

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0024457

 APS ID
 735

 Authorization ID
 1382313

Applicant and Facility Information

Applicant Name	Halifax Area Water & Sewer Authority	Facility Name	Halifax STP
Applicant Address	PO Box 443 (203 Armstrong Street)	Facility Address	S Front Street
	Halifax, PA 17032-0443		Halifax, PA 17032
Applicant Contact	Jeffrey Enders	Facility Contact	Jeffrey Grosser
Applicant Phone	(717) 896-3886	Facility Phone	(717) 896-8149
Client ID	40444	Site ID	251407
Ch 94 Load Status	Existing Hydraulic Overload	Municipality	Halifax Borough
Connection Status	No Exceptions Allowed	County	Dauphin
Date Application Receiv	ved	EPA Waived?	Yes
Date Application Accep	ted January 31, 2022	If No, Reason	
Purpose of Application	Permit renewal for discharge of trea	ted sewage.	

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated domestic wastewater from Halifax Area Water & Sewer Authority (Authority) wastewater treatment plant. The Authority owns, operates, and maintains the wastewater treatment plant. The facility is located in Halifax Borough, Dauphin County. The facility services Halifax Borough (70% of the flow) and Halifax Township (30% of the flow). The sewer collection system is not combined in these areas and there are no bypasses or overflows approved in the collection system. The main pump station and the treatment facility has been upgraded during the last permit cycle. The Department is yet to receive certificate of completion but most of the treatment units are online. The upgraded treatment plant has a hydraulic design capacity of 0.28 MGD, but the annual average design capacity remains at 0.21 MGD. The organic design capacity of the facility is 636lbs/day- BOD5. The discharge goes to Susquehanna River which is classified for Warm Water Fishes (WWF) and Migratory Fishes (MF). The existing NPDES permit was issued on April 27, 2017 with an expiration date of April 30, 2022. The applicant submitted an administratively complete NPDES renewal application to the Department on January 18,2022 and is currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Liquid digested sludge is hauled out periodically by a license hauler to Capital Region Water's Advance sewage treatment plant for further treatment and disposal

Approve	Deny	Signatures	Date
х		<i>J. Pascal Kwedza</i> J. Pascal Kwedza, P.E. / Environmental Engineer	January 13, 2022
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	January 25, 2022
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	January 25, 2022

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing Permit

TRC limitation has been removed and UV intensity monitoring has been added Quarterly E. Coli monitoring has been added.

1.4 Existing Permit and Monitoring Requirements

			Effluent L	imitations			Monitoring Requirements		
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾		
Falameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Required	
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Sample Type	
		Report							
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
					9.0				
pH (S.U.)	XXX	XXX	6.0	XXX	Max	XXX	1/day	Grab	
Dissolved									
Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab	
Total Residual									
Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab	
								24-Hr	
(CBOD5)	44	70	XXX	25.0	40.0	50	1/week	Composite	
(BOD5) Raw		Report					., .	24-Hr	
Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite	
Total Suspended		_							
Solids Raw		Report				2007		24-Hr	
Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite	
Total Suspended	50	70	XXXX	00.0	45.0	00	4 /	24-Hr	
Solids	53	79	XXX	30.0	45.0	60	1/week	Composite	
Fecal Collform				2000					
(CFU/100 ml)	~~~	~~~	~~~	2000 Coo Moon	~~~	10000	1/wook	Croh	
Eccel Coliform	~~~		~~~	Geo iviean	~~~	10000	1/WEEK	Glab	
				200					
(Cr 0/100 mi) May 1 - Sen 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/wook	Grah	
Nitrate-Nitrite as	Report			Geo Mean		1000	1/WEEK	24-Hr	
N	Total Mo	XXX	XXX	Report	XXX	XXX	1/month	Composite	
	Report	7000	7000	Roport	7000	7000	1/month	Composito	
Total Nitrogen	Total Mo	XXX	XXX	Report	XXX	XXX	1/month	Calculation	
Total Kieldahl	Report	7000	7000	Roport	7000	7000	i, iiionan	24-Hr	
Nitrogen	Total Mo	XXX	XXX	Report	XXX	XXX	1/month	Composite	
	Report							24-Hr	
Total Phosphorus	Total Mo	XXX	XXX	Report	XXX	XXX	1/month	Composite	
Ammonia-	Report						.,	24-Hr	
Nitrogen	Total Mo	XXX	XXX	Report	XXX	XXX	1/month	Composite	
						1			

