

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0028983

 APS ID
 275014

 Authorization ID
 1390240

Applicant and Facility Information

Applicant Name	McVeytown Borough Authority	Facility Name	McVeytown STP
Applicant Address	PO Box 321	Facility Address	9 S Water Street
	McVeytown, PA 17051-0321		McVeytown, PA 17051
Applicant Contact	Peter Sunderland	Facility Contact	Matthew Stringer
Applicant Phone	717-899-7436	Facility Phone	717-899-7436
Client ID	66883	Site ID	252108
Ch 94 Load Status	Existing Organic Overload	Municipality	McVeytown Borough
Connection Status	No Exceptions Allowed	County	Mifflin
Date Application Receiv	vedMarch 30, 2022	EPA Waived?	Yes
Date Application Accep	ted April 12, 2022	If No, Reason	
Purpose of Application	NPDES permit renewal		

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated domestic wastewater from McVeytown Borough Authority (Authority) wastewater treatment plant. The Authority owns, operates, and maintains the wastewater treatment plant. The facility is located in McVeytown Borough, Mifflin County. The facility services McVeytown Borough (80% of the flow) and Oliver Township (20% of the flow). The sewer collection system is not combined in these areas and there are no bypasses or overflows approved in the collection system. During the last permit cycle, a storage tank has been installed at Wray pump station to store flow during high flow events to address frequent sanitary sewer overflow at the pump station. The treatment plant has a hydraulic design capacity and annual average capacity of 0.085 MGD and organic design capacity of 170 lbs/day-BOD5. The discharge goes to Juniata River which is classified for Warm Water Fishes (WWF) and Migratory Fishes (MF). The existing NPDES permit was issued on August 8, 2017 with an expiration date of August 31, 2022. The applicant submitted an administratively complete NPDES renewal application to the Department and currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Digested sludge is either hauled out in liquid form or dewatered by the sludge drying beds prior to land application at Harshberger Farm.

Approve	Deny	Signatures	Date
х		<i>J. Pascal Kwedza</i> J. Pascal Kwedza, P.E. / Environmental Engineer	April 7, 2023
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	April 13, 2023
х		Maria D. Bebenek Maria D. Bebenek, P.E./ Program Manager	April 13, 2023

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing Permit

Quarterly E. Coli monitoring has been added.

1.4 Existing Permit and Monitoring Requirements

			Effluent L		Monitoring Requirements			
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	
Falameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Required
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
					9.0			
pH (S.U.)	XXX	XXX	6.0	XXX	Max	XXX	1/day	Grab
Dissolved								
Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual								
Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
(0.0.0.0.0.)								24-Hr
(CBOD5)	17	28	XXX	25.0	40.0	50	2/month	Composite
(BOD5) Raw		Report						24-Hr
Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
Total Suspended								04.11
Solids Raw	Dement	Report	XXXX	Dement	~~~~	XXXX	0/	24-Hr
Sewage Influent	Кероп	Dally Max	XXX	Report	XXX	***	2/month	Composite
Total Suspended	04	24	VVV	20.0	45.0	<u> </u>	0/maanth	24-Hr
Solids Eagel Caliform	21	31	~~~	30.0	45.0	60	Z/month	Composite
				2000				
(CFO/100 III) Oct 1 Apr 20	~~~	~~~	VVV	2000 Goo Moon	VVV	10000	2/month	Grah
Eacol Coliform	~~~		~~~	Geo Mean	~~~	10000	2/1101111	Glab
(CEU/100 ml)				200				
(Cr 0/100 ml) May 1 - Sen 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grah
Nitrate-Nitrite as	Report	7000	7077		70707	1000	2/1101101	24-Hr
N	Total Mo	XXX	XXX	Report	XXX	XXX	1/quarter	Composite
	Report	7000	7000	Roport	7000	7000	inqualitor	Compeene
Total Nitrogen	Total Mo	XXX	XXX	Report	XXX	XXX	1/quarter	Calculation
Total Kieldahl	Report	7000	,			7000	., quartor	24-Hr
Nitrogen	Total Mo	XXX	XXX	Report	XXX	XXX	1/quarter	Composite
	Report						.,	24-Hr
Total Phosphorus	Total Mo	XXX	XXX	Report	XXX	XXX	1/quarter	Composite
Ammonia-								24-Hr
Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite
<u>ə</u> -								· ·

