

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0023108

APS ID 276373

Authorization ID 1338097

Applicant Name	Boro	ugh of Elizabethtown	Facility Name	Elizabethtown STP		
Applicant Address	600 S	Hanover Street	Facility Address	101 Amosite Road		
	Elizabethtown, PA 17022			Elizabethtown, PA 17022-9596		
Applicant Contact	Rebe	cca Denlinger	Facility Contact	Dennis Bair		
Applicant Phone	(717) 367-1700		Facility Phone	(717) 917-5385		
Client ID	77244	1	Site ID	250924		
Ch 94 Load Status	Not O	verloaded	Municipality	Elizabethtown Borough		
Connection Status	No Li	mitations	County	Lancaster		
Date Application Rece	eived	December 29, 2020	EPA Waived?	No		
Date Application Acce	epted	January 13, 2021	If No, Reason	Major Facility, Significant CB Discharge		

Summary of Review

The Borough of Elizabethtown has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its National Pollutant Discharge Elimination System (NPDES) permit. The permit was issued June 20, 2016 and became effective on July 1, 2016, authorizing discharge of treated sewage from the existing wastewater treatment plant (WWTP) located in Elizabethtown Borough, Lancaster County into Susquehanna River and Conoy Creek. The existing permit expiration date was June 30,2021, and the permit has been administratively extended since that time.

The Borough of Elizabethtown WWTP serves the Borough of Elizabethtown (52% of flow contributions) and Elizabethtown Regional Sewer Authority (ERSA – Mount Joy Township and West Donegal Township)(48% of flow contributions). The Borough of Elizabethtown listed six (6) permitted industrial users in their NPDES renewal application: The MARS Wrigley Confectionary, the Masonic Village, the Elizabethtown Area School District, the Elizabethtown College, the Boyer Funeral Home, Inc., and the Miller-Finkenbinder Funeral Home & Company. Of these, only the MARS Wrigley Confectionary is classified as a significant industrial user. Per the previous fact sheet, it was calculated that the new design peak hourly flow will reach 15 mgd during wet weather events. Elizabethtown met with DEP concerning the fact that the existing outfall is not large enough for the new design flows (for the 2003 expansion) and would be a major cost to expand, in addition to the consideration of the anticipated requirements of nitrogen removal sometime in the future. Elizabethtown agreed to include denitrification in the new WWTP's design as long as DEP would approve an overflow of treated effluent to Conoy Creek during periods of extreme wet weather. Therefore, the 2005 fact sheet prepared effluent limitations for a 4.5 mgd WWTP to the Susquehanna River at Outfall 001 with a 9 mgd wet weather treated overflow to Conoy Creek at Outfall 002.

Changes in this renewal: Total Zinc and Total Copper monitoring was added to Outfall 001. E. Coli monitoring was added to Outfall 001 and 002.

Approve	Deny	Signatures	Date
Х		Benjamin R. Lockwood Benjamin R. Lockwood / Environmental Engineering Specialist	December 21, 2021
Х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	December 22, 2021
Х		Maria D. Bebenek Maria D. Bebenek, P.E./ Program Manager	December 22, 2021

Summary of Review

Sludge use and disposal description and location(s): Aerobic digestion and disposal at Frey Farms Landfill

Supplemental information for this facility is provided at the end of this fact sheet.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Water	rs and Water Supply Inforn	nation	
Outfall No. 001		Design Flow (MGD)	4.5
Latitude 40° 4' 55.2"		Longitude	76º 39' 53"
Quad Name York Have	en	Quad Code	1832
Wastewater Description:	Sewage Effluent		
·			
Receiving Waters Susq	uehanna River (WWF, MF)	Stream Code	6685
NHD Com ID 5746	4417	RMI	37.8
Drainage Area 25,50	00 mi ²	Yield (cfs/mi²)	0.12
Q ₇₋₁₀ Flow (cfs) 3,210		Q ₇₋₁₀ Basis	USGS PA StreamStats
Elevation (ft) 249		Slope (ft/ft)	
Watershed No. 7-G		Chapter 93 Class.	TSF, MF
Existing Use N/A		Existing Use Qualifier	N/A
Exceptions to Use N/A		Exceptions to Criteria	N/A
Assessment Status	Impaired		
Cause(s) of Impairment	pH, Polychlorinated Biphe	nyls	
Source(s) of Impairment	Source Unknown, Source	Unknown	
TMDL Status	N/A	Name N/A	
Nearest Downstream Publ	ic Water Supply Intake	Columbia Water Company	
PWS Waters Susque	hanna River	Flow at Intake (cfs)	
PWS RMI		Distance from Outfall (mi)	10

Changes Since Last Permit Issuance: USGS PA StreamStats provided a drainage area of 25,500 mi 2 and a Q $_{7-10}$ of 3,210 cfs at the point of discharge.

Other Comments: None

Discharge, Receiving W	aters and Water Supply Infor	mation					
Outfall No. 002		Design Flow (MGD)	9.0				
Latitude 40° 7' 44	<u> </u>	Longitude	76° 37' 29"				
Quad Name Elizab	ethtown	Quad Code	1733				
Wastewater Descriptio	n: Sewage Effluent						
Receiving Waters _ C	onoy Creek (TSF, MF)	Stream Code	8278				
NHD Com ID 5	7463313	RMI	6.0				
Drainage Area 7	.9 mi²	Yield (cfs/mi²)	0.034				
Q ₇₋₁₀ Flow (cfs) 0.	.271	Q ₇₋₁₀ Basis	USGS PA StreamStats				
Elevation (ft) 3	88	Slope (ft/ft)					
Watershed No. 7	-G	Chapter 93 Class.	TSF, MF				
Existing Use N	I/A	Existing Use Qualifier	N/A				
Exceptions to Use N	I/A	Exceptions to Criteria	N/A				
Assessment Status	Impaired						
Cause(s) of Impairmen	Habitat Alterations, Siltat	ion, Siltation					
_ ,, ., .,		her than Hydromodification, Habi	tat Modification – Other than				
Source(s) of Impairmen		•					
TMDL Status	N/A	Name <u>N/A</u>					
Nearest Downstream F	Public Water Supply Intake	Columbia Water Company					
PWS Waters Sus	quehanna River	Flow at Intake (cfs)					
PWS RMI		Distance from Outfall (mi) 16					

Changes Since Last Permit Issuance: USGS PA StreamStats provided a drainage area of 7.9 mi² and a Q_{7-10} of 0.271 cfs at the point of discharge.

Other Comments: Outfall 002 only discharges to Conoy Creek during heavy wet weather events when peak hourly flows exceed the 6.0 mgd carrying capacity of the Outfall 001 line to Susquehanna River. At the design peak hourly flow of 15 mgd, 9 mgd would overflow to Conoy Creek. The past year DMR data indicates there was flow from Outfall 002 in 7 of the last 12 months. Per the previous renewal fact sheets, since this discharge only occurs during wet weather events, using the Q_{7-10} flow as the design flow would not be appropriate.

The previous permit writer discussed the appropriate stream flow with the permittee, and determined that the water quality modeling should use a streamflow based on a dilution ratio of 2.93:1. This ratio was based on what was needed for the modeling to recommend an NH₃-N limit of 5.0 mg/l. The existing NPDES permit contains a Part C condition which states, "No discharge to Conoy Creek (Outfall 002) shall be permitted unless there is at least 2.93 gallons of streamflow for every 1 gallon of effluent overflow as averaged during the period of overflow." As a result, this permit renewal will continue to utilize the 2.93:1 ratio to determine streamflow. At a discharge flow of 9.0 mgd, the resulting streamflow would be 40.8 cfs. The Part C requirements in the existing permit regarding the discharge to Outfall 002 will remain in the renewal.

Discharge, Receiving Wa	aters and Water Supply Inform	mation				
Outfall No. 003, 004, 40° 7' 42" 40° 7' 42" 40° 7' 42"	(004)	Design Flow (MGD)	Variable (Stormwater) 76° 37' 35" (003) 76° 37' 32" (004) 76° 37' 29" (005)			
40° 7' 48"	` ,		76° 37′ 30″ (006)			
Latitude 40° 7' 50"		Longitude	76° 37' 31" (007)			
Quad Name Elizabe		Quad Code	1733			
Wastewater Description	: Sewage Effluent					
Receiving Waters <u>Co</u>	onoy Creek (TSF,MF)	Stream Code	8278			
NHD Com ID 57	463313	RMI	6.0			
Drainage Area 7.9	9 mi ²	Yield (cfs/mi²)	0.034			
Q ₇₋₁₀ Flow (cfs) 0.2	271	Q ₇₋₁₀ Basis	USGS PA StreamStats			
Elevation (ft)38	8	Slope (ft/ft)				
Watershed No. 7-0	G	Chapter 93 Class.	TSF, MF			
Existing Use N/A	A	Existing Use Qualifier	N/A			
Exceptions to Use N/	A	Exceptions to Criteria	N/A			
Assessment Status	Impaired		-			
Cause(s) of Impairment Source(s) of Impairmen	Habitat Modification - Oth	er than Hydromodification, Habi	tat Modification – Other than			
TMDL Status	N/A	Name N/A				
	ublic Water Supply Intake	Columbia Water Company				
PWS Waters Susq	uehanna River	Flow at Intake (cfs)				
PWS RMI		Distance from Outfall (mi)	16			

Changes Since Last Permit Issuance: None

Other Comments: None

	Tre	eatment Facility Summa	ry	
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary With Total Nitrogen Reduction	Oxidation Ditch	Hypochlorite	4.5
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
7.2	8,650	Not Overloaded	Aerobic Digestion	Landfill

Changes Since Last Permit Issuance: None

Other Comments: The WWTP consists of the following: Two mechanical fine screens and vortex grit separator – Two Oxidation ditches – Two secondary clarifiers – Rotary drum thickeners – Aerobic digester – Volute dewatering press – Chlorine contact tank – Cascade aeration unit - Outfall 001 to Susquehanna River.

	Compliance History
Summary of DMRs:	A summary of the past 12-month DMR effluent data is presented on the next page of this fact sheet.
Summary of Inspections:	3/15/2016: A routine inspection was conducted. All treatment units were online. No issues were observed, and the effluent was clear.
	6/27/2017: A routine inspection was conducted. Some grease accumulation was present in the influent wet well. The clarifiers had a clear effluent, and some algae was present on the effluent weir and trough. The chlorine contact tanks had a clear appearance. The Outfall 001 effluent appeared clear, and met field test parameters.
	4/19/2018: A routine inspection was conducted. The rotors in the oxidation ditches had been replaced with aerators, and the thickener feed pumps were in the process of being rebuilt. No issues were observed.
	2/15/2019: A routine inspection was conducted. The clarifiers had a clear appearance, with algae present on the trough and weirs. The chlorine contact tanks appeared clear. Field results were within permitted limits. No issues were observed at the outfalls.
	7/15/2019: An incident report was recorded. A sanitary sewer overflow occurred on 7/14 and entered the storm drain which discharges to Conoy Creek. No evidence of solids was visible on roadways or within stormwater inlets. The stream appeared clear without evidence of solids or odor. Living fish were observed from the bridge to approximately 200 ft. downstream. No dead fish or aquatic life were observed.
	3/10/2020: A routine inspection was conducted. The clarifiers had a clear appearance. Heavy algae accumulation was present on the trough and weirs. The scum pit had a heavy accumulation of solids. Both chlorine contact tanks were online and appeared clear. Field results were within permit limits, and the effluent appeared clear.
	11/2/2021: A routine inspection was conducted. The clarifiers had a clear appearance. Heavy algae accumulation was present on the trough and weirs. The scum pit had a heavy accumulation of solids. Both chlorine contact tanks were online and appeared clear. Field results were within permit limits, and the effluent appeared clear.

Other Comments: There are currently no open violations associated with the permittee or facility.

Compliance History

DMR Data for Outfall 001 (from November 1, 2020 to October 31, 2021)

Parameter	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20
Flow (MGD)												
Average Monthly	2.169	3.867	1.985	2.049	1.685	1.86	2.192	2.906	2.576	2.249	2.408	1.816
Flow (MGD)												
Daily Maximum	3.523	11.638	3.622	3.708	1.959	2.187	2.988	6.977	5.881	3.428	7.506	2.395
pH (S.U.)												
Minimum	7.74	7.28	7.82	7.69	7.75	7.72	7.66	7.26	7.51	7.65	7.25	7.75
pH (S.U.)												
Instantaneous												
Maximum	7.94	7.94	7.97	8.1	7.93	7.92	7.85	7.79	7.78	7.82	7.89	7.89
DO (mg/L)												
Minimum	8.5	7.2	8.1	8.1	8.1	8.7	9.2	9.6	10.5	10.1	8.6	9.0
TRC (mg/L)												
Average Monthly	0.3	0.29	0.35	0.29	0.25	0.35	0.25	0.23	< 0.32	0.37	0.36	0.41
TRC (mg/L)												
Instantaneous												
Maximum	0.51	0.53	0.49	0.48	0.37	0.49	0.42	0.45	0.49	0.5	0.52	1.08
CBOD5 (lbs/day)												
Average Monthly	49	106	52	< 46	41	< 35	50	76	68	51	< 35	< 30
CBOD5 (lbs/day)												
Weekly Average	55	220	60	< 61	45	43	59	120	88	57	< 43	< 31
CBOD5 (mg/L)												
Average Monthly	3	3	3	< 3	3	< 2	3	3	3	3	< 2	< 2
CBOD5 (mg/L)												
Weekly Average	3.0	4.0	4.0	4.0	3.0	3.0	3.0	4.0	4.0	3.0	< 2.0	< 2.0
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average		4004	0=00		0.404		0004			2224	00.4=	0000
Monthly	3755	4391	3560	3232	3421	3605	3624	3884	3737	3864	3347	3222
BOD5 (lbs/day)												
Raw Sewage Influent	4450		4446	40.40		40.40	4404		4000		400=	0.00
 	4159	6968	4113	4848	3972	4249	4134	4551	4288	4491	4327	3596
BOD5 (mg/L)												
Raw Sewage Influent												
 Average	202	140	404	174	240	242	101	457	470	100	400	202
Monthly	203	146	194	174	219	213	191	157	179	199	183	202
TSS (lbs/day)	. 70	. 000	. 00	.70	.50		. 70	. 00	. 00	.70		. 00
Average Monthly	< 70	< 233	< 68	< 79	< 56	< 62	< 70	< 99	< 83	< 73	< 69	< 60

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	4050	6483	4186	4727	3624	3878	4017	4582	4402	3949	3890	3660
TSS (lbs/day)	1000	0.00	1100		0021	00.0	1017	1002	1102	00.10	0000	0000
Raw Sewage Influent												
 br/> Daily Maximum	4758	13182	6230	6593	4117	4525	4746	5414	5168	4458	6950	4397
TSS (lbs/day)		10102	0200	0000		1020	17.10	0111	0.00	1100	0000	1007
Weekly Average	< 73	< 704	< 80	< 122	< 60	< 69	< 78	< 161	< 118	< 92	< 86	< 62
TSS (mg/L)									_	-		_
Average Monthly	< 4	< 5.1	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	219	202	225	248	232	228	212	185	210	205	215	229
TSS (mg/L)												
Weekly Average	< 5	< 8.9	4	< 6	< 4	< 4	< 4	< 4	4	< 4	< 4	< 4
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 2	< 4	< 1	6	< 4	< 2	5	7	< 4	2	9	< 10
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	21	74	14	188	117	7	603	34	32	3	4300	26
Nitrate-Nitrite (mg/L)												
Average Monthly	2.1	2.86	1.89	1.76	1.89	2.06	2.2	2.89	2.65	2.63	2.58	2.07
Nitrate-Nitrite (lbs)												
Total Monthly	1111	2780	1003	1022	803	985	1150	2349	1530	1469	1388	923
Total Nitrogen												
(lbs/day)												
Average Monthly	< 46	< 113	< 47	< 48	< 41	< 44	< 53	100	72	< 60	< 57	42
Total Nitrogen (mg/L)												
Average Monthly	< 2.7	< 3.49	< 2.75	< 2.56	< 2.89	< 2.85	< 3.04	3.86	3.47	< 3.32	< 3.31	2.82
Total Nitrogen (lbs)												
Effluent Net 	4.400		4 400	4.40=	400=	400=	4=00	0.400		404=	4=00	4050
Total Monthly	< 1436	< 3387	< 1463	< 1495	< 1225	< 1367	< 1596	3102	2009	< 1847	< 1780	1258
Total Nitrogen (lbs)												
Total Monthly	< 1436	< 3387	< 1463	< 1495	< 1225	< 1367	< 1596	3102	2009	< 1847	< 1780	1258
Total Nitrogen (lbs)												
Effluent Net Tatal Association		00170										
Total Annual		< 22178										
Total Nitrogen (lbs)		00170										
Total Annual		< 22178										
Ammonia (lbs/day)		_	_									
Average Monthly	1	< 5	< 1	< 1	< 2	< 2	< 2	< 2	2	< 1	< 1	< 0.9

Ammonia (mg/L)												
Average Monthly	0.08	< 0.11	< 0.09	< 0.08	< 0.11	< 0.15	< 0.12	< 0.1	0.12	< 0.07	< 0.05	< 0.06
Ammonia (lbs)												
Total Monthly	40	< 150	< 45	< 46	< 46	< 72	< 62	< 69	66	< 42	< 30	< 27
Ammonia (lbs)												
Total Annual		< 685										
TKN (mg/L)												
Average Monthly	< 0.61	< 0.64	< 0.86	< 0.8	< 1	< 0.79	< 0.85	0.97	0.82	< 0.69	< 0.72	0.75
TKN (lbs)												
Total Monthly	< 324	< 607	< 461	< 474	< 422	< 382	< 447	753	479	< 378	< 392	336
Total Phosphorus												
(lbs/day)												
Average Monthly	4.0	21.0	7.0	5.0	5.0	6.0	5.0	12.0	4.0	5.0	4.0	3.0
Total Phosphorus												
(mg/L)												
Average Monthly	0.23	0.74	0.39	0.25	0.32	0.4	0.29	0.5	0.21	0.29	0.21	0.17
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	126	624	205	148	136	191	150	360	121	165	112	77
Total Phosphorus (lbs)												
Total Monthly	126	624	205	148	136	191	150	360	121	165	112	77
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual		5303										
Total Phosphorus (lbs)												
Total Annual		5303										