1.5 Discharge, Receiving Waters and Water Supply	^r Information				
Outfall No. 001	_ Design Flow (MGD)	0.21			
Latitude 40° 27' 50.41"	_ Longitude	-76º 56'12.0"			
Quad Name Halifax	Quad Code	1530			
Wastewater Description: Sewage Effluent					
Receiving Waters Susquehanna River	Stream Code	06685			
NHD Com ID 54974881	RMI	92.3			
Drainage Area 19,700	Yield (cfs/mi ²)	0.10			
Q ₇₋₁₀ Flow (cfs) 1,970	Q ₇₋₁₀ Basis	USGS Gage station			
Elevation (ft) 405	Slope (ft/ft)				
Watershed No. 6-C	Chapter 93 Class.	WWF			
Existing Use	Existing Use Qualifier				
Exceptions to Use	Exceptions to Criteria				
Assessment Status					
Cause(s) of Impairment					
Source(s) of Impairment					
TMDL Status	Name				
Background/Ambient Data pH (SU)	Data Source				
Temperature (°F)					
Hardness (mg/L)					
Other:	<u> </u>				
Nearest Downstream Public Water Supply Intake	Veolia Water Company				
PWS Waters Susquehanna River	Flow at Intake (cfs)				
PWS RMI	Distance from Outfall (mi)	15			

Changes Since Last Permit Issuance: None

1.5.1 Water Supply:

The nearest downstream water supply intake is approximately 15 miles downstream by Veolia Water Company on the Susquehanna River above Fort Hunter, Dauphin County. The discharge will not impact the intake because of the distance and dilution.

2.0 Treatment Escility Summary											
2.0 Heatment i achity Summary											
Treatment Facility Na	me: Halifax STP										
WQM Permit No.	Issuance Date										
2205401 A-1	03/12/2020										
2205401	11/8/2005										
	Degree of			Avg Annual							
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)							
	Secondary With										
	Ammonia And	Sequencing Batch									
Sewage	Phosphorus	Reactor	Ultraviolet	0.21							
Hydraulic Capacity	Organic Capacity			Biosolids							
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal							
		Existing Hydraulic									
0.28	636	Overload	Aerobic Digestion	Other WWTP							

Changes Since Last Permit Issuance: The facility has been upgraded to Sequencing Batch Reactor with ultraviolet disinfection.

2.1 Treatment Facility

The treatment plant consists of main influent pump station with a sewage grinder, mechanical fine screen with bar screen bypass, SBR feed pump station, two SBRs, post aeration tank, two aerobic digesters and two UV trains for disinfection. Provision is made to feed Sodium Hydroxide for pH adjustment and Aluminum Sulfate for Phosphorus precipitation if needed.

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from November 1, 2021 to October 31, 2022)