Discharge, Receiving Waters and Water Supply Information						
Outfall No. 001		Design Flow (MGD)	.085			
Latitude <u>40° 29' 44.55</u>		Longitude	77º 44' 17.92"			
Quad Name McVeytown		Quad Code	1524			
Wastewater Description:	Sewage Effluent					
Receiving Waters Juniata	River (WWF)	Stream Code	11414			
NHD Com ID662083	53	RMI	62.69			
Drainage Area 2,460		Yield (cfs/mi ²)	0.204			
Q ₇₋₁₀ Flow (cfs) 501.84		Q7-10 Basis	USGS Gage Station			
Elevation (ft) 478		Slope (ft/ft)				
Watershed No. 12-A		Chapter 93 Class.	WWF, MF			
Existing Use		Existing Use Qualifier				
Exceptions to Use		Exceptions to Criteria				
Assessment Status	Attaining Use(s)					
Cause(s) of Impairment						
Source(s) of Impairment						
TMDL Status		Name				
_						
Background/Ambient Data		Data Source				
pH (SU)						
Temperature (°F)						
Hardness (mg/L)						
Other:						
Nearest Downstream Public	Water Supply Intake	Mifflintown Water Systems Ju	niata County			
PWS Waters Juniata Ri	ver	Flow at Intake (cfs)				
PWS RMI		Distance from Outfall (mi)	25			

Changes Since Last Permit Issuance: None

1.5.1 Water Supply:

The nearest downstream water supply intake is approximately 25 miles downstream by Mifflintown Water Systems Juniata County on Juniata River Juniata County. The discharge will not impact the intake because of the distance and dilution.

	2.0	Treatment Facility Summa	ary	
Treatment Facility Na	me: McVeytown STP			
WQM Permit No.	Issuance Date			
4472401 11-1	09/30/2011			
4472401 09-1	02/09/2009			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Extended Aeration	Hypochlorite	0.085
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.085	170	Existing Organic Overload	Aerobic Digestion	

Changes Since Last Permit Issuance: A storage tank has been installed at Wray Pump Station to address SSO at the pump station. The facility is under "Existing Hydraulic Overload" condition and connection is not allowed due to organic overload condition reported in their Chapter 94 report. The Consent Order and Agreement (CO&A) between the Authority and DEP for addressing bypasses or overflows of raw or partially treated sewage into the waters of the Commonwealth has been terminated after the storage tank has been installed at Wray pump station.

2.1 Treatment Facility

The treatment system, a package plant, mainly consists of a Muffin Monster, Influent Receiving Well, Mix Chamber, Aeration/Mix Tank, 2 clarifiers, Chlorine Contact Tank, 1 aerobic digester, 1 Sludge Holding Tank and 2 Sludge Drying Beds. Effluent is disinfected with Liquid Sodium Hypochlorite before continuously discharged to Juniata River

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from February 1, 2022 to January 31, 2023)

Parameter	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22
Flow (MGD)												
Average Monthly	0.045	0.047	0.035	0.028	0.032	0.032	0.028	0.031	0.043	0.037	0.036	0.05
Flow (MGD)												
Daily Maximum	0.119	0.124	0.125	0.43	0.078	0.081	0.043	0.068	0.169	0.08	0.073	0.148
pH (S.U.)												
Minimum	7.27	7.21	7.24	7.62	7.37	7.19	6.99	7.28	7.36	7.35	7.3	7.21
pH (S.U.)												
Maximum	8.0	8.06	8.06	8.12	8.09	7.99	7.77	7.83	8.86	7.94	7.95	7.78
DO (mg/L)												
Minimum	8.59	7.95	7.92	8.68	6.09	7.29	5.55	6.06	7.15	7.55	8.07	7.92
TRC (mg/L)												
Average Monthly	0.28	0.4	0.37	0.32	0.38	0.34	0.23	0.27	0.35	0.41	0.36	0.42
TRC (mg/L)												
Instantaneous												
Maximum	0.49	0.49	0.49	0.46	0.63	0.54	0.42	0.44	0.5	0.58	0.5	0.65
CBOD5 (lbs/day)												
Average Monthly	6.0	< 2.0	< 0.8	< 0.9	< 1.0	< 0.8	1.0	< 0.7	< 0.9	1	3	< 3.0
CBOD5 (lbs/day)												
Weekly Average	7.0	< 3.0	< 0.9	1.0	2.0	1.0	2.0	< 0.7	< 0.9	1	3	3.0
CBOD5 (mg/L)	40.0											
Average Monthly	10.3	< 3.0	< 3.0	< 3.9	< 5.2	< 3.6	6.3	< 3.0	< 3.0	4.1	9.3	< 4.1
CBOD5 (mg/L)	40.0			5.0	7.0	4.0	7.0					5.0
Weekly Average	12.0	< 3.0	< 3.0	5.0	7.0	4.0	7.0	< 3.0	< 3.0	5.0	11	5.0
BOD5 (lbs/day)												
Raw Sewage Influent												
<pre> <</pre>	450	477	64	60	<u> </u>	<u></u>	70	60	70	70	07	004
	153	177	61	60	60	62	70	69	73	76	67	204
BOD5 (IDS/day)												
Raw Sewage Inititent	200	200	00	60	64	71	04	76	00	00	02	244
	200	290	82	62	64	/ 1	84	70	82	90	83	244
BOD5 (mg/L)												
kaw Sewage Innuent												
Nonthly	291	258	236	267	268	284	202	21/	254	277	224	240
TSS (lbs/day)	201	230	230	207	200	204	232	514	204	211	204	240
Avorago Monthly	< 1.0	< 20	< 0.6	04	< 1.0	0.8	20	07	< 14	1	1	20

TSS (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	45	28	10	16	9	17	18	17	24	21	15	55
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	51	43	11	17	12	18	19	17	29	27	20	66
TSS (lbs/day)												
Weekly Average	1.0	4.0	< 0.9	0.5	1.0	1.0	2.0	0.7	< 0.5	1	2	2.0
TSS (mg/L)												
Average Monthly	< 2.2	< 2.6	< 2.2	1.8	< 4.4	3.8	7.0	3.0	< 1.6	4.0	4.8	2.0
TSS (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	86	45	37	72	40	78	77	76	85	77	52	64
TSS (mg/L)												
Weekly Average	3.0	4.0	< 3.0	2.0	5.0	6.0	8.0	3.0	< 2.0	4.0	6.0	2.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	53	369	90	45	94	254	63	21	29	45	127	291
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	1413.6	547.5	153.9	104.6	275.5	1163.6	249.5	44.6	95.6	204.6	246.8	2419.6
Nitrate-Nitrite (mg/L)												
Average Quarterly		< 6.533			< 21.06			2.614			3.324	
Nitrate-Nitrite (lbs)												
Total Quarterly		< 577			< 1731			279			1255	
Total Nitrogen (mg/L)												
Average Quarterly		< 8.768			< 21.56			3.874			5.424	
Total Nitrogen (lbs)												
Total Quarterly		< 774			< 4.9			413			2047	
Total Nitrogen (lbs)												
Total Annual					< 1505							
Ammonia (mg/L)												
Average Monthly	0.249	< 0.1	< 0.128	< 0.1	< 0.1	< 0.102	< 0.29	< 0.144	< 0.1	< 0.54	1.696	4.502
Ammonia (mg/L)											0.007	
Average Quarterly		< 0.109			< 0.164			< 0.26			2.297	
Ammonia (lbs)											170	
		< 15			< 14			22			470	
Ammonia (lbs)					400							
I otal Annual					< 129							
IKN (mg/L)												
		0 00F			• • •			4 0 0			~ 1	

TKN (lbs)							
Total Quarterly	197	< 31		134		793	
Total Phosphorus							
(mg/L)							
Average Quarterly	5.02	5.66		1.05		2.61	
Total Phosphorus (lbs)							
Total Quarterly	443	465		112		985	
Total Phosphorus (lbs)							
Total Annual		504					

3.2 Effluent Violations for Outfall 001, from: March 1, 2022 To: January 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	08/31/22	Geo Mean	254	No./100 ml	200	No./100 ml
Fecal Coliform	08/31/22	IMAX	1163.6	No./100 ml	1000	No./100 ml

3.3 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate that except Fecal Coliform, permit limits have been met most of the time. Fecal Coliform effluent violations were noted on DMRs for the month of August 2022 during the period reviewed and presented in section 3.2 above. The violation appeared to be a onetime occurrence.

3.4 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations were found during plant inspections. The facility is operated and well maintained.

4.0 Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	.085
Latitude	40º 29' 44.55"	Longitude	-77º 44' 17.92"
Wastewater De	escription: Sewage Effluent		

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

4.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.3.1 WQM 7.0 Stream Model

WQM 7.0 is a water quality model DEP utilizes to establish appropriate effluent limits for CBOD₅, NH₃-N and DO in permits. The model simulates mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria and also simulates mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria and recommends effluent limits.

4.4 Water Quality-Based Limitations

4.4.1 Receiving Stream

The receiving stream is the Juniata River. According to 25 PA § 93.9n, this stream is protected for Warm Water Fishes (WWF) and Migratory Fishes (MF). It is located in Drainage List n and State Watershed 12-A. It has been assigned stream code 11414. According to eMapPA, this segment of Juniata River is attaining its designated uses.

4.4.2 Streamflow:

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No 01563500 on Juniata River at Mapleton Depot. The Q_{7-10} , Q_{1-10} and Q_{30-10} flows at the gage are 415 ft³/s, 384 ft³/s and 415 ft³/s respectively. The drainage area at the gage is 2030 mi². The resulting yields are as follows:

- $Q_{7-10} = (415 \text{ft}^3/\text{s})/2030 \text{ mi}^2 = 0.204 \text{ft}^3/\text{s}/\text{ mi}^2$
- $Q_{30-10} / Q_{7-10} = 1.06$
- $Q_{1-10} / Q_{7-10} = 0.925$

The drainage area at discharge taken from the previous protection report = 2460 mi² The Q_{7-10} at discharge = 2460 mi² x 0.204 ft³/s/mi² = 501.84 ft³/s.

Historically a PMF of 10% was used to adjust the Q₇₋₁₀ for WQM modelling purposes for this discharge and will be continued for the current permit renewal.

 Q_{7-10} model = 501.84 ft³/s. x 0.10 = 50.14 ft³/s

4.3.4 NH₃N Calculations

 $NH_{3}N$ calculations are based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream $NH_{3}N$ criteria used in the WQM model of the stream:

Discharge pH	= 7.4 (July -Sept DMR median)
Discharge Temperature	= 25 ° C (Default)
Stream pH	= 7.6 (WQN#214, median July-Sep)
Stream Temp	= 22° C (WQN#214, median July-Sep)
Background Hardness	= 114 (WQN#214, median July-Sep
Background NH ₃ -N	= 0.0 (default)

4.4.4 CBOD₅

The attached results of the WQM 7.0 stream model (attachment B) indicates that, for the McVeytown Borough Authority's discharge of 0.085MGD, an average monthly limit (AML) of 25mg/l for CBOD₅ is required to protect the water quality of the stream. This limit is consistent with the existing permit and the STP has been consistently achieving below this limitation. Therefore, a limit of 25mg/l AML, 40mg/l average weekly limit (AWL) and 50 mg/l IMAX is recommended for this permit cycle. Mass limits are calculated as follows:

Mass based AML (lb/day) = 25 (mg/L) \times 0.085(mgd) \times 8.34 = 17

Mass based AWL (lb/day) = $40(mg/L) \times 0.085(mgd) \times 8.34 = 28$

<u>4.4.5 NH₃-N</u>

The attached results of the WQM 7.0 stream model (attachment B) also indicates that no limitation on NH_3 as a monthly average is necessary to protect the aquatic life from toxicity effects. However, ammonia monitoring required in in the existing permit will continue to ensure treatment efficiency.

4.4.6 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement.

4.4.7 Total Suspended Solids (TSS):

There is no water quality criteria for TSS. The existing limit of 30 mg/I AML based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and an AWL of 45mg/I per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2) will remain in the permit. Mass limit are calculated as follows:

Mass based AML (lb/day) = $30 (mg/L) \times 0.085 (mgd) \times 8.34 = 21.0$

Mass based AWL (lb/day) = $45(mg/L) \times 0.085(mgd) \times 8.34 = 31.0$

4.4.8 Total Residual Chlorine

The attached TRC calculation results presented in attachment D utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The results presented in attachment D indicates that a technology limit of 0.5 mg/l monthly average and IMAX of 1.6 mg/l would be needed to prevent toxicity concerns. This is consistent with the existing permit will remain for the current permit renewal. DMR and inspection reports indicate the facility has been complying with the limitation consistently.

4.4.9 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling data were entered into DEP's Toxics Management Spreadsheet (TMS) to calculate WQBELs. The results of the TMS are presented in attachment C. The results of the TMS indicate discharge levels for all pollutants are well below DEP's target quantitation limits and the calculated WQBELs, therefore, no monitoring or limitation was recommended.

The recommended limitations follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

4.4.10 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E.coli. As a result, DEP is including monitoring requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows \geq 1 MGD, 1/quarter for design flows \geq 0.05 and < 1 MGD and 1/year for design flows of 0.002 – 0.05 MGD. Your discharge of 0.085MGD requires 1/quarter monitoring as included in the permit.

4.4.11 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by DEP based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) are required to monitor and report TN and TP during permit renewal and any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. EPA published Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs to be implemented with the original Chesapeake Bay Strategy.

As outlined in the current Phase 3 WIP and the current supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals

As outlined in the current Phase 3 WIP and the current supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals. This facility is classified as a phase 5, and has been monitoring Total Phosphorus, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen, and will continue to monitor and report the daily maximum concentration during the next permit cycle 1/quarter.

4.4.12 Influent BOD and TSS Monitoring

The permit include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.4.13 Stormwater

There is no stormwater outfall associated with this facility.

4.4.14 Industrial Users

McVeytown Borough Authority's wastewater treatment plant does not receive wastewater from any significant industrial users.

4.4.15 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.085 MGD and the facility receives no flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.4 303d Listed Streams

The discharge is not located on a 303d listed stream segment.

5.5 Special Permit Conditions

The permit contains the following special conditions:

• Stormwater Prohibition, Approval Contingencies, Solids Management and Restriction on receipt of hauled in waste under certain conditions and chlorine minimization requirement.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional

effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Paramotor	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured	
pH (S.U.)	ххх	xxx	6.0 Avg Mo	xxx	XXX	9.0	1/day	Grab	
DO	ххх	xxx	5.0 Daily Min	xxx	xxx	xxx	1/day	Grab	
TRC	ххх	xxx	xxx	0.5	xxx	1.6	1/day	Grab	
CBOD5	17	28	xxx	25.0	40.0	50	2/month	24-Hr Composite	
BOD5 Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	2/month	24-Hr Composite	
TSS	21	31	XXX	30.0	45.0	60	2/month	24-Hr Composite	
TSS Raw Sewage Influent	Report	Report Daily Max	xxx	Report	xxx	xxx	2/month	24-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	XXX	XXX	200 Geo Mean	xxx	1000	2/month	Grab	
E. Coli (No./100 ml)	ХХХ	XXX	XXX	XXX	XXX	Report	1/quarter	Grab	
Nitrate-Nitrite	ХХХ	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite	
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	Calculation	
Ammonia	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite	

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

				Monitoring Requirements				
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
					Report			24-Hr
TKN	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite

Compliance Sampling Location: At Outfall 001

	7.0 Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment C)
	IRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing effluent limitation for individual sewage permit.
	Other: WIP 3 and Supplement

Attachments

A. Topographical Map

B. WQM Model Results

					3		
	SWP Basin St	tream Code		Stream Nam	e		
	12B	11414		JUNIATA RIVE	R		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
62.690	McVeytown STF	PA0028983	0.085	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Friday, April 7, 2023

Version 1.1

Page 1 of 1

	SWF Basir	o Strea n Coo	im le	Stre	eam Name		RMI	Eleva (ft)	ition E	Orainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	App FC	ly C
	12B	114	414 JUNIA		२		62.69	90 4	78.00	2460.00	0.00000	0.0) v	
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>T</u> Temp	<u>ributary</u> pH	Tem	<u>Stream</u> p pH		
oonar	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.204	0.00 0.00 0.00	50.17 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	22.	00 7.6	0 ().00 0.0	0	
					Di	ischarge	Data							
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd)	ed Design Disc Flow) (mgd)	Reser Fact	Disc rve Tem tor (°C)	c Dis p pl	SC H		
		McVe	ytown STP	PAG	028983	0.085	0 0.085	50 0.085	50 0.	000 25	5.00	7.40		
					Pa	arameter	Data							
				Poromoto	r Nomo	D	isc 1 onc C	Frib St Conc C	ream Conc	Fate Coef				
			r	raramete	rivame	(m	ng/L) (r	ng/L) (r	mg/L) ((1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				

25.00

0.00

0.00

0.70

Input Data WQM 7.0

NH3-N

	SWF Basii	o Strea n Cod	m e	Stre	eam Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW: Withdr (mg	S awal d)	Apply FC
	12B	114	14 JUNIA		२		59.6	90	471.00	2466.00	0.0000)	0.00	M
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> 1p pH	Ter	<u>Stream</u> mp	pН	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°(C)		
Q7-10 Q1-10 Q30-10	0.204	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0)0 2	2.00 7.	60	0.00	0.00	
	Discharge Data													
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd)	ed Desi Dis Flo) (mg	ign sc Res w Fa gd)	Dis erve Ten ctor (°C	np))isc pH		
						0.000	0.000	0.0	0000	0.000	0.00	7.00		
					Pa	arameter	Data							
			F	Paramete	r Name	Di C	isc i onc (Trib Conc	Stream Conc	Fate Coef				
	-					(m	ng/L) (r	mg/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin Stree 12B	eam Code 11414		<u>St</u> JUN	<u>ream Name</u> NATA RIVER		
NH3-N	Acute Allocatio	ns					
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
62.69	90 McVeytown STP	6.7	50	6.7	50	0	0
NH3-N	Chronic Allocat	ions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
62.69	90 McVeytown STP	1.12	25	1.12	25	0	0

24 WOM 7.0 Westsload Alls

RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Critical Reach	Percent Reduction
62.69 M c	Veytown STP	25	25	25	25	5	5	0	0

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.925	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.06	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	5		

<u>SWP Basin</u> S	tream Code	Stream Name					
128	11414			JUNIATA RIVE	R		
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperat	ure (°C)	Analysis pH	
62.690	0.08	5		22.008		7.599	
Reach Width (ft)	Reach De	pth (ft)		Reach WDRa	tio	Reach Velocity (fps)	
148.928	1.15	7		128.771		0.292	
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (r	ng/L)	Reach Kn (1/days)	
2.06	0.03	0		0.07		0.817	
Reach DO (mg/L)	Reach Kr (<u>1/days)</u>		Kr Equation	1	Reach DO Goal (mq/L)	
8.235	0.63	1		Tsivoglou		5	
Reach Travel Time (days)		Subreach	Results				
0.628	TravTime	CBOD5	NH3-N	D.O.			
	(days)	(mg/L)	(mg/L)	(mg/L)			
	0.063	2.06	0.06	7.94			
	0.126	2.05	0.06	7.94			
	0.188	2.05	0.06	7.94			
	0.251	2.04	0.05	7.94			
	0.314	2.04	0.05	7.94			
	0.377	2.03	0.05	7.94			
	0.439	2.03	0.05	7.94			
	0.502	2.03	0.04	7.94			
	0.565	2.02	0.04	7.94			
	0.628	2.02	0.04	7.94			

WQM 7.0 D.O.Simulation

<u>SWP Basin</u> 12B		<u>Stream Code</u> 11414			<u>Stream Name</u> JUNIATA RIVER							
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (davs)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow											
62.690	50.17	0.00	50.17	.1315	0.00044	1.157	148.93	128.77	0.29	0.628	22.01	7.60
Q1-1	0 Flow											
62.690	46.41	0.00	46.41	.1315	0.00044	NA	NA	NA	0.28	0.656	22.01	7.60
Q30-	10 Flow	1										
62.690	53.18	0.00	53.18	.1315	0.00044	NA	NA	NA	0.30	0.608	22.01	7.60

WQM 7.0 Hydrodynamic Outputs

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0028983

C. Toxic Management Spreadsheet

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	s Disch	arge	Stream				
Facility:	McVeyt	own ST	P		NPDES Permit No.:	PA0028983	Outfall No.: 001
Evaluation T	ype:	Major \$	Sewage / Ind	ustrial Waste	Wastewater Descrip	tion: Sewage	

	Discharge Characteristics											
Design Flow	Hardness (mg/l)*		P	Partial Mix Fa	Complete Mix Times (min)							
(MGD)*		рп (50)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h				
0.085	100	7.4										

					0 if lef	t blank	0.5 if left blank		0 if left blank			1 if left	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L											
5	Chloride (PWS)	mg/L											
on l	Bromide	mg/L											
ō	Sulfate (PWS)	mg/L											
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	µg/L		13.3									
0 2	Free Cyanide	µg/L											
Ino	Total Cyanide	µg/L											
ō	Dissolved Iron	µg/L											
	Total Iron	µg/L											
	Total Lead	µg/L	<	8									
	Total Manganese	µg/L											
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	µg/L		65									
	Total Molybdenum	µg/L											

Stream / Surface Water Information

McVeytown STP, NPDES Permit No. PA0028983, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Juniata River

No. Reaches to Model: 1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	011414	62.69	478	2460			Yes
End of Reach 1		52.69	471	2466			Yes

Statewide Criteria

O Great Lakes Criteria

Location	DMI	LFY	Flow (cfs)		W/D	Width	Depth	Velocit	Timo	Tributary		Stream		Analysis	
Location	EXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	62.69	0.204	50.18									114	7.6		
End of Reach 1	52.69	0.204													

Q_h

Q 7-10

Location	RMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Time (days)	Tributary		Stream		Analysis	
		(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)		Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	62.69														
End of Reach 1	52.69														

ORSANCO Criteria

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0028983

Model Results

McVeytown STP, NPDES Permit No. PA0028983, Outfall 001

Instructions Results	RETURN	TO INPU	TS (SAVE AS	PDF	PRINT	r) () A	ll 🔿 Inputs	⊖ Results
Hydrodynamics Wasteload Allocations									
AFC	CCT (min): 1	5	PMF:	0.083	Ana	lysis Hardne	ss (mg/l):	113.57 A	Analysis pH: 7.59
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Comments
Total Copper	0	0		0	15.151	15.8	516	(Chem Translator of 0.96 applied
Total Lead	0	0		0	74.159	96.0	3,137	C	Chem Translator of 0.772 applied
Total Zinc	0	0		0	130.522	133	4,361	C	Chem Translator of 0.978 applied
✓ CFC	CCT (min): 7	20	PMF:	0.575	Ana	alysis Hardne	ess (mg/l):	113.94	Analysis pH: 7.60
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Comments
Total Copper	0	0		0	10.012	10.4	2,299	(Chem Translator of 0.96 applied
Total Lead	0	0		0	2.900	3.76	828	C	Chem Translator of 0.772 applied
Total Zinc	0	0		0	131.948	134	29,505	C	Chem Translator of 0.986 applied
☑ THH	CCT (min): 7	20	PMF:	0.575	Ana	alysis Hardne	ess (mg/l):	N/A A	Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Comments
Total Copper	0	0		0	N/A	N/A	N/A		
Total Lead	0	0		0	N/A	N/A	N/A		
Total Zinc	0	0		0	N/A	N/A	N/A		
✓ CRL	CCT (min): 7	20	PMF:	0.945	Ana	alysis Hardne	ess (mg/l):	N/A A	Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Comments
Total Copper	0	0		0	N/A	N/A	N/A		
Total Lead	0	0		0	N/A	N/A	N/A		
Total Zinc	0	0		0	N/A	N/A	N/A		
Recommended WQBELs No. Samples/Month:	& Monitoring Re	quireme	nts						

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

D. TRC Calculations

TRC EVAL	UATION										
Input appropri	ate values ir	n A3:A9 and D3:D9									
50.18	= Q stream	n (cfs)	0.5	= CV Daily							
0.085	= Q discha	arge (MGD)	0.5	= CV Hourly							
30) = no. sam	ples	1	= AFC_Parti	al Mix Factor						
0.3	3 = Chlorine	Demand of Stream	1	= CFC_Parti	al Mix Factor						
() = Chlorine	Demand of Discharge	15	= AFC_Crite	ria Compliance Time (min)						
0.5	5 = BAT/BP.	J Value	720	= CFC_Crite	ria Compliance Time (min)						
() = % Facto	r of Safety (FOS)	0	=Decay Coe	fficient (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations						
TRC	1.3.2.iii	WLA afc =	121.753	1.3.2.iii	WLA cfc = 118.692						
PENTOXSD TRO	3 5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581						
PENTOXSD TRO	∃ 5.1b	LTA_afc=	45.368	5.1d	LTA_cfc = 69.002						
Source	Source Effluent Limit Calculations										
PENTOXSD TRO	G 5.1f		AML MULT =	1.231							
PENTOXSD TRO	G 5.1g	AVG MON L	.IMIT (mg/l) =	0.500	BAT/BPJ						
-		INST MAX L	.IMIT (mg/l) =	1.635							
-											
WILA of o	(040/a/ kt		a* 040/04*/		1						
WLA alc		AFC_Vc*Oe*Ye/Od)]*(1-	5 .015/QU (FOS/100)	CI-K ALO_IC)	J						
I TAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*1 N(cvh^2	2+1)^0.5)								
LTA afc	wla afc*LTA	AMULT afc	,,								
WLA_cfc	(.011/e(-k*	CFC_tc) + [(CFC_Yc*Qs	s*.011/Qd*e	(-k*CFC_tc)))						
1	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-	FOS/100)								
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.3	326*LN(cvd^2	2/no_samples+	1)^0.5)						
LTA_cfc	wla_cfc*LT#	AMULT_cfc									
-											
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^	0.5)-0.5*L N (c	vd^2/no_samp	les+1))						
AVG MON LIMIT	MIN(BAT_B	PJ,MIN(LTA_afc,LTA_cfc)*	AML_MULT)								
INST MAX LIMIT	1.5*((av_n	non_limit/AML_MULT)/L1	TAMULT_af	c)							
			1								