

Southeast Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0026298

 APS ID
 1072264

 Authorization ID
 1411869

Applicant Name	Whitemarsh Township Authority	Facility Name	Whitemarsh Township STP
Applicant Address	2015 Joshua Road	Facility Address	2015 Joshua Road
	Lafayette Hill, PA 19444-2431	<u></u>	Lafayette Hill, PA 19444
Applicant Contact	Brent Wagner	Facility Contact	Thomas Bonjo
Applicant Phone	(484) 344-5230	Facility Phone	(610) 825-1412
Client ID	64396	Site ID	256062
Ch 94 Load Status	Not Overloaded	Municipality	Whitemarsh Township
Connection Status	No Limitations	County	Montgomery
Date Application Reco	eived September 22, 2022	EPA Waived?	No
Date Application Acce	epted	If No, Reason	Major Facility

Summary of Review

Applicant requests renewal of NPDES permit to discharge an average annual flow of 2.0 MGD of treated sewage from the Whitemarsh STP into Schuylkill River. The hydraulic design capacity of the plant for Chapter 94 overload determinations is 4.0 MGD. The organic design capacity for the plant is 3400 lbs/day. The annual average flow for the year 2021 was 1.252 MGD. The highest monthly average flow for the year 2021 was 1.489 MGD. The highest peak instantaneous flow for the year 2021 was 3.358 MGD. The municipalities serve by the Whitemarsh Township STP are Whitemarsh Township, Plymouth Township and Whitpain Township.

The sewage treatment plant consists of a grit chamber, bar screen, primary clarifiers, primary and secondary trickling filters, and secondary clarifiers. Liquid Chlorine is used for disinfection and liquid Sulfur Dioxide for dichlorination. Solids are thickened and dewatered using filter press and cake is send to landfill for final disposal.

Currently the following wastewater treatment chemicals are used at the plant: Chlorine, Sodium Bisulfide, and Sodium Hypochlorite.

The applicant is implementing an EPA approved pretreatment program. The following are the industries connected to the sewer system:

(1) Montgomery County SPCS, (2) SANIPUR US LLC, (3) East-West Label Company, (4) Franklin Cleaning Equipment and supply, (5) Peripheral Dynamics, (6) Ecovyst, Inc. and (7) Lux Global Label

Approve	Deny	Signatures	Date
X		Ketan Thaker	
		Ketan Thaker / Project Manager	11/22/2023
Х		Pravin Patel	
		Pravin C. Patel, P.E. / Environmental Engineer Manager	11/22/2023

Summary of Review

Conventional Parameters:

Since last renewal, there are no change in quality and quantity of wastewater, receiving stream characteristic and designation, therefore existing limits for conventional parameters are carried over in this renewal. From the previous water quality protection report, WQM 7.0 was used to confirm that Whitemarsh STP's existing limits for conventional pollutants (CBOD5, NH3_N, and DO) are adequately protective of instream criteria for dissolved oxygen and ammonia toxicity.

Fecal Coliform: Monthly average limit of #200 /100 ml as a geometric mean and Instantaneous maximum limit of #1000/100ml are included in the permit. Chapter 924.47(a)(4) and DRBC 4.30.4.A.1 references are incorporated give 10% rule on Instantaneous limit of #1000/100ml in winter months.

Total Residual Chlorine: BAT limit of 0.5 mg/l, protective of Chapter 93 criteria are carried over in this renewal.

Total Dissolved Solids: DRBC regulations under section 3.10.4.D.2 requires TDS not to exceed 1000 mg/l, 133% of background or 500 mg/l instream, which is more stringent. An existing limit of 1000 mg/l as a monthly average is carried over in the renewal.

Phosphorus: Receiving stream (Schuylkill) is not determined for nutrient impairment, however, monitoring of phosphorus is continued in the renewal to continued collection of data in the event that the impairment is identified in the future, and waste load allocations are necessary to address the impairment.

PCBs: The facility is implementing PCBs PMP as required per established Schuylkill River PCB TMDL. The last PCBs PMP 2022 annual report was submitted on 2/13/2023. Based on the sampling results, the reported concentration during dry weather is 2152 pg/l and reported concentration for wet weather is 4477.29 pg/L. The dry-weather PCB sampling results show an overall decrease in PCBs from both the original baseline concentrations as well as a more significant reduction since the 2015 through 2019 samples. The 2022 wet-weather PCBs are higher than the original dry-weather baseline, but show an overall reduction as compared to the wet-weather 2015 through 2019 data. Therefore, implementation of PMP is continued in this renewal.

Monitoring requirements for Total Nitrogen and E. Coli have been added to this permit renewal and are consistent with SOP.

Influent monitoring for CBOD5, TSS and BOD5 are recommended for the draft permit and carried over from previous permit to check compliance with the 85% removal requirement and Chapter 94 requirement. This requirement is consistent with the requirements of other similar dischargers in the area.

Based on the Toxic Management Spreadsheet calculation; Total Aluminum, Total Copper, Total Thallium, Total Zinc and Acrolein are included in the draft permit.

Review of e-DMRs show that effluent is generally in compliance with permit limits. There were two exceedances for Fecal Coliform and one for Ammonia in the last year.

Sludge use and disposal description and location(s): sewage sludge / biosolids are sent to Pioneer Crossing Landfill for disposal.

Act-14 Notification to Whitemarsh Township on July 25, 2022.

Act-14 Notification to Montgomery County board of Commissioner on July25, 2022.