Parameter	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21
Flow (MGD)												
Average Monthly	0.0850	0.0826	0.1037	0.1429	0.1316	0.1804	0.1470	0.1260	0.1144	0.0803	0.0842	0.1017
Flow (MGD)												
Daily Maximum	0.1150	0.1320	0.1620	0.1680	0.1810	0.3160	0.1930	0.1720	0.1750	0.1170	0.1070	0.1400
pH (S.U.)												
Minimum	7.4	7.2	7.4	7.4	7.4	7.3	7.5	7.6	7.5	7.5	7.5	7.2
pH (S.U.)												
Maximum	9.0	7.8	7.5	7.6	7.6	7.6	7.7	7.7	7.8	7.8	7.9	7.6
DO (mg/L)												
Minimum	6.0	6.1	5.9	5.8	5.9	6.3	6.1	6.7	6.4	6.0	5.9	6.2
TRC (mg/L)												
Average Monthly	0.50	0.40	0.50	0.49	0.49	0.49	0.48	0.50	0.49	0.46	0.45	0.50
TRC (mg/L)												
Instant. Maximum	0.50	0.40	0.53	0.52	0.54	0.53	0.52	0.54	0.53	0.52	0.52	0.54
CBOD5 (lbs/day)												
Average Monthly	3.1	2.6	10.6	17.3	15.3	15.7	11.6	8.4	6.6	12.0	11.8	7.8
CBOD5 (lbs/day)												
Weekly Average	4.0	3.0	19.0	21.0	22.0	17.0	17.0	11.0	10.0	22.0	15.0	11.0
CBOD5 (mg/L)							10.0				40.0	
Average Monthly	4.1	3.5	11.3	15.5	14.4	11.6	10.6	7.8	7.0	17.5	16.9	9.6
CBOD5 (mg/L)	5.0	0.5		40.0	40.0		40.0		40.0		00 F	110
Weekly Average	5.0	3.5	14./	19.9	16.9	14.1	16.6	9.8	10.0	28.9	20.5	14.6
BOD5 (lbs/day)												
Raw Sewage Influent	477	100	007	400	00	100	445	00	4.40	100	4.40	445
<pre> <</pre>	177	180	207	123	63	138	115	98	148	120	149	115
BOD5 (IDS/day)												
shr/s Doily Movimum	220	200	519	200	151	244	269	100	216	107	241	170
	230	200	546	200	151	241	200	123	210	107	241	170
BODS (IIIg/L) Bow Sowago Influent												
chr/> Aver Monthly	273	277	244	108	66	103	07	01	164	176	222	130
TSS (lbs/dav)	215	211	244	100	00	103	31	31	104	170		153
Average Monthly	10.4	19	11 9	23.9	17 5	14	9.0	72	48	81	5.8	83
TSS (lbs/dav)	10.7	1.0	11.5	20.0	17.0		0.0	1.2	U	0.1	0.0	0.0
Raw Sewage Influent												
 Aver. Monthly	150	188	131	107	81	111	67	101	161	122	141	93

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	254	303	189	216	145	120	75	144	365	251	241	152
TSS (lbs/day)												
Weekly Average	30.6	2.0	19.5	31.0	24.5	26.5	13.3	9.7	6.8	10.1	10.8	12.5
TSS (mg/L)												
Average Monthly	14.0	2.8	13.5	20.2	15.3	10.1	7.3	6.9	5.1	12.0	8.8	10.3
TSS (mg/L)												
Raw Sewage Influent												
 http://www.aver.index.ever.	222	287	162	93	71	81	55	94	183	178	204	111
TSS (mg/L)												
Weekly Average	39.0	2.8	15.2	27.3	19.0	21.0	8.8	10.2	7.1	15.4	19.0	16.9
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	48	1.31	7	22	681	308.8	806	618	169	831	638	59
Fecal Coliform												
(CFU/100 ml)												
Instant. Maximum	435	4	2420	24200	4840	2420	2420	2420	630	2420	2420	248
Nitrate-Nitrite (mg/L)												
Average Monthly	7.45	2.42	1.30	0.90	0.43	0.47	0.43	0.85	0.63	0.64	0.73	0.41
Nitrate-Nitrite (lbs)												
Total Monthly	171.43	48.30	51.77	37.20	19.50	17.05	15.30	26.66	14.56	13.64	17.67	10.20
Total Nitrogen (mg/L)												
Average Monthly	9.79	3.33	29.50	18.90	28.85	25.97	23.43	29.55	29.63	31.54	28.83	24.71
Total Nitrogen (lbs)												
Total Monthly	225.37	66.60	1174.59	781.82	1306.50	939.92	832.50	931.86	685.16	668.67	693.16	618.30
Ammonia (Ibs/day)												
Average Monthly	0.94	< 0.200	30.95	19.48	34.42	25.92	24.28	24.01	22.05	21.27	18.61	19.93
Ammonia (mg/L)												
Average Monthly	1.27	< 0.200	24.10	14.60	22.80	22.20	20.50	23.60	26070	31.10	24.00	23.90
TKN (mg/L)												
Average Monthly	2.34	0.91	28.20	18.00	24.50	25.50	23.00	28.70	29.00	30.90	28.10	24.30
TKN (lbs)												
Total Monthly	53.94	18.30	1122.82	744.62	1109.40	922.87	817.20	905.20	670.32	655.03	675.49	608.10
Total Phosphorus												
(mg/L) Aver. Monthly	12.20	0.75	2.53	3.00	4.35	3.24	1.59	3.42	1.98	2.83	3.46	2.76
Total Phosphorus (lbs)												
Total Monthly	280.86	15.00	100.75	124.00	197.10	117.18	56.40	107.88	45.64	60.14	83.08	69.0

