

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0026905
APS ID	654659
Authorization ID	739000

Applicant and Facility Information

Applicant Name	Connellsville City Municipal Authority Fayette County	Facility Name	Connellsville Municipal Authority WWTP
Applicant Address	PO Box 925	Facility Address	99 Treatment Plant Road
	Connellsville, PA 15425-0925		Connellsville, PA 15425
Applicant Contact	Patrick Duncan	Facility Contact	Jerry Fox
Applicant Phone	(724) 628-6555	Facility Phone	
Client ID	62846	Site ID	253560
Ch 94 Load Status	Existing Hydraulic Overload	Municipality	Connellsville City
Connection Status	No Limitations	County	Fayette
Date Application Recei	ved August 11, 2008	EPA Waived?	No
Date Application Accept	oted August 19, 2008	If No, Reason	Major Facility
Purpose of Application	Renewal of NPDES Permit.		

Summary of Review

The Connellsville City Municipal Authority (CMA) Fayette County applied for a renewal of an existing NPDES Permit, PA0026905, which was previously issued on January 13, 2004 with expiration on January 31, 2009. The application was initially reviewed by Ray Lattner, who has since retired. On November 3, 2017, the Draft NPDES permit was issued and sent out to public notice. The EPA provided comments via an electronic mail message dated November 22, 2017. The permitting process stalled at this point. Since the original permit writer has retired and the Department's permit language has been updated, new Draft permit will be developed.

A new WQM Permit 2618401 was issued by the Department on April 30, 2019 and approves sequencing batch reactor (SBR) to replace the existing treatment plant. The new treatment plant will consist of a new mechanical screen, four (4) raw sewage headworks pumps, four (4) SBR basins, UV disinfection, a belt filter press, and four (4) aerobic digesters. The plant will handle an average design flow of 4.4 MGD and a peak wet weather flow of 24.0 MGD. The design organic loading is 7,340 lb/day. The existing 4 activated sludge aeration tanks will be converted to aerobic digesters. Structures and equipment related to the peak hydraulic loading are sized to provide a capacity of 24 MGD, while the unit processes used for biological treatment are designed with the proposed average daily permit capacity of 4.4 MGD (LTCP proposed average daily flow design).

The discharge is to the Youghiogheny River. The Youghiogheny River is classified as a warm water fishery (WWF) at the point of discharge and is located in the State Watershed No 19-D.

The CMA LTCP was approved on August 17, 2017. The LTCP proposes to address these CSOs in the following manner:

Approve	Deny	Signatures	Date
х		Curtis Holes, P.E. / Environmental Engineering	March 29, 2023
x		Манвова IAsmins Mahbuba lasmin, Ph.D., P.E. / Environmental Engineer Manager	August 16, 2023

- Comply with the EPA CSO Policy's Presumption Approach criteria to meet receiving Water Quality Standards (WQS) by capturing no less than 85% by volume of the combined sewage collected in the CSS during precipitation events on a system-wide average annual basis;
- Addresses the Sensitive Areas recreational swimming and boating requirements within the Yough River Park area by proposing facilities to nearly eliminate CSO discharges at outfalls 004, 005 and 006. CMA proposes to accomplish this by modifying these regulator structures; by upgrading the West Side interceptor to a minimum of 27 inches diameter and by increasing the West Side pump station capacity to 11.4 mgd; by providing variable frequency drives; by installing an emergency generator and; by providing SCADA monitor data for remote real-time control;
- Replace the existing WWTP and expand its capacity to 4.4 mgd average daily flow and provide full biological
 treatment capacity for 24.0 mgd peak wet weather flow. The WWTP operational process will be converted from a
 conventional activated sludge to a four (4) unit Sequential Batch Reactor process. It proposes to utilize the existing
 final clarifiers into aerated wet weather holding tanks whereby flows more than 24 mgd may be diverted for storage
 and later treatment;
- Permanently seal CSO outfall 007 and eliminate CSO outfall 003 by constructing a new 24-inch diameter parallel interceptor from CSO outfall 017, terminating into a 36-inch diameter interceptor that will convey flow directly into the WWTP influent;
- Provide final interceptor termination capacity improvements sufficient to convey all peak wet weather flow to the WWTP influent without possibility of discharge from CSO outfall 002;
- Provide outfall solids and floatables screening at the Trump Run CSO outfall 016 structure prior to wet weather discharge.

<u>Sch</u>	eduled Interim Milestones	Due Date
a.	Receive Part I NPDES Permit Amendment Application for WWTP new design flow	August 30, 2018
b.	Receive Water Quality Management (Part II) Construction Permit Application(s) for WWTP expansion and Improvements	April 20, 2019
C.	Commence construction for LTCP improvements	March 1, 2020
d.	Completion of LTCP Construction Projects and WWTP startup	May 31, 2022
e.	Completion of LTCP Construction Project and WWTP Startup	September 30, 2022
f.	Submit Post Construction Monitoring Plan Details to DEP	October 30, 2022
g.	Begin Post Construction Monitoring approval from PADEP	Within 60 days of PCCM Plan
h.	Complete Post Construction Monitoring	January 31, 2028
i.	Submission of Post Construction Monitoring Report to DEP	September 30, 2028

Connellsville has experienced delays to the initial LTCP schedule due to COVID-19 and supply chain issues.

Part C.II, Maximizing Treatment at the Existing POTW has been added to the permit. This condition allows for a CSO Related Bypass of secondary treatment at the STP. This is only permitted when the maximum daily flow to the STP exceeds 24.0 MGD. All bypassed flow receives primary treatment and disinfection prior to bypass.

CSO locations summarized below.

CSO Location Summary

CSO	LOCATION	TYDE	RECEIVING	LATITUDE/
ID#	LOCATION	TTPE	STREAM	LONGITUDE
002	Mounts Creek Overflow Chamber	Overflow Chamber	Mounts Creek	40°01'25"/79°35'59
002	(Treatment Plant Controlled Diversion)	over now chamber	Mounts Greek	"
003	Mounts Creek Storm Water Regulator	Storm Water Regulator	Mounts Creek	40°01'27"/79°35'04 "
004	Sixth Street Overflow Chamber	Overflow Chamber	Youghiogheny River	40°01'15"/79°35'59 "
005	Seventh Street Overflow Chamber	Overflow Chamber	Youghiogheny River	40°01'14"/79°35'02 "
006	Third Street Overflow Chamber	Overflow Chamber	Youghiogheny River	40°01'15"/79°35'52 "
007	Ninth Street/West Crawford Avenue Diversion MH #411	Diversion Manhole	Opossum Run	40°01'09"/79°35'18 "
008	Peach Street/Water Street Diversion Manhole #78	Diversion Manhole	Youghiogheny River	40°01'09"/79°35'35 "
009	Grape Street/Water Street Diversion Manhole #97A	Diversion Manhole	Youghiogheny River	40°01'08"/79°35'35 "
010	Apple Street/Water Street Diversion Manhole #112	Diversion Manhole	Youghiogheny River	40°01'06"/79°35'34 "
011	Apple Street/Water Street Regulator Chamber	Regulator Chamber	Youghiogheny River	40°01'05"/79°35'34 "
012	East Crawford Avenue/Water Street Diversion Manhole	Diversion Manhole	Youghiogheny River	40°01'02"/79°35'34 "
013	Church Place Diversion Manhole #118A	Diversion Manhole	Youghiogheny River	40°00'58"/79°35'35 "
016	Trump Run Diversion Manhole #244A	Diversion Manhole	Trump Run	40°00'29"/79°35'30 "
017	North Pittsburgh Street Overflow	Overflow Chamber	Mounts Creek	40°01'31"/79°35'28 "
019	Arch Street Diversion Manhole #145 – Connell Run Regulator Chamber - Connell Run Diversion Manhole #123	Diversion Manhole & Regulator Chamber	Youghiogheny River	40°00'58"/79°35'28 "

One (1) of the fifteen (15) CSOs consists of the Treatment Plant Controlled Diversion (CSO #002). Eight (8) of the remaining fourteen (14) CSOs (CSOs #008, #009, #010, #011, #012, #013. #016, and #019) are all associated with the East Side

Interceptor conveys wastewater to the Connellsville Municipal Authority Wastewater Treatment Facility (WWTP). The East Side Interceptor flow, prior to reaching the WWTP, may also overflow from the CSOs at CSO #002-Treatment Plant Controlled Diversion if necessary. The existing 30" interceptor that extends from the manhole located at the plant's entrance gate to the effluent chamber of the WWTP will be replaced with a 42" section of interceptor. The interceptor capacity increase will accommodate the combined flows of the East Side Interceptor along with the CSO discharge originating from CSO #003. CSO #002 is the emergency plant bypass, which should only be activated once the treatment plant's wet weather flow of 24 MGD is exceeded and it is unavoidable to prevent loss of life, personal injury or severe property damage. This specific bypass will be covered by Part B.I.G.2.a of the NPDES permit. Any activations of CSO #002 require Department notification.

The West Side Interceptor passes through four (4) of the fourteen CSOs (CSOs #004, #005, #006, and #007). These four (4) CSOs are reported to be inactive by Connellsville Municipal Authority personnel. All the combined wastewater flow association with the West Side area is conveyed by the West Side Wastewater Pumping Station, which is located along the west side of the Youghiogheny River directly across from the Connellsville Municipal Authority Wastewater Treatment Facility and within the area referred to as Yough Park which has active boating, fishing, and community events. The West Side Wastewater Pumping Station contains two (2) pumps rated at 1,800 GPM each (27' TDH), which far exceeds the average daily dry weather flow to the wastewater pumping station.

The North End Area is located along Mounts Creek. Combined Wastewater flow associated with the North End Interceptor passes through two (2) of the fourteen (14) CSOs (CSOs #003 and #017). CSO #003 is the final CSO of the North End Interceptor prior to being conveyed to the Connellsville Municipal Authority Wastewater Treatment Plant. The existing 12" interceptor that connects the 24" regulator to the plant will be replaced by a new 27" interceptor to provide sufficient capacity to convey all wet weather flows to the WWTP. Combined wastewater flow associated with the North End Interceptor joins with combined wastewater flow associated with the East Side Interceptor at the manhole located at the Connellsville Municipal Authority Wastewater flow ultimately joins with combined wastewater flow pumped via the West Side Wastewater Pumping Station (West Side Interceptor) at the Connellsville Municipal Authority Wastewater Treatment Facility.

Storm Water Outfalls 020 and 021 will again be permitted for the discharge of un-contaminated storm water runoff from areas in and around the treatment plant. Part C.VI, Requirements Applicable to Storm Water Outfalls, has been added to the permit.

The permit application lists four (4) Industrial Users (Highlands Hospital, Bradley Paint, Anchor Glass and Cap, and Allegheny Power) in the service area, none of which are Categorical Industry Users. The wastewater flows from all the Industrial Users are identified as sanitary. There have been no compliance issues attributed to IW discharges causing NPDES permit effluent violations. Part C language, Pretreatment Program Development, has not been added to the permit.

According to 40 CFR 122.21(j)(5)(iv) Effluent monitoring for WET, each applicant is required to submit results from a minimum of four quarterly tests for a year, from the year preceding the permit application or results from four tests performed at least annually in the four and one-half year period prior to the application. The permittee did not meet the WET testing requirements of 40 CFR 122.21(j)(5). While the WET results were all passing, the frequency in which the samples were taken does not meet the regulation at 40 CFR 122.21(j)(5)(iv). The new Part C WET Language used in the renewal permit will meet the federal regulations and that the WET Limits may be established in the next permit cycle if the Applicant fails to follow the new permit requirements. Since the application WET testing is old and from the old treatment plant, conducting quarterly WET testing the first year will allow the Department to properly analysis the existing treatment plant.

The applicant has complied with Act 14 Notifications and no comments were received.

Sludge is hauled by Allied Waste and disposed of at a landfill.

The facility was inspected by Lisa Milsop on December 15, 2021 with no violations noted.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*,

DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information							
Outfall No. 001		Design Flow (MGD)	4.4				
Latitude 40° 0	1' 17"	Longitude	-79º 35' 55"				
Quad Name Co	nnellsville	Quad Code	1809				
Wastewater Descrip	otion: Sewage Treatment Plant E	ffluent					
Receiving Waters	Youghiogheny River (WWF)	Stream Code	37456				
NHD Com ID	69917923	RMI	43.9				
Drainage Area	1326	Yield (cfs/mi ²)	0.3016				
	100		U.S. Army Corps of				
Q ₇₋₁₀ Flow (cfs)	400	Q7-10 Basis	Engineers				
Elevation (ft)	860	Slope (ft/ft)					
Watershed No.	<u>19-D</u>	Chapter 93 Class.	WWF				
Existing Use	Aquatic Life	Existing Use Qualifier	None				
Exceptions to Use	None	Exceptions to Criteria	None				
Nearest Downstream	m Public Water Supply Intake	West County Municipal Author	rity – McKeesport (10 MGD)				
PWS Waters	oughiogheny River	Flow at Intake (cfs)	510				
PWS RMI 1	.25	Distance from Outfall (mi)	42.4				

Changes Since Last Permit Issuance: The facility has permitted and constructed a new WWTP designed to handle an average design flow of 4.4 MGD and a peak wet weather flow of 24.0 MGD.

Outfall 001 Drainage Area

	Treatment Facility Summary							
Treatment Facility Na	me: Connellsville STP							
WQM Permit No.	Issuance Date							
2618401	4/30/2019							
	Degree of			Avg Annual				
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
Sewage	Secondary	Extended Aeration	UV	4.4				
Hydraulic Capacity	Organic Capacity			Biosolids				
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal				
	7.040	Existing Hydraulic	Combination	l e e dfill				
4.4	7,340	Overload	Combination	Landfill				

Changes Since Last Permit Issuance: *The facility has permitted and constructed a new WWTP designed to handle an average design flow of 4.4 MGD and a peak wet weather flow of 24.0 MGD, replacing and repurposing components of the original plant.

Compliance History

Parameter	Limit	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
Flow (MGD)													
Average Monthly	Report	2.68	2.72	1.62	2.14	1.88	2.12	1.99	2.63	2.45	2.95	2.90	2.56
Flow (MGD)													
Daily Maximum	Report	3.06	3.94	2.64	5.00	3.67	4.22	3.99	4.10	3.54	5.30	4.04	4.05
pH (S.U.)													
Minimum	6.0	6.30	6.3	6.2	6.2	6.2	6.3	6.3	6.3	6.4	6.4	6.5	6.4
pH (S.U.)													
Maximum	9.0	6.8	6.6	6.5	6.7	6.5	6.7	6.7	6.8	6.9	6.8	6.6	6.7
TRC (mg/L)													
Average Monthly	1.0	0.010	0.3	0.40	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.4
CBOD5 (lbs/day)													
Average Monthly	676	63.0	120.0	39.0	54.0	48.0	54.0	61.0	88.0	135.0	138.0	89.0	59.0
CBOD5 (lbs/day)													
Weekly Average	1027	77.0	193.0	53.0	92.0	70.0	87.0	94.0	167.0	325.0	197.0	130.0	73.0
CBOD5 (mg/L)													
Average Monthly	25	3	5	3	3	3	3	4	4	6	5	4	3
CBOD5 (mg/L)													
Weekly Average	38	3	9	3	3	3	4	5	6	11	7	5	3
TSS (lbs/day)													
Average Monthly	811	108.0	134.0	77.0	129.0	109.0	102.0	154.0	193.0	232.0	231.0	190.0	163.0
TSS (lbs/day)													
Weekly Average	1216	140.0	189.0	97.0	234.0	148.0	143.0	195.0	269.0	295.0	311.0	216.0	211.0
TSS (mg/L)													
Average Monthly	30	5	6	6	7	7	6	9	8	11	9	8	8
TSS (mg/L)													
Weekly Average	45	6	10	8	8	8	8	10	10	13	11	10	9
Fecal Coliform	10.000												
(CFU/100 ml)	10,000	-											
Geometric Mean	200	9	66	36	69	52	3	13	60	22	46	26	31

DMR Data for Outfall 001 (from January 1, 2021 to December 31, 2021)

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	4.4
Latitude	40º 01' 19"		Longitude	-79º 35' 56"
Wastewater D	escription:	Sewage Treatment Plant Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Dissolved Oxygen				
(D.O.)	4.0	Minimum	-	BPJ
Ammonia-Nitrogen	25	Average Monthly		
(NH ₃ -N)	50	IMAX	-	BPJ
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
Total N	Report	Average Monthly	-	92a.61
Total P	Report	Average Monthly	-	92a.61
E. Coli	Report (No./100 ml)	IMAX	-	92a.61

Water Quality-Based Limitations

The effluent was modeled using WQM 7.0 to evaluate the CBOD₅, NH₃-N, and DO parameters. Modeling confirmed that technology based effluent limitations for CBOD₅, NH₃-N, and DO are adequate to meet in-stream water quality criteria as shown in Attachment A.

For existing discharges (NPDES Renewal Applications), if WQM7.0 modeling results for summer indicates that an average monthly warm period limit of 25 mg/L (default in model) is acceptable for ammonia-nitrogen, a year-round monitoring requirement, at a minimum should be established. The permit will require the reporting of the Average Weekly and Average Monthly NH3-N discharge concentrations.

A "Reasonable Potential Analysis" (Attachment Toxic Management Spreadsheet, Version 1.3) was conducted as presented in Attachment B. The TMS recommended monitoring for total copper. The monitoring of total copper will be imposed and a "Reasonable Potential Analysis" will be conducted during the next permit renewal cycle using this monitoring data along with the renewal application data.

Best Professional Judgment (BPJ) Limitations

A Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented based on the standard in 25 PA Code Chapter 93 and best professional judgment.

Additional Considerations

When Ultraviolet (UV) disinfection is used, routine monitoring of UV transmittance, UV dosage, or UV intensity at the same monitoring frequency used for TRC should be contained in the permit as per the SOP-Establishing Effluent Limitations for Individual Sewage Permits.

For pH, DO and UV Transmittance, a monitoring frequency 1/day has been imposed.

Sewage discharges will include monitoring, at a minimum, for *E. Coli*, in new and reissued permits, with a monitoring frequency of 1/month for facilities with a design flows >= 1 MGD per Chapter 92.a.61.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/quarter monitor and report requirement for Total N & Total P has been added to the permit per Chapter 92.a.61.

Mass loading limits are applicable for publicly owned treatment works (POTWs). Current policy requires average monthly mass loading limits be established for CBOD₅, TSS, and NH₃-N and average weekly mass loading limits be established for CBOD₅ and TSS. Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

For POTWs with design flows greater than 2,000 GPD, influent BOD₅ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Whole Effluent Toxicity (WET)

According to 40 CFR 122.21(j)(5)(iv) Effluent monitoring for WET, each applicant is required to submit results from a minimum of four quarterly tests for a year, from the year preceding the permit application or results from four tests performed at least annually in the four and one-half year period prior to the application. The permittee did not meet the WET testing requirements of 40 CFR 122.21(j)(5). While the WET laboratory results were all passing, the WET Analysis Spreadsheet (refer to Attachment D) has three (3) of the four (4) test passing. The frequency in which the samples were taken does not meet the regulation at 40 CFR 122.21(j)(5)(iv). The new Part C WET Language used in the renewal permit will meet the federal regulations and that the WET Limits may be established in the next permit cycle if the Applicant fails to follow the new permit requirements. Since the application WET testing is old and from the old treatment plant, conducting quarterly WET testing the first year will allow the Department to properly analysis the existing treatment plant.

For Outfall 001, 🛛 Acute 🗌 Chronic WET Testing was completed:

- For the permit renewal application (4 tests).
 - Quarterly throughout the permit term.
 - Quarterly throughout the permit term and a TIE/TRE was conducted.

Other:

The dilution series used for the tests was: 100%, 50%, 25%, 12%, and 5%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: Acute 37%.

Summary of Four Most Recent Test Results

(NOTE – Enter results into one table, depending on which data analysis method was used).

NOEC/LC50 Data Analysis

	Ceriodaph	<i>nia</i> Results (% E	Pimephale				
	NOEC	NOEC		NOEC	NOEC		
Test Date	Survival	Reproduction	LC50	Survival	Growth	LC50	Pass? *
02/02/08	NA	NA	44.6	NA	NA	100	Pass
02/23/08	NA	NA	100	NA	NA	100	Pass
03/22/08	NA	NA	100	NA	NA	100	Pass
04/26/08	NA	NA	100	NA	NA	100	Fail

* A "passing" result is that which is greater than or equal to the TIWC value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

🗌 YES 🖾 NO

Comments: None

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.104 Chronic Partial Mix Factor (PMFc): 0.718

1. Determine IWC – Acute (IWCa):

(Q_d x 1.547) / ((Q₇₋₁₀ x PMFa) + (Q_d x 1.547))

[(4.4 MGD x 1.547) / ((400 cfs x 0.104) + (4.4 MGD x 1.547))] x 100 = **14%**

Is IWCa < 1%? YES X NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

NA

Type of Test for Permit Renewal: Chronic

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = IWCa / 0.3 = %

2b. Determine Target IWCc (If Chronic Tests Required)

(Q_d x 1.547) / (Q₇₋₁₀ x PMFc) + (Q_d x 1.547)

[(4.4 MGD x 1.547) / ((400 cfs x 0.718) + (4.4 MGD x 1.547))] x 100 = 2%

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 60%, 30%, 2%, and 1%.

WET Limits

Has reasonable potential been determined? \Box YES \boxtimes NO

Will WET limits be established in the permit? \Box YES \boxtimes NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Faidilleter	Average Monthly	Average Weekly	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	4.4 Annl Avg	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Record
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	xxx	4.0	xxx	xxx	XXX	1/day	Grab
CBOD ₅	917.4	1,467.8	XXX	25.0	40.0 Wkly Avg	50.0	2/week	24-Hr Composite
TSS	1,100.9	1,651.3	XXX	30.0	45.0 Wkly Avg	60.0	2/week	24-Hr Composite
TSS – Raw Sewage Influent	Report	Report Daily Max	XXX	Report	Report	XXX	2/week	24-Hr Composite
BOD₅ – Raw Sewage Influent	Report	Report Daily Max	XXX	Report	Report	XXX	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) (5/1 – 9/30)	XXX	xxx	xxx	200 Geo Mean	XXX	1,000 Geo Mean	2/week	Grab
Fecal Coliform (No./100 ml) (10/1 – 4/30)	XXX	xxx	xxx	2,000 Geo Mean	XXX	10,000 Geo Mean	2/week	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	24-Hr Composite
					Peport		1/quarter	24-Hr
								24-Hr
Ammonia-Nitrogen	Report	Report	XXX	Report	Report	XXX	2/week	Composite
E. Coli	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Copper, Total (µg/L)	XXX	XXX	xxx	Report	Report Wkly Avg	XXX	2/week	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Red	quirements
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Faidilletei	Average	Average	Instant.	Average	Daily	Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Ultraviolet Light								
Transmittance (%)	XXX	XXX	Report	Report	XXX	XXX	1/day	Recorded

Compliance Sampling Location: Outfall 001

	Tools and References Used to Develop Permit
\square	MOM for Mindows Model (and Attachment A)
	Toxics Management Spreadsheet (see Attachment B)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06
	Technical Guidance for the Development and Specification of Effluent Limitations 362-0400-001, 10/97
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications 362-2000-008 11/96
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Attachment A – WQM 7.0 Model

Attachment B – Toxics Management Spreadsheet Version 1.3

Attachment C – Schematic of Wastewater Flow

Attachment D – WET Analysis Spreadsheet

Attachment A – WQM 7.0 Model

Cold Weather Model

Warm Weather Model

Cold Weather Model

	SWF Basi	o Strea n Coo	am Je	Stre	eam Name		RMI	Elevati (ft)	on Dra A (s	inage trea q mi)	Slope (ft/ft)	PWS Withdrawa (mgd)	Apply I FC
	19D	374	456 YOUG	HIOGHE	NY RIVER		43.90	0 86	0.00	1326.00	0.00000	0.0	0 🗹
					St	ream Dat	a						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Trib</u> Temp	<u>utary</u> pH	Terr	<u>Stream</u> p pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10 Q1-10 Q30-10	0.300	400.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00	5.00	7.0	10	0.00 0.	00
					Di	scharge [Data						
			Name	Per	rmit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reserve Factor	Dis Tem (°C	c Di Np p)	sc H	
		Conn	ellsville	PA	0026905	4.4000	0.000	0 0.0000	0.00	0 1	5.00	7.00	
					Pa	arameter [Data						
						Di	sc T onc C	inib Stre ionc Co	eann Fa onc C	ate oef			

(mg/L)

25.00

3.00

25.00

(mg/L) (mg/L) (1/days)

0.00

0.00

0.00

1.50

0.00

0.70

2.00

8.24

0.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Input Data WQM 7.0

Tuesday, March 29, 2022

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	6		

Tuesday, March 29, 2022

Version 1.1

	<u>sw</u>	<u>'P Basin</u> 19D	<u>Strea</u> 3	m Code 7456			YOU	<u>Stream</u> GHIOGHI	<u>Name</u> ENY RIVE	R		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10) Flow											
43.900	400.00	0.00	400.00	6.8068	0.00095	1.136	332.57	292.85	1.08	0.023	5.17	7.00
Q1-10	Flow											
43.900	256.00	0.00	256.00	6.8068	0.00095	NA	NA	NA	0.84	0.029	5.26	7.00
Q30-1	0 Flow	1										
43.900	544.00	0.00	544.00	6.8068	0.00095	NA	NA	NA	1.28	0.019	5.12	7.00

WQM 7.0 Hydrodynamic Outputs

Tuesday, March 29, 2022

Version 1.1

SWP Basin	Stream Code			Stream Name		
19D	37456		YOU	GHIOGHENY R	VER	
RMI	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperatur	e (°C)	Analysis pH
43.900	4.40	0		5.167		7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	2	Reach Velocity (fps)
332.566	1.13	6		292.854		1.077
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (mg	/L)	Reach Kn (1/days)
2.38	0.26	1		0.42		0.224
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation		Reach DO Goal (mg/L)
8.155	3.34	7		Tsivoglou		6
Reach Travel Time (days)	Subreach	Reculte			
0.023	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)		
	0.002	2.38	0.42	8.19		
	0.005	2.38	0.42	8.22		
	0.007	2.38	0.42	8.24		
	0.009	2.38	0.42	8.24		
	0.011	2.38	0.42	8.24		
	0.014	2.38	0.42	8.24		
	0.016	2.38	0.42	8.24		
	0.018	2.38	0.42	8.24		
	0.020	2.38	0.42	8.24		
	0.023	2.38	0.42	8.24		

WQM 7.0 D.O.Simulation

Tuesday, March 29, 2022

Version 1.1

0

0

43.90 Connellsville

	19D	37456						
NH3-N	Acute Allocat	ons						
RMI	Discharge Na	Baseline me Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
43.9	00 Connellsville	24.1	50	24.1	50	0	0	
NH3-N	Chronic Alloc	ations Baseline	Baseline	Multiple	Multiple	Critical	Percent	
NH3-N RMI	Chronic Alloc Discharge Nam	ations Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
NH3-N RMI 43.9	Chronic Alloc Discharge Nam	ations Baseline criterion (mg/L) 4.36	Baseline WLA (mg/L)) 25	Multiple Criterion (mg/L) 4.36	Multiple WLA (mg/L) 25	Critical Reach 0	Percent Reduction	
NH3-N RMI 43.9 Dissolv	Chronic Alloc Discharge Nam 00 Connellsville ved Oxygen All	ations Baseline Criterion (mg/L) 4.30 ocations	Baseline WLA (mg/L)) 25	Multiple Criterion (mg/L) 4.36	Multiple WLA (mg/L) 25	Critical Reach 0	Percent Reduction	
NH3-N RMI 43.9 Dissolv	Chronic Alloc Discharge Nam 100 Connellsville red Oxygen All	ations Baseline Criterion (mg/L) 4.36 ocations	Baseline WLA (mg/L)) 25 CBOD5	Multiple Criterion (mg/L) 4.36 <u>NH3-N</u>	Multiple WLA (mg/L) 25 Dissolv	Critical Reach 0 ved Oxyger	Percent Reduction	

25

25

25

25

3

3

WOM 7.0 Wasteload Allocations

Tuesday, March 29, 2022

Version 1.1

	<u>SWP Basin</u> 19D	Stream Code 37456		Stream Name YOUGHIOGHENY	e RIVER		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
43.900	Connellsville	e PA0026905	4.400	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3

WQM 7.0 Effluent Limits

Tuesday, March 29, 2022

Version 1.1

Warm Weather Model

	SWP Basin	Strea Cod	im ie	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withdi (mg	/S rawal gd)	Apply FC
	19D	374	456 YOUG	HIOGHE	NY RIVER		43.90	00	860.00	1326.00	0.00000		0.00	¥
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> Ip pH	Ten	<u>Stream</u> np	рн	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	;)		
Q7-10 Q1-10 Q30-10	0.300	400.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.0	0 2	5.00 7.0	00	0.00	0.00	
					Di	ischarge l	Data							
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Desi Dis Flo) (mg	ign ic Res iw Fa gd)	Dis erve Ten ctor (°C	c Di Np p	isc oH		
		Conn	ellsville	PA	0026905	4.400	0.000	0.0 0.0	0000	0.000 2	0.00	7.00		
					Pa	arameter l	Data							
				Paramete	r Name	Di C	onc C	Trib Conc	Stream Conc	Fate Coef				
	-					(m	ig/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Tuesday, March 29, 2022

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

Tuesday, March 29, 2022

Version 1.1

								-				
	<u>sw</u>	P Basin	<u>Strea</u>	m Code			NOU	Stream	Name	- 0		
		190	3	/456			1000	SHIUGH		ER .		
RMI	Stream Flow	tream PWS Flow With		Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10) Flow											
43.900	400.00	0.00	400.00	6.8068	0.00095	1.136	332.57	292.85	1.08	0.023	24.92	7.00
Q1-10) Flow											
43.900	256.00	0.00	256.00	6.8068	0.00095	NA	NA	NA	0.84	0.029	24.87	7.00
Q30-1	10 Flow											
43.900	544.00	0.00	544.00	6.8068	0.00095	NA	NA	NA	1.28	0.019	24.94	7.00

WQM 7.0 Hydrodynamic Outputs

Tuesday, March 29, 2022

Version 1.1

SWP Basin S	Stream Code			Stream Name	
19D	37456		YOU	IGHIOGHENY RIVE	R
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperature (*	C) Analysis pH
43.900	4.40	0		24.916	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
332.566	1.13	6		292.854	1.077
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	<u>R</u>	Reach Kn (1/days)	
2.38	0.25	9		0.42	1.022
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
8.155	5.34	6		Tsivoglou	6
Reach Travel Time (days))	Subreach	Results		
0.023	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.002	2.38	0.42	7.55	
	0.005	2.38	0.42	7.55	
	0.007	2.38	0.42	7.55	
	0.009	2.38	0.41	7.55	
	0.011	2.38	0.41	7.55	
	0.014	2.37	0.41	7.55	
	0.016	2.37	0.41	7.55	
	0.018	2.37	0.41	7.55	
	0.020	2.37	0.41	7.55	
	0.023	2.37	0.41	7.55	

WQM 7.0 D.O.Simulation

Tuesday, March 29, 2022

Version 1.1

	SWP Basin	Stream	Code		St	ream Name	_	
	19D	3745	6		YOUGH	IOGHENY RIV	/ER	
NH3-N	Acute Alloca	tions						
RMI	Discharge N	B lame C	aseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
43.9	00 Connellsville		11.19	50	11.19	50	0	0
NH3-N	Chronic Allo	cation	s					
RMI	Discharge Na	Ba: me Cri (n	seline terion ng/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
43.9	00 Connellsville		1.37	25	1.37	25	0	0
icech	ed Oxygen A	llocati	ons					
ISSOIN								
ISSON			<u>c</u>	BOD5	NH3-N	Dissol	ved Oxyger	Critical I

(mg/L)

25

(mg/L)

25

(mg/L) (mg/L)

25

(mg/L)

3

25

(mg/L) 3

0

0

Tuesday, March 29, 2022

43.90 Connellsville

Version 1.1

	<u>SWP Basin</u> 19D	Stream Code 37456		Stream Name YOUGHIOGHENY	e RIVER		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
43.900	Connellsville	e PA0026905	4.400	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3

WQM 7.0 Effluent Limits

Tuesday, March 29, 2022

Version 1.1

Attachment B – Toxics Management Spreadsheet Version 1.3

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Disch	arge	Stream				
Facility:	Connel	lsville V	WWTP		NPDES Permit No.:	PA0026905	Outfall No.: 001
Evaluation T	ype:	Major	Sewage / Ind	lustrial Waste	Wastewater Descrip	tion: Sewage Treatm	ent Plant Effleunt

			Discharge	Characteris	tics			
Design Flow			P	artial Mix Fa	actors (PMF:	5)	Complete Mix	c Times (min)
(MGD)*	naruness (mg/i)*	рн (30)-	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh
4.4	139	6.55						

	1 1				0 if left blank		t blank	0.5 If left blank		0 If left blank			1 li leit blank	
	Discharge Pollutant	Units	Ma	Max Discharge Conc		rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		340										
5	Chloride (PWS)	mg/L		72			-							
S I	Bromide	mg/L		0.049			-							
5	Sulfate (PWS)	mg/L		48.6			-							
	Fluoride (PWS)	mg/L				\square								
	Total Aluminum	µg/L		12										
	Total Antimony	µg/L												
	Total Arsenic	µg/L					-							
	Total Barium	µg/L		36			-							
	Total Beryllium	µg/L	<	0.3										
	Total Boron	µg/L		179										
	Total Cadmium	µg/L		0.2										
	Total Chromium (III)	µg/L	<	0.4		H	-							
	Hexavalent Chromium	µg/L				Ħ								
	Total Cobalt	µg/L		0.7										
	Total Copper	µg/L		7										
3	Free Cyanide	µg/L												
1 m	Total Cyanide	µg/L		4			-							
5	Dissolved Iron	µg/L		46	+	Ħ								
-	Total Iron	µg/L		80										
	Total Lead	µg/L												
	Total Manganese	µg/L		16	-	Ħ	-							
	Total Mercury	µg/L		0.07		H								
	Total Nickel	µg/L		3		Ħ								
	Total Phenols (Phenolics) (PWS)	µg/L	<	75										
	Total Selenium	µg/L												
	Total Silver	µg/L				H	-							
	Total Thallium	µg/L			=	Ħ								
	Total Zinc	µg/L		23		Ħ								
	Total Molybdenum	µg/L	<	0.2										
	Acrolein	µg/L	<	1.9										
	Acrylamide	µg/L	<				-							
	Acrylonitrile	µg/L	<	1.2		Ħ								
	Benzene	µg/L	<	0.23										
	Bromoform	µg/L	<	0.4										

Discharge Information

1	Carbon Tetrachloride	µg/L	<	0.31	H	-	_						-	-	1
	Chlorobenzene	ua/L		0.24	Ħ	=	+					Ħ	=	Ħ	1
	Chlorodibromomethane	ug/l	e	0.45	Ħ	+	+					Ħ	=	=	1
	Chloroothana	- 19/L		0.10	H	÷	÷	<u> </u>				H	÷	÷	1
	Chlorenthe Life L Ether	Pg/L		0.00	Ħ	÷	÷	<u> </u>				Ħ	÷	÷	
	2-Chioroethyl Vinyl Ether	µg/L	<	0.38	Ħ	Ť	÷	<u> </u>				Ħ	Ŧ	Ŧ	
	Chloroform	µg/L	<	0.21											ĺ
	Dichlorobromomethane	µg/L	<												ĺ
	1,1-Dichloroethane	µg/L	<	0.28											
0	1,2-Dichloroethane	µg/L	<	0.32	H	4	_					\square	_	4	
<u>₽</u>	1,1-Dichloroethylene	µg/L	<	0.27	H	-	-							4	ļ
ē	1.2-Dichloropropane	ua/L	<	0.24	Ħ	=	+					Ħ	=	7	ĺ
Ø	1.3-Dichloropropylene	ua/L	<		Ħ	=	+					Ħ	=	Ħ	1
	1.4-Diovane	ug/l	e	58.0	H	+	+					H	+	+	•
	Filedheersee	P8/C		0.24	Ħ	÷	÷	<u> </u>				Ħ	÷	Ħ	•
	Ethylbenzene	µg/L	~	0.34	Ħ	Ŧ	÷					Ħ	Ŧ	Ŧ	
	Methyl Bromide	µg/L	<		Ħ	Ì	÷						Ì	7	
	Methyl Chloride	µg/L	<					<u> </u>							ļ
	Methylene Chloride	µg/L	<	0.45											
	1,1,2,2-Tetrachloroethane	µg/L	<	0.34	Ц	_								ļ	
	Tetrachloroethylene	µg/L	<	0.35	H	-								4	
	Toluene	ua/L	<	0.123	H	-	-							4	1
	1.2-trans-Dichloroethylene	ua/L	<	0.26	Ħ	=	+					Ħ	=	Ħ	1
	1.1.1-Trichloroethane	uo/l	<	0.22	H	-	+					H	+	+	1
	1.1.2 Tricklessethane	P8/C		0.22	Hì	÷	÷					H	÷	÷	•
	T. 1,2-1 nonioroetnane	µg/L	~	0.33	Ħ	+	÷					Ħ	=	Ŧ	
	Inchioroethylene	µg/L	<	0.33	Ħ	Ì	÷					Ħ	Ì	7	
	Vinyl Chloride	µg/L	<	0.3		Ì	Ť	1					Ì	Ì	
	2-Chlorophenol	µg/L	<	1.74											ĺ
	2,4-Dichlorophenol	µg/L	<	1.35											
	2,4-Dimethylphenol	µg/L	<	2.14	\square	_	_							4	
	4,6-Dinitro-o-Cresol	µg/L	<		H	-	-							4	ļ
4	2.4-Dinitrophenol	ua/L	<	5.85	Ħ	=	+					Ħ	=	7	
5	2-Nitrophenol	ug/L	<	2.12	Ħ	+	+					Ħ	=	Ħ	1
L C	4 Nitrophonol		1	5.00	H	+	+					H	+	+	•
0	a Chiere en Cresel	Pg/L		0.08	Ħ	÷	÷	<u> </u>				Ħ	÷	÷	
	p-Chloro-m-Cresol	µg/L		0.25	Ħ	Ŧ	÷					Ħ	Ŧ	Ŧ	
	Pentachiorophenol	µg/L	<	2.57		Ì		1					Ì	I	
	Phenol	µg/L	<	4.11											
	2,4,6-Trichlorophenol	µg/L	<	2.95											
	Acenaphthene	µg/L	<	1.65	\square										
	Acenaphthylene	µg/L	<	1.97	H	-	_							4	
	Anthracene	µg/L	<	2.06	Ħ	=	+					Ħ	=	7	ĺ
	Benzidine	ua/L	<	12.1	Ħ	=	+					Ħ	=	Ħ	1
	Benzo(a)Anthracene	uo/l	<	2 44	Ħ	Ť	+					H	-	Ť	1
	Benzo(a)Pyrene	ug/l	<	0.23	Ħ	÷	÷					Ħ	Ŧ	Ť	•
	2 4 Reprofueranthene	- 19/L		0.12	Ħ	Ŧ	Ŧ					Ħ	Ŧ	Ŧ	
	Deserver and Deserver	Pg/L		0.15		-		<u> </u>					-	3	1
	Benzo(gni)Perylene	µg/L	<	2.44	Į.		_						1		
	Benzo(k)Fluoranthene	µg/L	<	0.2	\square	_	_						_	4	
	Bis(2-Chloroethoxy)Methane	µg/L	<	2.25	H		_								
	Bis(2-Chloroethyl)Ether	µg/L	<	2.03	\vdash	\rightarrow	_								
	Bis(2-Chloroisopropyl)Ether	µg/L	<	2.17	\vdash	-								7	
	Bis(2-Ethylhexyl)Phthalate	µg/L		3.38	F	-						F	-	7	ĺ
	4-Bromophenyl Phenyl Ether	ua/L	<	1.83	Fi	1	1					F	7	T	1
	Butyl Benzyl Phthalate	ug/L	<	3.08	Ħ	Ť	Ť					Hì	Ť	Ť	1
	2.Chloropaphthalopa		1	2.42	Ħ	Ť	Ŧ					F	Ť	Ť	•
	4 Chlorophonyl Phonyl Ethor	pg/L		2.40		-		<u> </u>					=	3	í
	4-Chlorophenyl Phenyl Ether	µg/L	~	2.48		_	_						_	4	
	Chrysene	µg/L	<	2.42	H	4	_					H	4	4	
	Dibenzo(a,h)Anthrancene	µg/L	<	0.22	\vdash	4	_					\square	_	4	
	1,2-Dichlorobenzene	µg/L	<	2.36	\vdash	\rightarrow									
	1,3-Dichlorobenzene	µg/L	<	3.3	H								_		
5	1,4-Dichlorobenzene	µg/L	<	3.16	H							H	-		
<u>₽</u>	3,3-Dichlorobenzidine	µg/L	<	2.08	F							F	T	T	1
ē	Diethyl Phthalate	µg/L	<	2.26									\neg		ĺ
Ō	Dimethyl Phthalate	uo/L	<	2.68		Î							Í	Ĩ	l
1	Di-n-Butyl Phthalate	uo/l	<	2.73	Ħ										
1	2 4-Dinitrotoluene	uo/l	<	2.32	Ħ	+	+						=	=	
1	and a second production of the	Pare -			1 1										

Discharge Information

5/25/2022

Page 2

	2,6-Dinitrotoluene	µg/L	<	2.69	H	-		-						F
	Di-n-Octyl Phthalate	µg/L	<	3.63	Fi		-						Ŧ	Ŧ
	1,2-Diphenylhydrazine	µg/L	<	0.26	T	ī							T	ĩ
	Fluoranthene	ua/L	<	2.62	T	Ì	Ť					Ť	Ť	Ť
	Fluorene	ug/L	<	2.3									T	T
	Hexachlorobenzene	uo/l	<	1.86	Ħ		+						t	ţ
	Hexachlorobutadiene	ug/l	<	0.19	Ħ	=	+					=	+	ŧ
	Hexachloroputatione	ug/L	-	2.71	H	-	+				 		+-	t
	Hexachlorocyclopentadiene	pg/L	-	2.71	H	-		<u> </u>					÷	÷
	Hexachioroethane	pg/L	-	3.29	Ħ	=	÷					==	÷	÷
	Indeno(1,2,3-cd)Pyrene	pg/L	· ·	0.12	Ì	1	÷	1					÷	Î
	Isophorone	µg/L	<	2.99		_	_					_	+	Ŧ
	Naphthalene	µg/L	<	1.73	\square	_	_						+	+
	Nitrobenzene	µg/L	<	3.57	╞╡	_	+						╞	÷
	n-Nitrosodimethylamine	µg/L	<	2.04	⊨	=	+			 			+	ł
	n-Nitrosodi-n-Propylamine	µg/L	<	2.24										ŕ
	n-Nitrosodiphenylamine	µg/L	۷	2.24	Γì	Ì							1	Ť
	Phenanthrene	µg/L	۷	2.02	T	Ĩ	T						T	Î
	Pyrene	µg/L	<	3.1										Τ
	1,2,4-Trichlorobenzene	µg/L	<	0.16										ţ
	Aldrin	ug/L	<	0.0049	H		+						Ŧ	ŧ
	alpha-BHC	uo/l	<	0.002	Ħ	=	+					==	+	ŧ
	heta-BHC	ug/L	<	0.0078	H	-	+						+-	t
	asmus BHC	- 1975 - 1197	-	0.0070	H	+		-					÷	ή
	gamma-BHC	pg/L	-	0.0029	Ħ	=	Ŧ					Ħ	÷	Ĥ
	delta BHC	µg/L	<	0.0029	Ħ	-	Ŧ		 	 	 	i -	÷	Ĥ
	Chiordane	µg/L	<	0.034		_				 	 		1	ļ
	4,4-DDT	µg/L	<	0.0069										
	4,4-DDE	µg/L	<	0.0069										Ļ
	4,4-DDD	µg/L	<	0.0059				_					_	ł
	Dieldrin	µg/L	<	0.0029	\vdash			-						ł
	alpha-Endosulfan	µg/L	<	0.0029	Fi		-						Ŧ	f
	beta-Endosulfan	µg/L	<	0.0059	Fi	T	1					-i-	T	Ť
9	Endosulfan Sulfate	ug/L	<	0.0039										T
Ë,	Endrin	ua/L	<	0.0078									T	Ī
20	Endrin Aldehvde	ug/L	<	0.0098	H		+						t	t
0	Hentachlor	ug/l	6	0.0020	H	=	+						+	ŧ
	Heptachior Heptachior Enovide	Pg/L	-	0.0020	H	+	+						+-	Η
	DCB 1018	pg/L	-	0.0038	H	+	+						┿	Η
	PCB-1010	Pg/L	-	0.01	Ħ	=	+	-			 	===	÷	÷
	PCB-1221	µg/L	<	0.32	Ħ		+						÷	Ŷ
	PCB-1232	µg/L	<	0.23	Ì	Ì	Ì						Ì	Î
	PCB-1242	µg/L	<	0.24										l
	PCB-1248	µg/L	<	0.15										Ļ
	PCB-1254	µg/L	۷	0.14				-						Ļ
	PCB-1260	µg/L	<	0.25			_	-						ł
	PCBs, Total	µg/L	<		H								F	f
	Toxaphene	µg/L	<		Ħ	7	+						t	Ť
	2,3,7,8-TCDD	ng/L	<											t
	Gross Alpha	pCi/L				1							T	Î
	Total Beta	pCi/L	<		H		+						t	t
P.	Radium 228/228	pCi/L	<		H	=	+						+	ŧ
0	Total Streetium	uall	-		╞╡	=	+					+	+-	t
້ອ	Total Scontium	pg/L	-		H	+	+				 		┿	÷
	Total Uranium	µg/L	~		Ħ	=	+					===	÷	÷
	Osmotic Pressure	mOs/kg			Ħ	=	+						1	ŕ
							Ì							
					H	-								
					F									
					H								_	
					F								_	
													_	-
					H		-	-					_	_

Discharge Information

Apply Fish

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Connellsville WWTP, NPDES Permit No. PA0026905, Outfall 001

nstructions Discharge Stream

Receiving Surface Water Name: Youghiogheny River

Stream Code*

No. Reaches to Model: 1

PWS Withdrawal

(MGD)

- Statewide Criteria
- O Great Lakes Criteria
- ORSANCO Criteria

Location	Steam code	T SIMI	(ft)*	DA (mr.)	Slope (init)	(MGD)	Criteria*
Point of Discharge	037456	43.9	860	1326			Yes
End of Reach 1	037456	43.5	858	1330			Yes

RMI*

Elevation

(ft)*

DA (mi2)

Slope (ft/ft)

Q 7-10

Location

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	TX101	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	43.9	0.1										100	7		
End of Reach 1	43.5	0.1													

Qh

Location	DMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	RIMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	43.9														
End of Reach 1	43.5														

Toxics Management Spreadsheet Version 1.3, March 2021

PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Model Results

Connellsville WWTP, NPDES Permit No. PA0026905, Outfall 001

Instructions Results	RETURN	TO INPU	пс	SAVE AS	PDF	PRINT	r) 🔍 A	II 🔿 Inputs 🔿 Results 🔿 Limits
Hydrodynamics Wasteload Allocations								
AFC CC	T (min): 1	5	PMF:	0.104	Ana	lysis Hardne	ss (mg/l):	112.92 Analysis pH: 6.80
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	2,265	
Total Barium	0	0		0	21,000	21,000	63,409	
Total Boron	0	0		0	8,100	8,100	24,458	
Total Cadmium	0	0		0	2.266	2.41	7.29	Chem Translator of 0.939 applied
Total Chromium (III)	0	0		0	629.364	1,992	6,014	Chem Translator of 0.316 applied
Total Cobalt	0	0		0	95	95.0	287	
Total Copper	0	0		0	15.069	15.7	47.4	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	4.97	Chem Translator of 0.85 applied
Total Nickel	0	0		0	518.915	520	1,570	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	129.884	133	401	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	9.06	
Acrylonitrile	0	0		0	650	650	1,963	
Benzene	0	0		0	640	640	1,932	
Bromoform	0	0		0	1,800	1,800	5,435	
Carbon Tetrachloride	0	0		0	2,800	2,800	8,455	
Chlorobenzene	0	0		0	1,200	1,200	3,623	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	54,350	
Chloroform	0	0		0	1,900	1,900	5,737	

NPDES Permit No. PA0026905

NPDES Permit Fact Sheet Connellsville Municipal Authority WWTP

	-					-				
1,2-Dichloroethane	0	0		Ť	i i	0	15,000	15,000	45,292	
1,1-Dichloroethylene	0	0				0	7,500	7,500	22,646	
1,2-Dichloropropane	0	0				0	11,000	11,000	33,214	
Ethylbenzene	0	0				0	2,900	2,900	8,756	
Methylene Chloride	0	0				0	12,000	12,000	36,234	
1,1,2,2-Tetrachloroethane	0	0				0	1,000	1,000	3,019	
Tetrachloroethylene	0	0				0	700	700	2,114	
Toluene	0	0	1 T	T		0	1,700	1,700	5,133	
1,2-trans-Dichloroethylene	0	0				0	6,800	6,800	20,532	
1,1,1-Trichloroethane	0	0				0	3,000	3,000	9,058	
1,1,2-Trichloroethane	0	0				0	3,400	3,400	10,266	
Trichloroethylene	0	0				0	2,300	2,300	6,945	
Vinyl Chloride	0	0				0	N/A	N/A	N/A	
2-Chlorophenol	0	0				0	560	560	1,691	
2,4-Dichlorophenol	0	0		-		0	1,700	1,700	5,133	
2,4-Dimethylphenol	0	0		+		0	660	660	1,993	
2.4-Dinitrophenol	0	0	₽	+	++	0	660	660	1,993	
2-Nitrophenol	0	0	╂─┼	+	+++	0	8.000	8.000	24,156	
4-Nitrophenol	0	0		+		0	2.300	2,300	6,945	
p-Chloro-m-Cresol	0	0		t		0	160	160	483	
Pentachlorophenol	0	0		+		0	7 101	7.1	21.4	
Phenol	0	0	╬╧╪	+	++	0	N/A	N/A	N/A	
2.4.6-Trichlorophenol	0	0	₩	+	++-	0	460	460	1.389	
Acenaphthene	0	0		+	++	0	83	83.0	251	
Anthracene	0	0	li i	Ŧ	+++	0	N/A	N/A	NIA	
Benzidine		0		÷		0	200	200	006	
Benzo(a)Anthracene		0		+		0	0.5	0.5	1.51	
Benze(a)Purene	- č	0	₩	+		0	0.0	0.5 N/A	NIA	
2 4 Benzofuoranthene		0		+	++	0	N/A	N/A	N/A	
Bases (b) Shares there	, ,		╬╤╪	+	++		IN/A	N/A	N/A	
Benzo(k)Fluorantnene	0	0		+	++	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0				0	30,000	30,000	90,584	
Bis(2-Chioroisopropyi)Ether	0	0	₩	+	++-	0	N/A	N/A	N/A	
Bis(2-Ethylnexyl)Phthalate	0	0		+	++	0	4,000	4,500	13,088	
4-Bromophenyl Phenyl Ether	0	0	╞╧	+	++	U	270	270	815	
Butyl Benzyl Phthalate	0	0		+	++	0	140	140	423	
2-Chloronaphthalene	0	0		÷	<u> </u>	0	N/A	N/A	N/A	
Chrysene	0	0				0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		_	++	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		+		0	820	820	2,476	
1,3-Dichlorobenzene	0	0		_		0	350	350	1,057	
1,4-Dichlorobenzene	0	0				0	730	730	2,204	
3,3-Dichlorobenzidine	0	0	1			0	N/A	N/A	N/A	
Diethyl Phthalate	0	0				0	4,000	4,000	12,078	
Dimethyl Phthalate	0	0				0	2,500	2,500	7,549	
Di-n-Butyl Phthalate	0	0				0	110	110	332	
2,4-Dinitrotoluene	0	0				0	1,600	1,600	4,831	
2,6-Dinitrotoluene	0	0				0	990	990	2,989	
1,2-Diphenylhydrazine	0	0	1 i			0	15	15.0	45.3	
				-	_					

Fluoranthene	0	0		0	200	200	604	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	30.2	
Hexachlorocyclopentadiene	0	0		0	5	5.0	15.1	
Hexachloroethane	0	0		0	60	60.0	181	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	30,195	
Naphthalene	0	0		0	140	140	423	
Nitrobenzene	0	0		0	4,000	4,000	12,078	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	51,331	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	906	
Phenanthrene	0	0		0	5	5.0	15.1	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	393	
Aldrin	0	0		0	3	3.0	9.06	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	0.95	0.95	2.87	
Chlordane	0	0		0	2.4	2.4	7.25	
4,4-DDT	0	0		0	1.1	1.1	3.32	
4,4-DDE	0	0		0	1.1	1.1	3.32	
4,4-DDD	0	0		0	1.1	1.1	3.32	
Dieldrin	0	0		0	0.24	0.24	0.72	
alpha-Endosulfan	0	0		0	0.22	0.22	0.66	
beta-Endosulfan	0	0		0	0.22	0.22	0.66	
Endosulfan Sulfate	0	0		0	N/A	N/A	N/A	
Endrin	0	0		0	0.086	0.086	0.26	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0		0	0.52	0.52	1.57	
Heptachlor Epoxide	0	0		0	0.5	0.5	1.51	
✓ CFC CC	T (min): 7	20	PMF:	0.718	Ana	alysis Hardne	ess (mg/l):	102.6 Analysis pH: 6.95
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	4,100	4,100	61,464	
Total Boron	0	0		0	1,600	1,600	23,986	
Total Cadmium	0	0		0	0.250	0.28	4.13	Chem Translator of 0.908 applied
Total Chromium (III)	0	0		0	75.690	88.0	1,319	Chem Translator of 0.86 applied
Total Cobalt	0	0		0	19	19.0	285	
Total Copper	0	0		0	9,154	9,54	143	Chem Translator of 0.98 applied
ioui coppei	~	~		~	0.101	0.01		energy rearised of every appress

Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0	╟┼┼┼┤	0	1.500	1,500	30.721	WOC = 30 day average: PME = 1
Total Manganasa	0	0	++++		N/A	N/A	N/A	Wide = 50 day average, 1 mil = 1
Total Margunese	0	0		0	0.770	0.01	12.6	Chem Translator of 0.95 applied
Total Nickel	0	0		0	52 140	52.2	700	Chem Translator of 0.007 applied
Total Phonols (Phonolics) (PW/S)	0	0	╟┼┼┼┤	0	N/A	N/A	788 N/A	Chem translator of 0.887 applied
Total Zing	0	0	++++		120 729	122	1.926	Cham Translates of 0.008 applied
Acrolein	0	0			120.730	2.0	45.0	Chem Translator of 0.980 applied
Acodenitrile	0	0			120	120	1.040	
Adryionitrie	0	0	╟┼┼┼┤		130	130	1,848	
Benzene	0	0	╟┼┼┼┼┥		130	130	1,848	
Bromotorm	0	0			370	370	0,047	
Carbon Tetrachioride	0	0		0	000	000	8,395	
Chiorobenzene	0	0		0	240	240	3,598	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	52,470	
Chloroform	0	0		0	390	390	5,847	
1,2-Dichloroethane	0	0		0	3,100	3,100	46,473	
1,1-Dichloroethylene	0	0		0	1,500	1,500	22,487	
1,2-Dichloropropane	0	0		0	2,200	2,200	32,981	
Ethylbenzene	0	0	╋╼┼╌┼╌┼╌┤	0	580	580	8,695	
Methylene Chloride	0	0		0	2,400	2,400	35,979	
1,1,2,2-Tetrachloroethane	0	0		0	210	210	3,148	
Tetrachloroethylene	0	0		0	140	140	2,099	
Toluene	0	0		0	330	330	4,947	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	20,988	
1,1,1-Trichloroethane	0	0		0	610	610	9,145	
1,1,2-Trichloroethane	0	0		0	680	680	10,194	
Trichloroethylene	0	0	$\ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	0	450	450	6,746	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	1,649	
2,4-Dichlorophenol	0	0		0	340	340	5,097	
2,4-Dimethylphenol	0	0		0	130	130	1,949	
2,4-Dinitrophenol	0	0		0	130	130	1,949	
2-Nitrophenol	0	0		0	1,600	1,600	23,986	
4-Nitrophenol	0	0	\mathbf{I}	0	470	470	7,046	
p-Chloro-m-Cresol	0	0	╟┼┼┼┤	0	500	500	7,496	
Pentachlorophenol	0	0		0	5.448	5.45	81.7	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	91	91.0	1,364	
Acenaphthene	0	0		0	17	17.0	255	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	884	
Benzo(a)Anthracene	0	0		0	0.1	0.1	1.5	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3 4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
o, recition dorantifiene	• •				1.00	1907		

Г	Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Γ	Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	89,948	
	Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Г	Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	13,642	
Г	4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	810	
Г	Butyl Benzyl Phthalate	0	0		0	35	35.0	525	
Г	2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
	Chrysene	0	0		0	N/A	N/A	N/A	
	Dibenzo(a,h)Anthrancene	0	0	$\left \left \left$	0	N/A	N/A	N/A	
Г	1,2-Dichlorobenzene	0	0		0	160	160	2,399	
Г	1,3-Dichlorobenzene	0	0		0	69	69.0	1,034	
	1,4-Dichlorobenzene	0	0		0	150	150	2,249	
Г	3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Г	Diethyl Phthalate	0	0		0	800	800	11,993	
Г	Dimethyl Phthalate	0	0		0	500	500	7,496	
Г	Di-n-Butyl Phthalate	0	0		0	21	21.0	315	
	2,4-Dinitrotoluene	0	0		0	320	320	4,797	
	2,6-Dinitrotoluene	0	0		0	200	200	2,998	
	1,2-Diphenylhydrazine	0	0		0	3	3.0	45.0	
	Fluoranthene	0	0	\mathbb{R}^{+}	0	40	40.0	600	
	Fluorene	0	0		0	N/A	N/A	N/A	
Г	Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Г	Hexachlorobutadiene	0	0		0	2	2.0	30.0	
Г	Hexachlorocyclopentadiene	0	0		0	1	1.0	15.0	
Г	Hexachloroethane	0	0		0	12	12.0	180	
Г	Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Г	Isophorone	0	0		0	2,100	2,100	31,482	
Г	Naphthalene	0	0		0	43	43.0	645	
Г	Nitrobenzene	0	0		0	810	810	12,143	
Γ	n-Nitrosodimethylamine	0	0		0	3,400	3,400	50,970	
Г	n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
Г	n-Nitrosodiphenylamine	0	0		0	59	59.0	884	
Г	Phenanthrene	0	0		0	1	1.0	15.0	
Г	Pyrene	0	0		0	N/A	N/A	N/A	
Г	1,2,4-Trichlorobenzene	0	0		0	26	26.0	390	
Г	Aldrin	0	0		0	0.1	0.1	1.5	
Г	alpha-BHC	0	0		0	N/A	N/A	N/A	
Г	beta-BHC	0	0		0	N/A	N/A	N/A	
	gamma-BHC	0	0		0	N/A	N/A	N/A	
	Chlordane	0	0		0	0.0043	0.004	0.064	
	4,4-DDT	0	0		0	0.001	0.001	0.015	
Γ	4,4-DDE	0	0		0	0.001	0.001	0.015	
	4,4-DDD	0	0		0	0.001	0.001	0.015	
	Dieldrin	0	0		0	0.056	0.056	0.84	
	alpha-Endosulfan	0	0		0	0.056	0.056	0.84	

beta-Endosulfan	0	0		0	0.056	0.056	0.84	
Endosulfan Sulfate	0	0		0	N/A	N/A	N/A	
Endrin	0	0		0	0.036	0.036	0.54	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0		0	0.0038	0.004	0.057	
Heptachlor Epoxide	0	0		0	0.0038	0.004	0.057	
	T (min): 7	20	PMF:	0.718	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	2,400	2,400	35,979	
Total Boron	0	0		0	3,100	3,100	46,473	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	4,497	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	14,991	
Total Mercury	0	0		0	0.050	0.05	0.75	
Total Nickel	0	0		0	610	610	9,145	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	45.0	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	1,499	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	495	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	1,019	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		0	N/A	N/A	N/A	
Toluene	0	0		0	57	57.0	855	

1,2-trans-Dichloroethylene	0	0				0	100	100.0	1,499	
1,1,1-Trichloroethane	0	0	i Ti			0	10,000	10,000	149,913	
1,1,2-Trichloroethane	0	0				0	N/A	N/A	N/A	
Trichloroethylene	0	0				0	N/A	N/A	N/A	
Vinyl Chloride	0	0				0	N/A	N/A	N/A	
2-Chlorophenol	0	0	Ħ	-		0	30	30.0	450	
2,4-Dichlorophenol	0	0				0	10	10.0	150	
2,4-Dimethylphenol	0	0				0	100	100.0	1,499	
2,4-Dinitrophenol	0	0		-		0	10	10.0	150	
2-Nitrophenol	0	0	Ħ	-		0	N/A	N/A	N/A	
4-Nitrophenol	0	0				0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		+		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		-		0	N/A	N/A	N/A	
Phenol	0	0	Ħ			0	4,000	4,000	59,965	
2,4,6-Trichlorophenol	0	0				0	N/A	N/A	N/A	
Acenaphthene	0	0		+		0	70	70.0	1,049	
Anthracene	0	0	H	+		0	300	300	4,497	
Benzidine	0	0	ti	-		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0				0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		+	++	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	₽	+	++	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	t	-		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0				0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		+		0	200	200	2,998	
Bis(2-Ethylhexyl)Phthalate	0	0	H	+	++	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0				0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0				0	0.1	0.1	1.5	
2-Chloronaphthalene	0	0		+	++	0	800	800	11,993	
Chrysene	0	0	ĦĦ	+	++	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	Ħ	Ť		0	N/A	N/A	N/A	
1.2-Dichlorobenzene	0	0				0	1,000	1.000	14,991	
1.3-Dichlorobenzene	0	0		+	++	0	7	7.0	105	
1.4-Dichlorobenzene	0	0	ĦĦ	+		0	300	300	4,497	
3,3-Dichlorobenzidine	0	0	Ħ	Ť	İİ	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		+		0	600	600	8,995	
Dimethyl Phthalate	0	0	₽	+	++	0	2,000	2,000	29,983	
Di-n-Butyl Phthalate	0	0	₶₼	+		0	20	20.0	300	
2,4-Dinitrotoluene	0	0				0	N/A	N/A	N/A	
2.6-Dinitrotoluene	0	0		+		0	N/A	N/A	N/A	
1,2-Diphenvlhvdrazine	0	0		+		0	N/A	N/A	N/A	
Fluoranthene	0	0	ti			0	20	20.0	300	
Fluorene	0	0				0	50	50.0	750	
Hexachlorobenzene	0	0				0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	₽	+	++	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0				0	4	4.0	60.0	

Hesachloresthame 0 N/A N/A N/A N/A N/A N/A Isopharone 0 0 0 N/A N/A N/A N/A Isopharone 0 0 0 N/A N/A N/A N/A Nephalane 0 0 0 N/A N/A N/A N/A Niroberusene 0 0 0 N/A N/A N/A N/A n-Nirosodin-Prop/anine 0 0 0 N/A N/A N/A N/A Preven 0 0 0 N/A N/A N/A N/A Adrin 0 0 0 0 N/A N/A N/A N/A alpha-BHC 0 0 0 0 0 N/A N/A N/A gamma-BHC 0 0 0 N/A N/A N/A N/A 44-DDC 0 0 0 N/A									
Indero(1.3cd)Pynene 0 0 NA NA NA NA Naphthalene 0 0 0 34.0 510 Naphthalene 0 0 0 0 10.0 150 n-Nitosodimethylamine 0 0 0 NA NA NA Phenantivne 0 0 0 NA NA NA Pyrene 0 0 0 0 NA NA NA Aldin 0 0 0 0 0 0 0 Addin 0 0 0 0 0 0 0 gamma-BirC 0 0 0 0 NA NA NA Addin 0 0 0 0 0 NA NA gamma-BirC 0 0 0 0 NA NA Addin 0 0 0 0 NA <td>Hexachloroethane</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	Hexachloroethane	0	0		0	N/A	N/A	N/A	
Isophone 0 0 34 340 510 Naphtaine 0 0 0 NA NA NA Nirobersen 0 0 0 NA NA NA Nirobersen 0 0 0 NA NA NA n-Nirosodinethjamine 0 0 0 NA NA NA n-Nirosodinethjamine 0 0 0 NA NA NA Prenanthrene 0 0 0 0 NA NA NA Adm 0 0 0 0 0 0 0 0 0 Adm 0 0 0 0 NA NA NA NA ajbna-BHC 0 0 0 NA NA NA NA gamma-BHC 0 0 0 NA NA NA NA 4-DOT 0 0 0 N	Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Naphthalene 0 0 NA NA NA NA Nibosofinethylamine 0 0 0 NA NA NA NA n-Nibosofinethylamine 0 0 0 NA NA NA NA n-Nibosofinethylamine 0 0 NA NA NA NA n-Nibosofinethylamine 0 0 NA NA NA NA Prenantivrene 0 0 0 0 NA NA NA Addin 0 0 0 0 0 0 0 0 0 Addin 0 0 0 0 NA NA NA NA alpha-BHC 0 0 0 0 NA NA NA NA gamma-BHC 0 0 0 0 NA NA NA NA 4.4DD 0 0 0 0 NA <	Isophorone	0	0		0	34	34.0	510	
Nitoberaene 0 0 0 10.0 <th10.0< th=""> <th10.< td=""><td>Naphthalene</td><td>0</td><td>0</td><td></td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td></td></th10.<></th10.0<>	Naphthalene	0	0		0	N/A	N/A	N/A	
n-Nirosodimethyamine 0	Nitrobenzene	0	0		0	10	10.0	150	
n-Nitrosodi-n-Programme 0 0 0 0 0 0 0 NA NA NA Phenanthren 0 0 0 0 0 0 0 0 0 0 0 Pyrene 0 0 0 0 0 0 0 0 0 0 0 Adim 0 0 0 0 0 0 0 0 0 0 Adim 0 0 0 0 0 0 0 0 0 0 alpha-BHC 0 0 0 0 0 0 0 0 0 0 garma-BHC 0 0 0 0 0 0 0 0 0 0 4.4-DDT 0 0 0 0 0 0 0 0 0 0 4.4-DDD 0 0 0 0 0 0 0 0 0 0 alpha-Endosuffan 0 0 0 0 0 0 0 0 0 alpha-Endosuffan 0 0 0 0 0 0 0 <td>n-Nitrosodimethylamine</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosoliphenylamine 0 0 NA NA NA NA Pipenamtrene 0 0 0 0 20 200 300 12,4-Trichhrobenzene 0 0 0 0 0 0 00 106 Adrin 0 0 0 0 0 0 0 00 NA NA alpha-BHC 0 0 0 0 0 NA NA NA garma-BHC 0 0 0 0 1.4 NA NA NA qarma-BHC 0 0 0 0 1.4 NA NA NA qarma-BHC 0 0 0 0 0 NA NA NA 4.4-DDE 0 0 0 0 0 NA NA NA 4.4-DDE 0 0 0 NA NA NA NA 4.4-DDE 0 0 0 NA NA NA NA garma-BHC 0<	n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene 0 0 NA NA NA NA Pyrene 0 0 0 0 0 0 00 00 1,2,4-Trishkrobenzene 0 <td>n-Nitrosodiphenylamine</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Pyrene 0 0 20 20.0 30.0 11.2.4.Tichlorobenzene 0 0 0 0 0.07 1.05 Aldrin 0 0 0 0 0.07 1.05 alpha.BHC 0 0 0 0 N/A N/A N/A gamma.BHC 0 0 0 4.2 4.2 30.0 Chlordane 0 0 4.2 4.2 30.0 4.4-DDT 0 0 0 N/A N/A N/A 4.4-DDT 0 0 0 N/A N/A N/A 4.4-DDT 0 0 0 N/A N/A N/A JblaEndosulfan 0 0 0 20 20.0 300 Endosulfan 0 0 0 20 20.0 300 Endosulfan 0 0 0 1.0 1.0 1.5.0 Endosulfan 0	Phenanthrene	0	0		0	N/A	N/A	N/A	
1.2.4-Tichkorobenzene 0 0 0.07 0.07 0.07 Akin 0 0 0 0 0.07 1.05 alpha-BHC 0 0 0 0 N/A N/A N/A beta-BHC 0 0 0 0 N/A N/A N/A garma-BHC 0 0 0 4.2 4.2 03.0 Chiordane 0 0 0 N/A N/A N/A 4.4-DDE 0 0 0 N/A N/A N/A 4.4-DDE 0 0 N/A N/A N/A 4.4-DDE 0 0 N/A N/A N/A At-DDE 0 0 0 N/A N/A At-DDE 0 0 0 20 20.0 300 Endosulfan 0 0 0 0.30 0.45 - Endosulfan 0 0 0 N/A N/A N/A Heptachlor 0 0 0 <t< td=""><td>Pyrene</td><td>0</td><td>0</td><td></td><td>0</td><td>20</td><td>20.0</td><td>300</td><td></td></t<>	Pyrene	0	0		0	20	20.0	300	
Akirin 0 0 N/A N/A N/A N/A alpha-BHC 0 0 0 0 0 N/A N/A N/A gamma-BHC 0 0 0 0 4 2 4.2 63.0 Chlordane 0 0 0 0 0 4.4 2 63.0 4.4-DDT 0 0 0 0 0 N/A N/A N/A 4.4-DDE 0 0 0 0 0 N/A N/A N/A 4.4-DDD 0	1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	1.05	
alpha-BHC 0 0 N/A N/A N/A N/A beta-BHC 0 0 0 0 0 0 N/A N/A N/A gamma-BHC 0 0 0 0 4.2 6.0 N/A N/A N/A Ghordane 0	Aldrin	0	0		0	N/A	N/A	N/A	
beta-BHC 0 N/A N/A N/A N/A N/A 4.4-DDC 0 0 0 0 N/A N/A N/A N/A N/A 4.4-DDD 0 0 0 N/A N/A N/A N/A N/A alpha-Endosulfan 0 0 0 N/A N/A N/A N/A N/A beta-Endosulfan 0 0 0 20 20 300	alpha-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC 0 0 4.2 4.2 63.0 Chlordane 0 0 N/A N/A N/A N/A 4.4-DDT 0 0 0 N/A N/A N/A 4.4-DDE 0 0 0 0 N/A N/A N/A 4.4-DDE 0 0 0 N/A N/A N/A N/A At-ADDE 0 0 0 N/A N/A N/A N/A 4.4-DDE 0 0 0 N/A N/A N/A N/A alpha-Endosulfan 0 0 0 0 N/A N/A N/A endosulfan 0 0 0 20 20.0 300 Endosulfan 0 0 0 1 10 15.0 Endosulfan 0 0 N/A N/A N/A N/A N/A Heptablor 0 0	beta-BHC	0	0		0	N/A	N/A	N/A	
Chlordane 0 0 N/A N/A N/A N/A 4.4-DDT 0 0 0 0 N/A N/A N/A 4.4-DDE 0 0 0 0 N/A N/A N/A 4.4-DDD 0 0 0 N/A N/A N/A N/A 4.4-DDE 0 0 0 N/A N/A N/A N/A alpha-Endosulfan 0 0 0 20 20.0 300	gamma-BHC	0	0		0	4.2	4.2	63.0	
4.4-DDT 0 0 0 0 0 0 N/A N/A N/A 4.4-DDE 0 0 0 0 0 N/A N/A N/A 4.4-DDD 0 0 0 0 N/A N/A N/A N/A Dieldin 0 0 0 0 N/A N/A N/A alpha-Endosulfan 0 0 0 20 20.0 300 Endosulfan 0 0 0 20 20.0 300 Endosulfan 0 0 0 1 1.0 15.0 Endrin 0 0 0 1 1.0 15.0 Heptachlor 0 0 0 1 Analysis Hardness (mg/l): N/A Meptachlor Epoxide 0 0 0 1 Analysis Hardness (mg/l): N/A N/A CRL CCT (mi): ###### PMF: 1 Analysis Hardness (mg/l): N/A Malusis pH: N/A Total Aluminum 0 0	Chlordane	0	0		0	N/A	N/A	N/A	
4.4-DDE 0 0 0 N/A N/A N/A N/A 4.4-DDD 0 0 0 0 N/A N/A N/A alpha-Endosulfan 0 0 0 0 20 20.0 300 beta-Endosulfan 0 0 0 20 20.0 300 Endosulfan Sulfate 0 0 0 20 20.0 300 Endosulfan Sulfate 0 0 0 20 20.0 300 Endrin 0 0 0 0 10 15.0 Heptachlor 0 0 0 N/A N/A N/A Heptachlor 0 0 0 N/A N/A N/A // Cort (min): ####### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A // Cold (PWS) 0 0 0 N/A N/A N/A N/A // Cold (PWS) 0 0 N/A N/A N/A N/A N/A //	4,4-DDT	0	0		0	N/A	N/A	N/A	
4,4-DDD 0 0 0 N/A N/A N/A N/A Dieldrin 0 0 0 0 N/A N/A N/A alpha-Endosulfan 0 0 0 0 20 20.0 300 beta-Endosulfan 0 0 0 20 20.0 300 Endosulfan 0 0 0 20 20.0 300 Endrin 0 0 0 0 20.0 300 Endrin 0 0 0 1 1.0 15.0 Heptachlor 0 0 0 1 1.0 15.0 Heptachlor Epoxide 0 0 0 N/A N/A N/A VCCT (min): Erream The Conc (ugl L) VQCE WLA (ugl L) Comments Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Total Dissolved Solids (PWS) 0 0 0	4,4-DDE	0	0		0	N/A	N/A	N/A	
Dieldrin 0 0 N/A N/A N/A N/A alpha-Endosulfan 0 0 0 20 20.0 300 beta-Endosulfan 0 0 0 20 20.0 300 Endosulfan Sulfate 0 0 0 20 20.0 300 Endrin 0 0 0 0 0.03 0.45 Endrin Aldehyde 0 0 0 1 1.0 15.0 Heptachlor 0 0 0 N/A N/A N/A Heptachlor Epoxide 0 0 N/A N/A N/A V CRL CCT (min): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Total Dissolved Solids (PWS) 0 0 N/A N/A N/A N/A Choride (PWS) 0 0 N/A N/A N/A N/A Total Aluminum 0 0<	4,4-DDD	0	0		0	N/A	N/A	N/A	
alpha-Endosulfan 0 0 20 20.0 300 beta-Endosulfan 0 0 0 20 20.0 300 Endosulfan Sulfate 0 0 0 20 20.0 300 Endosulfan Sulfate 0 0 0 20 20.0 300 Endrin Aldehyde 0 0 0 1 1.0 15.0 Heptachlor 0 0 0 N/A N/A N/A Heptachlor Epoxide 0 0 N/A N/A N/A N/A V CRL CCT (min): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Total Dissolved Solids (PWS) 0 0 Corr Corr Gord WQC WQC WQC Comments Suffate (PWS) 0 0 N/A N/A N/A N/A Total Aluminum 0 0 N/A N/A N/A N/	Dieldrin	0	0		0	N/A	N/A	N/A	
beta-Endosulfan 0 0 20 20.0 300 Endosulfan 0 0 20 20.0 300 Endsin 0 0 0 20 20.0 300 Endsin 0 0 0 0 20 20.0 300 Endsin 0 0 0 0 0 0 0.03 0.45 Endsin All 0 0 1 1.0 16.0 Heptachlor 0 0 0 N/A N/A N/A West CCT (min): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Stream Trib Conc Fate WQC WQC WQ (µg/L) WLA (µg/L) Comments Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A N/A <td>alpha-Endosulfan</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>20</td> <td>20.0</td> <td>300</td> <td></td>	alpha-Endosulfan	0	0		0	20	20.0	300	
Endosulfan Sulfate 0 0 20 20.0 300 Endrin 0 0 0 0 0.033 0.45 Endrin Aldehyde 0 0 0 1 1.0 15.0 Heptachlor 0 0 0 N/A N/A N/A Heptachlor Epoxide 0 0 0 N/A N/A N/A CRL CCT (min): ####### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Conc (untl.) Conc (untl.) Core (ug/l.) Fate Coef WQC (ug/l.) WLA (ug/L) Comments Total Dissolved Solids (PWS) 0 0 N/A N/A N/A N/A Sulfate (PWS) 0 0 N/A N/A N/A N/A Total Aluminum 0 0 N/A N/A N/A N/A Total Barium 0 0 N/A N/A N/A N/A	beta-Endosulfan	0	0		0	20	20.0	300	
Endrin 0 0 0 0 0 1 1.0 15.0 Heptachlor 0 0 0 1 1.0 15.0 Heptachlor 0 0 0 0 N/A N/A N/A // Heptachlor Epoxide 0 0 0 N/A N/A N/A N/A // CRL CCT (min): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Suream Conc (unn) Stream CV Thib Conc (ug/l.) Fate Coef WQC (ug/l.) WLA (µg/L) Comments Total Dissolved Solids (PWS) 0 0 N/A N/A N/A Sulfate (PWS) 0 0 N/A N/A N/A Total Barium 0 0 N/A N/A N/A Total Boron 0 0 N/A N/A N/A Total Chromium (III) 0 0 N/A N/A N/A	Endosulfan Sulfate	0	0		0	20	20.0	300	
Endrin Aldehyde 0 1 1.0 15.0 Heptachlor 0 0 0 N/A N/A N/A Heptachlor Epoxide 0 0 0 N/A N/A N/A CRL CCT (mi): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Cococ (ug1) Stream CV Trib Cono (ug1) Fate Cocef WQC (ug1) WLA (ug/L) Comments Total Dissolved Solids (PWS) 0 0 N/A N/A N/A N/A Sutfate (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 N/A N/A N/A Total Boron 0 0 N/A N/A N/A Total Chromium (III) 0 0 N/A N/A N/A Total Copper 0 0 N/A N/A N/A Total Copper 0 0 N/A N	Endrin	0	0		0	0.03	0.03	0.45	
Heptachlor 0 0 N/A N/A N/A N/A Heptachlor Epoxide 0 0 0 N/A N/A N/A N/A CRL CCT (min): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Core CV Trib Conc Fate WQC WQ Obj (µg/L) Comments Comments Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A N/A Chioride (PWS) 0 0 0 N/A N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Codmium 0 0 N/A N/A N/A N/A Total Cobalt 0 0<	Endrin Aldehyde	0	0		0	1	1.0	15.0	
Heptachlor Epoxide 0 0 N/A N/A N/A N/A CRL CCT (mi): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Conc (untl.) Stream CV Trib Conc (µg/L) Fate Coef WQC (µg/L) WQ Obj (µg/L) WLA (µg/L) Comments Total Dissolved Solids (PWS) 0 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Codmium 0 0 0 N/A N/A N/A Total Codmium 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Cobalt 0 0 N/A	Heptachlor	0	0		0	N/A	N/A	N/A	
Image: CRL CCT (min): ####### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Conc (undl) Trib Conc (upl) Fate Coef WQC (µg/L) WQ Obj (µg/L) WLA (µg/L) Comments Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A N/A Sulfate (PWS) 0 0 0 0 N/A N/A N/A N/A Total Barium 0 0 0 0 N/A N/A N/A N/A Total Cadmium 0 0 0 0 N/A N/A N/A N/A Total Cadmium 0 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 0 0 N/A N/A N/A Dissolved Iron 0 0 </td <td>Heptachlor Epoxide</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	Heptachlor Epoxide	0	0		0	N/A	N/A	N/A	
CRL CCT (mi): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Cond (µg/L) Cond (µg/L) Fate Coef WQC (µg/L) WQC bj (µg/L) WLA (µg/L) Comments Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A N/A Total Borium 0 0 0 N/A N/A N/A N/A Total Chomium (III) 0 0 0 N/A N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A <			_		_				
Pollutants Stream Trib Conc (µg/L) Fate Code WQC (µg/L) WQ Obj (µg/L) WLA (µg/L) MLA (µg/L) Comments Total Dissolved Solids (PWS) 0	CRL CC	T (min): ###	****	PMF:	1	Ana	ilysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Point and solution CV (µg/L) Coef (µg/L) (Pollutants	Cono	Stream	Trib Conc	Fate	WQC	WQ Obj		Commonte
Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A N/A Chloride (PWS) 0 0 0 0 N/A N/A N/A N/A Sulfate (PWS) 0 0 0 0 N/A N/A N/A N/A Total Aluminum 0 0 0 0 N/A N/A N/A N/A Total Barium 0 0 0 0 N/A N/A N/A N/A Total Boron 0 0 0 0 N/A N/A N/A N/A Total Codmium 0 0 0 0 N/A N/A N/A N/A Total Cobalt 0 0 0 0 N/A N/A N/A N/A Total Copper 0 0 0 0 N/A N/A N/A N/A Dissolved Iron 0 0 0 0 N/A N/A N/A N/A Total Manganese 0 0 0 N/A <t< td=""><td>Foliutants</td><td>(ug/L)</td><td>CV</td><td>(µg/L)</td><td>Coef</td><td>(µg/L)</td><td>(µg/L)</td><td>WEA (µg/E)</td><td>Comments</td></t<>	Foliutants	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEA (µg/E)	Comments
Chloride (PWS) 0 0 0 N/A N/A N/A N/A Sulfate (PWS) 0 0 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 0 0 N/A N/A N/A Total Barium 0 0 0 0 0 N/A N/A N/A Total Boron 0 0 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 0 0 N/A N/A N/A Total Cobper 0 0 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 0 N/A N/A N/A Total Manganese 0 0 0 0 N/A N/A N/A Notal Manganese 0 0 0 N/A N/A N/A Notal Maganasee	Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 0 N/A N/A N/A Total Barium 0 0 0 0 N/A N/A N/A Total Barium 0 0 0 0 N/A N/A N/A Total Boron 0 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 0 N/A N/A N/A Total Chomium (III) 0 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 0 N/A N/A N/A Total Iron 0 0 0 0 N/A N/A N/A Total Manganese 0 0 0 0 N/A N/A N/A	Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum 0 0 0 N/A N/A N/A Total Barium 0 0 0 0 N/A N/A N/A Total Boron 0 0 0 0 0 N/A N/A N/A Total Boron 0 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 0 N/A N/A N/A Total Chomium (III) 0 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 0 N/A N/A N/A Total Copper 0 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 0 N/A N/A N/A Total Iron 0 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A N/A	Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 0 0 N/A N/A N/A Total Boron 0 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 0 N/A N/A N/A Total Copper 0 0 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 0 N/A N/A N/A Total Manganese 0 0 0 0 N/A N/A N/A	Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Boron 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Total Cadmium (III) 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A	Total Barium	0	0		0	N/A	N/A	N/A	
Total Cadmium 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 0 N/A N/A N/A Total Copper 0 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A N/A	Total Boron	0	0		0	N/A	N/A	N/A	
Total Chromium (III) 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 0 N/A N/A N/A Total Copper 0 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 0 N/A N/A N/A Total Iron 0 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A N/A	Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Cobalt 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 N/A N/A N/A	Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Copper 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 N/A N/A N/A	Total Cobalt	0	0		0	N/A	N/A	N/A	
Dissolved Iron 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A	Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron 0 0 N/A N/A N/A Total Manganese 0 0 N/A N/A N/A	Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Manganese 0 0 0 N/A N/A N/A	Total Iron	0	0		0	N/A	N/A	N/A	
	Total Manganese	0	0		0	N/A	N/A	N/A	

Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	0.06	0.06	4.75	
Benzene	0	0	0	0.58	0.58	45.9	
Bromoform	0	0	0	7	7.0	554	
Carbon Tetrachloride	0	0	0	0.4	0.4	31.7	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	63.4	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	451	
1,2-Dichloroethane	0	0	0	9.9	9.9	784	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	71.3	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	1,584	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	15.8	
Tetrachloroethylene	0	0	0	10	10.0	792	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	43.6	
Trichloroethylene	0	0	0	0.6	0.6	47.5	
Vinyl Chloride	0	0	0	0.02	0.02	1.58	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	2.38	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	119	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.008	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.079	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.008	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.079	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.79	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	2.38	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	

H			 				
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	25.3	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	9.5	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.008	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	3.96	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	3.96	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	3.96	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	2.38	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.006	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.79	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	7.92	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.079	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.055	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.4	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	261	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	
Aldrin	0	0	0	0.0000008	8.00E-07	0.00006	
alpha-BHC	0	0	0	0.0004	0.0004	0.032	
beta-BHC	0	0	0	0.008	0.008	0.63	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0003	0.0003	0.024	
4,4-DDT	0	0	0	0.00003	0.00003	0.002	
4,4-DDE	0	0	0	0.00002	0.00002	0.002	
4,4-DDD	0	0	0	0.0001	0.0001	0.008	
Dieldrin	0	0	0	0.000001	0.000001	0.00008	
alpha-Endosulfan	0	0	0	N/A	N/A	N/A	
beta-Endosulfan	0	0	0	N/A	N/A	N/A	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	N/A	N/A	N/A	

Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.000006	0.000006	0.0005	
Heptachlor Epoxide	0	0	0	0.00003	0.00003	0.002	
			 •				

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	30.4	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	1,452	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	35,979	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	15,676	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	4.13	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	1,319	µg/L	Discharge Conc < TQL
Total Cobalt	184	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	4,497	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	30,721	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	14,991	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.75	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	799	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Zinc	257	µg/L	Discharge Conc ≤ 10% WQBEL

Model Results

Total Molybdenum	N/A	N/A	No WQS
Acrolein	5.81	µg/L	Discharge Conc < TQL
Acrylonitrile	4.75	µg/L	Discharge Conc < TQL
Benzene	45.9	µg/L	Discharge Conc < TQL
Bromoform	554	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	31.7	µg/L	Discharge Conc < TQL
Chlorobenzene	1,499	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	63.4	µg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	34,836	µg/L	Discharge Conc < TQL
Chloroform	451	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	784	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	495	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	71.3	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	1,019	µg/L	Discharge Conc < TQL
Methylene Chloride	1,584	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	15.8	µg/L	Discharge Conc < TQL
Tetrachloroethylene	792	µg/L	Discharge Conc < TQL
Toluene	855	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	1,499	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	5,806	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	43.6	µg/L	Discharge Conc < TQL
Trichloroethylene	47.5	µg/L	Discharge Conc < TQL
Vinyl Chloride	1.58	µg/L	Discharge Conc < TQL
2-Chlorophenol	450	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	150	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	1,277	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	150	µg/L	Discharge Conc < TQL
2-Nitrophenol	15,483	µg/L	Discharge Conc < TQL
4-Nitrophenol	4,451	µg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	310	µg/L	Discharge Conc < TQL
Pentachlorophenol	2.38	µg/L	Discharge Conc < TQL
Phenol	59,965	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	119	µg/L	Discharge Conc < TQL
Acenaphthene	161	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	4,497	µg/L	Discharge Conc < TQL
Benzidine	0.008	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.079	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.008	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.079	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.79	µg/L	Discharge Conc < TQL
			-

Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	2.38	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	2,998	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	25.3	µg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	523	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	1.5	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	11,993	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	9.5	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.008	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	1,587	µg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichlorobenzene	105	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dichlorobenzene	1,413	µg/L	Discharge Conc ≤ 25% WQBEL
3,3-Dichlorobenzidine	3.96	µg/L	Discharge Conc < TQL
Diethyl Phthalate	7,741	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	4,838	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	213	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	3.96	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	3.96	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	2.38	µg/L	Discharge Conc < TQL
Fluoranthene	300	µg/L	Discharge Conc ≤ 25% WQBEL
Fluorene	750	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.006	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.79	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	9.68	µg/L	Discharge Conc < TQL
Hexachloroethane	7.92	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.079	µg/L	Discharge Conc < TQL
Isophorone	510	µg/L	Discharge Conc < TQL
Naphthalene	271	µg/L	Discharge Conc ≤ 25% WQBEL
Nitrobenzene	150	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.055	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.4	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	261	µg/L	Discharge Conc < TQL
Phenanthrene	9.68	µg/L	Discharge Conc < TQL
Pyrene	300	µg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzene	1.05	µg/L	Discharge Conc < TQL
Aldrin	0.00006	µg/L	Discharge Conc < TQL
alpha-BHC	0.032	µg/L	Discharge Conc < TQL
beta-BHC	0.63	µg/L	Discharge Conc < TQL
gamma-BHC	1.84	µg/L	Discharge Conc < TQL
delta BHC	N/A	N/A	No WQS
Chlordane	0.024	µg/L	Discharge Conc < TQL
4,4-DDT	0.002	µg/L	Discharge Conc < TQL
4,4-DDE	0.002	µg/L	Discharge Conc < TQL

4,4-DDD	0.008	µg/L	Discharge Conc < TQL
Dieldrin	0.00008	µg/L	Discharge Conc < TQL
alpha-Endosulfan	0.43	µg/L	Discharge Conc < TQL
beta-Endosulfan	0.43	µg/L	Discharge Conc < TQL
Endosulfan Sulfate	300	µg/L	Discharge Conc < TQL
Endrin	0.17	µg/L	Discharge Conc < TQL
Endrin Aldehyde	15.0	µg/L	Discharge Conc < TQL
Heptachlor	0.0005	µg/L	Discharge Conc < TQL
Heptachlor Epoxide	0.002	µg/L	Discharge Conc < TQL
PCB-1016	N/A	N/A	No WQS
PCB-1221	N/A	N/A	No WQS
PCB-1232	N/A	N/A	No WQS
PCB-1242	N/A	N/A	No WQS
PCB-1248	N/A	N/A	No WQS
PCB-1254	N/A	N/A	No WQS
PCB-1260	N/A	N/A	No WQS

Attachment C – Schematic of Wastewater Flow

Attachment D – WET Analysis Spreadsheet

Type of Test Acute	Facility Name
Species Tested Pimephales	
Endpoint Survival	Connellsville WWTP
TI\C (decimal) 0.382	
No. Per Replicate 10	Permit No.
ISIbvalue U.8	PA0026905
151 alpha value 0.1	
Test Completion Date	Test Completion D
Replicate 2/4/2008 Repli	cate 3/24/2008
No. Control TIWC No	o. Control TI₩C
1 10 10 1	1 0 1
2 10 10 2	2 1 1
3 10 10 3	3 0 0
4 10 10 4	¥ 0 1
5 5	5
6 6	3
7	,
	,
	2
10 11	
11 1	1
12 11	2
13 1:	3
14 1	4
15	-
Mean 10.000 10.000 Me	an 0.250 0.750
Std Dev. 0.000 0.000 Std [Dev. 0.500 0.500
#Replicates 4 4 #Repl	icates 4 4
Critical T Value Critica Pass or Fail PASS Passo	TValue 14759
	or Fail PASS
Test Completion Date	or Fail PASS
Test Completion Date Replicate 2/25/2008 Repli	or Fail PASS Test Completion D
Test Completion Date Replicate 2/25/2008 Repli No. Control TIVC No	r Fail PASS Test Completion D cate 4/28/2008 5. Control TIWC
Test Completion Date Replicate 2/25/2008 No. Control 1 10	or Fail PASS Test Completion D. cate 4/28/2008 5. Control TI\C 0 0
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No 1 10 10 10 10 2 10 10 2 2 10 10 2	Test Completion D. cate 4/28/2008 0. Control TIVC 0 0 0 2 1 0
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No 1 10 10 1 2 10 10 2 3 10 9 2	Test Completion D. cate 4/28/2008 0. Control TI\C 1 0 0 2 1 0 3 0 1
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No 1 10 10 1 2 10 10 2 3 10 9 3 4 10 10 3	Test Completion D. Cate 4/28/2008 D. Control TIWC 1 0 0 2 1 0 3 0 1 1 0 0
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No 1 10 10 1 2 10 10 2 3 10 9 3 4 10 10 2	Test Completion D. Cate 4/28/2008 D. Control TIWC 1 0 0 2 1 0 3 0 1 4 1 0
Test Completion Date Replicate 2/25/2008 Repli No. Control TIWC No 1 10 10 1 2 10 10 2 3 10 9 3 4 10 10 3	Test Completion D. Cate 4/28/2008 D. Control TIWC 1 0 0 2 1 0 3 0 1 4 1 0
Test Completion Date Replicate 2/25/2008 Repli No. Control TIWC No. 1 10 10 1 2 10 10 2 3 10 9 3 4 10 10 5 5	Test Completion D. Cate 4/28/2008 D. Control TIWC 0 0 0 2 1 0 3 0 1 4 1 0
Test Completion Date Replicate 2/25/2008 Repli No. Control TIWC No 1 10 10 1 2 10 10 2 3 10 9 3 4 10 10 5 6 6 6 6	Test Completion D. Cate 4/28/2008 D. Control TIWC I 0 0 2 1 0 3 0 1 4 1 0 5
Test Completion Date Replicate 2/25/2008 Repli No. Control TIWC No 1 10 10 1 2 10 10 2 3 10 9 3 4 10 10 2 5	Test Completion D. Cate 4/28/2008 D. Control TIWC I 0 0 2 1 0 3 0 1 4 1 0 5
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No 1 10 10 1 2 10 10 2 3 10 9 3 4 10 10 2 5	Test Completion D. Cate 4/28/2008 D. Control TI\/C 0 0 0 2 1 0 3 0 1 4 1 0 5
Test Completion Date Replicate 2/25/2008 Replicate 1 10 10 1 2 10 10 2 3 10 9 3 4 10 10 2 5	Test Completion D. cate 4/28/2008 0 0 0 0 2 1 0 3 0 1 4 1 0 5
Test Completion Date Replicate 2/25/2008 Replicate 1 10 10 1 2 10 10 2 3 10 9 3 4 10 10 2 5 5 5 5 6 6 6 6 9 5 5 5 10 10 10 2	Test Completion D. cate 4/28/2008 0 0 2 1 0 3 0 1 4 1 0 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No. Control TIWC No. Control TIWC TIWC TIWC <td< td=""><td>Test Completion D. cate 4/28/2008 0 0 2 1 0 3 0 1 4 1 0 5 6 7 9 1 0 1 0 1 0 3 4 1 0 5 6 7 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 </td></td<>	Test Completion D. cate 4/28/2008 0 0 2 1 0 3 0 1 4 1 0 5 6 7 9 1 0 1 0 1 0 3 4 1 0 5 6 7 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1
Test Completion Date Replicate 2//25//2008 Replicate No. Control TIWC No. No. Control TIWC No. 1 10 10 1 1 10 1 1 10 1 1 10 10 1 1 10 1 1 1 10 1 1 1 10 1 <td>Test Completion D. cate 4/28/2008 0 0 0 0 2 1 0 3 0 1 4 1 0 5 </td>	Test Completion D. cate 4/28/2008 0 0 0 0 2 1 0 3 0 1 4 1 0 5
Test Completion Date Replicate 2//25//2008 Replicate No. Control TIWC No. No. Control TIWC No. 1 10 10 1 1 10 1 1 10 1 1 10 10 1 1 10 1	Test Completion D. cate 4/28/2008 0 0 0 0 2 1 0 1 3 0 4 1 5
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No. No. Control TIWC No. 1 10 10 1 1 10 1 1 10 1 1 10 10 1 1 1 10 1	Test Completion D. cate 4/28/2008 0 0 0 0 2 1 3 0 4 1 3 0 4 1 3 0 4 1 3 0 4 1 3 0 4 1 4 1
Test Completion Date Replicate 2/25/2008 Replicate Replicate No. Control TIWC No. No. Contret	Test Completion D. cate 4/28/2008 0 0 0 0 2 1 0 3 0 1 4 1 0 5 1 0 4 1 0 5 1 0
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No. 1 10 10 2 2 10 10 2 3 10 9 3 4 10 10 2 5	Test Completion D. Cate 4/28/2008 D. Control TIWC 1 0 0 2 1 0 3 0 1 4 1 0 5 - - 6 - - 7 - - 8 0 1 1 0 - 6 - - 7 - - 6 - - 7 - - 7 - - 6 - - 7 - - 6 - - 7 - - 7 - - 7 - - 7 - - 7 - - 7 - - 8 - -
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No. 1 10 10 2 2 10 10 2 3 10 9 3 4 10 10 2 5	Test Completion D. cate 4/28/2008 D. Control TIWC 1 0 0 2 1 0 3 0 1 4 1 0 5
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No. No. 1 10 10 1 10 10 2 10 10 2 10 10 2 3 10 9 3 <td< td=""><td>Test Completion D. Control TIWC 0 0 2 1 0 3 0 1 4 1 0 0 3 0 1 1 4 1 0 1 5 </td></td<>	Test Completion D. Control TIWC 0 0 2 1 0 3 0 1 4 1 0 0 3 0 1 1 4 1 0 1 5
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No. 1 10 10 1 2 10 10 2 3 10 9 3 4 10 10 2 5 4 10 10 5 4 10 10 5 4 10 10 6 4 6 6 7 4 10 10 11 10 10 4 15 4 10 10 11 4 4 10 12 4 10 10 13 4 10 10 14 4 10 10 15 5 5 10 Mean 10.000 9.750 Me Std Dev. 0.000 0.500 Std We	Test Completion D. Control TIWC 0 0 2 1 0 3 0 1 4 1 0 0 5 - - - 6 - - - - 7 - - - - - 6 -<
Test Completion Date Replicate 2/25/2008 Replicate No. Control TIWC No. No. 1 10 10 1 10 10 2 10 10 2 3 10 9 3 4 10 10 10 2 3 10 9 3 <	Test Completion D. Control TIWC 0 0 1 0 2 1 3 0 4 1 5 - 3 - 4 - 5 - 3 - 4 - 5 - an 0.500 0.250 0ev. 0.577 0.500 0ev. 0.577 0.500 1 - - 4 - - 5 - - 4 - - 5 - - 4 - - 5 - - 4 - - 5 - - 4 - - 5 - - 4 - - 5 - - 6 - - 7 - -
Test Completion Date Replicate 2/25/2008 Repli No. Control TIWC No. 1 10 10 2 2 10 10 2 3 10 9 3 4 10 10 2 5 10 10 2 6 10 10 2 6 10 10 2 10 10 10 2 11 11 11 11 12 13 11 11 14 10 11 11 15 11 11 11 14 10 11 11 15 11 11 11 15 11 12 12 Mean 10.000 9.750 Me Std Dev. 0.000 0.500 Std I T-Test Result 5.9314 T-Te	Test Completion D. cate 4/28/2008 0 0 0 0 1 0 3 0 4 1 3 0 4 1 3 0 4 1 5 0 1 0 3 0 4 1 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
Test Completion Date Replicate 2//25//2008 Repli No. Control TIWC No. 1 10 10 2 2 10 10 2 3 3 10 9 3 3 4 10 10 2 3 5 10 10 2 3 6 10 10 2 3 6 10 10 3 3 11 11 11 11 11 12 13 14 14 14 15 11 11 11 11 15 11 11 11 11 12 14 10.000 9.750 Me Std Dev. 0.000 0.500 # Replicates 4 4 # Replicates 4 4 T-Test Result 5.9314 T-Test Deg. of Critical T Value 1.6377	Test Completion D. cate 4/28/2008 0 0 0 0 1 0 3 0 4 1 3 0 4 1 3 0 4 1 5 0 1 0 3 0 4 0 5 0 1 0