Permit Conditions:

- A. No Stormwater
- B. Acquire Necessary Property Rights
- C. Proper Sludge Disposal
- D. Chlorine Optimization
- E. Operator Notification
- F. Fecal Coliform Reporting
- G. Pretreatment Program Implementation

Summary of Review

- H. Solids Management
- I. PCBs monitoring and PMP requirement
- J. WET Condition
- K. Stormwater Outfalls Requirement

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving W	aters and Water Supply Inform	ation	
Outfall No. 002		Design Flow (MGD)	2
Latitude 40° 4' 2	23.91"	Longitude	-75º 17' 3.91"
Quad Name Norris	town	Quad Code	1843
Wastewater Descriptio	n: Sewage Effluent		
Receiving Waters S	chuylkill River (WWF, MF)	Stream Code	00833
NHD Com ID 2	5985586	RMI	18.9
Drainage Area 1	791.7 sq. miles	Yield (cfs/mi²)	0.21
Q ₇₋₁₀ Flow (cfs) 3	74.3	Q ₇₋₁₀ Basis	Previous WQPR
Elevation (ft)	12.0	Slope (ft/ft)	0.00073
Watershed No. 3	-F	Chapter 93 Class.	WWF, MF
Existing Use S	ame as Chapter 93	Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairmen	POLYCHLORINATED BIPH	HENYLS (PCBS)	
Source(s) of Impairmen	nt SOURCE UNKNOWN		
TMDL Status	_ Final	Name Schuylkill Ri	ver PCB TMDL
No. and Dec. and	D. I. Fra Wester O. and Jastel	District to Make Decision	
	Public Water Supply Intake	Philadelphia Water Department	
	uylkill River	Flow at Intake (cfs)	394
PWS RMI12.3	3	Distance from Outfall (mi)	6.6

Changes Since Last Permit Issuance: None

	Tre	eatment Facility Summa	ry	
Treatment Facility Na	me: Whitemarsh STP			
WQM Permit No.	Issuance Date			
4612407 A	11/28/2017			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Trickling Filter With Settling	Chlorine with Dichlorination	2
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
4	3400	Not Overloaded	Lime Treatment	Landfill

Changes Since Last Permit Issuance: None

Compliance History

DMR Data for Outfall 002 (from September 1, 2022 to August 31, 2023)

