial user in the system, Somerset Hospital.

The receiving stream, East Branch Coxes Creek, is currently classified as a TSF, located in State Watershed No. 19-F.

The Authority has complied with Act 14 Notifications and no comments were received.

The Department sent out a Pre-Draft Survey to the Authority on February 17, 2023, and the Authority's engineer responded on July 13, 2023 (Attachment 7). Their engineer indicated that the Authority would need 3 years to comply with new WQBELs that are further explained in the Development of Effluent Limitations Section of the fact sheet. Please note that WQBELs for Acrolein, and Monitoring requirements for Chlorodibromomethane & 1,1,2-Trichloroethane were imposed based upon sampling results that did not meet the Department's recommended TQLs. These pollutants will be re-evaluated during the draft permit comment period if the Authority elects to conduct additional sampling.

Approve	Deny	Signatures	Date
Х		hill C Mitebell	
		William C. Mitchell, E.I.T. / Project Manager	September 25, 2023
Х		Андова Тазмію Mahbuba lasmin, Ph.D., P.E. / Environmental Engineering Manager	September 29, 2023

Summary of Review

Sludge use and disposal description and location(s): Application data indicates that dried sewage sludge is disposed of at Mostoller Landfill, 7095 Glades Pike Road, Somerset PA, 15501. Application data indicates that the STP receives additional sludge from Salisbury Borough and Lincoln Township.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information					
Outfall No. 001	Design Flow (MGD)	2.0			
Latitude 39° 59' 27.00"	Longitude	-79° 04' 49.00"			
Quad Name Murdock	Quad Code	1913			
Wastewater Description: Sewage Effluent					
Receiving Waters	Stream Code	39012			
NHD Com ID 69916895	RMI	2.27			
Drainage Area 23.8	Yield (cfs/mi²)	0.02478			
Q ₇₋₁₀ Flow (cfs) 0.59	Q ₇₋₁₀ Basis	USGS StreamStats			
Elevation (ft) 2079	Slope (ft/ft)	0.01256			
Watershed No. 19-F	Chapter 93 Class.	TSF			
Existing Use	Existing Use Qualifier				
Exceptions to Use NONE	Exceptions to Criteria	NONE			
Assessment Status Attaining Use(s)					
Cause(s) of Impairment					
Source(s) of Impairment					
TMDL Status Final	Name Coxes Creel	k Watershed			
Background/Ambient Data	Data Source				
pH (SU)					
Temperature (°F)					
Hardness (mg/L)					
Other:					
Nearest Downstream Public Water Supply Intake	Indian Creek Valley Water Au	thority - PWS # 5260011			
PWS Waters Youghiogheny River	Flow at Intake (cfs)				
PWS RMI 62.0	Distance from Outfall (mi)				

Changes Since Last Permit Issuance: Elevation, Slope, DA, Q7/10 Flow, and Yield updated with current data taken from USGS StreamStats (Attachment 1).

Other Comments: A TMDL for the Coxes Creek watershed was approved on April 9, 2009 for the control of abandoned mine drainage pollutants: pH, iron, aluminum, and manganese. In accordance with 40 CFR § 122.44(d)(1)(vii)(B), when developing WQBELs, the permitting authority shall ensure that effluent limits developed to protect a narrative water quality criterion, a numeric water quality criterion, or both, are consistent with the assumptions and requirements of any available wasteload allocation (WLA) for the discharge prepared by the State and approved by the EPA pursuant to 40 CFR § 130.7.

Somerset Borough STP was assigned a Waste Load Allocation (WLA) for total iron, as an average monthly concentration based effluent limit of 2.2 mg/L. The Departments TMS model has recommended a more restrictive WQBEL for total iron, which will be imposed. The TMS model has also recommended monitoring for total aluminum and total manganese, which is further explained in the Development of Effluent Limitations Section of the fact sheet.

Discharge, Receiving Waters and Water Supply Information				
Outfall No.	101	Design Flow (MGD)	Variable	
Latitude	39° 59' 30.00"	Longitude	-79° 04' 52.00"	
Quad NameMurdock		Quad Code	1913	
Wastewater	Description: Storm water			
Receiving W	aters East Branch Coxes Creek (TSF)	Stream Code	39012	

Discharge, Receiving Waters and Water Supply Information				
Design Flow (MGD)	Variable			
Longitude	-79° 04' 50.00"			
Quad Code	1913			
Stream Code	39012			
	Design Flow (MGD) Longitude Quad Code			

Changes Since Last Permit Issuance: No Changes to existing Storm Water Outfalls.

Other Comments: N/A

Treatment Facility Summary				
Treatment Facility Na	me: Somerset Borough Ma	in STP		
WQM Permit No.	Issuance Date			
5684404				
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Trickling Filter With Settling	Hypochlorite & Dechlorination	2.0
•		•		
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
2.0	8,500	Not Overloaded		Landfill

Changes Since Last Permit Issuance: Influent Pump Station pumps have been replaced under WQM Permit Amendment No. 5684404 A-4, issued by the Department on April 22, 2019.

Other Comments: N/A

Compliance History

Operations Compliance Check Summary Report

Facility: Somerset STP

NPDES Permit No.: PA0021768

Compliance Review Period: 9/2018 – 9/2023

Inspection Summary:

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC	UPDATE DATE
3520372	02/15/2023	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted	
3329710	03/01/2022	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted	03/14/2022
3329739	03/01/2022	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted	
3329740	03/01/2022	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted	
3164104	03/19/2021	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted	
3164101	03/10/2021	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted	07/13/2022
3163904	03/10/2021	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted	
3014546	02/25/2020	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted	03/27/2020
3004086	02/10/2020	Routine/Partial Inspection	PA Dept of Environmental Protection	No Violations Noted	
2979149	01/07/2020	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted	07/13/2022
2918761	08/12/2019	Chapter 94 Inspection	PA Dept of Environmental Protection	No Violations Noted	08/12/2019
2860902	02/07/2019	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted	04/01/2019

NPDES Permit Fact Sheet Somerset Borough STP

2826617	11/28/2018	Routine/Partial Inspection	PA Dept of Environmental Protection	No Violations Noted
2807077	11/27/2018	Routine/Partial Inspection	PA Dept of Environmental Protection	No Violations Noted
2806269	10/05/2018	Routine/Partial Inspection	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

VIOL ID	VIOLATION DATE	VIOLATION TYPE DESC	RESOLVED DATE	INSP ID	INSP TYPE	VIOLATION COMMENT
988177	02/15/2023	NPDES - Unauthorized bypass occurred		3520372	Compliance Evaluation	Unauthorized discharge from the EQ lagoon at the treatment plant.
946825	03/01/2022	NPDES - Violation of effluent limits in Part A of permit	03/14/2022	3329710	Compliance Evaluation	
946828	03/01/2022	NPDES - Unauthorized bypass occurred	03/14/2022	3329710	Compliance Evaluation	
910776	03/10/2021	NPDES - Violation of effluent limits in Part A of permit	03/19/2021	3164101	Compliance Evaluation	August - Fecal Coliform value exceeded the effluent Instantaneous Maximum limit.
910777	03/10/2021	NPDES - Unauthorized bypass occurred	03/19/2021	3164101	Compliance Evaluation	December - bypass reported from the EQ lagoon. 30 hour bypass reported due to hydraulic overload of the plant.
910778	03/10/2021	NPDES - Unauthorized bypass occurred	07/13/2022	3164101	Compliance Evaluation	EQ bypass due to hydraulic overload of the plant.
881146	02/25/2020	Wasteload Management - Failure to implement required measures for an existing overload	03/27/2020	3014546	Compliance Evaluation	
872785	01/07/2020	NPDES - Violation of effluent limits in Part A of permit	07/13/2022	2979149	Administrative/File Review	
845348	02/07/2019	NPDES - Violation of effluent limits in Part A of permit	04/01/2019	2860902	Compliance Evaluation	
845349	02/07/2019	Wasteload Management - Failure to implement required measures for an existing overload	04/01/2019	2860902	Compliance Evaluation	

NPDES Permit Fact Sheet Somerset Borough STP

Open Violations by Client ID:

No open violations for Client ID 64334

Enforcement Summary:

ENF ID	ENF TYPE	EXECUTED DATE	ENF FINALSTATUS	ENF CLOSED DATE
401838	NOV	03/14/2022	Administrative Close Out	07/13/2022
384878	NOV	03/27/2020	Administrative Close Out	07/05/2022
373452	NOV	04/01/2019	Administrative Close Out	04/09/2021

DMR Violation Summary:

START	END	NON COMPLIANCE CATEGORY	PARAMETER	SAMPLE	PERMIT	UNIT	STATISTICAL BASE CODE
05/01/2021	05/31/2021	Load 1 Effluent Violation	Iron, Total	43.59	36.7	lbs/day	Average Monthly
08/01/2020	08/31/2020	Concentration 3 Effluent Violation	Fecal Coliform	2485.5	1000	No./100 ml	Instantaneous Maximum

Compliance Status: Permittee currently under a CAP and soon to be COA

Completed by: John Murphy

Completed date: 9/11/2023

Compliance History

DMR Data for Outfall 001 (from August 1, 2022 to July 31, 2023)

Parameter	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22
Flow (MGD)												
Average Monthly	1.408	1.281	1.530	1.467	2.201	1.782	2.472	1.848	1.576	1.224	1.229	1.285
Flow (MGD)												
Daily Maximum	2.874	3.015	3.289	2.959	5.933	4.152	5.451	3.740	5.502	3.209	2.536	3.833
pH (S.U.)												
Minimum	7.2	7.2	7.1	7.0	6.9	7.0	7.0	7.0	7.1	7.0	7.1	7.0
pH (S.U.)												
Maximum	7.6	7.6	7.7	7.5	7.6	7.6	7.6	7.8	7.8	7.6	7.5	7.6
DO (mg/L)												
Minimum	7.4	7.3	8.3	8.8	9.6	9.4	9.7	9.3	8.4	8.3	7.7	7.5
TRC (mg/L)												
Average Monthly	0.09	0.02	0.08	0.07	0.10	0.07	0.10	0.10	0.01	0.04	0.02	0.03
TRC (mg/L)												
Instantaneous												
Maximum	0.66	0.37	0.31	0.39	0.56	0.37	0.40	0.61	0.10	0.35	0.15	0.45
CBOD5 (lbs/day)												
Average Monthly	< 36.8	50.8	76.4	51.9	< 43.3	< 38.1	< 32.0	< 21.3	< 22.0	< 15.2	< 26.6	< 21.7
CBOD5 (lbs/day)												
Weekly Average	55.9	70.3	191.8	96.0	< 59.7	76.8	< 40.9	< 28.6	< 29.5	< 18.6	< 57.1	< 26.6
CBOD5 (mg/L)												
Average Monthly	< 3.3	4.5	5.2	4.4	< 2.9	< 2.0	< 1.8	< 1.6	< 1.9	< 1.5	< 1.9	< 2.1
CBOD5 (mg/L)												
Weekly Average	4.0	5.5	8.5	7.0	4.5	2.5	< 2.3	< 1.8	< 2.3	< 1.7	< 2.8	< 3.0
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	1758.0	1976.2	2154.5	1316.4	1572.0	1497.2	1445.2	1708.2	977.4	1077	1123.5	1092.3
BOD5 (lbs/day)												
Raw Sewage Influent	0.400.0	0.400			40== 0	4040	40000	4500	4000	4070		45000
 description of the control of the contr	2433.0	3102	2826.0	2235.0	1955.0	1949	1886.0	4526	1930	1378	1459.0	1590.0
BOD5 (mg/L)												
Raw Sewage Influent												
 Average	105.4	100 5	402.0	440.0	112.0	100 5	02.5	105.6	00.0	111 0	00.0	440.0
Monthly	165.4	188.5	183.0	119.9	112.9	100.5	83.5	135.6	90.8	111.8	96.0	112.3
TSS (lbs/day)	47.7	60.7	70.4	90.0	50.4	. 75.6	. 74.4	. 20. 4	. 54.4	. 07.0	. 40.7	. 27.7
Average Monthly	47.7	60.7	70.1	80.8	59.1	< 75.6	< 74.4	< 30.4	< 54.1	< 27.3	< 48.7	< 27.7

NPDES Permit Fact Sheet Somerset Borough STP

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	1995.7	1595.3	2235.0	1912.8	1779.8	2069	1485.5	2384.7	2147.8	2019.8	1860.6	1952.1
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	3558.0	3048	3484.0	2909.0	2866.0	2814	1823.0	7131	4408	3647	3976.0	3018.0
TSS (lbs/day)												
Weekly Average	69.7	86.1	129.1	111.2	77.5	142.8	< 147.3	< 34.9	122.5	< 31.8	< 117.7	37.4
TSS (mg/L)												
Average Monthly	4.4	5.4	5.3	7.0	4.1	< 4.0	< 3.8	< 2.4	< 4.2	< 2.8	< 3.5	< 2.5
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	186.0	145.1	182.7	170.6	126.9	135.3	85.7	188.5	206.3	214.9	155.4	197.8
TSS (mg/L)												
Weekly Average	5.5	6.0	6.0	10.0	5.0	4.5	7.0	< 3.0	6.5	< 3.5	< 8.0	3.5
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 3.6	9.2	9.3	10.5	14.0	18.3	66.1	10.5	< 7.4	6.0	39.0	31.5
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	17.2	38.2	130.0	1177.9	28.2	210.4	153.4	33.7	124.8	21.3	753.8	403.1
Total Nitrogen (mg/L)												
Daily Maximum		< 17.7			13.4			< 19.6			< 21.2	
Ammonia (lbs/day)												
Average Monthly	< 1.08	< 1.65	< 1.95	< 1.22	< 3.11	< 6.73	< 2.91	< 5.28	< 3.78	< 1.38	< 2.12	< 1.46
Ammonia (mg/L)												
Average Monthly	< 0.10	< 0.14	< 0.16	< 0.11	< 0.21	< 0.3	< 0.15	< 0.43	< 0.32	< 0.14	< 0.14	< 0.14
Ammonia (mg/L)												
Weekly Average	< 0.10	0.22	< 0.36	< 0.13	< 0.30	0.85	0.23	0.85	< 1.16	< 0.25	< 0.26	< 0.19
Total Phosphorus												
(mg/L)												
Daily Maximum		1.39			1.14			2.74			1.89	
Total Iron (lbs/day)												
Average Monthly	8.75	9.10	12.30	10.04	13.79	21.76	11.73	15.85	12.80	8.70	9.67	6.43
Total Iron (mg/L)												
Average Monthly	0.75	0.82	1.01	0.81	0.84	1.11	0.67	1.27	1.07	0.90	0.56	0.48
Total Iron (mg/L)												
Weekly Average	0.90	1.23	1.49	1.17	1.16	1.95	0.81	1.88	1.84	1.21	1.25	0.62

	Develop	ment of Effluent Limitations	
Outfall No.	001	Design Flow (MGD)	2.0
Latitude	39° 59' 27.00"	Longitude	-79° 04' 49.00"
Wastewater D	Description: Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Impose the above Technology-Based Limitations for CBOD₅, TSS, pH, and Fecal Coliform.

Water Quality-Based Limitations

A "Reasonable Potential Analysis" (Attachment 4 - TMS Version 1.4) determined the following parameters were candidates for limitations: Total Aluminum, Total Boron, Hexavalent Chromium, Total Cobalt, Total Copper, Free Cyanide, Dissolved Iron, Total Iron, Total Lead, Total Manganese, Total Zinc, Acrolein, Chlorodibromomethane, Chloroform, Dichlorobromomethane, 1,1,2-Trichloroethane.

The following limitations were determined through water quality modeling (Attachments 2, 3,4, and 5):

Parameter	Limit (mg/l)	SBC	Model
Ammonia-Nitrogen	4.9	Average Monthly	WQM 7.0 Version 1.1
Nov 1 – Apr 30			
Ammonia-Nitrogen	2.2	Average Monthly	WQM 7.0 Version 1.1
May 1 – Oct 31			
Dissolved Oxygen	6.0	Inst Minimum	WQM 7.0 Version 1.1
TRC	0.03	Average Monthly	TRC_CALC
Chromium, Hexavalent (ug/L)	12.4	Average Monthly	TMS Version 1.4
Copper, Total (ug/L)	18.4	Average Monthly	TMS Version 1.4
Cyanide, Free (ug/L)	4.76	Average Monthly	TMS Version 1.4
Iron, Dissolved (ug/L)	357.0	Average Monthly	TMS Version 1.4
Iron, Total	1.78	Average Monthly	TMS Version 1.4
Acrolein (ug/L)	3.0	Average Monthly	TMS Version 1.4
Chloroform (ug/L)	6.79	Average Monthly	TMS Version 1.4
Dichlorobromomethane (ug/L)	2.39	Average Monthly	TMS Version 1.4
1,1,2-Trichloroethane (ug/L)	1.38	Average Monthly	TMS Version 1.4

Comments: Due to anti-backsliding, the summer period Ammonia-Nitrogen limitation of 2.0 mg/L (Average Monthly Concentration) will again be imposed from the previous permit.

NPDES Permit Fact Sheet Somerset Borough STP

DMR data indicates that the Authority can not comply with revised more restrictive TRC WQBELs. Part C.V (Titled "Requirements for TRC) has been added to the permit. The Authority will have 3 years to comply with the final effluent limitation, as requested in the Pre-Draft Survey Response Letter (Attachment 7). During the interim period the existing TRC limit of 0.38 mg/L (Average Monthly Concentration) will be imposed.

Part C.III. (Titled "WQBELs for Toxic Pollutants) has been added to the permit. The Authority has the opportunity to collect site-specific data and conduct a TRE. The Authority will have 3 years to complete the required studies and submit a Final WQBEL Compliance Report to the Department before having to comply with Final Permit Limits for Free Cyanide, Dissolved Iron, Acrolein, Dichlorobromomethane, and Chloroform.

Application data indicates that the Authority can comply with WQBELs for Hexavalent Chromium, Total Copper, Total Iron, and 1,1,2-Trichloroethane upon permit issuance.

The TMS Model Results recommended Monitoring be established for Total Aluminum, Total Boron, Total Cobalt, Total Lead, Total Manganese, Total Zinc, and Chlorodibromomethane, as the discharge concentration of those parameters is greater than 10 % of the governing WQBELs (no RP).

Best Professional Judgment (BPJ) Limitations

Comments: N/A

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits (Document No. 386-0400-001).

For POTWs, mass loading limits will be established for CBOD5, TSS, NH3-N, and where necessary Total P and Total N. In general, average monthly mass loading limits will be established for CBOD5, TSS, NH3-N, and where necessary Total P and Total N, and average weekly mass loading limits will be established for CBOD5 and TSS (Section IV, SOP for Clean Water Program, Establishing Effluent Limitations for Individual Sewage Permits, Final November 9, 2012, Revised March 24, 2021, Version 1.9).

For POTWs with design flows greater than 2,000 GPD and for non-municipal sewage facilities that service municipalities or portions thereof, the application manager will establish influent BOD5 and TSS monitoring in the permit using the same frequency and sample type as is used for other effluent parameters (Section IV.E.8, SOP for Clean Water Program, New and Reissuance Sewage Individual NPDES Permit Applications, Final November 9, 2012, Revised February 3, 2022, Version 2.0).

NPDES Permit No. PA0021768

NPDES Permit Fact Sheet Somerset Borough STP

Sewage discharges will include monitoring, at a minimum, for *E. Coli*, in new and reissued permits, with a monitoring frequency of 1/month for design flows > 1.0 MGD per 92a.61and Section I.A, Note 12, SOP for Clean Water Program, Establishing Effluent Limitations for Individual Sewage Permits, Final November 9, 2012, Revised March 24, 2021, Version 1.9.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/quarter monitoring requirement for Total N & Total P has been added to the permit per Chapter 92a.61and Section I.A, Note 7 & 8, SOP for Clean Water Program, Establishing Effluent Limitations for Individual Sewage Permits, Final November 9, 2012, Revised March 24, 2021, Version 1.9. Discharge is to waters not impaired for nutrients.

TIWCa = 0.8398 / 0.3 = 100%

Comorcot Boroa	9 0 11			
		Whole Effluent Toxicity (V	VET)	
For Outfall 001,	☐ Acute ⊠ Chronic Wi	ET Testing was completed:		
Quarterly	•		cted.	
	s used for the tests was: d for analysis of the result	100%, 81%, 61%, 31%, and as is: 61 %.	15%. The Target Instre	eam Waste Concentration
Summary of Fou	ır Most Recent Test Res	<u>ults</u>		
TST Data Analysi	i <u>s</u>			
(NOTE – In lieu o	f recording information be	elow, the application manager	may attach the DEP WE	ET Analysis Spreadsheet).
	Ceriodaphnia I	Results (Pass/Fail)	Pimephales Re	sults (Pass/Fail)
Test Date	Survival	Reproduction	Survival	Growth
08/15/2018	Pass	Pass	Pass	Pass
06/10/2019	Pass	Pass	Pass	Pass
06/09/2020	Pass	Pass	Pass	Pass
07/20/2021 * 4 "passing" room	Pass	Pass ate data for the TIWC is not sta	Pass	Pass Pass
Is there reasonab		on above water quality standanined anytime there is at least		
Comments: N/A				
Evaluation of Te	st Type, IWC and Dilutio	on Series for Renewed Perm	<u>nit</u>	
Acute Partial Mix	Factor (PMFa): 1	Chronic Partial Mix Fac	tor (PMFc): 1	
1. Determine IV	VC – Acute (IWCa):			
(Q _d x 1.547) /	((Q ₇₋₁₀ x PMFa) + (Q _d x 1	.547))		
[(2.0 MGD x 1	1.547) / ((0.59 cfs x 1) + (2	2.0 MGD x 1.547))] x 100 = 83	3.98%	
Is IWCa < 1%	5? 🗌 YES 🛭 NO <mark>(YES</mark>	- Acute Tests Required OR	NO - Chronic Tests Re	<mark>quired)</mark>
If the dischar	ge is to the tidal portion of	the Delaware River, indicate	how the type of test was	determined:
N/A				
Type of Test	for Permit Renewal: Ch	ronic		
2a. Determine Ta	arget IWCa (If Acute Tes	sts Required)		

2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

 $[(2.0 \text{ MGD} \times 1.547) / ((0.59 \text{ cfs} \times 1.0) + (2.0 \text{ MGD} \times 1.547))] \times 100 = 84.0\%$

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 92%, 84%, 42%, and 21%.