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	06/30/22	Geo Mean	681	CFU/100 ml	200	CFU/100 ml
Fecal Coliform	05/31/22	Geo Mean	308.8	CFU/100 ml	200	CFU/100 ml
Fecal Coliform	07/31/22	IMAX	24200	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	08/31/22	IMAX	2420	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	08/31/22	IMAX	2420	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	06/30/22	IMAX	4840	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	05/31/22	IMAX	2420	CFU/100 ml	1000	CFU/100 ml

3.2 Effluent Violations for Outfall 001, from: December 1, 2021 To: October 31, 2022

3.3 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate that except Fecal Coliform, permit limits have been met most of the time. Fecal Coliform effluent violations were noted on DMRs for the months of May to August 2022 during the period reviewed and presented in section 3.2 above. UV disinfection capability has been added to the upgraded facility that went online in the fall of 2022 and appeared to have addressed these effluent violations at the facility.

3.4 Summary of Inspections:

Other than the construction completion inspection, the upgraded facility which went online in fall of 2022 has not been inspected for effluent compliance at this time.

4.0 Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.21
Latitude	40º 27' 50.41	II.	Longitude	-76º 56' 11.89"
Wastewater De	escription:	Sewage Effluent	-	

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The facility upgrade installed UV for disinfection and TRC limitation is no longer applicable.

4.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.3.1 WQM 7.0 Stream Model

WQM 7.0 is a water quality model DEP utilizes to establish appropriate effluent limits for CBOD₅, NH₃-N and DO in permits. The model simulates mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria and also simulates mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria and recommends effluent limits.

4.4 Water Quality-Based Limitations

4.4.1 Receiving Stream

The receiving stream is the Susquehanna River. According to 25 PA § 93.90, this stream is protected for Warm Water Fishes (WWF) and Migratory Fishes (MF). It is located in Drainage List o and State Watershed 6-C. It has been assigned stream code 06685. According to the Department's Integrated Water Quality Monitoring and Assessment Report, the Susquehanna River, is impaired for fish consumption due to PCB.

4.4.2 Streamflow:

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No. 01570500 on Susquehanna River in Harrisburg. The Q_{7-10} and drainage area at the gage is 2610 ft3/s and 24100mi² respectively. The resulting yields are as follows:

- $Q_{7-10} = (2610 \text{ ft}^3/\text{s})/ 24100 \text{ mi}^2 = 0.10 \text{ ft}^3/\text{s}/\text{mi}^2$
- $Q_{30-10} / Q_{7-10} = 1.17$
- $Q_{1-10} / Q_{7-10} = 0.95$

The drainage area at discharge calculated from streamStats = $19,700 \text{ mi}^2$ The Q₇₋₁₀ at discharge = $19,700 \text{ mi}^2 \times 0.10 \text{ ft}^3/\text{s}/\text{mi}^2 = 1.970 \text{ ft}^3/\text{s}.$

For WQM modelling purposes, 25% of the flow will be used

Q₇₋₁₀ model = 1.970 ft³/s. x 0.25 = 492.5 ft³/s

4.4.3 NH₃N Calculations

 $NH_{3}N$ calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream $NH_{3}N$ criteria used in the attached computer model of the stream:

* Discharge pH
* Discharge Temperature
* Stream pH
* Stream Temperature
* Background NH₃-N
= 7.4 (July -Sept DMR median)
= 25 ° C (Default)
= 8.2 (Taken from WQN station at Harrisburg)
= 23.5°C (Taken from WQN station at Harrisburg)
= 0.0 (default)

