

Southwest Regional Office CLEAN WATER PROGRAM

Application

Major / Minor

Type Renewal

Facility Type Municipal

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application

APS ID

No. **PA0024490**

814317

Authorization

D **1257359**

iviajoi / iviirioi <u>iv</u>			1237333
	Applicant and	Facility Information	
Applicant Name	Rockwood Borough Municipal Authority Somerset County	Facility Name	Rockwood Borough STP
Applicant Address	669 Somerset Avenue	Facility Address	163 River Road
	Rockwood, PA 15557-1034	<u> </u>	Rockwood, PA 15557
Applicant Contact	Cary A. Phillippi	Facility Contact	Chet Cyga
Applicant Phone	(814)926-2833	Facility Phone	(814)279-5224
Client ID	64637	Site ID	238610
Ch 94 Load Status	Not Overloaded	Municipality	Black Township
Connection Status	No Limitations	County	Somerset
Date Application Red	ceived January 2, 2019	EPA Waived?	No
Date Application Acc	cepted _ January 8, 2019	If No, Reason	Minor CSO
Purpose of Application	on NPDES Permit Renewal for D	ischarge of Treated Se	wage Effluent.

Summary of Review

The Rockwood Borough Municipal Authority has applied for a renewal of NPDES Permit PA0024490, which was last issued on July 1st, 2014 and it expired on June 30, 2019. The renewal permit was submitted to the Department on May 17, 2019 which was considered late.

The wastewater treatment plant includes the following facilities: influent pumping station, aerated grit chamber, comminutor / bypass bar screen, two aeration lagoons, two chlorine contact tanks, sludge drying beds, and effluent flow meter.

The NPDES permit authorized a discharge of 0.30 MGD from the Rockwood Borough STP to the Casselman River. The Casselman River is classified as WWF at the point of discharge.

The collection system is a combined system and contains two permitted CSO Outfalls No. 002 & 005, which the applicant requests to re-permit.

WQM Permit No. 56904045 A-3 issued at September 23, 2020 authorized to modify the disinfection system at the STP from chlorine gas to sodium hypochlorite. The Borough has proposed the change to provide a safer work environment for the operators and employees.

The permit writer did a site visit on August 10, 2022 with the consultant and the authority. A letter was sent on August 22, 2022 to address the following technical deficiencies:

Approve	Deny	Signatures	Date
X		Hain Bldalli	
		Hazim Aldalli / Environmental Engineering Specialist	October 12, 2023
х		MAHBUBA IASMIN	
		Mahbuba lasmin, Ph.D., P.E./ Environmental Engineering Manager	January 5, 2023

Summary of Review

- The following effluent sampling results are missing within the renewal application: Total Residual Chlorine (TRC),
 Temperature, Total Nitrogen, Ammonia-Nitrogen, Total Phosphorus, Total Dissolved Solids (TDS), Bromide, Sulfate,
 Oil & Grease, Aluminum (Al), Iron (Fe), and Manganese (Mn).
- Application (pages 2 and 3) is not showing details about the sludge disposal process including (if any) land application, off-site disposal on a permitted landfill, and facility biosolids production in tons/day.
- On October 24, 2007, the Department received a Post Construction Compliance Monitoring Plan (PCCMP) within
 Addendum to Long Term Control Plan for Combined Sewer Overflows submitted by The EADS Group, Inc. The
 PCCMP received was not approvable due to technical deficiency, i.e., lack of technical information. DEP is
 requesting to resubmit a modified PCCMP and a report on PCCMP demonstrating compliance with elimination
 and/or capture of at least 85% of the wet weather overflows in its collection system on an annual average basis.
 USEPA's CSO Post Construction Compliance Monitoring Guidance (May 2012, EPA-833-K-11-001) need to be
 followed to develop PCCMP for your facility.
- In October 24, 2007 submission, it was noted that Outfall 004 was still operating as a combined sewer outfall (CSO) in addition to Outfalls 002 and 005. During the site visit on August 10, 2022, the Borough noted that only Outfalls 002 and 005 are currently operating as CSOs. DEP need to confirm the status of Outfall 004.
- Submit/re-submit the monthly CSO supplemental reports (Form 3800-FM-BPNPSM0441 and 0442) listed in Part A-IB of your current Permit.
- A Preparedness, Prevention, and Contingency (PPC) plan for the stormwater outfalls needs to be submitted and approved by the Department.
- Include the infiltration/inflow elimination program details outlined in Page 14 of 2021 Chapter 94 report.

The Authority's engineer responded back on October 20, 2022, with the requested information and documents.

CSO Status

DEP issued a conditional LTCP approval back on August 17, 2007. The Authority commenced a sewer separation project in 2007. CSOs 004, and 007 were closed and sealed. Outfalls 003, 006, and 008 were eliminated.

The Authority has taken the "Presumption Approach" for the remaining CSO Outfalls 002 and 005 to capture 85% of the CSO flow for treatment and limit the number of overflows from these CSOs to 4 events per year. The authority managed to achieve these goals which were verified through the renewal application data and the reviewed CSO (Monthly and Annually) reports. The submitted information were also confirmed during the site visit on September 12, 2023.

Nine Minimum Controls (NMCs) information submitted via CH94 reports and available in the Operation's inspection reports were reviewed. No work been mentioned towards "Maximize Flow to Sewage Treatment Plant" or "Plan to Implement Additional Collection Storage" under NMCs 2 & 4. DEP still missing any I&I removal work (proposed or implemented) within the NMCs plan. Applicant responded to these deficiencies with a revised plan that lightens the next steps for each control and the reporting mechanism under CH94 reports. Applicant was asked to show compliance and plan implementation progress within the coming CH94 report for 2023.

A Post Construction Compliance and Monitoring Plan (PCCMP) was submitted to DEP in October 2022 which was reviewed following USEPA's *CSO Post Construction Compliance Monitoring Guidance* (EPA-833-K-11-001, May 2012) and PADEP's "Water Quality Monitoring Protocols for Streams and Rivers, 2021" guidance document. The PCCMP includes the location, monitoring frequencies, and the monitored parameters. However, several deficiencies were noticed including the water quality sampling technique, the criteria for encountering the wet weather volume, and how to measure CSO flows entering the WWTP. The applicant responded to these deficiencies to start the approval process which included reviewing all the available information besides the received plan. The most updated available reports (CH94 reports, inspection reports, and site visits) were reviewed. The plan was finally approved, and it will be attached to the final permit so that the Rockwood Borough MA can start implementing the plan.