WET Limits

Has reasonable potential been determined? $\ \square$ YES $\ \boxtimes$ NO

Will WET limits be established in the permit? ☐ YES ☒ NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of 36th Month.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
ralametei	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
TRC	XXX	XXX	XXX	0.38	XXX	1.23	1/day	Grab
								24-Hr
Free Cyanide (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Composite
	-			-				24-Hr
Dissolved Iron (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Composite
								4 Grabs/24
Acrolein (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Hours
	-			-				4 Grabs/24
Dichlorobromo-methane (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Hours
								4 Grabs/24
Chloroform (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Hours

Compliance Sampling Location: 001

Other Comments: N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Beginning of 37th Month through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
TRC	XXX	XXX	XXX	0.03	XXX	0.12	1/day	Grab
								24-Hr
Free Cyanide (ug/L)	0.079	0.12	XXX	4.76	7.43	11.9	1/week	Composite
								24-Hr
Dissolved Iron (ug/L)	5.96	9.3	XXX	357.0	557.0	893	1/week	Composite
								4 Grabs/24
Acrolein (ug/L)	0.05	0.06	XXX	3.0	3.57	3.57	1/week	Hours
								4 Grabs/24
Dichlorobromo-methane (ug/L)	0.04	0.062	XXX	2.39	3.73	5.97	1/week	Hours
								4 Grabs/24
Chloroform (ug/L)	0.11	0.18	XXX	6.79	10.6	17	1/week	Hours

Compliance Sampling Location: 001

Other Comments: N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	6.0 Inst Min	XXX	XXX	XXX	1/day	Grab
CBOD5	415	665 Wkly Avg	XXX	25.0	40.0 Wkly Avg	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Wkly Avg	XXX	Report	Report Wkly Avg	XXX	2/week	24-Hr Composite
TSS	500	750 Wkly Avg	XXX	30.0	45.0 Wkly Avg	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Wkly Avg	XXX	Report	Report Wkly Avg	XXX	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	81.7	XXX	XXX	4.9	XXX	9.8	2/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	33.3	XXX	XXX	2.0	XXX	4	2/week	24-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Faranteter	Average	Daily		Average	Daily	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
								24-Hr
Total Aluminum (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Total Boron (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Hexavalent Chromium (ug/L)	0.21	0.32	XXX	12.4	19.3	30.9	1/week	Composite
				_				24-Hr
Total Cobalt (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Total Copper (ug/L)	0.31	0.48	XXX	18.4	28.7	46	1/week	Composite
								24-Hr
Total Iron	29.8	46.5	XXX	1.78	2.78	XXX	1/week	Composite
							., .	24-Hr
Total Lead (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Composite
							., .	24-Hr
Total Manganese (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Composite
_ , , _, , , , , , , , , , , , , , , ,							., .	24-Hr
Total Zinc (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Composite
	_	_		_	_			4 Grabs/24
Chlorodibromo-methane (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Hours
1				4.00	0.40			4 Grabs/24
1,1,2-Trichloroethane (ug/L)	0.023	0.036	XXX	1.38	2.16	3.46	1/week	Hours

Compliance Sampling Location: 001

Other Comments: N/A

Attachment 1 - USGS StreamStats Report

2/7/23, 10:52 AM StreamStats

StreamStats Report - PA0021768

Region ID: PA

Workspace ID: PA20230207152226252000

Clicked Point (Latitude, Longitude): 39.99187, -79.08057

Time: 2023-02-07 10:22:47 -0500

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	23.8	square miles
ELEV	Mean Basin Elevation	2298	feet

> Low-Flow Statistics

2/7/23, 10:52 AM StreamStats

Low-Flow Statistics Parameters [99.9 Percent (23.8 square miles) Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	23.8	square miles	2.26	1400
ELEV	Mean Basin Elevation	2298	feet	1050	2580

Low-Flow Statistics Flow Report [99.9 Percent (23.8 square miles) Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	1.79	ft^3/s	43	43
30 Day 2 Year Low Flow	3.09	ft^3/s	38	38
7 Day 10 Year Low Flow	0.59	ft^3/s	66	66
30 Day 10 Year Low Flow	1.06	ft^3/s	54	54
90 Day 10 Year Low Flow	2.15	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

https://streamstats.usgs.gov/ss/ 2/3

2/7/23, 10:52 AM StreamStats

Application Version: 4.12.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

https://streamstats.usgs.gov/ss/

Attachment 2 - WQM 7.0 Version 1.1 - Summer Period

Input Data WQM 7.0

						put Dut	u W Q	11 7.0					
	SWP Basir			Stre	eam Nam	e	RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Appl FC
	19F	390	012 EAST	BRANCH	COXES	CREEK	2.2	70 20	79.00	23.80	0.00000	0.00	~
						Stream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	Tributary pH	<u>S</u> Temp	Stream pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.025	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000)	0.00	0.00	25	.00 7.0	0.0	00 0.00)
						Discharge	Data						
			Name	Pe	rmit Numl	Disc	Permitt Disc Flow (mgd)	Flow	Rese Fac		р рН		
		PA00	21768	Sor	merset ST	rP 0.000	0 2.000	00 2.000	00 0	.000 2	0.00 7	.00	
						Parameter	Data						
			ı	Paramete	r Name	C	onc (Conc (tream Conc	Fate Coef			
	_					(n	ng/L) (r	mg/L) (r	ng/L)	(1/days)			
			CBOD5				25.00	2.00	0.00	1.50			
			Dissolved	Oxygen			4.00	8.24	0.00	0.00			
			NH3-N				25.00	0.00	0.00	0.70			

Input Data WQM 7.0

						put Dut	u							
	SWP Basir			Str	eam Nam	e	RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	Irawal	Apply FC
	19F	39	012 EAST	BRANCH	COXES	CREEK	1.32	20 20	16.00	25.40	0.00000)	0.00	✓
						Stream Da	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ter	Strean np	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°(C)		
Q7-10 Q1-10 Q30-10	0.025	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000)	0.00	0.00	25	5.00 7.	00	0.00	0.00	
						Discharge	Data]	
			Name	Pe	rmit Numl	Disc	Permitte Disc Flow (mgd)		Rese Fac		mp	isc pH		
						0.000	0.000	0.000	00 0	0.000	0.00	7.00		
						Parameter	Data							
				Paramete	r Name				ream Conc	Fate Coef				
						(n	ng/L) (r	mg/L) (r	mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	ım Code				Stream	<u>Name</u>			
		19F	3	9012			EAST BR	ANCH (COXES CI	REEK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
2.270	0.59	0.00	0.59	3.094	0.01256	1.254	12.54	10	0.23	0.248	20.80	7.00
Q1-1	0 Flow											
2.270	0.38	0.00	0.38	3.094	0.01256	NA	NA	NA	0.23	0.256	20.54	7.00
Q30-	10 Flow	,										
2.270	0.80	0.00	0.80	3.094	0.01256	NA	NA	NA	0.24	0.240	21.03	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	~
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
19F	39012	EAST BRANCH COXES CREEK

NH3-N	Acute Allocation	ıs					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.27	70 PA0021768	16.02	17.98	16.02	17.98	0	0
NH3-N	Chronic Allocati	ons					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2 27	O PA0021768	177	2 22	1 77	2 22	1	0

Dissolved Oxygen Allocations

		CBC		NH:	3-N	Dissolved	d Oxygen	Caldianal	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	iviuitipie	baseline	iviuitipie	Reach	Reduction
2.27 PA	A0021768	25	25	2.22	2.22	6	6	0	0

WQM 7.0 D.O.Simulation

	SWP Basin	Stream Code			Stream Nan	<u>ne</u>	
	19F	39012		EAST B	RANCH COX	ES CREEK	
	<u>RMI</u>	Total Discharge	Flow (mgd) Ana	lysis Tempera	ture (ºC)	Analysis pH
	2.270	2.00	0		20.800		7.000
	Reach Width (ft)	Reach De	pth (ft)		Reach WDR	<u>atio</u>	Reach Velocity (fps)
	12.537	1.25	4		10.000		0.234
	Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
	21.32	1.47	3		1.87		0.744
	Reach DO (mg/L)	Reach Kr (•		Kr Equatio		Reach DO Goal (mg/L)
	6.359	28.50)6		Tsivoglou		6
R	each Travel Time (days	s)	Subreach	Doculte			
	0.248	TravTime	CBOD5	NH3-N	D.O.		
		(days)	(mg/L)	(mg/L)	(mg/L)		
		0.025	20.53	1.83	6.75		
		0.050	19.76	1.80	6.97		
		0.074	19.03	1.77	7.12		
		0.099	18.32	1.73	7.22		
		0.124	17.64	1.70	7.30		
		0.149	16.99	1.67	7.37		
		0.173	16.36	1.64	7.43		
		0.198	15.75	1.61	7.49		
		0.223	15.16	1.58	7.54		
		0.248	14.60	1.55	7.59		

WQM 7.0 Effluent Limits

		eam Code 39012	E	Stream Name AST BRANCH COXE	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.270	PA0021768	Somerset STP	0.000	CBOD5	25		
				NH3-N	2.22	4.44	
				Dissolved Oxygen			6

Attachment 3 - WQM 7.0 Version 1.1 - Winter Period

Input Data WQM 7.0

						put Dut								
	SWP Basin			Stre	eam Nam	e	RMI		ation t)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Appl FC
	19F	390	12 EAST	BRANCH	COXES	CREEK	2.2	70 20	079.00	23.80	0.000	00	0.00	✓
						Stream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH	Т	Strear emp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	((°C)		
Q7-10 Q1-10 Q30-10	0.050	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000)	0.00	0.00		5.00 7	.00	0.00	0.00	
						Discharge						5:]	
			Name	Per	rmit Numl	Disc	Permitt Disc Flow (mgd	Disc Flow	Res / Fa	erve Te	isc mp C)	Disc pH		
		PA00	21768	Sor	merset ST	TP 0.000	0 2.000	00 2.00	00	0.000	15.00	7.00		
						Parameter	Data							
			ı	Paramete	r Name				tream Conc	Fate Coef				
						(n	ng/L) (r	mg/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	12.51	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basir			Stre	eam Nam	e	RMI	Eleva (ft		Drainage Area (sq mi)		. With	PWS hdrawal mgd)	Apply FC
	19F	39	012 EAST	BRANCH	COXES	CREEK	1.3)16.00		40 0.0		0.00	✓
						Stream Dat	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p p	Н	Strea Temp	am pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)		
Q7-10 Q1-10 Q30-10	0.050	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000)	0.00	0.00	į	5.00	7.00	0.00	0.00	
		Discharge Data												
			Name	Per	mit Numl	Disc	Disc Flow	Flow	Res Fa	erve T ctor	Disc 「emp (°C)	Disc pH		
						0.000	0.00	0.00	00 (0.000	0.00	7.00		
						Parameter	Data							
				Paramete	r Name				tream Conc	Fate Coef				
				aramete	rtanic	(m	ng/L) (r	mg/L) (ı	mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70)			

WQM 7.0 Hydrodynamic Outputs

	SWP Basin Stream Code					<u>Stream Name</u>							
		19F	3	9012		EAST BRANCH COXES CREEK							
RMI	Stream Flow	PWS With		Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Trav	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	Flow (cfs)	Flow (cfs)	(ft/ft)	(ft)	(ft)		(fps)	Time (days)	(°C)		
Q7-1	Q7-10 Flow												
2.270	1.18	0.00	1.18	3.094	0.01256	1.295	12.95	10	0.25	0.228	12.24	7.00	
Q1-1	0 Flow												
2.270	0.75	0.00	0.75	3.094	0.01256	NA	NA	NA	0.24	0.242	13.04	7.00	
Q30-	10 Flow	1											
2.270	1.60	0.00	1.60	3.094	0.01256	NA	NA	NA	0.27	0.216	11.59	7.00	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	✓
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

Stream Name

	19F 3	9012		EAST BRAN	ICH COXES	REEK		
NH3-N A	cute Allocation	ıs						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
2.270	PA0021768	24.1	29.98	24.1	29.98	0	0	

NH3-N Chronic Allocations

SWP Basin

Stream Code

IALIS-IA	Chronic Anocat	IONS					
RMI	Discharge Name	Baseline	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.27	70 PA0021768	3.25	4.93	3.25	4.93	0	0

Dissolved Oxygen Allocations

		CBC		<u>NH3-N</u>		Dissolve	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Muluple	Dascillic	Multiple	Reach	Reduction
2.27	PA0021768	25	25	4.93	4.93	4	4	0	0

WQM 7.0 D.O.Simulation

SWP Basin St 19F	ream Code 39012	<u>Stream Name</u> EAST BRANCH COXES CREEK							
RMI 2.270 Reach Width (ft) 12.954 Reach CBOD5 (mg/L) 18.65 Reach DO (mg/L)	Total Discharge 2.000 Reach De 1.290 Reach Kc (1.450 Reach Kr (oth (ft) 5 1/days)		(°C) Analys 7.00 <u>Reach Velo</u> 0.25 L) <u>Reach Kn</u> 0.38 Reach DO G	00 ocity (fps) 55 (1/days) 35				
6.349 Reach Travel Time (days) 0.228	25.28 TravTime (days)		Results NH3-N (mg/L)	Kr Equation Tsivoglou D.O. (mg/L)	6				
	0.023 0.046 0.068 0.091 0.114 0.137 0.160	18.23 17.81 17.40 17.00 16.61 16.23 15.86	3.54 3.51 3.48 3.45 3.42 3.39 3.36	7.67 8.42 8.85 9.11 9.26 9.36 9.43					
	0.182 0.205 0.228	15.50 15.14 14.80	3.33 3.30 3.27	9.48 9.51 9.54					

WQM 7.0 Effluent Limits

	SWP Basin Str 19F	<u>eam Code</u> 39012	E	Stream Name AST BRANCH COXE	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.270	PA0021768	Somerset STP	0.000	CBOD5	25		
				NH3-N	4.93	9.86	
				Dissolved Oxygen			4

Attachment 4 - TMS Version 1.4

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions	Dischar	ge Stream				
Facility:	Somerset	Borough STP		NPDES Permit No.:	PA0021768	Outfall No.: 001
Evaluation T	ype: N	lajor Sewage / In	dustrial Waste	Wastewater Descripti	ion: Sewage Effluent	

Discharge Characteristics											
Design Flow	Handrage (mar(l))	-U.(CII)*	P	artial Mix Fa	Complete Mix Times (min)						
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh			
2	195.7	7									

					0 if left	t blank	0.5 if le	eft blank	0 if left blank		k	1 if left blank	
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transi
	Total Dissolved Solids (PWS)	mg/L		621									
1	Chloride (PWS)	mg/L		212									
Group 1	Bromide	mg/L		0.2									
5	Sulfate (PWS)	mg/L		62.5									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L		108									
	Total Antimony	μg/L	>	1									
	Total Arsenic	μg/L		1									
	Total Barium	μg/L		90.8									
	Total Beryllium	μg/L		1									
	Total Boron	μg/L		226									
	Total Cadmium	μg/L	<	0.2									
	Total Chromium (III)	μg/L		10									
	Hexavalent Chromium	μg/L		13									
	Total Cobalt	μg/L		2.9									
	Total Copper	μg/L		16.4									
2	Free Cyanide	μg/L		6									
Group	Total Cyanide	μg/L		12									
5	Dissolved Iron	μg/L		1720									
	Total Iron	μg/L		1810									
	Total Lead	μg/L		1.1									
	Total Manganese	μg/L		138									
	Total Mercury	μg/L	<	0.2									
	Total Nickel	μg/L		10									
	Total Phenols (Phenolics) (PWS)	μg/L		0.5									
	Total Selenium	μg/L	<	1									
	Total Silver	μg/L		0.5									
	Total Thallium	μg/L	<	0.2									
	Total Zinc	μg/L		38.3									
	Total Molybdenum	μg/L		1.7									
	Acrolein	μg/L	<	5									
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<	1									
	Benzene	μg/L	<	0.5									
	Bromoform	μg/L	<	1									

1	0.1. 7. 11.11			0.5					
	Carbon Tetrachloride	μg/L	<	0.5					
	Chlorobenzene	μg/L		0.5					
	Chlorodibromomethane	μg/L	<	1					
	Chloroethane	μg/L	<	0.5					
	2-Chloroethyl Vinyl Ether	μg/L	<	1					
	Chloroform	μg/L		11					
	Dichlorobromomethane	μg/L		3					
	1,1-Dichloroethane	μg/L	<	0.5					
က	1,2-Dichloroethane	μg/L	<	0.5					
ò	1,1-Dichloroethylene	μg/L	<	0.5					
Group	1,2-Dichloropropane	µg/L	<	0.5					
ō	1,3-Dichloropropylene	μg/L	<	0.5					
	1,4-Dioxane	µg/L	<	50					
	Ethylbenzene	μg/L	<	0.5					
	-		\vdash	1					
	Methyl Bromide	μg/L	<	_					
	Methyl Chloride	μg/L	<	0.5					
	Methylene Chloride	μg/L	<	0.5					
	1,1,2,2-Tetrachloroethane	μg/L	<	0.5					
	Tetrachloroethylene	μg/L	<	0.5					
	Toluene	μg/L	<	0.5					
	1,2-trans-Dichloroethylene	μg/L	<	1					
	1,1,1-Trichloroethane	μg/L	<	0.5					
	1,1,2-Trichloroethane	μg/L	<	1					
	Trichloroethylene	μg/L	<	0.5					
	Vinyl Chloride	μg/L	<	0.5					
	2-Chlorophenol	μg/L	<	0.5					
	2,4-Dichlorophenol	μg/L	<	0.5					
	2,4-Dimethylphenol	μg/L	<	0.5					
	4,6-Dinitro-o-Cresol	μg/L	<	5					
4	2,4-Dinitrophenol	μg/L	<	1.9					
	2-Nitrophenol		<	0.9					
2		μg/L	$\overline{}$						
G	4-Nitrophenol	μg/L	<	0.9					
	p-Chloro-m-Cresol	μg/L	<	0.2					
	Pentachlorophenol	μg/L	<	0.9					
	Phenol	μg/L	<	0.5					
	2,4,6-Trichlorophenol	μg/L	<	0.5					
	Acenaphthene	μg/L	<	0.2					
	Acenaphthylene	μg/L	<	0.2					
	Anthracene	μg/L	<	0.2					
	Benzidine	μg/L	<	0.9					
	Benzo(a)Anthracene	μg/L	<	0.2					
	Benzo(a)Pyrene	μg/L	<	0.2					
	3,4-Benzofluoranthene	μg/L	<	0.2					
	Benzo(ghi)Perylene	μg/L	<	0.2					
	Benzo(k)Fluoranthene	μg/L	<	0.2					
	Bis(2-Chloroethoxy)Methane	μg/L	<	0.2					
	Bis(2-Chloroethyl)Ether	μg/L	<	0.2					
	Bis(2-Chloroisopropyl)Ether		-	0.2					
		μg/L	<						
	Bis(2-Ethylhexyl)Phthalate	μg/L	<	2.8					
	4-Bromophenyl Phenyl Ether	μg/L	<	0.2					
	Butyl Benzyl Phthalate	μg/L	<	1.9					
	2-Chloronaphthalene	μg/L	<	0.2					
	4-Chlorophenyl Phenyl Ether	μg/L	<	0.2					
	Chrysene	μg/L	<	0.2					
	Dibenzo(a,h)Anthrancene	μg/L	<	0.2					
	1,2-Dichlorobenzene	μg/L	<	0.2					
	1,3-Dichlorobenzene	μg/L	<	0.2					
2	1,4-Dichlorobenzene	μg/L	<	0.2					
	3,3-Dichlorobenzidine	μg/L	<	0.9					
	Diethyl Phthalate	μg/L	<	1.9					
ō	Dimethyl Phthalate	μg/L	<	1.9					
			<	1.9					
	Di-n-Butyl Phthalate	LIC1/I							
	Di-n-Butyl Phthalate 2,4-Dinitrotoluene	μg/L μg/L	<	0.5					

2.6-Diritrotoluene	
1,2-Diphenylhydrazine	
Fluoranthene	
Fluorene	
Hexachlorobenzene	
Hexachlorobutadiene	
Hexachlorocyclopentadiene	
Hexachloroethane	
Indeno(1,2,3-cd)Pyrene	
Isophorone	
Naphthalene	
Nitrobenzene µg/L <	
n-Nitrosodimethylamine	
n-Nitrosodi-n-Propylamine	
n-Nitrosodiphenylamine µg/L <	
Phenanthrene μg/L <	
Pyrene µg/L 0.2 </th <td></td>	
1,2,4-Trichlorobenzene	
Aldrin	
alpha-BHC µg/L beta-BHC µg/L gamma-BHC µg/L delta BHC µg/L Chlordane µg/L 4,4-DDT µg/L 4,4-DDE µg/L 4,4-DDD µg/L Dieldrin µg/L alpha-Endosulfan µg/L beta-Endosulfan µg/L Endosulfan Sulfate µg/L Endrin µg/L	
beta-BHC	
gamma-BHC µg/L delta BHC µg/L Chlordane µg/L 4,4-DDT µg/L 4,4-DDE µg/L 4,4-DDD µg/L Dieldrin µg/L alpha-Endosulfan µg/L beta-Endosulfan µg/L Endosulfan Sulfate µg/L Endrin µg/L	
delta BHC µg/L Chlordane µg/L 4,4-DDT µg/L 4,4-DDE µg/L 4,4-DDD µg/L Dieldrin µg/L alpha-Endosulfan µg/L beta-Endosulfan µg/L Endosulfan Sulfate µg/L Endrin µg/L	
Chlordane	
4,4-DDT µg/L 4,4-DDE µg/L 4,4-DDD µg/L Dieldrin µg/L alpha-Endosulfan µg/L beta-Endosulfan µg/L Endosulfan Sulfate µg/L Endrin µg/L	
4,4-DDD µg/L < Dieldrin µg/L alpha-Endosulfan µg/L beta-Endosulfan µg/L Endosulfan Sulfate µg/L Endrin µg/L	
4,4-DDD µg/L < Dieldrin µg/L alpha-Endosulfan µg/L beta-Endosulfan µg/L Endosulfan Sulfate µg/L Endrin µg/L	
alpha-Endosulfan	
beta-Endosulfan	
Endosulfan Sulfate	
Endrin µg/L <	
8 Endrin µg/L <	
Heptachlor µg/L <	
Heptachlor Epoxide µg/L <	
PCB-1016 µg/L <	
PCB-1221 µg/L <	
PCB-1232 µg/L <	
PCB-1242	
PCBs, Total µg/L Toxaphene µg/L	
2,3,7,8-TCDD	
Gross Alpha pCi/L	
Total Bata	
□ Radium 226/228	
Radium 226/228 pCi/L	
Total Uranium µg/L <	
Osmotic Pressure mOs/kg	

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Somerset Borough STP, NPDES Permit No. PA0021768, Outfall 001

Instructions Disch	arge Str	eam														
Receiving Surface W	ater Name:	East Branc	h Coxes Cr	eek			No. Rea	aches to	Model:	1	<u>1</u>	=	tewide Criter			
Location	Stream Coo	de* RMI	* Eleva	I DΔ /m	²)* SI	lope (ft/ft)		Withdrav MGD)		ply F		ORSANCO Criteria				
Point of Discharge	039012	2.27	207	79 23.8	,					Yes						
End of Reach 1	039012	1.32	2 201	6 25.4						Yes						
Q ₇₋₁₀	RMI	LFY		w (cfs)	W/D		Depth	Velocit	Tim		Tributa	-	Strea		Analys	
Daid of Disabases	0.07	(cfs/mi ²)*	Stream	Tributary	Ratio	. ,	(ft)	y (fps)	(day	(2	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	2.27	0.02478	0.59		10	12.54	1.254	0.234					100	7		
End of Reach 1	1.32	0.02478														
Q _h																
Location	RMI	LFY	Flov	w (cfs)	W/D	Width	Depth	Velocit	Tim		Tributa	ary	Strea	m	Analys	sis
Location	KIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(day	_	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	2.27															
End of Reach 1	1.32															

Free Cyanide

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Somerset Borough STP, NPDES Permit No. PA0021768, Outfall 001

Instruction	s Results		RETURI	N TO INPU	TS (SAVE AS	PDF		PRINT	r)	All	○ Inputs	○ Results	O Limits	
 Hydrod	dynamics														
Q 7-10															
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs		arge Analy low (cfs)	sis SI	ope (ft/ft)	Depth	(ft) V	Vidth (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
2.27	0.59			0.59		3.094		0.013	1.25	4	12.54	10.	0.234	0.248	0.035
1.32	0.63			0.63											
Q _h															
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs		arge Analy low (cfs)	sis SI	ope (ft/ft)	Depth	(ft) V	Vidth (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
2.27	4.69			4.69		3.094		0.013	1.742	2	12.54	7.197	0.356	0.163	0.303
1.32	4.959			4.96											
✓ Wastel	oad Allocatio		Γ (min): 0		PMF:	1		Analysis	Hardnes	ss (mg/l): 18	0.37	Analysis pH:	7.00	
	Pollutants		Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQ (µg/		/Q Obj (µg/L)	WLA (µg/L)		Co	omments	
	ssolved Solid	, ,	0	0		0	N//		N/A	N//					
	Chloride (PWS	,	0	0		0	N//		N/A	N//					
	Sulfate (PWS	,	0	0		0	N// 75		N/A 750	N//					
	Fotal Aluminu Total Antimon		0	0		0	1,10		1,100	89					
	Total Arsenio	,	0	0		0	34		340	1,3°			Chem Tran	slator of 1 ap	nlied
	Total Barium		0	0		0	21,0		21,000	25,0			Official Hall	siator or rap	plicu
	Total Boron		0	0		0	8,10		B,100	9,64					
-	Total Cadmiui	n	0	0		0	3.5		3.89	4.6			Chem Transla	ator of 0.919	applied
	tal Chromium		0	0		0	923.0		2,923	3,48			Chem Transla		
Hex	avalent Chror	nium	0	0		0	16		16.3	19.			Chem Transla	ator of 0.982	applied
	Total Cobalt		0	0		0	95	5	95.0	11	3				
	Total Copper		0	0		0	23.4	128	24.4	29.	.1		Chem Transl	ator of 0.96 a	applied

22

22.0

26.2

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	121.972	173	206	Chem Translator of 0.705 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	1.400	1.65	1.96	Chem Translator of 0.85 applied
Total Nickel	0	0	0	771.235	773	920	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0	0	8.872	10.4	12.4	Chem Translator of 0.85 applied
Total Thallium	0	0	0	65	65.0	77.4	
Total Zinc	0	0	0	193.157	198	235	Chem Translator of 0.978 applied
Acrolein	0	0	0	3	3.0	3.57	
Acrylonitrile	0	0	0	650	650	774	
Benzene	0	0	0	640	640	762	
Bromoform	0	0	0	1,800	1,800	2,143	
Carbon Tetrachloride	0	0	0	2,800	2,800	3,334	
Chlorobenzene	0	0	0	1,200	1,200	1,429	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	21,432	
Chloroform	0	0	0	1,900	1,900	2,262	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	17,860	
1,1-Dichloroethylene	0	0	0	7,500	7,500	8,930	
1,2-Dichloropropane	0	0	0	11,000	11,000	13,098	
1,3-Dichloropropylene	0	0	0	310	310	369	
Ethylbenzene	0	0	0	2,900	2,900	3,453	
Methyl Bromide	0	0	0	550	550	655	
Methyl Chloride	0	0	0	28,000	28,000	33,339	
Methylene Chloride	0	0	0	12,000	12,000	14,288	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	1,191	
Tetrachloroethylene	0	0	0	700	700	833	
Toluene	0	0	0	1,700	1,700	2,024	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	8,097	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	3,572	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	4,048	
Trichloroethylene	0	0	0	2,300	2,300	2,739	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	667	
2,4-Dichlorophenol	0	0	0	1,700	1,700	2,024	
2,4-Dimethylphenol	0	0	0	660	660	786	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	95.3	
2,4-Dinitrophenol	0	0	0	660	660	786	
2-Nitrophenol	0	0	0	8.000	8.000	9.526	
4-Nitrophenol	0	0	0	2,300	2,300	2,739	
p-Chloro-m-Cresol	0	0	0	160	160	191	
Pentachlorophenol	0	0	0	8.723	8.72	10.4	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	548	

☑ CFC

CCT (min): 0.035

PMF:

NPDES Permit No. PA0021768

Acenaphthene	0	0	0	83	83.0	98.8	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	357	
Benzo(a)Anthracene	0	0	0	0.5	0.5	0.6	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	35,721	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	5,358	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	321	
Butyl Benzyl Phthalate	0	0	0	140	140	167	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	976	
1,3-Dichlorobenzene	0	0	0	350	350	417	
1,4-Dichlorobenzene	0	0	0	730	730	869	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	4,763	
Dimethyl Phthalate	0	0	0	2,500	2,500	2,977	
Di-n-Butyl Phthalate	0	0	0	110	110	131	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	1,905	
2,6-Dinitrotoluene	0	0	0	990	990	1,179	
1,2-Diphenylhydrazine	0	0	0	15	15.0	17.9	
Fluoranthene	0	0	0	200	200	238	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	11.9	
Hexachlorocyclopentadiene	0	0	0	5	5.0	5.95	
Hexachloroethane	0	0	0	60	60.0	71.4	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	11,907	
Naphthalene	0	0	0	140	140	167	
Nitrobenzene	0	0	0	4,000	4,000	4,763	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	20,242	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	357	
Phenanthrene	0	0	0	5	5.0	5.95	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	155	

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	

Analysis Hardness (mg/l):

180.37

Analysis pH:

7.00

Chloride (PWS)	0	0	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	0	N/A	N/A	N/A	
Total Aluminum	0	0	0	N/A	N/A	N/A	
Total Antimony	0	0	0	220	220	262	
Total Arsenic	0	0	0	150	150	179	Chem Translator of 1 applied
Total Barium	0	0	0	4,100	4,100	4,882	
Total Boron	0	0	0	1,600	1,600	1,905	
Total Cadmium	0	0	0	0.370	0.42	0.5	Chem Translator of 0.884 applied
Total Chromium (III)	0	0	0	120.146	140	166	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0	0	10	10.4	12.4	Chem Translator of 0.962 applied
Total Cobalt	0	0	0	19	19.0	22.6	
Total Copper	0	0	0	14.825	15.4	18.4	Chem Translator of 0.96 applied
Free Cyanide	0	0	0	5.2	5.2	6.19	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	1,786	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	4.753	6.74	8.03	Chem Translator of 0.705 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	1.08	Chem Translator of 0.85 applied
Total Nickel	0	0	0	85.660	85.9	102	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	5.94	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	15.5	
Total Zinc	0	0	0	194.737	198	235	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	3.57	
Acrylonitrile	0	0	0	130	130	155	
Benzene	0	0	0	130	130	155	
Bromoform	0	0	0	370	370	441	
Carbon Tetrachloride	0	0	0	560	560	667	
Chlorobenzene	0	0	0	240	240	286	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	4,167	
Chloroform	0	0	0	390	390	464	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	3,691	
1,1-Dichloroethylene	0	0	0	1,500	1,500	1,786	
1,2-Dichloropropane	0	0	0	2,200	2,200	2,620	
1,3-Dichloropropylene	0	0	0	61	61.0	72.6	
Ethylbenzene	0	0	0	580	580	691	
Methyl Bromide	0	0	0	110	110	131	
Methyl Chloride	0	0	0	5,500	5,500	6,549	
Methylene Chloride	0	0	0	2,400	2,400	2,858	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	250	
Tetrachloroethylene	0	0	0	140	140	167	
Toluene	0	0	0	330	330	393	

1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	1,667	
1,1,1-Trichloroethane	0	0	0	610	610	726	
1,1,2-Trichloroethane	0	0	0	680	680	810	
Trichloroethylene	0	0	0	450	450	536	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	131	
2,4-Dichlorophenol	0	0	0	340	340	405	
2,4-Dimethylphenol	0	0	0	130	130	155	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	19.1	
2,4-Dinitrophenol	0	0	0	130	130	155	
2-Nitrophenol	0	0	0	1,600	1,600	1,905	
4-Nitrophenol	0	0	0	470	470	560	
p-Chloro-m-Cresol	0	0	0	500	500	595	
Pentachlorophenol	0	0	0	6.693	6.69	7.97	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	108	
Acenaphthene	0	0	0	17	17.0	20.2	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	70.3	
Benzo(a)Anthracene	0	0	0	0.1	0.1	0.12	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	7,144	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	7,144 N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	1,084	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	64.3	
Butyl Benzyl Phthalate	0	0	0	35	35.0	41.7	
2-Chloronaphthalene	0	0	 0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	 0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	191	
1,3-Dichlorobenzene	0	0	0	69	69.0	82.2	
1,4-Dichlorobenzene	0	0	0	150	150	179	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	953	
-	0	0	0	500	500	595	
Dimethyl Phthalate Di-n-Butyl Phthalate	0	0	0	21	21.0	25.0	
2,4-Dinitrotoluene	0	0	0	320	320	381	
2,4-Dinitrotoluene 2,6-Dinitrotoluene	0	0	0	200	200	238	
	0	0	0	3	3.0	3.57	
1,2-Diphenylhydrazine Fluoranthene	0	0	0	40	40.0	3.57 47.6	
Fluorantnene	0	0	0	N/A	40.0 N/A	47.6 N/A	
Hexachlorobenzene	0	0	0	N/A N/A	N/A N/A	N/A N/A	
		_					
Hexachlorobutadiene	0	0	0	2	2.0	2.38	

NPDES Permit No. PA0021768

Hexachlorocyclopentadiene	0	0	0	1	1.0	1.19	
Hexachloroethane	0	0	0	12	12.0	14.3	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	2,500	
Naphthalene	0	0	0	43	43.0	51.2	
Nitrobenzene	0	0	0	810	810	964	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	4,048	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	70.3	
Phenanthrene	0	0	0	1	1.0	1.19	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	31.0	

✓ THH CCT (mir	0.035	PMF:	1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	Ī
----------------	-------	------	---	---------------------------	-----	--------------	-----	---

	Sireami	Stream	Trib Conc	Fate	WQC	WO Obi		
Pollutants	Conc	CV	(µg/L)	Coef	νναC (μg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ug/L) 0	0	(µg/L)	0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250.000	250.000	N/A	
	_							
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	6.67	
Total Arsenic	0	0		0	10	10.0	11.9	
Total Barium	0	0		0	2,400	2,400	2,858	
Total Boron	0	0		0	3,100	3,100	3,691	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	4.76	
Dissolved Iron	0	0		0	300	300	357	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	1,191	
Total Mercury	0	0		0	0.050	0.05	0.06	
Total Nickel	0	0		0	610	610	726	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	0.29	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	3.57	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	

Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A	
Chlorobenzene	0	0	 0	100	100.0	119	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	6.79	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	39.3	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	81.0	
Methyl Bromide	0	0	0	100	100.0	119	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A N/A	N/A	N/A N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
	0	0	0	N/A N/A	N/A N/A	N/A N/A	
Tetrachloroethylene Toluene	0	0	0	57	57.0	67.9	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	119	
	0	0	0	10,000			
1,1,1-Trichloroethane	0	0	0		10,000	11,907	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene Vinyl Chloride	0	0	0	N/A N/A	N/A N/A	N/A N/A	
2-Chlorophenol	0	0	0	30 10	30.0	35.7	
2,4-Dichlorophenol	0	0	 0		10.0	11.9	
2,4-Dimethylphenol	0	0	0	100	100.0	119	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	2.38	
2,4-Dinitrophenol	0	0	0	10	10.0	11.9	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	4,763	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	83.3	
Anthracene	0	0	0	300	300	357	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	238	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	

Butyl Benzyl Phthalate	0	0	0	0.1	0.1	0.12	
2-Chloronaphthalene	0	0	0	800	800	953	
Chrysene	0	0	 0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	1,191	
1,3-Dichlorobenzene	0	0	0	7	7.0	8.33	
1,4-Dichlorobenzene	0	0	0	300	300	357	
•		0			N/A	N/A	
3,3-Dichlorobenzidine	0	_	0	N/A		714	
Diethyl Phthalate	0	0	0	600	600		
Dimethyl Phthalate	0	0	0	2,000	2,000	2,381	
Di-n-Butyl Phthalate	0	0	0	20	20.0	23.8	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	23.8	
Fluorene	0	0	0	50	50.0	59.5	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	4.76	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	40.5	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	11.9	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	23.8	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	0.083	

✓ CRL CCT (min): 0.303	PMF: 1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	
------------------------	--------	---------------------------	-----	--------------	-----	--

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0	-	0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	0.15	
Benzene	0	0		0	0.58	0.58	1.46	
Bromoform	0	0		0	7	7.0	17.6	
Carbon Tetrachloride	0	0		0	0.4	0.4	1.01	
Chlorobenzene	0	0	 	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.8	0.8	2.01	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	0.95	0.95	2.39	
1,2-Dichloroethane	0	0	 	0	9.9	9.9	24.9	
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0		0	0.9	0.9	2.26	
1,3-Dichloropropylene	0	0	 	0	0.27	0.27	0.68	
Ethylbenzene	0	0		0	N/A	N/A	N/A	
Methyl Bromide	0	0	 	0	N/A	N/A	N/A	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	20	20.0	50.3	
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	0.5	
Tetrachloroethylene	0	0		0	10	10.0	25.1	
Toluene	0	0		0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0		0	0.55	0.55	1.38	
Trichloroethylene	0	0		0	0.6	0.6	1.51	
Vinyl Chloride	0	0		0	0.02	0.02	0.05	
2-Chlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0		0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0		0	N/A	N/A	N/A	

2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.075	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	3.77	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.0003	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.003	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.0003	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.003	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.025	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.01	0.025	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	0.8	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	0.3	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.0003	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	0.13	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	0.13	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	0.13	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	0.13	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.0002	
Hexachlorobutadiene	0	0	0	0.00008	0.0000	0.0002	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	0.023 N/A	
Hexachloroethane	0	0	0	0.1	0.1	0.25	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.003	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.002	
n-Nitrosodi-n-Propylamine	0	0	0	0.0007	0.0007	0.002	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	8.3	
n-ivitiosoulphenylamine	U	U	U	ა.ა	3.3	0.0	

Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

✓ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

_	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	750	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Boron	Report	Report	Report	Report	Report	μg/L	1,905	CFC	Discharge Conc > 10% WQBEL (no RP)
Hexavalent Chromium	0.21	0.32	12.4	19.3	30.9	μg/L	12.4	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Cobalt	Report	Report	Report	Report	Report	μg/L	22.6	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	0.31	0.48	18.4	28.7	46.0	μg/L	18.4	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Free Cyanide	0.079	0.12	4.76	7.43	11.9	μg/L	4.76	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dissolved Iron	5.96	9.3	357	557	893	μg/L	357	THH	Discharge Conc ≥ 50% WQBEL (RP)
Total Iron	29.8	46.5	1,786	2,787	4,465	μg/L	1,786	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Lead	Report	Report	Report	Report	Report	μg/L	8.03	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Manganese	Report	Report	Report	Report	Report	μg/L	1,191	THH	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	198	AFC	Discharge Conc > 10% WQBEL (no RP)
Acrolein	0.05	0.06	3.0	3.57	3.57	μg/L	3.0	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Chlorodibromomethane	Report	Report	Report	Report	Report	μg/L	2.01	CRL	Discharge Conc > 25% WQBEL (no RP)
Chloroform	0.11	0.18	6.79	10.6	17.0	μg/L	6.79	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dichlorobromomethane	0.04	0.062	2.39	3.73	5.97	μg/L	2.39	CRL	Discharge Conc ≥ 50% WQBEL (RP)
1,1,2-Trichloroethane	0.023	0.036	1.38	2.16	3.46	μg/L	1.38	CRL	Discharge Conc ≥ 50% WQBEL (RP)

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	11.9	μg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	2,858	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Cadmium	0.5	μg/L	Discharge Conc < TQL
Total Chromium (III)	166	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS

Total Mercury	0.06	μg/L	Discharge Conc < TQL
Total Nickel	102	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	5.94	μg/L	Discharge Conc < TQL
Total Silver	10.4	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	0.29	µg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrylonitrile	0.15	µg/L	Discharge Conc < TQL
Benzene	1.46	µg/L	Discharge Conc < TQL
Bromoform	17.6	μg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	1.01	μg/L	Discharge Conc < TQL
Chlorobenzene	119	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	4.167	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	24.9	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	39.3	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	2.26	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	0.68	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	81.0	µg/L	Discharge Conc < TQL
Methyl Bromide	119	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	6.549	µg/L	Discharge Conc < TQL
Methylene Chloride	50.3	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	0.5	µg/L	Discharge Conc < TQL
Tetrachloroethylene	25.1	μg/L	Discharge Conc < TQL
Toluene	67.9	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	119	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,1-Trichloroethane	726	µg/L	Discharge Conc < TQL
Trichloroethylene	1.51	µg/L	Discharge Conc < TQL
Vinyl Chloride	0.05	µg/L	Discharge Conc < TQL
2-Chlorophenol	35.7	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	11.9	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	119	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	2.38	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	11.9	μg/L	Discharge Conc < TQL
2-Nitrophenol	1,905	µg/L	Discharge Conc < TQL
4-Nitrophenol	560	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	160	μg/L	Discharge Conc < TQL
Pentachlorophenol	0.075	µg/L	Discharge Conc < TQL
Phenol	4.763	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	3.77	μg/L	Discharge Conc < TQL
Acenaphthene	20.2	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	357	μg/L	Discharge Conc < TQL

Benzo(a)Anthracene 0.003 yg/L Discharge Conc < TQL	Benzidine	0.0003	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene 0.0003				
3,4-Benzoffluoranthene 0.003 μg/L Discharge Conc < TQL	1 /			
Benzo(ghi)Perylene				
Benzo(k)Fluoranthene 0.025 μg/L Discharge Conc < TQL Bis(2-Chloroethoxy)Methane N/A N/A N/A Bis(2-Chloroethyl)Ether 0.075 μg/L Discharge Conc < TQL				
Bis(2-Chloroethoxy)Methane N/A N/A No WQS				
Bis(2-Chloroethyl)Ether 0.075 μg/L Discharge Conc < TQL Bis(2-Chloroisopropyl)Ether 238 μg/L Discharge Conc < TQL Bis(2-Chloroisopropyl)Ether 238 μg/L Discharge Conc < TQL Bis(2-Ethylhexyl)Phthalate 0.8 μg/L Discharge Conc < TQL 4-Bromophenyl Phenyl Ether 64.3 μg/L Discharge Conc < TQL Discharge Conc				
Bis(2-Chloroisopropyl)Ether 238 μg/L Discharge Conc < TQL Bis(2-Ethylhexyl)Phthalate 0.8 μg/L Discharge Conc < TQL				110 11 40
Bis(2-Ethylhexyl)Phthalate 0.8 μg/L Discharge Conc < TQL 4-Bromophenyl Phenyl Ether 64.3 μg/L Discharge Conc < TQL Butyl Benzyl Phthalate 0.12 μg/L Discharge Conc < TQL 2-Chloronaphthalene 953 μg/L Discharge Conc < TQL 4-Chlorophenyl Phenyl Ether N/A N/A No WQS Chrysene 0.3 μg/L Discharge Conc < TQL 1,2-Dichlorobenzene 191 μg/L Discharge Conc < TQL 1,3-Dichlorobenzene 179 μg/L Discharge Conc < TQL 3,3-Dichlorobenzidine 0.13 μg/L Discharge Conc < TQL Hexachlorobutadiene 0.002 μg/L Discharge Conc < TQL Northerian Reserved Reser				3
4-Bromophenyl Phenyl Ether 64.3 µg/L Discharge Conc < TQL				•
Butyl Benzyl Phthalate 953 µg/L Discharge Conc < TQL 2-Chloronaphthalene 953 µg/L Discharge Conc < TQL 4-Chlorophenyl Phenyl Ether N/A N/A NO WQS Chrysene 0.3 µg/L Discharge Conc < TQL Dibenzo(a,h)Anthrancene 0.0003 µg/L Discharge Conc < TQL 1,2-Dichlorobenzene 191 µg/L Discharge Conc < TQL 1,3-Dichlorobenzene 191 µg/L Discharge Conc < TQL 1,3-Dichlorobenzene 179 µg/L Discharge Conc < TQL 1,4-Dichlorobenzene 179 µg/L Discharge Conc < TQL 1,4-Dichlorobenzene 179 µg/L Discharge Conc < TQL	\ / //			9
2-Chloronaphthalene 953 μg/L Discharge Conc < TQL 4-Chlorophenyl Phenyl Ether N/A N/A No WQS Chrysene 0.3 μg/L Discharge Conc < TQL	4-Bromophenyl Phenyl Ether	64.3	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether N/A N/A No WQS Chrysene 0.3 μg/L Discharge Conc < TQL	Butyl Benzyl Phthalate	0.12	μg/L	Discharge Conc < TQL
Chrysene 0.3 μg/L Discharge Conc < TQL Dibenzo(a,h)Anthrancene 0.0003 μg/L Discharge Conc < TQL	2-Chloronaphthalene	953	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene 0.0003 μg/L Discharge Conc < TQL 1,2-Dichlorobenzene 191 μg/L Discharge Conc < TQL	4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
1,2-Dichlorobenzene 191 μg/L Discharge Conc < TQL	Chrysene	0.3	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene 8.33 μg/L Discharge Conc < TQL	Dibenzo(a,h)Anthrancene	0.0003	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene 179 µg/L Discharge Conc < TQL 3,3-Dichlorobenzidine 0.13 µg/L Discharge Conc < TQL Diethyl Phthalate 714 µg/L Discharge Conc < TQL Dimethyl Phthalate 595 µg/L Discharge Conc < TQL Dimethyl Phthalate 23.8 µg/L Discharge Conc < TQL Di-n-Butyl Phthalate 23.8 µg/L Discharge Conc < TQL Di-n-Butyl Phthalate 23.8 µg/L Discharge Conc < TQL Di-n-Butyl Phthalate 0.13 µg/L Discharge Conc < TQL Di-n-Octyl Phthalate N/A N/A NO WQS Discharge Conc < TQL Disch	1,2-Dichlorobenzene	191	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene 179 µg/L Discharge Conc < TQL 3,3-Dichlorobenzidine 0.13 µg/L Discharge Conc < TQL Diethyl Phthalate 714 µg/L Discharge Conc < TQL Dimethyl Phthalate 595 µg/L Discharge Conc < TQL Dimethyl Phthalate 23.8 µg/L Discharge Conc < TQL Di-n-Butyl Phthalate 23.8 µg/L Discharge Conc < TQL Di-n-Butyl Phthalate 23.8 µg/L Discharge Conc < TQL Di-n-Butyl Phthalate 0.13 µg/L Discharge Conc < TQL Di-n-Octyl Phthalate N/A N/A NO WQS Discharge Conc < TQL Disch	1,3-Dichlorobenzene	8.33	μg/L	Discharge Conc < TQL
Diethyl Phthalate714μg/LDischarge Conc < TQLDimethyl Phthalate595μg/LDischarge Conc < TQL	1,4-Dichlorobenzene	179	μg/L	
Diethyl Phthalate714μg/LDischarge Conc < TQLDimethyl Phthalate595μg/LDischarge Conc < TQL	3,3-Dichlorobenzidine	0.13	μg/L	Discharge Conc < TQL
Dimethyl Phthalate595μg/LDischarge Conc < TQLDi-n-Butyl Phthalate23.8μg/LDischarge Conc < TQL	Diethyl Phthalate	714		Discharge Conc < TQL
Di-n-Butyl Phthalate23.8μg/LDischarge Conc < TQL2,4-Dinitrotoluene0.13μg/LDischarge Conc < TQL	•	595		
2,4-Dinitrotoluene 0.13 μg/L Discharge Conc < TQL	Di-n-Butyl Phthalate	23.8		Discharge Conc < TQL
2,6-Dinitrotoluene0.13μg/LDischarge Conc < TQLDi-n-Octyl PhthalateN/AN/ANO WQS1,2-Diphenylhydrazine0.075μg/LDischarge Conc < TQL	2.4-Dinitrotoluene	0.13		Discharge Conc < TQL
Di-n-Octyl Phthalate N/A N/A N/A No WQS 1,2-Diphenylhydrazine 0.075 μg/L Discharge Conc < TQL				
1,2-Diphenylhydrazine 0.075 $\mu g/L$ Discharge Conc < TQLFluoranthene 23.8 $\mu g/L$ Discharge Conc < TQL	Di-n-Octyl Phthalate	N/A		•
Fluoranthene 23.8 $\mu g/L$ Discharge Conc < TQL Fluorene 59.5 $\mu g/L$ Discharge Conc < TQL Hexachlorobenzene 0.0002 $\mu g/L$ Discharge Conc < TQL Hexachlorobutadiene 0.025 $\mu g/L$ Discharge Conc < TQL Hexachlorocyclopentadiene 1.19 $\mu g/L$ Discharge Conc < TQL Hexachloroethane 0.25 $\mu g/L$ Discharge Conc < TQL Indeno(1,2,3-cd)Pyrene 0.003 $\mu g/L$ Discharge Conc < TQL Isophorone 40.5 $\mu g/L$ Discharge Conc < TQL Naphthalene 51.2 $\mu g/L$ Discharge Conc < TQL Nitrobenzene 11.9 $\mu g/L$ Discharge Conc < TQL n-Nitrosodimethylamine 0.002 $\mu g/L$ Discharge Conc < TQL n-Nitrosodi-n-Propylamine 0.013 $\mu g/L$ Discharge Conc < TQL n-Nitrosodiphenylamine 8.3 $\mu g/L$ Discharge Conc < TQL Phenanthrene 1.19 $\mu g/L$ Discharge Conc < TQL Pyrene 23.8 $\mu g/L$ Discharge Conc < TQL	,	0.075	ua/L	Discharge Conc < TQL
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
Hexachlorobenzene 0.0002 μg/L Discharge Conc < TQL Hexachlorobutadiene 0.025 μg/L Discharge Conc < TQL				3
Hexachlorobutadiene 0.025 μg/L Discharge Conc < TQL Hexachlorocyclopentadiene 1.19 μg/L Discharge Conc < TQL				•
Hexachlorocyclopentadiene 1.19 μg/L Discharge Conc < TQL Hexachloroethane 0.25 μg/L Discharge Conc < TQL				
Hexachloroethane 0.25 μg/L Discharge Conc < TQL				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>			_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V 1 1 1 1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccc} \text{n-Nitrosodiphenylamine} & 8.3 & \mu\text{g/L} & \text{Discharge Conc} < \text{TQL} \\ \text{Phenanthrene} & 1.19 & \mu\text{g/L} & \text{Discharge Conc} < \text{TQL} \\ \text{Pyrene} & 23.8 & \mu\text{g/L} & \text{Discharge Conc} < \text{TQL} \\ \end{array} $	*			
Phenanthrene 1.19 μg/L Discharge Conc < TQL Pyrene 23.8 μg/L Discharge Conc < TQL				
Pyrene 23.8 µg/L Discharge Conc < TQL	. ,			9
1,2,4-I nchlorobenzene 0.083 µg/L Discharge Conc < TQL				
	1,2,4-Trichlorobenzene	0.083	μg/L	Discharge Conc < TQL

Attachment 5 - TRC CALC

PA0021768_TRC_CALC

TRC EVALUA	ATION									
Input appropriate values in A3:A9 and D3:D9										
0.59 = Q stream (cfs) 0.5 = CV Daily										
2	= Q discharg	e (MGD)	0.5	= CV Hourly						
30	= no. sample	s	1	= AFC_Partial N	lix Factor					
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	flix Factor					
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)					
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)					
0	= % Factor o	of Safety (FOS)		=Decay Coeffic	ient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	0.080	1.3.2.iii	WLA cfc = 0.070					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.030	5.1d	LTA_cfc = 0.041					
Source	Source Effluent Limit Calculations									
PENTOXSD TRG										
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.037	AFC					
		INST MAX	LIMIT (mg/l) =	0.120						
WLA afc		FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10		_tc))						
LTAMULT afc	•	/cvh^2+1))-2.326*LN(cvh^2	•							
LTA_afc	wla_afc*LTA	, ,	1, 0.5,							
LIA_aio	wia_aic LIA	moer_aic								
WLA_cfc		FC_tc) + [(CFC_Yc*Qs*.011/	•	_tc))						
LTAMULT_cfc	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)									
LTA_cfc	wla_cfc*LTAMULT_cfc									
AML MULT	EVD(2 226*1	N((cvd^2/no samples+1)^0.	E) 0 E*I N/	A2/no complete	4))					
AML MULT AVG MON LIMIT	•	N((cvd^2/no_samples+1)^0. J,MIN(LTA_afc,LTA_cfc)*AN	,	- Z/110_samples	1))					
INST MAX LIMIT		n_limit/AML_MULT)/LTAMUL	_ ,							
IINOT WAX LIWIT	1.5"((av_moi	I_IIIIIUAMIL_MOLT//LTAMOL	-i_aic)							

Attachment 6 - WET Analysis Spreadsheet

	DEP Whole I	Effluent Tox	icity (WET) Analysis	Spreadshee	t
			() (
Type of Test Species Test		onic iodaphnia		Facility Na	me
Endpoint		roduction	So	merset Borou	oh STP
TIWC (decim				moroct Dorou	giron
No. Per Repli				Permit No).
TST b value	0.75	5		PA002176	8
TST alpha va	lue 0.2				
	Toet Comm	oletion Date		Toet Comp	oletion Date
Daniiaata		/2018	Danii anta		/2019
Replicate			Replicate		
No.	Control	TIWC	No.	Control	TIWC
1	0.26	0.31	1	0.31	0.3
2	0.13	0.3	2	0.3	0.33
3	0.28	0.4	3	0.27	0.34
4	0.25	0.18	4	0.29	0.33
5	0.25	0.34	5	0.28	0.34
6	0.17	0.36	6	0.33	0.35
7	0.13	0.31	7	0.28	0.35
8	0.09	0.21	8	0.25	0.34
9	0.22	0.31	9	0.27	0.36
10	0.26	0.31	10	0.29	0.32
11	0.20	0.01	11	0.23	0.32
12			12		
13			13		
14			14		
15			15		
Mean	0.204	0.303	Mean	0.287	0.336
Std Dev.	0.068	0.065	Std Dev.	0.023	0.017
# Replicates	10	10	# Replicates	10	10
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om 1 ie 0.8	413 16 647 ASS	T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om 1 e 0.8	3354 7 633 8 S
Deg. of Freed Critical T Valu	om 1 ie 0.8 PA	66 647 ASS	Deg. of Freed Critical T Valu	om 1 ie 0.8 PA	7 633 SS
Deg. of Freed Critical T Valu Pass or Fail	om 1 ie 0.8 PA	647 ASS	Deg. of Freed Critical T Valu Pass or Fail	om 1 e 0.8 PA Test Comp	7 633 ASS oletion Date
Deg. of Freed Critical T Valu Pass or Fail Replicate	om 1 ie 0.8 PA Test Comp	66647 ASS Deletion Date 2020	Deg. of Freed Critical T Valu Pass or Fail Replicate	om 1 le 0.8 PA Test Comp 7/20	7 633 8 S Deletion Date /2021
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	om 1 ie 0.8 PA Test Comp 6/9/ Control	66647 ASS Diletion Date 2020	Deg. of Freed Critical T Valu Pass or Fail Replicate No.	om 1 e 0.8 PA Test Comp 7/20 Control	7 633 ISS oletion Date /2021 TIWC
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	om 1 ie 0.8 PA Test Comp 6/9/ Control 0.42	66 647 ASS Diletion Date 2020 TIWC 0.43	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	om 1 e 0.8 PA Test Comp 7/20 Control 0.28	7 633 ISS bletion Date /2021 TIWC 0.42
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	Test Comp 6/9/ Control 0.42 0.34	66 647 ASS Deletion Date 2020 TIWC 0.43 0.37	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37	7 633 ASS bletion Date /2021 TIWC 0.42 0.39
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 6/9/ Control 0.42 0.34 0.41	66 647 88 Deletion Date 2020 TIWC 0.43 0.37 0.32	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42	7 633 ASS bletion Date /2021 TIWC 0.42 0.39 0.37
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4	66 647 88 bletion Date 2020 TIWC 0.43 0.37 0.32 0.44	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4	7 633 ASS bletion Date /2021 TIWC 0.42 0.39 0.37 0.47
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31	06 0647 088 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39	06 0647 088 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31	06 0647 088 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39	06 0647 088 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33	06 0647 085 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32 0.32	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42	06 0647 088 Deletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32 0.32 0.32 0.44	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28	06 0647 088 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32 0.32 0.4 0.32	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28	06 0647 088 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32 0.32 0.4 0.32	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28	06 0647 088 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32 0.32 0.4 0.32	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28	06 0647 088 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32 0.32 0.4 0.32	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28	06 0647 088 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32 0.32 0.4 0.32	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28	06 0647 088 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32 0.32 0.4 0.32	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36	7 633 ASS oletion Date /2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28 0.36	06 647 ASS Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32 0.32 0.4 0.38 0.38	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36 0.35	7 633 ASS oletion Date // 2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36 0.4
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28 0.36	06 647 888 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32 0.4 0.38 0.38 0.38	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36 0.35	7 633 ASS oletion Date // 2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36 0.4
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28 0.36	0.379 0.38 0.37 0.37 0.37 0.38	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36 0.35 0.367 0.049	7 633 ASS oletion Date (2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36 0.4 0.41 0.038
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28 0.36	06 647 888 Diletion Date 2020 TIWC 0.43 0.37 0.32 0.44 0.43 0.32 0.4 0.38 0.38 0.38	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36 0.35	7 633 ASS oletion Date // 2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36 0.4
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28 0.36 0.366 0.049 10	0.379 0.379 0.38 0.37 0.32 0.44 0.43 0.32 0.32 0.44 0.43	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36 0.35 0.367 0.049 10	0.411 0.038 0.411 0.038 0.411 0.038
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28 0.36 0.366 0.049 10	0.379 0.38 0.37 0.37 0.37 0.38	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36 0.35 0.367 0.049 10	7 633 ASS oletion Date (2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36 0.4 0.41 0.038
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28 0.36 0.049 10	0.379 0.379 0.38 0.37 0.32 0.44 0.43 0.32 0.32 0.44 0.43	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	om 1 le 0.8 PA Test Comp 7/20/ Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36 0.35 0.367 0.049 10 8.0	0.411 0.038 0.411 0.038 0.411 0.038
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 6/9// Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28 0.36 0.049 10	0.379 0.379 0.372 0.379 0.379	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	om 1 le 0.8 PA Test Comp 7/20 Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36 0.35 0.367 0.049 10 8.0 om 1	7 633 .sss oletion Date // 2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36 0.4 0.41 0.038 10 0.556
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Comp 6/9/ Control 0.42 0.34 0.41 0.4 0.31 0.39 0.33 0.42 0.28 0.36 0.049 10	0.379 0.379 0.372 0.379 0.379 0.379	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	om 1 le 0.8 PA Test Comp 7/20 Control 0.28 0.37 0.42 0.4 0.42 0.38 0.4 0.29 0.36 0.35 0.367 0.049 10 8.0 om 1 le 0.8	7 633 .sss oletion Date // 2021 TIWC 0.42 0.39 0.37 0.47 0.45 0.41 0.38 0.46 0.36 0.4 0.41 0.038 10 0.556 7

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet					
Type of Test Species Test		onic ephales		Facility Na	me
Endpoint	Gro		- So	merset Borou	ah STP
TIWC (decim					g o
No. Per Repli	cate 10			Permit No.	
TST b value	0.75			PA0021768	
TST alpha va	lue 0.25)			
		oletion Date		Test Completion Date	
Replicate		/2018	Replicate		2019
No.	Control	TIWC	No.	Control	TIWC
1	0.41	0.41	1	0.42	0.44
2	0.4	0.43	2	0.41	0.41
3	0.4	0.43	3	0.41	0.49
4	0.38	0.37	4	0.46	0.45
5			5		
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	0.398	0.410	Mean	0.425	0.448
Std Dev.	0.013	0.028	Std Dev.	0.024	0.033
# Replicates	4	4	# Replicates	4	4
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om e 0.7	041 4 407 ASS	T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om :	565 5 267 .SS
1 855 01 1 811			1 855 01 1 811		
 		oletion Date			letion Date
Replicate		2020	Replicate		2021
No.	Control	TIWC	No.	Control	TIWC
1	0.35	0.44	1	0.41	0.42
2	0.37	0.42	2	0.43	0.4
3	0.37	0.43	3	0.35	0.37
4	0.35	0.45	4	0.41	0.39
5			5	0.38	0.43
6			6		
7			7		
8					
_			8		
9			9		
10			9 10		
10 11			9 10 11		
10 11 12			9 10 11 12		
10 11 12 13			9 10 11 12 13		
10 11 12 13 14			9 10 11 12 13 14		
10 11 12 13			9 10 11 12 13		
10 11 12 13 14 15	0.000	0.405	9 10 11 12 13 14	0.000	0.402
10 11 12 13 14 15	0.360	0.435	9 10 11 12 13 14 15	0.396	0.402
10 11 12 13 14 15 Mean Std Dev.	0.012	0.013	9 10 11 12 13 14 15 Mean Std Dev.	0.031	0.024
10 11 12 13 14 15			9 10 11 12 13 14 15		
10 11 12 13 14 15 Mean Std Dev. # Replicates	0.012 4	0.013 4	9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.031 5	0.024 5
10 11 12 13 14 15 Mean Std Dev. # Replicates	0.012 4 21.3	0.013 4 2278	9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.031 5 7.0	0.024 5 117
10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0.012 4 21.:	0.013 4 2278 5	9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0.031 5 7.0 om	0.024 5 117 7
10 11 12 13 14 15 Mean Std Dev. # Replicates	0.012 4 21.: om e 0.7	0.013 4 2278	9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.031 5 7.0 om 5 e 0.7	0.024 5 117

WET Summary and Evaluation

Facility Name Permit No.

Design Flow (MGD)
Q₇₋₁₀ Flow (cfs)

PMF_a

Somerset Borough STP PA0021768

0.59 1 1

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date				
Species	Endpoint	8/15/18	6/10/19	6/9/20	7/20/21	
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)			
	[Test Date Test Date Test Date Test D			
Species	Endpoint	8/15/18	6/10/19	6/9/20	7/20/21
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)				
	Test Date Test Date Test Date Test D				Test Date	
Species	Endpoint	8/15/18	6/10/19	6/9/20	7/20/21	
Pimephales	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	Endpoint	8/15/18	6/10/19	6/9/20	7/20/21	
Pimephales	Growth	PASS	PASS	PASS	PASS	

Reasonable Potential? NO

Permit Recommendations

Test Type Chronic

TIWC 84 % Effluent

Dilution Series 21, 42, 84, 92, 100 % Effluent

Permit Limit None

Permit Limit Species

<u>Attachment 7 – Pre-Draft Survey Response</u>

July 13, 2023

Department of Environmental Protection: Bureau of Clean Water Southwest Regional Office Building Attn: William C. Mitchell, E.I.T., Project Manager 400 Waterfront Drive Pittsburgh, PA 15222

RE: THE MUNICIPAL AUTHORITY OF THE BOROUGH OF SOMERSET PRE-DRAFT SURVEY NPDES PERMIT NO. PA0021768

Dear William.

The Municipal Authority of the Borough of Somerset (MABS) received your Pre-Draft NPDES – Sewage letter via email on February 17, 2023. The letter included a listing of WQBELs and reporting requirements established based on DEPs review of MABS's most recent NPDES renewal application. The letter requested the return of a Pre-Draft Survey and offered an opportunity to conduct additional sampling. MABS returned the survey within the requested 30-day period and also elected to conduct additional sampling. Results and opinions of the additional sampling are described herein.

Historic NPDES Information, Industrial Pretreatment Local Limits, & Service Area

- 1. NPDES Permit 1992 and Renewal 1996
 - MABS's 1992 NPDES permit required monitoring of Aluminum, Copper, Hexavalent Chromium, Silver, and Zinc.
 - b. The monitoring requirement for Aluminum, Copper, Hexavalent Chromium, Silver, and Zinc was removed from the 1996 NPDES permit because there was no reasonable chance for the effluent from the plant to violate in-stream water quality standards for these parameters

2. Water Quality Based Effluent Limits

a. MABS successfully appealed draft NPDES limits in 1992 by completing a study to determine the Water Quality Based Effluent Limits. The water quality based effluent limits study incorporated State Water Quality Standards, site specific receiving stream hardness, receiving stream flows, dissolved-total metal ratios, and receiving stream background pollutant concentrations. The results of the study are provided below. Please note that all values are expressed in milligram per liter (mg/L).

Outfall No.	Pollutant	Average Monthly (mg/L)	Maximum Daily (mg/L)	IMAX (mg/L)
001	Aluminum	0.544	1.09	1.36
001	Copper	0.039	0.078	0.098
001	Hexavalent Chromium	0.010	0.020	0.025
001	Iron	1.68	3.36	4.20
001	Dissolved Iron	0.325	0.65	0.812
001	Lead	0.013	0.026	0.032
001	Silver	0.010	0.020	0.025
001	Zinc	0.285	0.57	0.712

450 Aberdeen Drive, Somerset, PA 15501 814.445.6551 | www.eadsgroup.com

July 7, 2023 NPDES Permit No. PA0021768 – Pre-Draft Page 2 of 4

Industrial Pretreatment Local Limits

- a. MABS developed Industrial Pretreatment Local Limits in 1997 for six (6) Categorical or Significant Industrial Users. All of the Industrial Users which prompted the creation of the Industrial Pretreatment Program no longer exist. There are only two (2) sewer service customers who remain in the Industrial Pretreatment program. These customers are UPMC Somerset a community hospital (included in the program because they exceed 25,000 gpd of water use) and Assa Abloy (aka Rockwood North) a metal finishing company. Assa Abloy utilizes water treatment in its process and discharges potable water to the sanitary system. They have been included in the program under a five (5) year trial period to ensure that their discharge is consistent with potable water and does not require pretreatment or further monitoring.
- b. There are no known or regulated sources of metals discharging to the POTW. The classification of all sewage within the POTW is domestic.

The "Development of Industrial Pretreatment Local Limits" is attached as **Exhibit A**. This document includes as Appendix G "Water Quality Standard" and as Appendix H the "Evaluation of Effluent Limits at the Somerset Sewage Treatment Plant. The Water Quality Based Effluent Limits are presented on phase 27, Table 16 of Appendix H.

We request that DEP provide the basis data for the development of the Pre-Draft NPDES Limits dated February 17, 2023 to allow comparison against the data and findings presented in Exhibit A. Also, we request that the data in Exhibit A be considered when calculating the Draft NPDES Limits.

Additional Sampling

MABS collected four (4) additional 24-hour composite samples on a weekly basis starting from April 11, 2023 and ending May 2, 2023. Geochemical Testing (certified laboratory) analyzed all samples and provided reports. Geochemical Testing utilized a subcontractor to perform the analysis for Free Cyanide. The results were compared to the original NPDES sampling sets and averaged. The results are presented individually by sampling period and combined. The results table is attached as Exhibit B. The laboratory reports and chain of custody forms are attached as Exhibit C.

1. General

a. WQBELs

Outfall No.	Pollutant	Average Monthly (ug/L)	Maximum Daily (ug/L)	IMAX (ug/L)	Target QL (ug/L)
001	Total Aluminum	Report	Report	Report	10.0
001	Total Boron	Report	Report	Report	200.0
001	Hexavalent Chromium	Report	Report	Report	1.0
001	Total Cobalt	Report	Report	Report	1.0
001	Total Copper	18.4	28.7	46.0	4.0
001	Free Cyanide	4.76	7.43	11.9	1.0
001	Dissolved Iron	Report	Report	Report	20.0
001	Acrolein	3.0	3.57	3.57	2.0
001	Chlorodibromomethane	Report	Report	Report	0.5
001	Chloroform	6.79	10.6	17.0	0.5
001	Dichlorobromomethane	2.39	3.73	5.97	0.5
001	1, 1, 2 - Trichloroethane	1.38	2.16	3.46	0.5

July 7, 2023 NPDES Permit No. PA0021768 – Pre-Draft Page 3 of 4

Standardized Testing Limits

- i. The standard testing methods and Quantitative Limits (QL) utilized by Geochemical Testing represent the lowest acceptable limits of industry standard tests. The sample results present all values at a Reporting Limit. Geochemical Testing is able to provide results below the Reporting Limit down to the Detection Limit; however, these values would be below the accepted level of accuracy of the standardized test.
- ii. Reporting Limit lowest level of accuracy for the standardized test.
- iii. Detection Limit limit below the acceptable accuracy level of the standardized test.

2. Acrolein

- a. The Reporting Limit for Acrolein is 5.0 μg/l and the WQBEL QLs for all Pre-Draft NPDES limits are below the Reporting Limit. Therefore, all published values, current and future, will be above the NPDES limits because of testing limitations. Geochemical Testing can provide values down to the Detection Limit, but these values would not be accurate and could still result in presentation of values above the NPDES limits.
- b. All sample results for Acrolein were reported to be below 5.0 μg/l.
- c. We request the following be considered by DEP as part of establishing the limit for Acrolein.
 - Consider Exhibit A data when calculating the NPDES Limit of Acrolein.
 - Evaluate increasing the NPDES limits to 5.0 μg/l or greater.
 - iii. Evaluate acceptance of Detection Limit analyses.

3. Free Cyanide

- Geochemical Testing used a higher Reporting limit for Free Cyanide in its 2021 sample series.
- b. The most recent sample series used a Reporting Limit of 1 μg/l and all samples yielded values below the Pre-Draft NPDES Limits.
- c. Geochemical Testing is not able to perform Free Cyanide testing down to 1 ug/L and in turn subcontracted out this testing to M.J. Reider Associates, Inc. Test results were not received by the permittee until 4-6 weeks after submitting the sample. This delay may be problematic in meeting EDMR reporting requirements.
- d. We request that DEP consider Exhibit A data when calculating the NPDES Limit of Free Cyanide.
- e. The 2023 test results demonstrate that there is no measurable amount of Free Cyanide in the effluent and we believe it is appropriate to remove the limit. Alternatively, we request that DEP consider modifying the NPDES limit to "REPORT" if DEP believes it is a critical analyses and accept a Reporting Limit of 20 ug/L.

4. Chloroform and Dichlorobromethane

- a. Chloroform and dichlorobromomethane were both above the NPDES limit in at least one of the sampling periods. Both pollutants are likely products of liquid chlorine disinfection used by the WWTP.
- b. We will evaluate the dosing strength of liquid chlorine to see if it can be lowered while still maintaining effective disinfection.
- We request that DEP consider Exhibit A data when calculating the NPDES Limit of chloroform and dichlorobromomethane.

July 7, 2023 NPDES Permit No. PA0021768 – Pre-Draft Page 4 of 4

d. If the NPDES limit of both pollutants remain MABS will look to implement non-chlorine based disinfection techniques, most likely UV disinfection. The POTW is currently subject to a Hydraulic Overload Corrective Action Plan (CAP). MABS is in design of Phase 1 of the CAP which focuses on collection system improvements. Phase 2 includes upgrades to the WWTP. Phase 2 is likely to occur between 2026 and 2028. We request a "Report" limit for both chloroform and dichlorobromomethane in the upcoming NPDES permit term to allow for time to design, permit, fund, and construct a UV disinfection system (or alternative) without the encumbrance of permit limit violations. It is anticipated that the implementation of a UV system will take a minimum of three (3) years and approximately \$2,000,000 in funding.

Chlorodibromomethane

- a. Chlorodibromomethane has a Reporting Limit above the WQBEL QL. However, the Pre-Draft NPDES Limit is "Report".
- b. MABS requests that DEP Consider Exhibit A data when calculating the NPDES Limit of chlorodibromomethane.
- c. Alternatively, MABS requests that DEP acknowledge that the use of a Reporting Limit of 1.0 μg/l
 is acceptable.

6. 1,1,2-Trichloroethane

- a. 1,1,2-Trichloroethane has a Reporting Limit above the WQBEL QL.
- b. All samples yielded values less than the Reporting Limit.
- c. We request that DEP consider Exhibit A data when calculating the NPDES Limit of 1,1,2-Trichloroethane

Summary

MABS requests the following considerations when preparing the Draft NPDES Limits:

- Past NPDES renewal and Industrial Pretreatment Local Limits information when establishing the next NPDES limit criteria if it was not considered.
- 2. The removal of reporting requirements for any pollutant with no reasonable chance for the effluent from the WWTP to violate in-stream water quality standards.
- 3. Acknowledgement of the use of a Reporting Limit when it exceeds the WQBEL QL. These pollutants appear to be Free Cyanide, 1,1,2-Trichloroethane, and Chlorodibromethane.
- 4. Further review of Acrolein.
- Reporting requirement for Chloroform and Dichlorobromethane for the next NPDES cycle and confirmation of NPDES limits.

Please contact me if you have any questions regrading this matter.

Respectfully submitted, The EADS Group, Inc.

By: Jacob T. Bolby, P.E.

Cc: Michele Enos, MABS William Moon, MABS

r:\7500 somerset boro\23037 sewer retainer\05 design\20 ms\3 permits\npdes renewal\response letter.docx

