

Application Type Renewal Facility Type Municipal Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0024392

 APS ID
 1021100

 Authorization ID
 1322756

Applicant and Facility Information

Applicant Name	Rouse	ville Borough	Facility Name	Rouseville Borough STP
Applicant Address	P.O. Box 317		Facility Address	Route 8 South, Main Street
	Rouse	ville, PA 16344-0317		Rouseville, PA 16344
Applicant Contact	Joe De	ngel Administrator	Facility Contact	Joe Dengel
Applicant Phone	(814) 6	77-3056	Facility Phone	(814) 677-3056
Client ID	75173		Site ID	533136
Ch 94 Load Status	Not Ov	erloaded	Municipality	Cornplanter Township
Connection Status	No Lim	itations	County	Venango
Date Application Receiv	ved	July 31, 2020	EPA Waived?	Yes
Date Application Accepted		August 13, 2020	If No, Reason	
Purpose of Application		Renewal of a NPDES Permit	for an existing discharge of t	reated municipal sewage.

Summary of Review

This is a municipal POTW treated domestic wastewater from Rouseville Borough, Venango County.

This facility discharges to Oil Creek, which is known to contain threatened and endangered mussel species. A summary of threatened and endangered mussel species concerns and considerations is included on Page 9 of this Fact Sheet.

There are currently no open violations listed in EFACTS for this permittee (5/09/2023). 5/16/2023 CWY

Sludge use and disposal description and location(s): Sludge is hauled offsite and disposed of at the Franklin WWTP.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		Adam J. Pesek Adam J. Pesek, E.I.T. / Project Manager	May 9, 2023
Х		Chad W. Yurisic Chad W. Yurisic, P.E. / Environmental Engineer Manager	5/16/2023

Discharge, Receiving Waters and Water Supply Information						
Outfall No. 001		Design Flow (MGD)	0.24			
Latitude <u>41º 27' 37"</u>		Longitude	-79º 41' 24"			
Quad Name Oil City		Quad Code	0708			
Wastewater Description: Sewag	e Effluent					
Receiving Waters Oil Creek		Stream Code	54128			
NHD Com ID 100475857		RMI	2.62			
Drainage Area 314		Yield (cfs/mi ²)	0.10			
Q ₇₋₁₀ Flow (cfs) 31.5		Q7-10 Basis	USGS #03020500 ('34-'08)			
Elevation (ft) 1.002		Slope (ft/ft)	0.00421			
Watershed No. 16-E		Chapter 93 Class.	WWF			
Existing Use		Existing Use Qualifier				
Exceptions to Use		Exceptions to Criteria				
Assessment Status Impaire	ed					
Cause(s) of Impairment MERC	URY					
Source(s) of Impairment SOUR	CE UNKNOWN					
TMDL Status Pendin	ng	Name				
Background/Ambient Data		Data Source				
pH (SU)5	5	WQN 868				
Temperature (°C) 25		Default				
Hardness (mg/L)						
Other: NH ₃ -N 0.02	26	WQN 868				
Other: CBOD ₅ 1.1	<u> </u>	WQN 868				
	o					
Nearest Downstream Public Water	Supply Intake	Aqua Pennsylvania, Inc. – Em				
PWS Waters Allegheny River		Flow at Intake (cfs)	1450			
PWS RMI <u>90</u>		Distance from Outfall (mi)	40			

Changes Since Last Permit Issuance:

Treatment Facility Summary							
Treatment Facility Na	me: Rouseville Borough S	TP					
WQM Permit No.	Issuance Date						
6102401	4/01/2002						
6110402	3/09/2011						
	Degree of			Avg Annual			
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)			
Sewage	Secondary With Ammonia Reduction	Sequencing Batch Reactor	Hypochlorite	0.24			
Hydraulic Capacity	Organic Capacity			Biosolids			
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal			
0.24	454	Not Overloaded	Aerobic Digestion	Other WWTP			

Changes Since Last Permit Issuance: A permit amendment application for WQM permit No. 6110402 was submitted on 3/14/2023 for obtaining and incorporating a portable septage receiving station at the facility.

Compliance History							
Summary of Inspections:	Last site inspection was conducted on 4/28/2021. The inspection report noted the Borough was working on a GIS map of the collection system and working on and I/I maintenance schedule. Smoke testing and line jetting were also being performed. The report also noted that the effluent actuator was not working in SBR 1, which should be fixed as well as cleaning out the chlorine contact tanks.						

Compliance History

DMR Data for Outfall 001 (from March 1, 2022 to February 28, 2023)

Parameter	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22
Flow (MGD)												
Average Monthly	0.137	0.142	0.0021	0.0	0.017	0.090	0.058	0.078	0.089	0.179	0.193	0.203
Flow (MGD)												
Daily Maximum	0.351	0.478	0.047	0.0	0.078	0.338	0.105	0.123	0.184	0.541	0.344	0.692
pH (S.U.)												
Minimum	6.2	6.5	6.3	6.5	6.6	6.6	6.7	6.6	6.5	6.5	6.7	6.7
pH (S.U.)												
Maximum	6.9	7.1	7.6	7.0	7.1	7.1	7.2	7.2	7.1	7.0	7.1	8.5
DO (mg/L)												
Minimum	6.6	4.9	4.9	4.2	4.3	4.6	4.4	4.2	5.1	5.4	7.8	8.5
TRC (mg/L)												
Average Monthly	0.13	0.35	0.3	0.37	0.35	0.21	0.17	0.21	0.28	0.27	0.22	0.4
TRC (mg/L)												
Instantaneous												
Maximum	0.3	1.3	0.97	1.03	1.46	0.45	0.28	0.35	1.0	0.94	0.49	2.0
CBOD5 (lbs/day)												
Average Monthly	5	6	1	48	3	7	8	4	6	10	14	16
CBOD5 (lbs/day)	_	-	_		_	_		_	_			
Weekly Average	5	9	2	49	6	9	10	8	9	13	19	47
CBOD5 (mg/L)			_	_		_	. –	_			_	
Average Monthly	4	4	3	8	10	8	15	6	10	8	7	7
CBOD5 (mg/L)			_									
Weekly Average	6	8	5	13	12	14	18	18	20	12	8	11
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average	75	47	40		10			10		45	440	
Monthly	/5	17	10	382	12	30	21	< 19	30	45	118	60
BOD5 (lbs/day)												
Raw Sewage Influent	100	10	10	400	05	00		00	07		005	400
<pre> <</pre>	180	42	19	430	25	68	28	< 30	37	63	235	139
BOD5 (mg/L)												
Raw Sewage Influent												
 Average Monthly 	49.0	10.1	74.0	50.2	40.4	26	27	. 00	45	25	64	22
	48.9	16.1	74.9	50.3	48.4	20	31	< 28	45	35	64	32
133 (IDS/day)	11	10	4	50	2	10	F	c	10	14	20	60
TSS (lbs/day) Average Monthly	48.9 11	40	1	50.3	48.4 2	10	5	< 28 6	45 10	11	29	62

NPDES Permit Fact Sheet Rouseville Borough STP

NPDES Permit No. PA0024392

TSS (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	77	48	1	525	38	46	43	29	66	57	134	68
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	123	71	2	751	38	90	60	47	100	82	243	109
TSS (lbs/day)												
Weekly Average	8	98	2	75	5	25	7	13	20	18	55	219
TSS (mg/L)												
Average Monthly	7	25	7	11	7	8	8	11	19	7	14	23
TSS (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	63	40	7	95	87	44	73	41	95	52	75	48
TSS (mg/L)												
Weekly Average	9	67	11	13	9	10	12	28	42	9	22	38
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	10	10	10	26	49	239	63	710	19	53	318	1457
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	10	10	10	703	5900	7000	390	93000	126	6727	1100	27000
Total Nitrogen												
(lbs/day)												
Average Quarterly			1			2			2			14
Total Nitrogen (mg/L)												
Average Quarterly			3.13			0.354			2.31			9.2
Ammonia (lbs/day)												
Average Monthly	0.4	0.1	0.0008	7	0.4	0.3	0.06	< 0.1	1	0.10	0.2	51.05
Ammonia (mg/L)												
Average Monthly	0.2	0.1	0.5	0.8	0.8	0.354	0.1	< 0.2	2.0	0.10	0.14	1.05
Total Phosphorus												
(lbs/day)												
Average Quarterly			0.06			0.06			0.1			0.4
Total Phosphorus												
(mg/L)												
Average Quarterly			0.16			0.1			0.17			0.28

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	0.24
Latitude	41º 27' 37.00"	Longitude	-79º 41' 24.00"
Wastewater De	escription: Treated domestic s	ewage	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli	Report (No./100 ml)	IMAX	-	92a.61

Comments: Monitoring for E. coli is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model	
N/A				

Comments: No WQBELs were calculated as a result of WQM modeling.

Best Professional Judgment (BPJ) Limitations

Comments: Monitoring for influent BOD₅ and influent TSS is placed in the permit in accordance with the Department's SOP entitled "New and Reissuance Individual Sewage NPDES Permit Applications."

A minimum D.O. limit of 4.0 mg/l, an IMAX TRC limit of 1.6 mg/l, and monitoring for ammonia nitrogen, total nitrogen, and total phosphorus are placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Discharges."

The receiving stream reach is impaired for total mercury. Due to this impairment, and evaluation of the effluent was conducted to determine if monitoring was necessary in the renewed permit. Below is effluent sampling results from the renewal application that was used for the evaluation.

Unit	Most stringent criteria	Sample 1	Sample 2	Sample 3
ug/l	0.05	0.0021	0.0027	0.0035

As can be seen from the table, all three effluent results were well below the most stringent WQ criterion for total mercury. Therefore, the Department has no reason to believe that this discharge is contributing to the impairment. No monitoring will be placed in the proposed renewed permit for total mercury.

5/20/2023

6/4/2023

Anti-Backsliding

N/A

This segment of Oil Creek is known to also contain federal and state listed threatened and endangered mussel species. Due to the Outfall 001 discharging directly to Oil Creek, potential impacts to endangered mussel species were evaluated.

The USFWS has indicated in comment letters and email correspondence on other NPDES permits, that to protect threatened and endangered mussel species, wastewater discharges containing ammonia-nitrogen (NH3-N), chloride (Cl-) dissolved nickel, dissolved zinc, and total copper where mussels or their habitat exist, can be no more than 1.9 mg/l, 78 mg/l, 7.3 μ g/l, 13.18 μ g/l, and 10 μ g/l respectively. Therefore, the Department has considered all of these parameters in this evaluation.

The calculated site-specific criteria based on WQN Station 868 stream background pH data and default temperature for a WWF (pH of 7.55 and temperature of 25) results in NH3-N criteria of 0.965 mg/l.

The Department conducted a mussel survey on Oil Creek on June 11, 12 & 14, 2018, including in the vicinity and adjacent to this discharge. The findings of that survey were that no live mussels were collected within 200 meters below the discharge. One northern riffleshell was found on the right descending bank between 200 and 250 meters downstream of the discharge during the survey.

A summary of the sampling data for ammonia-nitrogen (NH3-N) and chloride (Cl-) are based on three samples at Outfall 001 for the 2020 renewal application, and one sample of total copper, dissolved nickel and dissolved zinc based from water chemistry data of this discharge provided in a Department Memo "Results of Water Chemistry Collections at National Pollution Discharge Elimination System (NPDES) Discharges – Freshwater Mussel Toxicity Study Allegheny River, Shenango River and French Creek Watersheds," dated March 6, 2023 as follows:

	Outfall	001					
PARAMETER	UNITS	Max	Avg. Value	No. Samples	Comments		
NH ₃ -N	mg/l	4.85	0.639	17	Renewal Application		
NH3-N	mg/l	9.73	0.508		eDMR average monthly data from August 2020 to		
(additional)					March 2023.		
Chloride	mg/l	108	101.5	3	Renewal Application		
Dissolved	µg/l	<8.0		1			
Nickel							
Dissolved Zinc	µg/l	26.1		1			
Total Copper	µg/l	4.51		1			

As can be seen from the sampling above, the total copper effluent concentration is below protective levels for threatened and endangered mussels.

The attached Mussel Impact Evaluation Sheet was used to determine the area of river that will be required to assimilate the maximum reported effluent concentrations of ammonia nitrogen, chloride, nickel, zinc, and copper to achieve pollutant concentrations that at or below the USFWS criteria in the river. The spreadsheet determined all parameters besides ammonia nitrogen had a calculated area of impact of less than one square meters. Using the maximum discharge concentration reported on the renewal application, the spreadsheet calculated an area of impact of up to 6.11 square meters due to ammonia nitrogen in low flow scenario.

Based on the fact that the closest known mussels downstream are over 200 meters downstream, there are no perceived impacts to threatened and endangered mussels due to this discharge. Additionally, please note that although the maximum concentration reported for ammonia nitrogen has a significant calculated area of impact, it should be noted that the long-term average concentration being discharged is below the site-specific criterion of 0.965 mg/l for protection of mussels.

Ammonia nitrogen will continue to be monitored in the renewed NPDES Permit. No additional requirements are recommended at this time due to threatened and endangered mussels in Oil Creek.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Effluent Limitations								Monitoring Requirements		
Deremeter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required		
Farameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample		
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре		
		Report								
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured		
			6.0		9.0					
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab		
			4.0							
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab		
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab		
								24-Hr		
CBOD5	50	80	XXX	25	40	50	1/week	Composite		
BOD5		Report	2004		2007	2004		24-Hr		
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite		
			2004					24-Hr		
ISS	60	90	XXX	30	45	60	1/week	Composite		
ISS		Report	2004			2004		24-Hr		
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite		
Fecal Coliform (No./100 ml)	2004		2004	2000		40000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	1/week	Grab		
Fecal Coliform (No./100 ml)	2004		2004	200		4000				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab		
E Coli (No /100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grah		
	Peport	~~~~	~~~~	Peport	~~~~	Кероп	i/quarter	21-Hr		
Total Nitrogen		XXX	XXX		XXX	XXX	1/quarter	Composite		
		~~~~			~~~~		i/quarter	24-Hr		
Ammonia	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite		

### NPDES Permit Fact Sheet Rouseville Borough STP

## Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Requirements		
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required			
Falameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
	Report			Report				24-Hr	
Total Phosphorus	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite	

Compliance Sampling Location: Outfall 001 (after disinfection)

# Input Data WQM 7.0

	SWF Basii	o Strea n Coc	im le	Stre	Stream Name		Stream Name		RMI	EI	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	/S Irawal gd)	Apply FC
	16E	541	128 OIL CI	REEK			2.6	20	1022.00	314.00	0.0000	0	0.00	$\checkmark$		
					St	ream Dat	ta									
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti	h Tem	<u>Tributary</u> p pH	Те	<u>Strean</u> mp	n pH			
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	)	(°	C)				
Q7-10 Q1-10 Q30-10	0.100	31.50 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	5.00 7.	55	0.00	0.00			
					D	ischarge	Data						]			
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permiti Disc Flow (mgd	ted Des : Di / FI  ) (m	sign sc Res ow Fa gd)	Dis erve Ter ctor (°C	sc [ mp C)	Disc pH				
		Rous	eville Boro	PA	0024392	0.240	0 0.00	00 0.	0000	0.000 :	20.00	6.80				
					P	arameter	Data									
			1	Paramete	r Name	D C	isc Conc	Trib Conc	Stream Conc	Fate Coef						
				urumere	, Huille	(m	ng/L) (	mg/L)	(mg/L)	(1/days)						
			CBOD5				25.00	1.10	0.00	1.50		_				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00						
			NH3-N				25.00	0.03	0.00	0.70						

# Input Data WQM 7.0

	SWF Basii	o Strea n Cod	m le	Stre	eam Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	/S rawal gd)	Apply FC
	16E	541	28 OIL CI	REEK			1.18	30	990.00	316.00	0.000	00	0.00	$\checkmark$
2					St	ream Dat	a							10
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	т	<u>Strean</u> emp	pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	)	(	°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2:	5.00 7.	.55	0.00	0.00	
		Discharge Data												
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd)	ed Desi Dis Flo ) (mg	gn c Res w Fa jd)	Di erve Tei ctor (ºº	sc mp C)	Disc pH		
						0.000	0 0.000	0.0 0.0	0000 (	0.000	25.00	7.00		
					P	arameter	Data							
			ſ	Paramete	r Name	D C	isc ⁻ onc C	Trib Conc	Stream Conc	Fate Coef				
			23			(m	ng/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

	<u>SWP Basin</u> <u>Stream Code</u> 16E 54128			<u>Stream Name</u> OIL CREEK								
RMI	Stream Flow	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity	Reach Trav Time (days)	Analysis Temp	Analysis pH
<b>Q7-1</b> 2.620	0 Flow 31.50	0.00	31.50	.3713	0.00421	.927	84.65	91.34	0.41	0.217	24.94	7.53
<b>Q1-1</b> 2.620	<b>0 Flow</b> 20.16	0.00	20.16	.3713	0.00421	NA	NA	NA	0.32	0.277	24.91	7.52
<b>Q30-</b> 2.620	10 Flow 42.84	0.00	42.84	.3713	0.00421	NA	NA	NA	0.48	0.183	24.96	7.53

# WQM 7.0 Hydrodynamic Outputs

Tuesday, April 4, 2023

Version 1.1

Page 1 of 1

# WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Tuesday, April 4, 2023

Version 1.1

Page 1 of 1

		WC	QM 7.	0 Wast	eload /	Alloc	atio	ns		
	SWP Basin	Stream C	ode		5	Stream N	lame			
	16E	54128	3		1		EEK			
NH3-N	Acute Alloca	tions								
RMI	Discharge N	Ba ame Ci (I	iseline riterion mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Muli W (m)	tiple LA g/L)	Critical Reach	Percent Reductio	n
2.62	20 Rouseville Bor	0	6.01	50	6.01	1	50	0	0	
NH3-N	Chronic Allo	cations	;							
RMI	Discharge Nar	Bas ne Crit (m	eline erion g/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multip WL/ (mg/	ole A L)	Critical Reach	Percent Reduction	
2.62	20 Rouseville Bor	0	.98	25	.98	в	25	0	0	
Dissolvo	ed Oxygen A	llocatio	o <b>ns</b>	BOD5	NH3-I	N	Dissolv	ed Oxygen		
RMI	Discharge	Name	Baselin	e Multiple	Baseline M	Aultiple	Baseline	e Multiple	Reach	Reductic

0.00 D	05	05	05	05	320			
2.62 Rouseville Boro	25	25	25	25	4	4	0	0

#### Tuesday, April 4, 2023

Version 1.1

SWP Basin	Stream Code			Stream Name	
16E	54128			OIL CREEK	
RMI	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	Analysis pH
2.620	0.24	0		24.942	7.527
Reach Width (ft)	<u>Reach De</u>	<u>pth (ft)</u>		Reach WDRatio	Reach Velocity (fps)
84.651	0.92	7		91.337	0.406
Reach CBOD5 (mg/L)	Reach Kc (	1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
1.38	0.27	0		0.32	1.024
Reach DO (mg/L)	<u>Reach Kr (</u>	<u>1/days)</u>		Kr Equation	<u>Reach DO Goal (mg/L)</u>
7.499	8.96	7		Tsivoglou	5
Reach Travel Time (days)	2	Subreach	Results		
0.217	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.022	1.37	0.31	7.54	
	0.043	1.36	0.31	7.54	
	0.065	1.35	0.30	7.54	
	0.087	1.34	0.29	7.54	
	0.108	1.33	0.29	7.54	
	0.130	1.32	0.28	7.54	
	0.152	1.31	0.27	7.54	
	0.173	1.30	0.27	7.54	
	0.195	1.29	0.26	7.54	
	0.217	1.28	0.26	7.54	

# WQM 7.0 D.O.Simulation

Tuesday, April 4, 2023

Version 1.1

Page 1 of 1

	<u>SWP Basin</u> <u>Stream</u> 16E 541	<u>Code</u> 28		<u>Stream Name</u> OIL CREEK			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.620	Rouseville Boro	PA0024392	0.240	CBOD5	25		s
				NH3-N	25	50	
				Dissolved Oxygen			4

# WQM 7.0 Effluent Limits

Tuesday, April 4, 2023

Version 1.1

1A	В	C	D	E	F	G					
2	TRC EVALU	ATION									
3	Input appropria	ate values in	B4:B8 and E4:E7								
4	31.5	= Q stream (	cfs)	0.5	= CV Daily						
5	0.24	= Q discharg	ge (MGD)	0.5	= CV Hourly						
6	30	= no. sample	S	0.24	= AFC_Partial N	lix Factor					
7	0.3	= Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor						
8	0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)						
9	0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)						
	0	= % Factor (	of Safety (FOS)	0	=Decay Coeffic	ient (K)					
10	Source	Reference	AFC Calculations		Reference	CFC Calculations					
11	TRC	1.3.2.iii	WLA afc =	6.514	1.3.2.iii	WLA cfc = 26.397					
12	PENTOXSD TRG	5.1a	LTAMULT atc =	0.373	5.10	LTAMULT cfc = $0.581$					
13	PENIOXSDIRG	5.10	LIA_atc=	2.427	5.10	$LTA_CTC = 15.346$					
14	Source		Effluent	Limit Cak	sulations						
16	PENTOXSD TRG										
17	PENTOXSD TRG	5.1a	AVG MON LIMI	T (ma/l) =	0.500	BAT/BPJ					
18			INST MAX LIMI	T (ma/l) =	1.635						
0000				( 0 )							
	WLA afc	(.019/e(-k*A	FC_tc)) + [(AFC_Yc*Q	s*.019/Q	d*e(-k*AFC_tc)).	**1					
		+ Xd + (AF	C_Yc*Qs*Xs/Qd)]*(1-F	OS/100)							
	LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(	cvh^2+1)4	<b>^</b> 0.5)						
	LIA_afc	wia_atc*LTA	MULI_atc								
	WI A ofo	(011/a/ak*C		* 011/04							
		+Xd+(CF	C Yc*Qs*Xs/Qd)]*(1.F	OS/1001							
	LTAMULT cfc	EXP((0.5*LN	(cvd^2/no samples+1	))-2.326*L	N(cvd^2/no sar	nples+1)^0.5)					
	LTA_cfc	wla_cfc*LTA	MULT_cfc		· -	Contraction of Contract V					
	AML MULT	EXP(2.326*L	N((cvd^2/no_samples	+1)^0.5)-(	0.5*LN(cvd^2/no	_samples+1))					
	AVG MON LIMIT	MIN(BAT_BF	J,MIN(LTA_afc,LTA_c	fc)*AML_	MULT)						
	INST MAX LIMIT	1.5*((av_mo	5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								

Page 1

### **Rouseville Borough STP**

Cornplanter Township, Venango County PA0024392 Discharge pH

# Outfall 001

<u>Date</u>	<u>pH min</u>	<u>pH max</u>
Jul-20	6.9	7.2
Aug-20	6.8	7.2
Sep-20	6.7	7.1
Jul-21	6.6	6.9
Aug-21	6.6	6.9
Sep-21	6.5	7.0
Jul-22	6.6	7.2
Aug-22	6.7	7.2
Sep-22	6.6	7.1

<u>10^ -pH min</u>	<u>10^ -pH max</u>	& pH max)	-Log (Ave pH)
1.26E-07	6.31E-08	9.45E-08	7.0
1.58E-07	6.31E-08	1.11E-07	7.0
2E-07	7.94E-08	1.39E-07	6.9
2.51E-07	1.26E-07	1.89E-07	6.7
2.51E-07	1.26E-07	1.89E-07	6.7
3.16E-07	1E-07	2.08E-07	6.7
2.51E-07	6.31E-08	1.57E-07	6.8
2E-07	6.31E-08	1.31E-07	6.9
2.51E-07	7.94E-08	1.65E-07	6.8
		Median:	6.8

5/9/2023

#### Outfall 001

Facility:		Rouseville Boro STP					
Permit N	umber:	N	PA0024392			Effective: Expiration:	
Outfall N	0:		001				
Location			Cornplanter Township, Venango Coun		go Coun	nty	
Discharge	ischarge to: Oil Creek						
Site Spec	e Specific Mussel Survey Completed: No						
Dischara	e and St	ream Characteristics				Comments	
0.	Stream	Flow	20	MGD / 31.5	cfs	somments.	
0	Dischar	row go Elouu	0.24	MGD / 0.27120	ofo		
QD	Dischar	ge How	0.24	AC 77/1	us		
C _{s(d)}	instream	n chionde concentration		16.77 mg/L		9/12/2017 Sample at WQN #868	
C _{E(0")}	Dischar	ge chloride (existing)		108 mg/L		Maximum value from 2020 NPDES Renewal Application	
C _{P(Cl⁻)}	Dischar	ge chloride (proposed)		108 mg/L		Maximum value from 2020 NPDES Renewal Application	
C _{S(Ni)}	Instrear	n nickel Concentration		2 µg/L		Average of three instream samples taken on 8/8, 8/19, and 8/29/2022 (< 0.002, < 0.002, and 0.002 mg/L) in Plum Boro, Allegheny County.	
C _{E(Ni)}	Dischar	ge nickel (existing)		8 μg/L		Fall 2022 discharge sample collected by the Department	
C _{P(Ni)}	Dischar	ge nickel (proposed)		8 μg/L		Fall 2022 discharge sample collected by the Department	
C _{S(Zn)}	Instrear	n zinc Concentration		5 µg/L		9/12/2017 sample on the Allegheny River above Oil City (<5 ug/l)	
C _{E(Zn)}	Dischar	ge zinc (existing)	-	26.1 µg/L		Fall 2022 discharge sample collected by the Department	
Zn _{P(Zn)}	Dischar	ge zinc (proposed)	-	26.1 µg/L		Fall 2022 discharge sample collected by the Department	
Cs(c))	Instream	n copper Concentration		4 μg/L		9/12/2017 sample at WQN #868	
CE(QJ)	Dischar	ge copper (existing)		4.51 µg/L		Fall 2022 discharge sample collected by the Department	
Znerces	Dischar	ge copper (proposed)		4.51 ug/L		Fall 2022 discharge sample collected by the Department	
Column	Instream	m NH ³ -N		0.026 mg/l		WON #868	
Courses	Dischar	ge NH ³ -N (existing)		9 73 mg/l		Maximum value from 2020 NPDES Renewal Application	
Centre of	Dischar	ge NH ³ -N (proposed)		9.73 mg/l		Maximum value from 2020 NPDES Renewal Application	
∼P(NH3-N) DH∽	Instream	n pH		7.55 S.U.		WQN #868	
Te	Instream	n Temp.		25 °C		Default value for a WWF	
Comusian	Ammor	nia criteria	-	0.965 mg/l		From ammonia criteria comparison spreadsheet -using instream pH and Temp	
Caran	Chlorid	e criteria	-	78 mg/L		USFWS criteria	
	Nickel o	riteria		7.3 µg/L		USFWS criteria	
Cc(m)	Zinc crit	teria		13.18 µg/l		USEWS criteria	
Care	Conner	criteria		10 µg/l		USEWS criteria	
W _c	Stream	width		30.5 meters	Gooda Earth (Approximate)		
3						en Bio ear a frikk, annie eat	
Ammoni	a Criteri	a Calculations:	ano:				
	рН _S т	7.55	5.0.	(Default value is 7.0	1) Store C	CWE and 25° for a WWE	
	Is	25	°C	(Dejault value is 20	Jorac	CWF and 25 Jor a WWFJ	
	Acute C	Criteria					
	-	METHOD and UNITS		CRITERIA		Comments	
	Old CMC (mg TAN/L) = 3.839		One l	* 5			
	-	TEPA 2013 CIVIC (mg TAN/L)	N/L) = 5.654 Oncor		Oncorn	rhyrichus present r formula on pg. 41 (plateaus at 15.7 C)	
	Chronic	Criteria		3.034	Sheorn	infinition of pg. 42 (plateaus at 10.2 C)	
	anonic	METHOD and UNITS		CRITERIA		COMMENTS	
		Old CMC (mg TAN/L) =		0.978		COMIVILINTS	
	C _{C(NH3-N)} EPA 2013 CMC (mg TAN/L) = 0.965 * formula on pg. 46 (plate		* formula on pg. 46 (plateaus at 7 C)				
10.0				-			
Endange	Endangered Mussel Species Impact Area Calculations:						

Existing Area of Impact

N/A - No Site Specific Mussel Survey Completed for this Discharger

Approximate Area of Impact Determined from Survey =	N/A m ²	(Enter N/A if no site specific survey has been completed
Existing Mussel Density within Area of Impact =		
Rabbitsfoot (Quadrula cylindrical)	per m ²	
Northern Riffleshell <i>(Epiobla</i> s <i>ma torulosa rangiana</i> )	per m ²	]
Rayed Bean (Villosa fabalis)	per m ²	
Clubshell (Pleurobema clava)	per m ²	
Sheepnose (Plethobasus cyphyus)	per m ²	]
Snuffbox (Epioblasma triquetra)	per m ²	
TOTAL	0 per m ²	1

#### Method 1 - Utilizing Site Specific Mussel Survey Information

N/A - No Site Specific Mussel Survey Completed for this Discharger

This method utilizes a simple comparison of the size of the existing area of impact as determined from a site specific mussel survey and the chlorides In the existing discharge compared to the chlorides in the proposed discharge after the facility upgrades treatment technologies. This method is only applicable to where the stream impairment is caused by TDS and/or chlorides as the plume has been delineated through conductivity measurements.

A. Area of Impact Determined from Survey:	N/A	m²
B. Chlorides in Existing Discharge:		108 mg/L
C. Chlorides in Proposed Discharge after Treatment Fa	acility Upgrades:	108 mg/L
D. Approximate Area of Impact after Treatment Facili	ty Upgrades:	$N/A m^2$

A/B = D/C Therefore, D = (A*C)/B

5/9/2023

#### Outfall 001

Facility:	Rouseville Boro STP		
Permit Number:	PA0024392	Effective:	Expiration:
Outfall No:	001		
Location:	Cornplanter Township, Venango County		
Discharge to:	Oil Creek		
Site Specific Mussel Survey Completed:	No		

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 2 - Mass Balance Relationship of Loading and Assimilative Capacity of Stream

	$L_{S(CI7)}$ = Available Chloride Loading in Stream = $C_{C(CI7)} - C_{S(CI7)} \times Q_{S}(MGD) \times 8.34 =$	10,213 lbs/Day
_	L _{D-MAX(C1)} = Current Maximium Discharge Chloride Loading exceeding criteria = {C _{E(CL1)} . C _{E(CL1)} } X Q _D (MGD) X 8.34 =	60 lbs/Day
(Cl	% _{E(CIT)} = Percent of Stream Capacity for Current Loading = L _{D-MAX(CIT)} / L _{S(CIT)} =	1% of Stream Capacity
Chloride	L _{D(CT)} = Proposed Discharge (C ⁻ Loading exceeding criteria after Treatment Facility Upgrades = (C _{P(CT)} - C _{P(CT} ) X Q ₀ (MGD) X 8.34 =	60.048 lbs/Day
	$\Re_{P(d')}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(d')} / L_{S(d')}$ =	0.59% of Stream Capacity
	Proposed Area of Impact due to Chloride $* = (\Re_{P(CI^{-})} X W_{S})^{2} X 0.5 =$	0.02 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(Ni)}$ = Available Nickel Loading in Stream = $C_{C(Ni)} - C_{S(Ni)} \times Q_{S}(MGD) \times 8.34 =$	884 lbs/Day
	$L_{D-MAX(N)} = Current Maximium Discharge Nickel Loading exceeding criteria = (C_{E(N)}, C_{E(N)}) X Q_{D}(MGD) X 8.34 =$	1 lbs/Day
(ini)	$\Re_{E(Ni)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Ni)} / L_{S(Ni)}$ =	0% of Stream Capacity
keli	$L_{D(0i)}$ = Proposed Discharge Ni Loading exceeding criteria after Treatment Facility Upgrades = (C _{P(0i)} - C _{P(0i)} ) X Q ₀ (MGD) X 8.34 =	1.40112 lbs/Day
Nic	$\Re_{P(Ni)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Ni)} / L_{S(Ni)}$ =	0.16% of Stream Capacity
	Proposed Area of Impact due to Nickel * = $(%_{P(Ni)} X W_s)^2 X 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(Zn)}$ = Available Zinc Loading in Stream = $C_{C(Zn)} - C_{S(Zn)} \times Q_{S}(MGD) \times 8.34 =$	1,364 lbs/Day
	$L_{D-MAX(2n)} = Current Maximium Discharge Zinc Loading exceeding criteria = {C_{E(2n)}, C_{E(2n)}} X Q_D {MGD} X 8.34 =$	26 lbs/Day
(L)	$\Re_{E(Zn)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Zn)} / L_{S(Zn)}$ =	2% of Stream Capacity
JC (2	L _{D(Zn)} = Proposed Discharge Zn Loading exceeding criteria after Treatment Facility Upgrades = (C _{P(Zn)} - C _{PZn} ) X Q ₀ (MGD) X 8.34 =	25.860672 lbs/Day
Zir	$\Re_{P(Zn)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Zn)} / L_{S(Zn)}$ =	1.90% of Stream Capacity
	Proposed Area of Impact due to Zinc * = $(\%_{P(Zn)} \times W_S)^2 \times 0.5 =$	0.17 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(Cu)}$ = Available Copper Loading in Stream = $C_{C(Cu)} - C_{S(Cu)} \times Q_{S}(MGD) \times 8.34 =$	1,001 lbs/Day
	L _{D-MAX(Cu)} = Current Maximium Discharge Copper Loading exceeding criteria = (C _{E(Cu)} - C _{E(Cu)} ) X Q _D (MGD) X 8.34 =	-11 lbs/Day
(Cu	% _{E(Cu)} = Percent of Stream Capacity for Current Loading = L _{D-MAX(Cu)} / L _{S(Cu)} =	0% of Stream Capacity
per	$L_{D(Cu)}$ = Proposed Discharge Cu Loading exceeding criteria after Treatment Facility Upgrades = ( $C_{P(Cu)} - C_{P(Qi)}$ ) X $Q_0$ (MGD) X 8.34 =	-10.988784 lbs/Day
Ido	$\Re_{P(Q_d)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Q_d)} / L_{S(Q_d)}$ =	-1.10% of Stream Capacity
0	Proposed Area of Impact due to Copper* = $(\Re_{P(Cu)} X W_S)^2 X 0.5 =$	0.06 m ²
	* assuming equal flow across transect and 90° spread at discharge	
-	$L_{S(NH3\cdot N)}$ = Available NH3-N Loading in Stream = $C_{C(NH3\cdot N)} - C_{S(NH3\cdot N)} X Q_{S}(MGD) X 8.34 =$	157 lbs/Day
ger	$L_{D-MAX(NH3\cdot N)}$ = Current Maximium Discharge NH3-N Loading = $C_{E(NH3\cdot N)} \times Q_D(MGD) \times 8.34 =$	19 lbs/Day
N)	$\Re_{E(NH3\cdot N)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(NH3\cdot N)} / L_{S(NH3\cdot N)}$ =	12% of Stream Capacity
ia-h H3-	L _{D(NH3-N)} = Proposed Discharge NH3-N Loading after Treatment Facility Upgrades = C _{P(NH3-N)} - C _{C(NH3-N)} X Q _D (MGD) X 8.34 =	18 lbs/Day
N)	$\Re_{P(NH3:N)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(NH3:N)} / L_{S(NH3:N)}$ =	11.46% of Stream Capacity
Amr	Proposed Area of Impact due to NH3-N * = $(%_{P(NH3-N)} X W_s)^2 X 0.5 =$	6.11 m ²
<	* assuming equal flow across transect and 90° spread at discharge	

2 of 3

5/9/2023

#### Outfall 001

Facility:	Rouseville Boro STP			
Permit Number:	PA0024392	Effective:	Expiration:	
Outfall No:	001			
Location:	Cornplanter Township, Vena	ngo County		
Discharge to:	Oil Creek			
Site Specific Mussel Survey Completed:	No			

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 3 - Mass Balance Relationship of Stream Flow, Proposed Effluent Quality, and Mussel Protection Criteria

	$\mathbf{Q}_{A[CI^{-}]}C_{S[CI^{-}]} + \mathbf{Q}_{D}C_{P(CI^{-})} = \mathbf{Q}_{T}C_{C(CI^{-})}$	
	Q _{A(Cl7)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$\mathbf{Q}_{\mathrm{T}} = \mathbf{Q}_{\mathrm{S}} + \mathbf{Q}_{\mathrm{D}} (\mathbf{cfs})$	
0	$\mathbf{Q}_{A(C)^{-1}}\mathbf{C}_{S(C)^{-1}} + \mathbf{Q}_{D}\mathbf{C}_{P(C)^{-1}} = (\mathbf{Q}_{D} + \mathbf{Q}_{S})\mathbf{C}_{C(C(D))}$	
e (C	SOLVING FOR $Q_{A(CF)} = [(Q_D C_{P(d^-)} / C_{d(C^-)}) - Q_D)] / (1 - C_{S(d^-)} / C_{C(d^+)}) =$	0.18196472 cfs
ride	% _{P(d)} = Percent of Stream Width Required to Assimilate Chlorides to Criteria	
hlo	Concentration = $Q_{A(CT)} / Q_{S}(cfs) =$	0.5777%
0	W _{I(d⁻)} = Proposed Width of Stream required to Assimilate Chlorides to Criteria	
	Concentration = $W_S X %_{P(Cl^-)}$	0.176188 meters
	Proposed Area of Impact due to Chloride $* = (W_{I(C r)})^2 \times 0.5 =$	0.02 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$\mathbf{Q}_{a(N)i}C_{S(N)i} + \mathbf{Q}_{D}C_{P(N)i} = \mathbf{Q}_{T}C_{C(N)i}$	
	Q _{atmin} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$\Omega_{-} = \Omega_{0} + \Omega_{0} (cfs)$	
	$C_{1} = C_{2} + C_{2$	
(in	$\frac{Q_{A(N)}C_{S(N)} + Q_{O}C_{S(N)} + Q_{O}C_{S(N)}}{C(N)} = \frac{1}{2} \left[ \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac$	0.0/905151 cfc
el (L	SOLVING FOR $Q_{A(Ni)} = [I(Q_DC_{P(Ni)}) + Q_{DI}) + Q_{DI} + (1 - C_{S(Ni)} + C_{DI}) + (1 - C_{S(NI)} + (1 - C_{S(NI)} + C_{DI}) + (1 - C_{S(NI)} + C_{DI}) + (1 - C_{S(NI)} + (1 - C_{S(NI)} + C_{S(NI)} + (1 - C_{S(NI)} + C_{S(NI)} + (1 - C_{S(NI)} + (1 - C_{S($	0.04905151 015
lick	$%_{P(d')}$ = Percent of stream width kequired to Assimilate wicker to criteria	0.11579/
Z	Concentration = $Q_{A(N)} / Q_S(Crs) =$ $W_{A(N)} - Proposed Width of Stream required to Assimilate Nickel to Criteria$	0.1557%
	Concentration - W/Y %	0.047494 meters
	Concern duot – $v_{S} \wedge z_{P[N]}$	0.047454 meters
	Proposed Area of impact due to Nickel * = $(w_{1(Ni)}) \times 0.5 =$	0.00 m
	* assuming equal now across transect and 90° spread at discharge	
	$Q_{A(Zn)}C_{S(Zn)} + Q_{D}C_{P(Zn)} = Q_{T}C_{C(Zn)}$	
	$Q_{A(Zn)} = Assimilative Stream Flow Required to Achieve Criteria (crs)$	
	$Q_{T} = Q_{S} + Q_{D} (cfs)$	
	$\mathbf{Q}_{A(Zn)}\mathbf{C}_{S(Zn)} + \mathbf{Q}_{D}\mathbf{C}_{P(Zn)} = (\mathbf{Q}_{D} + \mathbf{Q}_{S})\mathbf{C}_{C(Zn)}$	
(Zn)	SOLVING FOR $\mathbf{Q}_{\mathbf{A}(\mathbf{Zn})} = [(\mathbf{Q}_{\mathrm{D}}C_{\mathrm{PZn}}) / C_{\mathrm{Q}(\mathbf{Zn})}) - \mathbf{Q}_{\mathrm{D}})] / (1 - C_{\mathrm{S}(\mathbf{Zn})} / C_{\mathrm{C}(\mathbf{Zn})}) =$	0.58659643 cfs
nc	$\Re_{P(G^{-})}$ = Percent of Stream Width Required to Assimilate Zinc to Criteria	
12	Concentration = $Q_{A(Zn)} / Q_S(cfs) =$	1.8622%
	$W_{i(2n)}$ = Proposed Width of Stream required to Assimilate Zinc to Criteria	
	Concentration = $W_S X %_{PZn}$	0.567974 meters
	Proposed Area of Impact due to Zinc * = $(W_{IZn})^2 \times 0.5 =$	0.16 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$\mathbf{Q}_{A(Cu)}C_{S(Cu)} + \mathbf{Q}_{D}C_{P(Cu)} = \mathbf{Q}_{T}C_{C(Cu)}$	
	Q _{A(Cu)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D (cfs)$	
-	$Q_{A(c,a)}C_{S(c,a)} + Q_{D}C_{D(c,a)} = (Q_{D} + Q_{D})C_{C(c,a)}$	
5	SOLVING FOR $Q_{A(c_1)} = [(Q_0C_{P(c_1)}/C_{C(c_1)}) - Q_0)] / (1 - C_{S(Q_1)}/C_{C(Q_1)}) =$	-0.33982185 cfs
Der	%	
ido	Concentration = $0 + 1 = 0$ (cfs) =	-1.0788%
0	W ₍₍₀₎ = Proposed Width of Stream required to Assimilate Copper to Criteria	
	Concentration = $W_s X %_{POH}$	-0.329034 meters
	Proposed Area of Impact due to Copper * = $(W_{(0,0)})^2 \times 0.5 =$	0.05 m ²
	* assuming equal flow across transect and 90° spread at discharge	0.00
	$O_{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	
	O = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
N-N	$Q_{A(NH3-N)}$ , is a finite of the set of	
NHC	$Q_{T} = Q_{S} + Q_{D} (c_{1S})$	
en (	$Q_{A(N+3-N)}U_{S(N+3-N)} + Q_{D}U_{P(N+3-N)} = (Q_{D} + Q_{S}U_{C(N+3-N)})$	2 ISC 702 -F
)BO.	SOLVING FOR $Q_{A(NH3-N)} = [(Q_D C_{P(NH3-N)} / C_{C(NH3-N)} - Q_D)] / (1 - C_{S(NH3-N)} / C_{C(NH3-N)}) =$	3.466/02 cts
Nitr	$%_{P(NH3-N)}$ = Percent of Stream Width Required to Assimilate NH3-N to Criteria	
-eie	Concentration = $Q_{A(NH3\cdot N)} / Q_{S}(cfs) =$	11.0054%
nor	$W_{I(NH3-N)}$ = Proposed Width of Stream required to Assimilate NH3-N to Criteria	
Tmr	Concentration = $W_S X %_{P(NH3:N)}$	3.356648 meters
1	Proposed Area of Impact due to NH3-N * = $(W_{I(NH3-N)})^2 \times 0.5 =$	5.63 m ⁴
	* assuming equal flow across transect and 90° spread at discharge	

3 of 3