Flow (MGD)	Parameter	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22
Flow (MGD)	Flow (MGD)												
Daily Maximum	Average Monthly	1.122	1.301	1.229	1.072	1.162	1.06	1.005	1.174	1.244	1.006	1.105	1.033
PH (S.U.)	Flow (MGD)												
Instantaneous	Daily Maximum	1.769	1.549	2.561	2.147	2.971	1.942	1.247	2.267	1.45	1.751	2.427	2.54
Minimum 7.4 7.4 7.5 7.5 7.5 7.0 7.1 7.1 7.0 7.2 7.0 7.2 6.9	pH (S.U.)												
PH (S.U.) Instantaneous Naximum National Registration National Regis	Instantaneous												
Instantaneous Maximum 8.7 8.5 8.2 8.3 8.2 7.9 8.1 8.1 7.9 8.0 7.9 7.9	Minimum	7.4	7.4	7.5	7.5	7.0	7.1	7.1	7.0	7.2	7.0	7.2	6.9
Maximum 8.7 8.5 8.2 8.3 8.2 7.9 8.1 8.1 7.9 8.0 7.9 7.9	pH (S.U.)												
DO (mg/L) Instantaneous Minimum 5.1 5.4 6.0 6.5 7.0 7.9 8.0 8.5 7.9 6.9 7.1 5.4 TRC (mg/L) Average Monthly 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 Instantaneous Maximum 0.4 0.3 0.76 0.5 0.36 0.5 0.5 0.33 0.3 0.23 0.3 0.6 CBOD5 (lbs/day) Institute Double Double													
Instantaneous Minimum S.1 S.4 6.0 6.5 7.0 7.9 8.0 8.5 7.9 6.9 7.1 5.4		8.7	8.5	8.2	8.3	8.2	7.9	8.1	8.1	7.9	8.0	7.9	7.9
Minimum S.1 S.4 6.0 6.5 7.0 7.9 8.0 8.5 7.9 6.9 7.1 5.4 TRC (mg/L) Average Monthly 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 Instantaneous Maximum 0.4 0.3 0.76 0.5 0.36 0.5 0.5 0.33 0.3 0.23 0.3 0.6 CBOD5 (lbs/day) Average Monthly 98 130 136 115 143 125 115 131 188 118 165 132 CBOD5 (lbs/day) Influent Monthly 10 13 13 12 16 15 14 13 19 14 19 16 CBOD5 (lbs/day) Influent Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (lbs/day) Influent Monthly 10 16 17 16 14 19 18 25 16 27 17 25 19 CBOD5 (lbs/day) Influent Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (lbs/day) Influent Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (lbs/day) Influent Monthly Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (lbs/day) Influent Monthly Mon	` ` ,												
TRC (mg/L) Average Monthly 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1													
Average Monthly 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.6 0.5 0.5 0.5 0.33 0.3 0.3 0.3 0.3 0.6 0.5 0.5 0.5 0.33 0.3 0.2 0.3 0.6 0.5 0.5 0.5 0.5 0.33 0.3 0.2 0.3 0.6 0.5 0.5 0.5 0.5 0.33 0.3 0.2 0.3 0.6 0.5 0.5 0.5 0.5 0.33 0.3 0.2 0.3 0.6 0.5 0.5 0.5 0.5 0.33 0.3 0.2 0.3 0.6 0.5 0.5 0.5 0.5 0.33 0.3 0.2 0.3 0.5 0.5 0.5 0.33 0.3 0.2 0.3 0.6 0.5 0.5 0.5 0.5 0.5 0.33 0.3 0.2 0.3 0.5 0		5.1	5.4	6.0	6.5	7.0	7.9	8.0	8.5	7.9	6.9	7.1	5.4
TRC (mg/L) Instantaneous Maximum 0.4 0.3 0.76 0.5 0.36 0.5 0.5 0.33 0.3 0.23 0.3 0.6 CBOD5 (lbs/day) Average Monthly 98 130 136 115 143 125 115 131 188 118 165 132 CBOD5 (lbs/day) Influent Monthly 1466 1804 1646 1437 1564 1102 1939 1509 1712 2337 1731 1687 CBOD5 (lbs/day) Weekly Average 117 146 191 165 155 153 193 230 236 145 193 174 CBOD5 (mg/L) Average Monthly 10 13 13 12 16 15 14 13 19 14 19 16 CBOD5 (mg/L) Influent Influent Average Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (mg/L) Weekly Average Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (mg/L) Weekly Average Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (mg/L) Weekly Average Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (lbs/day) Influent Average Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (lbs/day) Influent Average Monthly Influent Average													
Instantaneous Maximum		0.1	0.1	0.2	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2
Maximum 0.4 0.3 0.76 0.5 0.36 0.5 0.5 0.33 0.3 0.23 0.3 0.6													
CBOD5 (lbs/day)													
Average Monthly 98 130 136 115 143 125 115 131 188 118 165 132 CBOD5 (lbs/day) Influent Monthly 1466 1804 1646 1437 1564 1102 1939 1509 1712 2337 1731 1687 CBOD5 (lbs/day) Weekly Average 117 146 191 165 155 153 193 230 236 145 193 174 CBOD5 (mg/L) Average Monthly 10 13 13 12 16 15 14 13 19 14 19 16 CBOD5 (mg/L) Influent Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (mg/L) Weekly Average 16 17 16 14 19 18 25 16 27 17 25 19 BOD5 (lbs/day) Influent Weekly Average 16 17 16 14 19 18 25 16 27 17 25 19		0.4	0.3	0.76	0.5	0.36	0.5	0.5	0.33	0.3	0.23	0.3	0.6
CBOD5 (lbs/day) Influent Influent <	` ,												
Influent Monthly 1466 1804 1646 1437 1564 1102 1939 1509 1712 2337 1731 1687 1731 1687 1731 1687 1731 1687 1731 1687 1731 1687 1731 1687 1731 1687 1731 1731 1687 1731 1731 1687 1731 1731 1687 1731 1731 1687 1731 1331 1731 13		98	130	136	115	143	125	115	131	188	118	165	132
Monthly 1466 1804 1646 1437 1564 1102 1939 1509 1712 2337 1731 1687 CBOD5 (lbs/day) Weekly Average 117 146 191 165 155 153 193 230 236 145 193 174 CBOD5 (mg/L) Average Monthly 10 13 13 12 16 15 14 13 19 14 19 16 CBOD5 (mg/L) Influent Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (mg/L) Weekly Average 16 17 16 14 19 18 25 16 27 17 25 19 BOD5 (lbs/day) Influent 													
CBOD5 (lbs/day) Weekly Average		4.400	4004	4040	4.407	4504	4400	1000	4500	4740	0007	4704	4007
Weekly Average 117 146 191 165 155 153 193 230 236 145 193 174 CBOD5 (mg/L) Average Monthly 10 13 13 12 16 15 14 13 19 14 19 16 CBOD5 (mg/L) Influent Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (mg/L) Weekly Average 16 17 16 14 19 18 25 16 27 17 25 19 BOD5 (lbs/day) Influent Influent br/>Average 16 17 16 14 19 18 25 16 27 17 25 19		1466	1804	1646	1437	1564	1102	1939	1509	1/12	2337	1/31	1687
CBOD5 (mg/L) Average Monthly 10 13 13 12 16 15 14 13 19 14 19 16 CBOD5 (mg/L) Influent Influent Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (mg/L) Weekly Average 16 17 16 14 19 18 25 16 27 17 25 19 BOD5 (lbs/day) Influent Influent >br/> Average 16 17 16 14 19 18 25 16 27 17 25 19		447	1.10	404	105	455	450	402	220	226	4.45	400	474
Average Monthly 10 13 13 12 16 15 14 13 19 14 19 16 CBOD5 (mg/L) Influent Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (mg/L) Weekly Average 16 17 16 14 19 18 25 16 27 17 25 19 BOD5 (lbs/day) Influent br/> Average		117	146	191	100	155	153	193	230	230	145	193	174
CBOD5 (mg/L) Influent Influent Monthly 152 170 172 159 180 129 283 156 185 263 197 209 200 2		10	40	40	40	10	45	4.4	10	10	4.4	10	10
Influent Monthly 152 170 172 159 180 129 283 156 185 263 197 209 200 20		10	13	13	12	16	15	14	13	19	14	19	16
Monthly 152 170 172 159 180 129 283 156 185 263 197 209 CBOD5 (mg/L) Weekly Average 16 17 16 14 19 18 25 16 27 17 25 19 BOD5 (lbs/day) Influent In													
CBOD5 (mg/L) Weekly Average 16 17 16 14 19 18 25 16 27 17 25 19 BOD5 (lbs/day) Influent > Average Influent		152	170	172	150	180	120	283	156	195	262	107	200
Weekly Average 16 17 16 14 19 18 25 16 27 17 25 19 BOD5 (lbs/day) Influent Average Influent Average Influent Average Influent 		102	170	112	109	100	123	203	130	100	203	191	203
BOD5 (lbs/day) Influent Average		16	17	16	14	19	18	25	16	27	17	25	10
Influent Average		10	17	10	14	13	10	20	10	21	17	20	13
	Monthly	1512	1786	1765	1406	1733	1235	2694	1890	2192	3162	2332	2166

NPDES Permit No. PA0026298

Chloride (mg/L)							
Average Quarterly	227		233		126		240
Bromide (mg/L)							
Average Quarterly	< 1.0		< 1.0		< 1.0		< 1.0

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03F	8	333 SCHU	YLKILL R	IVER		19.45	60	42.80	1788.52	0.00028	0.00	Y
					St	tream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	ië.	(°C)	
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20	0.00 7.0	00	0.00 0.0	0
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					D	ischarge l	Data				of Marketin and State of the St		
						Existing	Permitte	ed Design	1	Dis	ic Di	sc	

	Dis	charge D	ata				
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Whitemarsh STP	PA0026298	2.0000	2.0000	0.000	0.000	25.00	7.00
	Pa	rameter D Dis	(54070)	h Str	eam Fat	'e	
Dare	ameter Name	Co	47	W IRISH	onc Co		
i an	anietei Manie	(mg	_J /L) (mg	/L) (m	ıg/L) (1/da	ays)	
CBOD5		2	5.00	2.00	0.00	1.50	
Dissolved Ox	ygen		5.00	8.24	0.00	0.00	
NH3-N		2	0.00	0.00	0.00	0.70	