Summary of Review

Reviewing the updated LTCP addendum submitted on October 20, 2022 shows that the authority fulfilled the original LTCP conditional approval obligations, which are discussed above.

Part C-107 will be added to the permit outlining the CSO obligations and ongoing and future tasks under the approved LTCP.

A Preparedness, Prevention and Contingency (PPC) plan was submitted to DEP on November 8, 2022. The PPC plan was reviewed and approved following the current regulations and DEP's SOPs. The permittee is required to comply with this plan and make it available during DEP inspection events.

The permittee mentioned in the renewal application that there was/were bypass/overflow incident(s), but no separate sheet was filled based on DEP- SOP Permit Application Instructions (3800-PM-BCW0342a, Rev. 8/2021). In addition to the CSO requirements under the current permit, the permittee is required to develop and implement a High Flow Management Plan (HFMP) to address the impact of high flows to the treatment plant during wet weather. The permittee currently does not have a HFMP. The Part C-9 permit condition has been included in the permit to address HFMP requirement.

EPA Pretreatment Program Status

The Rockwood Borough STP treatment plant has the EPA waiver for Industrial Pretreatment Program development since it is a minor sewage treatment facility with design flow less than 5.0 MGD.

The facility has one industrial user, i.e., a plating factory named Rockwood Manufacturing. Rockwood Manufacturing is a categorial industrial facility and a significant industrial user (SIU) per 40 CFR § 403.3. The Department issued a No Exposure certification for stormwater associated with industrial activity (NOEXSW178) to this facility on March 27, 2020. The Borough enforces pretreatment standards through sanitary sewer regulations/ordinances.

Summary of Data Monitoring Reports (DMRs)

Checking on the eDMR reports from 2018-2023, several exceedances (especially for TRC and Fecal Coliform) over the last five years were noticed but no consistency with those violations were observed. Additionally, no DMR violations were noted on the inspection report dated July 15, 2021.

The Operations compliance report (attached to this factsheet) has an open enforcement for the STP based on the violations on failure to respond to the sampling frequency of Ammonia Nitrogen (NH₃-N) sampling of 1/month under the last permit. The Notice of Violation was issued on February 11, 2020. When checking the last two years of eDMRs (2022-2023), the permittee shows compliance with (NH₃-N) sampling frequency. Operations will be asked to resolve the open violations based on recent evaluation before issuing the draft permit. As an update to the previous statement, Operations resolved the open violation and it's showed within the open violations reports per Client ID over WMS.

An appropriate evidence of the Act – 14 PL 834 Municipal Notification was provided by October 4 & December 18, 2018 letters. No comments were received.

Sludge use and disposal description and location(s): No sludge was removed or applied according to the renewal application and DEP's site visits.

Anti-Backsliding

No effluent limits have been relaxed compared to the effluent limits imposed during the last permit cycle. Additionally, the permittee is not asking for relaxation of limits.

Summary of Review

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Draft permit issuance is recommended. Following includes additional information and justification used to develop permit effluent limits and/or monitoring requirements.

Discharge, Receiving Waters and Water Supply Infor	rmation	
Outfall No. 001	Design Flow (MGD) 0.30	
Latitude 39° 54' 42"	Longitude79º 9' 17"	
Quad Name Rockwood	Quad Code 39079H2	
Wastewater Description: Sewage Effluent		
Receiving Waters Casselman River (WWF)	Stream Code 38579	
NHD Com ID <u>134770226</u>	RMI 21.89	
Drainage Area 341	Yield (cfs/mi²) 0.047	
Q ₇₋₁₀ Flow (cfs) <u>16.1</u>	Q ₇₋₁₀ Basis USGS StreamSt	ats
Elevation (ft) 2398	Slope (ft/ft) 0.0015	
Watershed No. 19-F	Chapter 93 Class. WWF	
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s) Aquatic	Life	
Cause(s) of Impairment METALS; PH; ALUMINU	M; IRON; MANGANESE; PH, LOW	
Source(s) of Impairment		_
TMDL Status Final	Name Casselman River	
Background/Ambient Data	Data Source	
pH (SU)		
Temperature (°F)		
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake	INDIAN CREEK VALLEY WATER AUTH	
PWS WatersYoughiogheny River	Flow at Intake (cfs) 64.7	
PWS RMI <u>62.7</u>	Distance from Outfall (mi) >30.0	

Changes Since Last Permit Issuance:

- Q₇₋₁₀ flow, elevation, drainage area, and low flow yield were all updated to match USGS Stream Stats new data (see Appendix E).
- DEP updated its WQM 7.0 criteria for Ammonia-Nitrogen (NH₃-N) in 2019. Limits and conditions of this permit need to be redeveloped to an adequate level to protect water quality.
- *E. Coli* monitoring requirements will be introduced to this renewal which is in compliance with DEP SOP No. BCW-PMT-033 revised March 24, 2021.

Other Comments: None.

Discharge, Receiving Waters and Water Supply Infor	mation	
Outfall No. 002	Design Flow (MCD)	O (propinitation indused)
Outfall No. <u>002</u> Latitude 39º 54' 44"	Design Flow (MGD)	0 (precipitation induced) -79° 9' 38"
	Longitude Quad Code	•
Quad Name Rockwood Wastewater Description: Combined Sewer Overflo		39079H2
wastewater Description. Combined Sewer Overno	W	
Receiving Waters Casselman River (WWF)	Stream Code	38579
NHD Com ID 134770226	 RMI	
Drainage Area	Viold (afa/mi2)	
Q ₇₋₁₀ Flow (cfs)		
Elevation (ft)	Slone (ft/ft)	
Watershed No. 19-F	Chapter 93 Class.	WWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	E(:	
Accessment Status		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status	Name	
B 1 1/4 1/4 1B 1	D 4 0	
Background/Ambient Data pH (SU)	Data Source	
Temperature (°F)		
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake	None.	
PWS Waters	Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	

Discharge, Receiving Waters and Water Supply Inforr	mation	
Outfall No. 005	Design Flow (MGD)	0 (precipitation induced)
Latitude 39° 54′ 56″	Longitude	-79° 9' 07"
Quad Name Rockwood	Quad Code	39079H2
Wastewater Description: Combined Sewer Overflov	V	
Receiving Waters Coxes Creek (WWF)	Stream Code	38944
NHD Com ID 134770226	RMI	
Drainage Area	Yield (cfs/mi²)	
Q ₇₋₁₀ Flow (cfs)	Q ₇₋₁₀ Basis	
Elevation (ft)	Slope (ft/ft)	
Watershed No. 19-F	Chapter 93 Class.	WWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Impaired		
	relopment or Redevelopment) - I	Habitat Alterations,
Cause(s) of Impairment Abandoned Mine Drainage	<u>e</u>	
Source(s) of Impairment Suspended Solids		
TMDL Status Final	Name Coxes Cree	k Watershed
Background/Ambient Data pH (SU)	Data Source	
Temperature (°F)		
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake	None.	
PWS Waters	Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	

Treatment Facility Summary

Treatment Facility Name: Rockwood Borough STP

WQM Permit No.	Issuance Date
5690405 A-3	9/23/2020
5690405 A-2	8/21/2006
5690405 A-1	5/13/1999
5690405	7/30/1991

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Aerated Lagoon	Chlorine Gas	0.211

Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.30	500	Not Overloaded	Off Site	Landfill

Changes Since Last Permit Issuance: WQM 5690405 A-3 issued on 9/23/2020 approved the modification of sewage facilities consisting of:

- One 44 gpd Chemical Feed Pump
- One 94 gpd Chemical Feed Pump
- A 250 mL Chlorine Calibration Column
- A 200 gallons Double Wall Chemical Storage Tank

The purpose of this project is to modify the disinfection system at the STP from chlorine gas to sodium hypochlorite. The Borough has proposed the change to provide a safer work environment for the operators and employees.

Other Comments: None.

Operations Compliance Check Summary Report

Facility: Rockwood Boro STP

NPDES Permit No.: PA0024490

Compliance Review Period: 2/2017 – 2/2022

Inspection Summary:

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
3220975	07/15/2021	Combined Sewer Overflow-Non- Sampling	PA Dept of Environmental Protection	No Violations Noted
3212689	06/15/2021	Routine/Partial Inspection	PA Dept of Environmental Protection	No Violations Noted
3008941	02/11/2020	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted
2806317	10/10/2018	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted
2806320	10/10/2018	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

VIOL ID	VIOLATION DATE	VIOLATION TYPE	VIOLATION TYPE DESC	RESOLVED DATE
879708	02/11/2020	92A.61(C)	NPDES - Failure to monitor pollutants as required by the NPDES permit	03/10/2020

Open Violations by Client ID:

No open violations for Client ID 64637

Enforcement Summary:

	ENF TYP	ENF CREATIO	VIOLATION	# OF VIOLATION	PENALT Y	AMOUNT RECEIVE	ENF FINALSTATU	ENF CLOSE
	_			_				
ENF ID	E	N DATE	S	S	AMOUNT	D	S	D DATE

NPDES Permit Fact Sheet Rockwood Borough STP

DMR Violation Summary:

MONITORING END DATE	OUTFALL	PARAMETER	STATISTICAL BASE CODE	PERMIT VALUE	SAMPLE VALUE	UNIT OF MEASURE
8/31/2021	1	Fecal Coliform	Instantaneous Maximum	1000	2420	CFU/100 ml
8/31/2020	1	Total Suspended Solids	Weekly Average	112	120	lbs/day
8/31/2020	1	Total Suspended Solids	Weekly Average	45	70	mg/L
3/31/2020	1	Total Suspended Solids	Weekly Average	112	113.3	lbs/day
9/30/2018	1	Fecal Coliform	Instantaneous Maximum	1000	1733	CFU/100 ml
9/30/2018	1	Flow	Average Monthly	0.3	0.3295	MGD
8/31/2018	1	Fecal Coliform	Instantaneous Maximum	1000	2420	CFU/100 ml
2/28/2018	1	Flow	Average Monthly	0.3	0.3309	MGD

DMRs were evaluated from 2/2017 to present.

Compliance Status:

Permittee currently has an open enforcement.

Completed by: John Murphy

Completed date: 2/1/2022

	Development of Effluent Limitations										
Outfall No.	001		Design Flow (MGD)	0.30							
Latitude	39° 54' 42.0	00"	Longitude	-79° 9' 17.00"							
Wastewater I	Description:	Sewage Effluent									

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/L)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli (No./100 ml)	Report	IMAX	-	92a.61
D.O. (mg/L)	4.0	Min	-	BPJ
NH ₃ -N (mg/L)	25	Average Monthly		BPJ
INI 13-IN (IIIg/L)	50	IMAX	-	DPJ
Total N (mg/L)	Report	Average Monthly	-	92a.61
Total P (mg/L)	Report	Average Monthly	-	92a.61

Comments: The existing discharge was evaluated using WQM 7.0 for CBOD₅, Ammonia Nitrogen and Dissolved Oxygen. Stream water flow ratio to wastewater discharge = 10.406/0.3= 34.0.

The Total Suspended Solids (TSS), pH, and Fecal Coliform parameters are not evaluated using WQM 7.0. The bases for the proposed technology-based limitations are listed in the above table.

Water Quality-Based Limitations

The following limitations were determined through water quality modeling, output files attached (Appendix A, B, and D):

Parameter	Limit (mg/L)	SBC	Model
TRC	0.5	Average Monthly	DEP TRC Calculation
CBOD ₅ (May1-Oct 31)	25	Average Monthly	WQM7.0
CBOD ₅ (Nov 1- Apr 30)	25	Average Monthly	WQM7.0
NH ₃ -N (May1-Oct 31)	25	Average Monthly	WQM7.0
NH ₃ -N (Nov 1- Apr 30)	25	Average Monthly	WQM7.0
Dissolved Oxygen	4.0	Minimum	WQM7.0

Per DEP-SOP – Establishing Effluent Limitations for Individual Sewage Permits, Revised, March 24, 2021, for existing discharges, for Ammonia-Nitrogen if WQM modeling results for summer indicates that an average monthly limit of 25 mg/L is acceptable, the application manager will generally establish a year-round monitoring requirement for Ammonia-Nitrogen, at a minimum. A year around WQBEL AML of 25 mg/L and an Ins. Max of 50 mg/L with a weekly sampling frequency will be imposed for this renewal. The previous permit did not include a limit for Ammonia-Nitrogen, and only required monitoring.

Checking on the eDMR, the facility can meet the newly imposed Ammonia limit as the plant has achieved effluent limits of NH₃-N lower than the propose limit. No compliance schedule is necessary (see Appendix C for the last five years of Ammonia's eDMR).

Best Professional Judgment (BPJ) Limitations

A minimum Dissolved Oxygen (DO) limit of 4.0 mg/L was established based on Best Professional Judgment (BPJ) to ensure adequate operation and maintenance as listed in the table under Technology-Based Limitations section.

Casselman River TMDL

Casselman River segment (26 miles) is affected by pollution from Resource Extraction (RE). This pollution has developed a TMDL for metals over the watershed. All other river segments within the watershed are affected by Abandoned Mine Drains (AMD).

Parameter*	Criterion Value (mg/L)	Total Recoverable/Dissolved
Aluminum (AI)	0.75	Total Recoverable
Iron (Fe)	1.5	30 days average; Total Recoverable
Manganese (Mn)	1.00	Total Recoverable
pН	6.0-9.0	N/A

^{*}Source: EPA "Final Casselman River TMDL" May 2009.

This facility is considered a "negligible Discharge Facility" as identified in Casselman River Watershed TMDL report (approved June 9, 2009), and the aggregate WLAs were based on the sum of the available information regarding flow from each facility multiplied by the applicable numeric water quality criteria.

The contribution for Aluminum, Iron, and Manganese from a sewage plant of this nature is expected to be insignificant to the water quality criteria and therefore this facility been considered a "Negligible Discharge". The application's effluent sampling results for TMDL metals showed no in stream water quality criteria exceedance. Therefore, no limits or monitoring requirements are needed to be imposed for this renewal. The permittee will be asked again to show no violations to the water quality criteria for this TMDL through the renewal application effluent sampling.

Total Dissolved Solids (TDS) and its Major Constituents

Total Dissolved Solids (TDS) and its major constituents including sulfate, chloride, and bromide have emerged as pollutants of concern. The conservative nature of these solids allows them to accumulate in surface waters and they may remain a concern even if the immediate downstream public water supply is not directly impacted. Bromide has been linked to formation of disinfection byproducts at increased levels in public water systems.

Because of actions associated with Triennial Review 13, the Environmental Quality Board has directed DEP to collect additional data if the Bromide is greater than 1 mg/L, and the TDS is greater than 1000 mg/L or the TDS exceeds 20,000 lbs/day. The maximum reported concentration for Bromide is <0.152 mg/L as listed in the renewal application dated 12/19/2018. The maximum reported concentration for TDS is 373 mg/L as listed in the renewal application dated 12/19/2018.

Therefore, monitoring is not required for TDS, Bromide, Chloride, and Sulfate.

TN and TP Monitoring

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). Sewage discharges with design flows > 2,000 gpd require monitoring. Casselman River segment within the facility is not impaired for nutrients. Per DEP-SOP No. BCW-PMT-033 revised March 24, 2021, 1/year monitoring for Total Nitrogen and Total Phosphorus will be applied at Outfall 001.

Disinfection

Total Residual Chlorine (TRC) limits are updated based on the DEP preset values entered in the Department Calculation Sheet (see Appendix D) for chlorine stream and discharge demands. Pursuant to State Regulation 92a.48(b)(1), a BAT limit of 0.5 mg/L and IMAX of 1.6 mg/L will be imposed. Per eDMR values, the plant has achieved effluent limits of TRC lower than these limits; no compliance schedule is necessary to be given.

E. Coli

Pursuant to 25 Pa. code § 92a.61(b), quarterly monitoring for *E. Coli* will be imposed at Outfall 001 per DEP SOP No. BCW-PMT-033 revised March 24, 2021.

Mass Loadings

Mass loading limits are applicable for publicly owned treatment works (POTW). Current policy requires average monthly and average weekly mass loading limits be established for CBOD₅ and TSS.

Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

Influent Monitoring

Per DEP SOP No. BCW-PMT-033 revised March 24, 2021, for POTWs with design flows greater than 2,000 GPD, influent BOD₅ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

Monitoring Frequency Considerations

For pH, Dissolved Oxygen (DO) and Total Residual Chloride (TRC), a monitoring frequency of "1/day" has been imposed. The daily monitoring frequencies are consistent with current policy and Table 6-3 of DEP's Technical Guidance for the Development and Specification of Effluent Limitations. Daily monitoring is required for these parameters to provide minimum assurance that the facility is being operated properly.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	4.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	62	95	XXX	25.0	38.0	50	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
TSS	75	112	XXX	30.0	45.0	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Ammonia-Nitrogen	Report	XXX	XXX	25.0	XXX	50.0	1/week	8-Hr Composite
E. Coli (No./100ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab

Compliance Sampling Location: Outfall 001

Other Comments: None.

Appendix A – WQM 7.0 Modeling – Summer Conditions

Input Data WQM 7.0

	SWP Basin			Stre	am Name		RMI	Eleva (fi		Drainage Area (sq mi)	Slope (ft/ft)	PW Withdr (mg	awal	Apply FC
	19F	385	579 CASSI	ELMAN R	IVER		21.89	0 23	395.00	341.00	0.00150		0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	<u>Fributary</u> D pH	Ten	Stream np	pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	()		
Q7-10 Q1-10 Q30-10	0.047	16.10 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	144.00	2.95	25	.00 7.0	00	0.00	0.00	
					Di	scharge l	Data							
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Rese Fac		ip p	isc oH		
		Rock	wood STP	PAG	024490	0.300	0.300	0 0.30	00 0	.000 2	0.00	7.00		
					Pa	arameter l	Data							
				Paramete	r Name				tream Conc	Fate Coef				
				aramete	Ivallie	(m	ıg/L) (m	ng/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	am Name		RMI		evation (ft)	Drainage Area (sq mi)	Slop (ft/f	Witho	VS Irawal gd)	Apply FC
	19F	385	579 CASSI	ELMAN R	IVER		18.9	50	2386.00	351.0	0.00	150	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pl	н	<u>Strear</u> Temp	m pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.048	16.70 0.00 0.00		0.000 0.000 0.000	0.000 0.000 0.000	0.0	150.00	2.9	95 2	5.00	7.00	0.00	0.00	
					Di	ischarge l	Data						1	
			Name	Per	mit Numbe	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	erve T ctor	oisc emp °C)	Disc pH		
		Rock	wood STP	PAC	0024490	0.300	0.30	0.0	0000	0.000	20.00	7.00		
					Pi	arameter	Data							
			F	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
	_					(m	ig/L) (i	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		19F	3	8579			CAS	SSELMA	N RIVER			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
21.890	16.10	0.00	16.10	.4641	0.00150	2.95	144	48.81	0.04	4.608	24.86	7.00
Q1-1	0 Flow											
21.890	10.30	0.00	10.30	.4641	0.00150	NA	NA	NA	0.03	7.088	24.78	7.00
Q30-	10 Flow	,										
21.890	21.90	0.00	21.90	.4641	0.00150	NA	NA	NA	0.05	3.413	24.90	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

WQM 7.0 D.O.Simulation

SWP Basin S	tream Code			Stream Nam	<u>ie</u>		
19F	38579	CASSELMAN RIVER					
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperat	ture (°C)	Analysis pH	
21.890	0.30	0		24.860		7.000	
Reach Width (ft)	Reach De	pth (ft)		Reach WDRa	atio_	Reach Velocity (fps)	
144.000	2.95	0		48.814		0.039	
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (I	mg/L)	Reach Kn (1/days)	
2.64	0.04			0.70		1.017	
Reach DO (mg/L)	Reach Kr (Kr Equation	_	Reach DO Goal (mg/L)	
8.124	0.50	3		O'Connor		5	
Reach Travel Time (days)		Subreach	Results				
4.608	TravTime		NH3-N	D.O.			
	(days)	(mg/L)	(mg/L)	(mg/L)			
	0.461	2.57	0.44	7.02			
	0.922	2.50	0.27	6.55			
	1.382	2.43	0.17	6.42			
	1.843	2.36	0.11	6.48			
	2.304	2.30	0.07	6.63			
	2.765	2.24	0.04	6.81			
	3.225	2.17	0.03	6.99			
	3.686	2.11	0.02	7.16			
	4.147	2.06	0.01	7.31			
	4.608	2.00	0.01	7.45			

WQM 7.0 Wasteload Allocations

	SWP Basin 19F		am Code 88579			ream Name ELMAN RIVE	R		
NH3-N	l Acute Alloc	ation	ıs						
RMI	I Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	1
21.8	390 Rockwood S	TP	11.27	50	11.27	50	0	0	_
RMI	I Chronic All Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
									_
21.8	390 Rockwood S	TP	1.38	25	1.38	25	0	0	-
	390 Rockwood S		ations	25 CBOD5	1.38 <u>NH3-N</u>		0 ved Oxyger	1	Percent
	ved Oxygen	Alloc	ations	CBOD5	NH3-N Baseline Mu		ved Oxygen	1 Critical	Percent Reduction

WQM 7.0 Effluent Limits

	SWP Basin S	Stream Code 38579					
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
21.890	Rockwood ST	P PA0024490	0.300	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

Appendix B - WQM 7.0 Modeling - Winter Conditions

Input Data WQM 7.0

	SWF Basii			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	19F	38	579 CASSI	ELMAN R	RIVER		21.89	90 23	95.00	341.00	0.00150)	0.00	~
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	<u>Fributary</u> D pH	Ter	<u>Strear</u> mp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°(C)		
Q7-10 Q1-10 Q30-10	0.094	16.10 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	144.00	2.95	5	.00 7.0	00	0.00	0.00	
					D	ischarge	Data						1	
			Name	Per	mit Numbe	Existing Disc			Rese Fac		np	isc pH		
		Rock	wood STP	PA	0024490	0.300	0.300	0.300	0 0	.000 1	15.00	7.00		
					P	arameter	Data							
			F	Paramete	r Name				ream Conc	Fate Coef				
						(m	ng/L) (n	ng/L) (r	ng/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	12.51	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWF Basi			Stre	am Name		RMI	Elevat		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawa (mgd)	Apply I FC
	19F	385	579 CASS	ELMAN R	IVER		18.95	50 238	36.00	351.00	0.00150	0.0	00 🗹
					St	tream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Tem	<u>Stream</u> np pH	
Contai	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10 Q1-10 Q30-10	0.096	16.70 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	150.00	2.95		5.00 7.0	00	0.00 0.	00
					D	ischarge [ed Design		Dis	c Di	sc	

	Dis	scharge D	ata						
Name	Permit Number	Disc	Di:	sc ow	Disc Flow	Res Fa	erve T ctor	emp	Disc pH
Rockwood STP	PA0024490	0.3000	0.3	8000	0.00	00 (0.000	15.00	7.00
	Pa	rameter D	ata						
Par	rameter Name						Fate Coef		
1 41	ameter Hame	(mg	/L)	(mg/	L) (I	mg/L)	(1/days)		
CBOD5		2	5.00	2	.00	0.00	1.50		
Dissolved Ox	xygen		4.00	12	.51	0.00	0.00		
NH3-N		2	5.00	0	.00	0.00	0.70		
	Rockwood STP Par CBOD5 Dissolved Ox	Name Permit Number Rockwood STP PA0024490 Pa Parameter Name CBOD5 Dissolved Oxygen	Name Permit Number Existing Disc Flow (mgd) Rockwood STP PA0024490 0.3000 Parameter Darameter Darameter Name Disc Co Parameter Name (mg CBOD5 2 Dissolved Oxygen	Name Permit Number Disc Flow (mgd) Disc Flow (mgd) Disc Flow (mgd) Disc Flow (mgd) Rockwood STP PA0024490 0.3000 0.3 Parameter Data Disc Conc (mg/L) CBOD5 25.00 Dissolved Oxygen 4.00	Name Permit Number Existing Disc Flow (mgd) Permitted Disc Flow (mgd) Rockwood STP PA0024490 0.3000 0.3000 Parameter Data Disc Conc Conc (mg/L) (mg/L) Trib Conc Conc CBOD5 25.00 2 Dissolved Oxygen 4.00 12	Name	Name Permit Number Existing Disc D	Name Permit Number Existing Disc D	Name Permit Number Existing Disc Flow (mgd) Permitted Disc Flow (mgd) Design Disc Flow (mgd) Reserve Flow (mgd) Disc Temp (°C) Rockwood STP PA0024490 0.3000 0.3000 0.0000 0.0000 0.000 15.00 Parameter Name Disc Conc Conc Conc (mg/L) Trib Conc Conc Conc Conc Conc Conc Conc Conc

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code			1	Stream	<u>Name</u>			
		19F	3	8579			CAS	SSELMA	AN RIVER			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
21.890	16.10	0.00	16.10	.4641	0.00150	2.95	144	48.81	0.04	4.608	5.28	7.00
Q1-1	0 Flow											
21.890	10.30	0.00	10.30	.4641	0.00150	NA	NA	NA	0.03	7.088	5.43	7.00
Q30-	10 Flow	,										
21.890	21.90	0.00	21.90	.4641	0.00150	NA	NA	NA	0.05	3.413	5.21	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

WQM 7.0 D.O.Simulation

	SWP Basin S	tream Code			Stream Name		
	19F	38579		C	ASSELMAN RIVE	R	
	<u>RMI</u>	Total Discharge	Flow (mgd) Ana	lysis Temperature	(°C)	Analysis pH
	21.890	0.30	0		5.280		7.000
	Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio		Reach Velocity (fps)
	144.000	2.95	0		48.814		0.039
	Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/	<u>L)</u>	Reach Kn (1/days)
	2.64	0.11	_		0.70		0.225
	Reach DO (mg/L)	Reach Kr (Kr Equation		Reach DO Goal (mg/L)
	12.272	0.50	3		O'Connor		5
F	Reach Travel Time (days)		Subreach	Results			
	4.608	TravTime		NH3-N	D.O.		
		(days)	(mg/L)	(mg/L)	(mg/L)		
		0.461	2.57	0.63	11.37		
		0.922	2.50	0.57	11.37		
		1.382	2.43	0.51	11.37		
		1.843	2.36	0.46	11.37		
		2.304	2.30	0.42	11.37		
		2.765	2.24	0.38	11.37		
		3.225	2.17	0.34	11.37		
		3.686	2.11	0.31	11.37		
		4.147	2.06	0.27	11.37		
		4.608	2.00	0.25	11.37		

21.89 Rockwood STP

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
19F	38579	CASSELMAN RIVER

25

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
21.89	0 Rockwood STP	24.1	50	24.1	50	0	0
RMI	Chronic Allocati Discharge Name	ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
21.89	0 Rockwood STP	4.36	25	4.36	25	0	0

WQM 7.0 Effluent Limits

25

25

25

		<u>n Code</u> 579		Stream Name CASSELMAN RI	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
21.890	Rockwood STP	PA0024490	0.300	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

Appendix C - Data Monitoring Reports -

National Pollutant Discharge Elimination System (NPDES) Electronic Discharge Monitoring Report (eDMR)

4/26/2022 2:53:49 PM

Region: SWRO County: 56 - Somerset Municipality: All Permit #: PA0024490

Monitoring Period Date Range: 7/1/2017 To 4/1/2022

Client: All

Parameter: Ammonia-Nitrogen (00610)

Permit #: PA0024490 Facility Address: ROCKWOOD BORO STP 163 RIVER RD

Client ID / Name: 64637 - ROCKWOOD BORO MUNI AUTH SOMERSET CNTY ROCKWOOD, PA 15557

Somerset County:

Primary Facility ID / Name: 241449 - ROCKWOOD BORO STP Major Facility: Municipality: Rockwood Boro **SWRO** Region: 39.911667 / -79.154722 Latitude / Longitude:

Monitoring Period Begin Date	Monitoring Period End Date	DMR Received Date	Outfall	Discharge	Monitoring Location	Parameter Name	Parameter Code	DMR Value	Permit Limit	Units	Statistical Base Code
07/01/2017	07/31/2017	08/25/2017	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
08/01/2017	08/31/2017	09/28/2017	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
09/01/2017	09/30/2017	10/25/2017	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
10/01/2017	10/31/2017	11/27/2017	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
11/01/2017	11/30/2017	12/27/2017	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly

SSRS_NPDES_036 Ver 1.1 Page 1 of 7

4/26/2022 2:53:49 PM

11/01/2017	11/30/2017	12/27/2017	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Averag
12/01/2017	12/31/2017	01/27/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Averag
01/01/2018	01/31/2018	02/28/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Averag
02/01/2018	02/28/2018	03/27/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Averag
03/01/2018	03/31/2018	04/30/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
04/01/2018	04/30/2018	05/30/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Mont
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
05/01/2018	05/31/2018	06/21/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Averag
06/01/2018	06/30/2018	07/26/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
07/01/2018	07/31/2018	08/28/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Mont
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
08/01/2018	08/31/2018	09/28/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month

SSRS_NPDES_036 Ver 1.1 Page 2 of 7

4/26/2022 2:53:49 PM

08/01/2018	08/31/2018	09/28/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
09/01/2018	09/30/2018	10/26/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
10/01/2018	10/31/2018	11/27/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
11/01/2018	11/30/2018	12/21/2018	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
12/01/2018	12/31/2018	01/23/2019	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
01/01/2019	01/31/2019	02/28/2019	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
02/01/2019	02/28/2019	03/28/2019	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
03/01/2019	03/31/2019	04/23/2019	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
04/01/2019	04/30/2019	05/27/2019	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average
05/01/2019	05/31/2019	06/27/2019	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthly

SSRS_NPDES_036 Ver 1.1 Page 3 of 7

4/26/2022 2:53:49 PM

05/01/2019	05/31/2019	06/27/2019	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average																		
06/01/2019	19 06/30/2019 07/28/2019	07/28/2019	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Monthl																		
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Average																		
07/01/2019	07/31/2019	08/27/2019	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month																		
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Averag																		
08/01/2019	08/31/2019	/2019 09/25/2019 001	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month																		
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Averag																		
09/01/2019	09/30/2019	19 10/24/2019 001	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Averag																		
10/01/2019	10/31/2019	11/29/2019 001	11/29/2019 001	11/29/2019	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month																
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Averag																		
11/01/2019	11/30/2019	12/26/2019	001	001	001	001	001	001	001	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Average Month											
					Final Effluent	Ammonia-Nitrogen	00610	GG	Monitor and Report	mg/L	Weekly Averag																		
12/01/2019	12/31/2019	01/27/2020	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	< 1	Monitor and Report	mg/L	Average Month																		
					Final Effluent	Ammonia-Nitrogen	00610	1	Monitor and Report	mg/L	Weekly Averag																		
01/01/2020	01/31/2020	02/28/2020	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	2	Monitor and Report	mg/L	Average Mont																		
					Final Effluent	Ammonia-Nitrogen	00610	2	Monitor and Report	mg/L	Weekly Averag																		
02/01/2020	02/29/2020	03/27/2020	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	12	Monitor and Report	mg/L	Average Month																		

SSRS_NPDES_036 Ver 1.1 Page 4 of 7

4/26/2022 2:53:49 PM

02/01/2020	02/29/2020	03/27/2020	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	13.1	Monitor and Report	mg/L	Weekly Average													
03/01/2020	1/2020 03/31/2020	04/28/2020	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	7.7	Monitor and Report	mg/L	Average Monthl													
					Final Effluent	Ammonia-Nitrogen	00610	8.6	Monitor and Report	mg/L	Weekly Averag													
04/01/2020	04/30/2020	05/27/2020	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	9.5	Monitor and Report	mg/L	Average Month													
					Final Effluent	Ammonia-Nitrogen	00610	5.7	Monitor and Report	mg/L	Weekly Averag													
05/01/2020	05/31/2020	31/2020 06/28/2020 001	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	7.2	Monitor and Report	mg/L	Average Month													
					Final Effluent	Ammonia-Nitrogen	00610	10.8	Monitor and Report	mg/L	Weekly Averag													
06/01/2020	06/30/2020	0 07/28/2020 001	07/28/2020	07/28/2020	07/28/2020	07/28/2020	07/28/2020	07/28/2020	07/28/2020	07/28/2020	07/28/2020	07/28/2020	07/28/2020	07/28/2020	07/28/2020	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	9	Monitor and Report	mg/L	Average Month
					Final Effluent	Ammonia-Nitrogen	00610	13.8	Monitor and Report	mg/L	Weekly Average													
07/01/2020	07/31/2020	20 08/28/2020 001	08/28/2020 001	08/28/2020 001	Yes	Final Effluent	Ammonia-Nitrogen	00610	10.8	Monitor and Report	mg/L	Average Monti												
					Final Effluent	Ammonia-Nitrogen	00610	13.8	Monitor and Report	mg/L	Weekly Averag													
08/01/2020	08/31/2020	09/28/2020	001	001	001	001	001	001	001	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	1.1	Monitor and Report	mg/L	Average Month						
					Final Effluent	Ammonia-Nitrogen	00610	2	Monitor and Report	mg/L	Weekly Averag													
09/01/2020	09/30/2020	10/28/2020	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	1.1	Monitor and Report	mg/L	Average Month													
					Final Effluent	Ammonia-Nitrogen	00610	1.6	Monitor and Report	mg/L	Weekly Averag													
10/01/2020	10/31/2020	11/28/2020	/28/2020 001	020 001 Ye	11/28/2020 001 Yes	Yes	Final Effluent	Ammonia-Nitrogen	00610	1.4	Monitor and Report	mg/L	Average Mont											
					Final Effluent	Ammonia-Nitrogen	00610	2	Monitor and Report	mg/L	Weekly Avera													
11/01/2020	11/30/2020	12/28/2020	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	4.1	Monitor and Report	mg/L	Average Mont													

SSRS_NPDES_036 Ver 1.1 Page 5 of 7

4/26/2022 2:53:49 PM

11/01/2020	11/30/2020	12/28/2020	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	2.8	Monitor and Report	mg/L	Weekly Average	
12/01/2020	12/31/2020 01/28/2021	01/28/2021	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	5.2	Monitor and Report	mg/L	Average Monthly	
					Final Effluent	Ammonia-Nitrogen	00610	5	Monitor and Report	mg/L	Weekly Average	
01/01/2021	01/31/2021	02/28/2021	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	5.7	Monitor and Report	mg/L	Average Monthly	
					Final Effluent	Ammonia-Nitrogen	00610	7.5	Monitor and Report	mg/L	Weekly Average	
02/01/2021	02/28/2021	2021 03/28/2021	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	10.6	Monitor and Report	mg/L	Average Monthly	
					Final Effluent	Ammonia-Nitrogen	00610	12.2	Monitor and Report	mg/L	Weekly Average	
03/01/2021	03/31/2021	04/28/2021	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	7	Monitor and Report	mg/L	Average Monthly	
					Final Effluent	Ammonia-Nitrogen	00610	8.6	Monitor and Report	mg/L	Weekly Average	
04/01/2021	04/30/2021	04/30/2021 05/28/2021	21 001	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	5.4	Monitor and Report	mg/L	Average Monthly
						Final Effluent	Ammonia-Nitrogen	00610	5.9	Monitor and Report	mg/L	Weekly Average
05/01/2021	05/31/2021	06/21/2021	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	6.88	Monitor and Report	mg/L	Average Monthly	
					Final Effluent	Ammonia-Nitrogen	00610	8.94	Monitor and Report	mg/L	Weekly Average	
06/01/2021	06/30/2021	07/16/2021	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	11.2	Monitor and Report	mg/L	Average Monthly	
					Final Effluent	Ammonia-Nitrogen	00610	14.1	Monitor and Report	mg/L	Weekly Average	
07/01/2021	07/31/2021	08/11/2021	001	001 Yes	Final Effluent	Ammonia-Nitrogen	00610	11.1	Monitor and Report	mg/L	Average Monthly	
					Final Effluent	Ammonia-Nitrogen	00610	13.2	Monitor and Report	mg/L	Weekly Average	
08/01/2021	08/31/2021	09/20/2021	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	5.69	Monitor and Report	mg/L	Average Monthly	

SSRS_NPDES_036 Ver 1.1 Page 6 of 7

4/26/2022 2:53:49 PM

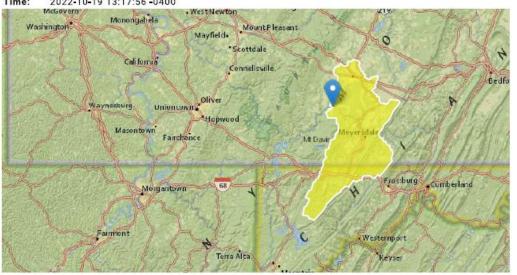
08/01/2021	08/31/2021	09/20/2021	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	8.56	Monitor and Report	mg/L	Weekly Average				
09/01/2021	09/30/2021	30/2021 10/18/2021	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	3.06	Monitor and Report	mg/L	Average Monthly				
					Final Effluent	Ammonia-Nitrogen	00610	8.06	Monitor and Report	mg/L	Weekly Average				
10/01/2021	10/31/2021	11/10/2021	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	1.33	Monitor and Report	mg/L	Average Monthly				
					Final Effluent	Ammonia-Nitrogen	00610	2.00	Monitor and Report	mg/L	Weekly Average				
11/01/2021	11/30/2021	21 12/21/2021 001	001	001 Yes	Final Effluent	Ammonia-Nitrogen	00610	3.71	Monitor and Report	mg/L	Average Monthly				
					Final Effluent	Ammonia-Nitrogen	00610	6.38	Monitor and Report	mg/L	Weekly Average				
12/01/2021	12/31/2021 01/20/2022	21 01/20/2022 00	01/20/2022	01/20/2022	01/20/2022	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	10.54	Monitor and Report	mg/L	Average Monthly	
						Final Effluent	Ammonia-Nitrogen	00610	12.70	Monitor and Report	mg/L	Weekly Average			
01/01/2022	01/31/2022	02/19/2022	001 Yes	Yes	Final Effluent	Ammonia-Nitrogen	00610	7.61	Monitor and Report	mg/L	Average Monthly				
				Final Effluent	Ammonia-Nitrogen	00610	9.15	Monitor and Report	mg/L	Weekly Average					
02/01/2022	02/28/2022	03/21/2022	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	7.79	Monitor and Report	mg/L	Average Monthly				
					Final Effluent	Ammonia-Nitrogen	00610	9.31	Monitor and Report	mg/L	Weekly Average				
03/01/2022	03/31/2022	04/12/2022	001	Yes	Final Effluent	Ammonia-Nitrogen	00610	6.59	Monitor and Report	mg/L	Average Monthly				
									Final Effluent	Ammonia-Nitrogen	00610	9.37	Monitor and Report	mg/L	Weekly Average

SSRS_NPDES_036 Ver 1.1 Page 7 of 7

Appendix D – DEP Total Residual Chlorine Sheet–

TRC EVAL									
Input appropr	riate values ii	n A3:A9 and D3:D9							
16.	1 = Q strea	m (cfs)	0.5	= CV Daily					
		arge (MGD)	0.5	= CV Hourly					
	0 = no. sam		1	= AFC_Parti	al Mix Factor				
0.	3 = Chlorine	e Demand of Stream		_	al Mix Factor				
	_	e Demand of Discharg		ria Compliance Time (m					
0.	5 = BAT/BP	J Value	720	_	ria Compliance Time (m				
		or of Safety (FOS)		=Decay Coe					
Source	Reference	AFC Calculations			CFC Calculations				
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 10.800				
PENTOXSD TR		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581				
PENTOXSD TR	G 5.1b	LTA_afc=	4.131	5.1d	LTA_cfc = 6.279				
_									
Source	G 5.1f		t Limit Calcu						
PENTOXSD TR			AML MULT = IMIT (mg/l) =		BAT/BPJ				
PENTOX5D IK	G 5.1g		IMIT (mg/l) = IMIT (mg/l) =		BAT/BPJ				
		mor minute	(g/./	1.000					
WLA afo		"AFC_tc)) + [(AFC_Yc"		_	tc))				
		AFC_Yc*Qs*Xs/Qd)]*(1							
LTAMULT afc		N(cvh^2+1))-2.326*LN(cvh	^2+1)^0.5)						
LTA_afc	wla_afc*LT	AMULT_afc							
WLA cfc	(011/o(k	*CFC tc) + [(CFC Yc*(De# 044/0/	diel Micec +	a))				
WLA_CIC		CFC_Yc*Qs*Xs/Qd)]*(1		_	c, ,				
LTAMULT_cfc		N(cvd^2/no_samples+1))-2			s+1)^0.5)				
LTA_cfc		AMULT_cfc			,,				
AML MULT EXP(2.326*LN((cvd^2/no samples+1)^0.5)-0.5*LN(cvd^2/no samples+1))									
AML MULT	EXP(2.326*								
AME MULT AVG MON LIMIT			AML_MULT) <u> </u>					

Appendix E - StreamStats Report -


PA0024490_RockwoodSTP_StreamStats Report

Region ID:

Workspace ID: PA20221019171733539000

Clicked Point (Latitude, Longitude): 39.91246, -79.16308

2022-10-19 13:17:56 -0400

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	341	square miles
ELEV	Mean Basin Elevation	2395	feet

Low-Flow Statistics

Low-Flow Statistics Parameters [99.8 Percent (340 square miles) Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	341	square miles	2.26	1400
ELEV	Mean Basin Elevation	2395	feet	1050	2580

Low-Flow Statistics Flow Report [99.8 Percent (340 square miles) Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	38.4	ft^3/s	43	43
30 Day 2 Year Low Flow	58.8	ft^3/s	38	38
7 Day 10 Year Low Flow	16.1	ft^3/s	66	66
30 Day 10 Year Low Flow	23.7	ft^3/s	54	54
90 Day 10 Year Low Flow	42.7	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.10.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1