DMR Data for Outfall 002 (from November 1, 2020 to October 31, 2021)

Parameter	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20
Flow (MGD)												
Average Monthly	0.011	2.604	0.039	0.065				0.145	0.686		0.892	
Flow (MGD)												
Daily Maximum	0.011	6.139	0.04	0.091				0.145	0.686		1.471	
pH (S.U.)												
Minimum	7.89	7.28	7.87	7.69				7.26	7.53		7.25	
pH (S.U.)												
Instantaneous												
Maximum	7.89	7.9	7.87	7.87				7.26	7.53		7.81	
DO (mg/L)												
Minimum	9.0	7.2	8.1	8.1				9.6	10.6		8.6	
TRC (mg/L)												
Average Monthly	0.41	0.39	0.42	0.31				0.45	0.19		0.29	

NPDES Permit No. PA0023108

TRC (mg/L) Instantaneous								
Maximum	0.41	0.49	0.44	0.39	0.45	0.19	0.37	
CBOD5 (mg/L)								
Average Monthly	3	4	3	< 2	3	3	< 2	
CBOD5 (mg/L) Weekly Average	3	4	3	2	3	3	< 2	
TSS (mg/L) Average Monthly	< 4	< 8.9	< 4	< 4	< 4	4	< 4	
TSS (mg/L) Weekly Average	< 4	13.8	4	< 4	< 4	4	< 4	
Fecal Coliform (CFU/100 ml)			_	00	_	_	,	
Geometric Mean	2	< 1	< 1	66	7	7	4	
Total Nitrogen (mg/L) Average Monthly	2.69	3.71	< 2.76	< 2.23	4.76	4.76	3.63	
Ammonia (mg/L) Average Monthly	0.06	0.19	< 0.07	0.09	0.09	0.09	0.08	
Total Phosphorus (mg/L)								
Average Monthly	0.14	0.55	0.44	0.19	0.36	0.36	0.27	

Compliance History

Effluent Violations for Outfall 002, from: December 1, 2020 To: October 31, 2021

Emachi Viciatione for Catian 662,	Elitable Violations for Outlan 602, from: Boodinsor 1, 2020 for October 61, 2021											
Parameter	Date	SBC	DMR Value	Units	Limit Value	Units						
TRC	03/31/21	Ava Mo	0.45	mg/L	0.44	mg/L						

Existing Effluent Limitations and Monitoring Requirements

The tables below summarize the effluent limits and monitoring requirements implemented in the existing NPDES permit.

Outfall 001

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
CBOD5	938	1407 Wkly Avg	XXX	25	37.5	50	2/week	24-Hr Composite
TSS	1126	1689 Wkly Avg	XXX	30	45	60	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Ammonia	Report	XXX	XXX	Report	XXX	Report	2/week	24-Hr Composite
Total Nitrogen	300	XXX	XXX	8.0	XXX	XXX	1/month	Calculation
Total Phosphorus	37.5	XXX	XXX	1.0	XXX	3	2/week	24-Hr Composite

NPDES Permit No. PA0023108

		Effluent Limitations						
Parameter	Mass Units	(lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required
r ai ainetei	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	Report	109,500	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	13,688	XXX	XXX	XXX	XXX	1/month	Calculation

Compliance Sampling Location: Composite samples may be taken before or after disinfection; grab samples shall be taken after disinfection.

Outfall 002

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/discharge	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	Refer to Part C.V.B.	Refer to Part C.V.B.
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	Refer to Part C.V.B.	Refer to Part C.V.B.
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.44	XXX	1.43	Refer to Part C.V.B.	Refer to Part C.V.B.
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	20	30	40	Refer to Part C.V.B.	Refer to Part C.V.B.
Total Suspended Solids	XXX	XXX	XXX	30	45	60	Refer to Part C.V.B.	Refer to Part C.V.B.
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	Refer to Part C.V.B.	Refer to Part C.V.B.
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	Refer to Part C.V.B.	Refer to Part C.V.B.
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	8.0	XXX	16	Refer to Part C.V.B.	Refer to Part C.V.B.
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	5.0	XXX	10	Refer to Part C.V.B.	Refer to Part C.V.B.
Total Nitrogen	XXX	XXX	XXX	8.0	XXX	XXX	Refer to Part C.V.B.	Refer to Part C.V.B.
Total Phosphorus	XXX	XXX	XXX	1.0	XXX	3	Refer to Part C.V.B.	Refer to Part C.V.B.

Development of Effluent Limitations								
Outfall No.	001		Design Flow (MGD)	4.5				
Latitude	40° 4' 55.2"		Longitude	76º 39' 53"				
Wastewater D	escription:	Sewage Effluent	-					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD₅ & NH₃-N.

Pursuant to 40 CFR § 122.44(d)(1)(i), more stringent requirements should be considered when pollutants are discharged at the levels which have the reasonable potential to cause or contribute to excursions above water quality standards.

WQM 7.0 ver. 1.1b is a water quality model designed to assist DEP in determining appropriate water quality based effluent limits (WQBELs) for carbonaceous biochemical oxygen demand (CBOD $_5$), ammonia (NH $_3$ -N) and dissolved oxygen (D.O.). DEP's Technical Guidance No. 391-2000-007 provides the technical methods contained in WQM 7.0 for determining wasteload allocations and for determining recommended NPDES effluent limits for point source discharges. The model was utilized for this permit renewal. The model output indicated a CBOD $_5$ average monthly limit of 25 mg/l, an NH $_3$ -N average monthly limit of 25 mg/l, and a D.O. minimum limit of 5.0 mg/l were protective of water quality. The flow data used to run the model was acquired from USGS PA StreamStats, and is included as an attachment. The CBOD $_5$ limit is the same as the existing permit limit, which will remain in the renewal permit. DEP's SOP No. BCW-PMT-033 states that for existing discharges, if WQM modeling results for summer indicates that an average monthly limit of 25 mg/l is acceptable, a year-round monitoring requirement for NH $_3$ -N should generally be established, at a minimum. The existing permit has a year-round monitoring requirement for NH $_3$ -N, which is consistent with the SOP and will remain in the permit.

Toxics

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP's Toxics Management Spreadsheet Version 1.3 to develop appropriate permit requirements for toxic pollutants of concern. The Toxics Management Spreadsheet combines the functions of PENTOXSD and DEP's Toxics Screening Analysis. Stream pH and hardness inputs were based on data acquired from the National Water Quality Monitoring Council website. Data was analyzed from the Water Quality Network (WQN) Station ID 201 from 2010 to 2020 for pH and hardness. A 90th percentile analysis was performed on the data which provided a stream pH of 8.376 and hardness of 128 mg/l. Based on effluent sample results reported on the application, the Toxics Management Spreadsheet recommended monitoring for Total Zinc and Total Copper.

This data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003) and DEP's SOP No. BPNPSM-PMT-033. The results are attached to this fact sheet. The Toxics Management Spreadsheet uses the following logic:

- a. Establish average monthly and instantaneous maximum (IMAX) limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

Since the reported maximum concentrations for Total Zinc and Total Copper were greater than 10% of their respective WQBELs, per DEP's SOP No. BPNPSM-PMT-033, monitoring requirements will be added to the permit for these parameters. A measurement frequency of 1/quarter will be used.

Total Residual Chlorine

The attached computer printout utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92, Section 92.2d (3) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns. It is recommended that a TRC limit of 0.5 mg/l monthly average and 1.6 mg/l instantaneous maximum be applied this permit cycle, the same as the existing permit.

Best Professional Judgement (BPJ) Limitations

Dissolved Oxygen

A minimum D.O. limit of 5.0 mg/L is a D.O. water quality criterion found in 25 Pa. Code § 93.7(a). This is the existing permit limit, and it is recommended that it remain in the permit to ensure that the facility continues to achieve compliance with water quality standards.

Additional Considerations

Chesapeake Bay Total Maximum Daily Load (TMDL)

DEP developed a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). This strategy can be located in the *Pennsylvania Chesapeake Watershed Implementation Plan* (WIP), dated January 11, 2011. Subsequently, an update to the WIP was published as the Phase 2 WIP. As part of the Phase 2 WIP, a *Phase 2 Watershed Implementation Plan Wastewater Supplement* (Phase 2 Supplement) was developed, providing an update on TMDL implementation for point sources and DEP's current implementation strategy for wastewater. A new update to the WIP was published as the Phase 3 WIP in August 2019. As part of the Phase 3 WIP, a *Phase 3 Watershed Implementation Plan Wastewater Supplement* (Phase 3 Supplement) was developed, and was most recently revised on December 17, 2019, and is the basis for the development of any Chesapeake Bay related permit parameters. Sewage discharges have been prioritized based on their design flow to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual Cap Loads based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. For Phase 4 and 5 facilities, Cap Loads are not currently being implemented for renewed or amended permits for facilities that do not increase design flow. For new Phase 4 and 5 sewage dischargers, in general DEP will issue new permits containing Cap Loads of "0" and new facilities will be expected to purchase credits and/or apply offsets to achieve compliance.

The Borough of Elizabethtown WWTP is a Phase 1 significant discharger. The facility's waste load allocation (WLA) is tracked under an individual WLA as a significant discharger in the Phase 3 Supplement. The following Cap Loads specified in the current Phase 3 Supplement will be included in the draft permit:

NPDES Permit No.	Phase	Facility	Latest Permit Issuance Date	Permit Expiration Date	Cap Load Compliance Start Date	TN Cap Load (lbs/yr)	TN Offsets Included in Cap Load (lbs/yr)	TP Cap Load (lbs/yr)	TN Delivery Ratio	TP Delivery Ratio
		Elizabethtown								
PA0023108	1	Borough	6/20/2016	6/30/2021	10/1/2010	109,500	-	13,688	.961	0436

The Cap Loads are unchanged from the existing permit. On February 8, 2008, Cap Loads for TN and TP based on 6.0 mg/l and 0.8 mg/l, respectively, were introduced into the NPDES permit. The Borough of Elizabethtown appealed the permit due to a disagreement on the calculation of the Cap Loads. The Borough asserted that the WWTP was designed for an effluent TN concentration of 8 mg/l and TP concentration of 2 mg/l based on DEP's direction in 1999, and that the Borough had made significant modifications based on that direction. The appeal was settled with DEP agreeing to drop the annual mass limits for nutrients, and in place DEP added a TN limit of 8.0 mg/l as a monthly average, and a TP limit of 1.0 mg/l as a monthly average and 3.0 mg/l as an instantaneous maximum. The existing permit contains language in Part A.1.C. of the permit that states "The loading amount of 82,191 lbs/year for Total Nitrogen and 10,959 lbs/year for Total Phosphorus shall be used for the purposes of determining eligibility to sell nutrient credits. Loadings less than these values may be sold as part of the nutrient trading process." This language will be carried over to the renewal permit.

The Phase 3 Supplement states that "the minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for significant sewage dischargers will be 2/week." This is consistent with the existing permit, and a monitoring frequency of 2/week will remain in the renewal. DEP no longer offers any tools to calculate monthly loads for Net TN and Net TP, and it is no longer needed since offsets and credits are applied annually. Therefore, this reporting requirement is no longer needed and will be removed from the permit.

Total Dissolved Solids (TDS)

Total Dissolved Solids and its major constituents including Bromide, Chloride, and Sulfate have become statewide pollutants of concern and threats to DEP's mission to prevent violations of water quality standards. The requirement to monitor these pollutants is necessary under the following DEP Central Office directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 μg/l and the discharge flow exceeds 0.1 mgd, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 mgd or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 μg/l.

Based on the sampling data provided in the application, the maximum TDS concentration was 798 mg/l, and the maximum Bromide concentration was 0.2 mg/l. Therefore, monitoring requirements for these parameters will not be required.

Fecal Coliform

PA Code § 92a.47.(a)(4) requires a monthly average limit of 200/100 mL as a geometric mean and an instantaneous maximum limit not greater than 1,000/100 mL from May through September for fecal coliform. PA Code § 92a.47.(a)(5) requires a monthly average limit of 2,000/100 mL as a geometric mean and an instantaneous maximum limit not greater than 10,000/100 mL from October through April for fecal coliform. This is consistent with the existing permit limits, which will remain in the renewal.

E. Coli

PA Code § 92a.61 requires IMAX reporting of E. Coli. Per DEP's SOP No. BCW-PMT-033, sewage dischargers with a design flow of >= 1 mgd will include E. Coli monitoring with a frequency of 1/month. This parameter has been added to the renewal permit.

Sampling Frequency & Sample Type

The monitoring requirements were established based on the BPJ and/or Table 6-3 of DEP's technical guidance No. 362-0400-001.

Flow Monitoring

Flow monitoring is recommended by DEP's technical guidance and is also required by 25 PA Code §§ 92a.27 and 92a.61.

Influent BOD₅ and Total Suspended Solids (TSS) Monitoring

As a result of negotiation with US EPA, influent monitoring of TSS and BOD_5 are required for any publicly owned treatment works (POTWs); therefore, influent sampling of BOD_5 and TSS will be included in the permit. A 24-hr composite sample type will be required to be consistent with the proposed sampling frequency for effluent TSS and $CBOD_5$.

Mass Loading Limitation

All mass loading effluent limitations recommended in the draft permit are concentration-based, calculated using a formula: design flow (MGD) x concentration limit (mg/l) x conversion factor of 8.34.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams

The discharge is located on a stream segment that is designated on the 303(d) list as impaired. There is a fish consumption impairment for polychlorinated biphenyls and pH due to an unknown source.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Development of Effluent Limitations							
Outfall No.	002	Design Flow (MGD)	9.0				
Latitude	40° 7' 44"	Longitude	76° 37' 29"				
Wastewater I	Description: Sewage Effluent	<u>-</u>					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD₅ & NH₃-N.

The WQM 7.0 ver. 1.1b model output indicated a CBOD $_5$ average monthly limit of 25 mg/l, an NH $_3$ -N average monthly limit of 8.82 mg/l, and a D.O. minimum limit of 5.0 mg/l were protective of water quality. The existing CBOD $_5$ limit of 20 mg/l and NH $_3$ -N limit of 5.0 mg/l are more stringent and will remain in the permit. The flow data used to run the model was acquired from USGS PA StreamStats, and is included as an attachment. The model was run using the streamflow to discharge ratio of 2.93:1, discussed above in the fact sheet.

Toxics

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP's Toxics Management Spreadsheet Version 1.3 to develop appropriate permit requirements for toxic pollutants of concern. The reported sample results were modified using a 0.33 dilution factor, due to the fact that maximum sewage flow of 4.5 mgd is only a portion of the potential 13.5 mgd flow. The additional 9.0 mgd is not expected to have significant amounts of contaminants as it is mainly I&I from wet weather events. Stream pH and hardness inputs were based on data acquired from the National Water Quality Monitoring Council website. Data was analyzed from the Water Quality Network (WQN) Station ID 269 on Conewago Creek from 2011 to 2020 for pH and hardness. A 90th percentile analysis was performed on the data which provided a stream pH of 7.46 and hardness of 301.9 mg/l.

This data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003) and DEP's SOP No. BPNPSM-PMT-033. The results are attached to this fact sheet. The Toxics Management Spreadsheet uses the following logic:

- a. Establish average monthly and instantaneous maximum (IMAX) limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

Based on the effluent sample results reported on the application, Dichlorobromomethane would need to be monitored. However, as this parameter is only slightly over 25%, and the 2.93:1 dilution ratio will very rarely be seen, and only for brief periods of time, monitoring for Dichlorobromomethane will not be included in the permit. This is consistent with how the toxics analysis was performed in previous renewals.

Total Residual Chlorine

The attached computer printout utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92, Section 92.2d (3) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached printout indicates that a water quality limit of 0.44 mg/l would be needed to prevent toxicity concerns. It is recommended that a TRC limit of 0.44 mg/l monthly average and 1.43 mg/l instantaneous maximum be applied this permit cycle, the same as the existing permit.

Best Professional Judgement (BPJ) Limitations

Dissolved Oxygen

A minimum D.O. limit of 5.0 mg/L is a D.O. water quality criterion found in 25 Pa. Code § 93.7(a). This is the existing permit limit, and it is recommended that it remain in the permit to ensure that the facility continues to achieve compliance with water quality standards.

Additional Considerations

Chesapeake Bay Total Maximum Daily Load (TMDL)

The Borough of Elizabethtown WWTP is a Phase 1 significant discharger. The facility's waste load allocation (WLA) is tracked under an individual WLA as a significant discharger in the Phase 3 Supplement. The following Cap Loads specified in the current Phase 3 Supplement will be included in the draft permit:

NPDES Permit No.	Phase	Facility	Latest Permit Issuance Date	Permit Expiration Date	Cap Load Compliance Start Date	TN Cap Load (lbs/yr)	TN Offsets Included in Cap Load (lbs/yr)	TP Cap Load (lbs/yr)	TN Delivery Ratio	TP Delivery Ratio
PA0023108	1	Elizabethtown Borough	6/20/2016	6/30/2021	10/1/2010	109,500	_	13,688	.961	0436

The Cap Loads are unchanged from the existing permit. On February 8, 2008, Cap Loads for TN and TP based on 6.0 mg/l and 0.8 mg/l, respectively, were introduced into the NPDES permit. The Borough of Elizabethtown appealed the permit due to a disagreement on the calculation of the Cap Loads. The Borough asserted that the WWTP was designed for an effluent TN concentration of 8 mg/l and TP concentration of 2 mg/l based on DEP's direction in 1999, and that the Borough had made significant modifications based on that direction. The appeal was settled with DEP agreeing to drop the annual mass limits for nutrients, and in place DEP added a TN limit of 8.0 mg/l as a monthly average, and a TP limit of 1.0 mg/l as a monthly average and 3.0 mg/l as an instantaneous maximum. The existing permit contains language in Part A.1.C. of the permit that states "The loading amount of 82,191 lbs/year for Total Nitrogen and 10,959 lbs/year for Total Phosphorus shall be used for the purposes of determining eligibility to sell nutrient credits. Loadings less than these values may be sold as part of the nutrient trading process." This language will be carried over to the renewal permit.

The Phase 3 Supplement states that "the minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for significant sewage dischargers will be 2/week." This is consistent with the existing permit, and a monitoring frequency of 2/week will remain in the renewal. DEP no longer offers any tools to calculate monthly loads for Net TN and Net TP, and it is no longer needed since offsets and credits are applied annually. Therefore, this reporting requirement is no longer needed and will be removed from the permit.

Total Dissolved Solids (TDS)

Total Dissolved Solids and its major constituents including Bromide, Chloride, and Sulfate have become statewide pollutants

of concern and threats to DEP's mission to prevent violations of water quality standards. The requirement to monitor these pollutants is necessary under the following DEP Central Office directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part
 A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and
 report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 μg/l and the discharge flow exceeds 0.1 mgd, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 mgd or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 μg/l.

Based on the sampling data provided in the application, the maximum TDS concentration was 798 mg/l, and the maximum Bromide concentration was 0.2 mg/l. Therefore, monitoring requirements for these parameters will not be required.

Fecal Coliform

PA Code § 92a.47.(a)(4) requires a monthly average limit of 200/100 mL as a geometric mean and an instantaneous maximum limit not greater than 1,000/100 mL from May through September for fecal coliform. PA Code § 92a.47.(a)(5) requires a monthly average limit of 2,000/100 mL as a geometric mean and an instantaneous maximum limit not greater than 10,000/100 mL from October through April for fecal coliform. This is consistent with the existing permit limits, which will remain in the renewal.

E. Coli

PA Code § 92a.61 requires IMAX reporting of E. Coli. Per DEP's SOP No. BCW-PMT-033, sewage dischargers with a design flow of >= 1 mgd will include E. Coli monitoring with a frequency of 1/month. This parameter has been added to the renewal permit.

Sampling Frequency & Sample Type

The monitoring requirements were established based on the BPJ and/or Table 6-3 of DEP's technical guidance No. 362-0400-001.

Flow Monitoring

Flow monitoring is recommended by DEP's technical guidance and is also required by 25 PA Code §§ 92a.27 and 92a.61.

Mass Loading Limitation

All mass loading effluent limitations recommended in the draft permit are concentration-based, calculated using a formula: design flow (MGD) x concentration limit (mg/l) x conversion factor of 8.34.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams

The discharge is located on a stream segment that is designated on the 303(d) list as impaired. There is an aquatic life impairment for habitat alterations and siltation due to habitat modifications – other than hydromodification, and for siltation due to agriculture.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

	Whole Effluent Toxicity (WET)
For Out	tfall 001, Acute Chronic WET Testing was completed:
	For the permit renewal application (4 tests). Quarterly throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other:

The dilution series used for the tests was: 100%, 60%, 30%, 2%, and 1%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 2%.

Summary of Four Most Recent Test Results

TST Data Analysis

	Ceriodaphnia I	Results (Pass/Fail)	Pimephales Results (Pass/Fail)		
Test Date	Survival	Reproduction	Survival	Growth	
8/14/2018	Pass	Pass	Pass	Pass	
8/26/2019	Pass	Pass	Pass	Pass	
6/15/2020	Pass	Pass	Pass	Pass	
9/26/2021	Pass	Pass	Pass	Pass	

^{*} A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (NOTE – In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests).

☐ YES ⊠ NO

Comments: All of the endpoint results were greater than the TIWC.

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): .005 Chronic Partial Mix Factor (PMFc): .037

1. Determine IWC - Acute (IWCa):

 $(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$

 $[(4.5 \text{ MGD x } 1.547) / ((3,210 \text{ cfs x } .005) + (4.5 \text{ MGD x } 1.547))] \times 100 = 30.25\%$

Is IWCa < 1%? Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

N/A

Type of Test for Permit Renewal: Chronic

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = N/A

2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

 $[(4.5 \text{ MGD} \times 1.547) / ((3,210 \text{ cfs} \times .037) + (4.5 \text{ MGD} \times 1.547))] \times 100 = 5.5\%$

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 60%, 30%, 6%, and 3%.

WET Limits

Has reasonable potential been determined? ☐ YES ☒ NO
Will WET limits be established in the permit? \square YES \boxtimes NO
If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	938	1407	XXX	25	37.5	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS	1126	1689	XXX	30	45	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Total Nitrogen	300	XXX	XXX	8.0	XXX	XXX	1/month	Calculation
Ammonia	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Phosphorus	37.5	XXX	XXX	1.0	XXX	3	2/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Red	quirements					
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
raiametei	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type
				Report				24-Hr
Total Zinc	XXX	XXX	XXX	Daily Max	XXX	XXX	1/quarter	Composite
				Report				24-Hr
Total Copper	XXX	XXX	XXX	Daily Max	XXX	XXX	1/quarter	Composite

Compliance Sampling Location: Composite samples may be taken before or after disinfection; grab samples shall be taken after disinfection.

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring R	equirements
Parameter	Mass Unit	s (lbs/day)		Concentrati	ions (mg/L)		Minimum	
r ai ainetei	Average Monthly	Average Weekly	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Required Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/discharge	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	See Permit (1)	See Permit (1)
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	See Permit (1)	See Permit (1)
TRC	XXX	XXX	XXX	0.44	XXX	1.43	See Permit (1)	See Permit (1)
CBOD5	XXX	XXX	XXX	20	30	40	See Permit (1)	See Permit (1)
TSS	XXX	XXX	XXX	30	45	60	See Permit (1)	See Permit (1)
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	See Permit (1)	See Permit (1)
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	See Permit (1)	See Permit (1)
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	See Permit (1)	See Permit (1)
Total Nitrogen	XXX	XXX	XXX	8.0	XXX	XXX	See Permit (1)	See Permit (1)
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	8.0	XXX	16	See Permit (1)	See Permit (1)
Ammonia May 1 - Oct 31	XXX	XXX	XXX	5.0	XXX	10	See Permit (1)	See Permit (1)
Total Phosphorus	XXX	XXX	XXX	1.0	XXX	3	See Permit (1)	See Permit (1)

Permit No. PA0023108

(1) If the streamflow to wasteflow ratio during a discharge event from Outfall 002 falls below 4 to 1, then a sample must be analyzed for each discharge event to determine compliance with the permit limitations for Outfall 002. A discharge from Outfall 002 shall be considered a single event as long as four hours has not elapsed from the end of a discharge to the beginning of the next on any calendar day. If four hours has passed between discharges, then it will be considered a new discharge event and must be sampled separately.

If the streamflow to wasteflow ratio during a discharge event from Outfall 002 is 4 to 1 or greater, then no sampling is required and the quality of the discharge will be assumed to be equivalent to the nearest required analysis of Outfall 001.

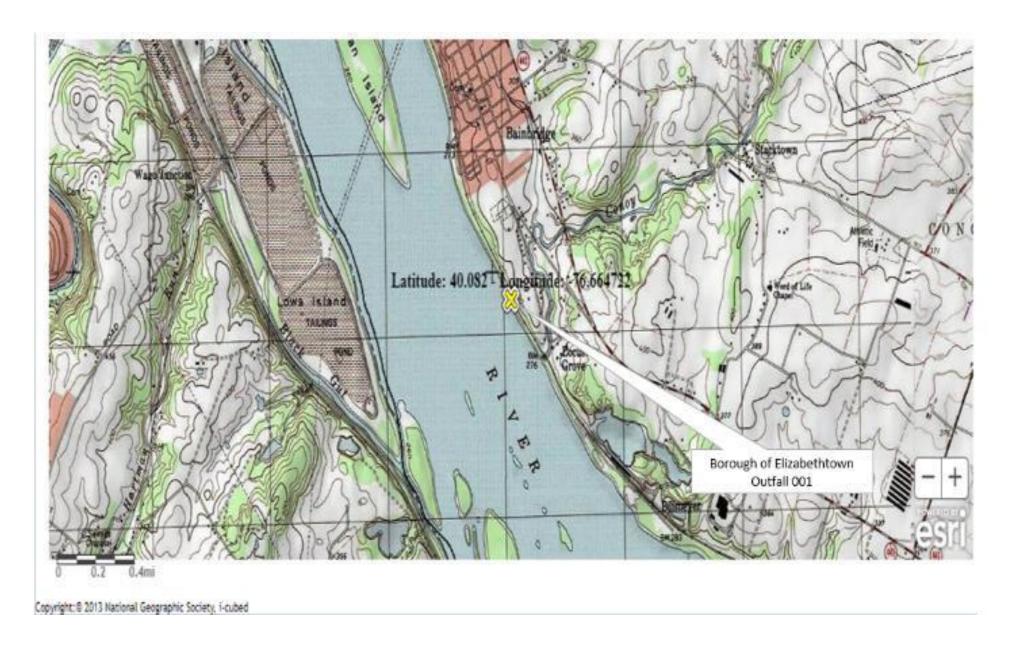
Sampling each single discharge event shall consist of one grab sample of every four-hour period that a discharge occurs during any calendar day. Grab samples taken on any calendar day can then be composited for one analysis. A separate analysis will be required for each calendar day that a discharge would occur.

Compliance Sampling Location: Composite samples may be taken before or after disinfection; grab samples shall be taken after disinfection.

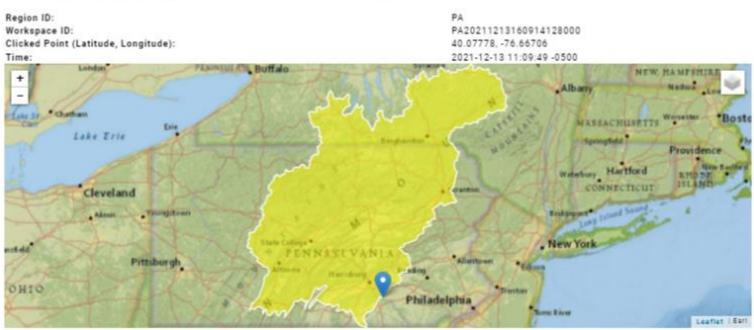
Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.


Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
raiametei	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	XXX	109,500	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	XXX	13,688	XXX	XXX	XXX	XXX	1/month	Calculation


Compliance Sampling Location: At discharge from facility

Other Comments: None

	Tools and References Used to Develop Permit
N 7	T
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: SOP No. BCW-PMT-033
	Other:

Borough of Elizabethtown PA0023108 Outfall 001

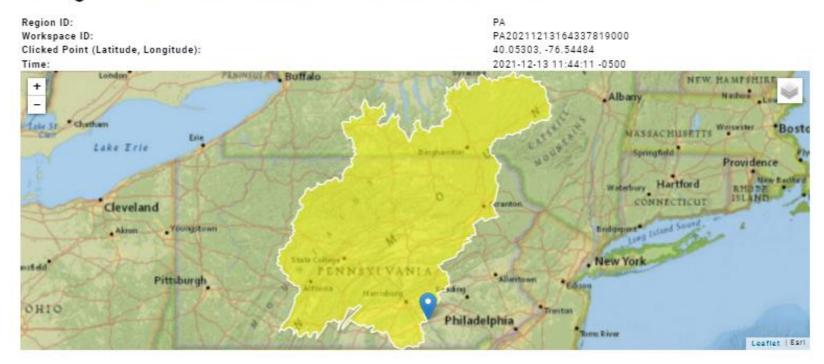
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	25500	square miles
BSLOPD	Mean basin slope measured in degrees	8.1978	degrees
ROCKDEP	Depth to rock	4.5	feet
URBAN	Percentage of basin with urban development	2.7662	percent
PRECIP	Mean Annual Precipitation	40	inches
STRDEN	Stream Density total length of streams divided by drainage area	1.76	miles per square mile
CARBON	Percentage of area of carbonate rock	6.26	percent
ELEV	Mean Basin Elevation	1343	feet
GLACIATED	Percentage of basin area that was historically covered by glaciers	46.2447	percent
FOREST	Percentage of area covered by forest	68.6192	percent

Parameter Code	Parameter Name		Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area		25500	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees		8.1978	degrees	1.7	6.4
ROCKDEP	Depth to Rock		4.5	feet	4.13	5.21
URBAN	Percent Urban		2.7662	percent	0	89
Low-Flow Statistics Param	eters [43.3 Percent (11100 square miles) Low Flo	w Region 2]				
Parameter Code	Parameter Name	Value	Units		Min Limit	Max Limit
DRNAREA	Drainage Area	25500	squar	e miles	4.93	1280
PRECIP	Mean Annual Precipitation	40	inche	s	35	50.4
STRDEN	Stream Density	1.76	miles	per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet		3.32	5.65
CARBON Low-Flow Statistics Param	Percent Carbonate eters [6.3 Percent (1610 square miles) Low Flow F	6.26 Region 3]	perce	nt	0	99
			perce Value	nt Units	0 Min Limit	99 Max Limit
Low-Flow Statistics Param	eters [6.3 Percent (1610 square miles) Low Flow R				·	
Low-Flow Statistics Param Parameter Code DRNAREA	eters [6.3 Percent (1610 square miles) Low Flow F		Value	Units	Min Limit	Max Limit
Low-Flow Statistics Param	eters [6.3 Percent (1610 square miles) Low Flow F Parameter Name Drainage Area		Value 25500	Units square miles	Min Limit	Max Limit
Low-Flow Statistics Param Parameter Code DRNAREA ELEV PRECIP	eters [6.3 Percent (1610 square miles) Low Flow F Parameter Name Drainage Area Mean Basin Elevation	Region 3]	Value 25500 1343	Units square miles feet	Min Limit 2.33 898	Max Limit 1720 2700
Low-Flow Statistics Param Parameter Code DRNAREA ELEV PRECIP	eters [6.3 Percent (1610 square miles) Low Flow F Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation	Region 3] w Region 5]	Value 25500 1343	Units square miles feet	Min Limit 2.33 898	Max Limit 1720 2700
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP Low-Flow Statistics Param	eters [6.3 Percent (1610 square miles) Low Flow F Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation eters [48.1 Percent (12300 square miles) Low Flor	Region 3] w Region 5]	Value 25500 1343 40	Units square miles feet inches	Min Limit 2.33 898 38.7	Max Limit 1720 2700 47.9
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP Low-Flow Statistics Parameter Code DRNAREA	eters [6.3 Percent (1610 square miles) Low Flow F Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation eters [48.1 Percent (12300 square miles) Low Flor	Region 3] w Region 5] V	Value 25500 1343 40	Units square miles feet inches Units	Min Limit 2.33 898 38.7 Min Limit	Max Limit 1720 2700 47.9 Max Limit
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP Low-Flow Statistics Parameter Code DRNAREA	Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation eters [48.1 Percent (12300 square miles) Low Flor Parameter Name Drainage Area	Region 3] w Region 5] V	Value 25500 1343 40 Value	Units square miles feet inches Units square miles	Min Limit 2.33 898 38.7 Min Limit 4.84	Max Limit 1720 2700 47.9 Max Limit 982
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP Low-Flow Statistics Parameter Code DRNAREA PRECIP DRNAREA PRECIP GLACIATED	eters [6.3 Percent (1610 square miles) Low Flow F Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation eters [48.1 Percent (12300 square miles) Low Flor Parameter Name Drainage Area Mean Annual Precipitation	w Region 5]	Value 25500 1343 40 Value 25500	Units square miles feet inches Units square miles inches	Min Limit 2.33 898 38.7 Min Limit 4.84 33.1	Max Limit 1720 2700 47.9 Max Limit 982 47.1
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP Low-Flow Statistics Parameter Code DRNAREA PRECIP GLACIATED FOREST	Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation eters [48.1 Percent (12300 square miles) Low Flor Parameter Name Drainage Area Mean Annual Precipitation	Region 3] W Region 5] V 4	Value 25500 1343 40 Value 25500 40	Units square miles feet inches Units square miles inches percent	Min Limit 2.33 898 38.7 Min Limit 4.84 33.1	Max Limit 1720 2700 47.9 Max Limit 982 47.1 100

Statistic	Value	Unit
7 Day 2 Year Low Flow	9180	ft^3/s
30 Day 2 Year Low Flow	10200	ft*3/s
7 Day 10 Year Low Flow	7180	ft*3/s
30 Day 10 Year Low Flow	7550	ft*3/s
90 Day 10 Year Low Flow	8030	ft*3/s
Low-Flow Statistics Disclaimers [43.3 Percent (11100 square miles) Low Flow Region 2]		
One or more of the parameters is outside the suggested range. Estimates were extrapolated with unkn		
Low-Flow Statistics Flow Report [43.3 Percent (11100 square miles) Low Flow Region 2]		
Statistic	Value	Unit
7 Day 2 Year Low Flow	5810	ft*3/s
30 Day 2 Year Low Flow	6870	ft*3/s
7 Day 10 Year Low Flow	4330	ft*3/s
30 Day 10 Year Low Flow	5110	ft*3/s
90 Day 10 Year Low Flow	6360	ft*3/s
Low-Flow Statistics Disclaimers [6.3 Percent (1610 square miles) Low Flow Region 3]		
One or more of the parameters is outside the suggested range. Estimates were extrapolated with unkn		
Low-Flow Statistics Flow Report [6.3 Percent (1610 square miles) Low Flow Region 3]		
Statistic	Value	Unit
7 Day 2 Year Low Flow	2380	ft*3/s
30 Day 2 Year Low Flow	2940	ft*3/s
7 Day 10 Year Low Flow	1430	ft^3/s
30 Day 10 Year Low Flow	1780	ft*3/s
90 Day 10 Year Low Flow	2450	ft*3/s
Low-Flow Statistics Disclaimers [48.1 Percent (12300 square miles) Low Flow Region 5]		
One or more of the parameters is outside the suggested range. Estimates were extrapolated with unkn		
Low-Flow Statistics Flow Report [48.1 Percent (12300 square miles) Low Flow Region 5]		

Statistic	Value	Unit
7 Day 2 Year Low Flow	3530	ft*3/s
30 Day 2 Year Low Flow	4450	ft*3/s
7 Day 10 Year Low Flow	2280	ft*3/s
30 Day 10 Year Low Flow	2970	ft*3/s
90 Day 10 Year Low Flow	3830	ft^3/s
Low-Flow Statistics Flow Report [Area-Averaged]		
Statistic	Value	Unit
7 Day 2 Year Low Flow	4560	ft*3/s
30 Day 2 Year Low Flow	5510	ft*3/s
7 Day 10 Year Low Flow	3210	ft*3/s
30 Day 10 Year Low Flow	3910	ft*3/s
90 Day 10 Year Low Flow	4920	ft^3/s
Low-Flow Statistics Citations		
Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression investigations Report 2006-5130, 84 p.	n equations for Pennsylvania streams: U.S. Geolog	gical Survey Scientific

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.


USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

Borough of Elizabethtown PA0023108 Downstream Pt. RMI = 31

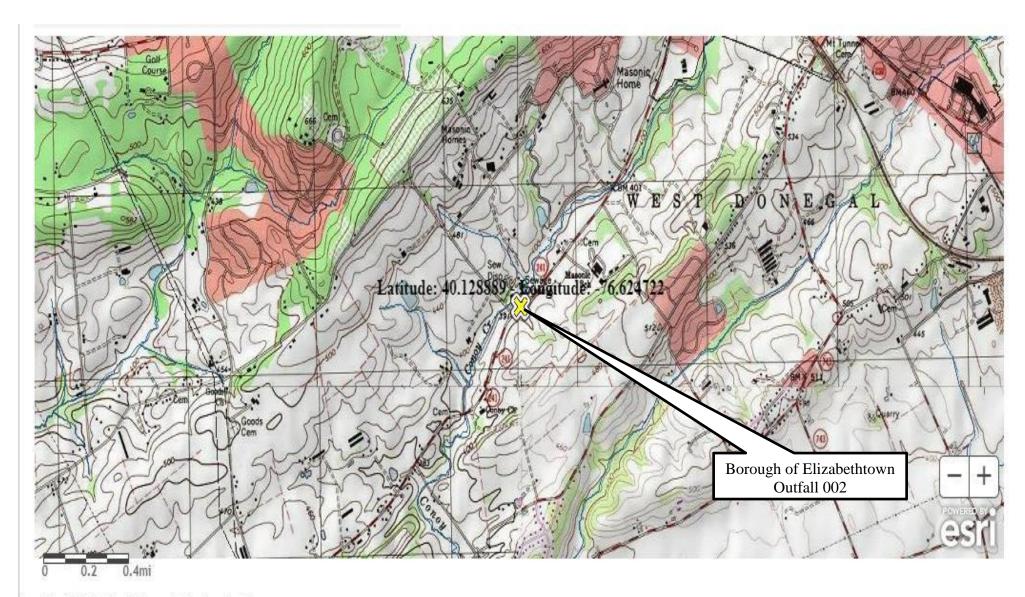
Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	25900	square miles
BSLOPD	Mean basin slope measured in degrees	8.1637	degrees
ROCKDEP	Depth to rock	4.5	feet
URBAN	Percentage of basin with urban development	2.8655	percent
PRECIP	Mean Annual Precipitation	40	inches
STRDEN	Stream Density total length of streams divided by drainage area	1.76	miles per square mile
CARBON	Percentage of area of carbonate rock	6.45	percent
ELEV	Mean Basin Elevation	1334	feet
GLACIATED	Percentage of basin area that was historically covered by glaciers	45.6689	percent
FOREST	Percentage of area covered by forest	68.0806	percent

arameter Code	Parameter Name	,	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area		25900	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees		8.1637	degrees	1.7	6.4
ROCKDEP	Depth to Rock		4.5	feet	4.13	5.21
URBAN	Percent Urban		2.8655	percent	0	89
Low-Flow Statistics Param	eters [42.8 Percent (11100 square miles) Low Flov	v Region 2]				
Parameter Code	Parameter Name	Value	Units		Min Limit	Max Limit
DRNAREA	Drainage Area	25900	squar	e miles	4.93	1280
PRECIP	Mean Annual Precipitation	40	inches	3	35	50.4
STRDEN	Stream Density	1.76	miles	per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet		3.32	5.65
	Percent Carbonate eters [6.2 Percent (1610 square miles) Low Flow R	6.45 Region 3]	percei		0	99
Low-Flow Statistics Param Parameter Code	eters [6.2 Percent (1610 square miles) Low Flow R		Value	Units	Min Limit	Max Limit
Low-Flow Statistics Param Parameter Code DRNAREA	eters [6.2 Percent (1610 square miles) Low Flow R Parameter Name Drainage Area	Region 3]	Value 25900	Units square miles	Min Limit	Max Limit
Low-Flow Statistics Param Parameter Code	eters [6.2 Percent (1610 square miles) Low Flow R	Region 3]	Value	Units	Min Limit	Max Limit
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP	eters [6.2 Percent (1610 square miles) Low Flow R Parameter Name Drainage Area Mean Basin Elevation	Region 3]	Value 25900 1334	Units square miles feet	Min Limit 2.33 898	Max Limit 1720 2700
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP	eters [6.2 Percent (1610 square miles) Low Flow R Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation	Region 3] w Region 5]	Value 25900 1334	Units square miles feet	Min Limit 2.33 898	Max Limit 1720 2700
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP Low-Flow Statistics Parameter Code	Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation eters [47.5 Percent (12300 square miles) Low Flow	Region 3] v Region 5] V	Value 25900 1334 40	Units square miles feet inches	Min Limit 2.33 898 38.7	Max Limit 1720 2700 47.9
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP Low-Flow Statistics Parameter	Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation eters [47.5 Percent (12300 square miles) Low Flow	N Region 3] V Region 5] V	Value 25900 1334 40	Units square miles feet inches Units	Min Limit 2.33 898 38.7 Min Limit	Max Limit 1720 2700 47.9 Max Limit
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP Low-Flow Statistics Parameter Code DRNAREA	Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation eters [47.5 Percent (12300 square miles) Low Flow	v Region 5] V	Value 25900 1334 40 Value	Units square miles feet inches Units square miles	Min Limit 2.33 898 38.7 Min Limit 4.84	Max Limit 1720 2700 47.9 Max Limit 982
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP Low-Flow Statistics Parameter Code DRNAREA PRECIP DRNAREA PRECIP GLACIATED	Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation eters [47.5 Percent (12300 square miles) Low Flow Parameter Name Drainage Area Mean Annual Precipitation	N Region 3] V Region 5] V 2	Value 25900 1334 40 Value	Units square miles feet inches Units square miles inches	Min Limit 2.33 898 38.7 Min Limit 4.84 33.1	Max Limit 1720 2700 47.9 Max Limit 982 47.1
Low-Flow Statistics Parameter Code DRNAREA ELEV PRECIP Low-Flow Statistics Parameter Code DRNAREA PRECIP GLACIATED FOREST	Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation eters [47.5 Percent (12300 square miles) Low Flow Parameter Name Drainage Area Mean Annual Precipitation Percent of Glaciation	v Region 3] V Region 5] V 4	Value 25900 1334 40 Value 5900	Units square miles feet inches Units square miles inches percent	Min Limit 2.33 898 38.7 Min Limit 4.84 33.1	Max Limit 1720 2700 47.9 Max Limit 982 47.1 100

Statistic	Value	Unit
7 Day 2 Year Low Flow	9290	ft*3/s
30 Day 2 Year Low Flow	10300	ft^3/s
7 Day 10 Year Low Flow	7270	ft^3/s
30 Day 10 Year Low Flow	7650	ft^3/s
90 Day 10 Year Low Flow	8150	ft^3/s
Low-Flow Statistics Disclaimers [42.8 Percent (11100 square miles) Low Flow Region 2]		
One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown		
Low-Flow Statistics Flow Report [42.8 Percent (11100 square miles) Low Flow Region 2]		
Statistic	Value	Unit
7 Day 2 Year Low Flow	5930	ft*3/s
30 Day 2 Year Low Flow	7000	ft*3/s
7 Day 10 Year Low Flow	4420	ft^3/s
30 Day 10 Year Low Flow	5210	ft^3/s
90 Day 10 Year Low Flow	6480	ft^3/s
Low-Flow Statistics Disclaimers [6.2 Percent (1610 square miles) Low Flow Region 3]		
One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown		
Low-Flow Statistics Flow Report [6.2 Percent (1610 square miles) Low Flow Region 3]		
Statistic	Value	Unit
7 Day 2 Year Low Flow	2410	ft^3/s
30 Day 2 Year Low Flow	2970	ft^3/s
7 Day 10 Year Low Flow	1450	ft^3/s
30 Day 10 Year Low Flow	1800	ft^3/s
90 Day 10 Year Low Flow	2470	ft^3/s
Low-Flow Statistics Disclaimers [47.5 Percent (12300 square miles) Low Flow Region 5]		

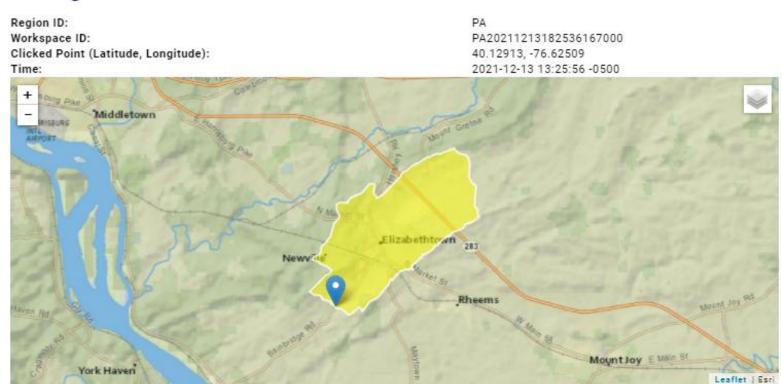
Statistic	Value	Unit
Day 2 Year Low Flow	3540	ft^3/s
30 Day 2 Year Low Flow	4470	ft^3/s
7 Day 10 Year Low Flow	2280	ft^3/s
30 Day 10 Year Low Flow	2980	ft^3/s
00 Day 10 Year Low Flow	3850	ft^3/s
ow-Flow Statistics Flow Report [Area-Averaged]		
ow-Flow Statistics Flow Report [Area-Averaged]	Value	Unit
	Value 4670	Unit ft^3/s
Statistic		
Statistic 7 Day 2 Year Low Flow	4670	ft*3/s
Statistic 7 Day 2 Year Low Flow 30 Day 2 Year Low Flow	4670 5640	ft*3/s ft*3/s

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.


USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2


Investigations Report 2006-5130, 84 p.

♣ Download -

Copyright: © 2013 National Geographic Society, i-cubed

Borough of Elizabethtown PA0023108 Outfall 002

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	7.9	square miles
BSLOPD	Mean basin slope measured in degrees	3.0958	degrees
ROCKDEP	Depth to rock	4	feet
URBAN	Percentage of basin with urban development	26.1561	percent

ft^3/s

0.923

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	7.9	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	3.0958	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4	feet	4.13	5.21
URBAN	Percent Urban	26.1561	percent	0	89
Low-Flow Statistics Flow Re	port [99.9 Percent (7.9 square miles) Low Flow Region	n 1]			
Statistic			Value	Ur	nit
7 Day 2 Year Low Flow			0.713	ft'	3/s
30 Day 2 Year Low Flo	N		1.12	ft'	'3/s
30 Day 2 Tear Low Flo					
-	N		0.271	ft'	'3/s
7 Day 10 Year Low Flo 30 Day 10 Year Low Flo			0.271 0.445		3/s 3/s

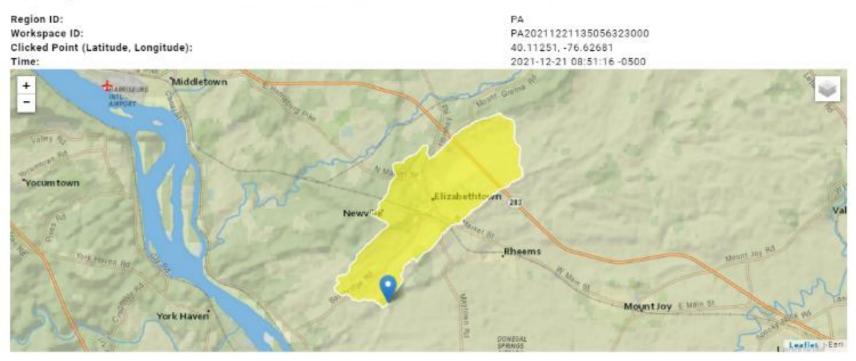
Low-Flow Statistics Citations

90 Day 10 Year Low Flow

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.


USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

Borough of Elizabethtown PA0023108 Outfall 002 Downstream Pt.

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	9.63	square miles
BSLOPD	Mean basin slope measured in degrees	3.1194	degrees
ROCKDEP	Depth to rock	4.2	feet
URBAN	Percentage of basin with urban development	22.0547	percent

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	9.63	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	3.1194	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.2	feet	4.13	5.21
URBAN	Percent Urban	22.0547	percent	0	89

Low-Flow Statistics Flow Report [99.9 Percent (9.63 square miles) Low Flow Region 1]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	1.01	ft^3/s	46	46
30 Day 2 Year Low Flow	1.54	ft^3/s	38	38
7 Day 10 Year Low Flow	0.401	ft^3/s	51	51
30 Day 10 Year Low Flow	0.633	ft^3/s	46	46
90 Day 10 Year Low Flow	1.27	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

Outfall 001 TRC Evaluation:

Outfall 002 TRC Evaluation:

d	Α		С	D	Е	F	G	Н	
1	1A	В	С	D	Е	F	G		
2	2	TRC EVAL	UATION						
3	3	Input appropr	iate values	in B4:B8 and E4:	E7				
4	4	40.8	= Q stream	r (cfs)	0.5	= CV Daily			
5	5	9	= Q discha	rge (MGD)	0.5	= CV Hourly			
6	6	30	= no. samp	oles	1	= AFC_Partia	al Mix Factor		
7	7	0.3	= Chlorine	Demand of Stream	n 1	= CFC_Partia	al Mix Factor		
8	8			Demand of Disch	15	= AFC_Crite	ria Compliance	Time (min)	
9	9	0.5	= BAT/BPJ	Value	720	= CFC_Crite	ria Compliance	Time (min)	
10		0	= % Facto	r of Safety (FOS)		=Decay Coef	ficient (K)		
11	#	Source	Reference	AFC Calculations		Reference	CFC Calculat		
12	#	TRC	1.3.2.iii	WLA afc		1.3.2.iii		cfc = 0.922	
13	# #	PENTOXSD TRG		LTAMULT afc		5.1c		cfc = 0.581	
14 15	# #	PENTOXSD TRG	5.1b	LTA_afc	= 0.355	5.1d	LIA_	cfc = 0.536	
16	#	Course		Effluor	t Limit Cal	oulations			
17	#	PENTOXSD TRG	Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231						
18	#	PENTOXSD TRG		AVG MON LIM			AFC		
19	#			INST MAX LIM			30.75		
20									
21									
22									
23		WLA afc		AFC_tc)) + [(AFC_			FC_tc))		
24		L TAMUU T ofo		AFC_Yc*Qs*Xs/Qd)					
25 26		LTAMULT afc LTA_afc	wla_afc*LTA	(cvh^2+1))-2.326*LN MULT afc	(CVII-Z+1)	0.5)			
27		L IX_aio	ma_dio ETA	ori_dio					
28		WLA_cfc	(.011/e(-k*	CFC_tc) + [(CFC_1	/c*Qs*.01	1/Qd*e(-k*CF	C_tc))		
29				FC_Yc*Qs*Xs/Qd					
30		LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples	1))-2.326*1	LN(cvd^2/no_sa	amples+1)^0.5)		
31		LTA_cfc	wla_cfc*LTA	MULT_cfc					
32			EVDID COOK			0.000.000			
33		AML MULT	THE RESERVE OF THE PARTY OF THE	N((cvd^2/no_sample		A STATE OF THE PARTY OF THE PAR	o_samples+1))		
2.4		AVG MON LIMIT		PJ,MIN(LTA_afc,LTA ion_limit/AML_MUI		E 185			
34		IINIST MAY LIMIT		OH HIMIU/AMIL MU		ULI GIUI			
34 35 36		INST MAX LIMIT	Hat_iii			anteriorante (CSA)			

Outfall 001 WET Summary:

WET Summary and Evaluation

Facility Name

Permit No.

Design Flow (MGD) 4.5

Q₇₋₁₀ Flow (cfs)

PMF_a

Elizabethtown STP

PA0023108

4.5 3210

0.005

0.037

		Test Results (Pass/Fail)				
		Test Date	Test Date	Test Date	Test Date	
Species	Endpoint	8/14/18	8/27/19	6/16/20	9/7/21	
Pimephales	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	8/14/18	8/27/19	6/16/20	9/7/21
Pimephales	Growth	PASS	PASS	PASS	PASS

			Test Results	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	8/14/18	8/26/19	6/15/20	9/26/21
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)								
		Test Date	Test Date	Test Date	Test Date					
Species	Endpoint	8/14/18	8/26/19	6/15/20	9/26/21					
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS					

Reasonable Potential? NO

Permit Recommendations

Test Type Chronic

TIWC 6 % Effluent

Dilution Series 3, 6, 30, 60, 100 % Effluent

Permit Limit None

Permit Limit Species

Outfall 001 WQM 7.0 Results:

Input Data WQM 7.0

						put Data	a vvQiv	17.0						
	SWP Basin			Stre	eam Nam	e	RMI		ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	07K	66	85 SUSQ	UEHANN	A RIVER		37.80	00	249.00	25500.00	0.00000)	0.00	Y
						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ter	<u>Strean</u> mp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	3210.00 0.00 0.00	0.000 0.000 0.000	0.000)	0.00	0.00	21	0.00 7.0	00	0.00	0.00	
						Discharge	Data						1	
			Name	Per	rmit Numt	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa	Dis erve Ten otor	np	isc pH		
		Elizab	ethtown	PA	0023108	4.500	0 4.500	0 4.50	00 (0.000 2	5.00	7.00		
						Parameter	Data							
			,	Paramete	r Name				tream Conc	Fate Coef				
						(m	ig/L) (m	ng/L) (mg/L)	(1/days)		_		
		(CBOD5				25.00	2.00	0.00	1.50				
		ı	Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

						put Date	a vvQi	VI 7.0						
	SWP Basin			Stre	eam Name	e	RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Appl FC
	07K	668	5 SUSQ	UEHANN	A RIVER		31.0	00	234.00	25900.00	0.00000)	0.00	~
					:	Stream Dat	a							
Design Cond.	LFY		tream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Ter	Strean mp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°(C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 3 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.0	00 2	0.00 7.	00	0.00	0.00	
						Discharge I	Data						1	
			Name	Per	mit Numb	Disc	Permit Disc Flow (mgd	Dis Flo	sc Res	Dis erve Ten ctor (°C	np)isc pH		
						0.000	0.00	0.0 00	0000	0.000	0.00	7.00		
					1	Parameter	Data							
			F	^o aramete	r Name			Trib Conc	Stream Conc	Fate Coef				
	_					(m	ig/L) (mg/L)	(mg/L)	(1/days)		_		
		С	BOD5				25.00	2.00	0.00	1.50				
		D	issolved	Oxygen			3.00	8.24	0.00	0.00				
		N	H3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

		P Basin 07K		m Code 6685			sus	R					
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	
	0 Flow 3210.00	0.00	3210.00	6.9615	0.00042	.702	2179.12	3105.76	2.10	0.198	20.01	7.00	
	0 Flow 2054.40	0.00	2054.40	6.9615	0.00042	NA	NA	NA	1.64	0.253	20.02	7.00	
	10 Flow 4365.60		4365.60	6.9615	0.00042	NA	NA	NA	2.50	0.166	20.01	7.00	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

	SWP Basin 07K		m Code 685			SUS			<u>Name</u> NA RIV	ER		
NH3-N	Acute Alloca	tions	3									
RMI	Discharge N	lame	Baseline Criterion (mg/L)		Baseline WLA (mg/L)	Multiple Criterio (mg/L	n	W	tiple /LA g/L)	Critical Reach	Percent Reductio	
37.80	00 Elizabethtown		16.7	4	50	16	.74		50	0	0	_
NH3-N RMI	Chronic Allo Discharge Na	E	Ons Baseline Criterion (mg/L)		aseline WLA (mg/L)	Multiple Criterion (mg/L)		Multip WL (mg	Α	Critical Reach	Percent Reduction	
37.80	00 Elizabethtown		1.8	9	25	1	.89		25	0	0	_
07.0	oo EnEdice anom											
	ed Oxygen A		e Base		OD5 Multiple (mg/L)	NH. Baseline (mg/L)	Mul	ltiple g/L)		red Oxyger e Multiple (mg/L)	Critical	Percent Reductio

WQM 7.0 D.O.Simulation

SWP Basin Str 07K	ream Code 6685		SUS	Stream Name	R
RMI	Total Discharge	Flow (mad) Anal	ysis Temperature (°C) Analysis pH
37.800	4.50		1 Pulla	20.011	7.000
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
2179.122	0.70			3105.759	2.104
Reach CBOD5 (mg/L)	Reach Kc (_		each NH3-N (mg/L)	
2.05	0.034		18	0.05	0.701
	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
Reach DO (mg/L)	4.10			Tsivoglou	5
8.236	4.10	•		TSIVOGIOU	
Reach Travel Time (days)		Subreach			
0.198	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.020	2.05	0.05	8.24	
	0.040	2.05	0.05	8.24	
	0.059	2.05	0.05	8.24	
	0.079	2.04	0.05	8.24	
	0.099	2.04	0.05	8.24	
	0.119	2.04	0.05	8.24	
	0.138	2.04	0.05	8.24	
	0.158	2.04	0.05	8.24	
	0.178	2.04	0.05	8.24	
	0.198	2.04	0.05	8.24	

WQM 7.0 Effluent Limits

	SWP Basin	Stream Code	Stream Name						
	07K	6685		SUSQUEHANNA F	RIVER				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)		
37.800	Elizabethtow	n PA0023108	4.500	CBOD5	25				
				NH3-N	25	50			
				Dissolved Oxygen			5		

Outfall 002 WQM 7.0 Results:

Input Data WQM 7.0

	SWP Basin			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)		ope t/ft)	PW: Withdr (mg	awal	Apply FC
	07G	82	278 CONO	Y CREEK	(6.00	00	388.00	7.5	90 0.0	00000		0.00	~
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Roh Depth	Ten	Tributary p p	н	Tem	<u>Stream</u> p	рН	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
Q7-10 Q1-10 Q30-10	0.100	40.80 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	0.00	7.00	C	0.00	0.00	
					Di	scharge (Data								
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve T	Disc 'emp (°C)	Dis pl			
		Elizal	bethtown	A00	23108	9.0000	9.000	0.9	000	0.000	25.00)	7.00		
					Pa	rameter (rib	C1	Fate					
			1	aramete	r Name	C	one C	onc	Stream Conc (mg/L)	Coef (1/days)					
	-		CBOD5				25.00	2.00	0.00						
			Dissolved	Oxygen			5.00	8.24	0.00	0.00)				
			NH3-N				25.00	0.00	0.00	0.70)				

Input Data WQM 7.0

					ınıp	ut Date	a www.	n 7.0						
	SWP Basir			Stre	eam Name		RMI		ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	07G	82	278 CONO	Y CREEK	(4.33	30	357.00	9.63	0.00000)	0.00	~
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Ter	<u>Strean</u> mp	n pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°(C)		
Q7-10 Q1-10 Q30-10	0.100	40.80 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00) 2	0.00 7.	00	0.00	0.00	
					Di	scharge	Data]	
			Name	Per	mit Numbe	Disc	Permitto Disc Flow (mgd)	Disc Flow	Res Fa	Dis erve Ter ctor (°0	np)isc pH		
						0.000	0.000	0.00	000	0.000	25.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name	С	one C	Conc	tream Conc	Fate Coef				
	_					(m	ng/L) (r	ng/L) ((mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

		P Basin 07G		m Code 278	Stream Name CONOY CREEK								
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	
Q7-1 6.000	0 Flow 40.80	0.00	40.80	13.923	0.00352	.864	52.01	60.21	1.22	0.084	21.27	7.00	•
Q1-1 6.000	0 Flow 26.11	0.00	26.11	13.923	0.00352	NA	NA	NA	1.02	0.100	21.74	7.00	
Q30- 6.000	10 Flow 55.49	0.00	55.49	13.923	0.00352	NA	NA	NA	1.39	0.073	21.00	7.00	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

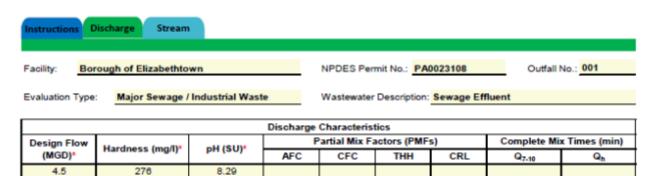
WQM 7.0 Wasteload Allocations

5	07G						Name REEK					
NH3-N A	Acute Alloca	ations	s									
RMI	Discharge N	Name	Baseline Criterion (mg/L)	I	Baseline WLA (mg/L)	Multiple Criterio (mg/L	n	W	ltiple /LA ig/L)	Critical Reach	Percent Reduction	
6.000	0 Elizabethtowr	n	14.51	1	41.72	14	.51		41.72	0	0	_
NH3-N C	Chronic Allo	ocatio	nns									
RMI	Discharge Na	E	Baseline Criterion (mg/L)	_	aseline WLA (mg/L)	Multiple Criterion (mg/L)		Multi WL (mg	Α	Critical Reach	Percent Reduction	
		ame	Baseline Criterion	(WLA	Criterion (mg/L)		WL	Α			_
6.000	Discharge Na	ame n Alloca	Baseline Criterion (mg/L) 1.77	7 CB(WLA (mg/L) 8.82	Criterion (mg/L)	.77 3-N Mul	WL (mg	A /L) 8.82 Dissolv	0 ed Oxygen	Reduction 0	Percent Reduction

WQM 7.0 D.O.Simulation

SWP Basin S 07G	tream Code 8278			Stream Name CONOY CREEK	
RMI 6.000 Reach Width (ft) 52.013 Reach CBOD5 (mg/L) 7.85 Reach DO (mg/L)	Total Discharge 9.00 <u>Reach De</u> 0.86 <u>Reach Ko</u> 1.19 Reach Kr (0 pth (ft) 4 (1/days) 9		Vsis Temperature (°C 21.272 Reach WDRatio 60.211 each NH3-N (mg/L) 2.24 Kr Equation	Analysis pH 7.000 Reach Velocity (fps) 1.218 Reach Kn (1/days) 0.772 Reach DO Goal (mg/L)
7.418 Reach Travel Time (days) 0.084	20.58 TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	5
	0.008 0.017 0.025 0.034 0.042	7.52	2.23 2.21 2.20 2.19 2.17	7.48 7.54 7.59 7.64 7.68	
	0.050 0.059 0.067 0.075 0.084		2.16 2.14 2.13 2.12 2.10	7.71 7.74 7.77 7.79 7.81	

WQM 7.0 Effluent Limits


	SWP Basin S 07G	tream Code 8278		Stream Name CONOY CREE	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
6.000	Elizabethtown	A0023108	9.000	CBOD5	25		
				NH3-N	8.82	17.64	
				Dissolved Oxygen			5

Outfall 001 TMS Results:

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

					0 if lef	blank	0.5 If le	eft blank	0 If left blank			1 If left blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
\Box	Total Dissolved Solids (PWS)	mg/L		798									
12	Chloride (PWS)	mg/L		248									
Ιğ	Bromide	mg/L	<	0.2									
Group	Sulfate (PWS)	mg/L		72.9									
_	Fluoride (PWS)	mg/L											
\Box	Total Aluminum	μg/L		47									
ı	Total Antimony	µg/L		0.5									
ı	Total Arsenic	µg/L	<	1									
ı	Total Barium	µg/L		30									
ı	Total Beryllium	µg/L	<	0.4									
ı	Total Boron	µg/L		412									
1	Total Cadmium	μg/L	<	0.08									
ı	Total Chromium (III)	µg/L	<	1									
1	Hexavalent Chromium	µg/L											
1	Total Cobalt	μg/L	<	1									
1	Total Copper	µg/L		14									
2	Free Cyanide	µg/L		2									
Group	Total Cyanide	µg/L		26									
15	Dissolved Iron	µg/L		18									
1	Total Iron	µg/L		40									
1	Total Lead	µg/L	<	1									
ı	Total Manganese	µg/L		18									
ı	Total Mercury	µg/L	<	0.2									
ı	Total Nickel	µg/L		1									
ı	Total Phenols (Phenolics) (PWS)	μg/L	<	5									
ı	Total Selenium	µg/L	<	2									
ı	Total Silver	µg/L	<	0.05									
ı	Total Thallium	µg/L	<	0.4									
ı	Total Zinc	µg/L		43									
1	Total Molybdenum	μg/L		6									
	Acrolein	µg/L	<	1									
1	Acrylamide	µg/L	<										
1	Acrylonitrile	µg/L	<	0.5									
1	Benzene	μg/L	<	0.5									
1	Bromoform	μg/L	<	0.9									

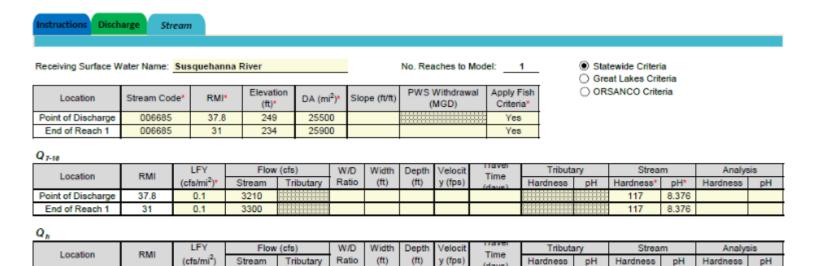
Discharge Information 12/15/2021 Page 1

Carbon Tetrachloride yg/L	
Chloroethyromomethane	
Chlorosthane	
2-Chloroethyl Vinyl Ether	
Chloroform	
Dichlorobromomethane	
Dichlorobromomethane	
1.1-Dichloroethane	
1.2-Dichloroethylene	
1.1-Dichlororethylene	
1,4-Discase	
1,4-Discorropropiere µg/L	
1,4-Discorropropiere µg/L	
Ethylbenzene	+++
Methyl Bromide µg/L 0.5 Methylene Chloride µg/L 0.5 Methylene Chloride µg/L 0.5 1,1,2,2-Tetrachloroethane µg/L 0.5 Toluene µg/L 0.5 1,1,2-Trachloroethylene µg/L 0.5 1,1,1-Trichloroethane µg/L 0.5 1,1,1-Trichloroethane µg/L 0.5 1,1,1-Trichloroethylene µg/L 0.5 Vinyl Chloride µg/L 0.5 2-Chlorophenol µg/L 0.5 2-Linkrophenol µg/L 0.0892 2-Linkrophenol µg/L 0.042 2-Linkrophenol µg/L	
Methyl Chloride µg/L 0.5 Methylene Chloride µg/L 0.5 1.1.2.2 Fretrachloroethylene µg/L 0.5 Tetrachloroethylene µg/L 0.5 Toluene µg/L 0.5 1.1.1-Trichloroethane µg/L 0.5 1.1.2-Trichloroethane µg/L 0.5 1.1.2-Trichloroethylene µg/L 0.5 Vinyl Chloride µg/L 0.5 Vinyl Chloride µg/L 0.5 2-Chlorophenol µg/L 0.5 2-Chlorophenol µg/L 0.0802 2-L-Dimethylphenol µg/L 0.428 2-L-Dimethylphenol µg/L 0.428 2-L-Dimethylphenol µg/L 0.428 2-L-Dimethylphenol µg/L 0.428 2-L-Dimethylphenol µg/L 0.042 2-L-Introphenol µg/L	
Methylene Chloride	
1,1,2,2-Tetrachloroethane	
Tetrachloroethylene μg/L < 0.5 1.2-trans-Dichloroethylene μg/L < 0.5 1.2-trans-Dichloroethylene μg/L < 0.5 1.1.1-Trichloroethane μg/L < 0.5 1.1.1-Trichloroethane μg/L < 0.5 1.1.1-Trichloroethane μg/L < 0.5 1.1.1-Trichloroethane μg/L < 0.5 1.1.1-Trichloroethylene μg/L < 0.0892 1.1.1-Trichloroethylenel μg/L < 0.0892 1.1.1-Trichloroethylenel μg/L < 0.0894 1.1.1-Trichloroethylenel μg/L < 0.0894 1.1.1-Trichloroethylenel μg/L < 0.0894 1.1.1-Trichloroethylenel μg/L < 0.116 1.1.1-Trichloroethylenel μg/L < 0.0428 1.1.1-Trichloroethylenel μg/L < 0.05 1.1.1-Trichloroethylenel μg/L < 0.0402 1.1.1-Trichloroethylenel μg/L < 0.0402 1.1.1-Trichloroethylenel μg/L < 0.0402 1.1.1-Trichloroethylenel μg/L < 0.0971 1.1.1-Trichloroethylenel μg/L < 0.0441 1.1.1-Trichloroethylenel μg/L < 0.0441 1.1.1-Trichloroethylenel μg/L < 0.098 1.1.1-Trichloroethylenel μg/L < 0.098 1.1.1-Trichloroethylenel μg/L < 0.098 1.1.1-Trichloroethylenel μg/L < 0.0411 1.1.1-Trichloroethylenel μg/L < 0.083 1.1.1-Trichloroethylenel μg/L < 0.083 1.1.1-Trichloroethylenel μg/L < 0.0873 1.1.1-Trichloroethylenel μg/L < 0.0847 1.1.1-Trichloroethylenel μg/L < 0.0847 1.1.1-Trichloroethylenel μg/L < 0.0847 1.1.1-Trichloroethylenel μg/L < 0.0873 1.1.1-Trichloroethylenel μg/L < 0.0873 1.1.1-Trichloroethylenel μg/L < 0.0873 1.1.1-Trichloroethylenel μg/L < 0.0847 1.1.1-Trichloroethylenel μg/L < 0.0847 1.1.1-Trichloroethylenel μg/L < 0.0847 1.1.1-Trichloroethyle	
Tetrachloroethylene μg/L < 0.5 0.	
Toluene	
1,2-trans-Dichloroethylene 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethylene 1,1,1-Tric	
1,1,1-Trichloroethane	
1,1,2-Trichloroethane	
Trichloroethylene	
Vinyl Chloride	
2-Chlorophenol μg/L 0.0892 0.0892 0.0892 0.0892 0.0892 0.0892 0.0894 0.0894 0.0894 0.0894 0.0894 0.0894 0.0894 0.0894 0.0894 0.0894 0.0994 0.0	
2,4-Dichlorophenol μg/L	
2,4-Dimethylphenol	
4,6-Dinitro-O-Cresol	
4,6-Dinitro-O-Cresol	
Quantity	
2-Nitrophenol	
P-Chloro-m-Cresol μg/L < 0.0971	
P-Chloro-m-Cresol μg/L < 0.0971	
Pentachlorophenol μg/L	++++
Phenol	
2,4,6-Trichlorophenol µg/L 0.373 Acenaphthene µg/L 0.101 Acenaphthylene µg/L 0.0912 Anthracene µg/L 0.098 Benzidine µg/L 4.9 Benzo(a)Anthracene µg/L 0.0608 Benzo(a)Pyrene µg/L 0.0706 3,4-Benzofluoranthene µg/L 0.0411 Benzo(ghi)Perylene µg/L 0.0804 Benzo(k)Fluoranthene µg/L 0.0833 Bis(2-Chloroethoxy)Methane µg/L 0.0765 Bis(2-Chloroisopropyl)Ether µg/L 0.0873 Bis(2-Ethylhexyl)Phthalate µg/L 0.106 Butyl Benzyl Phthalate µg/L 0.0647	
Acenaphthene μg/L 0.101	
Acenaphthylene μg/L 0.0912	
Anthracene μg/L 0.098 Benzidine μg/L 4.9	
Benzidine	
Benzo(a)Anthracene μg/L 0.0608	
Benzo(a)Pyrene μg/L 0.0706 3,4-Benzofluoranthene μg/L 0.0411 Benzo(ghi)Perylene μg/L 0.0804	
Benzo(a)Pyrene μg/L 0.0706 3,4-Benzofluoranthene μg/L 0.0411 Benzo(ghi)Perylene μg/L 0.0804	
3,4-Benzofluoranthene μg/L 0.0411 Benzo(ghi)Perylene μg/L 0.0804 Benzo(k)Fluoranthene μg/L Bis(2-Chloroethoxy)Methane μg/L 0.0833 Bis(2-Chloroethyl)Ether μg/L 0.0765 Bis(2-Chloroisopropyl)Ether μg/L 0.0873 Bis(2-Ethylhexyl)Phthalate μg/L 0.373 4-Bromophenyl Phenyl Ether μg/L 0.106 Butyl Benzyl Phthalate μg/L 0.0647	
Benzo(ghi)Perylene μg/L 0.0804	
Benzo(k)Fluoranthene μg/L	
Bis(2-Chloroethoxy)Methane μg/L < 0.0833	
Bis(2-Chloroethyl)Ether μg/L < 0.0765	+++
Bis(2-Chloroisopropyl)Ether μg/L < 0.0873	
Bis(2-Ethylhexyl)Phthalate μg/L < 0.373	
4-Bromophenyl Phenyl Ether µg/L < 0.106 Butyl Benzyl Phthalate µg/L < 0.0647	
Butyl Benzyl Phthalate µg/L < 0.0647 ———	
2-Chloronaphthalene ug/L < 0.0892	
FØ-	
4-Chlorophenyl Phenyl Ether µg/L < 0.0931	
Chrysene µg/L < 0.0718	
Dibenzo(a,h)Anthrancene µg/L < 0.052	
1,2-Dichlorobenzene µg/L < 0.05	
1,3-Dichlorobenzene µg/L < 0.05	
1.4 Dishlarshanson	
io 1,4-Dichlorobenzene μg/L < 0.05	
S 3,3-Dichlorobenzidine µg/L < 0.138	
S 3,3-Dichlorobenzidine	
Dimetry Prinalate pg/L < 0.0892	
Di-n-Butyl Phthalate μg/L < 0.0833	
2,4-Dinitrotoluene µg/L < 0.0824	

	2,6-Dinitrotoluene	ua/l			\vdash									
ı	Di-n-Octyl Phthalate	μg/L μg/L	<	0.0745	H	+	+	_					++	+
	1,2-Diphenylhydrazine	μg/L	V	0.116	Н	+	+	_	_		_		+++	+
			· ·		Ξ	-	\pm							\pm
	Fluoranthene	µg/L	_	0.0873	H	4	+						+	+
	Fluorene	µg/L	<	0.106	Н	+	+	_			_	_	++	+
	Hexachlorobenzene	μg/L	<	0.0863	H	\Rightarrow	+						\mapsto	\Rightarrow
	Hexachlorobutadiene	μg/L	<	0.0804	Ħ	4	+						\Rightarrow	-
	Hexachlorocyclopentadiene	μg/L	<	0.0441	Д								\Box	
	Hexachloroethane	μg/L	<	0.0676	Ц	4	4						\perp	4
	Indeno(1,2,3-cd)Pyrene	μg/L	٧	0.0569	H	4	\pm							4
	Isophorone	μg/L	<	0.0961	H									
	Naphthalene	μg/L	٧	0.0627	П	T	Т							Ť
	Nitrobenzene	µg/L	٧	0.0608	Ц	Ţ	Ţ						\Box	Ţ
	n-Nitrosodimethylamine	μg/L	<	0.0647	H	7	7							7
	n-Nitrosodi-n-Propylamine	μg/L	<	0.0902	Ħ	7	7							7
	n-Nitrosodiphenylamine	μg/L	<	0.206	\Box	\top	$^{+}$						\Box	\top
	Phenanthrene	µg/L	<	0.0971										
	Pyrene	µg/L	<	0.0902										+
	1,2,4-Trichlorobenzene	μg/L	~	0.0902		+	+						-	+
\dashv	Aldrin	_	· ·	0.0812									+++	
- 1		µg/L												
- 1	alpha-BHC	µg/L	٧.			4	Ŧ				_		-	Ŧ
	beta-BHC	μg/L	<		H	4	+						+	+
	gamma-BHC	µg/L	<			-	+							+
- 1	delta BHC	μg/L	<											
	Chlordane	μg/L	<		口	_	1							_
	4,4-DDT	μg/L	٧											I
	4,4-DDE	μg/L	٧		H	7	Ŧ						\Box	7
	4,4-DDD	µg/L	<		H	7	7							7
	Dieldrin	μg/L	<		П									
	alpha-Endosulfan	μg/L	<											
	beta-Endosulfan	µg/L	<		Ħ	⇉	#							#
9	Endosulfan Sulfate	μg/L	<		Ħ	7	+						-	+
읔	Endrin	µg/L	<		Н	+	+						\vdash	+
Group (Endrin Aldehyde	μg/L	V		H	÷	÷	-	_		_	-		÷
ဗ						7	#	-						#
	Heptachlor	μg/L	<		H	+	+	_					+	+
	Heptachlor Epoxide	μg/L			H	+	+	-			_	_		+
	PCB-1016	μg/L	<		H	#	#							+
	PCB-1221	μg/L	<			_	_							_
	PCB-1232	μg/L	٧			\perp	\perp							\perp
	PCB-1242	μg/L	<		Ц	4	4						4	4
	PCB-1248	μg/L	٧		\exists		\pm							
	PCB-1254	μg/L	<		Ħ	7	Ŧ							7
	PCB-1260	µg/L	<											
	PCBs, Total	μg/L	<			Ţ	Ţ						\Box	Ţ
- 1	Toxaphene	μg/L	<		H		+							
- 1	2,3,7,8-TCDD	ng/L	<											
\dashv	Gross Alpha	pCi/L												Ť
	Total Beta	pCi/L	<			I	Ŧ							I
p 7	Radium 226/228	pCi/L	<			+	+							+
No.	Total Strontium		V		H	+	+						+++	+
	Total Strontium Total Uranium	µg/L	۷				+						-	-
		μg/L	•			Ť	$\dot{+}$							Ť
	Osmotic Pressure	mOs/kg				Ţ	Ţ							
						-	-							_
- 1					H	\Rightarrow	\pm						_	
- 1														
						J								
					П	1								
					Ħ			1						
						Ŧ	Ŧ							
														_

Point of Discharge

End of Reach 1


37.8

31

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Borough of Elizabethtown, NPDES Permit No. PA0023108, Outfall 001

Total Manganese

Total Mercury

Total Nickel

Total Phenols (Phenolics) (PWS)

Total Selenium

Total Silver

Total Thallium

Total Zinc

Acrolein

Acrylonitrile

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N/A

1.400

709.140

N/A

N/A

7.480

65

177.582

3

650

Toxics Management Spreadsheet Version 1.3, March 2021

Chem Translator of 0.85 applied

Chem Translator of 0.998 applied

Chem Translator of 0.922 applied Chem Translator of 0.85 applied

Chem Translator of 0.978 applied

Model Results

Borough of Elizabethtown, NPDES Permit No. PA0023108, Outfall 001

Instructions Results	RETURN	TO INPU	TS :	SAVE AS	PDF	PRINT	г 💿 А	II O Inputs	O Results	O Limits
☐ Hydrodynamics										
✓ Wasteload Allocations										
☑ AFC cc	T (min): 1	15	PMF:	0.005	Ana	llysis Hardne	ess (mg/l):	163.34	Analysis pH:	8.35
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)		Co	omments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Chloride (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
Total Aluminum	0	0		0	750	750	2,574			
Total Antimony	0	0		0	1,100	1,100	3,775			
Total Arsenic	0	0		0	340	340	1,167		Chem Tran	slator of 1 applied
Total Barium	0	0		0	21,000	21,000	72,061			
Total Boron	0	0		0	8,100	8,100	27,795			
Total Cadmium	0	0		0	3.244	3.51	12.1		Chem Transla	ator of 0.923 applied
Total Chromium (III)	0	0		0	851.547	2,695	9,247		Chem Transla	ator of 0.316 applied
Total Cobalt	0	0		0	95	95.0	326			
Total Copper	0	0		0	21.337	22.2	76.3		Chem Transl	lator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	75.5			
Dissolved Iron	0	0		0	N/A	N/A	N/A			
Total Iron	0	0		0	N/A	N/A	N/A			
Total Lead	0	0		0	109,703	152	523		Chem Transl	lator of 0.72 applied

N/A

1.65

711

N/A

N/A

8.8

65.0

182

3.0

650

N/A

5.65

2,438

N/A

N/A

30.2

223

623

10.3

2,230

Benzene	0	0	0	640	640	2,196	
Bromoform	0	0	 0	1,800	1,800	6,177	
Carbon Tetrachloride	0	0	 0	2,800	2,800	9,608	
Chlorobenzene	0	0	0	1,200	1,200	4,118	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	61,766	
Chloroform	0	0	0	1,900	1,900	6,520	
Dichlorobromomethane	0	0	 0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	51,472	
1,1-Dichloroethylene	0	0	0	7,500	7,500	25,736	
1,2-Dichloropropane	0	0	0	11,000	11,000	37,746	
1,3-Dichloropropylene	0	0	0	310	310	1.064	
Ethylbenzene	0	0	0	2,900	2,900	9,951	
Methyl Bromide	0	0	0	550	550	1,887	
Methyl Chloride	0	0	0	28,000	28.000	96,081	
Methylene Chloride	0	0	0	12,000	12,000	41,177	
1.1.2.2-Tetrachloroethane	0	0	0	1,000	1,000	3,431	
Tetrachloroethylene	0	0	0	700	700	2,402	
Toluene	0	0	0	1,700	1,700	5,833	
1.2-trans-Dichloroethylene	0	0	0	6.800	6.800	23,334	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	10,294	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	11,667	
				-	-		
Trichloroethylene	0	0	0	2,300	2,300	7,892	
Vinyl Chloride	0	0	0	N/A 560	N/A 560	N/A	
2-Chlorophenol	0	0	 0			1,922	
2,4-Dichlorophenol	0	0	0	1,700	1,700	5,833	
2,4-Dimethylphenol	0	0	 0	660	660	2,265	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	275	
2,4-Dinitrophenol	0	0	0	660	660	2,265	
2-Nitrophenol	0	0	0	8,000	8,000	27,452	
4-Nitrophenol	0	0	0	2,300	2,300	7,892	
p-Chloro-m-Cresol	0	0	0	160	160	549	
Pentachlorophenol	0	0	 0	33.848	33.8	116	
Phenol	0	0	 0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	1,578	
Acenaphthene	0	0	0	83	83.0	285	
Anthracene	0	0	 0	N/A	N/A	N/A	
Benzidine	0	0	 0	300	300	1,029	
Benzo(a)Anthracene	0	0	 0	0.5	0.5	1.72	
Benzo(a)Pyrene	0	0	 0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	102,944	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	15,442	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	926	
Butyl Benzyl Phthalate	0	0	0	140	140	480	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	

Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	2,814	
1,3-Dichlorobenzene	0	0	0	350	350	1,201	
1,4-Dichlorobenzene	0	0	0	730	730	2,505	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	13,726	
Dimethyl Phthalate	0	0	0	2,500	2,500	8,579	
Di-n-Butyl Phthalate	0	0	0	110	110	377	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	5,490	
1,2-Diphenylhydrazine	0	0	0	15	15.0	51.5	
Fluoranthene	0	0	0	200	200	686	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	34.3	
Hexachlorocyclopentadiene	0	0	0	5	5.0	17.2	
Hexachloroethane	0	0	0	60	60.0	206	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	34,315	
Naphthalene	0	0	0	140	140	480	
Nitrobenzene	0	0	0	4,000	4,000	13,726	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	58,335	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	1,029	
Phenanthrene	0	0	0	5	5.0	17.2	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	446	

☑ CFC CCT	min): 720	PMF:	0.037	Analysis Hardness (mg/l):	125.91	Analysis pH:	8.37	I
-----------	-----------	------	-------	---------------------------	--------	--------------	------	---

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	3,926	
Total Arsenic	0	0		0	150	150	2,677	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	73,167	
Total Boron	0	0		0	1,600	1,600	28,553	
Total Cadmium	0	0		0	0.289	0.32	5.73	Chem Translator of 0.899 applied
Total Chromium (III)	0	0		0	89.506	104	1,857	Chem Translator of 0.86 applied
Total Cobalt	0	0		0	19	19.0	339	
Total Copper	0	0		0	10.904	11.4	203	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	92.8	
Dissolved Iron	0	0		0	N/A	N/A	N/A	

Model Results 12/15/2021 Page 7

Total Iron	0	0		0	1,500	1,500	693,161	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	3.231	4.27	76.1	Chem Translator of 0.757 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	16.2	Chem Translator of 0.85 applied
Total Nickel	0	0		0	63.199	63.4	1,131	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	89.0	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	232	
Total Zinc	0	0		0	143.606	146	2,599	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	53.5	
Acrylonitrile	0	0		0	130	130	2,320	
Benzene	0	0		0	130	130	2,320	
Bromoform	0	0		0	370	370	6,603	
Carbon Tetrachloride	0	0		0	560	560	9,994	
Chlorobenzene	0	0		0	240	240	4,283	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	62,460	
Chloroform	0	0		0	390	390	6,960	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	55,321	
1,1-Dichloroethylene	0	0		0	1,500	1,500	26,768	
1,2-Dichloropropane	0	0		0	2,200	2,200	39,260	
1,3-Dichloropropylene	0	0		0	61	61.0	1,089	
Ethylbenzene	0	0		0	580	580	10,350	
Methyl Bromide	0	0		0	110	110	1,963	
Methyl Chloride	0	0		0	5,500	5,500	98,151	
Methylene Chloride	0	0		0	2,400	2,400	42,829	
1,1,2,2-Tetrachloroethane	0	0		0	210	210	3,748	
Tetrachloroethylene	0	0		0	140	140	2,498	
Toluene	0	0		0	330	330	5,889	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	24,984	
1,1,1-Trichloroethane	0	0		0	610	610	10,886	
1,1,2-Trichloroethane	0	0		0	680	680	12,135	
Trichloroethylene	0	0		0	450	450	8,031	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	1,963	
2,4-Dichlorophenol	0	0		0	340	340	6,068	
2,4-Dimethylphenol	0	0		0	130	130	2,320	
4,6-Dinitro-o-Cresol	0	0		0	16	16.0	286	
2,4-Dinitrophenol	0	0		0	130	130	2,320	
2-Nitrophenol	0	0		0	1,600	1,600	28,553	
4-Nitrophenol	0	0		0	470	470	8,387	
p-Chloro-m-Cresol	0	0		0	500	500	8,923	
Pentachlorophenol	0	0	Toronto Control	0	25.968	26.0	463	

Model Results 12/15/2021 Page 8

Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	1,624	
Acenaphthene	0	0	0	17	17.0	303	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	1,053	
Benzo(a)Anthracene	0	0	0	0.1	0.1	1.78	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6.000	6,000	107,074	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	16,239	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	964	
Butyl Benzyl Phthalate	0	0	0	35	35.0	625	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	2,855	
1,3-Dichlorobenzene	0	0	0	69	69.0	1,231	
1,4-Dichlorobenzene	0	0	0	150	150	2,677	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	14,276	
Dimethyl Phthalate	0	0	0	500	500	8,923	
Di-n-Butyl Phthalate	0	0	0	21	21.0	375	
2,4-Dinitrotoluene	0	0	0	320	320	5,711	
1,2-Diphenylhydrazine	0	0	0	3	3.0	53.5	
Fluoranthene	0	0	0	40	40.0	714	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	35.7	
Hexachlorocyclopentadiene	0	0	0	1	1.0	17.8	
Hexachloroethane	0	0	0	12	12.0	214	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	37,476	
Naphthalene	0	0	0	43	43.0	767	
Nitrobenzene	0	0	0	810	810	14,455	
n-Nitrosodimethylamine	0	0	 0	3,400	3,400	60,675	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	1,053	
Phenanthrene	0	0	0	1	1.0	17.8	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	464	

☑ THH	CCT (min): 720	PMF: 0.037	Analysis Hardness (mg/l):	N/A Analysis pH: N/A
Dollutante	Conc Stream	Trib Conc Fate	WQC WQ Obj WI A (UO/L)	Commente

1 Onotonia	(uall)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	TEA (pyre)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	99.9	
Total Arsenic	0	0		0	10	10.0	178	
Total Barium	0	0		0	2,400	2,400	42,829	
Total Boron	0	0		0	3,100	3,100	55,321	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	71.4	
Dissolved Iron	0	0		0	300	300	5,354	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	17,846	
Total Mercury	0	0		0	0.050	0.05	0.89	
Total Nickel	0	0		0	610	610	10,886	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	4.28	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	53.5	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	1,785	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	589	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	1,214	
Methyl Bromide	0	0		0	100	100.0	1,785	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		0	N/A	N/A	N/A	

Toluene	0	0	0	57	57.0	1,017	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	1,785	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	178,456	
1,1,2-Trichloroethane	0	0	 0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	535	
2,4-Dichlorophenol	0	0	0	10	10.0	178	
2,4-Dimethylphenol	0	0	0	100	100.0	1,785	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	35.7	
2,4-Dinitrophenol	0	0	0	10	10.0	178	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	 0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	71,382	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	1,249	
Anthracene	0	0	0	300	300	5,354	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	3,569	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	1.78	
2-Chloronaphthalene	0	0	0	800	800	14,276	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	17,846	
1,3-Dichlorobenzene	0	0	0	7	7.0	125	
1,4-Dichlorobenzene	0	0	0	300	300	5,354	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	10,707	
Dimethyl Phthalate	0	0	0	2,000	2,000	35,691	
Di-n-Butyl Phthalate	0	0	0	20	20.0	357	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	357	
Fluorene	0	0	0	50	50.0	892	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	71.4	

Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	607	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	178	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	357	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	1.25	

∠ CRL CCT (min): 720 PMF: 0.051 Analysis Hardness (mg/l): N/A Analysis pl	H: N	N/A	ı
---	------	-----	---

Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
Politiants	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEX (pg/E)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	3.82	
Benzene	0	0		0	0.58	0.58	36.9	
Bromoform	0	0		0	7	7.0	445	
Carbon Tetrachloride	0	0		0	0.4	0.4	25.4	

Chlorobenzene	0	0	 0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	50.9	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	362	
Dichlorobromomethane	0	0	0	0.95	0.95	60.4	
	0	0	0	9.9	9.9	630	
1,2-Dichloroethane			0		N/A		
1,1-Dichloroethylene	0	0	_	N/A		N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	57.2	
1,3-Dichloropropylene	0	0	0	0.27	0.27	17.2	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	1,272	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	12.7	
Tetrachloroethylene	0	0	0	10	10.0	636	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	35.0	
Trichloroethylene	0	0	0	0.6	0.6	38.2	
Vinyl Chloride	0	0	0	0.02	0.02	1.27	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	1.91	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	95.4	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.006	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.064	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.006	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.064	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	1.91	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	20.3	
4-Bromophenyl Phenyl Ether			 0	N/A	N/A	N/A	
	0	0	v	1110			
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate 2-Chloronaphthalene	_		_				

	_	_	 _				
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.006	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	3.18	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	3.18	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	1.91	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.005	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.64	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	6.36	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.064	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.045	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.32	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	210	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits		1		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	μg/L	48.9	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	399	AFC	Discharge Conc > 10% WQBEL (no RP)

Permit No. PA0023108

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing	Units	Comments
Pollutarits	WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	1,650	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	99.9	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	42,829	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	17,815	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	5.73	μg/L	Discharge Conc < TQL
Total Chromium (III)	1,857	μg/L	Discharge Conc < TQL
Total Cobalt	209	μg/L	Discharge Conc < TQL
Free Cyanide	48.4	μg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	5,354	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	693,161	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	76.1	μg/L	Discharge Conc < TQL
Total Manganese	17,846	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.89	μg/L	Discharge Conc < TQL
Total Nickel	1,131	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Selenium	89.0	μg/L	Discharge Conc < TQL
Total Silver	19.4	μg/L	Discharge Conc < TQL
Total Thallium	4.28	μg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	6.6	μg/L	Discharge Conc < TQL
Acrylonitrile	3.82	μg/L	Discharge Conc < TQL
Benzene	36.9	μg/L	Discharge Conc < TQL
Bromoform	445	μg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	25.4	μg/L	Discharge Conc < TQL
Chlorobenzene	1,785	μg/L	Discharge Conc < TQL
Chlorodibromomethane	50.9	μg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	39,590	μg/L	Discharge Conc < TQL
Chloroform	362	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	60.4	μg/L	Discharge Conc ≤ 25% WQBEL

1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	630	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	589	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	57.2	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	17.2	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	1,214	μg/L	Discharge Conc < TQL
Methyl Bromide	1,210	μg/L	Discharge Conc < TQL
Methyl Chloride	61,584	μg/L	Discharge Conc < TQL
Methylene Chloride	1,272	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	12.7	μg/L	Discharge Conc < TQL
Tetrachloroethylene	636	μg/L	Discharge Conc < TQL
Toluene	1,017	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	1,785	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	6,598	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	35.0	μg/L	Discharge Conc < TQL
Trichloroethylene	38.2	μg/L	Discharge Conc < TQL
Vinyl Chloride	1.27	μg/L	Discharge Conc < TQL
2-Chlorophenol	535	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	178	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	1,452	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	35.7	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	178	μg/L	Discharge Conc < TQL
2-Nitrophenol	17,595	μg/L	Discharge Conc < TQL
4-Nitrophenol	5,059	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	352	μg/L	Discharge Conc < TQL
Pentachlorophenol	1.91	μg/L	Discharge Conc < TQL
Phenol	71,382	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	95.4	μg/L	Discharge Conc < TQL
Acenaphthene	183	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	5,354	μg/L	Discharge Conc < TQL
Benzidine	0.006	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.064	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.006	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.064	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	1.91	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	3,569	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	20.3	μg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	594	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	1.78	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	14,276	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS

Chrysene	7.63	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.006	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	1,804	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	125	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	1,606	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	3.18	μg/L	Discharge Conc < TQL
Diethyl Phthalate	8,798	μg/L	Discharge Conc < TQL
Dimethyl Phthalate	5,499	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	242	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	3.18	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	1.91	μg/L	Discharge Conc < TQL
Fluoranthene	357	μg/L	Discharge Conc < TQL
Fluorene	892	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.005	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.64	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	11.0	μg/L	Discharge Conc < TQL
Hexachloroethane	6.36	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.064	μg/L	Discharge Conc < TQL
Isophorone	607	μg/L	Discharge Conc < TQL
Naphthalene	308	µg/L	Discharge Conc < TQL
Nitrobenzene	178	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.045	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.32	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	210	µg/L	Discharge Conc < TQL
Phenanthrene	11.0	μg/L	Discharge Conc < TQL
Pyrene	357	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	1.25	μg/L	Discharge Conc < TQL

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Di	ischarge Stream		
Facility: Boro	ough of Elizabethtown	NPDES Permit No.: PA0023108	Outfall No.: 002
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Sewage Effluent	

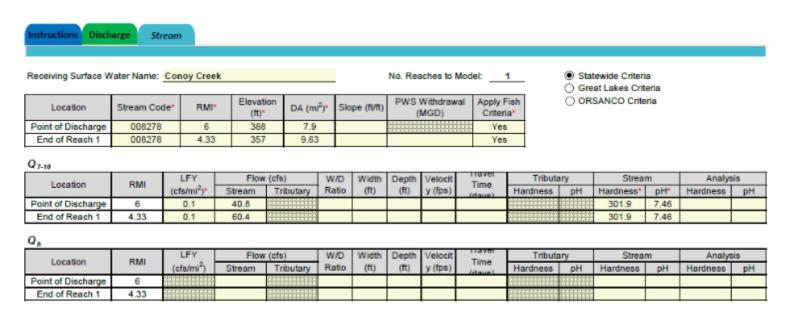
	Discharge Characteristics											
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	F	artial Mix Fa	Complete Mix Times (min)							
	naruness (mg/l)	pn (30)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
9	276	8.29										

				0 If lef	t blank	0.5 lf le	eft blank	0 if left blank			1 If left blank		
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		263									
1	Chloride (PWS)	mg/L		81.8									
Group	Bromide	mg/L	٧	0.066									
ອັ	Sulfate (PWS)	mg/L		24									
	Fluoride (PWS)	mg/L											
Г	Total Aluminum	μg/L		15									
l	Total Antimony	μg/L		0.165									
l	Total Arsenic	μg/L	٧	0.33									
I '	Total Barium	μg/L		9.9									
I '	Total Beryllium	μg/L	٧	0.132									
l	Total Boron	μg/L		136									
l	Total Cadmium	μg/L	٧	0.026									
l	Total Chromium (III)	μg/L	<	0.33									
I '	Hexavalent Chromium	μg/L											
I '	Total Cobalt	μg/L	٧	0.33									
	Total Copper	μg/L		4.62									
2	Free Cyanide	µg/L		0.66									
ΙĦ	Total Cyanide	μg/L		8.58									
Group	Dissolved Iron	μg/L		5.9									
-	Total Iron	μg/L		13.2									
	Total Lead	μg/L	<	0.33									
I '	Total Manganese	μg/L		5.9									
l	Total Mercury	μg/L	<	0.066									
l	Total Nickel	μg/L		0.33									
I '	Total Phenols (Phenolics) (PWS)	μg/L	<	1.65									
l	Total Selenium	µg/L	<	0.66									
l	Total Silver	μg/L	٧	0.017									
I '	Total Thallium	µg/L	<	0.13									
l	Total Zinc	μg/L		14.2									
1	Total Molybdenum	μg/L		2									
\Box	Acrolein	μg/L	<	0.33									
l '	Acrylamide	μg/L	<										
l '	Acrylonitrile	μg/L	<	0.16									
l '	Benzene	µg/L	<	0.16									
	Bromoform	μg/L	<	0.3									

Permit No. PA0023108

	Carbon Tetrachloride	μg/L	<	0.16		T						
	Chlorobenzene	µg/L	<	0.16								
	Chlorodibromomethane	μg/L	<	1.8								
L	Chloroethane	μg/L	<	0.16		+						
L	2-Chloroethyl Vinyl Ether	µg/L	<	0.16	+++	+						
L			_	4		+				_		
L	Chloroform	μg/L		_		+				-		
L	Dichlorobromomethane	μg/L		4		+						
ı	1,1-Dichloroethane	μg/L	<	0.16		4						
က	1,2-Dichloroethane	μg/L	<	0.16	$\perp \downarrow \downarrow$	4						
Group	1,1-Dichloroethylene	μg/L	<	0.16	\rightarrow	+						
2	1,2-Dichloropropane	μg/L	<	0.16		Ŧ						
O	1,3-Dichloropropylene	µg/L	<	0.16		T						
H	1,4-Dioxane	µg/L	<	0.3								
ı	Ethylbenzene	μg/L	<	0.16		#						
ı	Methyl Bromide	µg/L	<	0.16		+				_	-	
ı			<		++	+	_			 	-	
ı	Methyl Chloride	μg/L		0.16		÷						
ı	Methylene Chloride	μg/L	<	0.16		÷						
ı	1,1,2,2-Tetrachloroethane	μg/L	<	0.16								
l l	Tetrachloroethylene	μg/L	<	0.16								
	Toluene	μg/L	٧	0.16		+						
	1,2-trans-Dichloroethylene	μg/L	<	0.16		F						
ı	1,1,1-Trichloroethane	μg/L	<	0.16	ĦŦ	†						
l l	1.1.2-Trichloroethane	μg/L	<	0.16								
ı	Trichloroethylene	µg/L	<	0.16								
H	Vinyl Chloride	µg/L	<	0.16		+				_		
Н	•		-		+++	+	_				_	++++
ı	2-Chlorophenol	μg/L	<	0.03	+++	+					_	
H	2,4-Dichlorophenol	μg/L	<	0.03		+						
H	2,4-Dimethylphenol	µg/L	<	0.14								
	4,6-Dinitro-o-Cresol	μg/L	<	0.04		Ш						
4	2,4-Dinitrophenol	μg/L	<	0.97	$\dashv \dashv$	+						
ΙĒ	2-Nitrophenol	μg/L	<	0.016	\rightarrow	+						+
Group	4-Nitrophenol	μg/L	<	0.013		7						
ľ	p-Chloro-m-Cresol	μg/L	<	0.032		\top						
ı	Pentachlorophenol	μg/L	<	0.034								
H	Phenol	µg/L	<	0.015		+						
H			<	0.013	+	+				 		
Н	2,4,6-Trichlorophenol	μg/L	-			+				_		
H	Acenaphthene	μg/L	<	0.033		+						
ı	Acenaphthylene	μg/L	<	0.03		1						
H	Anthracene	μg/L	<	0.03								
ı	Benzidine	μg/L	<	1.6	$\bot \downarrow \downarrow$	4						\bot
H	Benzo(a)Anthracene	μg/L	<	0.02	\rightarrow	Ŧ						
H	Benzo(a)Pyrene	µg/L	<	0.02		Ŧ						
ı	3,4-Benzofluoranthene	µg/L	<	0.013								
ı	Benzo(ghi)Perylene	µg/L	<	0.027								
ı	Benzo(k)Fluoranthene	μg/L				+						
ı	Bis(2-Chloroethoxy)Methane	µg/L	<	0.027	++	+						
ı	•		-			+				-		
ı	Bis(2-Chloroethyl)Ether	μg/L	<	0.025		+						
l l	Bis(2-Chloroisopropyl)Ether	μg/L	<	0.029								
ı	Bis(2-Ethylhexyl)Phthalate	μg/L	<	0.12								
l l	4-Bromophenyl Phenyl Ether	μg/L	<	0.035		Ļ						
	Butyl Benzyl Phthalate	μg/L	<	0.02		F						
l l	2-Chloronaphthalene	µg/L	<	0.03		T						
	4-Chlorophenyl Phenyl Ether	μg/L	<	0.03								
l l	Chrysene	μg/L	<	0.024								
l l	Dibenzo(a,h)Anthrancene	µg/L	<	0.024		Ŧ						
			<			+						
l l	1,2-Dichlorobenzene	μg/L	_	0.016		+						
l l	1,3-Dichlorobenzene	μg/L	<	0.016		+						
40	1,4-Dichlorobenzene	μg/L	<	0.016		+						
읔	3,3-Dichlorobenzidine	μg/L	<	0.045								
Group	Diethyl Phthalate	μg/L	<	0.038								
O	Dimethyl Phthalate	µg/L	<	0.029		Ţ						
	Di-n-Butyl Phthalate	μg/L	<	0.027		+						
	2,4-Dinitrotoluene	μg/L	<	0.027		1						
		L9.		2.22								

Permit No. PA0023108


	2,6-Dinitrotoluene	μg/L			\rightarrow	+	+							\longrightarrow
	Di-n-Octyl Phthalate	µg/L	<	0.025	H	+	+							
	1,2-Diphenylhydrazine	µg/L	<	0.023	H	÷	+				_			
	Fluoranthene		<	0.030		#	+	-						
	Fluorene	μg/L	<	0.029	H	+	+							
		μg/L	-		Н	+	+					-		
	Hexachlorobenzene	μg/L	<	0.028	H	+	+							
	Hexachlorobutadiene	μg/L	<	0.027		#	÷							
	Hexachlorocyclopentadiene	μg/L	<	0.015	Ц	4	4							
	Hexachloroethane	μg/L	<	0.022	H	4	+							
	Indeno(1,2,3-cd)Pyrene	μg/L	<	0.019	\vdash	\pm	\pm							
	Isophorone	μg/L	<	0.032	Ħ	\pm	$^{\pm}$							
	Naphthalene	μg/L	<	0.02										
	Nitrobenzene	μg/L	<	0.02	H	Ŧ	Ŧ							
	n-Nitrosodimethylamine	μg/L	<	0.021	H	7	Ŧ							
	n-Nitrosodi-n-Propylamine	µg/L	<	0.03	Ħ	7								
	n-Nitrosodiphenylamine	μg/L	<	0.068										
	Phenanthrene	μg/L	<	0.032		#	Ţ							
	Pyrene	μg/L	<	0.03	H	+								
	1,2,4-Trichlorobenzene	µg/L	<	0.03	+	+	+							
_	Aldrin	μg/L	<	0.03										
			<											
	alpha-BHC	μg/L	-		H	+	+							
	beta-BHC	μg/L	<		H	+	+							
	gamma-BHC	μg/L	<		H	+	+							
	delta BHC	μg/L	<											
	Chlordane	μg/L	<											
	4,4-DDT	μg/L	<		Ц									
	4,4-DDE	μg/L	<		H	7	Ŧ							+
	4,4-DDD	µg/L	<		H	7	Ŧ							
	Dieldrin	μg/L	<		n									
	alpha-Endosulfan	μg/L	<			Ť	Τ							
	beta-Endosulfan	μg/L	<			#								
9	Endosulfan Sulfate	μg/L	<		H	+	÷				_			
Group (Endrin		<		Н	+	+				-			
2	Endrin Aldehyde	μg/L	<		H	÷	÷			_	\vdash	-	_	
o	•	μg/L	-			#	+				-			
	Heptachlor	μg/L	<		H	+	+							+
	Heptachlor Epoxide	μg/L	<		H	+	+							
	PCB-1016	μg/L	<		H	+	+							
	PCB-1221	μg/L	<			#	I							
	PCB-1232	μg/L	<			1								
	PCB-1242	μg/L	<		Ц	4	4							
	PCB-1248	μg/L	٧		\dashv	7	Ŧ							
	PCB-1254	μg/L	<		H	7	T							
	PCB-1260	µg/L	<		Πì	7	Т							
	PCBs, Total	μg/L	<		П	Ţ	Ţ							
	Toxaphene	μg/L	<		H	+	+							
	2,3,7,8-TCDD	ng/L	<		H	+	+							
	Gross Alpha	pCi/L												
	Total Beta	pCi/L	<			Ŧ	Ŧ							
			<		H	+	+							
Group	Radium 226/228	pCi/L	-		H	+	+							
5	Total Strontium	μg/L	<		H	+	+				_			
	Total Uranium	μg/L	<											
_	Osmotic Pressure	mOs/kg				4	Ţ							
					H	4	+							
						+	+							
					Ħ		Ť							
						Ţ	Ţ							
						1								
					H	+	+							
						+								
						+	+							
					H	+	+							
							İ							

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Borough of Elizabethtown, NPDES Permit No. PA0023108, Outfall 002

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Borough of Elizabethtown, NPDES Permit No. PA0023108, Outfall 002

Instructions Results	RETURN	TO INPU	ITS :	SAVE AS	PDF	PRINT	г 🖲 🗛	II O Inputs	Results Limits					
] Hydrodynamics														
Wasteload Allocations														
AFC CCT (min): 15 PMF: 0.589 Analysis Hardness (mg/l): 292.39 Analysis pH: 7.62														
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Comments					
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A							
Chloride (PWS)	0	0		0	N/A	N/A	N/A							
Sulfate (PWS)	0	0		0	N/A	N/A	N/A							
Total Aluminum	0	0		0	750	750	2,044							
Total Antimony	0	0		0	1,100	1,100	2,997							
Total Arsenic	0	0		0	340	340	926		Chem Translator of 1 applied					
Total Barium	0	0		0	21,000	21,000	57,220							
Total Boron	0	0		0	8,100	8,100	22,071							
Total Cadmium	0	0		0	5.709	6.35	17.3	C	Chem Translator of 0.899 applied					
Total Chromium (III)	0	0		0	1371.904	4,341	11,830	C	them Translator of 0.316 applied					
Total Cobalt	0	0		0	95	95.0	259							
Total Copper	0	0		0	36.932	38.5	105	(Chem Translator of 0.96 applied					
Free Cyanide	0	0		0	22	22.0	59.9							
Dissolved Iron	0	0		0	N/A	N/A	N/A							
Total Iron	0	0		0	N/A	N/A	N/A							
Total Lead	0	0		0	203.073	320	872	C	Chem Translator of 0.635 applied					
Total Manganese	0	0		0	N/A	N/A	N/A							
Total Mercury	0	0		0	1.400	1.65	4.49	(Chem Translator of 0.85 applied					
Total Nickel	0	0		0	1160.579	1,163	3,169	C	them Translator of 0.998 applied					
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A							
Total Selenium	0	0		0	N/A	N/A	N/A		hem Translator of 0.922 applied					
Total Silver	0	0		0	20.365	24.0	65.3	(Chem Translator of 0.85 applied					
Total Thallium	0	0		0	65	65.0	177							
Total Zinc	0	0		0	290.851	297	810	C	Chem Translator of 0.978 applied					
Acrolein	0	0		0	3	3.0	8.17							
Acrylonitrile	0	0		0	650	650	1,771							

Benzene	0	0	0	640	640	1,744	
Bromoform	0	0	0	1,800	1,800	4,905	
Carbon Tetrachloride	0	0	0	2,800	2,800	7,629	
Chlorobenzene	0	0	0	1,200	1,200	3,270	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	49,046	
Chloroform	0	0	0	1.900	1,900	5.177	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	40,872	
1,1-Dichloroethylene	0	0	0	7,500	7,500	20,436	
1,2-Dichloropropane	0	0	0	11,000	11,000	29,973	
1,3-Dichloropropylene	0	0	0	310	310	845	
Ethylbenzene	0	0	0	2,900	2,900	7,902	
Methyl Bromide	0	0	0	550	550	1,499	
Methyl Chloride	0	0	0	28.000	28,000	76.294	
Methylene Chloride	0	0	0	12,000	12,000	32,697	
1,1,2,2-Tetrachloroethane	0	0	0	1.000	1,000	2,725	
Tetrachloroethylene	0	0	0	700	700	1,907	
Toluene	0	0	0	1,700	1,700	4,632	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	18.529	
1,1,1-Trichloroethane	0	0	0	3.000	3,000	8,174	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	9,264	
				-	-	-	
Trichloroethylene	0	0	0	2,300 N/A	2,300 N/A	6,267 N/A	
Vinyl Chloride		_					
2-Chlorophenol	0	0	0	560	560	1,526	
2,4-Dichlorophenol	0	_	_	1,700	1,700	4,632	
2,4-Dimethylphenol	0	0	0	660	660	1,798	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	218	
2,4-Dinitrophenol	0	0	0	660	660	1,798	
2-Nitrophenol	0	0	0	8,000	8,000	21,798	
4-Nitrophenol	0	0	0	2,300	2,300	6,267	
p-Chloro-m-Cresol	0	0	0	160	160	436	
Pentachlorophenol	0	0	0	16.313	16.3	44.5	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	1,253	
Acenaphthene	0	0	0	83	83.0	226	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	817	
Benzo(a)Anthracene	0	0	0	0.5	0.5	1.36	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	81,744	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	12,262	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	736	
Butyl Benzyl Phthalate	0	0	0	140	140	381	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	

21				****	****	****	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	2,234	
1,3-Dichlorobenzene	0	0	0	350	350	954	
1,4-Dichlorobenzene	0	0	0	730	730	1,989	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	10,899	
Dimethyl Phthalate	0	0	0	2,500	2,500	6,812	
Di-n-Butyl Phthalate	0	0	0	110	110	300	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	4,360	
1,2-Diphenylhydrazine	0	0	0	15	15.0	40.9	
Fluoranthene	0	0	0	200	200	545	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	27.2	
Hexachlorocyclopentadiene	0	0	0	5	5.0	13.6	
Hexachloroethane	0	0	0	60	60.0	163	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	27,248	
Naphthalene	0	0	0	140	140	381	
Nitrobenzene	0	0	0	4,000	4,000	10,899	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	46,321	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	817	
Phenanthrene	0	0	0	5	5.0	13.6	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	354	

☑ CFC	CCT (min): 43.299	PMF: 1	Analysis Hardness (mg/l):	295.31	Analysis pH:	7.57	ĺ

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	865	
Total Arsenic	0	0		0	150	150	590	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	16,115	
Total Boron	0	0		0	1,600	1,600	6,289	
Total Cadmium	0	0		0	0.521	0.6	2.37	Chem Translator of 0.864 applied
Total Chromium (III)	0	0		0	179.913	209	822	Chem Translator of 0.86 applied
Total Cobalt	0	0		0	19	19.0	74.7	
Total Copper	0	0		0	22.592	23.5	92.5	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	20.4	
Dissolved Iron	0	0		0	N/A	N/A	N/A	

Total Iron	0	0		0	1,500	1,500	5,896	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	7.996	12.6	49.6	Chem Translator of 0.633 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	3.56	Chem Translator of 0.85 applied
Total Nickel	0	0		0	129.991	130	512	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	19.6	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	51.1	
Total Zinc	0	0		0	295.706	300	1,179	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	11.8	
Acrylonitrile	0	0		0	130	130	511	
Benzene	0	0		0	130	130	511	
Bromoform	0	0		0	370	370	1,454	
Carbon Tetrachloride	0	0		0	560	560	2,201	
Chlorobenzene	0	0		0	240	240	943	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	13,756	
Chloroform	0	0		0	390	390	1,533	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	12,184	
1,1-Dichloroethylene	0	0	***************************************	0	1,500	1,500	5,896	
1,2-Dichloropropane	0	0		0	2,200	2,200	8,647	
1,3-Dichloropropylene	0	0		0	61	61.0	240	
Ethylbenzene	0	0		0	580	580	2,280	
Methyl Bromide	0	0		0	110	110	432	
Methyl Chloride	0	0		0	5,500	5,500	21,617	
Methylene Chloride	0	0		0	2,400	2,400	9,433	
1,1,2,2-Tetrachloroethane	0	0		0	210	210	825	
Tetrachloroethylene	0	0		0	140	140	550	
Toluene	0	0		0	330	330	1,297	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	5,503	
1,1,1-Trichloroethane	0	0		0	610	610	2,398	
1,1,2-Trichloroethane	0	0		0	680	680	2,673	
Trichloroethylene	0	0		0	450	450	1,769	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	432	
2,4-Dichlorophenol	0	0		0	340	340	1,336	
2,4-Dimethylphenol	0	0		0	130	130	511	
4,6-Dinitro-o-Cresol	0	0		0	16	16.0	62.9	
2,4-Dinitrophenol	0	0		0	130	130	511	
2-Nitrophenol	0	0		0	1,600	1,600	6,289	
4-Nitrophenol	0	0		0	470	470	1,847	
p-Chloro-m-Cresol	0	0		0	500	500	1,965	
Pentachlorophenol	0	0		0	12.516	12.5	49.2	

Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	91	91.0	358	
Acenaphthene	0	0		0	17	17.0	66.8	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	232	
Benzo(a)Anthracene	0	0		0	0.1	0.1	0.39	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	23,582	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	3,577	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	212	
Butyl Benzyl Phthalate	0	0		0	35	35.0	138	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	629	
1,3-Dichlorobenzene	0	0		0	69	69.0	271	
1,4-Dichlorobenzene	0	0		0	150	150	590	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	800	800	3,144	
Dimethyl Phthalate	0	0		0	500	500	1,965	
Di-n-Butyl Phthalate	0	0		0	21	21.0	82.5	
2,4-Dinitrotoluene	0	0		0	320	320	1,258	
1,2-Diphenylhydrazine	0	0		0	3	3.0	11.8	
Fluoranthene	0	0		0	40	40.0	157	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	2	2.0	7.86	
Hexachlorocyclopentadiene	0	0		0	1	1.0	3.93	
Hexachloroethane	0	0		0	12	12.0	47.2	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	8,254	
Naphthalene	0	0		0	43	43.0	169	
Nitrobenzene	0	0		0	810	810	3,184	
n-Nitrosodimethylamine	0	0		0	3,400	3,400	13,363	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	232	
Phenanthrene	0	0		0	1	1.0	3.93	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	102	
☑ THH CC	T (min): 43	.299	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Dollutante	Cons	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (uo/L)	Comments

Model Results Page 9

1 Onuturta	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	TTCA (pg/c)	Commona
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	22.0	
Total Arsenic	0	0		0	10	10.0	39.3	
Total Barium	0	0		0	2,400	2,400	9,433	
Total Boron	0	0		0	3,100	3,100	12,184	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	15.7	
Dissolved Iron	0	0		0	300	300	1,179	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	3,930	
Total Mercury	0	0		0	0.050	0.05	0.2	
Total Nickel	0	0		0	610	610	2,398	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	0.94	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	11.8	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	393	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	130	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	267	
Methyl Bromide	0	0		0	100	100.0	393	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		0	N/A	N/A	N/A	

Toluene	0	0	 0	57	57.0	224	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	393	
1.1.1-Trichloroethane	0	0	0	10.000	10.000	39.304	
-1-1-	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	_	_				
Trichloroethylene		0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	118	
2,4-Dichlorophenol	0	0	0	10	10.0	39.3	
2,4-Dimethylphenol	0	0	0	100	100.0	393	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	7.86	
2,4-Dinitrophenol	0	0	0	10	10.0	39.3	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	15,722	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	275	
Anthracene	0	0	0	300	300	1,179	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	786	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	0.39	
2-Chloronaphthalene	0	0	0	800	800	3,144	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	3,930	
1,3-Dichlorobenzene	0	0	0	7	7.0	27.5	
1,4-Dichlorobenzene	0	0	0	300	300	1,179	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	2,358	
Dimethyl Phthalate	0	0	0	2,000	2,000	7,861	
Di-n-Butyl Phthalate	0	0	0	20	20.0	78.6	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	78.6	
Fluorene	0	0	0	50	50.0	197	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	15.7	

Model Results 12/21/2021 Page 11

Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	134	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	39.3	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	78.6	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	0.28	

	☑ CRL	CCT (min): 2	28.382	PMF:	1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	Ī
--	-------	--------------	--------	------	---	---------------------------	-----	--------------	-----	---

	Sueam							
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(uall)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	0.88	
Benzene	0	0		0	0.58	0.58	8.49	
Bromoform	0	0		0	7	7.0	103	
Carbon Tetrachloride	0	0		0	0.4	0.4	5.86	

Model Results 12/21/2021 Page 12

Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	11.7	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	83.5	
Dichlorobromomethane	0	0	0	0.95	0.95	13.9	
1,2-Dichloroethane	0	0	0	9.9	9.9	145	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	13.2	
1,3-Dichloropropylene	0	0	0	0.27	0.27	3.95	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	293	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	2.93	
Tetrachloroethylene	0	0	0	10	10.0	146	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	8.05	
Trichloroethylene	0	0	0	0.6	0.6	8.79	
Vinyl Chloride	0	0	0	0.02	0.02	0.29	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	 0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.44	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	22.0	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.001	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.015	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.001	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.015	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	0.44	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	4.69	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	1.76	

Dibaaaa/a b\Aathaaaaa	0	0	 0	0.0001	0.0001	0.001	
Dibenzo(a,h)Anthrancene			_				
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	0.73	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	0.73	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	0.44	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.001	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.15	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	1.46	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.015	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.01	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.073	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	48.3	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

✓ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits		I		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Dichlorobromomethane	Report	Report	Report	Report	Report	μg/L	13.9	CRL	Discharge Conc > 25% WQBEL (no RP)

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	1,310	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	22.0	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	9,433	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	6,289	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	2.37	μg/L	Discharge Conc < TQL
Total Chromium (III)	822	μg/L	Discharge Conc < TQL
Total Cobalt	74.7	μg/L	Discharge Conc < TQL
Total Copper	67.2	μg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	15.7	μg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	1,179	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	5,896	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	49.6	μg/L	Discharge Conc < TQL
Total Manganese	3,930	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.2	μg/L	Discharge Conc < TQL
Total Nickel	512	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Selenium	19.6	μg/L	Discharge Conc < TQL
Total Silver	41.8	μg/L	Discharge Conc < TQL
Total Thallium	0.94	μg/L	Discharge Conc < TQL
Total Zinc	519	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	5.24	μg/L	Discharge Conc < TQL
Acrylonitrile	0.88	μg/L	Discharge Conc < TQL
Benzene	8.49	μg/L	Discharge Conc < TQL
Bromoform	103	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	5.86	μg/L	Discharge Conc < TQL
Chlorobenzene	393	μg/L	Discharge Conc < TQL
Chlorodibromomethane	11.7	μg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	13,756	μg/L	Discharge Conc < TQL

Model Results 12/21/2021 Page 15

Chloroform	83.5	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1.2-Dichloroethane	145	µg/L	Discharge Conc < TQL
1.1-Dichloroethylene	130	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	13.2	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	3.95	µg/L	Discharge Conc < TQL
1.4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	267	μg/L	Discharge Conc < TQL
Methyl Bromide	393	μg/L	Discharge Conc < TQL
Methyl Chloride	21,617	μg/L	Discharge Conc < TQL
Methylene Chloride	293	µg/L	Discharge Conc < TQL
1.1.2.2-Tetrachloroethane	2.93	μg/L	Discharge Conc < TQL
Tetrachloroethylene	146	µg/L	Discharge Conc < TQL
Toluene	224	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	393	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	2,398	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	8.05	µg/L	Discharge Conc < TQL
Trichloroethylene	8.79	µg/L	Discharge Conc < TQL
Vinyl Chloride	0.29	μg/L	Discharge Conc < TQL
2-Chlorophenol	118	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	39.3	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	393	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	7.86	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	39.3	μg/L	Discharge Conc < TQL
2-Nitrophenol	6,289	μg/L	Discharge Conc < TQL
4-Nitrophenol	1,847	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	279	μg/L	Discharge Conc < TQL
Pentachlorophenol	0.44	μg/L	Discharge Conc < TQL
Phenol	15,722	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	22.0	μg/L	Discharge Conc < TQL
Acenaphthene	66.8	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	1,179	μg/L	Discharge Conc < TQL
Benzidine	0.001	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.015	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.001	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.015	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	0.44	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	786	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	4.69	μg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	212	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.39	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	3,144	μg/L	Discharge Conc < TQL

N/A	N/A	No WQS
1.76	μg/L	Discharge Conc < TQL
0.001	μg/L	Discharge Conc < TQL
629	μg/L	Discharge Conc < TQL
27.5	μg/L	Discharge Conc < TQL
590	μg/L	Discharge Conc < TQL
0.73	μg/L	Discharge Conc < TQL
2,358	μg/L	Discharge Conc < TQL
1,965	μg/L	Discharge Conc < TQL
78.6	μg/L	Discharge Conc < TQL
0.73	μg/L	Discharge Conc < TQL
N/A	N/A	No WQS
0.44	μg/L	Discharge Conc < TQL
78.6	μg/L	Discharge Conc < TQL
197	μg/L	Discharge Conc < TQL
0.001	μg/L	Discharge Conc < TQL
0.15	μg/L	Discharge Conc < TQL
3.93	μg/L	Discharge Conc < TQL
1.46	μg/L	Discharge Conc < TQL
0.015	μg/L	Discharge Conc < TQL
134	μg/L	Discharge Conc < TQL
169	μg/L	Discharge Conc < TQL
39.3	μg/L	Discharge Conc < TQL
0.01	μg/L	Discharge Conc < TQL
0.073	μg/L	Discharge Conc < TQL
48.3	μg/L	Discharge Conc < TQL
3.93	μg/L	Discharge Conc < TQL
78.6	μg/L	Discharge Conc < TQL
0.28	μg/L	Discharge Conc < TQL
	1.76 0.001 629 27.5 590 0.73 2,358 1,965 78.6 0.73 N/A 0.44 78.6 197 0.001 0.15 3.93 1.46 0.015 134 169 39.3 0.01 0.073 48.3 3.93 78.6	1.76 µg/L 0.001 µg/L 629 µg/L 27.5 µg/L 590 µg/L 0.73 µg/L 2,358 µg/L 1,965 µg/L 78.6 µg/L 0.73 µg/L N/A N/A 0.44 µg/L 78.6 µg/L 197 µg/L 0.001 µg/L 0.15 µg/L 3.93 µg/L 1.46 µg/L 1.46 µg/L 1.46 µg/L 1.46 µg/L 0.015 µg/L 1.34 µg/L 1.69 µg/L 1.97 µg/L 1.97 µg/L 0.015 µg/L 1.97 µg/L 0.015 µg/L 1.99/L