4.4.4 CBOD₅

The attached results of the WQM 7.0 stream model (attachment B) indicates that, for the Halifax Area Water Authority's discharge of 0.21MGD, an average monthly limit (AML) of 25mg/l for CBOD₅ is required to protect the water quality of the stream. This limit is consistent with the existing permit and the STP has been consistently achieving below this limitation. Therefore, a limit of 25mg/l AML, 40mg/l average weekly limit (AWL) and 50 mg/l IMAX is recommended for this permit cycle. Mass limits are calculated as follows:

Mass based AML (lb/day) = $25 \text{ (mg/L)} \times 0.21 \text{ (mgd)} \times 8.34 = 44$

Mass based AWL (lb/day) = $40(mg/L) \times 0.21(mgd) \times 8.34 = 70$

<u>4.4.5 NH₃-N</u>

The attached results of the WQM 7.0 stream model (attachment B) also indicates that no limitation on NH_3 as a monthly average is necessary to protect the aquatic life from toxicity effects. However, ammonia monitoring required in in the existing permit will continue to ensure treatment efficiency.

4.4.6 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O.

NPDES Permit Fact Sheet Halifax STP

criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement.

4.4.7 Total Suspended Solids (TSS):

There is no water quality criteria for TSS. The existing limit of 30 mg/I AML based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and an AWL of 45mg/I per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2) will remain in the permit. Mass limit are calculated as follows:

Mass based AML (lb/day) = $30 \text{ (mg/L)} \times 0.21 \text{ (mgd)} \times 8.34 = 53$

Mass based AWL (lb/day) = $45(mg/L) \times 0.21(mgd) \times 8.34 = 79$

4.4.8 Total Residual Chlorine

The discharge does not have the reasonable potential to cause or contribute to a water quality standards violation for total residual chlorine since the permittee no longer utilizes chlorine for disinfection. Therefore, total residual chlorine limit is not necessary. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. UV is used for disinfection. Daily UV intensity monitoring is required in the permit to ensure efficiency of the UV unit.

4.4.9 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling data were entered into DEP's Toxics Management Spreadsheet (TMS) to calculate WQBELs. The results of the TMS are presented in attachment C. The results of the TMS indicate discharge levels for all pollutants are well below DEP's target quantitation limits and the calculated WQBELs, therefore, no monitoring or limitation was recommended.

The recommended limitations follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

4.4.10 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E.coli. As a result, DEP is including monitoring requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows \geq 1 MGD, 1/quarter for design flows \geq 0.05 and < 1 MGD and 1/year for design flows of 0.002 – 0.05 MGD. Your discharge of 0.21MGD requires 1/quarter monitoring as included in the permit.

4.4.11 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by DEP based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) are required to monitor and report TN and TP during permit renewal and any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. EPA published Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs to be implemented with the original Chesapeake Bay Strategy.

NPDES Permit Fact Sheet Halifax STP

As outlined in the current Phase 3 WIP and the current supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals

As outlined in the current Phase 3 WIP and the current supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals. This facility is classified as a phase 4, and has been monitoring Total Phosphorus, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen, and will continue to monitor and report the daily maximum concentration during the next permit cycle 1/month.

4.4.12 Influent BOD and TSS Monitoring

The permit include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.4.13 Stormwater

There is no stormwater outfall associated with this facility.

4.4.14 Industrial Users

Halifax Area Sewer and Water Sewer Authority's wastewater treatment plant does not receive wastewater from any significant industrial users.

4.4.15 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.21 MGD and the facility receives no flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.4 303d Listed Streams

The discharge is located on a 303d listed stream segment. It is impaired for fish consumption by PCB. The source of the impairment is unknown. This discharge does not contribute to the impairment; therefore, no action is warranted at this time.

5.5 Special Permit Conditions

The permit contains the following special conditions:

• Stormwater Prohibition, Approval Contingencies, Solids Management and Restriction on receipt of hauled in waste under certain conditions.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Faranieter	Average	Weekly	Daily	Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
			5.0				4/1-	
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
		70	2004	05.0	10.0	50		24-Hr
Oxygen Demand (CBOD5)	44	70	XXX	25.0	40.0	50	1/week	Composite
Biochemical Oxygen Demand	_	Report						24-Hr
(BOD5) Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
Total Suspended Solids	53	79	XXX	30.0	45.0	60	1/week	Composite
Total Suspended Solids		Report						24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ultraviolet light intensity								
(mW/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded
				Report				24-Hr
Nitrate-Nitrite as N	XXX	XXX	XXX	Daily Max	XXX	XXX	1/month	Composite
				Report				
Total Nitrogen	XXX	XXX	XXX	Daily Max	XXX	XXX	1/month	Calculation

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations.			Monitoring Requirements		
Baramotor	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required			
Faranieter	Average	Weekly	Daily	Average	Weekly	Instant.	Measurement	Sample	
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре	
								24-Hr	
Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite	
				Report				24-Hr	
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Daily Max	XXX	XXX	1/month	Composite	
				Report				24-Hr	
Total Phosphorus	XXX	XXX	XXX	Daily Max	XXX	XXX	1/month	Composite	

Compliance Sampling Location: At Outfall 001

	7.0 Tools and References Used to Develop Permit
\square	WQM for Windows Model (see Attachment B)
\mathbb{X}	Toxics Management Spreadsheet (see Attachment C)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
\boxtimes	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\square	SOP: Establishing effluent limitation for individual sewage permit.
\square	Other: WIP 3 and Supplement

NPDES Permit Fact Sheet Halifax STP

8. Attachments

A. Topographical Map

B. WQM Model Results

		<u>WQM </u>	7.0 Ef	<u>fluent Limits</u>	<u>6</u>							
	<u>SWP Basin</u> S	tream Code		Stream Name	<u>e</u>							
	07K	6685	SUSQUEHANNA RIVER									
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave, (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)					
92.300	Halifax AWSA	PA0024457	0.210	CBOD5	25							
				NH3-N	25	50						
				Dissolved Oxygen			5					

Thursday, December 29, 2022

Version 1.1

Page 1 of 1

	SWP Basin	Strea Cod	m e	Stre	am Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slop (ft/f	pe PW Withdi it) (mg	'S rawai Id)	Apply FC
	07K	66	85 SUSQ	UEHANN	A RIVER		92.3	00	405.00	19700.00	0.00	0000	0.00	\checkmark
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Terr	<u>Tributary</u> ıp pH		<u>Strean</u> Temp] рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0,00	492,50 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.4	00 2	3.50 8.	20	0.00	0.00	
					Dì	ischarge	Data							
			Name	Per	rmit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	ed Des Di Flu) (m	sign sc Res ow Fa gd)	Di serve Tei ictor (%	sc mp C)	Disc pH		
		Halifa	ax AWSA	PA	0024457	0.210	0 0.21	00 0.	2100	0.000	25.00	7.40		
					Pa	arameter	Data						1	
				Deveneda	r Nomo	D	isc onc (Trib Conc	Stream Conc	Fate Coef				
				Paramete	r Name	(n	1g/L) (I	mg/L)	(mg/L)	(1/days)				
	-	CBOD5 Dissolved Oxygen			25.00	2.00	0.00	1,50						
					5.00	8.24	0.00	0.00						
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWF Basi	9 Strea n Cod	ım le	Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	/S rawal jd)	Apply FC
	07K	66	85 SUSQ	UEHANN	A RIVER		90.09	90	385.00	19702.00	0.0000	0	0.00	
					St	ream Dat	a							
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH	Те	<u>Strean</u> mp	рН	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	0°))	(°	C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	3.50 8.2	20	0.00	0.00	
		Discharge Data												
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Desi Dis Flo (mg	ign sc Res ow Fa gd)	Dis erve Ten ctor (°C	с [пр))	Disc pH		
		Libert	y Travel	PAG	0080489	0.015	0 0.015	0.0	0150 (0.000 2	5.00	7.00		
					Pa	arameter	Data							
			4	Paramete	r Name	Di C	sc T onc C	Trib Sonc	Stream Conc	Fate Coef				
						(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50		_		
		Dissolved Oxygen			5.00	8.24	0.00	0.00						
			NH3-N			:	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

			WQ	N 7.0	Hydr	odyn	<u>amic</u>	Out	<u>outs</u>			
	<u>sw</u>	<u>P Basin</u>	<u>Strea</u>	ım Code				Stream	<u>Name</u>			
		07K	6	685			SUS	QUEHAN	INA RIVE	R		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
92.300	492.50	0.00	492.50	.3249	0.00171	1.288	462.9	359.42	0.83	0.163	23,50	8.20
Q1-1	0 Flow											
92.300	467.88	0.00	467.88	.3249	0.00171	NA	NA	NA	0.80	0.168	23.50	8.20
Q30-	10 Flow	,										
92.300	576.22	0.00	576.22	.3249	0.00171	NA	NA	NA	0.90	0.150	23,50	8.20

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.95	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.17	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	<
D.O. Goal	5		

Page 1 of 1

	SWP Basin S	tream Cod	<u>ə</u>			<u>Str</u>	eam N	lame			
	07K	6685			SUS	QUI	EHAN	NA RIVE	R		
NH3-N	Acute Allocat	ions									
RMI	Discharge Na	Basel me Criter (mg/	ine ion L)	Baseline WLA (mg/L)	Multiple Criterio (mg/L)	e n I	Mull W (m	tiple LA g/L)	Critical Reach	Percent Reduction	ı
92,3	00 Halifax AWSA		2	50		2		50	0	0	_
NH3-N RMI	Chronic Alloc Discharge Nan	ations Baselin ne Criterio (mg/L)	e E n)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)		Muitip WL/ (mg/)le A L)	Critical Reach	Percent Reduction	ur.
92.3	00 Halifax AWSA		.46	25		.46	******	25	0	0	
Dissolv	ved Oxygen Al	locations	;								
			CE	<u>30D5</u>	<u>NH:</u>	<u>3-N</u>		Dissolve	ed Oxygen	Critical	Doroont
RMI	Discharge	Name B	aseline (mg/L)	e Multiple (mg/L)	Baseline (mg/L)	Mu (m	ltiple g/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
				*******		******					

WQM 7.0 D.O.Simu	lation
------------------	--------

SWP Basin	Stream C	ode			<u>Stream Na</u>	<u>ame</u>	
07K	6685			SUS	QUEHANN	A RIVER	
RMI	<u>Total D</u> ; ,2.300 ,ach Width (ft) 462.51		Flow (mgd) <u>Anal</u>	ysis Tempe	rature (°C)	Analysis pH
92.300		0.210)		23.50	1	8.198
Reach Width (ft)		Reach Dep	oth (ft)		Reach WD	Ratio	Reach Velocity (fps)
462.902		1.288	3		359.42	:1	0.827
Reach CBOD5 (mg/L)		Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N	<u>l (mg/L)</u>	Reach Kn (1/days)
2.02		0.011	ſ		0.02		0.916
Reach DO (mg/L)		<u>Reach Kr (</u>	<u>1/days)</u>		<u>Kr Equa</u>	<u>tion</u>	<u>Reach DO Goal (mg/L)</u>
8.241		7.18	1		Tsivogl	ou	5
Reach Travel Time (days	<u>3)</u>		Subreach	Results			
0.163		TravTime	CBOD5	NH3-N	D.O.		
		(days)	(mg/L)	(mg/L)	(mg/L)		
		0.016	2.01	0.02	7.74		
		0.033	2.01	0.02	7.74		
		0.049	2.01	0.02	7.74		
		0.065	2.01	0.02	7.74		
		0.082	2.01	0.02	7.74		
		0.098	2.01	0.02	7.74		
		0.114	2.01	0.01	7.74		
		0.131	2.01	0,01	7,74		
		0.147	2.01	0.01	7.74		
		0.163	2.01	0.01	7.74		

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0024457

C. Toxic Management Spreadsheet

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Disch	arge Stream							
Facility:	Halifax	STP	NPDES Permit No.: PA0024457	Outfall No.: 001					
Evaluation T	ype:	Major Sewage / Industrial Waste	Wastewater Description: Sewage effluent						
Discharge Characteristics									

Design Flow (MGD)*	Hardnoss (mg/l)*		P	artial Mix Fa	Mix Factors (PMFs) Complete Mix Times (min)								
	naruness (mg/l)	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh					
0.21	100	7.4											

					0 if lef	t blank	0.5 if le	ft blank	0) if left blani	k	1 if left blank	
	Discharge Pollutant	Units	Max	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		327									
0	Chloride (PWS)	mg/L		96.6									
Ino	Bromide	mg/L	۷	2									
5	Sulfate (PWS)	mg/L		22.3									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	µg/L		10.7									
0 2	Free Cyanide	µg/L											
Ino	Total Cyanide	µg/L											
ē	Dissolved Iron	µg/L											
	Total Iron	µg/L											
	Total Lead	µg/L	۸	1									
	Total Manganese	µg/L											
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	µg/L		33.3									
	Total Molybdenum	µg/L											
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Instructions Discharge Stream

Receiving Surface Water Name:

No. Reaches to Model: 1

Statewide Criteria

Halifax STP, NPDES Permit No. PA0024457, Outfall 001

O Great Lakes Criteria

ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	006685	92.3	405	19700			Yes
End of Reach 1	006685	90.09	385	19702			Yes

Q 7-10

Location	DMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Timo	Tributary		Stream		Analysis	
Location	EXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	92.3	0.1	492.5									100	8.2		
End of Reach 1	90.09	0.1													

Q_h

Location	DMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Timo	Tributary		Stream		Analysis	
Location	rtivii	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	92.3														
End of Reach 1	90.09														

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0024457

Sulfate (PWS)

0

0

0

250,000

250,000

N/A

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results							H	alifax STP, NPDES Permit No. PA0024457, Outfall 001	
Instructions Results	RETURN	RETURN TO INPUTS			PDF	PRINT	r () () A	All 🔿 Inputs 🔿 Results 🔿 Limits	
 Hydrodynamics Wasteload Allocations 									
✓ AFC CCT	Г (min): 1	15	PMF:	0.056	Ana	lysis Hardne	ss (mg/l):	100 Analysis pH: 8.17	
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A		
Chloride (PWS)	0	0		0	N/A	N/A	N/A		
Sulfate (PWS)	0	0		0	N/A	N/A	N/A		
Total Copper	0	0		0	13.439	14.0	1,195	Chem Translator of 0.96 applied	
Total Lead	0	0		0	64.581	81.6	6,967	Chem Translator of 0.791 applied	
Total Zinc	0	0		0	117.180	120	10,224	Chem Translator of 0.978 applied	
✓ CFC CCT	Г (min): 7.	20	PMF:	0.385	Ana	Ilysis Hardne	ess (mg/l):	100 Analysis pH: 8.20	
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A		
Chloride (PWS)	0	0		0	N/A	N/A	N/A		
Sulfate (PWS)	0	0		0	N/A	N/A	N/A		
Total Copper	0	0		0	8.956	9.33	5,460	Chem Translator of 0.96 applied	
Total Lead	0	0		0	2.517	3.18	1,862	Chem Translator of 0.791 applied	_
Total Zinc	0	0		0	118.139	120	70,125	Chem Translator of 0.986 applied	
☑ THH CCT	Г (min): 7	20	PMF:	0.385	Ana	Ilysis Hardne	ess (mg/l):	N/A Analysis pH: N/A	
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments	
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A		
Chloride (PWS)	0	0		0	250,000	250,000	N/A		

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0024457

Total Copper	0	0		0	N/A	N/A	N/A				
Total Lead	0	0		0	N/A	N/A	N/A				
Total Zinc	0	0		0	N/A	N/A	N/A				
☑ CRL CC	T (min): 7	20	PMF:	0.577	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A			
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments			
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A				
Chloride (PWS)	0	0		0	N/A	N/A	N/A				
Sulfate (PWS)	0	0		0	N/A	N/A	N/A				
Total Copper	0	0		0	N/A	N/A	N/A				
Total Lead	0	0		0	N/A	N/A	N/A				
Total Zinc	0	0		0	N/A	N/A	N/A				
☑ Recommended WQBELs & Monitoring Requirements											

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (Ibs/day)	MDL (Ibs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring