

Southeast Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0021857

 APS ID
 955278

 Authorization ID
 1206923

	Applicant and Facility Information								
Applicant Name	Borough of Souderton	Facility Name	Borough of Souderton WWTP						
Applicant Address	31 W Summit Street	Facility Address	174 Cowpath Road						
	Souderton, PA 18964		Souderton, PA 18964-2007						
Applicant Contact	P. Michael Coll	Facility Contact	P Coll						
Applicant Phone	(215) 723-3824	Facility Phone	(215) 723-4371						
Client ID	3685	Site ID	263090						
Ch 94 Load Status	Not Overloaded	Municipality	Franconia Township						
Connection Status	No Limitations	County	Montgomery						
Date Application Receiv	ved November 8, 2017	EPA Waived?	No						
Date Application Accep	ted	If No, Reason	Major Facility						
Purpose of Application	Permit Renewal.								

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from S C Engineers, Inc. (consultant) on behalf of Borough of Souderton (permittee) for permittee's Borough of Souderton WWTP (facility) on November 8, 2017. The draft permit was published in the PA Bulletin on November 24, 2018; however, it was never finalized. The current permit expired on May 31, 2018 and the permit is under administrative extension since then. This is a major sewage facility with design flow of 2.0 MGD and the treated effluent is discharged into an UNT to Skippack Creek (TSF, MF). Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this permit: Quarterly monitoring for TDS, Total Aluminum, Total Arsenic, Total Boron, Dissolved Iron, and Total Zinc. Limits with schedule for Total Copper, Free Cyanide, Total Iron, Total Thallium, Chlorodibromomethane, Dichlorobromomethane, and Chloroform. Monthly monitoring for E. Coli and Total Nitrogen, TKN, and NO₃-NO₂-N.

Sludge use and disposal description and location(s): Aerobic digestion and dewatering by means of a belt filter press. Digested and dewatered sludge is used under PAG08 in mine sites in Schuylkill county.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H. Chowdhury, E.I.T. / Project Manager	January 10, 2023
Х		<i>Pravin Patel</i> Pravin C. Patel, P.E. / Environmental Engineer Manager	01/10/2023

Discharge, Receiving Waters and Water Supply Inform	mation	
Outfall No. 001	Design Flow (MGD)	2.0
Latitude 40° 17' 40.14"	Longitude	-75º 19' 55.92"
Quad Name Telford	Quad Code	1643
Wastewater Description: Sewage Effluent		
Unnamed Tributary to Skippack		
Receiving Waters Creek (TSF, MF)	Stream Code	01119
NHD Com ID 25999040	RMI	0.09
Drainage Area 1.76 mi ² /2.91 mi ²	Yield (cfs/mi²)	0.05/0.1
Q ₇₋₁₀ Flow (cfs)0.0829/0.291	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft) 267.3	Slope (ft/ft)	
Watershed No. <u>3-E</u>	Chapter 93 Class.	TSF, MF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Impaired		
Cause(s) of Impairment <u>ALGAE, SILTATION</u>		
Source(s) of ImpairmentRURAL (RESIDENTIAL A	REAS), RURAL (RESIDENTIAL	AREAS)
TMDL Status Final 04/09/2005, withdray	wn Name Skippack Cr	eek Watershed TMDL
Background/Ambient Data	Data Source	
pH (SU) <u>7.0</u>	Previous fact sheet, default	
	Previous fact sheet, default	
Hardness (mg/L) <u>209</u>	Previous fact sheet	
Otner:		
Nearest Downstream Public Water Supply Intake	Aqua PA Main	
PWS Waters Skippack Creek	Flow at Intake (cfs)	
PWS RMI 0.9	Distance from Outfall (mi)	15.98

Changes Since Last Permit Issuance: None

Other Comments:

Streamflow:

USGS's web based watershed delineation tool StreamStats (accessible at <u>https://streamstats.usgs.gov/ss/</u>, accessed on October 18, 2022) was utilized to determine the drainage area and low flow statistics of the receiving stream at discharge point. The drainage area was found to be 1.76 mi². The previous fact sheet accompanying the 2018 draft stated that "since the point of discharge is located only 0.09 mile from the main stem of the Skippack Creek, the model was utilized as if the discharge was directly to the main stem of Skippack Creek at RMI 14.05 (*corrected to 13.88*) This was done to ensure a sufficient stream length was modeled to observe the effects of DO lag. The Q₇₋₁₀ at river mile 14.05 (*corrected to 13.88*) of Skippack Creek was estimated as 0.0925-cfs (*changed to 0.099 cfs*)." The drainage area at Node 1 (at Skippack Creek RMI 13.88) is found to be 2.91 mi², which is outside of suggested range and other flow estimates may produce extrapolated results with unknow error. To avoid this, a default low flow yield of 0.1 cfs/mi², Q₁₋₁₀:Q₇₋₁₀ ratio of 0.64, and Q₃₀₋₁₀:Q₇₋₁₀ ratio of 1.36 will be utilized in modeling.

 $\begin{array}{l} Q_{7\text{-}10} \mbox{ runoff rate} = 0.1 \mbox{ cfs/mi}^2 \\ Q_{7\text{-}10} = 0.1 \mbox{ cfs/mi}^2 * 2.91 \mbox{ mi}^2 = 0.291 \mbox{ cfs} \end{array}$

PWS Intake:

The nearest downstream public water supply is Aqua PA Main on Perkiomen Creek, in Lower Merion Township at RMI 0.9. Its approximately 15.98 miles downstream of Outfall 001. Discharge from this facility is expected not to impact the PWS intake. The distance is calculated as follows:

+ Outfall 001 RMI at UNT to Skippack Creek (01119)	0.09 mi
+ RMI on Skippack Creek (01024) at confluence with 01119	13.88 mi
+ RMI on Perkiomen Creek (01017) at confluence with 01024	2.91 mi
- PWS RMI at 01017	0.9 mi

Total 15.98 miles

Wastewater Characteristics:

A median pH of 7.2 was calculated from daily DMR during dry months July through September for the year 2021-2022. The application data indicated an average Total Hardness of 164 mg/l out of 3 samples. A default temperature of 20°C will be used for modeling.

Background data:

There is no nearby WQN station to calculate background pH, temperature, or hardness. The permit application indicated an average upstream hardness of 209 mg/l from data collected between 2015-2017. A default stream pH of 7.0 S.U. and temperature of 20°C will be used for modeling.

Skippack Creek Total Maximum Daily Load (TMDL):

Skippack Creek is a 15.2-mile stream located in sub-sub-basin 03E, Montgomery County, PA. it is a tributary to Perkiomen Creek whose drainage basin is composed of urban, suburban, agricultural, and rural components. Skippack Creek begins within Souderton Borough limits and flows generally southwest to its confluence with Perkiomen Creek at RMI 3.0. The Skippack Creek TMDL was finalized in April 9, 2005 for Sediments and Nutrients. There were 11 active NPDES permitted point source discharges in the watershed including 7 STPs, 1 meat packing plant, 1 dairy farm, and 2 manufacturers. No reduction for sediment load from point sources were proposed in the final TMDL. The nutrient portion of the TMDL was withdrawn in summer of 2007. No WLA was assigned to this treatment plant. The effluent limitations in the permit will be applied in a way that the discharge from this facility will not add to the existing impairment of the receiving stream.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Trout Stocking (TSF) and Migratory Fishes (MF.)

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge. The secondary receiving stream, Skippack Creek, is a stocked trout water. The existing permit has a minimum DO limit of 6.0 mg/l as minimum to protect the stocked trout. This requirement will be carried over during this renewal.

Discharge, Red	ceiving	Waters and Water Supply Informa	ation	
Outfall No.	002		Design Flow (MGD)	0
Latitude	40º 1	7' 44"	Longitude	-75º 19' 55.97"
Quad Name	Tel	ford	Quad Code	1643
Wastewater I	Descrip	otion: Stormwater		
Receiving Wa	aters	UNT to Skippack Creek (TSF, MF)	Stream Code	01119
NHD Com ID)	25999040	RMI	0.09

Changes Since Last Permit Issuance: None

Treatment Facility Summary									
Treatment Facility Na	me: Borough of Souderton V	WWTP							
WQM Permit No.	Issuance Date								
4696406	05/02/1996								
	Degree of			Avg Annual					
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
Sewage	Secondary	Activated Sludge	Gas Chlorine	2.0					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs./day)	Load Status	Biosolids Treatment	Use/Disposal					
2	3,336	Not Overloaded	Aerobic Digestion	Landfill					

Changes Since Last Permit Issuance: None

Treatment Plant Description

Borough of Souderton WWTP is a 2.0 MGD Major Sewer Facility (MASF1) located in Souderton Borough, Montgomery County which discharges treated sewage through Outfall 001 into an UNT to Skippack Creek in state watershed 3-E. The WWTP incorporates aerated grit removal, extended aeration for BOD5 removal and nitrification, ferrous sulfate addition for phosphorus removal, final clarification, chlorination, and post aeration. The treated effluent is discharged through Outfall 001. Outfall 002 is a stormwater only outfall.

The facility receives flows mostly from Souderton Borough and small contributions from few other municipalities:

Municipalities conved	Flow contribution	Type of Se	wer System	Population
wuncipanties served	(%)	Separate (%)	Combined (%)	
Souderton Borough	88	100	0	11,130
Franconia Township	11	100	0	1,360
Hilltown Township	1	100	0	125

There is one significant and categorical industry that discharges to this WWTP. Leidy's Inc. is in Franconia Township that discharged approximately 59,250 gallons to the WWTP in 2016. The facility is a categorical industry under pretreatment standard as coded in 40 CFR Part 432-Meat and Poultry Products Point Source Category (pork slaughterhouse). The permit application indicated that an industrial user permit been issued to Leidy's Inc.

Per PADEP's most recent site inspection on May 31, 2022, the WWTP consists of the following treatment units:

One influent screen, one grit removal, two aeration basins, two secondary clarifiers, two chlorine contact tanks, two dechlorination tanks, two aerated digesters and one belt filter press

The following chemicals are used as wastewater treatment chemicals:

Chemical name	Purpose	Maximum use rate	Units
Ferrous Sulfate	Phosphorus coagulation	250	GPD
Chlorine	Disinfection	50	Lbs./day
Sulfur Dioxide	Dechlorination	25	Lbs./day

Biosolids Management:

Sludge handling for this WWTP includes aerobic digestion and dewatering by means of a belt filter press. Before dewatering, polymer is measured and mechanically blended with the liquid biosolids. Digested and dewatered sludge is used under PAG08 in mine sites in Schuylkill county.

Compliance History

DMR Data for Outfall 001 (from September 1, 2021 to August 31, 2022)

Parameter	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21
Flow (MGD)												
Average Monthly	1.015	0.975	1.029	1.911	2.087	1.360	1.701	1.479	1.000	1.072	1.243	1.539
Flow (MGD)												
Daily Maximum	1.316	1.233	1.128	2.896	3.508	1.569	2.339	2.068	1.487	1.196	2.132	2.508
pH (S.U.)												
Instantaneous Minimum	7.1	6.6	6.9	6.9	7.0	6.9	6.7	6.6	7.0	6.9	6.8	6.8
pH (S.U.) IMAX	7.5	7.5	7.4	7.4	7.4	7.4	7.3	7.4	7.5	7.4	7.2	7.4
DO (mg/L)												
Minimum	7.0	7.0	6.8	7.8	8.1	9.0	8.9	8.3	7.7	7.1	6.7	7.7
DO (mg/L)												
Average Monthly	7.4	7.4	7.8	8.5	9.2	9.6	10.1	9.5	8.3	7.7	8.3	8.4
TRC (mg/L)												
Average Monthly	0.004	0.002	0.004	0.005	0.003	0.001	0.0019	0.003	0.002	0.002	0.003	0.003
TRC (mg/L) IMAX	0.018	0.008	0.011	0.012	0.012	0.006	0.005	0.010	0.006	0.010	0.007	0.018
CBOD5 (lbs./day)												
Average Monthly	19.0	19.0	22	42.0	59.8	32.0	34.1	38	20	18	22.0	26
CBOD5 (lbs./day)												
Weekly Average	22.0	34.0	30	101.0	130.9	44.0	56.7	52	28	20	39.0	44
CBOD5 (mg/L)												
Average Monthly	2.0	2.0	2.0	3.0	2.6	3.0	2.4	3.0	2.0	2.0	2.0	< 2.0
CBOD5 (mg/L)												
Weekly Average	3.0	3.0	3.0	5.0	3.1	4.0	2.8	5.0	2.0	2.0	2.0	< 2.0
TSS (lbs./day)												
Average Monthly	39.3	61.2	43.2	135.2	208.2	60.8	64.2	50.9	39.5	37.7	45.0	50.4
TSS (lbs./day)												
Weekly Average	54.0	109.0	61.1	389.8	616.3	87.7	113.1	65.7	55.1	42.1	77.3	87.1
TSS (mg/L)												
Average Monthly	4.8	6.7	4.6	9.6	7.4	5.0	4.3	4.8	4.4	4.3	4.3	< 4.0
TSS (mg/L)												
Weekly Average	8.2	11.7	6.4	24.2	12.9	6.4	4.7	5.5	5.2	4.8	4.9	< 4.0
Fecal Coliform (CFU/100 ml)												
Geometric Mean	43	65	69	20	53	11	20	42	70	32	132	123
Fecal Coliform (CFU/100 ml)												
IMAX	250	273	673	156	3800	44	6400	315	354	82	354	4300
Ammonia (Ibs./day)												
Average Monthly	0.9	1.5	2.20	1.2	2.4	1.2	1.5	2.0	1.4	1.1	1.1	1.2
Ammonia (mg/L)												
Average Monthly	0.1	0.16	0.21	< 0.10	0.13	< 0.10	< 0.10	0.20	0.16	0.12	0.10	< 0.10

Total Phosphorus (lbs./day)												
Average Monthly	4.8	7.5	8.7	9.4	10.6	6.1	7.4	5.8	4.6	6.0	7.0	9.0
Total Phosphorus (mg/L)												
Average Monthly	0.58	0.89	0.93	0.77	0.46	0.51	0.53	0.57	0.52	0.70	0.71	0.70
Total Copper (mg/L)												
Average Monthly	0.012	0.019	0.017	0.014	0.010	0.012	0.015	0.010	0.011	0.011	0.015	0.018
Total Copper (mg/L)												
Daily Maximum	0.020	0.021	0.019	0.015	0.012	0.013	0.017	0.015	0.013	0.017	0.019	0.022

DMR Data for Outfall 002 (from September 1, 2021 to August 31, 2022)

Parameter	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21
TSS (mg/L)												
Daily Maximum									7.0			
Fecal Coliform												
(CFU/100 ml)												
Daily Maximum									200			
TKN (mg/L)												
Daily Maximum									< 0.50			
Total Iron (mg/L)												
Daily Maximum									0.09			

Compliance History

Effluent Violations for Outfall 001, from: October 1, 2021 To: August 31, 2022

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	04/30/22	IMAX	3800	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	02/28/22	IMAX	6400	CFU/100 ml	1000	CFU/100 ml

Other Comments: The Non-compliance report submitted with April 2022 eDMR stated that the cause of April violation was due to hydraulic flow exceeding plant or unit design. Increased chemical feed showed compliance in follow-up fecal testing. No explanation was provided for February 2022 non-compliance.

Summary of Inspections:

October 4, 2022: CEI conducted. Unpermitted discharge due to overflow from A side of the treatment tank aeration unit on September 6, 2022. The permittee reported this SSO. An NOV was issued on later date.

May 31, 2022: RTPT conducted. No violation noted during the inspection. Increased algal growth was observed at and immediately below outfall 001. Outfall 002 looked normal. The basin was dry and no obvious contamination was evident.

10/19/2021: CEI conducted. No violation noted during the inspection. A greater than normal deposition of plant solids was observed in the first pool downstream of the outfall, which may be due to side B clarifier issue. No issues were evident below this point.

07/20/2021: RTPT conducted. No violation noted.

10/08/2020: CEI conducted. No violation noted. Increased algal growth was present at and immediately below the outfall. Some normal settled solids were present in the first downstream pool.

04/13/2020: ADMIN review conducted. No violation noted. The facility didn't have issues with necessary materials supply due to COVID.

		Existing Efflue	nt Limitations a	Ind Monitoring I	Requirements			
For Outfall 001:	1						T	
		Monitoring Re	quirements					
Parameter	Mass Units	s (lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Weekly Average	Inst. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	ххх	xxx	5.0	Report	xxx	xxx	1/day	Grab
Total Residual Chlorine	ххх	xxx	ххх	0.012	XXX	0.038	1/day	Grab
CBOD5								24-Hr
May 1 - Oct 31	250	383	XXX	15	23	30	2/week	Composite
CBOD5								24-Hr
Nov 1 - Apr 30	417	667	XXX	25	40	50	2/week	Composite
Total Suggested Solida	500	750	~~~	20	45	60	2/wook	24-Hr
	500	750	~~~	30	40	00	Z/WEEK	Composite
(October 01 to April 30)	xxx	xxx	xxx	Geo Mean	xxx	1.000	2/week	Grab
Fecal Coliform (CEU/100 ml)	7000	,,,,,	7000	200	7000	.,	_,	0.000
(May 01 to September 30)	XXX	XXX	XXX	Geo Mean	XXX	1.000	2/week	Grab
Ammonia-Nitrogen						,		24-Hr
May 1 - Oct 31	30.0	XXX	XXX	1.8	XXX	3.6	2/week	Composite
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	60.0	XXX	XXX	3.6	XXX	7.2	2/week	Composite
Total Phosphorus								24-Hr
Apr 1 - Oct 31	16.5	XXX	XXX	1.0	XXX	2.0	2/week	Composite
Total Phosphorus								24-Hr
Nov 1 - Mar 31	33.0	XXX	XXX	2.0	XXX	4.0	2/week	Composite
					Report			24 Hour
Copper, Total	XXX	XXX	XXX	Report	Daily Max	Report	1/week	Composite

For Outfall 002:

		Monitoring Requirements						
Baramotor	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
raiameter	Average Monthly	Daily Maximum	Inst. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Suspended Solids	XXX	XXX	xxx	xxx	Report	XXX	1/Year	Upon Request
Fecal Coliform (CFU/100 ml)	XXX	XXX	xxx	XXX	Report	XXX	1/Year	Upon Request
Total Kjeldahl Nitrogen	XXX	XXX	xxx	XXX	Report	XXX	1/Year	Upon Request
Total Iron	XXX	xxx	XXX	XXX	Report	XXX	1/Year	Upon Request

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	2.0
Latitude	40° 17' 40.14"		Longitude	-75º 19' 55.92"
Wastewater De	escription: Sew	age Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBODS	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Fecal Coliform	200 / 100 ml	Geo Mean	DRBC	92a.47(a)(5)
Fecal Coliform	1,000 / 100 ml	IMAX	DRBC	92a.47(a)(5)
Total Dissolved Solids	1,000	Average Monthly		DRBC
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

WQM 7.0:

The following data were used in the attached computer model (WQM 7.0) of the stream:

•	Discharge pH	7.2	(median July-Sep, 2021-22, eDMR data)
•	Discharge Temperature	20°C	(Default)
٠	Discharge Hardness	164 mg/l	(Application data)
•	Stream pH	7.0	(Default)
•	Stream Temperature	20°C	(Default)
•	Stream Hardness	209 mg/l	(Application data)

The following two nodes were used in modeling:

Node 1: 13.88	At the confluence of	UNT 01119 to Skippack Creek with Skippack Creek (01024) at Skippack Creek RMI
	Elevation:	265.75 ft (USGS TNM 2.0 viewer, 10/17/2022)
	Drainage Area:	2.91 mi ² (StreamStat Version 3.0, 10/17/2022)
	River Mile Index:	13.88 (PA DEP eMapPA)
	Low Flow Yield:	0.1 cfs/mi ²
	Discharge Flow:	2.0 MGD

Node 2:	At confluence with UN	T 01115 with Skippack Creek (01024)
	Elevation:	237.18 ft (USGS TNM 2.0 viewer, 10/17/2022)
	Drainage Area:	4.57 mi ² (StreamStat Version 3.0, 10/17/2022)
	River Mile Index:	13.18 (PA DEP eMapPA)
	Low Flow Yield:	0.1 cfs/mi ²
	Discharge Flow:	0.0 MGD

Ammonia (NH₃-N), Carbonaceous Biochemical Oxygen Demand (CBOD5), & Dissolved Oxygen (DO):

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q_{7-10} and current background water quality levels of the stream.

<u>NH₃-N:</u>

WQM 7.0 suggested NH₃-N limit of 1.8 mg/l as monthly average and 3.6 mg/l as IMAX limit during summer to protect water quality standards. These values are the same as existing permitted limits. The average monthly mass loading is calculated to be 30.0 lbs./day. The existing winter season limits of 3.6 mg/l as average monthly and 7.2 mg/l as IMAX limit will be carried over in this renewal. Winter average monthly mass limit was calculated as 60.0 lbs./day, which is the same as in the existing permit and will remain unchanged.

CBOD₅:

The WQM 7.0 model suggests a monthly average $CBOD_5$ limit of 15 mg/l. The average monthly and average weekly mass loadings were calculated as 250 lbs./day and 375 lbs./day respectively. These values are the same as existing permit with the exception of weekly mass limit which is believed to be miscalculated in previous permit. The weekly average limit should be 1.5 times of monthly average values. The current permit has winter season average monthly, weekly average, and IMAX limit of 25 mg/l, 40 mg/l, and 50 mg/l, respectively, which will be carried over in this renewal. Seasonal limit for $CBOD_5$ is allowed in PADEP's guidance ⁽¹⁾. The mass limit for winter season is calculated to be 417 lbs./day as monthly average and 667 lbs./day as weekly average which are the same as existing permit and will be carried over. Minimum monitoring frequency will remain the same as 2/week, 24-hr composite sampling.

Dissolved Oxygen (DO):

A minimum of 6.0 mg/L for D.O. is necessary to protect the designated use of the receiving stream and is supported by the output from WQM 7.0 modeling and consistent with Ch. 93.7. This limit will be applied in the draft permit.

Toxics:

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.

3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

No. Samples/Month: 4

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

·	-								
	Mass	Limits		Concentra	ation Limits		1		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	µg/L	750	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Arsenic	Report	Report	Report	Report	Report	µg/L	10.9	THH	Discharge Conc > 10% WQBEL (no RP)
Total Boron	Report	Report	Report	Report	Report	µg/L	1,750	CFC	Discharge Conc > 10% WQBEL (no RP)
Free Cyanide	0.073	0.11	4.38	6.83	10.9	µg/L	4.38	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dissolved Iron	Report	Report	Report	Report	Report	µg/L	328	THH	Discharge Conc > 10% WQBEL (no RP)
Total Iron	27.4	42.7	1,641	2,560	4,103	µg/L	1,641	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Thallium	0.004	0.007	0.26	0.41	0.66	µg/L	0.26	THH	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	186	AFC	Discharge Conc > 10% WQBEL (no RP)
Chlorodibromomethane	0.024	0.038	1.45	2.27	3.63	µg/L	1.45	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Chloroform	0.1	0.16	6.24	9.73	15.6	µg/L	6.24	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dichlorobromomethane	0.029	0.045	1.73	2.69	4.31	µg/L	1.73	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Copper Souderton WWTP	0.57	0.93	33.9	56.0	84.8	µg/L	33.9	CFC	Discharge Conc ≥ 50% WQBEL (RP)

Recommended WQBELs & Monitoring Requirements

The above table is taken from TMS output and shows TMS recommendation. Each of the parameters are discussed below:

<u>Total Aluminum:</u> TMS suggests monitoring for Total Aluminum based on model input concentration of <100 ug/l. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

<u>Total Arsenic:</u> TMS suggests monitoring for Total Arsenic based on model input concentration of 3 ug/l. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

<u>Total Boron:</u> TMS suggests monitoring for Total Boron based on model input concentration of 421 ug/l. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

<u>Free Cyanide</u>: RP has been demonstrated and TMS suggests numeric limit for Free Cyanide based on model input concentration of <13.5 ug/l. The model suggested AML of 4.38 ug/l, MDL of 6.83 ug/l, IMAX of 10.9 ug/l, and calculated average monthly mass limit of 0.073 lbs./day and MDL of 0.11 lbs./day. Since this is a new pollutant with limits requirements, it'll be added in Pre-draft survey letter for permittee's input.

<u>Dissolved Iron:</u> TMS suggests monitoring for Dissolved Iron based on model input concentration of 61 ug/l. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

<u>Total Iron:</u> RP has been demonstrated and TMS suggests numeric limit for Total Iron based on model input concentration of 1,890 ug/l. The model suggested AML of 1.641 mg/l, MDL of 2.56 mg/l, IMAX of 4.103 mg/l, and calculated average monthly mass limit of 27.4 lbs./day and MDL of 42.7 lbs./day. Since this is a new pollutant with limits requirements, it'll be added in Pre-draft survey letter for permittee's input.

<u>Total Thallium:</u> RP has been demonstrated and TMS suggests numeric limit for Total Thallium based on model input concentration of 0.5 ug/l. The model suggested AML of 0.26 ug/l, MDL of 0.41 ug/l, IMAX of 0.66 ug/l, and calculated average monthly mass limit of 0.004 lbs./day and MDL of 0.007 lbs./day. Since this is a new pollutant with limits requirements, it'll be added in Pre-draft survey letter for permittee's input.

<u>Total Zinc:</u> TMS suggests monitoring for Total Zinc based on model input concentration of 53 ug/l. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

<u>Chlorodibromomethane</u>: RP has been demonstrated and TMS suggests numeric limit for Chlorodibromomethane based on model input concentration of 0.8 ug/l. The model suggested AML of 1.45 ug/l, MDL of 2.27 ug/l, IMAX of 3.63 ug/l, and

calculated average monthly mass limit of 0.024 lbs./day and MDL of 0.038 lbs./day. Since this is a new pollutant with limits requirements, it'll be added in Pre-draft survey letter for permittee's input.

<u>Chloroform:</u> RP has been demonstrated and TMS suggests numeric limit for Chlorodibromomethane based on model input concentration of 6.6 ug/l. The model suggested AML of 6.24 ug/l, MDL of 9.73 ug/l, IMAX of 15.6 ug/l, and calculated average monthly mass limit of 0.1 lbs./day and MDL of 0.16 lbs./day. Since this is a new pollutant with limits requirements, it'll be added in Pre-draft survey letter for permittee's input.

<u>Dichlorobromomethane:</u> RP has been demonstrated and TMS suggests numeric limit for Chlorodibromomethane based on model input concentration of 2.4 ug/l. The model suggested AML of 1.73 ug/l, MDL of 2.69 ug/l, IMAX of 4.31 ug/l, and calculated average monthly mass limit of 0.029 lbs./day and MDL of 0.045 lbs./day. Since this is a new pollutant with limits requirements, it'll be added in Pre-draft survey letter for permittee's input.

<u>Total Copper:</u> Total Copper had monitoring requirement in current permit. The 2018 draft permit utilized results from 2015 WER study. The 2015 WER study wasn't approved by EPA. Based on the PA Bulletin publication dated August 12, 2006, the approved WER (Total Recoverable) was 2.55 and hardness was 143 mg/l. The bulletin also published the revised CCCrs of 25.9 ug/l and 40.1 ug/l. However, the equations to calculate CCCr and CMCr are changed. The new equations per Ch. 93.8c(b) Table 5 are as follows:

CCCr: 0.960xExp^(0.8545xln[H]-1.702) CMCr: 0.960xExp^(0.9422xln[H]-1.700)

Utilizing a published hardness of 143 mg/l, the equations resulted in CCCr of 12.16 ug/l and CMCr of 18.82 ug/l. The revised CCCr is 31 ug/l and CMCr is 48 ug/l. These values were plugged into the TMS as revised criteria for Souderton WWTP. eDMR data for the months July-September for the years 2018-2022 were plugged into TOXCONC to calculate AMEC and Daily CV. Calculated AMEC is 36.075 ug/l and Daily CV is 0.611. These values were the input of TMS and the model suggested AML of 33.9 ug/l, MDL of 56 ug/l, and IMAX of 84.8 ug/l. The calculated mass-based AML is 0.57 lbs./day and MDL is 0.93 lbs./day. Since this is a new pollutant with limits requirements, it'll be added in pre-draft survey letter for permittee's input. Based on the permittee's response, an appropriate compliance schedule and TRE requirement will be applied, if needed. Since Total Copper is hardness-based pollutant, discharge Total Hardness (as CaCO₃) will also be added in the permit.

Whole Effluent Toxicity Testing (WETT):

The permittee submitted five (5) WET Test results (annually for years 2012-2016) with the renewal application. The PADEP requested and obtained additional five (5) WETT reports for the years 2017-2022. All these reports were analyzed for QA/QC and the WETT reports for 2019-2022 (four) were evaluated for RP analysis. All four valid WET test results showed "Pass" for all end points. The dilution series is updated. The TIWCc was calculated to be 97% to evaluate the test results for a stream flow of 0.0829 cfs, discharge flow of 2.0 MGD, and PMFa/PMFc of 1. The WET tests are discussed in detail on pages 14-15 of this report.

Additional Considerations

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. Delaware River Basin Commission's (DRBC's) Water Quality Regulations at Section 4.30.4.A requires that during winter season from October through April, the instantaneous maximum concentration of fecal coliform organisms shall not be greater than 1,000 per 100 milliliters in more than 10 percent of the samples tested. Therefore, the summer limit is governed by DEP's regulation while winter limit is governed by DRBC's regulation. These are existing limits and will be carried over.

E. Coli:

Pa Code 25 § 92a. 61 requires monitoring of E. Coli. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends monthly E. Coli monitoring for major sewage dischargers. This requirement will be applied from this permit term.

<u>рН:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 §§ 95.2(1), 92a.47) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average limits are calculated to be 500 lbs./day and 750 lbs./day respectively, which are the same as were in existing permit.

Total Residual Chlorine (TRC):

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that a water quality limit of 0.013 mg/l would be needed to prevent toxicity concerns at the discharge point for Outfall 001. The Instantaneous Maximum (IMAX) limit is 0.041 mg/l. The current permit has average monthly limit of 0.012 mg/l and IMAX limit of 0.038 mg/l which are very close to the recalculated limits and the existing limits will be carried over.

Flow and Influent BOD₅, CBOD₅, and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD_5 and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94. To demonstrate 85% removal efficiency, influent $CBOD_5$ will be added in the permit.

Total Dissolved Solids (TDS):

The recent TMS model output indicates no concern for TDS and its constituents. DRBC's basin-wide criteria (DRBC reg 3.10.4.D.2) requires monitoring for TDS. Therefore, a quarterly monitoring for TDS will be added in this renewal.

Best Professional Judgement (BPJ):

Total Phosphorus:

The current permit has a summer average monthly limit of 1.0 mg/l, IMAX of 2.0 mg/l, and mass-based average monthly limit of 16.5 lbs./day. The winter limits are 2.0 mg/l as average monthly, 4.0 mg/l as IMAX, and mass-based average monthly limit of 33.0 lbs./day. These limits will be carried over.

<u>Total Nitrogen:</u> Pa Code 25 § 92a.61 requires monitoring, at a minimum, for all sewage facilities. Monthly monitoring of Total Nitrogen will be applied for this renewal. Since TKN and Nitrate-Nitrite-N are needed to calculate TN, monthly monitoring of TKN and Nitrate-Nitrite-N will be added in this renewal.

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

Development of Effluent Limitations

Outfall No.	002		Design Flow (MGD)	0
Latitude	40º 17' 40.13	"	Longitude	-75º 19' 55.92"
Wastewater De	escription:	Stormwater		

Per Phase II stormwater regulations, major POTWs with point source discharge to surface waters are generally required to have a stormwater permit. The following limits are proposed for stormwater only Outfall 002:

	Effluent Limitations						Monitoring Requirements		
Parameter	Mass U (Ibs/da	nits y) ⁽¹⁾		Concentratio	Minimum ⁽²⁾ Measurement Frequency	Required Sample Type			
	Average Monthly		Minimum	Annual Average		Instant. Maximum			
pH (S.U.)	xxx	XXX	xxx	Report	ххх	Report	1/year	Grab	
CBOD5	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab	
Chemical Oxygen Demand	xxx	XXX	xxx	Report	xxx	Report	1/year	Grab	
Total Suspended Solids	xxx	ххх	xxx	Report	xxx	Report	1/year	Grab	
Oil and Grease	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab	
Fecal Coliform (No./100 ml)	xxx	XXX	xxx	Report	xxx	Report	1/year	Grab	
Total Kjeldahl Nitrogen	xxx	XXX	xxx	Report	xxx	Report	1/year	Grab	
Total Phosphorus	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab	
Dissolved Iron	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab	

Since the "treatment works treating domestic sewage" is considered as an "Industrial Activity" per 40 CFR §122.26(b)(14)(ix), the stormwater related to industrial activity under individual permit shall contain benchmark values. Therefore, the following benchmark values will be applied at the outfalls:

Parameter	Benchmark Value (mg/L)
Chemical Oxygen Demand	120
Total Suspended Solids	100

Whole Effluent Toxicity (WET)

For Outfall 001, \Box Acute \boxtimes Chronic WET Testing was completed:

[
Ľ		

For the permit renewal application (4 tests).

- Quarterly throughout the permit term.
- Quarterly throughout the permit term and a TIE/TRE was conducted.

Other: Annual

The dilution series used for the tests was: 100%, 97.8%, 95.6%, 93.5%, and 91.5%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 97.8%.

Summary of Four Most Recent Test Results

TST Data Analysis

(NOTE – In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet).

	Ceriodaphnia	Results (Pass/Fail)	Pimephales Re	sults (Pass/Fail)
Test Date	Survival	Reproduction	Survival	Growth
5/23/2022	Pass	Pass	Pass	Pass
5/11/2021	Pass	Pass	Pass	Pass
5/26/2020	Pass	Pass	Pass	Pass
4/30/2019	Pass	Pass	Pass	Pass

* A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

Comments: None

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 1 Chronic Partial Mix Factor (PMFc): 1

1. Determine IWC – Acute (IWCa):

(Q_d x 1.547) / ((Q₇₋₁₀ x PMFa) + (Q_d x 1.547))

[(2 MGD x 1.547) / ((0.0829 cfs x 1) + (2 MGD x 1.547))] x 100 = 97.4%

Is IWCa < 1%? YES X NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

Type of Test for Permit Renewal: Chronic

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = IWCa / 0.3 = %

2b. Determine Target IWCc (If Chronic Tests Required)

(Q_d x 1.547) / (Q₇₋₁₀ x PMFc) + (Q_d x 1.547)

[(2 MGD x 1.547) / ((0.0829 cfs x 1) + (2 MGD x 1.547))] x 100 = **97.4%**

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 97%, 73%, 49%, and 24%.

WET Limits

Has reasonable potential been determined? YES
NO

Will WET limits be established in the permit? $\hfill \mbox{YES}\ensuremath{\boxtimes}\ensuremath{\mathsf{NO}}$ NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

<mark>N/A</mark>

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of Interim Period 1.

			Effluent L	imitations			Monitoring Re	quirements
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Faiameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
	~~~~	~~~~~	~~~~~	David	Desert	NA/N		24-Hr
Copper, Total (ug/L)	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Cyanide, Free (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Iron, Total (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Composite
	•	•		•	•			24-Hr
Thallium, Total (ug/L)	Report	Report	XXX	Report	Report	XXX	1/week	Composite
Chlorodibromomethane (ug/L)	XXX	xxx	XXX	Report	xxx	Report	1/week	Grab
Chief California (ug/ L)	7000	7000	7000	Порон	7000	Порон	171001	Oldo
Dichlorobromomethane (ug/L)	XXX	XXX	XXX	Report	XXX	Report	1/week	Grab
Chloroform (ug/L)	XXX	XXX	XXX	Report	XXX	Report	1/week	Grab

Compliance Sampling Location: At Outfall 001

Other Comments: none

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

#### Outfall 001, Effective Period: End of Interim Period 1 through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
Copper, Total (ug/L)	0.57	0.93	XXX	33.9	56.0	84.8	1/week	Composite
								24-Hr
Cyanide, Free (ug/L)	0.073	0.11	XXX	4.38	6.83	10.9	1/week	Composite
								24-Hr
Iron, Total	27.4	42.7	XXX	1.641	2.56	4.103	1/week	Composite
								24-Hr
Thallium, Total (ug/L)	0.004	0.007	XXX	0.26	0.41	0.66	1/week	Composite
Chlorodibromomethane (ug/L)	XXX	XXX	XXX	1.45	XXX	3.63	1/week	Grab
Dichlorobromomethane (ug/L)	XXX	XXX	XXX	1.73	XXX	4.31	1/week	Grab
Chloroform (ua/L)	XXX	xxx	xxx	6.24	xxx	15.6	1/week	Grab

Compliance Sampling Location: At Outfall 001

Other Comments: None

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

#### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	xxx	xxx	xxx	Continuous	Recorded
pH (S.U.)	XXX	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	6.0 Inst Min	XXX	XXX	xxx	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.012	XXX	0.038	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	417	667	xxx	25	40 Wkly Avg	50	2/week	24-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	250	375	XXX	15.0	23.0 Wkly Avg	30	2/week	24-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) Raw Sewage Influent	Report	Report	xxx	Report	Report Wkly Avg	xxx	2/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5)	Depert	VVV	VVV	Depart	VVV	VVV	1/m onth	24-Hr
Raw Sewage Iniliant	кероп	~~~	~~~~	Report	<u> </u>	~~~~	1/month	
Total Suspended Solids	500	750	xxx	30	Wkly Avg	60	2/week	Composite
Total Suspended Solids		_		_	Report			24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	Wkly Avg	XXX	2/week	Composite
Total Dissolved Solids	Report Ava Qrtlv	XXX	xxx	Report Ava Qrtlv	xxx	XXX	1/quarter	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	200 Geo Mean	ХХХ	1000	2/week	Grab

## Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Devementer	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average	Weekly		Average	Daily	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
								24-Hr
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Ammonia-Nitrogen	Кероп			Кероп			1/110/101	24-Hr
Nov 1 - Apr 30	60.0	XXX	xxx	3.6	XXX	72	2/week	Composite
Ammonia-Nitrogen	00.0	7000	7000	0.0	7000	1.2	2/WCCK	24-Hr
May 1 - Oct 31	30.0	XXX	xxx	1.8	XXX	36	2/week	Composite
	0010	7000	7000		7000	0.0	2,	24-Hr
Total Kieldahl Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
Total Phosphorus		7000			7000	7000		24-Hr
Nov 1 - Mar 31	33.0	XXX	XXX	2.0	XXX	4	2/week	Composite
Total Phosphorus								24-Hr
Apr 1 - Oct 31	16.5	XXX	XXX	1.0	XXX	2	2/week	Composite
· ·	Report	Report		Report				24-Hr
Aluminum, Total (ug/L)	Avg Qrtly	Daily Max	XXX	Avg Qrtly	Report	XXX	1/quarter	Composite
	Report	Report		Report				24-Hr
Arsenic, Total (ug/L)	Avg Qrtly	Daily Max	XXX	Avg Qrtly	Report	XXX	1/quarter	Composite
	Report	Report		Report				24-Hr
Boron, Total (ug/L)	Avg Qrtly	Daily Max	XXX	Daily Max	Report	XXX	1/quarter	Composite
	Report	Report		Report				24-Hr
Iron, Dissolved (ug/L)	Avg Qrtly	Daily Max	XXX	Avg Qrtly	Report	XXX	1/quarter	Composite
	Report	Report		Report				24-Hr
Zinc, Total (ug/L)	Avg Qrtly	Daily Max	XXX	Avg Qrtly	Report	XXX	1/quarter	Composite
				_				24-Hr
Hardness, Total (as CaCO3)	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
Toxicity, Chronic -					_			
Ceriodaphnia Survival (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	See Permit
I oxicity, Chronic -								
Ceriodaphnia Reproduction					Devisit			
(IUC)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	See Permit
I OXICITY, Chronic - Pimephales	VVV	VVV	VVV	VVV	Denert			
Survival (TUC)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	See Permit

#### NPDES Permit Fact Sheet Souderton Borough STP

### Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent Limitations				Monitoring Requirements	
Parameter	Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)			Minimum ⁽²⁾	Required	
Faiametei	Average Monthly	Weekly Average	Average Daily Instant. Minimum Monthly Maximum Maximum				Measurement Frequency	Sample Type
Toxicity, Chronic - Pimephales	monting	Average		incitally	Махіпані	Махіпані	Troquonoy	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Growth (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	See Permit

Compliance Sampling Location: At Outfall 001

Other Comments: None

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

#### Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Baramotor	Mass Units	(lbs/day) ⁽¹⁾	(1) Concentrations (mg/L)					Required
Farameter	Average	Average		Annual		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Average	Maximum	Maximum	Frequency	Туре
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Carbonaceous Biochemical								
Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Chemical Oxygen Demand								
(COD)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Suspended Solids	xxx	XXX	XXX	Report	XXX	XXX	1/year	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	xxx	xxx	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Iron, Dissolved	XXX	XXX	XXX	Report	XXX	xxx	1/year	Grab

Compliance Sampling Location: At Outfall 002

Other Comments: None

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment )
Toxics Management Spreadsheet (see Attachment )
TRC Model Spreadsheet (see Attachment )
I emperature Model Spreadsheet (see Attachment )
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Lechnical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:



Borough of Souderton NPDES Permit #: PA0021857; Borough of Souderton WWTP Franconia Township, Montgomery County



Pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION Reza H Chowdhury Project Manager December 5, 2022

#### 3800-PM-BPNPSM0011 Rev. 10/2014 Permit

#### Permit No. PA0021857

#### SC Engineers

SOUDERTON BOROUGH



# Streamstats at Outfall 001

 Region ID:
 PA

 Workspace ID:
 PA20221018141312223000

 Clicked Point (Latitude, Longitude):
 40.29449, -75.33224

 Time:
 2022-10-18 10:13:33 -0400



Collapse All

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	2.7105	degrees
DRNAREA	Area that drains to a point on a stream	1.76	square miles
ROCKDEP	Depth to rock	4	feet
URBAN	Percentage of basin with urban development	60.8295	percent

## Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.76	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	2.7105	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4	feet	4.13	5.21
URBAN	Percent Urban	60.8295	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

## Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.216	ft^3/s
30 Day 2 Year Low Flow	0.351	ft^3/s
7 Day 10 Year Low Flow	0.0829	ft^3/s
30 Day 10 Year Low Flow	0.142	ft^3/s
90 Day 10 Year Low Flow	0.311	ft^3/s

Low-Flow Statistics Citations

## Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006– 5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0021857

# PA0021857 at Node 1

 Region ID:
 PA

 Workspace ID:
 PA20221017183017077000

 Clicked Point (Latitude, Longitude):
 40.29310, -75.33169

 Time:
 2022-10-17 14:30:37 -0400



Collapse All

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	2.4405	degrees
CARBON	Percentage of area of carbonate rock	0	percent
DRNAREA	Area that drains to a point on a stream	2.91	square miles
ROCKDEP	Depth to rock	4	feet
URBAN	Percentage of basin with urban development	49.6476	percent

## Low-Flow Statistics

## Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.91	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	2.4405	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4	feet	4.13	5.21
URBAN	Percent Urban	49.6476	percent	0	89

## Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.271	ft^3/s
30 Day 2 Year Low Flow	0.451	ft^3/s
7 Day 10 Year Low Flow	0.099	ft^3/s
30 Day 10 Year Low Flow	0.173	ft^3/s
90 Day 10 Year Low Flow	0.4	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006– 5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

I

TRC_CALC

TRC EVALUA	TION							
Input appropria	te values in /	A3:A9 and D3:D9						
0.0829	= Q stream (e	cfs)	0.5	= CV Daily				
2	= Q discharg	je (MGD)	0.5	= CV Hourly				
30	= no. sample	S	1	= AFC_Partial M	lix Factor			
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor			
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)			
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)			
0	= % Factor o	of Safety (FOS)		Decay Coeffici	ent (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	0.028	1.3.2.iii	WLA cfc = 0.019			
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=	0.010	5.1d	LTA_cfc = 0.011			
Source		Effluer	nt Limit Calcul	ations				
PENTOXSD TRG	5.1f		AML MULT =	1.231				
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.013	AFC			
		INST MAX	LIMIT (mg/l) =	0.041				
WLA afc	(.019/e(-k*Af + Xd + (AF(	⁻ C_tc)) + [(AFC_Yc*Qs*.019/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10/	Qd*e(-k*AFC_ 0)	_tc))				
LTAMULT afc	EXP((0.5*LN(	(cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)					
LTA_afc	wla_afc*LTA	MULT_afc						
WLA_cfc	(.011/e(-k*Cf + Xd + (CF(	⁻ C_tc) + [(CFC_Yc*Qs*.011/( C_Yc*Qs*Xs/Qd)]*(1-FOS/10	Qd*e(-k*CFC_∱ 0)	tc) )				
LTAMULT_cfc LTA_cfc	LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc							
AML MULT AVG MON LIMIT INST MAX LIMIT	TA_cfc       wla_cfc*LTAMULT_cfc         ML MULT       EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))         VG MON LIMIT       MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)         IST MAX LIMIT       1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)							

## Input Data WQM 7.0

	SWF Basi	9 Strea n Coo	am de	Stre	am Name		RMI	Ek	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03E	10	024 SKIPP	ACK CRE	EK		13.88	30	265.75	2.91	0.00000	0.00	$\checkmark$
					S	tream Da	ta						
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> p pH	Ten	<u>Stream</u> np pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	)	(°C	)	
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.	00 2	0.00 7.	00	0.00 0.00	)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Res Fa	erve 1 ctor	Disc Temp (°C)	Disc pH
Souderton WWTP	PA0021857	2.0000	2.0000	2.000	0 (	0.000	20.00	7.00
	Par	ameter D	ata					
Para	mater Name	Dis Co	c Tril nc Cor	b St nc C	ream Conc	Fate Coef		
Falla	meter Name	(mg	/L) (mg	/L) (n	ng/L)	(1/days)	)	
CBOD5		1	5.00 2	2.00	0.00	1.50	נ	
Dissolved Oxy	gen		5.00 8	3.24	0.00	0.0	C	
NH3-N			1.80 0	0.00	0.00	0.70	0	

Input Data	WQM 7.0
------------	---------

	SWF Basi	o Strea n Coo	am de	Stre	am Name		RMI	E	levation (ft)	Draina Area (sq m	ge a 1i)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03E	1	024 SKIPP	ACK CRE	EEK		13.18	80	237.18		4.57	0.00000	0.00	$\checkmark$
					S	tream Da	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dept	h Ter	<u>Tributa</u> np	<u>гү</u> рн	Tem	<u>Stream</u> p pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	C)		(°C)	)	
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0	.00 2	20.00	7.0	0 (	0.00 0.00	)
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									

Disc	charge Da	ata					
Name Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Rese Fac	E erve To tor (	Disc emp (°C)	Disc pH
	0.0000	0.0000	0.000	00 00	.000	25.00	7.00
Para	ameter Da	ata					
Parameter Name	Disc Cor	c Trib no Cor	b St nc (	tream Conc	Fate Coef		
r arameter Name	(mg	/L) (mg	/L) (r	mg/L)	(1/days)		
CBOD5	25	5.00 2	2.00	0.00	1.50		
Dissolved Oxygen	3	3.00 8	3.24	0.00	0.00		
NH3-N	25	5.00 0	0.00	0.00	0.70		

			WQI	<u>vi 7.0</u>	Hyar	oayn	amic	Out	outs					
	SW	P Basin	Strea	m Code			64	Stream	Name CREEK					
						one mon onlen								
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis Elow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)			
Q7-10 Flow														
13.880	0.29	0.00	0.29	3.094	0.00773	.6	16.56	27.62	0.34	0.125	20.00	7.00		
Q1-1	0 Flow													
13.880	0.19	0.00	0.19	3.094	0.00773	NA	NA	NA	0.33	0.128	20.00	7.00		
Q30-	10 Flow													
13.880	0.40	0.00	0.40	3.094	0.00773	NA	NA	NA	0.35	0.123	20.00	7.00		

# WOM 7.0 Hydrodynamia Outpute

Version 1.0b

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0021857

## WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	$\checkmark$
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	$\checkmark$
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

Monday, December 5, 2022

Version 1.0b

Page 1 of 1

	SWP Basin 03E	Strea 1	am <u>Code</u> 1024		<u>St</u> SKIP	<u>ream Name</u> PACK CREEI	ĸ	
NH3-N	Acute Alloca	ntion	s					
RMI	Discharge N	lame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
13.8	80 Souderton W	wт	9.67	3.6	9.67	3.6	0	0
NH3-N	Chronic Allo	cati	ons					
RMI	Discharge Na	me	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
	80 Souderton W	wт	1.92	1.8	1.92	1.8	0	0

		CBODS		NH	3-IN	Dissolve	a Oxvaen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
13.88	Souderton WWTP	15	15	1.8	1.8	6	6	0	0	

SWP Basin Str	eam Code			Stream Name	
03E	1024		S	KIPPACK CREEK	
RMI	Total Discharge	Flow (mgd	) Anal	ysis Temperature (°	C) Analysis pH
13.880	2.00	0		20.000	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
16.560	0.60	0		27.618	0.341
Reach CBOD5 (mg/L)	Reach Kc (	1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
13.88	1.48	0		1.65	0.700
Reach DO (mg/L)	Reach Kr (	1/days)		Kr Equation	Reach DO Goal (mg/L)
6.193	25.03	8		Tsivoglou	6
Reach Travel Time (davs)		Subreach	Reculte		
0.125	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.013	13.63	1.63	6.61	
	0.025	13.38	1.62	6.92	
	0.038	13.13	1.60	7.15	
	0.050	12.89	1.59	7.33	
	0.063	12.65	1.57	7.46	
	0.075	12.42	1.56	7.56	
	0.088	12.19	1.55	7.65	
	0.100	11.97	1.53	7.71	
	0.113	11.75	1.52	7.77	
	0.125	11.53	1.51	7.81	

# WQM 7.0 D.O.Simulation

						-			
	SWP Basin	Stream C	ode		Stream Name	2			
	03E	1024			SKIPPACK CRE	EK			
RMI	Name		Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
13.880	Souderton W	WTP	PA0021857	2.000	CBOD5	15			
					NH3-N	1.8	3.6		
					Dissolved Oxygen			6	

## WQM 7.0 Effluent Limits

Facility: NPDES #: Outfall No: n (Samples/Month):	Souderton WWTP PA0021857 001 4	Reviewer/Permit Engineer:	Reza Chowdhury
Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Total Copper (µg/L)	Lognormal	0.6108612	36.0750178

TOXCON Output



Toxics Management Spreadsheet Version 1.3, March 2021

# **Discharge Information**

Inst	ructions D	lischarge Stream													
Fac	ility: Bor	ough of Souderton	WWTP				NPI	DES Perr	nit No.:	PA0021	857		Outfall	No.: 001	
Eva	luation Type:	Major Sewage	Industri	ial W	aste		Wa	stewater	Descrip	tion: Tre	ated Sev	vage			
Discharge Characteristics															
De	sign Flow	Handmann (mar/l)t	-11/	e11)+		Parti		al Mix Fa	octors (F	PMFs)		Com	plete Mi	x Times	(min)
	(MGD)*	Haroness (mg/l)*	AFC	:		CFC	THH	1	CRL	Q ₇₋₁₀		G	2 _h		
	2	164	7.	.2											
						0	) If lef	t blank	0.5 lf le	nt blank	0	if left blan	k	1 lf lef	t blank
	Disch	arge Pollutant	Units	Max	Discharge Conc	Tr Co	ib nc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolv	ed Solids (PWS)	mg/L		619.33										
5	Chloride (PW	S)	mg/L		225.67										
l In	Bromide		mg/L	<	1										
ō	Sulfate (PWS	)	mg/L		61.7										
	Fluoride (PW	S)	mg/L												
	Total Aluminu	Im	µg/L	<	100										
	Total Antimor	ıy	µg/L		0.5										
	Total Arsenic µg/L 3		3												
	Total Barium		µg/L 47												

	Total Dissolved Solids (PWS)	mg/L		018.33	-i-	-i-	1 -	1				
2	Chloride (PWS)	mg/L		225.67	H	-	T					
<u>s</u>	Bromide	mg/L	<	1								
5	Sulfate (PWS)	mg/L		61.7		-	-					
	Fluoride (PWS)	mg/L			FF	+	T					
	Total Aluminum	µg/L	<	100		ī.	İ					
	Total Antimony	µg/L		0.5			Ļ					
	Total Arsenic	µg/L		3			+					
	Total Barium	µg/L		47	Fi	1	T					
	Total Beryllium	µg/L	<	0.05			t					
	Total Boron	µg/L		421		-	+					
	Total Cadmium	µg/L	<	0.08	FF		T					
	Total Chromium (III)	µg/L			Ĩ		Ì					
	Hexavalent Chromium	µg/L	<	0.1								
	Total Cobalt	µg/L		0.6	H	+	Ŧ					
	Total Copper	µg/L			Fi	1	t					
5	Free Cyanide	µg/L	<	13.5			T					
'n	Total Cyanide	µg/L		2		-	+					
5	Dissolved Iron	µg/L		61	F	-	T					
	Total Iron	µg/L		1890			1					
	Total Lead	µg/L		0.4			-					
	Total Manganese	µg/L		26			+					
	Total Mercury	µg/L	<	0.2			Ī					
	Total Nickel	µg/L		4			Ļ					
	Total Phenols (Phenolics) (PWS)	µg/L	<	5			+					
	Total Selenium	µg/L	<	0.5	F	-	T					
	Total Silver	µg/L	<	0.05			Ļ					
	Total Thallium	µg/L		0.5			-					
	Total Zinc	µg/L		53			t					
	Total Molybdenum	µg/L		4								
	Acrolein	µg/L	<	1	$ \rightarrow $	_	-					
	Acrylamide	µg/L	<									
	Acrylonitrile	µg/L	<	0.5			Ì.					
	Benzene	µg/L	<	0.5								
	Bromoform	µg/L	<	0.5								

1	Carbon Tetrachloride	µg/L	<	0.5	F	F	F	F					
	Chlorobenzene	ug/L		0.5	F	t	t	h					Ť
	Chlorodibromomethane	ug/L	<u> </u>	0.8		t	t	t					Ť
	Chloroethane	ug/l	~	0.5		t	t	t					-
	2 Chloroathyl Vinyl Ethor	Pg/C		0.5	⊨	╞	╞	┝				╞┼┼┼	+
	2-Chlordenyi Viliyi Euler	Pg/L	-	0.0	⊢	┝	┢	┝				┿┿	
	Chiorotorm	µg/L	<u> </u>	0.0	⊨	⊨	⊨	H					
	Dichlorobromomethane	µg/L		2.4		È	È	È					
	1,1-Dichloroethane	µg/L	<	0.5									
e	1,2-Dichloroethane	µg/L	<	0.5	_	Ļ	Ļ	Ļ					
<u></u>	1,1-Dichloroethylene	µg/L	<	0.5	F	F	F	-					_
ē	1,2-Dichloropropane	µg/L	<	0.5	F	F	F	F					
O	1.3-Dichloropropylene	µa/L	<	0.5	F	t	t	t					
	1.4-Dioxane	ug/L	<u> </u>	0.2		ŕ	Ť	Ť				 <del>i i i</del>	Ť
	Ethylbenzene	10/		0.5		E		E					-
	Mathul Bramida	Pg/C	-	0.0	╞	╞	╞	ł					+
	Methyl Bromide	Pg/L			⊢	┝	┝	+				+++	+
	Methyl Chloride	µg/L	<		-	⊨	⊨	÷					
	Methylene Chloride	µg/L	<	0.5		Þ	1						
	1,1,2,2-Tetrachloroethane	µg/L	<	0.5		Ĺ	Ĺ	Ĺ					Ť
	Tetrachloroethylene	µg/L	<	0.5									
	Toluene	µg/L		0.7									-
	1,2-trans-Dichloroethylene	µg/L	<		F	F	F	H					
	1.1.1-Trichloroethane	ug/L	<	0.5	F	t	t	t				 ╞┼┼	-
	1.1.2.Trichloroothane	ug/l	-	0.5	H	÷	÷	÷					÷
	Trickless studens	Pg/L		0.5	F	F	÷	Ħ					÷
	Inchiorbeinylene	µg/L		0.5									-
	Vinyi Chionde	hð/r	<	0.5		Ļ	Ļ	Ļ					_
	2-Chlorophenol	µg/L	<	1		4	_	Ļ					
	2,4-Dichlorophenol	µg/L	<	1		Ŀ	╘	Ł					
	2,4-Dimethylphenol	µg/L	<	1		H	F	H					
	4,6-Dinitro-o-Cresol	µg/L	<			i	Ē	Ē					
4	2.4-Dinitrophenol	ug/L	<	3									
8	2-Nitrophenol	ug/l	<	1		t	t	t					
2	4-Nitrophenol	10/	e	1	⊨	⊨	÷	ł					=
0	- Chlere en Gracel	Pg/C			⊢	⊢	┝	+				+++	+
	p-chloro-m-cresol	µg/L			⊨	⊨	⊨	H				╞╞╤╡	-
	Pentachiorophenoi	µg/L	<	1		F	÷	È					Ť
	Phenol	µg/L	<	5									
	2,4,6-Trichlorophenol	µg/L	<	1		L		L					
	Acenaphthene	µg/L	<	1		L	L	Ļ					_
	Acenaphthylene	µg/L	<	1	-	┝	┝	┝					
	Anthracene	µg/L	<	1		F	T	f					
	Benzidine	ug/L	<	5									
	Benzo(a)Anthracene	uo/l	<	1				E					
	Benzo(a)Bureno	ug/l			⊨	t	t	t					=
	2 A Deser Busersthese	Pg/L		-	⊢	┝	┝	+				+++	-
	3,4-Benzotiuorantnene	µg/L	<	1	╞	╞	╞	⊨					-
	Benzo(gni)Perylene	hð/r	<	1		Þ	÷	÷					-
	Benzo(k)Fluoranthene	µg/L	<	1				Γ					
	Bis(2-Chloroethoxy)Methane	µg/L	<	1									
	Bis(2-Chloroethyl)Ether	µg/L	<	1		Ļ	Ļ	Ļ					_
	Bis(2-Chloroisopropyl)Ether	µg/L	<	1	F	F	F	H					
	Bis(2-Ethylhexyl)Phthalate	ua/L	<	3	F	F	F	F					-
	4-Bromophenyl Phenyl Ether	ug/L	<	1	F	t	t	h					Ť
	Butyl Benzyl Phthalate	uo/l	<	1		E	E	E					Ŧ
	2 Chloron anhthalana	ug/l	-	1	F	t	t	t					-
	4 Chlorophanul Dhanul Ethan	Pg/L		-	⊢	÷	┝	÷				+++	-+-
	4-Chlorophenyl Phenyl Ether	µg/L	~	1	⊢	┝	┝	┝					
	Chrysene	µg/L	<	1		Þ	÷	h					-
	Dibenzo(a,h)Anthrancene	µg/L	<	1		Ĺ	Ĺ	Ĺ					Ť
	1,2-Dichlorobenzene	µg/L	<	0.5									Ť
	1,3-Dichlorobenzene	µg/L	<	0.5									
5	1,4-Dichlorobenzene	µg/L	<	0.5		-	-						-
₽.	3,3-Dichlorobenzidine	µg/L	<	0.3	F	F	F	F					-
0	Diethyl Phthalate	µo/L	<	1	F	t	1	1					$\uparrow$
ō	Dimethyl Phthalate	10/	e	1	F	Ē	t	t					Ť
	Di.n. Butul Phthalate	Holl.	2	2		E	E	E					Ŧ
1	2.4 Disitratelyans	Pg/L		3		-	-	-				+++	4
1	2,4-Dinitrotoluene	µg/L	<	3									

	2,6-Dinitrotoluene	µg/L	<	1		-		-				H	÷	-1
	Di-n-Octyl Phthalate	ug/L	<	3	H	Ť	+					i i i	Ť	Ť
	1.2-Diphenylhydrazine	uo/l	<	1	Ħ	Ť	÷						Ť	Ť
	Eluoranthono	ug/l	-	1	Ħ	+	+						=	Ŧ
	Eluoropo	HQ/L	-	1	╞╪	+	+					 ╞	+	+
	Fluorene	Pg/L	-		+	┿	+			 	 	 ┝─┤	+	÷
	Hexachlorobenzene	µg/L	<	1	⊨	╪	╪					 ⊨	+	÷
	Hexachlorobutadiene	µg/L	<	0.09	Ì	Ì	Ì						Ì	Ť
	Hexachlorocyclopentadiene	µg/L	<	1						 		ļ	_	1
	Hexachloroethane	µg/L	<	0.07										4
	Indeno(1,2,3-cd)Pyrene	µg/L	<	1	$\rightarrow$	+		-					$\rightarrow$	÷
	Isophorone	µg/L	٨	1				-						+
	Naphthalene	µg/L	<	0.07	T	T	-					$\square$	T	T
	Nitrobenzene	µg/L	<	1		Ì								Ť
	n-Nitrosodimethylamine	ug/L	<	1		+	+						+	Ŧ
	n-Nitrosodi-n-Propylamine	uo/l	<	1	Ħ	ŧ	+					╞╡	+	*
	n Nitrosodinhonulamino	-97-	-		+	+	+						+	+
	Despethens	HQ/L	-	1	Ħ	Ŧ	÷				 	 Ħ	÷	Ŧ
	r nenanurrene	µg/L	-		Ì	÷		<u> </u>					$\pm$	Ŧ
	Pyrene	µg/L	<	1	H	+	+					 H	4	4
	1,2,4-Trichlorobenzene	µg/L	<	0.1		4	_			 		H	4	4
	Aldrin	µg/L	<			+	+						+	+
	alpha-BHC	µg/L	<											
	beta-BHC	µg/L	<			Ì								T
	gamma-BHC	µg/L	۸			1								
	delta BHC	µg/L	<			-	+						-	-
	Chlordane	µg/L	<		Ħ	Ŧ	+						+	Ŧ
	4 4-DDT	uo/l	<		-†	Ť	+					 h	Ť	Ť
	4.4-DDE	ug/l	-		Ħ	Ť	÷	-				Ħ	Ŧ	Ť
	44 000	Have Have			∃	-							+	Ŧ
	4,4-000	µg/L	-		⊢	┿	+					╞	+	+
		Pg/L	-		$\rightarrow$	┿	+	-			 	 ┝─┤	+	÷
	alpha-Endosultan	µg/L	<		Ħ	÷	+					H	+	÷
60	beta-Endosultan	µg/L	<		Ì	Ì	Ì	1					Ì	Ť
₫.	Endosultan Sultate	µg/L	<		$\square$	+	+			 	 	 $\parallel$	_	+
ē	Endrin	µg/L	<		╞	╪	+					⊢	<b>_</b>	+
ō	Endrin Aldehyde	µg/L	<			+	+				 		+	+
	Heptachlor	µg/L	<		Ì	Ì								Ť
	Heptachlor Epoxide	µg/L	<											
	PCB-1016	µg/L	<			_		-						4
	PCB-1221	µg/L	<		$\vdash$	╈	+							÷
	PCB-1232	µg/L	<		T	T	1					iTi	Ť	Ť
	PCB-1242	µg/L	<											T
	PCB-1248	ua/L	<			4	+						_	t
	PCB-1254	ug/l	<		Ħ	+	+	-					+	÷
	PCB-1260	ug/l	<		+	+	+						+	+
	PCBs Total	ug/l	~		Ħ	÷	÷					H	÷	÷
	Texaphone	100	-		∃	-							+	Ŧ
	a a z a zopp	µg/L	-		╞	╡	+					⊣	+	+
	2,3,7,8-1000	ng/L	~			┿	+					┝─┤	-	+
	Gross Alpha	pCi/L			╞	+	+						=	+
5	Total Beta	pCi/L	<		Ì	Ì	1						Ì	Ť
8	Radium 226/228	pCi/L	<								 			
2	Total Strontium	µg/L	<											
•	Total Uranium	µg/L	<					-						÷
	Osmotic Pressure	mOs/kg					+							Ť
	Copper Souderton WWTP	µg/L		36.075					0.611					
						ļ								
						+	+						_	
					Ħ	ŧ	+						_	-
					H	+	+						_	-
													_	-
						-	-	-					_	-
					+	-	+							-
					Ħ	+	+							_
					Ĥ	Ì	÷						_	-
					Ļ	-	-							
														_

Toxics Management Spreadsheet Version 1.3, March 2021



## Stream / Surface Water Information

Borough of Souderton WWTP, NPDES Permit No. PA0021857, Outfall 001

Instructions	Discharge	Stream	

Receiving Surface Water Name:

No. Reaches to Model: 1

- Statewide Criteria
- O Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ² )*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	001024	13.88	265.75	2.91			Yes
End of Reach 1	001024	13.18	237.18	4.57			Yes

#### Q 7-10

Location	PMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	TSIMI	(cfs/mi ² )*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	13.88	0.1										209	7		
End of Reach 1	13.18	0.1										209	7		

#### Qh

Location	PMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analys	sis
Eocation	TSIMIT	(cfs/mi ² )	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	13.88														
End of Reach 1	13.18														



Toxics Management Spreadsheet Version 1.3, March 2021

Borough of Souderton WWTP, NPDES Permit No. PA0021857, Outfall 001

## Model Results

RETURN TO INPUTS SAVE AS PDF PRINT All ○ Inputs ○ Results ○ Limits nstructions Results Hydrodynamics Wasteload Allocations AFC CCT (min): 0.068 PMF: 1 Analysis Hardness (mg/l): 167.87 Analysis pH: 7.18 Trib Conc Fate WQC WQ Obj Stream WLA (µg/L) Pollutants Conc Comments CV (µg/L) (µg/L) (µg/L) Coef all. Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 750 750 821 Total Antimony 0 0 0 1,100 1,100 1,203 340 0 0 0 340 372 Chem Translator of 1 applied Total Arsenic Total Barium 0 0 0 21,000 21,000 22,975 Total Boron 0 0 0 8,100 8,100 8,862 Total Cadmium 0 0 0 3.331 3.61 3.95 Chem Translator of 0.922 applied Hexavalent Chromium 0 0 0 16 16.3 17.8 Chem Translator of 0.982 applied Total Cobalt 0 0 0 95 95.0 104 0 0 0 22 22.0 24.1 Free Cyanide Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Lead 0 0 0 112.964 158 173 Chem Translator of 0.716 applied 0 N/A N/A Total Manganese 0 0 N/A Total Mercury 0 0 0 1.400 1.65 1.8 Chem Translator of 0.85 applied Total Nickel 0 0 725.753 727 796 Chem Translator of 0.998 applied 0 Total Phenols (Phenolics) (PWS) 0 N/A N/A N/A 0 0 Total Selenium 0 0 0 N/A N/A N/A Chem Translator of 0.922 applied 7.841 9.22 10.1 Chem Translator of 0.85 applied Total Silver 0 0 0 Total Thallium 0 65 65.0 71.1 0 0 181.749 203 Total Zinc 0 0 0 186 Chem Translator of 0.978 applied 0 0 0 3 3.0 3.28 Acrolein 711 0 0 0 650 650 Acrylonitrile 0 0 0 640 640 700 Benzene

		_		_			
Bromoform	0	0	0	1,800	1,800	1,969	
Carbon Tetrachloride	0	0	0	2,800	2,800	3,063	
Chlorobenzene	0	0	0	1,200	1,200	1,313	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	19,693	
Chloroform	0	0	0	1,900	1,900	2,079	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	16,411	
1,1-Dichloroethylene	0	0	0	7,500	7,500	8,205	
1.2-Dichloropropane	0	0	0	11.000	11.000	12.035	
1.3-Dichloropropylene	0	0	0	310	310	339	
Ethylbenzene	0	0	0	2,900	2,900	3,173	
Methylene Chloride	0	0	0	12,000	12,000	13,129	
1.1.2.2-Tetrachloroethane	0	0	0	1.000	1.000	1.094	
Tetrachloroethylene	0	0	0	700	700	766	
Toluene	0	0	0	1 700	1 700	1.860	
1.1.1-Trichlomethane	0	0	0	3,000	3,000	3,282	
1.1.2-Trichloroethane	0	ő	0	3,000	3,400	3,202	
Trichloroethylene	0	ő	0	2,300	2 300	2,518	
Vinyl Chloride	0	ő	0	2,000 N/A	N/A	N/A	
2 Chlorophonol		0		580	560	812	
2.4 Disblorenhonol		0		1 700	1 700	1.960	
2.4 Dimethylahonol		0		660	660	722	
2,4-Dinetryphenol		0		660	860	722	
2,4-Dinidophenoi			<u> </u>	000	000	722	
2-Nitrophenol	0	0	-	8,000	8,000	8,752	
4-Nitrophenoi	0	0	-	2,300	2,300	2,010	
Pentachiorophenoi				10.439	10.4	11.4	
Phenoi 0.4.8 Tricklassekaard	0	0	<u> </u>	N/A	N/A	N/A	
2,4,6-1 richlorophenol	0	0	0	460	460	503	
Acenaphthene	0	0	0	83	83.0	90.8	
Anthracene	0	U	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	328	
Benzo(a)Anthracene	0	0	0	0.5	0.5	0.55	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	32,822	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	4,923	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	295	
Butyl Benzyl Phthalate	0	0	0	140	140	153	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	897	
1,3-Dichlorobenzene	0	0	0	350	350	383	
1,4-Dichlorobenzene	0	0	0	730	730	799	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	

Diethyl Phthalate	0	0		0	4,000	4,000	4,376	
Dimethyl Phthalate	0	0		0	2,500	2,500	2,735	
Di-n-Butyl Phthalate	0	0		0	110	110	120	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	1,750	
2,6-Dinitrotoluene	0	0		0	990	990	1,083	
1,2-Diphenylhydrazine	0	0		0	15	15.0	16.4	
Fluoranthene	0	0		0	200	200	219	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	10.9	
Hexachlorocyclopentadiene	0	0		0	5	5.0	5.47	
Hexachloroethane	0	0		0	60	60.0	65.6	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorope	0	0		0	10 000	10 000	10.941	
Naphthalene	0	0		0	140	140	153	
Nitrobenzene	0	0		0	4 000	4 000	4 376	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	18 599	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodinhenvlamine	0	0		0	300	300	328	
Phenanthrene	0	0		0	5	5.0	5.47	
Pyrapa	0	0		0	NIA	N/A	N/A	
1.2.4 Trichlombenzene	0	0		0	120	120	142	
Copper Soudertop WWTP	0	0		-	49	49.0	52.5	
	T (i): 0 (	200	DMC.			hair Haadaa		
CFC CC	T (min): 0.0	068	PMF:	1	Ana	lysis Hardne	ess (mg/l):	167.87 Analysis pH: 7.18
CFC CC	T (min): 0.0	068	PMF:	1	Ana	ilysis Hardne	ess (mg/l):	167.87 Analysis pH: 7.18
CFC CC	T (min): 0.0	Stream	PMF:	1 Fate	Ana WQC	WQ Obj	ess (mg/l): WLA (µg/L)	167.87 Analysis pH: 7.18 Comments
CFC CC	T (min): 0.0	Stream CV	PMF: Trib Conc (µg/L)	1 Fate Coef	Ana WQC (µg/L)	WQ Obj (µg/L)	wLA (µg/L)	167.87 Analysis pH: 7.18 Comments
CFC CC Pollutants Total Dissolved Solids (PWS)	T (min): 0.0	Stream CV 0	PMF: Trib Conc (µg/L)	1 Fate Coef 0	Ana WQC (µg/L) N/A	llysis Hardne WQ Obj (µg/L) N/A	WLA (µg/L)	167.87 Analysis pH: 7.18 Comments
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS)	T (min): 0.0	Stream CV 0	PMF: Trib Conc (µg/L)	1 Fate Coef 0	Ana WQC (µg/L) N/A N/A	WQ Obj (µg/L) N/A N/A	wla (µg/l): N/A N/A	167.87 Analysis pH: 7.18 Comments
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)	T (min): 0.0	Stream CV 0 0	PMF: Trib Conc (µg/L)	1 Fate Coef 0 0 0	Ana WQC (µg/L) N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A	wla (µg/l): N/A N/A N/A	167.87 Analysis pH: 7.18 Comments
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum	T (min): 0.0 Stream Conc (un/l) 0 0 0	Stream CV 0 0 0	PMF: Trib Conc (µg/L)	1 Fate Coef 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A	wla (µg/l): WLA (µg/l) N/A N/A N/A N/A	167.87 Analysis pH: 7.18 Comments
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony	T (min): 0.0 Stream Conc (un/L) 0 0 0 0 0	Stream CV 0 0 0 0 0	PMF:	1 Fate Coef 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A 220	WQ Obj (µg/L) N/A N/A N/A N/A N/A 220	WLA (µg/L) N/A N/A N/A N/A N/A 241	167.87 Analysis pH: 7.18 Comments
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic	T (min): 0.0 Stream Conc (tin/L) 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0	PMF:	1 Fate Coef 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A 220 150	WQ Obj (μg/L) N/A N/A N/A N/A 220 150	WLA (µg/L) N/A N/A N/A N/A 241 164	167.87 Analysis pH: 7.18 Comments
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium	T (min): 0.0 Stream Conc (tin/L) 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream           CV           0           0           0           0           0           0           0           0           0           0           0           0	PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A 220 150 4,100	WQ Obj (µg/L) N/A N/A N/A N/A 220 150 4,100	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486	167.87 Analysis pH: 7.18 Comments
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron	T (min): 0.0 Stream Conc (un/L) 0 0 0 0 0 0 0 0 0 0 0 0 0	068 Stream CV 0 0 0 0 0 0 0 0	PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600	WQ Obj (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750	167.87 Analysis pH: 7.18 Comments
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium	T (min): 0.0 Stream Conc (un/L) 0 0 0 0 0 0 0 0 0 0 0 0 0	068 Stream CV 0 0 0 0 0 0 0 0 0	PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0,352	WQ Obj (µg/L) N/A N/A N/A 220 150 4,100 1,800 0,4	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750 0,43	167.87 Analysis pH: 7.18 Comments Comments Chem Translator of 1 applied Chem Translator of 0.887 applied
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Antimony Total Barium Total Barium Total Boron Total Cadmium Hexavalent Chromium	T (min): 0.0	068 Stream CV 0 0 0 0 0 0 0 0 0 0	PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0,352 10	WQ Obj (µg/L) N/A N/A N/A 220 150 4,100 1,600 0.4 10.4	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750 0.43 11.4	167.87 Analysis pH: 7.18 Comments Comments Chem Translator of 1 applied Chem Translator of 0.887 applied Chem Translator of 0.962 applied
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Ansenic Total Barium Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt	T (min): 0.0	068 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0,352 10 19	WQ Obj (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.4 10.4 19,0	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750 0.43 11.4 20.8	167.87       Analysis pH:       7.18         Comments         Chem Translator of 1 applied         Chem Translator of 1 applied         Chem Translator of 0.887 applied         Chem Translator of 0.962 applied
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Ansenic Total Barium Total Boron Total Boron Total Cadmium Hexavalent Chromium Free Cvanide	T (min): 0.0	068 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0,352 10 19 52	WQ Obj (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.4 10.4 10.4 19.0 5.2	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750 0.43 11.4 20.8 5.69	167.87       Analysis pH:       7.18         Comments         Chem Translator of 1 applied         Chem Translator of 1 applied         Chem Translator of 0.887 applied         Chem Translator of 0.962 applied
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Antimony Total Barium Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Free Cyanide Dissolved Iron	T (min): 0.0	068 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.352 10 19 5.2 N/A	WQ Obj (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.4 10.4 19.0 5.2 N/A	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750 0.43 11.4 20.8 5.69 N/A	167.87       Analysis pH:       7.18         Comments         Chem Translator of 1 applied         Chem Translator of 1 applied         Chem Translator of 0.887 applied         Chem Translator of 0.962 applied
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Free Cyanide Dissolved Iron Total Iron	T (min): 0.0	068 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0,352 10 19 5.2 N/A 1,600	WQ Obj (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.4 10.4 19.0 5.2 N/A	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750 0.43 11.4 20.8 5.69 N/A	167.87       Analysis pH:       7.18         Comments         Chem Translator of 1 applied         Chem Translator of 1 applied         Chem Translator of 0.887 applied         Chem Translator of 0.982 applied         WOC = 20 day ayersee: PME = 1
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Free Cyanide Dissolved Iron Total Iron Total Iron	T (min): 0.0	568 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0,352 10 19 5.2 N/A 1,500 4,600	WQ Obj (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.4 10.4 19.0 5.2 N/A 1,500	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750 0.43 11.4 20.8 5.69 N/A 1,641	167.87       Analysis pH:       7.18         Comments         Chem Translator of 1 applied         Chem Translator of 1 applied         Chem Translator of 0.887 applied         Chem Translator of 0.887 applied         Chem Translator of 0.962 applied         WQC = 30 day average; PMF = 1         Other: Texestate (20.710)
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Free Cyanide Dissolved Iron Total Iron Total Lead	T (min): 0.0	Stream           CV           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0		1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0,352 10 19 5,2 N/A 1,500 4,402	WQ Obj (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.4 10.4 19.0 5.2 N/A 1,500 6.15	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750 0.43 11.4 20.8 5.69 N/A 1,641 6,73	167.87       Analysis pH:       7.18         Comments         Chem Translator of 1 applied         Chem Translator of 1 applied         Chem Translator of 0.887 applied         Chem Translator of 0.887 applied         Chem Translator of 0.962 applied         WQC = 30 day average; PMF = 1         Chem Translator of 0.716 applied
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Boron Total Boron Total Boron Total Cadmium Hexavalent Chromium Hexavalent Chromium Total Cobalt Free Cyanide Dissolved Iron Total Iron Total Iron Total Lead Total Manganese	T (min): 0.0	Stream           CV           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0		1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0,352 10 19 5,2 N/A 1,500 4,402 N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A 220 150 4,100 1,600 0.4 10.4 10.4 19.0 5.2 N/A 1,500 6.15 N/A	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750 0.43 11.4 20.8 5.69 N/A 1,641 6.73 N/A	167.87       Analysis pH:       7.18         Comments         Chem Translator of 1 applied         Chem Translator of 1 applied         Chem Translator of 0.887 applied         Chem Translator of 0.887 applied         Chem Translator of 0.962 applied         WQC = 30 day average; PMF = 1         Chem Translator of 0.716 applied
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Boron Total Boron Total Boron Total Cadmium Hexavalent Chromium Hexavalent Chromium Total Cobalt Free Cyanide Dissolved Iron Total Iron Total Iron Total Lead Total Manganese Total Marcury	T (min): 0.0	Stream           CV           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0		1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0,352 10 19 5,2 N/A 1,500 4,402 N/A 0,770	WQ Obj (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.4 10.4 10.4 19.0 5.2 N/A 1,500 6.15 N/A 0.91	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750 0.43 11.4 20.8 5.69 N/A 1,641 6,73 N/A 0.99	167.87       Analysis pH:       7.18         Comments         Chem Translator of 1 applied         Chem Translator of 1 applied         Chem Translator of 0.887 applied         Chem Translator of 0.887 applied         WQC = 30 day average; PMF = 1         Chem Translator of 0.716 applied         Chem Translator of 0.716 applied         Chem Translator of 0.85 applied
CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Cadmium Hexavalent Chromium Hexavalent Chromium Total Cobalt Free Cyanide Dissolved Iron Total Iron Total Iron Total Lead Total Manganese Total Manganese Total Manganese Total Mercury Total Nickel	T (min): 0.0	Stream           CV           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0		1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0.352 10 19 5.2 N/A 1,500 4,402 N/A 1,500 4,402 N/A 0.770 80.609	WQ Obj (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.4 10.4 10.4 19.0 5.2 N/A 1,500 6.15 N/A 0.91 80.9	WLA (µg/L) N/A N/A N/A N/A 241 164 4,486 1,750 0.43 11.4 20.8 5.69 N/A 1,641 6.73 N/A 0.99 88.5	167.87       Analysis pH:       7.18         Comments         Chem Translator of 1 applied         Chem Translator of 1 applied         Chem Translator of 0.887 applied         Chem Translator of 0.982 applied         WQC = 30 day average; PMF = 1         Chem Translator of 0.716 applied         Chem Translator of 0.85 applied         Chem Translator of 0.85 applied         Chem Translator of 0.85 applied         Chem Translator of 0.997 applied

Total Selenium	0	0	0	4.600	4.99	5.46	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	14.2	
Total Zinc	0	0	0	183.236	186	203	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	3.28	
Acrylonitrile	0	0	0	130	130	142	
Benzene	0	0	0	130	130	142	
Bromoform	0	0	0	370	370	405	
Carbon Tetrachloride	0	0	0	560	560	613	
Chlorobenzene	0	0	0	240	240	263	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	3,829	
Chloroform	0	0	0	390	390	427	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	3,392	
1,1-Dichloroethylene	0	0	0	1,500	1,500	1,641	
1,2-Dichloropropane	0	0	0	2,200	2,200	2,407	
1,3-Dichloropropylene	0	0	0	61	61.0	66.7	
Ethylbenzene	0	0	0	580	580	635	
Methylene Chloride	0	0	0	2,400	2,400	2,626	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	230	
Tetrachloroethylene	0	0	0	140	140	153	
Toluene	0	0	0	330	330	361	
1,1,1-Trichloroethane	0	0	0	610	610	667	
1,1,2-Trichloroethane	0	0	0	680	680	744	
Trichloroethylene	0	0	0	450	450	492	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	120	
2,4-Dichlorophenol	0	0	0	340	340	372	
2,4-Dimethylphenol	0	0	0	130	130	142	
2,4-Dinitrophenol	0	0	0	130	130	142	
2-Nitrophenol	0	0	0	1,600	1,600	1,750	
4-Nitrophenol	0	0	0	470	470	514	
Pentachlorophenol	0	0	0	8.009	8.01	8.76	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	99.6	
Acenaphthene	0	0	0	17	17.0	18.6	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	64.5	
Benzo(a)Anthracene	0	0	0	0.1	0.1	0.11	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	6,564	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	

Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	996	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	59.1	
Butyl Benzyl Phthalate	0	0	0	35	35.0	38.3	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	175	
1,3-Dichlorobenzene	0	0	0	69	69.0	75.5	
1,4-Dichlorobenzene	0	0	0	150	150	164	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	875	
Dimethyl Phthalate	0	0	0	500	500	547	
Di-n-Butyl Phthalate	0	0	0	21	21.0	23.0	
2,4-Dinitrotoluene	0	0	0	320	320	350	
2,6-Dinitrotoluene	0	0	0	200	200	219	
1,2-Diphenylhydrazine	0	0	0	3	3.0	3.28	
Fluoranthene	0	0	0	40	40.0	43.8	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	2.19	
Hexachlorocyclopentadiene	0	0	0	1	1.0	1.09	
Hexachloroethane	0	0	0	12	12.0	13.1	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	2,298	
Naphthalene	0	0	0	43	43.0	47.0	
Nitrobenzene	0	0	0	810	810	886	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	3,720	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	64.5	
Phenanthrene	0	0	0	1	1.0	1.09	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	28.4	
Copper Souderton WWTP	0	0	0	31	31.0	33.9	

CCT (min): 0.068 PMF:

Analysis Hardness (mg/l):

Analysis pH: N/A

N/A

Γ	Pollutants	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj	MLA (up/L)	Comments
	Foliatants	(un/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEX (pg/E)	Comments
Γ	Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Γ	Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Γ	Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Γ	Total Aluminum	0	0		0	N/A	N/A	N/A	
Γ	Total Antimony	0	0		0	5.6	5.6	6.13	
	Total Arsenic	0	0		0	10	10.0	10.9	
Γ	Total Barium	0	0		0	2,400	2,400	2,626	

1

Total Boron	0	0		0	3,100	3,100	3,392	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0	1	0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	4.38	
Dissolved Iron	0	0	-	0	300	300	328	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0	+	0	1,000	1,000	1,094	
Total Mercury	0	0	+	0	0.050	0.05	0.055	
Total Nickel	0	0		0	610	610	667	
Total Phenols (Phenolics) (PWS)	0	0	+	0	5	5.0	N/A	
Total Selenium	0	0	Ť	0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	0.26	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	3.28	
Acrylonitrile	0	0	-	0	N/A	N/A	N/A	
Benzene	0	0	Ť	0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	-	0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	109	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	-	0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	6.24	
Dichlorobromomethane	0	0	-	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	+	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	36.1	
1,2-Dichloropropane	0	0	-	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	+	0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	74.4	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		0	N/A	N/A	N/A	
Toluene	0	0		0	57	57.0	62.4	
1,1,1-Trichloroethane	0	0		0	10,000	10,000	10,941	
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0		0	N/A	N/A	N/A	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	30	30.0	32.8	
2,4-Dichlorophenol	0	0		0	10	10.0	10.9	
2,4-Dimethylphenol	0	0		0	100	100.0	109	
2,4-Dinitrophenol	0	0		0	10	10.0	10.9	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	

Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	4,376	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	76.6	
Anthracene	0	0	0	300	300	328	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	219	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	0.11	
2-Chloronaphthalene	0	0	0	800	800	875	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	1,094	
1,3-Dichlorobenzene	0	0	0	7	7.0	7.66	
1,4-Dichlorobenzene	0	0	0	300	300	328	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	656	
Dimethyl Phthalate	0	0	0	2,000	2,000	2,188	
Di-n-Butyl Phthalate	0	0	0	20	20.0	21.9	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	21.9	
Fluorene	0	0	0	50	50.0	54.7	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	4.38	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	37.2	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	10.9	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	21.9	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	0.077	
Copper Souderton WWTP	0	0	0	N/A	N/A	N/A	

CRL CC	T (min): 1.	331	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj		Comments
1 Oliutantis	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEX (pg/E)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	0.11	
Benzene	0	0		0	0.58	0.58	1.05	
Bromoform	0	0		0	7	7.0	12.7	
Carbon Tetrachloride	0	0		0	0.4	0.4	0.73	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.8	0.8	1.45	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	0.95	0.95	1.73	
1,2-Dichloroethane	0	0		0	9.9	9.9	18.0	
1.1-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1.2-Dichloropropane	0	0		0	0.9	0.9	1.63	
1.3-Dichloropropylene	0	0		0	0.27	0.27	0.49	
Ethylbenzene	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	20	20.0	36.3	
1.1.2.2-Tetrachloroethane	0	0		0	0.2	0.2	0.36	
and the second second second second	-	-		-				

Tetrachloroethylene	0	0			0	10	10.0	18.2	
Toluene	0	0			0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0			0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0		Ħ	0	0.55	0.55	1.	
Trichloroethylene	0	0			0	0.6	0.6	1.09	
Vinyl Chloride	0	0			0	0.02	0.02	0.036	
2-Chlorophenol	0	0	H	Ħ	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0			0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0		H	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	ti-	Ħ	0	N/A	N/A	N/A	
2-Nitrophenol	0	0			0	N/A	N/A	N/A	
4-Nitrophenol	0	0		H	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	i-	Ħ	0	0.030	0.03	0.054	
Phenol	0	0			0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0			0	1.5	1.5	2.72	
Acenaphthene	0	0	ti-	Ħ	0	N/A	N/A	N/A	
Anthracene	0	0			0	N/A	N/A	N/A	
Benzidine	0	0		H	0	0.0001	0.0001	0.0002	
Benzo(a)Anthracene	0	0	i -	Ħ	0	0.001	0.001	0.002	
Benzo(a)Pyrene	0	0			0	0.0001	0.0001	0.0002	
3,4-Benzofluoranthene	0	0	H	H	0	0.001	0.001	0.002	
Benzo(k)Fluoranthene	0	0	li -		0	0.01	0.01	0.018	
Bis(2-Chloroethyl)Ether	0	0			0	0.03	0.03	0.054	
Bis(2-Chloroisopropyl)Ether	0	0	H	H	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0			0	0.32	0.32	0.58	
4-Bromophenyl Phenyl Ether	0	0			0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	H	Ħ	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0			0	N/A	N/A	N/A	
Chrysene	0	0			0	0.12	0.12	0.22	
Dibenzo(a,h)Anthrancene	0	0	H	Ħ	0	0.0001	0.0001	0.0002	
1,2-Dichlorobenzene	0	0			0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0			0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	H	Ħ	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0			0	0.05	0.05	0.091	
Diethyl Phthalate	0	0			0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0		Ħ	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0			0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0			0	0.05	0.05	0.091	
2,6-Dinitrotoluene	0	0	Ī.		0	0.05	0.05	0.091	
1,2-Diphenylhydrazine	0	0			0	0.03	0.03	0.054	
Fluoranthene	0	0			0	N/A	N/A	N/A	
Fluorene	0	0			0	N/A	N/A	N/A	
Hexachlorobenzene	0	0			0	0.00008	0.00008	0.0001	
Hexachlorobutadiene	0	0			0	0.01	0.01	0.018	
Hexachlorocyclopentadiene	0	0			0	N/A	N/A	N/A	

Hexachloroethane	0	0		0	0.1	0.1	0.18	
Indeno(1,2,3-cd)Pyrene	0	0		0	0.001	0.001	0.002	
Isophorone	0	0		0	N/A	N/A	N/A	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0		0	0.0007	0.0007	0.001	
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	0.009	
n-Nitrosodiphenylamine	0	0		0	3.3	3.3	5.99	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	N/A	N/A	N/A	
Copper Souderton WWTP	0	0		0	N/A	N/A	N/A	

#### Recommended WQBELs & Monitoring Requirements

#### No. Samples/Month: 4

	Mass	Limits	Concentration Limits				Ι		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	µg/L	750	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Arsenic	Report	Report	Report	Report	Report	µg/L	10.9	THH	Discharge Conc > 10% WQBEL (no RP)
Total Boron	Report	Report	Report	Report	Report	µg/L	1,750	CFC	Discharge Conc > 10% WQBEL (no RP)
Free Cyanide	0.073	0.11	4.38	6.83	10.9	µg/L	4.38	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dissolved Iron	Report	Report	Report	Report	Report	µg/L	328	THH	Discharge Conc > 10% WQBEL (no RP)
Total Iron	27.4	42.7	1,641	2,560	4,103	µg/L	1,641	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Thallium	0.004	0.007	0.26	0.41	0.66	µg/L	0.26	THH	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	186	AFC	Discharge Conc > 10% WQBEL (no RP)
Chlorodibromomethane	0.024	0.038	1.45	2.27	3.63	µg/L	1.45	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Chloroform	0.1	0.16	6.24	9.73	15.6	µg/L	6.24	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dichlorobromomethane	0.029	0.045	1.73	2.69	4.31	µg/L	1.73	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Copper Souderton WWTP	0.57	0.93	33.9	56.0	84.8	µg/L	33.9	CFC	Discharge Conc ≥ 50% WQBEL (RP)

#### Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Antimony	6.13	µg/L	Discharge Conc ≤ 10% WQBEL

Total Barium	2,626	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Cadmium	N/A	N/A	Discharge Conc < TQL
Hexavalent Chromium	11.4	µg/L	Discharge Conc < TQL
Total Cobalt	20.8	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Total Lead	6.73	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	1,094	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.055	µg/L	Discharge Conc < TQL
Total Nickel	88.5	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	5.46	µg/L	Discharge Conc < TQL
Total Silver	9.22	µg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	3.0	µg/L	Discharge Conc < TQL
Acrylonitrile	0.11	µg/L	Discharge Conc < TQL
Benzene	1.05	µg/L	Discharge Conc < TQL
Bromoform	12.7	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	0.73	µg/L	Discharge Conc < TQL
Chlorobenzene	109	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	3,829	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	18.0	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	36.1	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	1.63	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	0.49	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	74.4	µg/L	Discharge Conc ≤ 25% WQBEL
Methylene Chloride	36.3	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	0.36	µg/L	Discharge Conc < TQL
Tetrachloroethylene	18.2	µg/L	Discharge Conc < TQL
Toluene	62.4	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,1-Trichloroethane	667	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	1.	µg/L	Discharge Conc < TQL
Trichloroethylene	1.09	µg/L	Discharge Conc < TQL
Vinyl Chloride	0.036	µg/L	Discharge Conc < TQL
2-Chlorophenol	32.8	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	10.9	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	109	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	10.9	µg/L	Discharge Conc < TQL
2-Nitrophenol	1,750	µg/L	Discharge Conc < TQL
4-Nitrophenol	514	µg/L	Discharge Conc < TQL
Pentachlorophenol	0.054	µg/L	Discharge Conc < TQL
Phenol	4,376	µg/L	Discharge Conc < TQL

2,4,6-Trichlorophenol	2.72	µg/L	Discharge Conc < TQL
Acenaphthene	18.6	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	328	µg/L	Discharge Conc < TQL
Benzidine	0.0002	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.002	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.0002	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.002	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.018	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	0.054	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	219	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	0.58	µg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	59.1	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.11	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	875	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	0.22	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.0002	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	175	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	7.66	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	164	µg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	0.091	µg/L	Discharge Conc < TQL
Diethyl Phthalate	656	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	547	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	21.9	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	0.091	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	0.091	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.054	µg/L	Discharge Conc < TQL
Fluoranthene	21.9	µg/L	Discharge Conc < TQL
Fluorene	54.7	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.0001	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.018	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	1.09	µg/L	Discharge Conc < TQL
Hexachloroethane	0.18	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.002	µg/L	Discharge Conc < TQL
Isophorone	37.2	µg/L	Discharge Conc < TQL
Naphthalene	47.0	µg/L	Discharge Conc < TQL
Nitrobenzene	10.9	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.001	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.009	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	5.99	µg/L	Discharge Conc < TQL
Phenanthrene	1.09	µg/L	Discharge Conc < TQL

Pyrene	21.9	µg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	0.077	µg/L	Discharge Conc < TQL



I	DEP Whole	Effluent Toxi	city (WET) Analysis S	preadshee	t
Type of Test	Ch	ronic		Eacility Na	
Species Test	ed Pin	nephales		Taointy Na	iiie
Endpoint	Gro	owth		Souderton W	NTP
TIWC (decim	al) 0.9	78			
No. Per Repli	icate 10			Permit No	).
TST b value	0.7	5		PA002185	7
TST alpha va	lue 0.2	5			
	Test Com	pletion Date	-	Test Comp	letion Date
Replicate	4/30	0/2019	Replicate	5/26	2020
No.	Control	TIWC	No.	Control	TIWC
1	0.33	0.389	1	0.404	0.437
2	0.338	0.399	2	0.403	0.476
3	0.463	0.495	3	0.471	0.487
4	0.41	0.428	4	0.431	0.54
5			5		
6			e e		
ž					
8			8		
9			8		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
10					
Maria	0.205	0.420	Maria	0.427	0.405
Mean	0.385	0.428	wean	0.427	0.460
Std Dev.	0.063	0.048	Std Dev.	0.032	0.042
# Replicates	4	4	# Replicates	4	4
T. Tort Popult					
1-resurvesuit	4.	1281	T-Test Result	6.7	495
Deg. of Freed	- 4. om	1281 5	T-Test Result Deg. of Freedo	6.7 m	495 5
Deg. of Freed Critical T Valu	- 4. Iom Je 0.1	1281 5 7267	T-Test Result Deg. of Freedo Critical T Value	6.7 m (	495 5 267
Deg. of Freed Critical T Valu Pass or Fail	4. iom Je 0.1 P.	1281 5 7267 ASS	T-Test Result Deg. of Freedo Critical T Value Pass or Fail	6.7 m ! e 0.7 PA	495 5 267 .SS
Deg. of Freed Critical T Valu Pass or Fail	iom Je O. P.	1281 5 7267 ASS	T-Test Result Deg. of Freedo Critical T Value Pass or Fail	6.7 m ( PA	495 5 267 .SS
Deg. of Freed Critical T Valu Pass or Fail	iom Je 0. Part Com	1281 5 7267 ASS pletion Date	T-Test Result Deg. of Freedo Critical T Value Pass or Fail	6.7 m . e 0.7 PA	495 5 267 ISS
Deg. of Freed Critical T Valu Pass or Fail	4. om ie 0. P Test Com	1281 5 7287 ASS pletion Date 1/2021	T-Test Result Deg. of Freedo Critical T Value Pass or Fail	6.7 m ( e 0.7 PA Test Comp 5/24	495 5 267 ISS Iletion Date 2022
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate	4. om Je 0. P/ Test Com 5/11	1281 5 7267 ASS pletion Date 1/2021	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate	6.7 m ( e 0.7 PA Test Comp 5/24 Control	495 5 267 ISS Idetion Date 2022
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	4. om ie 0. P. Test Com 5/11 Control	1281 5 7267 ASS pletion Date 1/2021 TIWC	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No.	6.7 m ( PA Test Comp 5/24 Control	495 5 267 .SS .letion Date 2022 TIWC
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	4. om ie 0. P. Test Com 5/11 Control 0.39 0.39	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.467	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1	6.7 m : PA Test Comp 5/24 Control 0.279	495 5 267 <b>.SS</b> Jetion Date 2022 TIWC 0.339 0.339
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2	4. om pe 0. Pe 0. Pe 0. Pe 0. Pe 0. Pe 0. 0.10 0.39 0.39 0.39	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.427	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356	495 5 287 <b>ISS</b> Vetion Date 2022 TIWC 0.339 0.347 0.347
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	4. om Je 0. Test Com 5/11 Control 0.39 0.39 0.375	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3	6.7 m ( PA Test Comp 5/24 Control 0.279 0.356 0.358	495 5 287 .SS .etion Date 2022 TIWC 0.339 0.347 0.378
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	4. om P Test Com 5/11 Control 0.39 0.39 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4	6.7 m ( PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 287 <b>.SS</b> 2022 TIWC 0.339 0.347 0.376 0.378
Replicate No. 1 2 3 4 5	4. om P Test Com 5/11 Control 0.39 0.39 0.39 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	6.7 m ( PA Test Comp 5/24. Control 0.279 0.356 0.358 0.37	495 5 287 .SS .etion Date 2022 TIWC 0.339 0.347 0.376 0.378
Replicate No. 1 2 3 4 5 6	4. om Je 0. Test Com 5/11 Control 0.39 0.39 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6	6.7 m 3 e 0.7 PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 287 <b>ISS</b> 2022 TIWC 0.339 0.347 0.378 0.378
Replicate No. 1 2 3 4 5 6 7	4. om Je 0. Test Com 5/1' Control 0.39 0.39 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	6.7 m 3 e 0.7 PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 267 <b>ISS</b> Vetion Date 2022 TIWC 0.339 0.347 0.376 0.378
Replicate No. 1 2 3 4 5 6 7 8	4. om Je 0. Test Com 5/11 Control 0.39 0.39 0.375 0.375	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 267 <b>.SS</b> 2022 TIWC 0.339 0.347 0.376 0.378
Priest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	4. om je 0. Test Com 5/11 Control 0.39 0.39 0.375 0.375	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 287 <b>SS</b> 2022 TIWC 0.339 0.347 0.376 0.378
Priest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	4. om je 0. Test Com 5/11 Control 0.39 0.39 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 287 <b>.SS</b> 2022 TIWC 0.339 0.347 0.376 0.378
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	4. om pe 0. Test Com 5/11 Control 0.39 0.39 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 287 <b>ISS</b> 2022 TIWC 0.339 0.347 0.376 0.378
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	4. om pe 0. Test Com 5/11 Control 0.39 0.39 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 287 <b>ISS</b> Vetion Date 2022 TIWC 0.339 0.347 0.376 0.378
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 12	4. om pe 0. Test Com 5/11 Control 0.39 0.39 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 11 12	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 287 <b>ISS</b> Vetion Date 2022 TIWC 0.339 0.347 0.376 0.378
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	4. iom je 0. Test Com 5/11 Control 0.39 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 11 12 13	6.7 m ? PA Test Comp 5/24. Control 0.279 0.356 0.358 0.37	495 5 287 .SS .etion Date 2022 TIWC 0.339 0.347 0.378 0.378
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	4. iom je 0. Test Com 5/1' Control 0.39 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	6.7 m ? PA Test Comp 5/24. Control 0.279 0.356 0.358 0.37	495 5 267 <b>Iss</b> 2022 TIWC 0.339 0.347 0.376 0.378
Prest Restin Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4. iom je 0.: Test Com 5/1' Control 0.39 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369 0.369 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 267 <b>SS</b> 2022 TIWC 0.339 0.347 0.376 0.378
Priest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4. iom je 0.: Test Com 5/11 Control 0.39 0.375 0.375 0.378	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 267 <b>SS</b> 1etion Date 2022 TIWC 0.339 0.347 0.376 0.378 
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	4. om je 0.: Test Com 5/11 Control 0.39 0.39 0.375 0.375 0.378 0.383	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37	495 5 267 <b>SS</b> 10etion Date 2022 TIWC 0.339 0.347 0.376 0.378 0.378 0.378 0.378 0.378
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	4. om pe 0.: Test Com 5/11 Control 0.39 0.39 0.375 0.375 0.378 0.383 0.008	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.33	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37 0.37	495 5 267 <b>SS</b> Vetion Date 2022 TIWC 0.339 0.347 0.376 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.300 0.020
Prest Restin Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	4. om je 0. Test Com 5/11 Control 0.39 0.39 0.375 0.375 0.378 0.383 0.008 4	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.368 0.333 4	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37 0.358 0.37	495 5 267 <b>SS</b> Vetion Date 2022 TIWC 0.339 0.347 0.376 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.380 0.020 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	4. om pe 0. Test Com 5/11 Control 0.39 0.39 0.375 0.375 0.378 0.378 0.383 0.008 4	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.333 4	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37 0.358 0.37	495 5 267 <b>ISS</b> Vetion Date 2022 TIWC 0.339 0.347 0.376 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.380 0.020 4
Priest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	4. om Je 0. Test Com 5/11 Control 0.39 0.375 0.378 0.378 0.378 0.383 0.008 4 6	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369 0.369 0.369 0.369 0.369 0.369 0.309 0.396 0.033 4	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	6.7 m ( PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37 0.358 0.37	495 5 267 <b>ISS</b> Vetion Date 2022 TIWC 0.339 0.347 0.376 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.380 0.020 4 4
Priest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Dep. of Freed	4. om Je 0.: Test Com 5/11 Control 0.39 0.375 0.378 0.378 0.378 0.383 0.008 4 6.: om	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369 0.309 0.309 0.306 0.033 4 3805 3	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Den of Freedo	6.7 m 2 PA Test Comp 5/24 Control 0.279 0.356 0.358 0.358 0.37 0.341 0.042 4 5.6	495 5 267 <b>SS</b> Vetion Date 2022 TIWC 0.339 0.347 0.376 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.380 0.320 0.347 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.380 0.020 4 0.320 0.320 0.320 0.320 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.30
Priest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Valu	4. om Je 0. Test Com 5/11 Control 0.39 0.375 0.378 0.378 0.378 0.383 0.008 4 0.383 0.008 4	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369 0.309 0.309 0.309 0.306 0.033 4 3805 3 7640	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo O Critical T Value	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37 0.358 0.37 0.341 0.042 4 5.6 m . 2	495 5 267 <b>SS</b> Vetion Date 2022 TIWC 0.339 0.347 0.376 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.380 0.020 4
Press result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Valu	4. om Je 0.: Test Com 5/11 Control 0.39 0.375 0.375 0.378 0.383 0.008 4 0.008 4 0.008 4	1281 5 7267 ASS pletion Date 1/2021 TIWC 0.368 0.437 0.408 0.369 0.369 0.309 0.396 0.033 4 3805 3 7649 Ass	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo Critical T Value	6.7 m ? PA Test Comp 5/24 Control 0.279 0.356 0.358 0.37 0.358 0.37 0.341 0.042 4 5.6 m ? 2 0.341	495 5 267 <b>SS</b> <b>letion Date</b> 2022 TIWC 0.339 0.347 0.376 0.376 0.378 0.378 0.378 0.360 0.020 4 403 5 267 55



I	DEP Whole B	Effluent Toxic	city (WET) Analysis	Spreadshee	t
Type of Test	Chro	nic	_	Facility Na	me
Species Test	ed Ceri	odaphnia			
Endpoint	Rep	roduction		Souderton W	WTP
No. Per Perli	al) <u>0.97</u>	8	_	Dormit Me	
TST b value	0.75			PA002185	7
TST alpha va	lue 0.2			171002100	
	Test Comp	letion Date		Test Comp	oletion Date
Replicate	4/30/	2019	Replicate	5/26	/2020
No.	Control	TIWC	No.	Control	TIWC
1	34	30	1	34	12
2	29	34	2	14	22
3	30	29	3	24	22
4	29	30	4	8	24
5	29	33	5	31	18
6	16	31	6	30	26
7	22	26	7	30	32
8	14	30	8	32	22
9	25	33	8	18	28
10	28	30	10	26	24
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	25.600	30.600	Mean	24.700	23.000
Std Dev.	6.415	2.319	Std Dev.	8.667	5.437
# Replicates	10	10	# Replicates	10	10
T-Test Result	6.7	495	T-Test Result	1.6	699
T-Test Result Deg. of Freed	6.7 om 1	495 7	T-Test Result Deg. of Freedo	1.6 om 1	699 17
T-Test Result Deg. of Freed Critical T Valu	6.7 om 1 ie <u>0.8</u>	495 7 633	T-Test Result Deg. of Freed Critical T Valu	1.6 om 1 e <u>0.8</u>	699 17 633
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	6.7 om 1 ie 0.8 <b>PA</b>	495 7 633 .SS	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail	1.6 om 1 e 0.8 PA	699 17 633 <b>ISS</b>
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	6.7 om 1 ie 0.8 PA	495 7 633 .SS	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail	1.6 om 1 e 0.8 PA	699 17 633 ASS
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	6.7 om 1 le 0.8 PA Test Comp	495 7 633 .SS letion Date	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail	1.6 om 1 e 0.8 PA Test Comp	699 17 633 ISS Diletion Date
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate	6.7 om 1 ie 0.8 PA Test Comp 5/11/	495 7 633 .SS Jetion Date 2021	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate	1.6 om 1 e 0.8 PA Test Comp 5/23	899 17 833 ISS Idetion Date 1/2022
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No.	6.7 om 1 ie 0.8 PA Test Comp 5/11/ Control	495 7 633 SS letion Date 2021 TIWC	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No.	1.6 om 1 e 0.8 PA Test Comp 5/23 Control	699 17 633 ISS Jetion Date 12022 TIWC
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23	495 7 633 .SS 2021 TIWC 35	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36	699 17 633 <b>ISS</b> 2022 TIWC 43
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 28	495 7 633 .SS 2021 TIWC 35 22 07	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33	699 17 633 <b>ISS</b> 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 100
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 29	495 7 633 .SS 2021 TIWC 35 22 35 22 35	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 99	699 17 633 <b>LSS</b> 2022 TIWC 43 41 0
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 4	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 27	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 22 35 37	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37	699 17 633 <b>ISS</b> 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 100
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 5	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 24	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 37 36 21	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 27	699 7 633 <b>ISS</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpretation</b> <b>Interpret</b>
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 22 22 20	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 22 35 37 36 34 34	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 6	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 32	699 17 633 <b>ISS</b> 2022 TIWC 43 41 0 41 37 39 27
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 2	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 24 22 32 22	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 22 35 37 36 34 20 20	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 32 37 32 37 32	699 17 633 <b>ISS</b> 2022 TIWC 43 41 0 41 37 39 37 39 37 27
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 8	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 24 22 32 25	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 36 34	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 38 37 38 37	699 17 633 <b>ISS</b> 2022 TIWC 43 41 0 41 37 39 37 35 57
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 25 22 25 22 25	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 36 34 20 35 38 34	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 9	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 38 37 38 37 29	699 7 833 <b>SS</b> <b>Jetion Date</b> /2022 TIWC 43 41 0 41 37 39 37 39 37 35 35 35 35
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 25 22 25 22 27	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 34 20 35 38 40	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 38 37 38 37 29 16	699 17 633 <b>ISS</b> <b>Interpretation Date</b> (2022 TIWC 43 41 0 41 37 39 37 35 35 35 37
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 25 22 25 22 27	495 7 633 <b>.SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 34 20 35 38 40	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 32 37 38 37 29 16	699 17 833 <b>ISS</b> <b>International Content of Content </b>
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 11 12	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 25 22 25 22 27	495 7 633 <b>.SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 40	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 32 37 38 37 29 16	699 17 833 <b>ISS</b> <b>International Content of Content </b>
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 25 22 25 22 27	495 7 633 <b>.SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 40	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 11 12 13	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 32 37 38 37 29 16	699 17 833 <b>ISS</b> <b>International Content of Content </b>
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 25 22 27 24 22 32 25 22 27	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 34 20 35 38 40	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 38 37 38 37 29 16	699 7 833 <b>ISS</b> <b>International Content of Content o</b>
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 12 13 14 15	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 27 24 22 32 25 22 27	495 7 833 <b>SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 40	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 38 37 38 37 29 16	699 7 833 <b>ISS</b> <b>International Content of Content o</b>
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6.7 om 1 pe 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 27 24 22 32 25 22 27	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 40	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 38 37 29 16	699 7 833 <b>SS</b> <b>Jetion Date</b> /2022 TIWC 43 41 0 41 37 39 37 35 35 35 37 
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 25 22 27 24 22 27 24 22 32 25 22 27	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 40 33 20 35 38 40 33 20 35 38 40 35 38 40 35 38 40 35 38 40 35 38 36 37 36 38 36 37 36 38 36 37 36 38 38 40 35 38 36 37 36 38 38 38 38 38 38 38 38 38 38	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ( Mean	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 38 37 38 37 29 16 	699 7 633 <b>SS</b> <b>SS</b> <b>Detion Date</b> /2022 TIWC 43 41 0 41 37 39 37 35 35 35 37 
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	6.7 om 1 pe 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 27 24 22 32 25 22 27 24 22 32 25 22 27 24 22 32 25 22 27 24 22 27 24 22 32 25 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 27 24 22 27 24 22 27 24 22 22 27 24 22 27 24 22 27 24 22 27 27 24 22 27 27 24 22 22 27 22 27 27 24 22 22 27 24 22 22 27 24 22 27 27 24 22 22 27 24 22 27 27 24 22 27 27 24 22 27 27 27 27 27 27 27 27 27 27 27 27	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 40 35 38 40 33.200 6.680 40	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Wean Std Dev.	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 38 33 39 37 32 37 32 37 38 37 29 16 33.400 8.851 42	699 7 633 <b>SS</b> <b>SS</b> <b>INC</b> 43 41 0 41 37 39 37 35 35 35 37 
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 15 Mean Std Dev. # Replicates	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 32 25 22 27 24 22 32 25 22 27 24 22 32 25 22 27 24 22 32 25 22 27 24 22 32 25 22 27 24 22 32 25 22 27 24 22 32 25 22 27 24 22 32 25 22 27 24 22 32 25 22 27 24 22 32 28 29 27 24 20 27 24 20 27 24 22 32 28 29 27 24 20 27 24 20 27 24 22 20 27 24 20 27 24 20 27 24 22 20 27 24 22 20 27 24 22 20 27 24 22 20 27 24 22 27 24 22 20 27 24 22 20 27 24 22 20 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 22 27 24 22 22 27 24 22 22 27 27 24 22 22 27 22 27 24 22 22 27 27 24 22 22 27 27 24 22 27 27 27 27 27 27 27 27 27 27 27 27	495 7 633 <b>SS</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 40 35 38 40 35 38 40 35 38 10 10	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 12 13 14 15 Wean Std Dev. # Replicates	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 38 33 39 37 32 37 38 37 32 37 38 37 29 16 	699 7 633 <b>SS</b> <b>SS</b> <b>INC</b> 43 41 0 41 37 39 37 35 35 35 37 
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 24 22 27 24 24 22 27 24 24 22 27 24 24 22 27 24 24 22 27 24 22 27 24 24 22 27 24 24 22 27 24 24 22 27 24 24 22 27 24 24 22 27 24 24 22 27 24 24 22 27 24 24 27 24 27 24 27 27 24 27 24 27 27 24 27 27 24 27 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 27 24 27 27 24 27 27 27 24 22 27 27 24 22 27 27 24 22 27 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 27 24 22 27 27 24 22 27 27 24 22 27 27 27 27 27 27 27 27 27 27 27 27	495 7 633 <b>SS</b> <b>Jetion Date</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 40 35 38 40 35 38 40 33.200 6.680 10	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Wean Std Dev. # Replicates	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 37 37 37 37 37 37 37 37 37 37 37	699 7 633 <b>SS</b> <b>SS</b> <b>INC</b> 43 41 0 41 37 39 37 35 35 35 37 
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 22 27 24 22 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 26 27 28 29 27 24 26 27 28 29 27 24 26 27 24 26 27 26 27 24 27 26 27 24 27 26 27 26 27 27 24 27 26 27 27 26 27 27 26 27 27 26 27 27 27 26 27 27 27 26 27 27 27 27 27 27 27 27 27 27	495 7 633 <b>SS</b> <b>Jetion Date</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 40 35 38 40 35 38 40 35 38 40 5 33.200 6.680 10 190	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Wean Std Dev. # Replicates T-Test Result	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 32 37 32 37 32 37 32 37 38 37 32 37 38 37 32 37 38 37 32 37 38 37 32 37 38 37 32 37 38 37 32 37 38 37 32 37 38 37 32 37 32 37 38 37 32 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 38 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 38 37 37 32 37 37 32 37 38 37 37 37 32 37 37 38 37 37 32 37 37 38 37 37 32 37 37 32 37 37 38 37 37 32 37 37 37 38 37 37 37 38 37 37 37 38 37 37 38 37 37 37 37 38 37 37 38 37 37 37 32 37 37 37 38 37 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	699 7 633 <b>SS</b> <b>SS</b> <b>IVC</b> 43 41 0 41 37 39 37 35 35 35 37 
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Valu	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 27 24 22 25 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 27 24 26 27 27 24 27 24 27 26 27 27 24 27 27 24 27 27 24 27 27 24 27 27 24 27 27 24 27 27 27 27 26 27 27 27 26 27 27 27 27 27 27 27 27 27 27	495 7 633 <b>SS</b> <b>Jetion Date</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 40 35 38 40 35 38 40 33.200 6.680 10 190 3 702	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Wean Std Dev. # Replicates T-Test Result Deg. of Freedo	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 32 37 32 37 32 37 32 37 38 37 32 37 38 37 32 37 38 37 32 37 38 37 32 37 38 37 32 37 38 37 32 37 38 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 38 37 37 32 37 37 38 37 37 32 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 37 38 37 37 37 38 37 37 38 37 37 37 37 37 38 37 37 37 38 37 37 37 37 37 38 37 37 37 38 37 37 37 37 37 37 37 37 37 37 38 37 37 37 37 37 37 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	699 7 633 <b>SS</b> <b>SS</b> <b>INC</b> 43 41 0 41 37 39 37 35 35 35 37 
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Valu	6.7 om 1 le 0.8 PA Test Comp 5/11/ Control 23 28 29 27 24 22 27 24 22 25 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 28 29 27 24 22 27 24 22 27 24 22 27 24 22 27 24 22 27 24 27 24 27 24 27 26 27 24 27 26 27 24 27 26 27 27 24 27 27 24 27 27 24 27 27 24 27 27 24 27 27 24 27 27 26 27 27 26 27 27 26 27 27 27 26 27 27 26 27 27 27 26 27 27 27 26 27 27 27 27 26 27 27 27 27 27 27 27 27 27 27	495 7 633 <b>SS</b> <b>Jetion Date</b> 2021 TIWC 35 22 35 37 36 34 20 35 38 40 35 38 40 35 38 40 35 38 40 10 190 3 702 55	T-Test Result Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Wean Std Dev. # Replicates T-Test Result Deg. of Freedo Critical T Value	1.6 om 1 e 0.8 PA Test Comp 5/23 Control 36 33 39 37 32 37 32 37 32 37 32 37 32 37 38 37 32 37 32 37 32 37 38 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 32 37 37 37 32 37 37 37 32 37 37 37 32 37 37 37 37 37 32 37 37 37 37 37 37 37 37 37 37 37 37 37	699 7 633 <b>SS</b> <b>INC</b> 43 41 0 41 37 39 37 35 35 35 37 35 35 37 35 35 37 35 35 37 246 14 881 881 885

# WET Summary and Evaluation

Facility Name	Souderton WWTP
Permit No.	PA0021857
Design Flow (MGD)	2
Q ₇₋₁₀ Flow (cfs)	0.0829
PMFa	1
PMF _c	1

		Test Results (Pass/Fail)					
		Test Date Test Date Test Date Test Date					
Species	Endpoint	4/30/19	5/26/20	5/11/21	5/24/22		
Pimephales	Survival	PASS	PASS	PASS	PASS		

		Test Results (Pass/Fail)					
		Test Date Test Date Test Date Test Date					
Species	Endpoint	4/30/19	5/26/20	5/11/21	5/24/22		
Pimephales	Growth	PASS	PASS	PASS	PASS		

		Test Results (Pass/Fail)					
		Test Date Test Date Test Date Test Date					
Species	Endpoint	4/30/19	5/26/20	5/11/21	5/23/22		
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS		

		Test Results (Pass/Fail)					
		Test Date Test Date Test Date Test Date					
Species	Endpoint	4/30/19	5/26/20	5/11/21	5/23/22		
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS		

Reasonable Potential? NO

## Permit Recommendations

Test Type	Chronic					
TIWC	97	% Ef	fluer	nt		
Dilution Series	24, 49,	73,	97,	100	%	Effluent
Permit Limit	None					
Permit Limit Species						