WQM 7.0 Hydrodynamic Outputs

		P Basin 03F		m Code 833		<u>Stream Name</u> SCHUYLKILL RIVER							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow		Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-10) Flow												
19.450	178.85	0.00	178.85	3.094	0.00028	1.189	249.25	209.57	0.61	0.055	20.09	7.00	
Q1-1) Flow												
19.450	114.47	0.00	114.47	3.094	0.00028	NA	NA	NA	0.48	0.070	20.13	7.00	
Q30-	10 Flow	7											
19.450	243.24	0.00	243.24	3.094	0.00028	NA	NA	NA	0.73	0.046	20.06	7.00	

Thursday, August 24, 2023

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	V
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

	SWP Basin 03F		n Code 33			sc			<u>Name</u> .L RIVER	ł.		
NH3-N	Acute Alloca	ations		30.5-430.000 07.00								
RMI	Discharge I	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)		Multiple Criterio (mg/L)	n	W	ltiple /LA ıg/L)	Critical Reach	Percent Reduction	1
19.45	0 Whitemarsh	STP	16.58	2	10	16.	.58		40	0	0	100
NH3-N RMI	Chronic Allo	Е	ns Baseline Oriterion (mg/L)	Baseline WLA (mg/L)	C	Multiple Criterion (mg/L)		Multi WL (mg	A	Critical Reach	Percent Reduction	
19.45	50 Whitemarsh	STP	1.88	:	20	1	.88		20	0	0	 -
Dissolv	ed Oxygen A		<u>c</u>	CBOD5	e B	<u>NH</u> aseline	<u>3-N</u> Mu	ltiple	<u>Dissolv</u> Baseline	ed Oxygen e Multiple	Critical	Percent Reduction
, well	S IS STILLE	,	(mg/L			mg/L)		g/L)	(mg/L)		Neaul	- Neuronioi
10	45 Whitemarsh	STD		25 2	5	20		20	5	5	0	0

WQM 7.0 D.O.Simulation

2.000 ach Depth 1.189 ach Kc (1/4 0.258 ach Kr (1/6 0.803	/days)	R	lysis Temperature (°C) 20.085 Reach WDRatio 209.567 Reach NH3-N (mg/L) 0.34 Kr Equation Tsivoglou	Analysis pH 7.000 Reach Velocity (fps) 0.614 Reach Kn (1/days) 0.705 Reach DO Goal (mg/L) 6
ach Depth 1.189 ach Kc (1/4 0.258 ach Kr (1/4 0.803	/days) /days) Subreach	Results	Reach WDRatio 209.567 teach NH3-N (mg/L) 0.34 Kr Equation	Reach Velocity (fps) 0.614 Reach Kn (1/days) 0.705 Reach DO Goal (mg/L)
1.189 ach Kc (1/6 0.258 ach Kr (1/6 0.803	/days) /days) Subreach	Results	209.567 teach NH3-N (mg/L) 0.34 Kr Equation	0.614 <u>Reach Kn (1/days)</u> 0.705 <u>Reach DO Goal (mg/L)</u>
0.258 0.258 ach Kr (1/6 0.803	days) Subreach	Results	leach NH3-N (mg/L) 0.34 Kr Equation	<u>Reach Kn (1/days)</u> 0.705 <u>Reach DO Goal (mg/L)</u>
0.258 ach Kr (1/6 0.803	days) Subreach	Results	0.34 Kr Equation	0.705 Reach DO Goal (mg/L)
0.803	Subreach		Kr Equation	Reach DO Goal (mg/L)
0.803 \$	Subreach			
\$			Tsivoglou	6
		1M1 19-1M	D.O.	
days) ((mg/L)	(mg/L)	(mg/L)	
0.005	2.39	0.34	8.18	
0.011	2.38	0.34	8.17	
0.016	2.38	0.34	8.17	
0.022	2.38	0.33	8.16	
0.027	2.37	0.33	8.15	
0.033	2.37	0.33	8.15	
0.038	2.37	0.33	8.14	
0.044	2.36	0.33	8.13	
	2.36	0.33	8.13	
0.049	0.00	0.33	8.12	
	0.033 0.038 0.044 0.049	0.033 2.37 0.038 2.37 0.044 2.36 0.049 2.36	0.033 2.37 0.33 0.038 2.37 0.33 0.044 2.36 0.33 0.049 2.36 0.33	0.033 2.37 0.33 8.15 0.038 2.37 0.33 8.14 0.044 2.36 0.33 8.13

WQM 7.0 Effluent Limits

		am Code		Stream Name								
	03F	833		SCHUYLKILL RI	VEK							
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)					
19.450	Whitemarsh STP	PA0026298	2.000	CBOD5	25							
				NH3-N	20	40						
				Dissolved Oxygen			5					

Toxics Management Spreadsheet Version 1.2, February 2021

Model Results

Whitemarsh Township STP, NPDES Permit No. PA0026298, Outfall 002

Instructions Results	RETURN	TO INPU	TS (SAVE AS	PDF)	PRIN	r) 0 A	II () Inputs				
☐ Hydrodynamics												
✓ Wasteload Allocations												
✓ AFC CCT (min): 15 PMF: 0.063 Analysis Hardness (mg/l): 133.43 Analysis pH: 7.09												
Pollutants	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments				
	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)		0.5111110110				
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A					
Chloride (PWS)	0	0		0	N/A	N/A	N/A					
Sulfate (PWS)	0	0		0	N/A	N/A	N/A					
Total Aluminum	0	0		0	750	750	3,477					
Total Antimony	0	0		0	1,100	1,100	5,100					
Total Arsenic	0	0		0	340	340	1,576	Chem Translator of 1 applied				
Total Barium	0	0		0	21,000	21,000	97,359					
Total Boron	0	0		0	8,100	8,100	37,553					
Total Cadmium	0	0		0	2.665	2.86	13.3	Chem Translator of 0.932 applied				
Total Chromium (III)	0	0		0	721.580	2,283	10,587	Chem Translator of 0.316 applied				
Hexavalent Chromium	0	0		0	16	16.3	75.5	Chem Translator of 0.982 applied				
Total Cobalt	0	0		0	95	95.0	440					
Total Copper	0	0		0	17.636	18.4	85.2	Chem Translator of 0.96 applied				
Free Cyanide	0	0		0	22	22.0	102					
Dissolved Iron	0	0		0	N/A	N/A	N/A					
Total Iron	0	0		0	N/A	N/A	N/A					
Total Lead	0	0		0	88.279	118	546	Chem Translator of 0.749 applied				
Total Manganese	0	0		0	N/A	N/A	N/A					
Total Mercury	0	0		0	1.400	1.65	7.64	Chem Translator of 0.85 applied				
Total Nickel	0	0		0	597.636	599	2,776	Chem Translator of 0.998 applied				
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A					
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied				
Total Silver	0	0		0	5.283	6.22	28.8	Chem Translator of 0.85 applied				
Total Thallium	0	0		0	65	65.0	301	''				
Total Zinc	0	0		0	149.620	153	709	Chem Translator of 0.978 applied				
Acrolein	0	0		0	3	3.0	13.9	* '				
Acrylonitrile	0	0		0	650	650	3,014					

Benzene	0	0	0	640	640	2,967	
Bromoform	0	0	0	1,800	1,800	8,345	
Carbon Tetrachloride	0	0	0	2,800	2,800	12,981	
Chlorobenzene	0	0	0	1,200	1,200	5,563	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	83,451	
Chloroform	0	0	0	1,900	1,900	8,809	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	69,542	
1,1-Dichloroethylene	0	0	0	7,500	7,500	34,771	
1,2-Dichloropropane	0	0	0	11,000	11,000	50,998	
1,3-Dichloropropylene	0	0	0	310	310	1,437	
Ethylbenzene	0	0	0	2,900	2,900	13,445	
Methyl Bromide	0	0	0	550	550	2,550	
Methyl Chloride	0	0	0	28,000	28,000	129,813	
Methylene Chloride	0	0	0	12,000	12,000	55,634	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	4,636	
Tetrachloroethylene	0	0	0	700	700	3,245	
Toluene	0	0	0	1,700	1,700	7,881	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	31,526	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	13,908	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	15,763	
Trichloroethylene	0	0	0	2,300	2,300	10,663	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	2,596	
2,4-Dichlorophenol	0	0	0	1,700	1,700	7,881	
2,4-Dimethylphenol	0	0	0	660	660	3,060	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	371	
2,4-Dinitrophenol	0	0	0	660	660	3,060	
2-Nitrophenol	0	0	0	8,000	8,000	37,089	
4-Nitrophenol	0	0	0	2,300	2,300	10,663	
p-Chloro-m-Cresol	0	0	0	160	160	742	
Pentachlorophenol	0	0	0	9.520	9.52	44.1	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	2,133	
Acenaphthene	0	0	0	83	83.0	385	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	1,391	
Benzo(a)Anthracene	0	0	0	0.5	0.5	2.32	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	139,085	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	20,863	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	1,252	
Butyl Benzyl Phthalate	0	0	0	140	140	649	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	

Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	3,802	
1,3-Dichlorobenzene	0	0	0	350	350	1,623	
1,4-Dichlorobenzene	0	0	0	730	730	3,384	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	18,545	
Dimethyl Phthalate	0	0	0	2,500	2,500	11,590	
Di-n-Butyl Phthalate	0	0	0	110	110	510	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	7,418	
2,6-Dinitrotoluene	0	0	0	990	990	4,590	
1,2-Diphenylhydrazine	0	0	0	15	15.0	69.5	
Fluoranthene	0	0	0	200	200	927	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	46.4	
Hexachlorocyclopentadiene	0	0	0	5	5.0	23.2	
Hexachloroethane	0	0	0	60	60.0	278	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	46,362	
Naphthalene	0	0	0	140	140	649	
Nitrobenzene	0	0	0	4,000	4,000	18,545	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	78,815	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	1,391	
Phenanthrene	0	0	0	5	5.0	23.2	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	603	

☑ CFC	CCT (min): 720	PMF: 0.436	Analysis Hardness (mg/l):	105.92	Analysis pH:	7.01	
-------	----------------	------------	---------------------------	--------	--------------	------	--

Pollutants	Conc	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	5,762	
Total Arsenic	0	0		0	150	150	3,929	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	107,388	
Total Boron	0	0		0	1,600	1,600	41,907	
Total Cadmium	0	0		0	0.256	0.28	7.4	Chem Translator of 0.907 applied
Total Chromium (III)	0	0		0	77.688	90.3	2,366	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	272	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	498	
Total Copper	0	0		0	9.407	9.8	257	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	136	

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	88,209	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.679	3.42	89.7	Chem Translator of 0.783 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	23.7	Chem Translator of 0.85 applied
Total Nickel	0	0	0	54.599	54.8	1,434	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	131	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	340	
Total Zinc	0	0	0	124.036	126	3,295	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	78.6	
Acrylonitrile	0	0	0	130	130	3,405	
Benzene	0	0	0	130	130	3,405	
Bromoform	0	0	0	370	370	9,691	
Carbon Tetrachloride	0	0	0	560	560	14,668	
Chlorobenzene	0	0	0	240	240	6,286	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	91,672	
Chloroform	0	0	0	390	390	10,215	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	81,196	
1,1-Dichloroethylene	0	0	0	1,500	1,500	39,288	
1,2-Dichloropropane	0	0	0	2,200	2,200	57,623	
1,3-Dichloropropylene	0	0	0	61	61.0	1,598	
Ethylbenzene	0	0	0	580	580	15,191	
Methyl Bromide	0	0	0	110	110	2,881	
Methyl Chloride	0	0	0	5,500	5,500	144,057	
Methylene Chloride	0	0	0	2,400	2,400	62,861	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	5,500	
Tetrachloroethylene	0	0	0	140	140	3,667	
Toluene	0	0	0	330	330	8,643	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	36,669	
1,1,1-Trichloroethane	0	0	0	610	610	15,977	
1,1,2-Trichloroethane	0	0	0	680	680	17,811	
Trichloroethylene	0	0	0	450	450	11,786	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	2,881	
2,4-Dichlorophenol	0	0	0	340	340	8,905	
2,4-Dimethylphenol	0	0	0	130	130	3,405	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	419	
2,4-Dinitrophenol	0	0	0	130	130	3,405	
2-Nitrophenol	0	0	0	1,600	1,600	41,907	
4-Nitrophenol	0	0	0	470	470	12,310	
p-Chloro-m-Cresol	0	0	0	30	30.0	786	
Pentachlorophenol	0	0	0	7.304	7.3	191	

☑ THH

Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	2,383	
Acenaphthene	0	0	0	17	17.0	445	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	1,545	
Benzo(a)Anthracene	0	0	0	0.1	0.1	2.62	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	157,153	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyi)Ether Bis(2-Ethylhexyl)Phthalate	0	0			910	23,835	
			0	910	54.0		
4-Bromophenyl Phenyl Ether	0	0	0	54		1,414	
Butyl Benzyl Phthalate	0	0	0	35	35.0	917	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	4,191	
1,3-Dichlorobenzene	0	0	0	69	69.0	1,807	
1,4-Dichlorobenzene	0	0	0	150	150	3,929	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	20,954	
Dimethyl Phthalate	0	0	0	500	500	13,096	
Di-n-Butyl Phthalate	0	0	0	21	21.0	550	
2,4-Dinitrotoluene	0	0	0	320	320	8,381	
2,6-Dinitrotoluene	0	0	0	200	200	5,238	
1,2-Diphenylhydrazine	0	0	0	3	3.0	78.6	
Fluoranthene	0	0	0	40	40.0	1,048	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	52.4	
Hexachlorocyclopentadiene	0	0	0	1	1.0	26.2	
Hexachloroethane	0	0	0	12	12.0	314	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	55,003	
Naphthalene	0	0	0	43	43.0	1,126	
Nitrobenzene	0	0	0	810	810	21,216	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	89,053	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	1,545	
Phenanthrene	0	0	0	1	1.0	26.2	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	681	

Model Results 10/27/2023 Page 5

Analysis Hardness (mg/l): N/A

Analysis pH: N/A

CCT (min): 720 PMF: 0.436

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	147	
Total Arsenic	0	0		0	10	10.0	262	
Total Barium	0	0		0	2,400	2,400	62,861	
Total Boron	0	0		0	3,100	3,100	81,196	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	140	140	3,667	
Dissolved Iron	0	0		0	300	300	7,858	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	26,192	
Total Mercury	0	0		0	0.050	0.05	1.31	
Total Nickel	0	0		0	610	610	15,977	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
	0	0		0	N/A	N/A	N/A N/A	
Total Selenium	V276;	2.5		.50	N/A N/A	N/A N/A	N/A N/A	
Total Silver	0	0		0	NO CONTROL OF	10/05/04/0	6.29	
Total Thallium		0		0	0.24	0.24		
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	6	6.0	157	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	130	130	3,405	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	864	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	530	530	13,882	
Methyl Bromide	0	0		0	47	47.0	1,231	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	

Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	1,300	1,300	34,050	
1,2-trans-Dichloroethylene	0	0	0	140	140	3,667	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	81	81.0	2,122	
2,4-Dichlorophenol	0	0	0	77	77.0	2,017	
2,4-Dimethylphenol	0	0	0	380	380	9,953	
4,6-Dinitro-o-Cresol	0	0	0	13	13.0	340	
2,4-Dinitrophenol	0	0	0	69	69.0	1,807	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	10,400	10,400	272,398	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	670	670	17,549	
Anthracene	0	0	0	8,300	8,300	217,394	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	1,400	1,400	36,669	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	150	150	3,929	
2-Chloronaphthalene	0	0	0	1,000	1,000	26,192	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	420	420	11,001	
1,3-Dichlorobenzene	0	0	0	420	420	11,001	
1,4-Dichlorobenzene	0	0	0	420	420	11,001	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	17,000	17,000	445,266	
Dimethyl Phthalate	0	0	0	270,000	270,000	7,071,867	
Di-n-Butyl Phthalate	0	0	0	2,000	2,000	52,384	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	130	130	3,405	
Fluorene	0	0	0	1,100	1,100	28,811	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	

Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	40	40.0	1,048	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.0038	0.004	0.1	
Isophorone	0	0	0	35	35.0	917	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	17	17.0	445	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	830	830	21,739	
1,2,4-Trichlorobenzene	0	0	0	35	35.0	917	

☑ CR.	CCT (min):	720	PMF:	0.669	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	
-------	------------	-----	------	-------	---------------------------	-----	--------------	-----	--

Pollutants	Conc	Stream	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.051	0.051	7.68	
Benzene	0	0		0	1.2	1.2	181	

Bromoform	0	0	0	4.3	4.3	648	
Carbon Tetrachloride	0	0	0	0.23	0.23	34.6	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.4	0.4	60.2	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	858	
Dichlorobromomethane	0	0	0	0.55	0.55	82.8	
1.2-Dichloroethane	0	0	0	0.38	0.38	57.2	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	0.34	0.34	51.2	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	4.6	4.6	693	
1,1,2,2-Tetrachloroethane	0	0	0	0.17	0.17	25.6	
	0	0	0	0.17	0.17	104	
Tetrachloroethylene			1775	0.000	500000000000000000000000000000000000000		
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.59	0.59	88.8	
Trichloroethylene	0	0	0	2.5	2.5	376	
Vinyl Chloride	0	0	0	0.025	0.025	3.76	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.270	0.27	40.7	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.4	1.4	211	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.000086	0.00009	0.013	
Benzo(a)Anthracene	0	0	0	0.0038	0.004	0.57	
Benzo(a)Pyrene	0	0	0	0.0038	0.004	0.57	
3.4-Benzofluoranthene	0	0	0	0.0038	0.004	0.57	
Benzo(k)Fluoranthene	0	0	0	0.0038	0.004	0.57	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	4.52	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	1.2	1.2	181	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
Dutyi Delizyi Filtilalate	U		U	I IN/A	IVA	IWA	I .

2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.0038	0.004	0.57	
Dibenzo(a,h)Anthrancene	0	0	0	0.0038	0.004	0.57	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.021	0.021	3.16	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	7.53	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	7.53	
1,2-Diphenylhydrazine	0	0	0	0.036	0.036	5.42	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00028	0.0003	0.042	
Hexachlorobutadiene	0	0	0	0.44	0.44	66.3	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	1.4	1.4	211	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.00069	0.0007	0.1	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.75	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	497	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	2,229	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	μg/L	54.6	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Thallium	Report	Report	Report	Report	Report	μg/L	6.29	THH	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	455	AFC	Discharge Conc > 10% WQBEL (no RP)
Acrolein	Acrolein Report Report Report		Report	Report	μg/L	8.91	AFC	Discharge Conc > 25% WQBEL (no RP)	

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the

discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Antimony	147	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	62,404	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	24,070	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	7.4	μg/L	Discharge Conc < TQL
Total Chromium (III)	2,366	μg/L	Discharge Conc < TQL
Hexavalent Chromium	48.4	μg/L	Discharge Conc < TQL
Total Cobalt	282	μg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	65.4	μg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	7,858	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	88,209	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	89.7	μg/L	Discharge Conc < TQL
Total Manganese	26,192	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	1.31	μg/L	Discharge Conc < TQL
Total Nickel	1,434	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Selenium	131	μg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	18.5	μg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrylonitrile	7.68	μg/L	Discharge Conc < TQL
Benzene	181	μg/L	Discharge Conc < TQL
Bromoform	648	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	34.6	µg/L	Discharge Conc < TQL
Chlorobenzene	3,405	μg/L	Discharge Conc < TQL
Chlorodibromomethane	60.2	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	53,489	μg/L	Discharge Conc < TQL
Chloroform	858	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	82.8	μg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	57.2	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	864	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	32,688	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	51.2	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	8,618	μg/L	Discharge Conc < TQL

Methyl Bromide Methyl Chloride	1,231	μg/L	Discharge Conc < TQL
	83,205	μg/L	Discharge Conc < TQL
Methylene Chloride	693	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	25.6	μg/L	Discharge Conc < TQL
Tetrachloroethylene	104	μg/L	Discharge Conc < TQL
Toluene	5,052	μg/L	Discharge Conc ≤ 25% WQBEL
1,2-trans-Dichloroethylene	3,667	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	8,915	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	88.8	μg/L	Discharge Conc < TQL
Trichloroethylene	376	μg/L	Discharge Conc < TQL
Vinyl Chloride	3.76	μg/L	Discharge Conc < TQL
2-Chlorophenol	1,664	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	2,017	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	1,961	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	238	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	1,807	μg/L	Discharge Conc < TQL
2-Nitrophenol	23,773	μg/L	Discharge Conc < TQL
4-Nitrophenol	6,835	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	475	μg/L	Discharge Conc < TQL
Pentachlorophenol	28.3	μg/L	Discharge Conc < TQL
	272,398	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	211	μg/L	Discharge Conc < TQL
Acenaphthene	247	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
	217,394	µg/L	Discharge Conc < TQL
Benzidine	0.013	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.57	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.57	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.57	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.57	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	4.52	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	36,669	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	181	μg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	802	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	416	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	26,192	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	0.57	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.57	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	2,437	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	1,040	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	2,169	μg/L	Discharge Conc < TQL
3.3-Dichlorobenzidine	3.16	μg/L	Discharge Conc < TQL
Diethyl Phthalate	11,886	μg/L	Discharge Conc < TQL

Dimethyl Phthalate	7,429	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	327	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	7.53	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	7.53	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	5.42	μg/L	Discharge Conc < TQL
Fluoranthene	594	μg/L	Discharge Conc < TQL
Fluorene	28,811	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.042	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	29.7	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	14.9	μg/L	Discharge Conc < TQL
Hexachloroethane	178	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.1	μg/L	Discharge Conc < TQL
Isophorone	917	μg/L	Discharge Conc < TQL
Naphthalene	416	μg/L	Discharge Conc < TQL
Nitrobenzene	445	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.1	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.75	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	497	μg/L	Discharge Conc < TQL
Phenanthrene	14.9	μg/L	Discharge Conc < TQL
Pyrene	21,739	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene			Discharge Conc < TQL

		Whol	e Effluent To	exicity (WET)		
r Outfall 002, 🗌 Acu	te 🛭 Chron	ic WET Test	ing was comp	leted:		
For the permit r Quarterly throug).			
Quarterly through			a TIE/TRE wa	s conducted.		
Other:						
e dilution series used	for the tests w	/as: 100% 60)% 3% 2% a	and 1% The	Target Instre	am Waste Concentration (TIV
be used for analysis			, , o , o , o , <u>o</u> , o , o		rargot monot	am made concentration (m
	WET SI	ımmary and	Evaluation	1		7
Facility Name	White march	Township Wa	ter Pollution C	antral Cantar		7
Facility Name Permit No.	PA0026298	TOWNSHIP VVA	ter Foliation C	ontroi Center		
Design Flow (MGD)	-					1
Q ₇₋₁₀ Flow (cfs)	374.3					1
PMF _a	0.142					1
PMF _c	0.985					
		5.5				
			Test Result	(Pass/Fail)] [
125 15	END D	Test Date	Test Date	Test Date	Test Date	4
Species	Endpoint	8/20/19	3/17/20	10/12/20	2/1/21	41
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS	J.
7	Ì		Test Result	s (Pass/Fail)		7
		Test Date	Test Date	Test Date	Test Date] [
Species	Endpoint	8/20/19	3/17/20	10/12/20	2/1/21	11
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS]
7			Test Result	s (Pass/Fail)	1	
	8	Test Date	Test Date		Test Date	11
Species	Endpoint	8/20/19	3/17/20	10/13/20	2/2/20	₫ [
Pimephales	Survival	PASS	PASS	PASS	PASS]
			Toot Docult	/Dass/Fail\		1
	16	Test Date	Test Date	(Pass/Fail) Test Date	Test Date	†
Species	Endpoint	8/20/19	3/17/20	10/13/20	2/2/21	†
Pimephales	Growth	PASS	PASS	PASS	PASS	11
						1
Reasonable Potenti	al? NO					
Permit Recommend	latione					
Test Type	Chronic					
TIWC	1	% Effluent				
Dilution Series	1, 2,	30, 60, 100	% Effluent			
Permit Limit	None	2001 ST. 10 ST. 100	Mary Control of the C			
Permit Limit Species						I

PMFa and PMFc values used in the analysis are taken from previous PENTOXSD reports.

Based on the review of the WET test reports, test of significant toxicity (TST) was performed using DEP's WET Analysis Spreadsheet. There is no reasonable potential, and no WET limits are recommended. The standard WET condition based on the DEP WET SOP is incorporated in Part C of the draft permit.

TRC Spreadsheet PA0026298.xls

TRC EVALUA	ATION								
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9	Whitemarsh	STP PA002629	3				
373.54	= Q stream (cfs)	0.1	= CV Daily					
2	= Q discharg	je (MGD)	0.1	= CV Hourly					
30	= no. sample	s	1	= AFC_Partial	Mix Factor				
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial	Mix Factor				
	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)				
0.5	= BAT/BPJ V	alue alue	720	= CFC_Criteria	= CFC_Criteria Compliance Time (min)				
	= % Factor o	of Safety (FOS)		=Decay Coeffic	cient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =	38.532	1.3.2.iii	WLA cfc = 37.558				
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTAMULT cfc = 0.891				
PENTOXSD TRG	5.1b	LTA_afc=	30.706	5.1d	LTA_cfc = 33.479				
Source		Efflue	nt Limit Calcu	lations					
PENTOXSD TRG	5.1f		AML MULT =	1.043					
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.500	BAT/BPJ				
		INST MAX	LIMIT (mg/l) =	0.902					
WLA afc LTAMULT afc LTA_afc	+ Xd + (AF	FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvh^2+1))-2.326*LN(cvh^2+ MULT_afc)O)	C_tc))					
WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) AMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)								
AML MULT AVG MON LIMIT INST MAX LIMIT	EXP(2.326*L MIN(BAT_BP 1.5*((av_moi	I^2/no_samples	+1))						

	Develop	ment of Effluent Limitations							
Outfall No.	002	Design Flow (MGD)	2						
Latitude	40° 4' 26.00"	Longitude	-75° 17' 4.00"						
Wastewater D	Wastewater Description: Sewage Effluent								

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

A "Reasonable Potential Analysis" determined the following parameters were candidates for limitations/monitoring:

Parameter	Limit (mg/l)	SBC	Model
Aluminum, Total	Report	Av. Qtrly	Toxic Management Spreadsheet (TMS)
Copper, Total	Report	Av. Qtrly	TMS
Thallium, Total	Report	Av. Qtrly	TMS
Zinc, Total	Report	Av. Qtrly	TMS
Acrolein	Report	Av. Qtrly	TMS

Anti-Backsliding

Sulfate, Chloride and Bromide monitoring are eliminated from the permit.

Discharge concentrations for Sulfate, Chloride are much lower than the criterion, and there is no criterion for Bromide. Historically PADEP compared the effluent concentration of Bromide with a threshold of >1.0 mg/l for facilities with flow greater than 0.1 MGD or 10 mg/l for flows less than 0.1 MGD. If this criterion is met, a monitoring requirement was added in the permit. Since PADEP has more than 7-years' worth of data on these special parameters, a monitoring is no longer implemented unless required by other agencies, e.g. DRBC. Therefore, it is recommended that the existing monitoring requirements for Sulfate, Chloride and Bromide to be removed. This is justified by the anti-backsliding prohibition exception as stated in 40 CFR 122.44(l)(2)(i)(B)(1).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations					Monitoring Requirements		
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	xxx	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.3	1/day	Grab
CBOD5	417	667	XXX	25	40	50	2/week	24-Hr Composite
CBOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	500	750	XXX	30	45	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Dissolved Solids	XXX	XXX	XXX	1000.0 Avg Qrtly	2000.0 Daily Max	2500	1/quarter	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab

Outfall 002, Continued (from Permit Effective Date through Permit Expiration Date)

	Effluent Limitations					Monitoring Re	quirements	
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)			Minimum (2)	Required	
Farameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
!								24-Hr
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
Ammonia	333	XXX	XXX	20	XXX	40	2/week	Composite
							_, .	24-Hr
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
	2004	2007	2007	Report	2007	2007	.,	24-Hr
Total Aluminum	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
	2004	2007	2007	Report	2007	2007	.,	24-Hr
Total Copper	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
T	1004	NAA4	V0/0/	Report	NA //	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	41	24-Hr
Total Thallium	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
Takal Zina	VVV	VVV	VVV	Report	VVV	VVV	4/	24-Hr
Total Zinc	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
Appalain	V///	VVV	VVV	Report	VVV	VVV	4/	24-Hr
Acrolein	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
DCDs (Dr. Mosther) (pg/l)	VVV	VVV	VVV	Report	VVV	VVV	1/1/00"	24-Hr
PCBs (Dry Weather) (pg/L)	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Composite 24-Hr
DCDs (Met Meether) (sg/L)	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/1/00"	
PCBs (Wet Weather) (pg/L) Chronic WET - Ceriodaphnia	^^^	^^^	^^^	Report	^^^	^^^	1/year	Composite 24-Hr
Survival (TUc)	xxx	xxx	XXX	Daily Max	XXX	XXX	See Permit	Composite
Chronic WET - Ceriodaphnia		^^^	^^^	Report	^^^	^^^	See Ferrini	24-Hr
Reproduction (TUc)	xxx	XXX	XXX	Daily Max	XXX	XXX	See Permit	Composite
Chronic WET - Pimephales	^^^	^^^	^^^	Report	^^^	^^^	See Femili	24-Hr
Survival (TUc)	xxx	XXX	xxx	Daily Max	XXX	XXX	See Permit	Composite
	^^^	^^^	^^^	•	^^^		See Femili	24-Hr
•	XXX	XXX	XXX		XXX	XXX	See Permit	Composite
Chronic WET - Pimephales Growth (TUc)	XXX	XXX	XXX	Report Daily Max Daily Max	XXX	XXX	See Permit See Permit	: